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Abstract

Compute and data intensive research problems, such as universe or mi-
crobiological studies, are pushing High Performance Computing archi-
tectures to achieve, in 2022, the Exascale level, that is the capability

to process a billion billion calculations per second.
These applications manage huge input datasets and they are characterized

by multiple parameters that influence execution. Given that power consump-
tion issues and energy efficiency have become essential, there exist various
techniques that try to improve these aspects, keeping on acceptable quality of
results. Approximate Computing strategies, both at software and hardware
level, balance computation quality and expended effort, in order to achieve
application objectives and to maximize overall computational efficiency.

The design space of all possible configurations, for these kind of applica-
tions, is very huge and, therefore, it cannot be explored exhaustively. To
achieve a full knowledge on both parameter values and corresponding metrics
of interest (such as throughput, power consumption or output precision) is
almost unfeasible and, therefore, we prefer approximate solutions.

This thesis has focused on the development of a framework, Agora, that
is able to drive online Design Space Exploration through an initial subset of
configurations, in order to predict an application complete model through Ma-
chine Learning techniques. The result is used by an autotuner to dynamically
adapt program execution with the best configuration that fulfills current goals
and requirements. Main advantages of Agora are the elimination of any offline
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phase and design-time knowledge as well as the capability to manage multiple
running applications at the same time.
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Estratto

Applicazioni di ricerca avanzata, come gli studi sull’universo o sulla mi-
crobiologia, stanno proiettando le architetture ad elevate prestazioni
di calcolo (High Performance Computing) verso il traguardo di un

miliardo di miliardi di operazioni effettuate al secondo, atteso nel 2022.
Queste ricerche sono caratterizzate da una enorme quantità di dati in in-

gresso e dalla presenza di parametri che ne influenzano l’esecuzione. Poichè
problematiche inerenti il consumo di potenza e l’efficienza energetica hanno
assunto un’importanza rilevante, esistono varie tecniche che tentano di miglio-
rare questi aspetti, mantenendo comunque accettabile il valore dei risultati
ottenuti. Strategie di approssimazione (Approximate Computing), applicabili
sia a livello hardware sia a livello software, cercano di raggiungere un equili-
brio tra la qualità della computazione e lo sforzo richiesto, al fine di adempiere
ai vincoli e agli obiettivi dell’applicazione e di massimizzare, al contempo,
l’efficienza di calcolo.

Per questo tipo di applicazioni, lo spazio delle possibili configurazioni è mol-
to ampio e, pertanto, non è possibile esplorarlo esaustivamente. Possedere una
completa conoscenza riguardo le combinazioni dei parametri e i corrispondenti
risultati delle metriche prese in esame (come, ad esempio, il numero di ope-
razioni completate al secondo, il consumo di potenza oppure la precisione dei
dati in uscita) è praticamente irrealizzabile e, pertanto, si ricorre a soluzioni
approssimate.

Questa tesi ha sviluppato un sistema, Agora, in grado di gestire l’esplora-
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zione di un sottospazio delle possibili configurazioni, con lo scopo di predire,
usando tecniche di apprendimento automatico (Machine Learning), il modello
completo dei programmi in esame; questo risultato è utilizzato da un auto-
tuner per scegliere dinamicamente la migliore combinazione di parametri che
soddisfi vincoli e obiettivi dell’applicazione. I principali benefici apportati da
Agora sono l’eliminazione di ogni fase antecedente l’esecuzione dei programmi
e la capacità di gestire molteplici applicazioni contemporaneamente.
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CHAPTER1

Introduction

1.1 Problem and Motivations

Nowadays, increasingly accurate climate forecasts, biomedical researches,
business analytics, astrophysics studies and, in general, Big Data
problems require huge computing performance in order to obtain sig-

nificant results. For these reasons, High Performance Computing (HPC) tech-
nologies have been continuously sped up and, now, their next target is to reach
the Exascale level, that is the capability of at least one exaFLOPS, equal to
a billion billion FLOPS (FLoating point Operations Per Second). This is the
order of processing power of human brain at neural level, based on H. Markram
et al. research study ([1]).

In order to raise computing performance, the multicore scaling era has
brought, over time, a constant frequency and power increase. However, it
is impossible to follow this trend anymore, due to the beginning of dark silicon
era ([2]) and the end of Dennard scaling ([3]). In 1974, Robert H. Dennard
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Chapter 1. Introduction

provided a more granular view of the famous Moore’s Law ([4]) expressing the
doubling of number of transistors, in a dense integrated circuit, approximately
every two years. This trend produces faster processors because, as transistors
get smaller, their power density is constant, so that power use is proportional
with area. As transistors get smaller, so necessarily do voltage and current,
giving the possibility to increase frequency. The ability to drop voltage and
current, in order to let transistors operate reliably, has broken down. Static
power (power consumed when transistor is not switching) has increased its
contribution in overall power consumption, with an importance similar to dy-
namic power (power consumed when transistor changes its value), producing
serious thermal issues and realistic breakdowns. This scenario implicates the
impossibility to power-on all components of a circuit at nominal operating
voltage due to Thermal Design Power (TDP) constraints.

Due to these physical problems, system energy efficiency has become es-
sential. Even if, every approximately 1.5 years computation per kilowatt-hour
have doubled over time ([5]), Subramaniam et al. ([6]) suggest that there is the
need of an energy efficiency improvement at a higher rate than current trends,
in order to reach target consumed power of 20 MW for Exascale systems,
established by DARPA report ([7]).

Efficiency has become very important also for the electricity consumption
of data centers: just the US data centers are expected to consume 140 billion
kWh in 2020, from 61 billion kWh in 2006 and 91 billion kWh in 2013 ([8]),
given that the amount of information managed by worldwide data centers is
going to grow 50-fold while the number of total servers is going to increase
only 10-fold ([9]).

It is straightforward that green and heterogeneous approaches have to be
applied in order to improve general efficiency of High Performance Computing
architectures in which multiple Central Processing Units (CPUs), General-
Purpose computing on Graphics Processing Units (GPGPUs) and Many In-
tegrated Cores accelerators (MICs) coexist and work together in a parallel
way; for these reasons, TOP500 Green Supercomputers ([10]) demonstrates
the large interest in green architectures, ranking and updating world top 500
supercomputers by energy efficiency.

There exist various approaches in order to deal with these problems, from
both hardware and software point of view. Power Consumption Management
consists of various techniques such as Dynamic Voltage and Frequency Scaling
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i
i

“thesis” — 2017/7/3 — 23:29 — page 3 — #25 i
i

i
i

i
i
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(DVFS) and thermal-aware or thermal-management technologies in order to
deal with dark silicon issues ([11]). Another important concept is Approximate
Computing ([12]), that focuses on balancing computation quality and expended
effort, both at programming level and in different processing units. This the-
sis deals with approximate techniques, exploited at software level, oriented to
tunable High Performance Computing applications that follow the so called
Autonomic Computing research area ([13], [14]). The underlying structure on
which this theory is based is the Monitor-Analyze-Plan-Execute feedback loop,
where systems have the capability to manage themselves, given high-level ob-
jectives and application knowledge in terms of possible configurations, made
by parameter values (such as number of threads or processes involved, possi-
ble various kind of compiler optimization levels, application-specific variable
values, etc.) and the corresponding metrics of interest (such as power con-
sumption, throughput, output error with respect to a target value, etc.). This
information represents the application design space.

For these kind of programs, the large number of parameters and their corre-
sponding set of values make the design space huge and, in general, computation
time is not negligible. Therefore, an exhaustive search is practically unfeasible,
so there exist Design Space Exploration techniques that aim to provide ap-
proximated Pareto points, namely those configurations that solve better than
others a typical multi-objective optimization problem (for instance, keeping
throughput above some value while limiting output error and power consump-
tion).

Typically, application knowledge is built at design-time. Then, it is passed
to a dynamic autotuner that has the ability to choose, from time to time, the
best possible set of parameters (also called dynamic knobs) with respect to
current goals and requirements that might change during execution.

One of the leading projects in this research area is ANTAREX ([15]), lead
by Politecnico di Milano, that aspires to express by LARA ([16, 17]), a Do-
main Specific Language (DSL), application self-adaptivity and to autotune, at
runtime, applications oriented to green and heterogeneous HPC systems, up
to the Exascale level.

1.2 Objectives

Main objective of this work is to explore the application Design Space Ex-
ploration at runtime, collecting all information about used parameter values

Politecnico di Milano 3 Cristiano Di Marco
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and related performance in terms of associated metrics of interest. Through
this data and Machine Learning techniques, we aim to predict an application
complete model, made by the whole possible configuration list. Finally, the
model is used by the dynamic online autotuner, that can set up the related
program execution in the best way, according to current goals and require-
ments.

To reach these objectives, we have developed in this thesis a framework,
Agora, that can manage multiple tunable applications that run in a parallel
architecture; we want not only to simultaneously supervise different programs,
but also to share Design Space Exploration phase among all nodes that run
the same application, hence speeding up this process.

Any kind of prior offline phase and design-time knowledge, that separates
applications from their execution in runtime autotuning mode, is therefore
avoided. Agora makes autotuning completely independent from both applica-
tion type and technical specifications about the machine in which program is
executed. Agora does not need to know this information before it starts and
final complete model is suitable regardless autotuner objectives.

1.3 Thesis structure

This thesis is structured as follow: in Chapter 2 we focus on the back-
ground concepts related to our work, clarifying what is a parallel architecture,
the meaning of Design Space Exploration and Design of Experiments, the con-
cept of Dynamic Autotuning and, finally, we present the MQTT messaging
protocol and the Generalized Linear Regression (GLR) approach for applica-
tion model prediction, used in our framework. Chapter 3 gives an overview
of the State-of-the-Art about the principal methodologies related to Agora,
in particular on current research studies about Design Space Exploration and
Autotuning. In Chapter 4 we address our intent, describing the overall con-
text, our suggested methodology and tool, its general description and main
strenghts. Chapter 5 shows the technical implementation of Agora use cases,
related workflow and framework behavior. In Chapter 6 we collected some
experimental results we have done in order to validate our approach and to
highlight overall benefits. Finally, Chapter 7 summarizes the entire work, the
obtained results and possible future Agora developments.
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CHAPTER2

Background

In this Chapter, we explain the main concepts and used tools related to
Agora. This work has been thought for HPC applications that run in
parallel architectures, so we start clarifying what are these target systems

and how they are built. After that, we explain the concepts of Design Space
Exploration and Design of Experiments, that represents the kernel of this work,
together with the idea of application dynamic online autotuning. Finally, we
present the tools used for communications among Agora components and for
application complete model prediction, highlighting their principal characteris-
tics and features: the Message Queue Telemetry Transport (MQTT) messaging
protocol and the Generalized Linear Regression interface by Apache SparkTM

Machine Learning MLlib library.
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Chapter 2. Background

2.1 Target architecture

High Performance Computing applications have complex and massive tasks
to do, so they need huge computing power in order to accomplish their objec-
tives.

Parallel computing ([18]) simultaneously uses multiple resources in order to
solve a computational problem, taking advantage of concurrency, that is the
possibility to execute, at the same time, those parts that are independent each
other. In figure 2.1a we can see an example of serial computation, with a single
processor that executes problem instructions sequentially, one after another.
Figure 2.1b instead represents a possible parallel computation, where problem
is split in four parts that can be executed concurrently on different processors.

(a) Serial computation (b) Parallel computation

Figure 2.1: Serial and parallel computation of a problem

A typical parallel architecture is composed by an arbitrary number of com-
puters, called nodes, each of them with multiple processors, cores, functional
units, ect. connected all together by a network.

Figure 2.2: Parallel architecture schema

Inside a parallel architecture there can be heterogeneous nodes, with dif-
ferent computing techniques and configurations; according to Flynn’s classical

Cristiano Di Marco 6 Academic Year 2016/2017



i
i

“thesis” — 2017/7/3 — 23:29 — page 7 — #29 i
i

i
i

i
i

2.2. Design Space Exploration

taxonomy, we can identify four different ways to classify computing architec-
tures:

1. Single Instruction, Single Data (SISD): this is the original kind of com-
puter, in which there is only one instruction stream that is managed by
the Central Processing Unit during clock cycles. This is serial, so non-
parallel, computing;

2. Single Instruction, Multiple Data (SIMD): at any clock cycle, there is one
instruction that is executed, but processing units can operate on different
data elements of instruction;

3. Multiple Instruction, Single Data (MISD): a single data stream is man-
aged by multiple processing units, that can independently operate on data
through separate instruction streams;

4. Multiple Instruction, Multiple Data (MIMD): every processing unit can
execute different data and instruction streams.

Nowadays, among introduced alternatives, MIMD architectures are the
most used in parallel computing, especially in HPC systems.

2.2 Design Space Exploration

In many engineering problems there are several objectives that have to be
obtained, given certain constraints and with the possibility to manage some
customizable parameters. Objectives can involve various metrics of interest,
for instance connected to application throughput, system consumed power or
overall cost.

Automatic Design Space Exploration (DSE) analyzes, in a systematic way,
the space of possible parameter combinations that constitute application design
space, with the objective to find the best design point that fulfills problem goals
and requirements.

HPC applications have almost always a lot of parameters and related set of
values, making the list of program configurations very long. In these cases, the
corresponding design space literally explodes, making impossible to analyze it
in an exhaustive way.

Politecnico di Milano 7 Cristiano Di Marco
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Chapter 2. Background

2.2.1 Multi-Objective Optimization problem

When there is more than one objective function, DSE consists of a Multi-
Objective Optimization (MOO) problem. Taking [19] as reference, in mathe-
matical terms a MOO problem can be defined as:

min(f1(x), f2(x), ..., fk(x)), k ≥ 2 s.t. x ∈ X (2.1)

where k denotes the number of objective functions and X represents the
feasible region, defined by some constraint functions (for instance, in an em-
bedded architecture, the total area should not exceed a predetermined value).
If some of the objective functions have to be maximized, they can be attributed
to minimizing its negation.

Multi-Objective Optimization problem has a lot of analogies into a wide
variety of situations and domains, even the most common ones. Formerly the
ancients, given a set of seeds and a plot of land, had to choose what, how
and how much farm, in order to maximize harvest profit and to minimize
required effort, simultaneously not exceeding a cost limit. Airline companies
want to augment the number of passengers on their airplanes, to increase
safety, to enlarge autonomy of their vehicles by means of various technical,
strategic and commercial choices. An undergraduate student would minimize
his/her university career duration and maximize his/her exam average, with
a predetermined time limit and with the possibility to choose some coursers
than others.

Since some objectives are in contrast with other objectives, a unique solu-
tion does not exist. For instance, in a microcontroller, an objective focused
on performance would definitely confront against a goal related to power con-
sumption: best solution for one of them would be the worst for the other and
conversely. Therefore, the aim of Design Space Exploration is almost always
to search for a trade off, among goals and requirements, that fulfills overall
problem.

Since the concept of unique optimal solution cannot be applied, it is useful
to introduce the notion of Pareto optimality. Pareto optimal solutions are,
essentially, those ones that can’t be improved without degrading at least one
objective function. So, a solution x1 is said to (Pareto) dominate a solution x2

if:
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2.3. Design of Experiments


fi(x

1) ≤ fi(x
2) ∀i ∈ {1, 2, ..., k}

fj(x
1) < fj(x

2) for at least one j ∈ {1, 2, ..., k}
(2.2)

The set of Pareto optimal solutions is often called Pareto front, Pareto
frontier or Pareto boundary. Figure 2.3 shows an example of a Pareto frontier.
Boxed points represent feasible choices. Point C is dominated by both point
A and point B. Points A and B are not strictly dominated by any other point,
therefore they are on the Pareto front.

Figure 2.3: Pareto frontier example, taken from [20]

2.3 Design of Experiments

When a design space of an application is huge and, consequently, there is
no possibility to do an exhaustive analysis of all possible configurations, there
is the need to take a subset of points of interest that represents as closely
as possible system behavior. Therefore, on one hand there is the quality of
representation, that should be reliable enough; on the other side, the number
of simulations to do, that should be small.

Taking [21] as reference, among various Design of Experiments (DoE) tech-
niques that generate an initial set of design points to be analyzed, we can
mention:

• Full-Factorial DoE : it is given by all possible combinations among pa-
rameter values, so all possible application configurations are picked up;
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Chapter 2. Background

• 2-Level Full-Factorial DoE (Figure 2.4a): suitable for designs with two
or more parameters, this DoE picks up all possible combinations among
the extreme values of all parameters.

If, for instance, there are three tunable parameters:

1. Number of Processors ∈ { 2, 4, 8, 16, 32 };

2. Number of Threads ∈ { 1, 2, 3, 4, 5, 6, 7, 8 };

3. Cache size ∈ { 2K, 4K, 8K, 16K, 32K }.

design points will be: 〈 #processors, #threads, cache size 〉 ∈

{ 〈 2, 1, 2K 〉, 〈 32, 1, 2K 〉, 〈 2, 8, 2K 〉, 〈 32, 8, 2K 〉, 〈 2, 1, 32K 〉,
〈 32, 1, 32K 〉, 〈 2, 8, 32K 〉, 〈 32, 8, 32K 〉 };

• Face Centered Central Composite DoE with one Center Point (Figure
2.4b): also this DoE is appropriate for designs with two or more param-
eters. Design point list can be split in three sets:

1. A 2-Level Full-Factorial design set;

2. A Center Point, in which each value is the median value of corre-
sponding parameter;

3. An Axial Point set, in which all median and extreme values of each
parameter are combined.

Considering the example in previous DoE, final design point list would
be: 〈 #processors, #threads, cache size 〉 ∈

{ 〈 2, 1, 2K 〉, 〈 32, 1, 2K 〉, 〈 2, 8, 2K 〉, 〈 32, 8, 2K 〉, 〈 2, 1, 32K 〉,
〈 32, 1, 32K 〉, 〈 2, 8, 32K 〉, 〈 32, 8, 32K 〉 } ∪

{ 〈 8, 4, 8K 〉 } ∪

{ 〈 2, 4, 8K 〉, 〈 32, 4, 8K 〉, 〈 8, 1, 8K 〉, 〈 8, 8, 8K 〉, 〈 8, 4, 2K 〉,
〈 8, 4, 32K 〉 };

• Plackett-Burman DoE : it might be useful to analyze, more eonomically,
a larger number of parameters. This DoE reduces the number of poten-
tial factors, constructing very economical designs with number of points
multiple of 4 (rather than power of 2, as in the 2-Level Full-Factorial
DoE).

Concerning the example above, in this case final design point list would
be: 〈 #processors, #threads, cache size 〉 ∈
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2.4. Dynamic Autotuning

{ 〈 2, 1, 32K 〉, 〈 32, 1, 2K 〉, 〈 2, 8, 2K 〉, 〈 32, 8, 32K 〉 };

• Latin-Hypercube DoE : this DoE randomly chooses parameter values for
each design point. The number of final configurations can be set up in
advance.

(a) 2-Level Full-Factorial DoE (b) Face Centered Central Composite DoE
with One Center Point

Figure 2.4: DoE graphic representations

2.4 Dynamic Autotuning

When applications expose some configurable parameters (a.k.a. dynamic
knobs), the concept of Dynamic Autotuning is defined as the capability to find
the best set of knob values, in an automatic and systematic way, that satisfies
application goals and requirements at runtime, properly reacting to possible
objective function change. For instance, a web video streaming application
would be able to manage video quality according to the overload of its servers.
In some situations, it could set up itself for the best possible resolution. Some-
times, it should reduce the quality in order to make still available its services
to all connected clients.

IBM research studies on Autonomic Computing ([13], [14]) made a break-
through on the concept of self-adapting systems that are able to manage them-
selves and to dynamically optimize their execution configuration at runtime.
Autonomic Computing is based of the MAPE-K control loop, showed in Figure
2.5. In this control loop we can identify four principal functions:

• Monitor : it gathers application information about knob setting and asso-
ciated metric of interest values as, for instance, throughput and consumed
power;
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Chapter 2. Background

Figure 2.5: MAPE-K control loop design

• Analyze: it performs data analysis and reasoning on information provided
by the monitor function;

• Plan: it reacts to a possible application objective change during execution
and it structures the actions needed to achieve the new state;

• Execute: it modifies the behavior of managed resource, according to ac-
tions recommended by the plan function.

Finally, Knowledge source is composed of all data that is used by the four
functions; it includes information such as, for instance, topology structure,
historical logs, metrics and policies.

Online autotuning, therefore, entrusts system management from people to
technology, achieving self-configuration and self-optimization objectives. Ap-
plication requirements may change during execution and the overall system is
able to properly react and to re-adapt itself.

2.5 MQTT messaging protocol

MQTT (Message Queue Telemetry Transport, [22]) is a lightweight mes-
saging protocol that gives the possibility to establish remote communications
among subjects. Its main characteristics are the minimization of network
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2.5. MQTT messaging protocol

bandwidth and devices requirements. These features make MQTT ideal for
machine-to-machine (M2M) or Internet of Things (IoT) world of connected
devices, but in general this protocol have a large use in different projects; for
instance, famous Facebook Messenger is built on top of it ([23]).

MQTT uses a client server publish/subscribe pattern. A client has the
possibility to subscribe to topics and to publish messages on them (both topics
and messages are strings). Another component, called broker server, deals
with the dispatch of messages to only those clients that have subscribed to
corresponding topic. Therefore, publishers (clients that send messages) and
subscribers (clients that receive messages) don’t know about the existence of
one another; the broker, which is known by every client, distributes messages
accordingly. Figure 2.6 shows a possible MQTT scenario with a sensor and
two devices.

Figure 2.6: MQTT publish/subscribe example, taken from [24]

Topics are used by the broker to filter messages and to manage them in a
correct way; they are made up of one or more levels, separated by a forward
slash, as shown in Figure 2.7.

Figure 2.7: A MQTT topic, taken from [24]

There is the possibility to subscribe to more topics at once through the
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Chapter 2. Background

use of wildcards: the single-level one (denoted with the symbol +) and the
multi-level one (indicated with the symbol #).

Single-level wildcard substitutes an arbitrary level in a topic, so all topics
that matches the same structure are associated to the one with single-level
wildcard. For instance,

myhome/groundfloor/kitchen/temperature
and

myhome/groundfloor/livingroom/temperature
match topic in Figure 2.8, while

myhome/groundfloor/kitchen/humidity
does not.

Figure 2.8: A MQTT topic with single-level wildcard, taken from [24]

Multi-level wildcard is placed at the end of a topic and it covers an arbitrary
number of topic levels. In this case, for instance,

myhome/groundfloor/kitchen/temperature
and

myhome/groundfloor/kitchen/humidity
match topic in Figure 2.9, while

myhome/firstfloor/livingroom/temperature
does not.

Figure 2.9: A MQTT topic with multi-level wildcard, taken from [24]

Another interesting MQTT feature is the Last Will and Testament (LWT).
Each client can specify a MQTT message with topic and payload. When it
connects to the broker, this message is stored; if client abruptly disconnects,
broker sends corresponding LWT to all subscribed clients on related topic,
notifying occurred disconnection.
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2.6. Apache SparkTM MLlib library

2.6 Apache SparkTM MLlib library

Agora takes advantage of the Machine Learning MLlib library by Apache
SparkTM ([25]) in order to predict complete model of running applications; in
particular, we focuse on the Generalized Linear Regression interface.

2.6.1 (Generalized) Linear Regression

Taking [26] as reference, Linear Regression tries to model the relationship
between a variable y and one or more variables x1, x2, ...xn, n ≥ 1. More
rigorously, given a set of statistical units {yi, xi1, xi2, ..., xip}ni=1, in which yi

is the variable that depends on the p-vector [xi1, xi2, ..., xip], linear regression
assumes that this relationship is linear:

yi = β01+ β1xi1 + β2xi2 + ...+ βpxip + εi, i = 1, 2, ...n (2.3)

yi is the response variable or regressand;
xi1, xi2, ..., xip are called independent variables or regressors;
β0, β1, ..., βp are the regression coefficients, whose values establish the rela-

tionship among regressand and regressors; β0 is also called intercept. Linear
regression mainly focuses on the estimation of these parameters;
εi is called the error term. It represents all other factors that influence yi

other than the independent variables.
Linear Regression assumes that the response variable follows a Gaussian

distribution. Generalized Linear Regression (GLR) gives the possibility to
specify other distributions taken from the exponential family. It is useful for
several kinds of prediction problems, including Linear Regression, Poisson Re-
gression (for count data) and Logistic Regression (for binary data). Moreover,
GLR gives the possibility to specify the link function g that relates the mean
of regressand to the independent variables. In case of Gaussian distribution for
Linear Regression, the link function can be equal to Identity, Log and Inverse,
with explicit meaning.

2.6.2 Regressor transformations

In order to use Linear Regression even if the relationship among response
variable and independent variables is not linear, there is the necessity to modify
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Chapter 2. Background

the regressors. Agora implements two possible independent variable transfor-
mations:

1. it transforms parameter values with inverse, square root and natural log-
arithmic functions. In union with the unaltered regressors, it tries to
find the best model combining these transformations and available link
functions. We refer to this strategy as "transformations by functions";

2. it transforms parameter values through polynomial combinations of de-
gree 2: their cross-products and square values are added to the set of
regressors, evaluating the best model with available link functions. We
refer to this strategy as "polynomial combinations of degree 2".

Agora chooses the model with the smallest Akaike Information Criterion
(AIC) value, that is a measure of the quality, in terms of lost information,
of statistical models for a given set of data. At the same AIC value, chosen
model is the one with the smallest mean of the sum of coefficient standard
errors, that measure how precisely predicted model has estimated regression
coefficients with the given training set of data.
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CHAPTER3
State-of-the-Art

We introduce main research studies that have represented a starting
point for the design and implementation of Agora. We divide them
in two categories: Design Space Exploration and Autotuning.

3.1 Design Space Exploration related works

ReSPIR ([27]) proposes a DSE methodology for application-specific Multi-
Processor Systems-on-Chip (MPSoCs). First, a Design of Experiments phase
is used to capture an initial plan of experiments that represent the entire tar-
get design space to be explored by simulations. After that, Response Surface
Methodology (RSM) techniques ([28]) identify the feasible solution area with
respect to the system-level constraints, in order to refine the Pareto configu-
rations until a predetermined criterion is satisfied.

MULTICUBE Explorer ([29]) is an open source, portable, automatic Multi-
Objective Design Space Exploration framework for tuning multi-core architec-
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Chapter 3. State-of-the-Art

tures. A designer, through an existing executable model (use case simulator)
and a design space definition through a XML file, can explore the parametric
architecture.

The ε-Pareto Active Learning (ε-PAL, [30]) aims at efficiently localize an ε-
accurate Pareto frontier in Multi-Objective Optimization problems. It models
objectives as Gaussian process models, in order to guide the iterative design
evaluation and, therefore, to maximize progress on those configurations that
are likely to be Pareto optimal.

ReSPIR and MULTICUBE are researches oriented on application-specific
architecture design, while ε-PAL deals with the MOO problem in a general
way. All these three works aim to obtain a Pareto front and their execution
is done offline. Agora uses the concept of Design Space Exploration but it
is focused on Approximate Computing software strategies in executing appli-
cations. Agora does not calculate Pareto frontier, but its goal is to provide
complete application model through Machine Learning techniques. Moreover,
with respect to ReSPIR, MULTICUBE and ε-PAL, we want to avoid any offline
DSE phase, driving it during program execution.

Furthermore, Agora is able to fulfill application Design Space Exploration
in a shared way, among simultaneously running applications; with this im-
provement, DSE execution time is considerably reduced.

3.2 Autotuning related works

SiblingRivalry ([31]) proposes an always online autotuning framework that
uses evolutionary tuning techniques ([32]) in order to adapt parallel programs.
It eliminates the offline learning step: it divides available processor resources in
half and it selects two configurations, a "safe" one and an "experimental" one,
according to an internal fitness function value. After that, the online learner
handles the identical current request in parallel on each half and, according
to the candidate that finishes first and meets target goals and requirements,
it updates its internal knowledge about configurations just used for current
objective functions. This technique is used until a convergence is reached or
when the context changes and, therefore, new objectives have to be achieved.
When objectives change, SiblingRivalry restarts its procedure until new result
is obtained. Agora does not ground its worklow on predetermined objectives; it
is completely uninteresting about application goals and requirements, since it
predicts the complete model for all metrics under examination. Furthermore,
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computational power of the machine in which the tunable program is executed
is not kept busy by Agora, since application information gathering and model
prediction are done remotely, on a different computer.

Capri framework ([33]) focuses on control problem for tunable applications
which mostly use Approximate Computing ([12]) as improvement technique.
Given an acceptable output error, it tries to minimize computational costs,
such as running time or energy consumption. There are two main phases:
training, done offline, estimates error function and cost function, using Ma-
chine Learning techniques with a training set of inputs; the control algorithm,
done online, finds the best knob setting that fulfills objectives. Also Agora is
oriented in tuning applications based on Approximate Computing techniques.
It is focused on everything that precedes the control phase, supplying, to the
dynamic online autotuner, metric of interest estimations for each possible ap-
plication configuration. Agora wants to eliminate any offline phase, giving the
possibility to simply run an application, driving its execution in order to col-
lect a training set for model prediction; finally, the result is transmitted to the
application autotuner, that is in charge of managing the control phase.

mARGOt ([34]) proposes a lightweight approach to application runtime au-
totuning for multicore architectures. It is based on the Monitor-Analyze-Plan-
Execute (MAPE) feedback loop ([13]), made up of a monitor infrastructure
and an Application-Specific RunTime Manager (AS-RTM), based on Barbeque
([35]): the former element captures runtime information that is used by the
latter in order to tune application knobs, together with design-time knowledge
and application multi-objective requirements. The user has to provide XML
configuration files in which a list of mARGOt Operating Points (made by pa-
rameter values and related metric of interest values), desired monitors and
application objectives are expressed. The AS-RTM module, starting from this
design-time knowledge and evaluating runtime information, has the task of
choosing, from time to time, the best program configuration that satisfies ap-
plication goals and requirements as best as possible. This work represents the
starting point for the conception of Agora framework. mARGOt has to have
the list of program Operating Points before execution; we want to produce this
information while applications are running, removing to users the burden to
make an offline step before taking advantage of autotuner capabilities.

There are other different autotuning frameworks in HPC context, yet based
on design-time knowledge:
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• OpenTuner ([36]) builds up domain-specific program autotuners in which
users can specify multiple objectives;

• ATune-IL ([37]) is an offline autotuner that gives the possibility to specify
a wide range of tunable parameters for a general-purpose parallel program;

• PetaBricks ([38]) is oriented on the definition of multiple algorithm im-
plementations to solve a problem;

• Ananta Tiwari et al. ([39]) propose a scalable and general-purpose frame-
work for autotuning compiler-generated code, combining Active Harmony’s
parallel search backend ([40]) and the CHiLL compiler transformation
framework ([41]);

• Green ([42]) is focused on the energy-conscious programming using con-
trolled approximation;

• PowerDial ([43]) is a system that transforms static configuration param-
eters into dynamic knobs in order to adapt application behavior with
respect to the accuracy of computation and the amount of resources.

Agora main difference is the absence of any kind of prior information about
application features and the indifference on quality and quantity of metrics
and objectives, in contrast with the last two mentioned works ([42] and [43]),
focused on energy and accuracy goals.

Finally, among libraries for specific tasks, we can mention:

• OSKI ([44]): it provides a collection of low-level primitives that automat-
ically tune computational kernels on sparse matrices;

• SPIRAL ([45]): it generates fast software implementations of linear signal
processing transforms;

• ATLAS ([46]): it builds up a methodology for the automatic generation
of basic linear algebra operations, focusing on matrix multiplications.

Agora aims to generalize autotuning process.
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CHAPTER4
Proposed Methodology

Tunable applications are characterized by the presence of specific param-
eters, also known as dynamic knobs, that influence program execution.
Their change generates different application results in terms of metric

of interest values, as, for instance, throughput or power consumption. Figure
4.1 shows a typical parallel architecture with three nodes (node 1, 2 and 3) that
are executing three tunable applications (application X, Y and Z respectively).

Very often, High Performance Computing applications expose a large set of
parameters, making related design space huge and, consequently, unrealistic
to explore it in an exhaustive way. In order to choose, from time to time,
best program setting with the aim to improve energy efficiency with respect to
power consumption and current input data, the concept of Runtime Autotun-
ing is used: a class of online autotuners is able to choose, from time to time,
best possible parameter values that fulfill application goals and requirements,
starting from a design-time knowledge that gives information about parameter
values and corresponding metric of interest values, built off-line. Figure 4.2
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Chapter 4. Proposed Methodology

Figure 4.1: An example of a parallel architecture with three executing tunable
applications. Application X on node 1 and application Z on node 3 have three knobs,

while application Y on node 2 has two knobs

shows application Z interconnected with mARGOt [34], a dynamic autotuner
developed by PoliMi research group.

The autotuner needs application knowledge, so there has to be a preceding
offline phase (before program start of computation) for profiling. This the-
sis contributes to avoid this offline step by building, managing and updating
application knowledge during execution itself. A local module mainly takes
care of properly setting application knowledge, while a remote one manages
collected information during execution, in order to predict complete applica-
tion model. Figure 4.3 shows application Z interconnected with Agora and
mARGOt autotuner.

This thesis focuses on the problem of managing concurrent applications ex-
ecuted in a parallel architecture. Main objective of this work is to initially
drive program execution with a subset of parameter configurations taken from
their design space, in order to gather all metric of interest values associated to
them. This list composes the training set for the prediction of application com-
plete model through Machine Learning techniques. Agora can also correctly
manage possible features, where a feature is a particular application element
than cannot be set up like software knobs, but it contributes to the estimation
of complete model. During the DSE phase, feature values are observed like
metric values while, during model prediction, they are considered as param-
eters, so their observations take part to the estimation of metric of interest
values.

The typical architecture in which Agora works is parallel, where there are
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Figure 4.2: A tunable application Z with the assistance of mARGOt autotuner

multiple nodes, potentially heterogeneous, that execute applications. The
main Agora features are the following:

1. to drive Design Space Exploration in a distributed way, among all nodes
that are running the same program, in order to considerably reduce DSE
phase and to speed up overall workflow;

2. to manage multiple kinds of applications, each of them separately orga-
nized by a dedicated Agora module that is in charge of all nodes that
execute the same program;

3. the out-of-band activity from parallel architecture data streams: com-
putation of Design of Experiments configurations, collection of associated
metric of interest values and complete model prediction are done in a sep-
arate node with respect to the ones that run applications inside the archi-
tecture, while the exchange of information is done using the lightweight
MQTT protocol (discussed in Chapter 2.5);

4. the persistence of generated knowledge: once application complete model
is predicted, it is stored so, at any time, it can be reloaded and it is sent
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Chapter 4. Proposed Methodology

Figure 4.3: A tunable application Z with the assistance of Agora and mARGOt autotuner

to new nodes that start running the same application, without repeating
all the workflow through which the complete model has been previously
predicted;

5. to recover the cases where a running node crashes and to recover the
interruption of remote Agora module that has the objective to predict
application complete model: if the former situation happens, Agora has to
properly handle remaining running nodes; if the latter situation happens,
running nodes inside the parallel architecture does not have to stop their
execution but they react properly, according to the internal state of their
related local Agora module at that moment.

Figure 4.4 shows all Agora components and a possible scenario with a paral-
lel architecture in which six nodes are running three different types of tunable
applications. For each type of application there exists a dedicated Agora mod-
ule that manages it. The orange arrows represent the possible communications

Cristiano Di Marco 24 Academic Year 2016/2017



i
i

“thesis” — 2017/7/3 — 23:29 — page 25 — #47 i
i

i
i

i
i

Figure 4.4: Agora overview in a parallel architecture

among modules, made possible through MQTT subscriptions and publications
on predetermined topics.

The main modules of Agora are:

1. the AgoraDispatcher module, written in Python: it keeps waiting for
program arrival, in order to properly manage them;

2. the AgoraRemoteAppHandler module, written in Python:

– it is created by the AgoraDispatcher for each type of application;

– it asks for application information such as, for instance, all parameter
name and values;

– it computes application configurations that compose the Design of
Experiments;

– it drives Design Space Exploration phase, distributing DoE configu-
rations among all nodes it manages;
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Chapter 4. Proposed Methodology

– it collects parameter values and the observed metrics of interest sent
by running programs;

– it makes use of Machine Learning techniques in order to build appli-
cation complete model; finally it sends result to connected nodes.

3. the AgoraLocalAppHandler module, written in C++:

– it is set up in every executing program;

– it communicates with the autotuner that manages application behav-
ior;

– it notifies the existence of related running machine to the AgoraDis-
patcher module;

– it replies to possible information request made by the related Ago-
raRemoteAppHandler;

– during Design Space Exploration phase, it receives configurations
from the AgoraRemoteAppHandler module, it sets up program knowl-
edge with this information and, after the application has done com-
putation, it sends back all observed data, regarding parameter values
and associated metric of interest values;

– it saves predicted complete model received from the AgoraRemoteAp-
pHandler module, in order to properly update application knowledge.

4.1 Workflow

Figure 4.5 shows principal phases that define framework workflow and the
interaction among components. They are:

1. application start of execution: when programs start running, related
AgoraLocalAppHandler module notifies their existence to the AgoraDis-
patcher module. If the application is unknown, AgoraDispatcher creates
a dedicated AgoraRemoteAppHandler module that is in charge of manag-
ing it, otherwise it communicates new node to the corresponding existing
AgoraRemoteAppHandler module;

2. Design of Experiments computation: AgoraRemoteAppHandler module
computes the subset of configurations, from the entire application design
space, that compose the Design of Experiments; after that, it is ready to
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4.1. Workflow

Figure 4.5: Agora workflow

drive Design Space Exploration phase, distributing these configurations
to requesting nodes;

3. configuration reception: AgoraLocalAppHandler module updates appli-
cation knowledge with all the configurations that, from time to time,
are sent by the AgoraRemoteAppHandler module. Every time program
computation is finished, it sends back to the AgoraRemoteAppHandler
module a list of values, made by the configuration just used with the
observed metrics of interest;

4. application configuration and related metric value collection: AgoraRe-
moteAppHandler module collects all the information it receives from run-
ning nodes. When it has all the necessary data, it uses Machine Learning
techniques in order to predict application complete model, made by all
possible configurations associated with predicted metric values;

5. predicted model dispatch: application complete model is sent by Ago-
raRemoteAppHandler to associated running nodes. The AgoraLocalAp-
pHandler modules update program knowledge with this information, so
the dynamic autotuner can set up application knobs with the best con-
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Chapter 4. Proposed Methodology

figuration that fulfills current goals and requirements.

The interactions among Agora components are implemented in an asyn-
chronous way; program executions are independent from MQTT message ex-
change and all modules properly react to these events, in order to not condition
application workflow and to not steal execution time, making all process as
flowing as possible.
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CHAPTER5
Agora: proposed framework

This Chapter shows technical implementation of Agora framework, going
into detail of all possible use cases. In the last part, a sketch appli-
cation explains how AgoraLocalAppHandler module is integrated and

how it works.

5.1 Introduction

Agora makes use of the MQTT protocol ([22]) for the communications
among components. It uses Eclipse Paho MQTT Python Client and Eclipse
Paho MQTT C Client for managing message exchange ([47]), while it uses
Eclipse Mosquitto as broker server ([48]). We take addvantage of the Ma-
chine Learning library MLlib by Apache SparkTM ([25]) in order to predict
application complete models.

Next technical use case implementation makes use of application Swaptions
as reference, taken from the PARSEC benchmark suite ([49]). This applica-
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Chapter 5. Agora: proposed framework

tion is a workload which prices a portfolio of swaptions through Monte Carlo
simulations. It has two tunable parameters, the number of threads (variable
num_threads, from 1 to 8) and the number of trials for the simulation (vari-
able num_trials, from 100.000 to 1.000.000 with a step of 100.000). Observed
metrics of interest are: throughput (variable avg_throughput) as the number
of priced swaptions per second and error (variable avg_error), computed as:

avg_error =
∑

s∈pricedSwaptions |StandDevRef(s)− StandDev(s)|
|pricedSwaptions|

where StandDevRef(s) is the reference standard deviation for swaption s,
StandDev(s) is the evaluated one and pricedSwaptions represents the set of
swaptions that are priced at each computing cycle; so, metric avg_error stands
for the average of differences between standard deviation of priced swaptions
using evaluated configuration with respect to the reference one (standard de-
viation for 1.000.000 trials).

Agora has been interconnected to mARGOt autotuner ([34]), that exploits
design-time knowledge to dynamically adapt application behavior during ex-
ecution. mARGOt represents this information as a list of Operating Points
(OPs). An OP is made by a set of parameter values, also called software knobs,
in union with the associated performance (metric of interest values), profiled
at design-time. Agora improvement is to build application knowledge at run-
time, with an online distributed Design Space Exploration phase in which a
subset of OPs are collected, in order to predict the complete model, made by
the entire Operating Point list.

Agora could work in union with other autotuners that, using application
knowledge in terms of configurations and associated performance, have the
capability to dynamically adapt application behavior during execution.

5.2 Use case implementation

5.2.1 AgoraRemoteDispatcher module creation

The starting point is the creation of the AgoraRemoteDispatcher module,
that is in charge of managing the arrival of applications. It connects to the
MQTT broker and it subscribes to topic "agora/apps" (Figure 5.1).
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5.2. Use case implementation

Figure 5.1: AgoraRemoteDispatcher MQTT subscription

5.2.2 Application arrival

An application can be already known by the AgoraRemoteDispatcher mod-
ule or a program is executed by a machine for the first time. We define known
application a program that is already supervised by an AgoraRemoteAppHan-
dler module, while unknown application a program that does not have a ded-
icated AgoraRemoteAppHandler module.

5.2.2.1 Unknown application

A node starts running a program. The related AgoraLocalAppHandler
module notifies this event, publishing on topic "agora/apps" a string composed
of application name and machine hostname plus Process IDentifier (PID),
with format "[appName] [hostname]_[PID]", so that AgoraLocalAppHandler
module can be univocally recognized in the future. The message is received by
AgoraRemoteDispatcher, that creates a dedicated AgoraRemoteAppHandler
module for this application (Figure 5.2).

Figure 5.2: New unknown application arrival. A dedicated AgoraRemoteAppHandler
module is created by AgoraRemoteDispatcher
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Chapter 5. Agora: proposed framework

Figure 5.3: AgoraLocalAppHandler MQTT subscriptions

At the beginning, the AgoraLocalAppHandler module subscribes to some
topics that are needed to receive communications from the related Agora-
RemoteAppHandler (Figure 5.3):

1. "agora/[appName]", in order to understand if AgoraRemoteAppHandler
has asked application information and, therefore, to reply (see 5.2.3.1).
This topic is also used to understand if AgoraRemoteAppHandler has
crashed and, so, to react properly (see 5.2.7);

2. "agora/[appName]/[hostname]_[PID]/conf", in order to receive configu-
rations from AgoraRemoteAppHandler during Design Space Exploration
phase (see 5.2.3.4);

3. "agora/[appName]/[hostname]_[PID]/model", in order to receive a par-
tial OP list (see 5.2.3.5) and the complete predicted model from Ago-
raRemoteAppHandler (see 5.2.3.6).

The AgoraRemoteAppHandler module subscribes to some topics in order
to correctly manage all various situations that happens (Figure 5.4):

1. "agora/[appName]/newHostpid", in order to manage the hypothetical no-
tification of other AgoraLocalAppHandler modules that are supervising
the same application (see 5.2.2.2);

2. "agora/[appName]/req", in order to manage all the requests made by Ago-
raLocalAppHandler modules during program execution (see 5.2.3);

3. "agora/[appName]/info/#", in order to receive all available application
information, such as parameter name and values (see 5.2.4). Real topic is
"agora/[appName]/info/[hostname]_ [PID]" (see MQTT multi-level wild-
card in Chapter 2.5), therefore AgoraRemoteAppHandler can store the ID
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5.2. Use case implementation

Figure 5.4: AgoraRemoteAppHandler MQTT subscriptions

of the node that is sending application information, in order to properly
react to possible node crash during this phase (see 5.2.6);

4. "agora/[appName]/disconnection", in order to correctly react to a possible
node disconnection (see 5.2.6);

5. "agora/[appName]/OPs", in order to receive Operating Points from Ago-
raLocalAppHandler modules during Design Space Exploration phase (see
5.2.5).

5.2.2.2 Known application

When the AgoraRemoteDispatcher module is informed that a new node has
started running an application but there already exists an AgoraRemoteAp-
pHandler that is managing that program, it publishes on topic "agora/[app-
Name]/newHostpid" the new machine hostname plus PID, so that the corre-
sponding AgoraRemoteAppHandler module can add the node to the pool of
machines that are running the application it is supervising (Figure 5.5).

5.2.3 AgoraLocalAppHandler request

At each predetermined time interval, AgoraLocalAppHandler modules make
a request to the related AgoraRemoteAppHandler, publishing their hostname
plus PID on topic "agora/[appName]/req" (Figure 5.6).
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Chapter 5. Agora: proposed framework

Figure 5.5: New known application arrival. Node ID is sent by AgoraRemoteDispatcher
to the corresponding AgoraRemoteAppHandler module

This kind of publication is repeated until the node receives the predicted
complete Operating Point list. AgoraRemoteAppHandler replies to these re-
quests according to its internal state, that can be one of the following:

1. unknown;

2. receivingInfo;

3. buildingDoE ;

4. DSE ;

5. buildingTheModel;

6. autotuning.

Figure 5.6: AgoraLocalAppHandler module request

Cristiano Di Marco 34 Academic Year 2016/2017



i
i

“thesis” — 2017/7/3 — 23:29 — page 35 — #57 i
i

i
i

i
i

5.2. Use case implementation

5.2.3.1 AgoraRemoteAppHandler internal state equal to unknown

AgoraRemoteAppHandler does not know anything about the application it
is managing, except related name. It asks to AgoraLocalAppHandler modules
all available information, making a publication with payload "info" on topic
"agora/[appName]" (Figure 5.7).

Figure 5.7: Application information request by AgoraRemoteAppHandler module

5.2.3.2 AgoraRemoteAppHandler internal state equal to receivingInfo

The AgoraRemoteAppHandler module is receiving application information,
so in this case it discards all possible requests made by AgoraLocalAppHandler
modules.

5.2.3.3 AgoraRemoteAppHandler internal state equal to buildingDoE

AgoraRemoteAppHandler, according to the received Design of Experiments
type (see 5.2.4), is building the set of configurations that are going to be dis-
tributed to AgoraLocalAppHandler modules during Design Space Exploration
phase; also in this case it discards all possible AgoraLocalAppHandler module
requests.

5.2.3.4 AgoraRemoteAppHandler internal state equal to DSE

The AgoraRemoteAppHandler module has computed DoE configurations,
so it is driving Design Space Exploration phase. It picks up the first element
on top of the available configuration list and it sends, in lexicographic order, the
associated software knob values on topic "agora/[appName]/[hostname]_[PID]/
conf", relative to the AgoraLocalAppHandler module that made the request
(Figure 5.8). The configuration just sent is reinserted at the end of the men-
tioned list.
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Chapter 5. Agora: proposed framework

Figure 5.8: Configuration dispatch by AgoraRemoteAppHandler module

As shown in Figure 5.8, AgoraLocalAppHandler receives a configuration
with num_threads = 1 and num_trials = 100.000; next computation is
going to be done with these parameter values.

5.2.3.5 AgoraRemoteAppHandler internal state equal to buildingTheModel

AgoraRemoteAppHandler has gathered all needed OPs related to DoE con-
figurations and it is computing complete Operating Point list through Ma-
chine Learning techniques. From gathered Operating Points, a partial model
is built, assembling to every DoE configuration the mean of metric values,
taken from the corresponding Operating Points. This partial model in sent
to the AgoraLocalAppHandler module that made the request. Each obtained
OP is published on topic "agora/[appName]/[hostname]_[PID]/model" with
format "[configuration] [metric values]". Both configuration and metric values
follow lexicographic order. Finally, AgoraRemoteAppHandler makes a final
publication on same topic with payload "DoEModelDone" (Figure 5.9).

Figure 5.9: Partial model dispatch by AgoraRemoteAppHandler module

Taking Figure 5.9 as reference, the first sent OP has parameters
num_threads = 1 and num_trials = 100.000, with metrics avg_error =
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5.2. Use case implementation

217, 3312 and avg_throughput = 6, 737362; the AgoraLocalAppHandler mod-
ule sets up mARGOt autotuner with this OP list, so the application is executed
with the best Operating Point that fulfills current goals and requirements.

5.2.3.6 AgoraRemoteAppHandler internal state equal to autotuning

The AgoraRemoteAppHandler module owns the complete OP list, obtained
through the Generalized Linear Regression interface by Apache SparkTM MLlib
library. Similarly to the previous case (5.2.3.5), every Operating Point is sent to
AgoraLocalAppHandler on topic "agora/[appName]/[hostname]_[PID]/model"
with format "[configuration] [metrics values]", respecting lexicographic order
for both parameter and metric values. The final publication has payload "mod-
elDone" (Figure 5.10).

Figure 5.10: Complete model dispatch by AgoraRemoteAppHandler module

In Swaptions application, parameter num_threads can assume 8 different
values, while parameter num_trials 10 ones, so the complete model is com-
posed by all the 80 OPs; after mARGOt autotuner has received all the pre-
dicted Operating Points, it can set up application knobs according to current
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Chapter 5. Agora: proposed framework

objectives.
From this point on, AgoraLocalAppHandler stops making requests to the

AgoraRemoteAppHandler module.

5.2.4 Application information dispatch by AgoraLocalAppHandler

It has been shown that, if an AgoraRemoteAppHandler module receives a
request from a node but its internal state is unknown, it requests application
information (see 5.2.3.1). AgoraRemoteAppHandler saves both the identifier
of the first AgoraLocalAppHandler module that replies and all data it re-
ceives. Other possible replies from other AgoraLocalAppHandler modules are
discarded.

Mandatory information AgoraLocalAppHandler modules have to send is:

1. metrics under examination: the keyword is metric, followed by metric
name. There is a publication for each metric. Publications have to be in
lexicographic order with respect to metric name;

e.g. payload: "metric avg_throughput"

2. application parameters: the keyword is param, followed by parameter
name, the way in which it is transmitted and corresponding values. There
is a publication for each parameter. Also in this case, publications must
follow lexicographic order with respect to parameter name. Agora makes
available two ways to send values:

(a) by list: the keyword is enum and, in this case, all possible values are
listed;

(b) by extreme values and step: the keyword is range and, in this case,
minimum value, maximum value and step are sent. AgoraRemoteAp-
pHandler module, from this information, computes all possible pa-
rameter values.

e.g. payload: "param num_threads enum 1 2 3 4 5 6 7 8"

e.g. payload: "param num_trials range 100.000 1.000.000 100.000"

There are some optional information that AgoraLocalAppHandler modules
can send to the AgoraRemoteAppHandler:
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1. number of required repetitions for each Operating Point: the keyword is
numReps, followed by a number. This value represents the number of Op-
erating Points that the AgoraRemoteAppHandler has to gather for each
Design of Experiments configuration, during Design Space Exploration
phase;

e.g. payload: "numReps 5"

2. Design of Experiments type: the keyword is DoE, followed by the term
that indicates the kind of Design of Experiments that has to be used. It
can be:

(a) fcccd: it corresponds to the Face Centered Central Composite DoE
with one Center Point;

(b) ff2l: it corresponds to the 2-Level Full-Factorial DoE;
(c) pbd: it corresponds to the Plackett-Burman DoE;
(d) lhd: it corresponds to the Latin-Hypercube DoE. In this case, there is

another optional information that can be sent to the AgoraRemoteAp-
pHandler module: the number of configurations that have to be pro-
duced, with the word lhdSamples followed by the desired value. If
this information is not sent, the number of random configurations is
equal to the number of application parameters;

(e) fcccdExtra: it corresponds to the Face Centered Central Composite
DoE with one Center Point plus the addition of other configurations
through the Latin-Hypercube DoE. As in the previous case, the op-
tional keyword lhdSamples is used to express the number of extra
configurations, otherwise they are equal to the number of parame-
ters;

(f) fullFact: it corresponds to the Full-Factorial DoE.

We refer to Chapter 2.3 for Design of Experiments detailed information.

e.g. payload: "DoE fcccdExtra"

e.g. payload: "lhdSamples 6"

3. Response Surface Methodology technique: the keyword is RSM, followed
by the term that indicates the Machine Learning technique that has to
be used in order to predict application complete OP list. Agora imple-
ments two versions of the Apache SparkTM Generalized Linear Regression,
explained in detail in Chapter 2.6.2:
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(a) the 1st version ("transformations by functions"), with associated word
sparkGenLinRegrTransforms;

(b) the 2nd version ("polynomial combinations of degree 2"), with asso-
ciated word sparkGenLinRegrPolyComb2.

e.g. payload: "RSM sparkGenLinRegrPolyComb2"

4. parameter value transformations for the 1st implemented version of Apache
SparkTM Generalized Linear Regression: the keyword is paramsTrans-
forms, followed by the involved metric name and the terms that indicate
the kind of parameter transformations, the family distribution and the
link function. Transformations must follow the same order of parameter
information dispatch. They can be:

(a) inv: in this case, to the corresponding parameter values in the OPs,
the inverse function is applied;

(b) ln: in this case, to the corresponding parameter values in the OPs,
the natural logarithmic function is applied;

(c) sqrt: in this case, to the corresponding parameter values in the OPs,
the square root function is applied;

(d) id: in this case, the corresponding parameter values in the OPs are
not transformed.

Agora focuses on the prediction of continuous functions with normal dis-
tribution: the corresponding family is the Gaussian one, indicated with
word gaussian. For Gaussian family, link function can be:

(a) identity;

(b) log;

(c) inverse.

If this kind of information is available, it must exist for each metric of
interest. We refer to Chapter 2.6.1 for more detailed information about
family and link function.

e.g. payload: "paramsTransforms avg_error id sqrt gaussian log"

5. number of application features: the keyword is numFeats, followed by
the corresponding number. In this case, a minimum number n of feature
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value observations can be specified through the keyword minNumObs-
FeatValues, followed by n. Only those feature values that are observed at
least n times, during Design Space Exploration phase, contribute to the
prediction of application complete OP list. If no feature value reaches n
observations, n becomes the number of observations of the most observed
feature value. If this last information is missing, n = 1.

e.g. payload: "numFeats 1"

e.g. payload: "minNumObsFeatValues 5"

If not specified, default Design of Experiments type is Face Centered Cen-
tral Composite DoE with one Center Point, default number of repetitions
for each OP is 1, default number of program features is 0 and default RSM
technique is the "polynomial combinations of degree 2" version of the Apache
SparkTM Generalized Linear Regression. If the chosen RSM technique is the
"transformations by functions" GLR version but there is no information about
parameter value transformations, Agora tries every possible combination in
union with all possible link functions, choosing the best result according to
Akaike Information Criterion measure and the mean of the sum of coefficient
standard errors (see Chapter 2.6.2).

All information is sent by AgoraLocalAppHandler modules on topic "agora/
[appName]/info/[hostname]_[PID]". A final publication with message "done"
specifies to the AgoraRemoteAppHandler that application information is fin-
ished. Taking Figure 5.11 as reference, the AgoraRemoteAppHandler pulls
out, from topic, crisXPS15_1897 and it saves this identifier as the AgoraLo-
calAppHandler that is sending program information. As we can see, Swaptions
application focuses on two metrics, avg_error and avg_throughput. It has
two parameters, num_threads and num_trials; the former is sent with the
complete list of values, while the latter is sent with the keyword range, speci-
fying its minimum value (100.000), its maximum one (1.000.000) and the step
(100.000). The AgoraRemoteAppHandler module computes all values, that are
therefore 100.000, 200.000, 300.000, ..., 1.000.000. The Design of Experiments
that has to be used is the Face Centered DoE with one Center Point and the
RSM technique is the 1st version of the Apache SparkTM Generalized Linear
Regression. Parameter transformations are also specified so, e.g. for metric
avg_error, the first parameter (num_threads) is not transformed, while the
second parameter (num_trials) has to be transformed with the square root
function, applying gaussian as family distribution and log as link function. It
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Figure 5.11: Application information dispatch by AgoraLocalAppHandler module

can be noticed that there is no information about the number of Operating
Point repetitions to collect during DSE phase: in this case, default value is
used (1 repetition for each OP). Finally, there is no payload with keyword
numFeats either: Swaptions does not have features.

The AgoraRemoteAppHandler module is now ready to compute Design
of Experiments configurations. After that, it can start distributing them to
nodes, driving the subsequent Design Space Exploration phase.

5.2.5 Operating Point dispatch by AgoraLocalAppHandler module

During DSE, AgoraLocalAppHandler modules store configurations that re-
ceive from AgoraRemoteAppHandler (see 5.2.3.4). Every time a configuration
is sent, if the configuration in use differs from the new one, AgoraLocalAp-
pHandler communicates to mARGOt autotuner new parameter values, there-
fore next program computation is executed with new parameter values.

When execution is finished, the AgoraLocalAppHandler module arranges
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the obtained Operating Point, composed by the set of parameter values and
the observed metrics of interest. It publishes on topic "agora/[appName]/OPs"
a message in the form "[configuration]:[metric values]", in which both value
lists have to follow lexicographic order with respect to parameter and metric
name (Figure 5.12). If there are application features, payload is in the form
"[configuration]:[observed feature values]:[metric values]".

Figure 5.12: Operating Point dispatch by AgoraLocalAppHandler module

Taking Figure 5.12 as reference, Swaptions has been just executed with
num_threads = 8 and num_trials = 500.000. Monitored metric values are
avg_error = 41, 43726 and avg_throughput = 7, 312116.

When AgoraRemoteAppHandler receives an Operating Point, it decrements
the corresponding number of needed OP repetitions. If the updated value is
equal to zero, it means that there is no need of other related OPs, so the
corresponding configuration is moved from the set of available configurations
to the set of accomplished ones.

Model prediction just starts when last needed Operating Point repetition
related to last available configuration is received from a node.

5.2.6 AgoraLocalAppHandler module disconnection

If an AgoraLocalAppHandler module disconnects for some reason, related
AgoraRemoteAppHandler receives a message on topic "agora/[appName]/dis-
connection" with payload "[hostname]_[PID]", relative to disconnected Ago-
raLocalAppHandler (see MQTT Last Will and Testament in Chapter 2.5).
The AgoraRemoteAppHandler module removes node identifier from the list of
machines it is managing (Figure 5.13).

Particular attention has to be taken if the disconnected AgoraLocalAp-
pHandler module is the one that, at the beginning, is sending application
information (see 5.2.4); in this case, AgoraRemoteAppHandler has to remove
disconnected machine, it has to reset partial data (received up to that moment)
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Chapter 5. Agora: proposed framework

Figure 5.13: AgoraLocalAppHandler module disconnection

Figure 5.14: Disconnection of AgoraLocalAppHandler module that is sending application
information

and it asks again all available application information to remaining connected
AgoraLocalAppHandler modules (Figure 5.14).

5.2.7 AgoraRemoteAppHandler module disconnection

If the AgoraRemoteAppHandler module disconnects, related AgoraLocal-
AppHandler modules receive a message on topic "agora/[appName]" with pay-
load "disconnection" (see MQTT Last Will and Testament in Chapter 2.5), as
shown in Figure 5.15.

Each AgoraLocalAppHandler reacts to this event according to its internal
state, that can be:

1. defaultStatus;
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5.2. Use case implementation

Figure 5.15: AgoraRemoteAppHandler module disconnection

2. DSE ;

3. DoEModel;

4. autotuning.

5.2.7.1 AgoraLocalAppHandler internal state equal to defaultStatus

When a node starts running a program, mARGOt sets up application pa-
rameter values with a predetermined default configuration. If any Design Space
Exploration phase has not been started yet, AgoraRemoteAppHandler discon-
nection does not affect application behavior.

5.2.7.2 AgoraLocalAppHandler internal state equal to DSE

The AgoraRemoteAppHandler module is driving Design Space Exploration
phase, sending configurations to AgoraLocalAppHandler modules. In this case,
default configuration is restored and the application is executed with corre-
sponding parameter values (Figure 5.16).

Figure 5.16: AgoraRemoteAppHandler module disconnection with AgoraLocalAppHandler
internal state equal to DSE
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Chapter 5. Agora: proposed framework

5.2.7.3 AgoraLocalAppHandler internal state equal to DoEModel

AgoraLocalAppHandler has received a partial OP list, related to Design of
Experiments configurations (see 5.2.3.5). In this case, available OP list is not
deleted, therefore mARGOt continues to work with this information.

5.2.7.4 AgoraLocalAppHandler internal state equal to autotuning

The AgoraLocalAppHandler module has already received predicted com-
plete OP list from AgoraRemoteAppHandler, therefore nothing changes.

5.3 AgoraLocalAppHandler module integration

Figure 5.17: Sketch application with AgoraLocalAppHandler module and mARGOt
autotuner integration

Figure 5.17 shows a sketch application that, until loop_condition() is ver-
ified (line 12), is executed. Computation depends on three parameters (pa-
ram1, param2, param3) that are set up by mARGOt autotuner at the begin-
ning of each cycle (line 16), while two metrics of interest (metric1,metric2)
are monitored (for mARGOt details, see related scientific publication [34]).

Integration code required to use Agora framework with mARGOt autotuner
is written in bold red. Main steps during program execution are three:

1. AgoraLocalAppHandler module and mARGOt autotuner instantiation
and initialization (lines 9-10): the AgoraLocalAppHandler module saves
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5.3. AgoraLocalAppHandler module integration

all application information and sets up mARGOt autotuner with a de-
fault Operating Point. If nothing happens, the application is executed
with this configuration;

2. application knowledge update (line 14): the AgoraLocalAppHandler mod-
ule updates, from time to time, its internal knowledge about application
configurations that are sent by the AgoraRemoteAppHandler module. Be-
fore mARGOt autotuner sets up application parameters (line 16), Ago-
raLocalAppHandler checks mARGOt knowledge with respect to its inter-
nal one: if they are different, mARGOt Operating Points are updated.
In this way, for instance, if the AgoraLocalAppHandler module receives
a new configuration during Design Space Exploration phase (see 5.2.3.4),
mARGOt knowledge is set up with only this data, so the application is
forced to be executed with the corresponding parameter values. If, for
instance, application complete model is received (see 5.2.3.6), mARGOt
internal knowledge is set up with all this information, so the autotuner
can choose the best Operating Point that fulfills application current goals
and requirements;

3. Operating Point dispatch (line 21-22): after each computation has done,
parameter values just used with the corresponding monitored metrics of
interest are published on a predetermined MQTT topic, so the related
AgoraRemoteAppHandler module can receive this information (see 5.2.5).
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CHAPTER6
Experimental Results

To evaluate the benefits and drawbacks of the Agora framework, we
carried out a set of experiments on various applications and scenar-
ios. First, we present the structure of the applications used for the

experiments; then, we show the experimental results.

6.1 Experimental setup

We evaluate Agora in three different scenarios: two versions of a synthetic
application and a real one. This work has been coupled with mARGOt auto-
tuner ([34]). We use the concept of Operating Point (OP) concerning applica-
tion configurations in terms of parameter values and associated performance
(observed metric of interest values).

Synthetic application has three parameters: param1, param2 and param3.
A function of these three variables calculates the amount of milliseconds of
an execution cycle (executionT ime variable), while another function sets up
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Chapter 6. Experimental Results

an error measure. This last variable is considered as metric, together with
application throughput as number of jobs per second (so, approximately equal
to 1000

executionT ime
).

For the real scenario, Swaptions application is used, taken from the PAR-
SEC benchmark suite ([49]). This application solves partial differential equa-
tions through Monte Carlo simulations in order to price a portfolio of swap-
tions. Its tunable parameters are: the number of threads (num_threads vari-
able, from 1 to 8) and the number of trials for the simulation at every cycle
(variable num_trials, from 100.000 to 1.000.000 with a step of 100.000). Ob-
served metrics of interest are: throughput (variable avg_throughput) as the
number of priced swaptions per second and error (variable avg_error), com-
puted as:

avg_error =
∑

s∈pricedSwaptions |StandDevRef(s)− StandDev(s)|
|pricedSwaptions|

where StandDevRef(s) is the reference standard deviation for swaption s,
StandDev(s) is the evaluated one and pricedSwaptions represents the set
of swaptions that are priced at each computing cycle. So, metric avg_error
stands for the average of differences between standard deviation of priced swap-
tions using evaluated configuration with respect to the reference one (standard
deviation for 1.000.000 trials).

Concerning used machine, we run Agora on a Dell XPS 15 9550 with 4 core
8 threads Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 processor.

6.1.1 Synthetic application version 1

In the first version of synthetic application, the amount of execution time
is calculated as:

executionT ime = 7.35 · ln (param1)+38.1 · param2+52.96 ·√param3+noise

where noise simulates a disturbance. It is computed as:

noise = executionT ime · randomNumber · noisePercentage

randomNumber is a generated random value according to an exponential
distribution with mean 0.3. noisePercentage affects noise weight and it can
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6.1. Experimental setup

be equal to 1%, 5%, 10%, 15%, 25% or 50%.
Error metric is calculated as:

error =
1

0.015 · √param1 + 0.033 · ln (param2) + 0.028 · ln (param3)

Application parameters can assume these values:

Parameters Values
param1 1, 50, 150, 300, 450, 700, 800
param2 1, 50, 100, 150, 200
param3(·10) 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85

Table 6.1: Synthetic application version 1 parameters and related values
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Figure 6.1: Throughput by varying the error for synthetic application version 1

This application has 455 Operating Points. Figure 6.1 shows complete OP
distribution for noisePercentage = 15%. Every point stands for a particular
configuration with an associated error value (on x-axis) and a throughput one
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Chapter 6. Experimental Results

(on y-axis). Since noise in executionT ime is affected by randomNumber, this
plot consider its expected value, equal to the mean of the chosen exponential
distribution (0.3). The obtained OP list represents the reference model for this
predetermined noisePercentage value. Other reference models are similar,
since the only difference is the noisePercentage value for the calculation of
executionT ime variable.

Concerning model prediction quality, therefore, for every application set-
ting with a fixed noisePercentage, estimated OP list is compared with the
corresponding reference one.

6.1.2 Synthetic application version 2
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Figure 6.2: Throughput by varying the error for synthetic application version 2

In the second synthetic application version, execution time is equal to:

executionT ime = 7.4 · param1 · param2 + 2.1 · (param3)
2 + noise
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6.2. Experimental campaign

where noise is simulated as in the previous application version, while the
error is:

error =
1

0.01 · param1 + 0.7 · ln (param2) + 0.019 · param3

Parameter values are:

Parameters Values
param1 1, 10, 15, 25, 40, 65, 80
param2 1, 5, 10, 20
param3 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46

Table 6.2: Synthetic application version 2 parameters and related values

In this application the number of Operating Points is 364. Figure 6.2 shows
complete OP distribution of reference model with noisePercentage = 5%.
Every point stands for a particular configuration with an associated error value
(on x-axis) and a throughput one (on y-axis).

Regarding model prediction goodness, same reasoning as previous applica-
tion version is applied.

6.1.3 Swaptions

This application has two parameters: num_threads and num_trials. Their
values are:

Parameters Values
num_threads 1, 2, 3, 4, 5, 6, 7, 8
num_trials(·103) 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Table 6.3: Swaptions parameters and related values

The number of Operating Points is therefore 80. Figure 6.3 shows com-
plete OP distribution with respect avg_error and avg_throughput metrics of
interest.

6.2 Experimental campaign

We want to demonstrate Agora validity. For both synthetic application
versions and Swaptions, we focuse our attention on model prediction goodness
in various scenarios. We study execution times, especially for Design Space
Exploration phases with one and more than one executing applications at
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Figure 6.3: avg_throughput by varying avg_error for Swaptions

the same time, highlighting benefits in sharing DSE. We reveal application
behavior during execution on different cases. Next paragraphs show results,
first for synthetic applications, finally for the real one.

6.2.1 Synthetic application

In this paragraph we show experimental results for both versions of synthetic
application, divided as explained before.

6.2.1.1 Model prediction quality

Concerning model prediction goodness, both synthetic application versions
are executed several times with the introduction of all noise weights (1%, 5%,
10%, 15%, 25% and 50%), focusing on the prediction of throughput metric,
that is the one affected by noise. A Face Centered Central Composite Desing of
Experiments with one Center Point has been used, first gathering 1 repetition,
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6.2. Experimental campaign

then 5 repetitions and finally 10 repetitions for each DoE configuration during
Design Space Exploration phase. For each predicted metric value m for each
application setting, we have calculated a deltaError measure:

deltaError(m) =
|predictedV alue(m)− referenceV alue(m)| · 100

|referenceV alue(m)|

where predictedV alue(m) and referenceV alue(m) have explicit meaning.
So, deltaError(m) stands for how much the predicted metric value m dis-
tances itself from the corresponding value of the related reference model, in
percentage. Figures from 6.4 to 6.9 summarize results.

Figure 6.4: deltaError results for throughput metric of synthetic application version 1 by
varying the noisePercentage and the number of OP repetitions. Used RSM: 1st version

of implemented GLR ("transformations by functions")

In Figures 6.4, 6.6 and 6.8, each stacked bar chart represents an application
setting with respect to noisePercentage value and the number of repetitions,
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Figure 6.5: deltaError mean for throughput metric of synthetic application version 1 by
varying the noisePercentage and the number of OP repetitions. Used RSM: 1st version

of implemented GLR ("transformations by functions")

for each DoE configuration, collected during DSE phase; on y-axis there are
the number of predicted OPs, in percentage, grouped with respect to measured
deltaError of related throughput metric. Related Figures 6.5, 6.7 and 6.9 show
deltaError mean for each program setting.

From Figure 6.4 we can see that, until noisePercentage = 15%, model pre-
diction is really precise even with only 1 repetition for each DoE configuration:
almost the totality of OPs has a deltaError below 5%. With 5 repetitions and
10 repetitions, all configurations have a deltaError below 5%. With the in-
troduction of a strong noise weight, 25% and 50%, prediction gets worse with
1 OP repetition, even if, respectively, around 70% and 60% of configurations
remains with a deltaError below 10%. Prediction gets back really accurate
with 5 and 10 OP repetitions also with these high noise values.

Figure 6.6 shows that, for synthetic application 1, 2nd version of the imple-
mented GLR produces, in general, results less precise that the ones generated
with the 1st GLR version (shown in Figure 6.4): up to noisePercentage =

10%, quality of predicted models is very satisfying, where more than 90% of
OPs have a deltaError below 5%. From noise weight equal to 15%, 25%,
50% and with 1 OP repetition, this deltaError percentage decreases to 35%,
30% and 15% respectively and a visible number of Operating Points has a
deltaError greater that 25%. For these settings, model prediction quality
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6.2. Experimental campaign

Figure 6.6: deltaError results for throughput metric of synthetic application version 1 by
varying the noisePercentage and the number of OP repetitions. Used RSM: 2nd version

of implemented GLR ("polynomial combinations of degree 2")

remarkably increases collecting more training data for each Design of Experi-
ments configuration: with 5 and 10 OP repetitions we notice very few predicted
OPs with a deltaError greater that 10%, so prediction quality becomes very
accurate even in these hard cases.

Concerning synthetic application version 2 with the 2nd version of imple-
mented Generalized Linear Regression as RSM (Figure 6.8), results are very
similar to the ones related to synthetic application version 1 with 1st version of
implemented Generalized Linear Regression (Figure 6.4): quality of model pre-
diction is generally very high, even with heavy noises but, in these cases, there
is the need of more OP repetitions in order to mitigate this strong disturbance.

For synthetic application version 1, as it can be understood, 1st imple-
mented version of GLR works slightly better than the 2nd one, but their pre-

Politecnico di Milano 57 Cristiano Di Marco



i
i

“thesis” — 2017/7/3 — 23:29 — page 58 — #80 i
i

i
i

i
i

Chapter 6. Experimental Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 OP rep

5 OP reps

10 OP reps

1 OP rep

5 OP reps

10 OP reps

1 OP rep

5 OP reps

10 OP reps

1 OP rep

5 OP reps

10 OP reps

1 OP rep

5 OP reps

10 OP reps

1 OP rep

5 OP reps

10 OP reps

d
e
lt

a
E
rr

o
r 

m
e
a
n
 [

%
]

50%
noisePercentage

25%
noisePercentage

15%
noisePercentage

10%
noisePercentage

5%
noisePercentage

1%
noisePercentage

Figure 6.7: deltaError mean for throughput metric of synthetic application version 1 by
varying the noisePercentage and the number of OP repetitions. Used RSM: 2nd version

of implemented GLR ("polynomial combinations of degree 2")

1 OP rep 5 OP reps 10 OP reps
GLR 1st version 155.52 sec 155.7 sec 157.72 sec
GLR 2nd version 23.21 sec 23.64 sec 23.8 sec

Table 6.4: Model prediction time by varying Generalized Linear Regression strategy and
the number of OP repetitions

diction times are very different, as shown in Table 6.4. 2nd GLR version takes
less than 24 seconds to predict complete model, while 1st GLR version approx-
imately 156 seconds: the former, almost to the same level of quality, is more
than 6 times faster than the latter. Moreover, we have noticed that the num-
ber of OP repetitions affects very poorly model prediction time; from Table
6.4 we can understand that, among 1, 5 and 10 OP repetitions for each DoE
configuration case, times vary very few.

We do not disclose model prediction quality for synthetic application version
2 with the 1st implemented version of GLR: "transformations by functions"
strategy is not able to capture functions of second order behavior, as variable
executionT ime is built in this case. On the contrary, "polynomial combinations
of degree 2" technique has the capability to highly predict functions with, for
instance, logarithmic or square root values, as demonstrated in the second
model prediction analysis (Figure 6.6).

From last analyses, we can assert that Generalized Linear Regression with
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Figure 6.8: deltaError results for throughput metric of synthetic application version 2 by
varying the noisePercentage and the number of OP repetitions. Used RSM: 2nd version

of implemented GLR ("polynomial combinations of degree 2")

"polynomial combinations of degree 2" is a Response Surface Methodology
much more powerful than GLR that uses "transformations by functions": the
latter version can predict a restricted set of scenarios, while the former is able
to include those cases and the wide variety of quadratic functions. Agora is
able to predict very well these metric behaviors and to properly manage strong
noise disturbances, with the necessity to do, in some cases, a longer Design
Space Exploration phase, collecting more OPs for each Design of Experiments
configuration. Lastly, Figures 6.5, 6.7 and 6.9 recap all various scenarios,
showing deltaError mean values that increase with high noises, going back
still very low with 5 and 10 OP repetitions, even in the worst cases.
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Figure 6.9: deltaError mean for throughput metric of synthetic application version 2 by
varying the noisePercentage and the number of OP repetitions. Used RSM: 2nd version

of implemented GLR ("polynomial combinations of degree 2")

6.2.1.2 Execution times

Concerning execution times, we want to show the significant benefit of shar-
ing Design Space Exploration phase among several nodes, running the same
application. The 2nd version of synthetic application with noisePercentage =
10% is executed, using Face Centered Central Composite Desing of Experi-
ments with one Center Point and collecting, for each configuration, 20 repe-
titions. For this application setting, the total number of configurations to be
explored is 300. We accomplish this DSE phase with 1 up to 10 executing ap-
plications, collecting the overall execution time, represented by each bar chart
in Figure 6.10. We can see that Agora takes about 23 minutes to terminate
Design Space Exploration with 1 executing application (second bar chart).
The first bar chart shows the amount of time needed to execute application
with all the 300 configurations in a serial way, without Agora; this execution
lasts around 10 seconds less than the first analyzed scenario, due to the lack
of Agora overheads. As we can understand, they are in any case very little:
they add only approximately 0.73% of time with respect of the serial execu-
tion. From 2 executing applications on, DSE time strongly decreases: Agora
takes around 12 minutes to finish this phase with just 2 executing applications,
8 minutes with 3 ones, up to only 2 and a half minutes with 10 ones, more
than 9 times lower than DSE phase with 1 application. Sharing Design Space
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Figure 6.10: Design Space Exploration time by varying the number of executing
applications

Exploration phase among more than one executing application clearly speeds
up overall time, since collection of training data duration, that is much longer
than model prediction one (reported in Table 6.4), considerably goes down.

Now we want to show general Agora advantages, comparing a Full-Factorial,
so exhaustive, application execution with the one supervised by this work.
In Figure 6.11, first bar chart shows overall time needed to compute a Full-
Factorial run for synthetic application version 2 with noisePercentage = 15%,
analyzing every possible configuration one time. Next stacked bar charts show
overall time, divided by DSE phase and model prediction, for the same appli-
cation, using Agora and collecting 1, 5 and 10 OP repetitions for each DoE
configuration. An exhaustive execution of analyzed application takes more
than 26 minutes to finish. With the introduction of Agora, using Face Cen-
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Figure 6.11: Overall execution time by varying synthetic application version 2 setting

tered Central Composite Desing of Experiments with one Center Point and the
2nd version of implemented GLR as RSM, overall time becomes 12 minutes if
10 repetitions for each DoE configuration are collected, about 6 minutes with
5 repetitions and even around 2 minutes with 1 repetition. We specify that, if
we want to explore every possible configuration in the exhaustive analysis as
much as we do for 5 and 10 OP repetitions of DoE configurations with Agora,
overall time is 130 minutes and 260 minutes respectively (5 times and 10 times
the Full-Factorial execution time), increasing much more the gap among the
exhaustive execution and the ones with the supervise of this work. Finally, we
also want to remind, from Figures 6.8 and 6.9, that Agora, for this application
setting, can predict a complete model with a very high quality even collecting
just 1 repetition for each DoE configuration, so the final result is very similar
to a Full-Factorial analysis. Therefore, this work can produce high benefits in
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the prediction of application complete model, starting from a small subset of
configurations.

6.2.1.3 Application behavior over time
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Figure 6.12: Metric values of synthetic application version 2 by varying time

Figure 6.12 shows application behavior during execution with the supervise
of Agora and mARGOt autotuner; on x-axis there is time, while on y-axis
there are observed metric of interest values during execution. We have run
synthetic application version 2 with noisePercentage = 15%, using Face Cen-
tered Central Composite DoE with one Center Point and the 2nd version of
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Chapter 6. Experimental Results

implemented GLR as RSM, collecting 5 repetitions for each Design of Exper-
iments configuration during DSE phase. Objective functions have been set up
to Throughput > 3 and Error < 1.

Every couple of corresponding points in graphs of Figure 6.12 represents a
configuration with which the application has been executed, obtaining certain
throughput and error metric values. From a colored couple of points to the
following one, the application has maintained parameter values corresponding
to the former couple. Grey empty couples of points indicate application ex-
ecution with parameter values equal to the first previous colored couple. At
the beginning, application runs with default configuration, corresponding to
an error of around 0.5 and a throughput equal to about 0.75 (black couple of
points). Agora starts Design Space Exploration, sending DoE configurations;
mARGOt, from time to time, sets application parameters with the correspond-
ing values, so observed metrics of interest vary during this phase (red couples
of points). When DSE phase terminates, Agora sends a partial model (see
Chapter 5.2.3.5) and it starts predicting the complete list of Operating Points;
mARGOt chooses the best application configuration that fulfills objective func-
tions, represented by dark green couple of points. Throughput is around 4.25,
so the first goal is respected, while error is about 5, so the second goal is
not achieved (blue lines highlight boundaries of objective functions). When
application receives the complete model (at around 6 and a half minutes af-
ter starting time), it is set with another configuration (light green couple of
points): obtained throughput is approximately 3.25 and error is about 0.5,
so all objective functions are fulfilled. If objective functions do not change,
program keeps running with this Operating Point.

6.2.2 Swaptions application

We evaluate Agora on a real scenario. We use Face Centered Central Com-
posite DoE with One Center Point as Design of Experiments and the 2nd
version of implemented Generalized Linear Regression as Response Surface
Methodology. Due to application computing kernel (Monte Carlo simulations),
we decide to collect, for each DoE configuration, a meaningful number of rep-
etitions, setting this value to 15.
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Figure 6.13: deltaError results for both Swaptions metrics of interest

6.2.2.1 Model prediction quality

Figures 6.13 and 6.14 show results on predicted model using deltaError
measure, as done for synthetic application analysis (see 6.2.1.1), for both
avg_error and avg_throughput metrics. We obtain an average deltaError of
around 11% for avg_throughput and about 27% for avg_error, as it is shown
in Figure 6.14. From Figure 6.13 we can see that 70% of avg_throughput
predictions has a deltaError below 15%, while this percentage increases to
30% for avg_error metric.

6.2.2.2 Execution times

Regarding execution times, we compare analyzed run with a Full-Factorial,
so exhaustive, execution in which we collect, for each configuration, 15 repeti-
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Figure 6.14: deltaError mean values for both Swaptions metrics of interest

tions for each Operating Point, as shown in Figure 6.15. Exhaustive execution
takes around 28 minutes to finish, while the analyzed one less than 3 and a
half minutes, so approximately 8 times less. As explained before, we do not
obtain precise predictions for each metric value; nevertheless, Swaptions can
be executed with the assistance of Agora plus mARGOt autotuner and, in the
end, prearranged objective functions are achieved, also because mARGOt is
able to collect feedback information that corrects application model.

6.2.2.3 Application behavior over time

Figure 6.16 shows application behavior during execution. Graphic elements
have the same meaning of the corresponding ones for the synthetic application
analysis (see 6.2.1.3). We set, as objective functions, avg_throughput > 3

and avg_error < 35 (blue lines highlight related boundaries). During De-
sign Space Exploration phase, application is executed with Design of Experi-
ments configurations (red couples of points) in order to collect training data
for the complete model prediction. Around 195 seconds, DSE phase finishes
and application receives partial model (see Chapter 5.2.3.5). mARGOt sets
up Swaptions with best possible parameter values with respect to goals and
requirements (dark green couple of points): during model prediction phase,
avg_throughput is about 5 (greater than the minimum required value 3) and
avg_error is approximately 42 (higher than 35, so the corresponding objective
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Figure 6.15: Swaptions execution times

function is not followed). Agora sends complete model with predicted metric
values for each application configuration; mARGOt changes current Operating
Point (light green couple of points), obtaining an avg_throughput > 3 and an
avg_error < 35, so both objective functions are achieved.
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Figure 6.16: Swaptions metric values by varying time
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CHAPTER7
Conclusions and Future Works

We have presented Agora, a supporting framework designed to pro-
vide predicted complete model of tunable applications, including
the whole list of parameter settings and related metric of interest

performance. Agora faces High Performance Computing application issues re-
lated to the problem of exploring design space in an exhaustive way, due to
its significant dimension. Main goal is to collect information about a small
subset of possible application configurations and, through this data and Ma-
chine Learning techniques, to predict general program behavior in all possible
paratemer value combinations.

Unique Agora feature is the ability to remotely drive Design Space Explo-
ration phase among same executing applications at runtime, distributing all
configurations to be explored in an efficient way, therefore every running pro-
gram contributes to data collection and the entire workflow is considerably
sped up. We remark that analysis is not done locally in each node of a pos-
sible parallel architecture, but it is accomplished outside, not consuming, in
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Chapter 7. Conclusions and Future Works

this way, node computational capacity and the communications among Agora
modules are fulfilled by the lightweight MQTT messaging protocol.

In this thesis we show Agora benefits, in terms of model prediction quality,
execution times and ability to drive application executions in the reported
experimental results, through multiple versions of a synthetic program with
analytical metrics and a real scenario, using Swaptions application from the
PARSEC benchmark suite ([49]). We demonstrate that in several cases, even
introducing strong noises, we are able to achieve very high model prediction
quality and, having the possibility to use multiple executing nodes to explore
application design space, we demonstrate how overall time strongly decreases
with respect to an individual analysis with a single application: at the best of
our knowledge, this is the first attempt to share Design Space Exploration as
supervised by Agora.

There are, certainly, several elements of our work that can be envisioned as
future steps:

1. in addition to implemented Machine Learning strategies (two versions of
Generalized Linear Regression, see Chapter 2.6.2), there can be added
other techniques, in order to expand and to improve Agora versatility.
Moreover, instead of entrusting to user the selection of Machine Learning
strategy, the system could be able to analyze current problem and to
choose itself the best technique among available ones in a proper way;

2. after application model prediction, Agora could continue to collect feed-
back information about program execution, in order to eventually update
model and send again revised complete list of application configurations
with related predicted performance in terms of metric of interest values;

3. there could be added the possibility to specify a limit duration of Design
Space Exploration phase: when time is up, AgoraRemoteAppHandler
module predicts application complete model with all information collected
up to that moment;

4. instead of specifying a priori application lapse for request (see Chapter
5.2.3), AgoraLocalAppHandler module could dynamically adapt request
frequency, according to previous execution times.

We hope Agora can contribute to the research on Design Space Exploration
and Dynamic Autotuning of High Performance Computing applications in par-
allel architectures.
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