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Abstract

Sequential decision making problems arise in a variety of areas in Artificial Intel-
ligence. Reinforcement Learning proposes a number of algorithms able to learn an
optimal behavior by interacting with the environment. The major assumption is that
the learning agent receives a reward as soon as an action is performed. However,
there are several application domains in which a reward function is not available
and difficult to estimate, but samples of expert agents playing an optimal policy are
simple to generate.

Inverse Reinforcement Learning (IRL) is an effective approach to recover a reward
function that explains the behavior of an expert by observing a set of demonstrations.
Most of the classic IRL methods, in addition to expert’s demonstrations, require
sampling the environment in order to compute the optimal policy for each candidate
reward function. Furthermore, in most of the cases, it is necessary to specify a priori
a set of engineered features that the algorithms combine to single out the reward
function.

This thesis is about a novel model-free IRL approach that, differently from most
of the existing IRL algorithms, does not require to specify a function space where
to search for the expert’s reward function. Leveraging on the fact that the policy
gradient needs to be zero for any optimal policy, the algorithm generates a set of
basis functions that span the subspace of reward functions that make the policy
gradient vanish. Within this subspace, using a second-order criterion, we search for
the reward function that penalizes the most a deviation from the expert’s policy.

After introducing our approach for finite domains, we extend it to continuous
ones. The proposed approach is compared to state-of-the-art IRL methods both in
the (finite) Taxi domain and in the (continuous) Linear Quadratic Gaussian Regu-
lator and Car on the Hill environments. The empirical results show that the reward
function recovered by our algorithm allows learning policies that outperform both
behavioral cloning and those obtained with the true reward function, in terms of
learning speed.
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Nell’ambito dell’Intelligenza Artificiale numerosi problemi richiedono che un agente
operi decisioni in sequenza senza ricevere un riscontro immediato. In questi prob-
lemi, che si presentano ad esempio nel campo del controllo automatico, della robotica
e della finanza, ['agente deve tenere conto dell’effetto ritardato delle sue decisioni,
nonché del possibile non determinismo dell’ambiente. Naturalmente, al fine di pi-
anificare una decisione efficace 'agente deve fare riferimento a qualche nozione di
ottimo, tipicamente codificata mediante una funzione di utilita che associa ad uno
specifico comportamento un numero che ne rappresenta ’aderenza all’obiettivo im-
plicito dell’agente.

In questa tesi consideriamo il caso in cui la dinamica dell’ambiente e il com-
portamento dell’agente soddisfano la proprieta di Markov, cioé il prossimo stato
dell’ambiente ¢ indipendente dagli stati passati, noti che siano lo stato corrente
e 'azione compiuta dall’agente; inoltre la decisione operata dall’agente dipende
soltanto dallo stato corrente. Questa classe di problemi viene modellata efficace-
mente dai Processi Decisionali di Markov. La funzione di utilitd, in questi casi, é
definita in termini del rinforzo immediato. L’agente non appena compie un’azione
sull’ambiente riceve un riscontro, il rinforzo. La funzione di utilita viene definita come
il rinforzo cumulativo, cioé la somma (eventualmente scontata) dei rinforzi immediati
raccolti dall’agente durante la sua esperienza nell’ambiente. Chiaramente, la scelta
della funzione di rinforzo ha un impatto determinante sull’efficacia e sull’efficienza
degli algoritmi impiegati per apprendere un comportamento ottimo.

Qualora il modello del rinforzo sia disponibile, I’Apprendimento per Rinforzo
propone numerosi algoritmi in grado di apprendere la politica ottima, ovvero una
prescrizione di azioni che massimizza il rinforzo cumulativo. Inoltre, se il mod-
ello dell’ambiente & noto, €& possibile impiegare un approccio basato sulla Program-
mazione Dinamica. Tuttavia, nella maggior parte dei casi I’agente deve interagire
con ’ambiente allo scopo di apprenderne la dinamica, implicitamente o esplicita-
mente. La letteratura si é occupata di questo aspetto estensivamente, proponendo
algoritmi efficaci applicati oggigiorno ad una vasta gamma di settori, dalla robotica
alla finanza, dalla logistica alle reti di telecomunicazione e all’intelligenza ambien-
tale. Assumere che una funzione di rinforzo sia disponibile é tuttavia irrealistico in
molti dei domini di interesse. Ad esempio, risulta particolarmente complesso pro-
gettare una funzione di rinforzo per descrivere 'attivita di un guidatore; sarebbe
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infatti necessario definire quanto uno specifico comportamento sia conforme con la
nozione intuitiva di “buon guidatore”.

Quando la funzione di rinforzo non é disponibile o difficile da progettare, ma
risulta agevole generare esempi di esecuzione di un esperto (cioé di un agente che
esegue la politica ottima), & possibile fare uso di tecniche di Apprendimento per Imi-
tazione. In questo ambito € possibile distinguere tra due categorie di metodi: Behav-
ioral Cloning e Apprendimento per Rinforzo Inverso. La prima si pone 'obiettivo di
imparare la politica ottima mediante un approccio basato sull’apprendimento super-
visionato; al contrario, 'apprendimento per rinforzo inverso é teso a ricostruire una
funzione di rinforzo che rende ottimo il comportamento dell’esperto. Quest’ultimo,
diversamente dal behavioral cloning, che € tipicamente piti semplice, assicura buone
proprieta di generalizzazione e trasferibilitd in quanto il rinforzo puo essere impie-
gato in nuovi ambienti. Pertanto, 'apprendimento per rinforzo inverso permette di
ricostruire la politica ottima a posteriori.

Stato dell’arte

Una vasta gamma di approcci per 'apprendimento per rinforzo inverso sono stati
proposti nella letteratura. Gli algoritmi basati sulla feature expectation [1l, 113, 112]
sono diretti a ricostruire una rappresentazione della funzione di rinforzo che induca
una politica ottima simile al comportamento dell’esperto. Questi algoritmi, tut-
tavia, risultato inefficienti in termini di numero di campioni richiesti e necessitano di
avere accesso all’ambiente per determinare la politica ottima per ogni funzione di rin-
forzo considerata. Recenti progressi hanno permesso di rimuovere questa limitazione:
GIRL [94] fa uso del policy gradient [I11] per determinare il valore dei parametri di
una classe parametrica di funzioni di rinforzo. Inoltre, 'apprendimento per rinforzo
inverso soffre del problema dell’ambiguita del rinforzo, cioé esistono infinite di fun-
zioni di rinforzo per lo stesso problema che rendono 'esperto ottimo (incluse alcune
funzioni banali). Allo scopo di fornire una risposta a questo problema, in [125] il
principio della massima entropia & utilizzato in modo da estrarre un’unica funzione
di rinforzo. L’algoritmo, tuttavia, richiede la conoscenza del modello dell’ambiente
per problemi non deterministici.

Gli approcci sinora considerati condividono la necessita di fornire a priori un in-
sieme di feature che definiscano lo spazio dei rinforzi (ad es. la posizione dell’agente o
la distanza dall’obiettivo). Come accade nell’apprendimento supervisionato, la scelta
dello spazio di ipotesi & fondamentale per il successo dell’algoritmo. La letteratura
recente si € concentrara nell’includere la costruzione delle feature negli algoritmi di
apprendimento per rinforzo inverso. Alcuni lavori, come [35] [45] sfruttano le poten-
zialita del deep learning per estrarre implicitamente le feature in maniera black-box e
costruire il rinforzo mediante approssimatori non lineari. Il problema dell’estrazione
delle feature ¢ stato affrontato esplicitamente soltanto da FIRL [64], un algoritmo
che costruisce iterativamente le feature allo scopo di descrivere in maniera piiul accu-
rata quelle regioni dell’ambiente ove il precedente insieme di feature risultava troppo
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impreciso. L’algoritmo, tuttavia, richiede la conoscenza del modello di transizione
dell’ambiente.

A parte rare eccezioni [ad es.[9], le applicazioni pitt promettenti dell’apprendimento
per rinforzo inverso ricadono nel settore della locomozione automatica |ad es. 82, 113,
10T, 125, [76], [100]. Nelle applicazioni reali la trasferibilita del rinforzo diviene di vi-
tale importanza. Ad esempio, nella guida automatica, ci si aspetta che I'agente si
comporti in maniera adeguata anche se la configurazione del traffico non é mai stata
sperimentata dall’esperto. Tuttavia, questo aspetto é stato finora affrontato soltanto
per problemi semplici [64, 65] . Questi lavori dimostrano che una scelta non accurata
delle feature pud compromettere la possibilita di trasferire il rinforzo a nuovi domini.

Contributi

Nonostante negli ultimi anni ’apprendimento per rinforzo inverso abbia vissuto un
notevole sviluppo, alcune domande rimangono aperte e alcuni problemi irrisolti. Cre-
diamo che al fine di poter applicare le tecniche di apprendimento per rinforzo inverso
a domini di interesse reale sia indispensabile disporre di un algoritmo in grado di
produrre funzioni di rinforzo trasferibili, richiedendo soltanto un insieme di traietto-
rie generate da un dimostratore esperto. L’approccio che proponiamo in questa tesi
rappresenta un tentativo di fornire una risposta congiunta al problema dell’estrazione
delle feature e della costruzione della funzione di rinforzo, senza necessita di disporre
del modello dell’ambiente. Ciod rappresenta una novita per la letteratura del settore
in quanto, ad eccezione dei modelli basati sul deep learning, nessun algoritmo ¢é in
grado di costruire feature senza richiedere la conoscenza del modello di transizione.

Il principale contributo di questa tesi é algoritmico e sperimentale. Proponiamo
un algoritmo CR-IRL (Compatible Reward Inverse Reinforcement Learning) capace
di costruire uno spazio di approssimazione per il rinforzo sfruttando una condizione
del primo ordine sul policy gradient ed estrarre una funzione di rinforzo, all’interno di
questo spazio, mediante un criterio del secondo ordine sul policy Hessian. L’algoritmo
richiede una rappresentazione parametrica della politica dell’esperto che puo es-
sere ottenuta mediante behavioral cloning. Naturalmente, la scelta della classe di
politiche influenza l’estrazione dello spazio di approssimazione. Allo scopo di for-
malizzare ’abilita di una politica di ridurre la dimensione dello spazio dei rinforzi
ottimi, viene introdotta la nozione di rango di una politica (policy rank), del quale ¢
fornito un bound nel caso di problemi finiti. Sfruttando il fatto che il policy gradient
deve annullarsi per tutte le Q-function massimizzate dall’esperto, ne viene estratto lo
spazio di approssimazione, dal quale & possibile derivare lo spazio di approssimazione
per la funzione di rinforzo. Tale trasformazione puo essere effettuata invertendo
I’equazione di Bellman, quando il modello dell’ambiente ¢ noto, oppure mediante
reward shaping. Quest’ultima possibilita, che non richiede la conoscenza del modello
di transizione, comporta una riduzione della dimensionalita dello spazio di approssi-
mazione, tuttavia essa definisce lo spazio delle advantage function che, come noto,
favoriscono le proprieta di convergenza degli algoritmi di apprendimento. Allo scopo
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di individuare una funzione di rinforzo all’interno dello spazio di approssimazione,
viene impiegato un criterio del secondo ordine basato sul policy Hessian. L’obiettivo
é identificare la funzione di rinforzo che penalizza il pit possibile le deviazioni dalla
politica dell’esperto. Analiticamente il problema puo essere formulato in termini di
programmazione multi-obiettivo, da essa vengono derivati alcuni criteri di ottimal-
itd mono-obiettivo ed infine introdotta un’euristica che fornisce un’approssimazione
della funzione di rinforzo ottima.

La valutazione sperimentale & effettuata confrontando la velocita di apprendi-
mento della funzione di rinforzo prodotta da CR-IRL e le funzioni di rinforzo gener-
ate da classici algoritmi di apprendimento per rinforzo inverso. Tale comparazione
é effettuata sul dominio finito del Taxi e sui domini continui Regolatore Lineare-
Quadratico e Car on the Hill. Le funzioni di rinforzo prodotte da CR-IRL permettono
non soltanto di imparare politiche ottime, ma mostrano una velocita di apprendi-
mento superiore rispetto alla funzione di rinforzo originale del problema. Inoltre le
politiche apprese con CR-IRL evidenziano una performance superiore rispetto al puro
behavioral cloning, nonostante CR-IRL ne faccia uso. Crediamo che ci6 rappresenti
uno degli aspetti chiave di CR-IRL, immediata conseguenza dell’utilizzo congiunto
dell’apprendimento per rinforzo inverso e del behavioral cloning.

Struttura della tesi

I contenuti della tesi sono organizzati in sei capitoli. Il Capitolo [1| presenta le moti-
vazioni, gli obiettivi e i contributi della tesi. Il Capitolo [2| fornisce una visione di alto
livello dei processi decisionali di Markov e dell’apprendimento per rinforzo. Vengono
introdotte le principali definizioni e algoritmi per poi concentrarsi su quegli aspetti
maggiormente utilizzati nel seguito. Il Capitolo 3 illustra il panorama dello stato
dell’arte degli algoritmi di apprendimento per rinforzo inverso. La presentazione
é organizzata per categorie di algoritmi accomunati da similaritd negli approcci.
L’obiettivo di questo capitolo é guidare il lettore nella comprensione delle motivazioni
che hanno indotto questo lavoro. Il Capitolo [4] ¢ dedicato alla presentazione di CR-
IRL. Si parte dalla discussione della costruzione di una rappresentazione parametrica
della politica dell’esperto per poi passare alle condizioni del primo ordine sul policy
gradient finalizzate all’estrazione dello spazio di approssimazione della Q-function.
A questo punto sono presentati i due approcci che permettono di ottenere lo spazio
delle feature della funzione di rinforzo. Infine, é discusso il processo di selezione del
rinforzo basato sui criteri del secondo ordine applicati al policy Hessian. I Capitolo
fornisce la valutazione sperimentale di CR-IRL. Vengono introdotte le metriche uti-
lizzate per valutare la performance degli algoritmi per poi presentare nel dettaglio
esperimenti. Infine, nel Capitolo[|riassumiamo i risultati ottenuti e proponiamo pos-
sibili estensioni di questo lavoro. L’Appendice [A] presenta brevemente la notazione
matriciale per i processi decisionali di Markov finiti. L’Appendice [B] infine fornisce
le dimostrazioni e derivazioni omesse nel testo della tesi.
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Mathematical Notation

Vectors are denoted by lower case bold Roman letters, such as x. All vectors are
assumed to be column vectors. The i-th component of vector x is indicated with

T = (21,29, ...,2,) denotes a row vector with n elements, while

z;. The notation x
the corresponding column vector is written as x = (x1, x2, ..., xn)T. Uppercase bold
Roman letters, such as M, denote matrices. The element of matrix M in position
(i,7) is indicated with M;;. The only exception is for the matrix representing the
policy of an MDP that remains bold lowercase . A diagonal matrix built starting
from vector x is denoted by diag(x). The trace of a matrix M is denoted as tr(M).
The identity matrix is indicated with I, while the single-entry matrix with 1 in
position (4,5) and all zeros elsewhere is indicated with J¥. A tensor (at least 3-
dimensional) is indicated with the bold Sans-Serif uppercase letter T. We will treat
them simply as multidimensional arrays, thus its component in position (i1, @9, ..., i)
is given by Tj,4,..4,,- We employ a Matlab-like notation to index rows and columns
of matrices: given a matrix M, its i-th row is M;;, while its j-th column is M.;.
The same notation extends to tensors, e.g., given a 3-dimensional tensor T of shape
n x m X k, T;;. is a k-dimensional vector whereas T.. is an n x k matrix. The
symbol > when applied to properly sized vectors or matrices means component-wise
inequality, whereas the expression A > B where A and B are square matrices of
the same size, means that A — B is positive semidefinite. If P is a logical predicate,
the symbol 1(P) is the indicator function which is one if P is true, zero otherwise.
When two functions are directly proportional one another, i.e., f = kg, we use the
notation f o g.

The gradient of function f w.r.t. a vector of independent variables x is indicated
with Vyx f(x); it is assumed to be a column vector. The Hessian matrix of function
f w.r.t. a vector of independent variables x is indicated with Hx f(x). Functionals
and operators are indicated with calligraphic letters e.g., F, O, their application is
denoted by square brackets e.g., F[f], O[f].

The set of all probability measures over a measurable space (€2, B(2)) is denoted
by A(Q), where € is the sample space and B(f2) is the Borel o-algebra over Q. A
probability measure is indicated with the calligraphic letter e.g., P. The symbol P is
used to indicate a generic probability when there is no need to define the probability
space explicitly. The probability density function of a random variable x is indicated
with the lowercase letter e.g., p,, the subscript is often omitted. There are two
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exceptions to this rule throughout the thesis: the probability density function of the
transition model and the one of the reward function of an MDP, they are indicated
with the uppercase letters P and R respectively. When the density function of
a random variable = is conditioned to the value of another random variable y we
adopt the notation p,(-|y), the same notation holds for probability measures. The
expected value of a function f(z,y) taken w.r.t. random variable (or random vector)
x distributed according to the probability density p is indicated as Egp[f(x,y)],
whereas the covariance matrix is denoted as Varg.,[f(z,y)]. Whenever there is
no ambiguity, the latter are abbreviated with E[f(z,y)] and Varg[f(x,y)]. When a
probability density function depends on a (deterministic) parameter 8, the parameter
is reported as subscript, like pg.
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Chapter 1

Introduction

Many real-world problems require the solver to make a sequence of decisions without
receiving an immediate feedback. This type of problems, named sequential decision
making problems, arise in several fields, such as automation control, robotics, games,
and finance. They require the solving agent to account for the delayed effect of its
decisions, along with the possible non-determinism of the environment. Clearly, in
order to plan a good decision the agent must refer to some notion of optimality. In
real-life, optimality is not necessarily expressed in a formal manner, however, when
a sequential decision making problem is tackled from the point of view of Artificial
Intelligence (AI) we need to specify some notion of goal. A goal-directed agent is
able not only to react to the modifications of the environment, but also to display
a proactive behavior, intended to achieve its goal. Differently from classic optimal
control, no assumption is made on the knowledge of the dynamics of the environment,
therefore the controller cannot be designed a priori, but needs to be learned from
the interaction with the environment. In those cases the notion of goal is typically
encoded by means of a utility function, derived from economics, where it represents
the customer satisfaction towards a good. In the AI context, the role of the utility
function is crucial: it quantifies how much a specific behavior of the agent complies
with its implicit goal and drives the learning process. A bad choice for the utility
function might have dramatic effects on the final performance. Therefore, one major
challenge is how to design a good utility function.

We consider the case in which the dynamics of the environment and the behavior
of the agent satisfy the Markov property, i.e., the next state of the environment does
not depend on the past states and actions given the current state and action, as well
as the decision of the agent is determined as a function of the current environment
state only. This requirement is apparently unrealistic, however we can always assume
the Markov property provided that the representation of the environment state is
sufficiently rich (e.g., we can define a rich state as the concatenation of all the states
and actions visited so far, in this way we embed the whole history in a single state).
Such problems can be cast into the Markov Decision Processes (MDP) framework.
The utility function for MDPs is defined in terms of the immediate reward. When-



2 Chapter 1. Introduction

ever the agent performs an action it receives from the environment a feedback, the
immediate reward, which depends, in the most general case, on the starting state,
on the action performed and on the landing state. The utility, from a given state, is
defined as the cumulative reward, i.e., the sum (possibly discounted) of the rewards
collected along the visited states. Now, rather than designing the utility function
directly, we aim to design a suitable reward function.

Whenever the reward model is available we can resort to Reinforcement Learn-
ing (RL) algorithms to learn an optimal policy, i.e., a prescription of actions that
maximizes the cumulative reward. Furthermore, if the model of the dynamics of the
environment is known, Dynamic Programming (DP) approaches can be used. How-
ever, in most of the real cases the environment dynamics is unknown, therefore the
agent has to interact with the environment in order to learn it, implicitly or explicitly.
Literature has extensively dealt with RL methods, proposing powerful and effective
algorithms applied nowadays to a large variety of field, from robotics to finance, from
logistics to telecommunication networks to ambient intelligence. However, assuming
that a reward function is available is sometimes too demanding. If we consider RL
as an algorithmic approach inspired by the learning mechanisms developed by living
beings, we realize that, in real-life, the reward function is totally hidden and it is
discovered only during the learning process. Nonetheless, biological agents are able
to progressively improve their performance by just interacting with the environment
and, sometimes, imitating skilled agents (experts).

This provides the primal motivation for Inverse Reinforcement Learning (IRL).
The problem can be seen as an instance of inverse optimal control: given a set of
expert’s demonstrations we aim to determine the utility function, or the reward
function, optimized by the expert. Clearly, the requirement on the availability of
expert’s demonstrations might not be fulfilled, preventing the application of IRL to
unexplored domains. However, if we aim to construct an agent that behaves like
(or better than) a human in a particular domain we can consider the human as an
expert, overcoming the possible lack of demonstrations. Indeed, designing a suitable
reward function is sometimes hard. The agent designer might have only a very
rough idea of the utility function to optimize making impossible to use the classic
RL approach. IRL belongs to a class of methods that learn an optimal behavior
by exploiting expert’s examples, named Apprenticeship Learning (AL). The agent,
of course, can directly learn a mapping between states and actions, without passing
through the reward function. However, this approach, which goes under the name of
Behavioral Cloning (BC), does not typically display good generalization properties,
since it is constrained to the specific set of demonstrations and to the given domain.
Whereas, IRL recovers a reward function that is a more parsimonious, transferable
and succinct description of the optimal behavior.

A heterogeneous range of approaches to IRL has been proposed in the literature.
The feature expectation algorithms [1} 13| 112] aim to recover a representation of the
reward function that induces an optimal policy close to the expert behavior. These



approaches, however, might result inefficient since they require to solve iteratively
the forward RL problem. Recent works focused on removing this limitation. Policy-
gradient approaches, like GIRL [94], exploit the policy gradient [I11] to recover the
optimal parameters of a class of parametric reward functions. Moreover, IRL suffers
from the problem of reward ambiguity, i.e., there exists an infinite number of reward
functions for the same problem making the expert optimal (including some trivial
ones, such as the constant functions). In [I25] the maximum entropy principle is
applied to single out a unique reward function, but the knowledge of the transition
model is required for non-deterministic problems.

The mentioned approaches share the necessity to define a priori a set of hand-
crafted features, spanning the reward space (e.g., position of the agent, the distance
from the goal). As in supervised learning, the choice of the hypothesis space is
substantial for the success of the algorithm. Recent literature focused on incorpo-
rating feature construction in IRL algorithms. In [35 45] the capabilities of deep
learning are exploited to implicitly extract reward features in a black-box way and
built a reward function using non-linear approximators. The problem of feature
extraction has been explicitly addressed only by Feature Construction for Inverse
Reinforcement Learning (FIRL) [64], a model-based algorithm that iteratively con-
structs reward features that better explain regions where the old features were too
coarse.

Besides rare exceptions [e.g., 9], the main successful applications of IRL come
from the field of autonomous locomotion: simulated highway driving [82], 113], urban
navigation [125], aerial imagery based navigation [I0I], human path planning [76]
and quadruped locomotion [I00]. In real-world applications we need to ensure the
reward transferability, i.e., the possibility to plug the recovered reward function into
new environments preserving the ability to recover the optimal policy. In the highway
driving, for instance, we expect the agent to behave well even if the traffic pattern
has never been experimented by the expert. Several works [64] [65] demonstrate that
a non-accurate choice of the reward features might make the agent perform poorly
on transfer environments even if it performs well on the training environment.

Motivation

Although TRL made a significant advance in the last decade, several issues remain
open. First, most of the effective IRL algorithms [e.g., [I, 113] 112] require knowing
the model of the environment or, at least, having access to the environment in order
to estimate the optimal policy for each candidate reward function. This produces a
significant increase of the sample complexity, preventing these algorithms from scal-
ing to real-world applications. Second, reward ambiguity still represents a notable
question. Several approaches have been designed to define an optimatility criterion
within the space of the rewards making the expert optimal [e.g., 125, [82]. The max-
imum entropy principle [125] has been extensively used also with deep architectures
thanks to its good learning properties [122]. However, a shared definition of “good”
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reward is still missing. Finally, several experiments proved that the choice of the
function space where to search for the reward function is substantial for the quality
of the recovered reward, also in terms of transferability [64, [65]. Engineered fea-
tures are typically very informative, but hard to design. The deep learning methods
overcome this limitation, however, by resorting to a “black-box” approach they do
not take advantage of the structure of the underlying MDP in the phase of feature
construction. FIRL is the only algorithm that directly exploits the structure of the
MDP to extract features; nevertheless, it requires the knowledge of the environment
model.

Goal

The goal of this thesis is to design a model-free Inverse Reinforcement Learning
algorithm that is able to construct automatically the features and single out a reward
function, requiring solely a set of expert’s demonstrations. Our approach is intended
to provide a joint answer to the problem of reward feature construction and reward
recovery in a fully model-free manner. This represents a novelty for IRL literature,
since, as far as we know and apart from deep leaning approaches, no IRL algorithm
is able to extract reward features with no knowledge of the environment model.

Contribution

The contribution of this thesis is mainly algorithmic and experimental. Our algo-
rithm, named Compatible Reward Inverse Reinforcement Learning (CR-IRL), is able
to extract a set of basis functions spanning the space of the optimal rewards by
exploiting a first-order condition on the policy gradient. The usage of first-order
conditions in inverse optimal control is not new [32] [94], however, we employ them
not to directly recover the reward function but to extract a set of optimal features.
This step requires the knowledge of a parametric representation of the expert’s pol-
icy, that can be estimated from the trajectories with behavioral cloning. Clearly, the
parametrization of the expert’s policy influences the recovered approximation space.
Therefore, we introduce the notion of policy rank that quantifies the ability of the
expert’s policy to reduce the space of the optimal reward functions and we provide a
bound for the case of finite problems. This represents the main theoretical advance
of this work. Once the set of reward features is recovered, we propose a second-order
criterion, based on the policy Hessian, to single out the reward function that penalizes
as much as possible deviations from the expert’s demonstrated behavior. Eventually,
since the recovered reward function is defined only in terms of the visited states and
actions, we need to extend it over unexplored regions, either offline or online. The
experimental evaluation proposes a comparison with the state-of-the-art IRL meth-
ods on classic benchmark problems both in the finite and continuous domains: the
Taxi problem [29], the Linear Quadratic Gaussian Regulator [30] and the Car on
the Hill environment [33]. We aim to examine both the phases of CR-IRL: feature
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construction and reward recovery. The empirical results show that the recovered
reward function outperforms the original reward function of the problems and those
produced with popular IRL methods. In particular, by penalizing deviations from
the expert’s policy, CR-IRL is able to output a reward function with faster learning
curve than that of the original reward function. Moreover, even though CR-IRL
exploits behavioral cloning in the early stages, the recovered reward can be used to
learn policies that outperform the mere imitation of the expert.

1.1 Overview

The contents of this thesis are organized in the following five chapters. We start
in Chapter 2] with an overview of the different aspects of Markov decision processes
and reinforcement learning. We introduce the definitions and we discuss several
aspects, such as value functions and optimal policies. Moreover, we outline the
techniques to solve MDPs, starting from dynamic programming and presenting the
most popular reinforcement learning approaches, along with function approximation
methods. The focus of the presentation is directed to the aspects we will exploit
in the subsequent chapters. In particular, we illustrate in details Reward Shaping,
Function Approximation and Policy Search methods. Furthermore, in this chapter,
we introduce the notation that we will use throughout the thesis.

In Chapter [3|we depict the landscape of the state-of-the-art inverse reinforcement
learning methods. The algorithms are presented in overlapping categories that group
methods sharing similarities in the approach. For each category we mainly address
a representative algorithm that is discussed in details, underlining pros and cons,
whereas some of the most remarkable extensions are only mentioned. A comparative
discussion of the properties of the algorithms is provided at the end of the chapter.
The goal of this chapter is to guide the reader in a conscious understanding of the
fundamental motivations of this work.

Chapter [4]is devoted to the extensive description of CR-IRL. We start discussing
the problem of recovering a parametric representation of the expert’s policy from
the set of available demonstrations. Then we illustrate the procedure to recover an
approximation space for the value function by means of a first-order condition on
the policy gradient. We introduce, at this point, the notion of policy rank and we
derive a bound that holds for finite MDPs. Then we propose two approaches for
building the approximation space for the reward function. The first, which requires
the knowledge of the transition model, is based on reversing the Bellman Equation
and the second, model-free, leverages on reward shaping. Finally, we discuss the
reward selection via second-order criteria. We suggest different optimality criteria,
all based on the policy Hessian, and we design an efficient heuristic to obtain a
near-optimal reward.

In Chapter [5] we evaluate CR-IRL against popular IRL methods. We first intro-
duce the metrics we adopt to compare the performance of the algorithms. Then, for
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the considered domains, we analyze the performance in terms of learning speed and
as a function of the number of expert’s trajectories.

In Chapter [0 we summarize the most relevant achievements of this thesis and we
highlight the points of strength and weakness of the proposed approach. Further-
more, we suggest possible extensions of this work.

Appendix [A] briefly outlines the matrix notation for finite MDPs that we will use
in the thesis. Appendix [B] instead, reports the proofs and derivations omitted in the
text.



Chapter 2

Markov Decision Processes and
Reinforcement Learning

In the context of Machine Learning, Reinforcement Learning (RL) is probably the
framework that is closer to the nature of learning for living beings. Human beings
learn how to perform a task even without a teacher, by just interacting with the
environment (e.g., a baby learning how to walk). As common sense suggests, exer-
cising this connection improves the ability to perform the task. Thus, interaction is
a precious source of knowledge, that teaches the agent the cause-effect relation char-
acterizing the environment and allows it to select the most appropriate actions in
order to achieve its goal. Learning from interaction is a foundational idea underlying
nearly all theories of learning and intelligence [109].

In this thesis we refer to the reinforcement learning framework [109, 15, 14, [1T4],
i.e., the computational approach to goal-directed learning from interaction (Fig-
ure . The typical reinforcement learning problem is formulated in terms of an
agent acting in an environment deciding which action to perform in order to maxi-
mize a payoff signal. We assume the agent receives a reward for performing an action;
in the most interesting cases actions affect not only the immediate reward, but also
the next situation and, through that, all subsequent rewards. Thus, the agent has
to learn how to map situations (or states) to actions, in a trial and error fashion.
Differently from other machine learning areas, like supervised learning, the agent is
not told which action to perform, but it has to discover the most profitable ones.
Problems with these characteristics are best described in the framework of Markov
Decision Processes (MDPs) [96, 114].

Clearly, to identify the best action in each state the agent has to exploit, implic-
itly or explicitly, an internal representation of the environment. When the dynamics
of the environment is known, the standard approach to solve MDPs is to use Dynamic
Programming (DP) [15, [I4], turning the problem in a model-based control problem.
However, apart from the cases in which the MDP has a limited number of states
and actions, dynamic programming is infeasible. Furthermore, the knowledge of the
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Figure 2.1: The Reinforcement Learning framework (from [109]).

environment dynamics is a demanding assumption rarely fulfilled in real-world appli-
cations. RL, on the contrary, deals with model-free control enabling applications on
large and high-dimensional state-action spaces. The key idea is to exploit samples to
represent in a compact and approximate way the underlying environment dynamics.

In this thesis we will consider two classes of RL methods: Approximate Dynamic
Programming (ADP) [109, 114] and Policy Search (PS) [121I]. The former can be
seen as sample-based version of DP: it aims to approximate a wvalue function that
represents the expected cumulative reward the agent will get by starting in a given
state (and possibly performing a given action). Once the optimal value function is
estimated, the optimal policy can be computed. When the space of the states (or
actions) is infinite it is not possible to compute the value function for all the states
(or actions). RL proposes powerful function approrimation methods to represent
concisely the value functions with no significant performance degradation. Litera-
ture proposed a surge of approaches to function approximation that range from the
simple linear approximators fed with handcrafted features to the recent deep learning
architectures |e.g., [67, [I7) [73], able to automatically extract features and estimate
the value function.

Policy search, differently from approximate dynamic programming, searches di-
rectly for an optimal policy (sometimes, like in actor-critic frameworks, both policy
and value function are represented). Indeed, in approximate dynamic programming
the value function is used as an intermediate tool to recover the optimal policy; but
estimating the value function might be a complex task. Policy search has been ad-
dressed as an optimization problem, i.e., searching for a policy in a predetermined
space that maximizes the cumulative reward. A variety of optimization methods
have been employed to this purpose |e.g., 38| 26] [80].

This chapter is intended to present the main topics of reinforcement learning that
we are going to use throughout the thesis. In Section we introduce the concept of
Markov decision process, the notion of value function and we formalize the optimality
criteria. Section briefly presents dynamic programming, the standard approach to
solve MDPs, when the model of the environment is available. Section is devoted
to the presentation of the most relevant model-free RL algorithms. In Section
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we discuss the basics of function approximation methods and we focus on the Proto-
Value Functions (PVF). Finally, Section is devoted to policy search methods
which are at the basis of the algorithm proposed in this work.

Not all the material contained in this chapter is essential to understand the
following chapters; the reader already skilled in the subject can focus on Reward
Shaping (Section , Function Approximation (Section , in particular Proto-
Value Functions (Section and Policy Search (Section [2.5).

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a model for sequential decision making prob-
lems in which a goal-directed agent interacts with an environment by making actions
and sensing perceptions. We consider discrete time MDPs in which, at each time
step, the agent has to decide which action to perform in order to maximize its util-
ity function. Whenever an action is performed the environment evolves into a new
state and the agent receives a payoff, named immediate reward. Usually the utility
function of an agent is defined in terms of the cumulative reward, thus the decision
on which action to perform in each state cannot depend only on the immediate re-
ward: an agent may decide to sacrifice the immediate reward to gain more long-term
reward.

2.1.1 Definitions

Different definitions of MDP are presented in literature [109, 06, 114]. We consider
the following definition inspired to the one presented in [114].

Definition 2.1. A Markov Decision Process is a tuple M = (S, A, P, R, T, i,7),

where:
e S is a non-empty measurable set, named state space;

o A is a non-empty measurable set, named action space;

P is a function P : S x A — A(S) named transition model, that for all s € S
and for all a € A assigns P(-|s,a) a probability measure over S, P(:|s,a) is the
corresponding probability density function;

R is a function R : S x A x S — A(R), named the reward model, that for

all s,8' € S and for all a € A assigns R(-|s,a,s’) a probability measure over

R, R(:|s,a,s") is the corresponding probability density function and R(s,a) =
E  [r] is the state-action expected reward;

o/~P(]s,)
r~R(|s0.8')

e T is a non-empty totally ordered set, named set of the decision epochs;
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e 1 is a probability measure over S, named distribution of the initial state, p(-)
1s the corresponding probability density function;

e v € [0,1] is the discount factor.

The state space S and the action space A define the sensor and actuator pos-
sibilities of the agent; they can be either finite or infinite, discrete or continuous.
Sometimes not all the actions are performable in all states, in this case it is conve-
nient to define the set A(s) for all s € S which is the set of actions available in state
s, therefore A = (J,c5 A(5).

The dynamics of the environment is represented by the transition model that,
given the current state s and the current action a, assigns for every Borel set S’ €
B(S) the quantity P(S’|s,a) that is the probability to end up in a state contained
in S’ by performing action a in state s. P(:|s,a) is the density function induced by
P; if the MDP is discrete P(s'|s,a) is actually the probability to end up in state
s’ € 8. The term Markovian is used in this context since the environment satisfies
the Markov property: the future state does not depend on the past states and actions
given the current state and action[l]

The immediate payoff is modeled by means of a scalar rewardﬂ that given the
current state s, the current action a and the next state s’ assigns for all Borel sets
A € B(R) the quantity R(A|s,a,s’) that is the probability to get a payoff in A by
starting from state s, performing action a and ending up in state s’. R(:|s,a,s’) is
the corresponding density function. In most common applications the state-action
expected reward R(s,a) is used, it is defined as the expected value of the reward
taken over all next states s’ and all real rewards r. Sometimes it is convenient to
consider the state-action-state expected reward R(s,a,s’) = B, p(|s,q, (7] We will
also assume that the immediate reward is upper bounded in absolute value, i.e.,
| R||co = maxses maxgeq |R(s,a)] < M < +o0.

The time is modeled as a discrete set of decision epochs, typically represented as
a sequence of natural numbers 7 = {0,1,...,T} where T is called horizon and can
be either finite T' € N or infinite T' = oco. In the former case the MDP is said to
be finite horizon, otherwise it is called infinite horizon. An MDP is said episodic if
the state space contains a terminal (or absorbing) state, i.e., a state s from which
no other states can be reached (for all actions a € A, P(s|s,a) = 1). Typically, it is
assumed that all actions performed in a terminal state yield zero reward.

A state-action-reward sequence T = {(s¢, ay, rt)}tT:(g) is called trajectory, it can be
either finite or infinite. The set of all trajectories is T = (S x A x R)> which is the

1Forma,lly7 a stochastic process X; is Markovian if P(X¢41 = 2| Xt = v, X¢t—1 = Yt—1,..., Xo =
yo) = P(Xt41 = 2| Xt = y). In other words X is a sufficient statistic for the future, meaning that
it captures all the information from the history.

2We will always consider rewards as scalar quantities. Sutton [I09] suggested that any goal can
be well thought as the maximization of a cumulative scalar reward. This assumption may be not
always satisfied but it is so flexible and simple that we won’t disprove it.
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disjoint union of the set of finite-length trajectories T, = (S x A x R)* and infinite-
length trajectories T,, = (S x A x R)¥. Sometimes we will refer to the trajectory
as a sequence of state-acton pairs only (rewardless trajectories). A finite interleaved
sequence of states and actions terminating with a state and containing ¢ € 7 actions
is called history of length t. The set of histories of length ¢ is H; = (S x A)! x S,
while the set of all histories is H, = J;2, Hs.

2.1.2 Decision rules and policies

A decision maker (or agent) acting in an MDP at each decision epoch ¢ observes
the state of the environment s; and chooses which action a; to perform. The agent
can select its actions at any stage based on the observed history. A rule describing
the way actions are selected is called a decision rule or behavior. A decision rule
d; tells the agent how to choose the action at a given decision epoch t € 7. In
the most general case, an agent bases its decision on the history (history dependent
decision rule). If the decision rule prescribes a single action it is said deterministic,
dy : Hy — A; if it provides a probability distribution over the set of actions is said
stochastic, dy : Hy — A(A). Clearely, deterministic decision rules are a particular
case of the stochastic ones. An important role in the theory of MDPs is played by the
decision rules for which the action to perform (or the probability distribution over
the actions) depends only on the current state. This class defines the Markovian
decision rules, d; : S = A (d¢ : S = A(A) in case of stochastic decision rules). We
can now introduce the definition of policy.

Definition 2.2. A policy is a sequence of decision rules, one for each decision epoch
m={d:: S - A(A) }er.

A policy is stationary when the decision rules do not depend on the decision
epoch, i.e., d; = d for all t € T, in this case we will indicate d with 7. If the policy
is Markovian m(a|s) represents the probability density to execute action a in state s,
if it is also deterministic we will indicate with m(s) the action prescribed in state s.

Definition 2.3. A Markovian stationary policy is a function 7 : S — A(A) that
for all states s € S assigns a probability measure 7(-|s) over A. If the policy is
deterministic then w: S — A.

Markovian stationary policies play an important role in the theory of infinite
horizon MDPs. Whenever not differently specified we will use the term policy to
refer to Markovian stationary policy.

An MDP M equipped with a policy 7 induces a probability distribution over the
set of trajectories T. Given a trajectory 7 = {(s¢, ay, rt)}fz(g), its probability density
function is:

T(r)—1

p(7|p, ™, P) = pu(sro) H T(art|Sr4)P(Sri+1|5rt, Grt), vr e T. (2.1)
t=0
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Whenever the context will make it clear, we will indicate this probability density
function with p(7) only.

2.1.3 Markov Reward Processes

Any MDP paired with a Markovian policy 7 induces a Markov Reward Process
(MRP), defined by the tuple (S, P™, R™,~,u). For all s € S, P™(:|s) is a probability
measure over S. The corresponding density function P™ is obtained by marginalizing
transition model P of the MDP over the actions:

P7(s|s) = / n(a|s)P(s'|s,a)da, Vs,s' € 8. (2.2)
A

P7(s'|s) represents the probability density to reach state s’ from state s in one
step. Symmetrically, R (-|s, s’) for all s,s’ € S is a probability measure over R; the
corresponding density function R™ obtained from the reward model of the MDP as:

R™(r|s,s') = / w(a|s)R(r|s, a, s")da, Vr eR, Vs, s €S. (2.3)
A

In an MRP the notion of action disappears. Thus, MRPs are suitable models for un-
controlled processes, i.e., stochastic phenomena taking place in the environment and
producing rewards at each time step, while MDPs are good models for controllable
processes, in which the intervention of an agent, by means of an action, is possible.

2.1.4 Markov Chains

The triple (S, P™, i), i.e., an MRP devoid of the reward, is a Markov Chain (MC)
(or Markov Process). In a MC we can define the n-steps transition model P} ob-
tained from the 1-step transition model P” recursively. For the density functions the
following equality holds:

PT(s|s) = / PT (88" P™(s"]s)ds”, Vs, s' €S, Vn=23,.., (2.4)
S

where P[(s'|s) = P™(s'|s). PT(s|s) is also called n-steps transition kernel: it repre-
sents the probability density to reach state s’ staring from state s in n steps. Given
the distribution of the initial state p is possible to compute the probability that the
agents finds itself in a state s after n steps:

pr(s) = /SPg(s|8')u(s')ds', Vs e S. (2.5)

Eventually, we introduce the notion of stationary distribution. A stationary distri-
bution of a Markov chain induced by a policy 7 is defined (if exists) as:

ur(s) = /SP”(s'|s)u”(s’)ds', Vs e S. (2.6)

For further details about Markov chains refer to [114}, [96].
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2.1.5 State occupancy and distribution

An infinite horizon MDP along with a policy defines distribution on the state space
as defined by [I11]. When the MDP is undiscounted, i.e., v = 1, the undiscounted
future state distribution is given by:

d(s) = lim ZIP’ = s|p,m, P), Vs e S, (2.7)

t—+oo t

where P(s; = s|u, 7, P) is the probability that the i-th state of a trajectory is state
s, given the distribution of the initial state u, policy m and the transition model P.
Clearly, P(s; = s|u, 7, P) = pl (s), we use different symbols to remain coherent with
the notation introduced in [I1I]. d};(s) represents the long-term probability that the
state of the environment is s. In the case of a discounted MDP, i.e. v € [0,1), the
v-discounted future state occupancy is defined as:

dy Z'yt}P’ (s; = s|p, ™, P), Vs e S. (2.8)
t=0

The 7y-discounted future state distribution is obtained by multiplying for (1 — ) the
occupancy. The definitions can be extended in the state-action space, by embedding
the policy. The state-action future occupancy, discounted or not, is given by:

(5/7;’7(5, a) = dz77(s)7r(a|s), Vse S, Vac A (2.9)

2.1.6 Value functions

The goal of an agent in an MDP is to play a policy that maximizes some optimality
criterion, typically encoded using a wutility function. A utility function assigns a
real number to a trajectory, representing how much that trajectory is “good” for
the agent, i.e., the degree of compliance of the trajectory to the agent’s goalE] In
most of the cases the utility function of the agent is the cumulative reward, i.e., the
sum (possibly discounted) of the rewards collected along the trajectory. Different
definitions have been proposed on the basis of the properties of the MDP [I5] 96].

Cumulative reward functions

The simplest idea is to define the utility function as the sum of the rewards collected
along the trajectories, named expected total reward of a policy 7:

T(r)

E 8Tt7a/Tt]

=0

3The notion of utility function comes from economics and it is the most used method to encode
in a mathematically simple and formal way the goal of an agent.
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where E. is an abbreviation for E . The main limitation of the previous
Toop(|pm,P)
equation is that the series might not converge for infinite horizon MDPs (T'(7) =

+00). To avoid the potential divergence we can resort to mean expected reward,

defined as: .
1
E Z R(ST,i) a‘r,i)] .
i=0

If the reward is upper bounded in absolute value, i.e. maxsesmaxyea |R(s,a)| <

J" = lim E;

t—+o00

M < +o00, then the mean expected reward is guaranteed to converge for infinite-
horizon MDPs [96].

The cumulative reward function used more diffusely in literature is the discounted
expected cumulative reward, also known as expected return:
T(r)

Z 'th(S‘r,ta a‘r,t)

t=0

J"=E, =E.[R(7)], (2.10)

where R(7) is the trajectory return defined as R(7) = ZZ;(E) Y R(Srtyart).

The usage of a discount factor v € [0,1) has the evident mathematical advan-
tage to prevent the cumulative reward from diverging, under the condition that the
immediate reward is upper bounded in absolute value. The discount factor is open
to multiple interpretations. From an economical/financial point of view the discount
factor accounts for the fact that an agent might be more interested in a payoff ob-
tained in the near future rather than a payoff obtained far in the future. Values of
v close to 0 lead to a “miopic” evolution (at the limit in which v = 0 the agent is
interested only in the immediate reward and the solution of the problem is obtained
with a greedy policy); while values of 7 close to 1 lead to a “far-sighted” evolution.
From a statistical point of view the discount factor is related to the probability that
the process continues for another epoch. If the MDP is episodic, i.e., all trajectories
reach an absorbing state, then v = 1 can be used. Formally, the discount factor is
a parameter of the MDP; however, many times it can be tuned to favor the conver-
gence of the RL algorithms. Small values of « improve the convergence rate; in the
extreme case of v = 0 the problem degenerates in a greedy choice. However, small
~ could compromise the quality of the solution since the rewards collected in the far
future become less important. Thus, the choice of v, when possible, has to trade off
the quality of the recovered solution and the convergence speed of the algorithms.

Value functions

The most trivial and inefficient way to determine the optimal behavior in an MDP is
to list all possible behaviors and identify the one having the highest utility function,
according to the cumulative reward function chosen. A better approach is based
on computing value functions, which provide the utility function starting from each
state e following a given policy. In this approach, one first computes the optimal
value function and then determines an optimal behavior with relative easiness.
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Given a policy 7 for an MDP M, policy evaluation consists in computing the
utility starting from each state and following 7. Policy evaluation is based on the
notion of state value function or simply value function.

Definition 2.4. Given an MDP M and a policy w, the state value function in a
state s € S 1is the expected return starting from state s and following policy :

T(r)
VT(s) = Z Y R(87.4, aT,t)] ) Vs € S. (2.11)

|
T~p(-lso=s,m,P) | 1o
The state value function does not embed enough information to let the agent
determine the greedy action in each state, i.e., the action yielding the maximum
utility (this can be done if the agent knows the transition model P). Thus, V7 is
not suitable for model-free control. For control purposes the action value function
or Q-function is typically used.

Definition 2.5. Given an MDP M and a policy w, the action value function in a
state-action pair (s,a) € S X A is the expected return starting from state s, taking
action a and following policy :

Trp(-|so=s,a0=a,m P)

T(r)
Q7 (s,a) = E [Z Y R(sr4, aﬂt)] , VseS, Vaec A (2.12)
t=0

Clearly, the value function is obtained by averaging the action value function over
the action space:
Vi(s)= E [Q7(s,a)], Vs e S. (2.13)

ar~(:|s)

Sometimes it is convenient to introduce the advantage function [§] defined as:
A™(s,a) = Q" (s,a) — V™ (s), VseS, Vae A

The advantage function represents how much an action a is convenient in a state s
w.r.t. the average utility of the actions.

The performance of a policy on a MDP is typically measured taking into account
the distribution of the initial state p. It is possible to define the expected return in
terms of the value function:

JT=E [V™(s)].
s~p

Bellman Operators and Bellman Equations

We introduced the value functions by means of trajectory-based definitions; how-
ever, they can be computed in a recursive manner by leveraging on the Bellman
Ezxpectation Operator, defined as Ty} : RS — RS:

Ty [VI(s) = E [R(s,a) +V(s)], VseS. (2.14)
s'~P(]s,a)
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It is possible to prove [96] that the state value function V™ is the unique fixed point
of the operator 7i7, i.e., it satisfies T\ [V™] = V™ (Bellman Ezpectation Equation).
Analogously, for the Q-function the Bellman Expectation Operator, 77 : RS*A

RS*A i defined as:

T51Ql(s,a) = R(s,a) +v PIE (Q(s',d")], Vse S, VaceA. (2.15)
st
Like for the value function, Q™ is the unique fixed point of 77, i.e., 75 Q"] = Q™.
It is worth to notice that both operators are linear. Furthermore, they satisfy the
contraction property in Log-norm, ie., || T7 fi — IT falloo < Y|[fi — f2lloo, thus the
repeated application of 7] makes any function converge to the value function:

lim (TF)'[f]=V",  VfeRS

t——+o00
1- Tﬂ' 3 — ™ ]RSX.A'
Jim (T5) [fl=Q7,  Vfe
This property is exploited by iterative policy evaluation (see[2.2.1). When the MDP
is finite, the Bellman Equations become matrix equations and can be solved to find
the value functions (the matrix form for finite MDPs in presented in Appendix. [A)).
Under the assumption 7 € [0,1), we have:
VIi=1r"4 APV = v =(I1-4P") ",

. . e . (2.16)
q" =r+yPmq = q" =I-+Pm) r.

For the case of the state value function, this method however requires the inversion
of matrix (I —~yP™), yielding a computational complexity of O(|S |3)EI, thus iterative
policy evaluation, being more efficient, is typically preferred.

2.1.7 Optimality criteria

The standard approach to determine the optimal policy, is based on the notion of
optimal value function, i.e., the value function that maximizes the utility for every
state. From now on we will denote with II the class of Markovian stationary policies.

Optimal value functions

We start by providing the definition of optimal state value function.

Definition 2.6. Given an MDP M, the optimal state value function in a state
s €S8 is given by:

Vi(s) = rggﬁ(\/ (s), VseS.

“The complexity of inversion of a n x n matrix is O(n®) for non optimized algorithms. The
exponent can be reduced up to 2.373 with Coppersmith-Winograd-like algorithm [25].
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The optimal value function specifies the best possible performance for the given
MDP. It is possible to prove that the optimal value function is the unique fixed point
of the Bellman Optimality Operator, Ty; RS — RS, defined as:

TEV](s) = max {R(s, A+y E V()] } Vs € S. (2.17)
a€A s'~P(]s,a)

Differently from the Bellman Expectation Operator, due to the presence of the max-

imum function, the Bellman Optimality Operator is non-linear. Analogously, we can

define the optimal action value function.

Definition 2.7. Given an MDP M, the optimal action value function in a state-
action pair (s,a) € S x A is given by:

Q*(s,a) = max Q" (s,a), VseS, Vae A

mell

The corresponding Bellman Optimality Operator, 725 : RSXA 5 RSXA s

TolQl(s,a) = R(s,a) +v E [max Q(s',d")], VseS, VYae A (2.18)
s'~P(:]s,a) a’cA

It can be proved that V* and Q* are the fixed points of the corresponding Bellman
Optimality Operators. Furthermore, the Bellman Optimality Operators satisfy the
contraction property in Lo.-norm. Again, applying iteratively these operators any
function converges to the optimal value function. However, being non-linear, no
closed form solution can be found in general. Finally, the expected optimal return
can be computed as:

J = E [V*(s)]. (2.19)

Optimal policies

Given the optimal value function, the main question is whether there exists a policy
7* (that we will call optimal policy) such that the corresponding value function V™
coincides with the optimal value function V* i.e., a policy whose performance is the
best possible performance for the given MDP. Let us start providing the definition
of optimal policy.

Definition 2.8. Given an MDP M, a Markovian stationary policy m € 11 is optimal
if it satisfies:
E [Q%(s,a)] =V*(s), Vs e S.
arm(:|s)

The intuitive meaning of the previous definition is that the optimal policy pre-
scribes in each state the action(s) yielding the best performance possible. We can
use the value functions to define a partial ordering over the space of Markovian
stationary policies.
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Definition 2.9. Given two policies w,n' € II for the same MDP M policy  is better
than or equal to (=) policy ' when the value function of T is greater than or equal
to the value function of 7' in all states:

rra = VT(s)>V™(s), Vsed.

Clearly, if an optimal policy exists it must be a maximal of the ordering relation
. Indeed, the existence is proved by the following result [96].

Theorem 2.1. For any Markov Decision Process M the following statements hold:

o there exists an optimal policy 7 that is better than or equal to all other policies
mell, ie., 7 =x, Vo €ll;

e all optimal policies T achieve the optimal value function, i.e., V™ (s) = V*(s),

Vs e S;
e there always exists a deterministic optimal policy.

The theorem ensures the existence of an optimal policy, but there is no guarantee
on uniqueness. Furthermore, among all optimal policies for a given MDP, there al-
ways exists a deterministic 0neE| Once the optimal action value function is computed
it is possible to find a deterministic optimal policy by considering the greedy policy:

7 (s) = argmax Q*(s, a). (2.20)
acA
The equality symbol in the previous equation might be inappropriate when there exist
multiple optimal actions in the same state. This is the case when multiple optimal
policies arise, since all policies that select a greedy action or any convex combination
of them are optimal. It is worth noting that the knowledge of the optimal action
value function @Q* is sufficient to compute an optimal policy in a model-free manner,
while the optimal value function V* requires the knowledge of the transition model
P. Model-free RL algorithms, that we will present in Section [2.3] aim to estimate
Q* from trajectories.
Literature proposed other optimality criteria. Instead of requiring that the op-
timal policy maximizes the value function in each state we can resort to a less de-
manding criterion, requiring that an optimal policy optimizes the expected return.

Definition 2.10. Given an MDP M a Markovian stationary policy ©* € 11 is opti-
mal if it mazimizes the expected return:

7" = argmax J”.
mell

5A simple rationale to get convinced that a deterministic optimal policy always exists is the
following. Suppose that there exists an MDP for which only stochastic policies are optimal. For all
states s in which there are (at least) two actions, a1 and a2, that are played with positive probability,
it must be that @*(s,a1) = Q*(s,az2) otherwise the policy would not be optimal. Thus, also the
deterministic policy that prescribes to play action a; only (or a2 only) would be optimal.
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Notice that an optimal policy according to definition is always optimal in
the sense of definition , while the vice versa does not hold. For instance, an
optimal policy in the sense of definition might select a suboptimal action in a
region of the MDP that is not reachable according to the distribution of the initial
state.

2.1.8 Reward Shaping

In sequential decision making problems, like MDPs, the intuitive notion of “task” is
encoded by means of the reward function. The reward function, along with the tran-
sition model, determines the optimal policy. However, there exist multiple (infinite)
reward functions inducing the same optimal policy, but not all of them share the
same learning properties (e.g., learning speed). This observation induces the prac-
tice of reward shaping in RL, i.e., supplying additional rewards to a learning agent
to guide the learning process, and possibly make it faster. In [8I] this procedure
is formalized by means of a reward shaping function F(s,a,s’) that is added to the
original reward R(s,a,s’). The authors investigate the effect of reward shaping on
the optimal policy and provide the following result.

Theorem 2.2. Given an MDP M = (S, A,P,R, T,p,7v) and F : Sx AxS - R
a reward shaping function. We say F is potential-based shaping function if there
exists a function x : S — R such that:

F(s,a,5") = vx(s') — x(s), Vs, s’ € S, Va € A. (2.21)

Then, ©* is an optimal policy for M if and only if ™™ is an optimal policy for

MI: <S,A,P,R+F,7—,,U,,’}/)-

The result is expressed for reward functions depending also on the next state, we
can adapt the result for reward functions depending only on the current state and
current action, by just averaging over the next state:

F(s,a)= E [F(s,a,8)] =7 E [x(s)] —x(s), Vs €S, Va e A
s'~P(:|s,a) s'~P(-|s,a)
The theorem provides a necessary and sufficient condition so that a reward shap-
ing function does not change the optimal policy. Clearly, the transformation does
not preserve the value functions. As a corollary, the optimal value functions are
translated by the quantity x(s):

Viw(s) = Viuls) = x(s),  VseS§,
Qi (s,a) = Q' (s,a) — x(s), Vs €S, Va e A.
An interesting consequence is that the potential-based functions determine the class

of the reward functions that are optimal under any policy. Indeed, they are indeffer-
ent to policies in the sense that they give us no reason to prefer a policy over another.
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At an intuitive level this accounts for why they do not give us any reason to prefer any
other policy than 7* when we switch from M to M’ [§]]. The main question is how
to select the function x(s). Clearly, x(s) should be chosen using expert knowledge
about the domain. A straightforward choice is x(s) = V{,(s), in this way the new
value function V3, (s) would be zero for all states and the new Q-function Q% (s, a)
would become the advantage function A%} (s,a). Intuitively, this is a particularly
easy function to learn even without the model of the environment, since we just need
to lean the non-zero Q-values [81]. This is formalized in [80, Theorem 3| proving
that using a shaping function sufficiently close to the value function we can run the
same MDP with a smaller discount factor and still obtain a near-optimal policy. An
analysis of the different aspects of reward shaping is provided in [27, [44] [120)].

2.2 Dynamic Programming

Solving an MDP means finding an optimal policyﬁ The most naive approach consists
in enumerating all possible policies (brute force), evaluating their performance and
returning the best one. This method, however, is inefficient for the finite MDPs since
the number of policies is exponential |.A||$| and unapplicable to infinite MDPs. This
section briefly outlines Dynamic Programming (DP), the most common approach
to solve MDPs when the model of the environment is known. Dynamic program-
ming [12] is a very general method to solve problems that can be decomposed in
(overlapping) subproblems and satisfying the principle of optimality, i.e., once the
subproblems are solved also the original problem is solved. MDPs comply to this
requirement thanks to the recursive nature of Bellman Equation. The standard
techniques are: policy iteration and value iteration.

2.2.1 Policy Iteration

Policy Iteration [48] alternates policy evaluation and policy improvement phases (Fig-
ure . The algorithm (Alg. starts from an arbitrary policy (e.g., random
policy), policy evaluation aims to recover the value function of the current policy.
This phase can be performed in different ways: closed form solution or it-
erative policy evaluation (iterative application of Bellman Expectation Operator).
The first approach is computationally demanding, but allows recovering the exact
value function, while the latter recovers just an approximation. In practice, when
using iterative policy evaluation, we do not need to wait for convergence: a suf-
ficiently accurate approximation is enough (modified policy iteration [97]). Policy
improvement builds a new policy by taking in each state the action that maximizes
the value function (greedy-action): 7(**1)(s) = argmax,¢ 4 Q”m(s, a), Vs € §. All
generated policies are deterministic and the new policy is guaranteed to yield better

SNotice that we are interested in just one optimal policy not in the complete space of optimal
policies.
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Figure 2.2: Policy iteration (from [109]).

Algorithm 2.1 Policy iteration.
Input: S, A, P, R, Tz
Output: 7(Tmaz)
1: Initialize policy 7(©) arbitrarily
2: fort=0,1,...,T)e — 1 do
3: Evaluate policy 7() and get V’T(t)(s), VseS
4 Perform policy improvement

7t (5) = arg max {R(s,a) +7 E [V”m(s’)] }, VseS
acA s'~P(|s,a)

end for

o

6: return optimal policy 71 (Tmaz)

performance w.r.t. the old one. This is ensured by the following result.

Theorem 2.3. (Policy Improvement Theorem) Given an MDP M and two deter-

manistic policies m and 7' :
Q7 (s, (s) > V7(s), Vs€S = VT (s)>V7(s), VseS.

If we fix the maximum number of iterations to T},4z, the following contraction
property holds [96]:

e R S T e I8

The sequence of policies is guaranteed to converge to the optimal policy (in finite
number of steps for finite MDPs) [96]. Similar algorithms can be derived for esti-
mating the Q-function instead of the value function (Q-iteration).

2.2.2 Value Iteration

Value Iteration [12] computes the optimal value function without representing in-
termediate policies (Alg. . This approach is based on the iterative application
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Algorithm 2.2 Value iteration.
Input: S, A, P, R, Tz
Output: 7(Tmaz)
1: Initialize the policy V(O arbitrarily
2: fort =0,1,....,T e — 1 do

3: Apply Bellman Oprimality Operator

VD (s) = Ty [V (s), Vse S
4: end for
5: Compute the optimal policy

7(Tmaz) — arg max {R(s,a)+~ E [V(Tmaz)(sl)] }, VseS
acA s'~P(s,a)

6: return optimal policy 7(Tmaz)

of the Bellman Optimality Operator. In the end, the optimal policy is obtained as
the greedy policy induced by the recovered optimal value function. The convergence
to the optimal value function is guaranteed. In particular, given two consecutive
approximations of the optimal value function we can bound the error w.r.t. the true
optimal value function:

2ey

HV(H_l) . V(t)H <€ _ HV(H—I) — V*H < .

While policy iteration represents explicitly the policy, value iteration focuses on
the value function only. This means that intermediate value functions may not
correspond to any policy. Both are polynomial time algorithms for MDPs with
fixed discount factor [1I]. Considering the single iteration, policy iteration is more
computationally demanding w.r.t. value iteration since it requires evaluating the
policy and performing the greedy improvement, but it tends to converge in a smaller
number of iterations. Besides DP, also Linear Programming (LP) can be employed
to recover the optimal value function. However, LP becomes impractical at a much
smaller number of states than DP methods do.

2.3 Reinforcement Learning Algorithms

Dynamic programming is a model-based approach since it assumes the knowledge
of the transition model, which in most of real-world scenarios is unknown. Further-
more, DP becomes computationally infeasible for large state-action spaces and it is
clearly inapplicable for infinite MDPs. The lack of the transition model, imposes to
sample the environment in order to approximate, explicitly or implicitly, the under-
lying dynamics. Reinforcement learning focuses on this framework and provides a
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solution to the model-free control problem, i.e., finding the optimal policy without the
knowledge of the MDP model. RL methods, essentially, reshape the DP algorithms
in a sample-based version. Without claiming to be complete, in this section we pro-
vide an overview of the main classic model-free RL algorithms for finite state-action
spaces.

2.3.1 RL Dichotomies

We can classify the RL algorithms according to several criteria. 1) Model-free al-
gorithms aim to learn the optimal policy directly from samples, while model-based
algorithms first use samples to estimate the transition model and then apply stan-
dard DP to find the optimal policy. II) On-policy RL learns the value function of the
policy used to collect samples, whereas off-policy RL learns another policy, typically
the optimal policy, while the policy used to collect samples is suboptimal. III) On-
line methods learn while collecting data, instead offline methods perform learning
when all the data have been collected. 1V) Tabular algorithms represent the value
function as a table (they are used for finite MDPs), while function approzimation
algorithms exploit approximators to estimate the value function (used in continuous
MDPs). V) Finally, we distinguish between: value-based algorithms (they learn the
optimal value function), policy-based (they learn the optimal policy) and actor-critic
(they are composed of two components: the actor that demonstrates a policy and
the critic that updates the value function).

2.3.2 The Prediction Problem

With the term prediction, we refer to the problem of estimating the value function of
a given policy. We present here the two model-free approaches that we will discuss
also for the control problem: Monte Carlo (MC) and Temporal Difference (TD)
learning [109]. Both methods are able to learn the value function of the demonstrated
policy directly from episodes of experience, with no need to know the transition
model. The estimation of the value function is done iteratively, as soon as a state s;
is encountered, according to the exponential average update rule:

VED (5) = VO (5,) + a® (0 — VO(sy)),

where v} is an estimator of the value function V(s;) and a® € R* is the learning
rate.

MC approximates the value function with vM¢ = Zzﬂz(z)fl Yirip1, ie., the em-
pirical return. MC requires considering a complete episode in order to compute the
empirical return, therefore it works only for episodic MDPs. When a state is encoun-
tered multiple times on the same episode we can either perform the update only for
the first occurrence (first-visit MC') or for all the occurrences (every-visit MC').

TD, on the other hand, leverages on bootstrapping in order to exploit the current

approximation of the value function. The value function is updated using the esti-
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mated return (not the empirical return), named temporal difference target, defined
as vtT bO) _ rep1 + 'yV(t)(stH). Thus TD, learns online and does not require that
the MDP is episodic. The bootstrapping is performed at the first step (TD(0)); the
algorithm can be extended delaying the bootstrapping operation and considering the
A-return, ’U;FD()\) (for details, refer to [109]).

It can be proved [109)] that first-visit MC provides an unbiased estimator for the
value function, while TD estimator is biased, but with lower variance. In practice,
TD(A) is preferred over MC. This is justified by the fact that TD exploits the Markov
property using bootstrapping, thus it is more suitable for MDPs, while MC can be

used even in non-Markovian environments.

2.3.3 The Control Problem

The most interesting applications of RL require learning the optimal policy in an
unknown environment: this problem is known as model-free control problem. The
RL algorithms, suited for control, can be derived by applying dynamic program-
ming in a sample-based fashion and using the algorithms for prediction presented
in the previous section. Essentially, we can apply Monte Carlo or Temporal Differ-
ence straightforwardly to perform policy evaluation from samples. However, some
adjustments to DP are necessary. First, since the transition model unknown, we
need to estimate the Q-function instead of the state value function. Second, the
policy improvement step has to be performed with care. Since the Q-function is ap-
proximated from samples we cannot directly choose the greedy action, because the
estimation could be poor. Indeed, we need to explore the available actions before
choosing which is the optimal one. This is an instance of the classical ezploration vs
exploitation dilemma. We would like to make the best decision given current infor-
mation (exploitation), but we are not confident enough on the current information
so we need to gather more (exploration).

More technically, exploration can be enforced using e-greedy policies, i.e., stochas-
tic policies in which a random action is selected with probability e (other approaches
use a Boltzmann policy). Still the new policy is an improvement of the old one, as
proved by the e-greedy Policy Improvement Theorem [109]. Clearly, as the learning
proceeds, we are more confident on the estimated Q-function so we can progressively
reduce the exploration level e. The update rule for the Q-function is the following:

QU (s, a) = QW (s, ar) + ) (v — QW (s, ar)).

For Monte Carlo Control the estimator is given by vM® = Z;TF:(;)_

for Temporal Difference Control, named SARSA [105], we have U;F DO Tiy1 +
'yQ”(t)(stH, at+1). The convergence of both methods is guaranteed provided that
the learning rate o(*) fulfills the Robbins-Moore Condition and all the state-action

1 .
Y'r;+1 while

"The Robbins-Moore conditions prescribe that: 3% a® = 400 and 321°¢ (”)? < 4o0. A
simple choice to satisfy the conditions is a® = 1/t.
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Algorithm 2.3 SARSA with e-greedy policy improvement.

Input: ~, 0, 0
Output: QTmaz)

1: Initialize Q(©) arbitrarily (only for the first episode)
2: Initialize sq
3: Sample an action ag from the e-greedy policy 7(%)(-|sq)
) (also) = 1—(1—1/|ADe® i ag = argmax e 4 Q) (s0,a’),
e©/|A] otherwise
4: fort =0,1,...,Typee — 1 do
5: Take a; and measure s;11 and 741.
6: Sample an action a4 from the e-greedy policy 7+ (-] s, 1)
(t+1) 1= 1/|ADe®  if ap g = arg Max, ¢ 4 QW (s441,0d'),
T (at1lse41) = .
e® /A otherwise
7 Update the Q-function
Q(t+1)(8t, ap) = Q(t)(st, ay) + a® (Tt+1 + VQ(t)(StH, agp1) — Q(t)(st, at))
8: Update the exploration rate e(*) to e(**+1)

9: Update the learning rate a(*) to a(t+1)

10: end for
11: return Q-function QTmaz)

pairs are asymptotically visited infinitely many times [109, [51].

The algorithms we presented for control so far are on-policy, i.e., they aim to
learn the value function of the policy used to collect samples. The extension to the
off-policy approach can be done by performing Importance Sampling, we will not
discuss this aspect in details (see [109]). However, we present briefly the popular Q-
learning [118]. Q-learning is an off-policy RL algorithm, that can be considered the
model-free extension of value iteration. The idea is to apply a sample-based version
of the Bellman Optimality Operator that allows learning the optimal Q-function even
if the agent is playing a suboptimal policy. The update rule is given by:

QU (sp,ar) = QW (54, ae) + a(reps + T QW (spr1,a") — QW (sp,ar)).

The pseudo-code of a single episode of SARSA and Q-learning, both with e-greedy
policy improvement, are reported in Alg. and Alg. respectively.
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Algorithm 2.4 Q-learning with e-greedy policy improvement.

Input: ~, 0, 0
Output: QTmaz)
1: Initialize Q(©) arbitrarily (only for the first episode)
2: Initialize sq
3: fort=0,1,...,Tinee — 1 do
4 Sample an action a; from the e-greedy policy 7 (-|s;)

) 1= =1/]ADED if a; = argmax,c 4 QW (s, d),
™ (at|st) =
e /| Al otherwise

5: Take a; and measure s;11 and 741.
6: Update the Q-function
Q(tﬂ)(st, ay) = Q(t)(Su at) + alt) (Tt+1 + ’Ymaili Q(t)(5t+1, a)— Q(t)(st, Gt))
a'e
7 Update the exploration rate () to e(t+1)
8: Update the learning rate a(®) to a(t+1)
9: end for

10: return Q-function QTmaz)

2.4 Function Approximation

SARSA and Q-learning leverage on a tabular representation for the Q-function which
is inapplicable when the state-action space is large, due to memory and time restric-
tions. Obviously, when the MDP is continuous a tabular representation is impossi-
ble. The solution proposed in literature is to estimate value function with function
approximation, i.e., V7™ (s) &~ V(s) This approach tends to enforce generalization ca-
pabilities of the model and to speed up the computation w.r.t. tabular representation
with no significant performance degradation when the approximators are carefully
chosen. We can distinguish between parametric and non-parametric approximators:
the former have a set of parameters known a priori, data are used to tune the values
of the parameters (e.g., neural networks, radial basis functions); while for the latter
the number of parameters is not fixed (e.g., decision trees, nearest neighbors).

2.4.1 Basics of Function Approximation

In the context of function approximation, learning can be defined as the process of
selecting a function V in a functional space F in order to minimize a loss function
that encodes the fact that we aim to use V to approximate the value function V7.
Following the notation presented in [93|, we aim to solve the problem:

V =argmin ||[V™ — f]|,. (2.22)
fer
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Clearly, like in supervised-learning the choice of the approximation space F is a
fundamental issue [16] which has to account for the well-known bias-variance trade
off. In the followings, we will focus on parametric function approximation, in which
F =Fo ={fo:0 c ©CRF} is a parametric function space. The problem
becomes equivalent to finding the optimal parameter:

N

0 = argmin |[V™ — fgl,- (2.23)
6co

Furthermore, we assume that function fg is constructed starting from a vector of
features (or basis functions) ¢ = (¢1, P9, .., qﬁp), i.e., functions that map each state to
real numbers ¢(s) (or each state-action pair to real numbers ¢(s, a)). The functional
form of fg can vary a lot: from linear models (fg(s) = 87 ¢(s)) to complex non linear
approximators, like neural networks.

Under certain regularity conditions, prediction in this scenario can be carried out
with gradient descent methods employing as loss function equation in which we
set ¢ = 2 and the unknown value function is replaced with the corresponding Monte
Carlo or Temporal Difference estimator. The parameter update for approzimate

prediction is given by:
0T = 01 — ol (vf — fou (51)) Ve fgw (s0).

In case of linear approximators the gradient is simply the feature Vg foe) (s) = @(s).
The convergence, however, becomes more critical: while MC approximate prediction
is guaranteed to converge, TD might diverge with non linear approximators since
bootstrapping becomes unsafe. The control problem is solved by performing approx-
imate prediction for the Q-function and employing an e-greedy policy improvement:

oU+) =91t — o) (Ut* - fg(t)(Su at))vefg(t) (5¢,a1).

The convergence guarantees in this case are even worse: SARSA may display a chat-
tering behavior around near-optimal value function, whereas for Q-learning there
is no guarantee of convergence even for linear parametrizations. Other approches
to overcome this problem have been proposed, such as Gradient Temporal Differ-
ence [60], that exploit different update directions to enforce convergence.

The algorithms presented so far perform updates as soon as a sample is drawn
(incremental methods). This has at least two drawbacks: first, it is computationally
inefficient; second, two subsequent samples are strongly correlated. On the contrary,
batch methods seek to find the best fitting value function once all the data have
been collected. The loss function remains the same, but learning is performed over
the whole (static) dataset. This allows recovering the optimal parameters even in
closed form for some simple approximators, like linear parametrizations. According
to which estimator is used to approximate the value function in equation we
distinguish between: Least Squares Monte Carlo (LSMC), Least Squares Temporal
Difference (LSTD). Those algorithms are guaranteed to converge at least for lin-
ear patametrizations. The corresponding algorithms for the Q-function are named



28 Chapter 2. Markov Decision Processes and Reinforcement Learning

Algorithm 2.5 Fitted Q-iteration.

Input: -, DO) — {(si,ai,r§0), si+1)}i]\;1
Output: QTmaz)
1: Initialize Q) (s,a) =0, Vs € S, Ya € A
2: fort=1,2,..., Ty do
3: Build the new training set

DO = {(s5, 0,71 + yargmax QU (si11,0), 5i11) Y,

i

acA
4: Use the regression algorithm on D® to build Q®
5. end for
6: return Q-function Q(Zmaz)

LSMCQ and LSTDQ. The control problem can be solved by exploiting approximate
dynamic programming, e.g., Least Square Policy Iteration (LSPI). A more extensive
discussion is reported in [109].

Another class of algorithms that deserve a mention are the fitted value iteration
methods [41]. We present the fitted Q-iteration that is able to learn the optimal
Q-function by solving a sequence of regression problems. Starting from a dataset
DO = {(si,ai,r§0), 5¢+1)}Z~]\L1, at each iteration ¢, it builds an approximation of the
optimal Q-function Q) using a regressor over D). Then Q) is exploited to build
new the dataset DU+ in which the return in each tuple is replaced with 7’1@ +
Y arg maxX,e 4 Q(t)(3i+1, a). This method allows to use a large range of regressors,
such as kernel averaging, regression trees, fuzzy regression, also neural networks

attain good results. The algorithm is reported in Alg.

2.4.2 Feature construction

The choice of the basis functions is substantial for the success of any function approx-
imation architecture. Following the presentation in [I7], we can distinguish between
different classes of basis functions:

e handcrafted features: features derived from experience (engineered features).
They embed the expert’s knowledge of the environment, but they are generally
difficult to design. Furthermore, a bad choice has dramatic effects on the
accuracy of the approximator [e.g., [10§].

e General function approximators: in most of the cases are universal approxima-
tors, however they do not embed knowledge of the environment and they are
prone to the curse of dimensionality. Some classic examples are polynomial
basis, radial basis functions (RBF) and Fourier basis [63].

o Automatic basis construction: they build the basis functions from the knowl-
edge or the estimation of some properties of the MDP. Some remarkable ex-
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amples are: Bellman Error Basis Functions (BEBF) [87], Krylov Basis [80],
Proto-Value Functions (PVF) [68].

Automatic basis construction has received a lot of attention in literature [e.g., 56, 17,
28, [34]. We will focus just on Proto-Value functions that we will use as a comparison
term in the experimental evaluation.

Proto Value Functions

Proto-Value Functions have been introduced in [67, [68] as an automatic feature
construction method that is able to build features that represent the underlying
structure of the environment. The framework is presented in the context of Repre-
sentation Policy Iteration, an algorithm that simultaneously builds the features and
the optimal policy.

The assumption that justifies the method is the following. In many real-world
cases the value function is smoother than the reward function, thus it makes sense
to build features that assign similar values to states that are reachable one from the
other. For this purpose a connection graph is constructed out of a Markov chain
containing only the states visited by the agent. The graph connects two states s
and s’ if the agent has experienced a transition from s to s’. The corresponding
connection matrix W is given by:

1 if agent experimented transition s — ' ,
W = , Vs, s € S. (224)

0 otherwise

The resulting graph is unweighted; other approaches to build the connection matrix,
yielding weighed graphs, are possible [68]. Instead of assigning just one if the tran-
sition occurred, we can use the number of occurrences or the discounted number of
occurrences when dealing with a discounted MDP.
From the connection graph we would like to apply the theory of diffusion maps [24]
to extract the features. As diffusion maps require undirected graphs, this matrix W
must be symmetrized by setting W < %(W + WT) (other symmerization schemes
are possible, like WWT). Let d be the vector of the row sums of matrix W, i.e.,
ds = gecs Wss, Vs €S, and D = diag(d); we can now define the Random Walk [23]
on the symmetrized graph:
P=D"'WwW. (2.25)

The random walk describes completely the Markov chain underlying the graph. We
can observe that P is similar in an intuitive sense to the transition kernel however,
as a consequence of symmetrization, it represents the “transition possibilities” rather
than the probabilities. Following this spirit, we would like to find a set of basis
functions that is able to reconstruct P. This can be done by diagonalizing P and
considering the eigenvectors associated to the largest eigenvalues of P, named p;, in
absolute value.
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This approach, also known as spectral encoding [I1], yields approximation spaces
in which Euclidean distances are equivalent to diffusion distances on the connection
graph. Essentially, starting from a state space with possibly no metric we have been
able to build a distance between states.

However, P is not symmetric in general and diagonalization might result costly.
The approach proposed in [67] is to use a surrogate diffusion operator guaranteed to
be symmetric: the Laplacian [23]. We consider the two versions: the Combinatorial
Laplacian L and the Normalized Laplacian L, defined respectively as:

L=D-W, L =D :LD 2. (2.26)

It can be proved that I — L is similar (in the sense of matrices) to the random walk
P [68]. Thus the eigenvalues of the random walk p; are related to the eigenvalues
of the normalized Laplacian A; according to: p; =1 — A;. We define as Proto-Value
functions the eigenvectors associated to the smallest eigenvalues of the normalized
Laplacian.

So far PVFs were only constructed on graphs defined over the state space. If
we are interested in approximating the Q-function we need a set of basis functions
defined over the state-action space. In [84] the algorithm of PVFs is extended to
recover state-action basis functions. The nodes of the graph are no longer associated
to a visited state s, but to a visited state-action pair (s,a). Two approaches are
proposed for the construction of state-action graphs: on-policy and off-policy. The
on-policy graph connects two state-action pairs (s,a) and (s',a’) if the agent is in
state s, performs action a, gets to state s and then selects action a’ from there.
The off-policy graph instead, connects (s,a) to (s’,a’) if the agent is in state s,
performs action a, gets to state s’ and a’ € A, independently on the action taken in
s’. The on-policy graph encodes information on the policy used to explore the MDP,
whereas the off-policy approach models the random walk, i.e., the environment that
lies behind the MDP.

For infinite observation spaces PVFs are also defined by connection graphs. How-
ever, differently from the finite case, the construction of this graph is not straightfor-
ward. In [68] a symmetrized k-nearest neighbors graph is proposed. Restricting the
case to Euclidean state spaces, each visited state s is connected with the k£ nearest
visited states w.r.t. the Euclidean distance only. After symmetrization, the PVFs ¢
at the visited states are computed. A Nystrom extension approximates the PVFs for
all unvisited states by computing the mean over the weighted PVF's of the k states:

s . ZSIEKNN(IC,S) IC(S’ S/)¢(S/)
os) = ZS/GKNN(k,s) K(s,s')

where KNN(k, s) is the set of the k closest visited states to unvisited state s according

, vs' € S C R”,

to the Euclidean distance. The weights are determined by a Gaussian kernel with
bandwidth o

1
K(s,s’):exp<—w|s—s’||%>, Vs,s' € S C RM.
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2.5 Policy Search

Approximate dynamic programming focuses on the estimation of the optimal value
function and derives the optimal policy, no explicit policy representation is consid-
ered. In contrast, Policy Search (PS) aims to recover directly the optimal policy,
given a predetermined class of approximating policies II. PS can be seen as the
problem of finding the policy in II that induces a value function as close as possible
to the optimal value functionﬁ

7 =argmin ||[V* = V7, (2.27)
nell

When ¢ = 2, the optimization problem can be interpreted as a projection
problem in the space of Markovian stationary policies II where 7 is the orthogonal
projection of an optimal policy 7* onto the subspace of policies I1.

PS methods have received a lot of attention in literature in the last decade as
an alternative to standard value function methods. Notice, by the way, the analogy
between the function approximation problem and the policy search problem
; they are both search problems optimizing the same objective function but
formulated in different search spaces. The first main advantage of PS over ADP lies
in the representational complexity, it is typically simpler to represent the optimal
policy rather than the optimal value function [8I]. Secondly, in many real-world
problems (e.g., robotics) the functional form of the optimal policy is known, up to
the value of a vector of parameters [26]. Furthermore, a parametric representation
of the policy space allows encoding in the policy prior information on the optimal
parameters [26].

Brief overview on Policy Search methods

A variety of methods have been proposed in literature to solve the problem .
The earlier techniques were mainly related to evolutionary computation [78] and gra-
dient methods [121]. In [26] an attempt of classification of PS methods, restricted
essentially to parametric methods, is proposed (Figure . The authors distinguish
between model-based and model-free policy search. The former exploits trajectories
to learn a forward model of the dynamics of the environment and the agent behav-
ior; while the latter uses trajectories to directly learn the optimal policy parameters.
Among the most popular approaches, for parametric policy search, we find the stan-
dard gradient optimization [89, 38, [64]. We will focus on them in the followings.
Other approaches exploit Monte Carlo Expectation-Maximization techniques [62],
variational inference policy search approaches [37] and entropy-based methods, like
Relative Entropy Policy Search [8§)].

8We can also resort to a less restrictive demand formulated on the return rather than on the
value function: # = argmin_ g ||J* — J™||4.
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Model-free policy search

Model-based policy search
Figure 2.3: A taxonomy of policy search methods (from [26]).

2.5.1 Policy Gradient Methods

Policy Gradient Methods (PGM), introduced by [121], tackle the PS problem as a
standard gradient optimization. Clearly, in order to use gradient-based optimization
techniques several assumptions on the regularity of the loss function are required.
More precisely, PGM assume a predefined parametric space of stochastic policiesﬂ

H@Z{ﬂ‘gt@é@CRk}.

Furthermore, we assume that all policies mg are differentiable w.r.t. 8 for all state-
action pairs. PGM search for the optimal policy in the parametric space Ilg, i.e.,
the policy that maximizes the exptected return, which in turn corresponds to finding
the optimal policy parameters:

0" = argmax J(0). (2.28)
6co

The typical approach to optimization problem ([2.28)) is based on the usage of gradient-

based optimization methods. Under regularity conditions, the expression of the gra-
dient of J(@), named policy gradient, is derived in [111].

Theorem 2.4. (Policy Gradient Theorem) Given an MDP M and a Markovian
stationary stochastic parametric policy mg € llg differentialble w.r.t. to 6 for all
state-action pairs (s,a) € S X A, the gradient of the expected return is given by:

VeJ(0)= E Vo logmg(als)Q™ (s,a)|. (2.29)
sy
a~mg(:s)

9The requirement for the policy to be stochastic is necessary in order to compute the policy
gradient in a model-free way.
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dje, is the y-discounted state occupancy, as defined in equation (2.8)). Clearly,
when 6 is an optimal parametrization for policy mg the policy gradient vanishes.
Equation (2.29)) can be rephrased into a trajectory-based expression:

VoJ(0) = E [ve log pg(T)Rm], (2.30)

T~Po

where pg is an abbreviation for pg(-|u, 7, P), i.e., the trajectory probability density
function. This second formulation is typically preferred in practical applications
since it does not require to compute explicitly the Q-function. Furthermore, the
term Vg logpg(7) can be computed without the knowledge of the transition model
when the policy is stochastic:

T(r)—1
Vg logpe(T) = Vg log (M(Sr,o) 11 Wo(ar,t|5nt)P(8T,t+1!ST,t,ar,t)) =

t=0
T(r)-1 (2.31)
= Z Vo log mg(art|srt), vr eT.
t=0
Thus we can rewrite equation ([2.30)) into:
T(r)-1 T(r)-1
VoJ(0)= E | >  Velogma(arslsrs) Y ’th(ST,t,aﬂt)]. (2.32)
POl =0 =0

Since their introduction these methods have been the center of a large amount
of reaserch mainly focused on: gradient estimation [10}, [72], variance reduction tech-
niques [119} 42], function approximation techniques [I11], [90] and real world appli-
cations [62] 103]. The standard steepest gradient ascent (also called wvanilla gradi-
ent) [89, 43|, albeit simple and efficient, displays substantial issues, like slow con-
vergence, that make it unattractive in practice. Various alternative methods have
been proposed in literature, such as natural gradient ascent [54, 90| and second-order
methods (e.g., Newton method [38, [70]). In [38] a comprehensive formulation of the
gradient update rule is presented:

0+ = 9) L G (0W)IVeT(0W), (2.33)

where o) € R* is the learning rate and G(8) is a positive definite matrix. The
steepest gradient ascent is obtained by setting G(O(t)) = I. In the latter case the
convergence is guaranteed almost surely for sufficiently regular loss functions and
when the learning rate fulfills the Robbins-Moore conditions. The main issues with
the update rule ([2.33)) are the estimation of the policy gradient Vg.J () (Section
and the choice of matrix G(8) (Section [2.5.3). The general scheme of a PGM is
reported in Alg. [2.6]
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Algorithm 2.6 General setup for policy gradient methods.

1: Initialize the policy parameters 0 arbitrarily

2: fort =1,2,..., T do

3: Obtain an estimate G(8®) of matrix G(0®)

4: Obtain a policy gradient estimate VgJ(0®)

5: Update the policy parameters 8¢+ = () 4 a(t)é(e(t))*1§9J(0(t))
6 Update the learning rate a®) to a(t+1).

7: end for

8

: return optimal policy parameters 0 Tmaz)

Compatible function approximation

In order to estimate the gradient we can either exploit the trajectory-based formu-
lation or approximate the Q-function and resort to the Policy Gradient Theorem.
Estimating the Q-function might be a challenging task in particular for infinite state-
action spaces. However, if the goal is just get a good gradient estimate we can resort
to simple function approximators based on the class of compatible basis functions de-
fined as f.,(s,a) = w! Vglogmg(als). In [I11] the authors prove that by replacing in
equation the Q-function with the compatible function that best approximate
the Q-function we get an unbiased estimation of the gradient. Clearly, the estimated
compatible function might differ significantly from the true Q-function.

2.5.2 Policy Gradient Estimation

The literature on PGM proposed a variety of estimation methods for the policy
gradient over the last years. The most prominent approaches, which have been
successfully applied to robotics, are Finite-Difference and Likelihood Ratio Methods.

Finite-Difference methods

Finite-difference methods are among the oldest techniques to estimate the policy gra-
dient, invented by the stochastic simulation community. The idea is to approximate
the derivative as a quotient of finite increments. The policy parametrization is per-
turbed multiple times (N) by a small increment A@;, i = 1,2, ..., N. The expected
return increment for the i-th sample is computed as AJ; = J(0 + A8;) — J(07).
There are multiple choices for Bgef , that correspond to the finite-difference approx-
imators for the derivative [39], like forward-finite-difference (67% = @) and central-
finite-difference (Ggef = 0—A80;). The policy gradient estimate is obtained by solving

a regression problem yielding:
VEPJ(6) = (A®TA®) 'ABT AT, (2.34)

where A® = (A8}, ABs, ..., ABy) and AT = (AJ), Ay, ..., Ady)".
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Finite-difference methods do not require knowledge of the policy and the differ-
entiability of the policy w.r.t. the parameters, thus they work both with stochastic
and deterministic policies without any change and they display good results in sim-
ulation environmnets. However, the choice of the perturbation of the parameters is
a very difficult problem often with disastrous impact on the learning process when
the system goes unstable. In the presence of noise on a real system, the gradient
estimate error decreases much slower than for the likelyhood ratio methods. Finally,
performance depends highly on the chosen policy parametrization [89].

Likelihood Ratio Methods

Likelihood Ratio Methods exploit the trajectory-based formulation (2.30]) in a sample-
based fashion to estimate the policy gradient. By observing that a constant reward
yields a null policy gradient and exploiting linearity of the expected value we can

rewrite equation ([2.30]) as:
Vo (6.0)= E [Vologpe(r)(R(r) - )], (2.35)

T~Po

where b is a constant baseline (scalar or vectorial) that can be chosen arbitrarely [121],
but typically used to reduce the variance in the estimation of the gradient. The most
popular sample-based estimate of the gradient are REINFORCE [121], PGT [110]
and G(PO)MDP [10]. REINFORCE just rephrases equation in a sample-based
form, replacing the expectation with the empirical average:

T(r:)—1 T(r:)—1

VEET(8,b) =5 Z < ; Vo logﬂe(amt|5n,t)> ( ; V'R (87, Gry ) — b>7 (2.36)
in which we considered N independent trajectories. The optimal baseline is
obtained by minimizing the variance of the gradient estimate , we can seek for
a scalar or component-wise (vectorial) baseline. We indicate with Var, [@EF J(6,b)]
the k£ x k coviariance matrix of the gradient estimate, where k is the number of
parameters. If we minimize the trace of the covariance matrix we obtain a scalar
baseline [124], while if we minimize each component of the diagonal we obtain a

component-wise baseline made of k elements, one for each parameter [89]:
(r)—1
- [u Yy Vologmo(arsr)BR(7)]
V,RF = -
5 151 Vologmo(arilsrE]
2
E. (255~ ' Vo, log ma(ar|sre)) R(7)]
T)— 2
Er [( 31:(0) ! vej log WG(aT,t‘ST,t)) ]

( *V,RF)j = , i=12, ..k

Clearly, the baselines are estimated exploiting the straightforward sample-based es-
timators obtained replacing the expectation with the empirical average. The REIN-
FORCE pseudo-code with optimal component-wise baseline is reported in Alg. 2:7]
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Algorithm 2.7 Episodic REINFORCE with optimal component-wise baseline.
: forn=1,2,...,N do

1
2 Collect a trajectory 7,
3: for all gradient component j =1,2,....k do
4 Estimate the optimal baseline
o 2 )
o) _ > < Z;(S’) ! Ve, logfrg(an,tlsn,t)) (ZtT:(({') 1’YtR(5n,t’an,t)>

J N 2
PO ( Zw:(g» ' Vo, lOgﬂ'B(aTnt‘sn,t))

5: Estimate the gradient element

> (n 1 n T(r;)—1 T(1;)—1 n
V(QJ)J(G) = ; Zi:l ( t:<0 ) Vej IOgﬂe(aTi,tlsn,t)) ( t:<0 ) 'YtR(sTi,tva-ri,t) - b§ >)

6: end for
7: end for
8: return gradient estimate @éN)J (9)

Likelihood ratio methods have several advantages over finite-difference methods.
It can be proved [40] that the REINFORCE estimator achieves the fastest possible
convergence rate. Furthermore, in practice they require less trajectories w.r.t. finite-
difference methods to obtain a good unbiased estimator [10]. However, REINFORCE
introduces a high variance in the gradient estimate. Such problem can be mitigated
by observing the causal relation between actions and rewards. In particular the
reward obtained at time ¢ depends only on the actions performed up to time ¢, as
future actions do not affect the past rewards. This consideration is exploited to
define the G(PO)MDP [I0] and PGT [110] gradient estimators:

N T(ri)—1 ¢
1
VG(Po MDP 109, b) = N Z < Z ( Z Ve logmg(ar, v|Ss t/)> (V' R(S7,1, 07, ) — bt)>7

T(mi)—1 T(ri)—-1
VPGTJOb NZ< Z nyelogWQ Qry t|S7; ¢ < Z ’Y “tR Sn,t/,ar,;,t/)bt>>-

t=0 t'=t
In [89] the authors show that, while the algorithms look different, their gra-
dient estimates are equal. The optimal baseline for G(PO)MDP can be obtained
by modifying appropriately the sum in the optimal baseline of REINFORCE [89].
Furthermore, while the optimal baseline for REINFORCE is time-invariant, that of
G(PO)MDP can also depend on the time step. The pseudo-code of G(PO)MDP with
optimal time-variant baseline is reported in Alg.

2.5.3 Search Direction Analysis

In the previous section we presented the methods to estimate the policy gradient
and reduce the variance of the estimate. All these approaches assume to perform a
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Algorithm 2.8 G(PO)MDP with optimal time-variant baseline.
forn=1,2,....,N do

Collect a trajectory 7,

1:
2
3: for all gradient component j =1,2,....k do
4 for all time steps ¢’ do

5

Estimate the optimal baseline for time step ¢/

’ 2
;L:l (ZE:Q v@j log g (aT,i,t‘sTi,t)) ﬂ/t R(Sn,t’) an,t’)

b(") — 5
4.t/ ;
1 (E::O Vg, log We(afi,tlsﬁwt))
6: end for
7 Estimate the gradient element
2 1 T(1;)—
Ve a(0) = =, (25T (Shmo Ve, logma(ar, vrlsr, 1)) (v R(sr tnar i) = b)) )
8: end for
9: end for

10: return gradient estimate @gN)J(O)

gradient update towards the steepest direction, i.e., matrix G(8) in equation
is the identity matrix. It is well known that exploring different directions, might
favor the convergence properties of the gradient optimization methods. The choice
of matrix G(8), thus, depends on several requirements. Numerical stability, compu-
tational complexity of the parameter update and rate of convergence are, in general,
reasonable demands. We will focus on two specific choices of matrix G that lead to
two well-known approaches: the Newton Method and the Natural Gradient Ascent.

Newton Method

In order to cast Newton Method in the form of equation we have to set G(0) =
—HeJ(0), where HgJ(0) is the policy Hessian. Like for the policy gradient, the
policy Hessian admits a state-based formulation and a trajectory-based formulation.
The former is shown in [54] 53]

HeJ(6) = E {(Vglogﬂg(as)Vglogﬂg(a|s)T+Hglog7rg(a|s))Q“9(s,a)+

)
sevd, 7y

anTg(.|s) (237)
+ Vo logmg(als)VeQ™ (s,a)” + Q™ (s,a)Velog 7Tg(a|S)T:| )

Unfortunately, the computation of the Hessian with equation (12.37) requires the
knowledge of the derivative of the Q-function that is difficult to estimate since it
requires the transition model. In [38] a trajectory-based formulation of the Hessian,
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that overcomes this limitation, is provided:

Ho7(0) = B |(Tolonpolr)Valogpa(r)7 + Holoxpolr) |R()|. (239
T~pe

This equation is suitable to derive model-free estimators for the policy Hessian. By
following the same reasoning used for the policy gradient, it can be proved that also
Heg log pg does not depend on the transition model. For brevity we introduce the
symbol Cg(7):

T(1)-1 T(1)—-1 T
Ce(T)z( > Velogwe(af,tlsr,t)>< > Vologﬂo(aT,tlsT,t)> +

t=0 t=0
T(r)-1
+ He log me(ari|srt).
t=0

Thus we can rewrite equation (2.38)) as:

HoJ(6,6) = E [Co(r)(R(r) - )]

T~Pe

The usage of a baseline b might become substantial since the estimate of the pol-
icy Hessian results more noisy w.r.t. that of the gradient. REINFORCE-like and
G(PO)MDP-like estimators for the policy Hessian can be easily found. We report
only the REINFORCE-like policy Hessian estimator:

N
TIEF 76, b) — % S (Colr) (B(m) ~1)). (2.39)
=1

The optimal baselines, scalar and component-wise, have been derived respectively
in [70] and [93]. In those cases the variance of the Hessian matrix is defined as the
covariance matrix of its vectorization{ld]

E. [|Ivec(Co(r)) I3R(r)]
E, |[vec(Co(m) 3]
E. | (Co(r)) ()]
ET[(C’O(T))M}

H,RF —

(B;Q’RF)U , i,j=1,2 ..k

Compared to steepest gradient ascent, Newton Method has the highly desirable
property of having a quadratic rate of convergence in the neighborhood of a local
optimum. However, it is well-known that it suffers from problems that make it either
infeasible or unattractive in practice, first of all the inversion of the Hessian matrix.

Tet A be a n x m matrix, the vectorization of A, indicated as vec(A) is the vector of nm

components obtained by stacking the columns of A, i.e., A;; = (vec(A))i+(j71)n.
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Approximate Newton Methods have been introduced to overcome these limitations:
they replace the Hessian with a more stable and computationally convenient surro-
gate (refer to [38] for details). A step towards the search of a more suitable updating
direction is done by Natural Gradient methods.

Natural Gradient Ascent

Although variance reduction techniques allow estimating the policy gradient accu-
rately, these methods still tend to perform surprisingly poorly [89]. The underlying
reason cannot solely be the variance in the gradient estimate, but rather must be
caused by the large plateaus in the expected return landscape where the gradients
are small and often do not point directly towards the optimal solution. Furthermore,
vanilla gradient methods might result ineffective when the loss function presents mul-
tiple maxima or the gradient is not isotropic in magnitude w.r.t. any direction away
from its maximum [3]. In order to overcome these problems, which are very frequent,
Natural Gradient approaches have been introduced [54]. Natural gradient ascent
techniques originated in the neural network literature |2] and consider the parameter
space as a Riemannian manifold equipped with a proper norm: ||0||%;(0) = 07G(9)0
(where G is the local Riemann metric tensor) which replaces the Euclidean norm,
10|12 = 67'6. The steepest ascent direction w.r.t. the Riemannian manifold results in
the natural gradient direction. For the case of MDPs and in the context of probabilis-
tic models, the most commonly used local metric is given by the Fisher Information
Matriz (FIM), i.e., G(0) = F(0):

F@)= E {vf) log mg(als)Ve logWQ(a‘s)T] =

= E [Ve log pe(7) Ve log pe(T)T} ,

T~Po

where we have reported both the state-based and the trajectory-based formula-
tions. Recalling that pg is independent from the transition model, we can derive
the straightforward estimator:

LN (T T(r)-1 r
F(8) = NZ( > Ve logﬂ-e(a”r,t’ST,t)>< > Velogmg(ary Sr,t)) :
i—1 \ =0 =0

The main advantages of natural gradient ascent over steepest gradient ascent have
been summerized by [89]: convergence to a local maximum is guaranteed [2]; by
choosing a more direct path to the optimal solution in parameter space, the natural
gradient has, from empirical observations, faster convergence and avoids premature
convergence of steepest ascent gradient; the natural policy gradient can be shown
to be covariant, i.e., independent of the coordinate frame chosen for expressing the
policy parameters; as it analytically averages out the influence of the stochastic
policy, it requires fewer data points for a good gradient estimate.
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General adaptive methods

The convergence properties of gradient ascent can also benefit from general adaptive
methods, such as Momentum [98], Adagrad [31], Adadelta [123] and Adam [5§], just
to mention some of the most popular. Those algorithms, albeit not specifically suited
for PGM, can improve and accelerate the convergence of the gradient ascent. We just
describe Adam (Adaptive Moment Estimation), that we will use in the experimental
evaluation. The idea is to adapt the learning rate to each parameter and according
to the local shape of the function. More precisely, Adam keeps an exponentially
decaying average of past gradients, similar to momentum:

m = gm"Y 4 (1 - p1)g",
v = By 4 (1 - ) ()2,

where m® and v(®) are respectively the estimate of the mean and the second mo-
mentum of the gradient and g(®) = V.J(8) in the case of PGM. (g)? indicates
the element-wise square. Since both are initialized to 0, to remove the bias toward
zeros we need to correct the estimates:

m® o v

) T
m T i, 1_@.

The update rule is given by:
(*)

a -
Vv® e

where all operations are element-wise. The authors propose default values of 0.9 for

o+l — g(t) 4

51, 0.999 for B2 and le — 8 for e. For a synthetic presentation of the various adaptive
gradient methods refer to [104].



Chapter 3

Inverse Reinforcement Learning

Reinforcement learning assumes that the implicit notion of “task” (or goal) is encoded
in a Markov decision process by means of the reward function. Provided that the
environment is equipped with a reward function, reinforcement learning proposes a
wide range of algorithms to estimate the optimal policy when the dynamics of the
environment is unknown. The MDP formalism can be effectively applied in all the
problems in which the reward function is available or easy to specify. However, there
are several real-world cases in which manually devising a reward function is a diffi-
cult task. The classic example, proposed by Abbeel and Ng in [1], is the car driving
problem. Specifying a suitable reward function means, in this case, formalizing the
intuitive notion of “driving well”. Driving is a complex task: a good driver trades
off many conflicting desiderata, such as keeping a reasonable speed, staying far from
any pedestrian, maintaining a safe following distance. The authors claim that, rather
than specifying a reward function, it is easier to generate demonstrations of good
drivers, inducing the agent to learn by observation. Learning from expert’s demon-
strations is called Apprenticeship Learning (AL), also named learning by watching,
imitation learning, or learning from demonstration.

The main approaches solving this problem are Behavioral Cloning (BC) [4] and
Inverse Reinforcement Learning (IRL) [82]. The former recovers the demonstrated
policy by learning the state-action mapping in a supervised learning way, while in-
verse reinforcement learning aims to learn the reward function that makes the expert
optimal. Behavioral cloning is simple, but its main limitation is the intrinsic goal,
i.e., to replicate the observed policy. This task has several limitations: it requires
a huge amount of data when the environment (or the expert) is stochastic [46]; it
does not provide good generalization or a description of the expert’s goal. On the
contrary, inverse reinforcement learning accounts for generalization and transferabil-
ity by directly learning the reward function. This information can be transferred
to any new environment in which the features are well defined. As a consequence,
IRL allows recovering the optimal policy a posteriori, even under variations of the
environment. Furthermore, the expert’s policy might be very far from the class of
policies that the learner can play (e.g., a human demonstrator and a robotic learner).
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Therefore, the best policy recovered by behavioral cloning could result worse w.r.t.
a policy learned by optimizing the reward function of the problem. IRL has received
a lot of attention in the literature and has succeeded in several applications |e.g.,
1l [1T2], 125] 102, [47].

It is important to stress that the reward function is a more powerful and compact
information w.r.t. the optimal policy. The transition model can change over time, due
to external factors, as a consequence also the optimal policy might change. However,
the reward encodes the notion of “task” and thus will remain the same. Knowing
the reward, we can recompute the optimal policy associated to the new MDP. Thus,
the reward function is a transferable information, i.e., it can be plugged into new
problems allowing learning the optimal policy.

However, BC and IRL are tightly related by the intrinsic relationship between
reward and optimal policy. The reward function defines the space of optimal policies
and to recover the reward it is required to observe/recover the optimal policy.

This chapter is devoted to an exhaustive presentation of the state-of-the-art algo-
rithms for apprenticeship learning. We will mention some of the behavioral cloning
approaches, but we will mainly focus on inverse reinforcement learning algorithms.
This overview aims to compare the characteristics of the different algorithms and
underline their points of strength and weakness, along with the possible extensions
and improvements. It is not easy to provide a satisfying classification of AL and
IRL algorithms due to the variety of the approaches proposed. We will present
them trying to group together algorithms that share similar approaches. Not all
the algorithms are going to be discussed with the same level of detail. Within each
category we will mainly focus on the most representative algorithm, typically the
one that was proposed first, and we will give a high-level overview of the extensions
and improvements.

The chapter is organized as follows. We start in Section [3.1] with an overview
of the main apprenticeship learning algorithms, focusing on behavioral cloning. The
subsequent sections are fully devoted to inverse reinforcement learning. In Section|3.2
we introduce IRL presenting the first algorithm proposed in the literature. In Sec-
tion [3.3] we focus on the feature expectation algorithms, whereas in Section [3.4] we
describe the entropy-based methods. Section [3.5]is devoted to supervised approaches
to IRL. In Section [3.6] we illustrate the IRL algorithms based on the policy gradient.
Section [3.7] gives an overview of the techniques to build approximation spaces for
the reward function. Finally, in Section [3.8] we highlight the most relevant pros and
cons of the considered algorithms.

3.1 Apprenticeship Learning and Behavioral Cloning

Learning a mapping between states and actions in order to maximize a given utility
function is the basic problem of reinforcement learning. When the utility function
is missing, the problem, of course, becomes ill-posed. However, in real-life, a reward
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Figure 3.1: Policy derivation using the generalization approach of determining (a) an ap-
proximation to the state-action mapping function, (b) a dynamics model of the system and
(c) a plan of sequenced actions (from [4]).

function is not typically given explicitly, but living learning agents (e.g., human
beings and animals) are able to improve progressively their performance by observing
other agents. The key point of this learning framework is imitation. When examples
of trajectories generated by experts (or teachers) are available an agent can exploit
them to learn the optimal behavior.

In this section, we provide an overview of the different aspects of apprenticeship
learning and behavioral cloning algorithms. We mainly follow the presentation pro-
posed in [4]. The apprenticeship learning problem can be stated as follows. Given a
dataset of expert’s trajectories D = {(r,0,@r,,0), - (Sri,T(n)’an,T(n))}g\; we want
to derive, directly or indirectly, a policy that reproduces the demonstrated behavior.
We can roughly classify the apprenticeship learning approaches into three categories

(Figure B.1):

e mapping function: the demonstrated trajectories are used to derive a policy
that reproduces the expert’s behavior (this is the case of behavioral cloning);

e system model: the data are exploited to recover a model of the environment
dynamics and possibly the underlying reward function (this is the case of in-
verse reinforcement learning); the policy is then computed using classic RL
methods;

e plans: demonstration data, and often additional user intention information, is
used to learn rules that associate a set of pre and post-conditions with each
action and possibly a sparsified state dynamics; a sequence of actions is then
planned using this information. We will not address this approach in our
presentation.
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3.1.1 Mapping function

The goal of behavioral cloning via mapping function is to recover a policy that
explains the expert’s behavior. The policy model has to reproduce the underlying
teacher’s policy, which is unknown, and to generalize over the set of available training
examples such that valid solutions are also acquired for similar states that may not
have been encountered during the demonstration [4]. From the supervised learning
point of view, we can see the problem of finding a mapping function as either a
classification, regression or probability estimation problem.

If our goal is to recover a deterministic policy 7(s) that for every state s € S
produces as output the expert’s action, we resort to classification and regression.
Classification approaches map (possibly) continuous input to a set of classes, thus
they are suitable when the action space is finite. Classic approaches make use of
Gaussian Mixture Models (GMM) [21], Decision Trees [106], Bayesian Networks [50]
and k-Nearest Neighbors [I07]. Regression methods, on the contrary, are employed
when the action space is continuous. A first notable distinction is whether the
mapping function is made run time or prior to run time. The former approach is
employed in Lazy Learning [5], where function approximation does not occur until
the current observation requires generating the mapping. At the other extreme, there
are the methods where the approximation is fully computed before the execution,
like Neural Networks (NN) [95].

A different approach to BC is based on the estimation of the parameters of a
policy in a given policy space, possibly stochastic. This problem can be formulated
as a probability estimation problem. Formally, given a class of parametric policies
o = {mg : 6 € © C R¥} we aim to find the policy that best represents the unknown
expert’s policy 7¥. Let d be a score function, quantifying the proximity of two
policies, we want to solve the optimization problem:

A~

6 = argmin d(7%, 7g). (3.1)
6co

Notice the analogies and differences between this optimization problem and the
one presented in the context of policy gradient methods . In both cases we are
looking for the parameters of the policy, but the objective functions look different.
In policy gradient methods we seek for a policy that maximizes the expected return,
i.e., a policy having a performance as close as possible to that of the expert assuming
that the expert is optimal. Here, on the contrary, we seek for the parameters making
the agent policy as close as possible to the expert’s policy. The goal is intuitively
the same, but the optimization is carried out in two different spaces.

There are multiple choices for score function d. We observe that for every state
s € S, m(+|s) is a probability distribution, thus, concerning the single state we can
adopt a distance score between distributions, such as Total Variation distance (TV):

dry (mi(|s), m2(|s)) = [m1(-]s) = ma(-]s)llrv = ;/A m1(als) — ma(als)|da, Vs €S,
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or Kullback-Leibler divergence (KL-div):

mi(als) m1(als)

dir, (m1(]s), ma(-]s)) = anllE(~|s) [log 7r2(a|s)] = /Am(a|5) log WQ(a\s)da’ Vs e S.
While total variation is a proper metric, the Kullback-Leibler divergence is not being
non-symmetric. However, contrary to total variation, KL-div yields a differentiable
loss function and its optimization is related to the problem of finding the maximum
likelihood policy parameters. Clearly, the previous score functions can be extended
over the whole state space.

We can look at the same probability estimation problem by considering the classic
Mazimum Likelihood (ML) and Maximum A Posteriori (MAP) approaches. In the

BML

former case, we look for the parameters that maximize the likelihood function:

N
L(6) = p(r1,72, ..., 7n160) = [ [ po(72), (3.2)
=1

where pg is the probability density function of the trajectories. It can be proved
(see Appendix that maximizing equation is equivalent to minimizing the
KL-div between expert’s policy and the approximating policy mg. On the contrary,
if some knowledge on the expert’s parameters is available a Bayesian approach is
more suitable. Let p(€) be a prior, the Maximum A Posteriori estimation aims to
maximize the parameter posterior probability:

p(T1,72, ..., TN|0)p(0)
p(T1, 72, ..., TN)

p(O|71, T2y .oy TN) = x p(71, 72, ..., TN|0)D(O).

3.2 Ng-Russell IRL

Ng and Russell in [82] propose an algorithm (NR-IRL]T) that is able to recover a
reward function assuming to know M \ R, i.e., an MDP without the reward func-
tion and an optimal deterministic policy n*. The method is presented for finite
state-action spaces, but can be extended to the continuous MDPs. We assume the
transition model P to be a |S|x | A| x |S| tensor, P.,. is the transition kernel (|S| x |S|
matrix) associated to action a € A, Pg,. is the |S|-dimensional vector of the probabil-
ity distribution of the next state and the reward r a vector of |S]| componentsE] Given
A ={ai,az,...,a 4/}, without loss of generality, we assume 7*(s) = a1, Vs € S. The
algorithm originates from the following result.

Theorem 3.1. Given an MDP M with v < 1 and a policy m such that 7(s) =
a1, Vs € §. m is an optimal policy if and only if it holds:

Py — Poa) (T—=AP,,.) v >0,  Vae A\ {a}. (3.3)

'The authors did not give a name to their algorithm, we will call it NR-IRL from the initials of

the authors’ surnames.
2The approach can be extended to state-action reward function straightforwardly, by considering
r" = 7r.
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Moreover, it is possible to prove that the condition (P;al: — P;a;) (I — ’me;) s
0 imposes that 7 is the only optimal policy. If we observe that v = (I — fyP:al;)*lr,
the theorem reduces to the inequality P.q,.v"™ > P.,.v™, which says that a; is better
then all the other actions a, i.e., 7 is optimal (the formal proof can be found in [82]).

For finite MDPs, this theorem provides a characterization of the space of reward
functions that make the policy 7* optimal. We first observe here the problem of
reward ambiguity: given ri and ry satisfying Theorem any linear combination
with non-negative coeflicients would still be a reward optimized by w. Moreover,
this space includes trivial reward functions, like constant functions or even the zero
function. To mitigate this problem we could impose that 7 is the only optimal policy,
however, rewards arbitrarily close to the constant ones would still be valid solutions.
Even if we remove all trivial solutions, it seems that Theorem is fulfilled by a
large class of functions. How can we select a single reward function? The authors
propose to prefer reward functions that make deviations from the optimal policy as
costly as possible. They choose to maximize the difference between the expected
return of the optimal action and the expected return of the second best action:

S (@7 (1)~ max Q7 (s, a>). (3.4)
s < acA\{a1}

Moreover, they add a regularization term (L1-norm) to favor “simpler” solutions,
i.e., reward functions with a small number of non-zero entries. Finally, the problem
can be formulated using linear programming and a further constraint to bound the
magnitude the recovered reward is added:

. . —1
m%é{IlRarlrSl\lze s€S aegll\lgh} {(Psar: = Psa:) (T=7Puay)) v} = x|y
subject to (P:ali - P:a:) (I - ’YP:alz)ilr Z 0; VCL S -’4\ {al}v
Irs| < Rpmaz, Vs ES.

The algorithm extends, not without issues, to the case of infinite state space, but
finite action space. To avoid the usage of calculus of variations the authors propose
to approximate the reward function with a linear combination of known and bounded
state features {1;}1_;:

R(s) = Zwiwi(s) = wlap(s), Vs e S. (3.5)
i=1

By linearity of expectation, the value function attained by policy 7 is given by
V7 (s) =Y | a;V(s), where V;™ is the value function of policy 7 when the reward
is ;. Theorem can be easily generalized resulting in the set of linear constraints:

E VT > E  [VT(S)], Vse S, Vae A\ {a1}. (3.6)
s'~P(-|s,a1) s'~P(:|s,a)
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However, this set of constraints is infinite, being the state space infinite; the authors
suggest circumventing this problem by enforcing the constraint only for a finite subset
of states Sy C S. The second problem is representational and originates from the
choice of the function approximator: since the reward is now linearly approximated,
it may be no longer possible to find a non-trivial reward function that makes the
observed policy optimal. Nevertheless, to avoid falling into trivial solutions we might
allow constraints being violated and paying a penalty. The final optimization
problem can be written as:

maximize min {c( E [V”*(s’)] - E [V”*(s/)D}
a€ERP acA\{a1} s'~P(:|s,a1) s'~P(-|s,a)
SESy
subject to  |a;| < 1, 1=1,2,...,p.

¢ is a penalty function, that the authors suggest to define as: ¢(x) = x if x > 0 else
2x.

NR-IRL represents the first attempt to build an IRL algorithm. The main limita-
tions of this approach are the requirement of the transition model and the laborious
extension to continuous domains. The paper [82] proposes an extension to the setting
in which the model of the environment in unknown, but it is possible to simulate
trajectories on the MDP. We will not present this method, but we will focus on more
popular IRL algorithms defined assuming the same setting [I].

3.3 Feature Expectation Algorithms

In this section, we present a class of algorithms that have in common the notion of
feature expectation, which was introduced in [I]. The main assumption is that the
unknown reward function can be expressed as a linear combination of known state
(or state-action) feature vectors {t;};_;, like equation (3.5). Given a policy T, it is
possible to compute the expectation of the features with respect to the trajectory
distribution that corresponds to the discounted accumulated feature vector p(rw),
also called feature expectations:

T(r)
p(m)=E-| > ytw(sm)] . (3.7)

t=0

Since the reward can be expressed as a linear combination of v;, the expected return
can be written in terms of the feature expectations:

T(r) T(r)
J"=E [ S A R(sr) | =E. | S vtwwsm] —Tu(m).  (38)
t=0 t=0

Thus, the feature expectations for a given policy m completely characterize the pol-
icy in the linear approximation space for the reward function [I]. Clearly, we can
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Algorithm 3.1 General scheme for max-margin and projection algorithms.

Input: €, Thhaz, ¥
Output: {w)}]mar, {ﬂ(t/)};‘c’;‘ff
1: Initialize the policy 7(9) arbitrarily
2: Compute (or estimate) p(®) = pu(7(®).
3: fort=1,2,...,Tinqs do
4 Compute the margin m® and the weight vector w® using maz-margin or
projection algorithm.
if m(®) < € then
return weight vectors {w®)}!,_, and the policies {r(*)}5, 1,
end if
Compute the optimal policy =®) using rewards R = (w(t))T¢.

Compute (or estimate) p() = (7).
10: end for
11: return weight vectors {w(t/)}g’;‘f and the policies {ﬂ(tl)}t,’;‘az

compute the feature expectations also for the expert’s policy 7% (expert feature ea-
pectation), i.e., u¥ = p(nF).

Let us consider a weight vector w, we indicate with 7#* the optimal policy in-
duced by the reward function w’p. We aim to find a reward function inducing an
optimal policy as close as possible to the expert’s policy. This corresponds to find-
ing the weights w that minimize the distance (e.g., Euclidean distance) between the
expert feature expectation pu” and the feature expectation (%), i.e., the feature
expectation of the optimal policy when the reward is given by w?”:

& = argmin [|[” — p(7)|5 (3.9)

weRP

If the reward R® optimized by the expert’s policy ¥ belongs to such space,
there exists a weight vector w®, such that RF = (w”)Tep. We assume to have
access to a set of N demonstrations provided by an expert playing the policy 7%.
From the available demonstrations we can estimate the expert feature expectation

as: [LE = % szil 232(6) Y'4p(s7,.¢) [l

3.3.1 Max-margin and projection algorithms

Abbeel and Ng [I] propose two iterative algorithms to single out the weight vector
w: the maz-margin algorithm and the projection algorithm. Both require having
access to an RL algorithm that is able to find the optimal policy under the current
reward function (like the ones presented in Chapter [2). Both algorithms share the
same steps, except for step 4; the general scheme is reported in Alg. [3.1]
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Max-margin algorithm

The max-margin algorithm is an iterative algorithm that, at each iteration, computes
a weight vector w® and a policy 7(*) starting from an initial randomly chosen policy
7. The weight vector w® is computed by solving the quadratic optimization
problem (step 4 in Alg. |3.1)):

maximize m
meER,weRP

subject to  w? pf > wT,u(t/) +m, t'=0,...,t—1.
w2 <1

where p(t) is the feature expectation computed with policy 7). Thus the algorithm
at each iteration finds a weight vector w(®) that maximizes the margin m(*) between
the expected return of the expert’s policy and the expected return of the approx-
imating policies 7(!). This approach is very similar to the optimization problem
posed for Support Vector Machines [16]. The new policy 71 is obtained by using a
standard RL algorithms assuming as reward R®) = (w(t))Tw. The algorithm stops
when the maximum margin is smaller than a user tuned threshold e.

Projection algorithm

The projection algorithm overcomes one of the main limitations of the max-margin
algorithm, i.e., the need of solving a quadratic programming problem. In this case

t t—1)

the weight vector is computed as w® = p# — gt~ where f is the orthogonal

projection of p¥ onto the line passing through the points (=2 and p®—b:

- — =2\ T —(t—
(t-2) , (WY = pUTD) (u - )
(=1 — =) (pe-1 — pt=2)

ﬂ(tfl)

=p (H(til) - ﬂ(t72))7 t=2,3,...., Tmas-

The margin is now computed as m® = ||pup — @V ||2. In the first iteration we
set 1(® = pu© and the stopping condition is preserved.

When the algorithm terminates (the proof of termination and the complexity
analysis can be found in [I]) there is at least one policy from the set returned by the
algorithm, whose performance under R? (the reward optimized by the expert) is at
least as good as the expert’s performance minus e. At this stage we might ask the
agent designer to examine the recovered policies and select the one having decent
performance. To avoid human intervention, we can select a convex combination of
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the recovered policies, solving the the problem:

e E
minimize |4~ — poll2

t
subject to p = Z )\t/u(tl),
t'=0

A >0 t'=0,1,..,1t,
t

d =1

t'=0

Thus, we look for the mixture of policies whose feature expectation is the closest to
the expert feature expectations.

This algorithm does not require the knowledge of the transition model. However,
it assumes to have access to an RL algorithm to solve the forward problem as a part
of an inner loop. Moreover, an agent sampling the environment is necessary in order
to compute the optimal policy at each iteration, making the algorithm inefficient
in terms of required samples. The ambiguity problem, in this case, is not treated
explicitly. Indeed, the quality of the recovered rewards is tested at each iteration
since it is used to recover the optimal policy; this would reasonably discard trivial
solutions.

3.3.2 Multiplicative Weights for Apprenticeship Learning

The projection algorithm aims to find a reward function that induces an optimal
policy similar to the expert’s behavior. This notion of similarity is encoded in the
feature expectations. This means that if the expert is imperfect, also the recovered
reward function will induce a suboptimal policy. Essentially, the projection algo-
rithm prevents from recovering a reward function that allows learning policies that
outperform the expert.

An interesting game-theoretic view of the IRL problem is provided by [113],
which leverages on the multiplicative weights algorithm for solving two-player zero-
sum games [36]. The authors design an algorithm, named Multiplicative Weights for
Apprenticeship Learning (MWAL), able to find a policy that performs at least as
good as the expert. They propose to solve the minimax problem:

. _ . T _ T, E
v" = max min {w p(r) —w' p } (3.10)

Since the performance of the optimal policy 7% under parametrization w is J™ =
(WH)T u(7*) and w? is unknown, 7* is the policy that maximizes the difference
in performance between 7 and the expert’s policy with respect to the worst-case
possibility for w. The authors showed that, under some constraints on w, finding
the optimal weights and the optimal apprenticeship policy corresponds to finding the

optimal strategy of a suitable zero-sum game. Moreover, by using von Neumann’s
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minimax theorem, the game value v* is always positive or zero at the minimum, i.e.,
the policy found by the algorithm will be, in the worst case, as good as that of the
expert.

A more detailed analysis of the computational cost and some strategies to solve
the problem exploiting linear programming are reported in [113], T12].

3.3.3 Linear Programming Apprenticeship Learning

Linear Programming Apprenticeship Learning (LPAL) [112] is able to find directly
a good apprenticeship policy with no need to repeatedly find the optimal policy, via
classic iterative techniques (like for the case of MWAL). It does not output a reward
function, therefore it is not an IRL algorithm in the strict sense. The idea is to
exploit Bellman flow constraints in order to identify a policy explaining the expert’s
behavior. Let us consider the linear program:

maximize E E Tsalsa

xCRISIAl

seS acA
subject to Z Tsq = s + 7 Z Z TsqPsas’y Vs €S,
acA s'eSacA

Tsq >0, Vs€S, VaeA

It is well-known [96] that if x* is a solution to this problem, then the policy:

1,*

2 VseS, VacA,

mials) =
( | ) Ea’EAx:a’

is an optimal policy, and x* is the occupancy measure of w. The constraints of the
linear program are often called the Bellman flow constraints.

Let us consider a set of reward features {t;}\_, the IRL problem is formulated
as the problem of finding the occupancy measure x that satisfies the inequality
J™a > J¥ 4 € where J¥ is expert’s return, J™ the return of the apprenticeship
policy and e is a variable to be optimized. The algorithm is reported in Alg. [3.2]

3.4 Entropy-based algorithms

While feature expectation algorithms share the purpose of finding a reward function
inducing a behavior similar to that of the expert, the algorithms we present in this
section exploit an entropy-based score to deal with the problem of reward ambiguity.
We will discuss in details the original Maximum Entropy IRL [125] and we will
outline some extensions.

3.4.1 Maximum Entropy Inverse Reinforcement Learning

As we have already pointed out, the IRL problem is in general ill-posed, since there
exist an infinite number of reward functions for the same MDP that make the expert’s
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Algorithm 3.2 Linear Programming Apprenticeship Learning.
Input: S, A, P, p, v, ¥
Output: 74

1: Compute or estimate the expert feature expectations uE

2: Find the solution (e*,x*) of the problem:

maximize €
e€R xcRISIIAl

subject to € < Z Z Vi salsa, 1=1,2,...,p,
s€S aceA

szazﬂs+722xs’apsas’a Vs €S,

acA s’eS acA
Tsq >0, VseS, Vace A

3: return the apprenticeship policy defined as:

:L,*

=2 Vse S, VacA

A
7 (als) =
Za’EA x:a’

policy optimal. Ziebert et al in [I125] solve this ambiguity problem by leveraging on
the mazimum entropy principle [52]. The maximum entropy principle applies to a
constrained probability estimation problem from data (like estimating the expert’s
trajectory distribution subject to matching expert’s feature expectations). It states
that the probability distribution that best represents the available data is the one
with the largest entropy. In other words, with no constraint we would select a
uniform distribution that is the distribution with maximum possible entropy, whereas
under some constraint it can be proved [52] that we need to resort to the maximum
likelihood Boltzmann distribution.

Like [I], we assume that the true reward function can be expressed as a linear

combination of state features @. Given a trajectory 7 € T we can define the feature
counts [125]f]

w(r) =Y '4(sry), VreT. (3.11)

The return of trajectory 7 can be computed, given a vector of reward weights w, as
R(1) = wlu(r). Given a set of N expert’s trajectories, we want to estimate the
probability distribution of the demonstrated trajectories, named p,,, constrained to

3We use the symbol p both for the feature counts and the feature expectations. The reader will
realize that the strong connection between the two concepts. Given a distribution of the trajectories,
the feature expectation is the expected value of the feature counts.
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the fact that the feature expectation matches the average feature count:

E [u(7)] = R, (3.12)
T~Pw
where 1 = % Zf\; 1 (7). According to the maximum entropy principle this is equiv-
alent to finding the maximum likelihood Boltzmann distribution from the sampled
trajectories that matches the average feature count f:

ewTIJ’(T’L')

Puw(Ti) = N

Y i=102 ..N 3.13
Zj:l ewTﬂf(Tj) ( )

Looking at the equation , we notice that trajectories with the same return have
the same probability while trajectories with larger return are exponentially preferred.
One key benefit of this probabilistic approach is that we implicitly handle the uncer-
tainty and noise in the observed trajectories, potentially leading to obtaining clearer
or more robust reward functions.

The equation holds only for deterministic MDPs. If we admit stochastic
environments we need to resort to a more complex distribution, reported in [125],
which is in general intractable. Here we report the approximation that holds when
the transition randomness has a limited effect on the expert’s behavior:

ew’ 1(m) T(m)-1
Pw(Ti) = WM(SH,O) H P(STz‘7t+1|5n‘,t’ a‘mt)’ i=12,..,N.
E:j:lew 1(75) 0

(3.14)

As a consequence, p,, induces a stochastic policy in which the probability of an action

is weighted by the expected exponentiated rewards of all trajectories that begin with
that action:

Tw(als) = > Do (T3). (3.15)

i:(87;,0,0r;,0)=(5,a),
i=1,2,...,N

Clearly, the parameters w are found in order to enforce constraint (3.12)) which can

be posed for the available expert’s trajectories as a maximum likelihood estimation
problem:

N
maximize z; log P (Ti). (3.16)
1=

The problem is convex for deterministic MDPs and the optimum can be obtained
using gradient-based optimization methods. The authors suggest adopting exponen-
tiated gradient ascent [59]. The gradient of the objective function is given by:

N N
Ve > logpu(ri) = i — > pu(mi)u(r) = — > di=(s)(s), (3.17)
=1

i=1 seS

where dj~ (s) is the expected state visitation frequency and represents the probability
of being in a given state under policy 7, (it is equivalent to the undiscounted future
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Algorithm 3.3 Dynamic programming algorithm for finding dj«.
Input: w, S, A, P, u, Tinaz
Output: dj
Z(s)=1VseS > Backward Pass
cfort=1,2,..., Tiee do
for all s € S do

for all a € A do

Z(s,a) = Y yes P(8]s,a) Z(s)e 1(5)
end for

end for
for all s € S do

Z(S) = ZaE.A Z(Sa (1)
end for

—
e

: end for
: Tw(als) = Z(s,a)/Z(s) Vs € S, Ya € A Local action probability computation
: D(s,t) =p(s) Vt=1,2,.... N > Forward pass
fort=1,2,..., Ty —1do
for all s € S do
D(s,t4+1) =3 cadges D' )mw(als)P(s]s, a)
end for

e e e e e
N TR Wy

: end for
e (s) = 27]5\;1 D(s,t) Vse S > Summing frequencies
: return expected state visitation frequency dj(s) Vs € S

N = =
o ©

state distribution as defined in equation (2.7)). dj*(s) can be efficiently computed
using a dynamic programming algorithm that takes transition probabilities and a
reward function (Alg. . The transition probabilities are ideally given, but can be
approximated from the observed trajectories.

Maximum Entropy IRL represents a successful example of how to tackle explicitly
the problem of reward ambiguity. The maximum entropy principle allows to recover
reward functions that result to be resilient to noise and imperfect experts. The major
limitation is the need to approximate, at each gradient descent iteration, the state
visitation frequency that requires the knowledge of the model or the availability of
an agent collecting trajectories. The method provided good results in the context of
locomotion, for modeling driver route choices [125].

3.4.2 Deep Maximum Entropy Inverse Reinforcement Learning

The choice of the approximation model has a dramatic impact on the ability of
the algorithm to capture the relationship between the feature expectation and the
reward. Feature expectation algorithms and Maximum Entropy IRL assume that
the mapping from state to reward is simply a weighted linear combination of feature
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values. This choice, simple and convenient from a computational point of view, is
inappropriate when the characteristics of the true reward function can be explained
only by complex non-linear models. Deep Maximum Entropy Inverse Reinforcement
Learning (DeepIRL) [122] employs the principle of maximum entropy using non-
linear approximators based on deep neural networks (Fully Convolutional Neural
Networks). The approximation space for the reward function is given by a nested
non-linear function:

Riy ws,on (8) = 91,01 (92,05 (- (9nwn (¥(8)))-), Vs €S

The network structure is not predefined and can be adapted to the specific features
of the considered domain. The training is performed by back-propagation employing
a loss function similar to the one adopted by [125]. It is worth to notice that the
Maximum Entropy IRL is a particular case of DeepIRL obtained when the archi-
tecture is made of a single layer network with a linear output connected to all the
inputs. Furthermore, the algorithmic complexity is independent from the number of
demonstrations samples.

3.4.3 Relative Entropy Inverse Reinforcement Learning

Estimating the state visitation frequencies requires the knowledge of the dynamics of
the environment. In [I8] a model-free IRL algorithm, named Relative Entropy Inverse
Reinforcement Learning (RE-IRL), is proposed, inspired by the Relative Entropy
Policy Search (REPS) approach [88] and based on importance sampling to overcome
the need of the transition model. The algorithm minimizes the relative entropy
(Kullback-Leibler divergence) between the empirical distribution of the trajectories
under a baseline policy and the distribution of the trajectories under a policy that
matches the reward feature counts of the demonstrator. The resulting distribution
is given by (see [I8] for the optimization problem and the derivation of the solution):

ew 1(7i) T
pw(Ti) - Q(Ti)ﬁu(sﬂ,o) H P(Sﬂ',t-i-l’sﬂ',t: aﬂ',t)’ i=1,2,..,N,
SV e ) 1

(3.18)
where ¢(7) is the probability density function of the trajectory distribution under
the baseline policy, which depends on the transition model. It is possible to prove
that, exploiting importance sampling, we can determine the parameters w with no
need to estimate the transition model. In [18] ¢(7) is assumed to be a uniform
distribution, while other works, like [55], consider ¢(7) as the distribution of the
trajectories induced by a near-optimal policy.

3.4.4 Maximum Entropy Semi-Supervised Inverse Reinforcement
Learning

A semi-supervised learning approach [20] to IRL, named Maximum Entropy Semi-
Supervised Inverse Reinforcement Learning (MESS-IRL), is introduced in [6] defin-
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ing a similarity score between trajectories. The authors extend the original ME-
IRL approach adding a pairwise regularization term in the loss function penalizing
parametrizations giving different rewards to similar trajectories. The method shares
the same limitations of ME-IRL, i.e., the need of the transition model to compute
the state visitation frequencies.

3.4.5 Maximum Likelihood Inverse Reinforcement Learning

Mazimum Likelihood Inverse Reinforcement Learning (MLIRL) [I17, [7]. Similarly
to ME-IRL it is based on a probabilistic model, that is exploited to represent the
expert’s policy instead of the distribution of the trajectories. The reward function is
represented by means of a linear combination of known features 1 and the parameters
w are learned by means of maximum likelihood estimation. The policy is modeled
by means of a Boltzmann distribution:

Quw(s,a)
B
ﬂ'w(a‘s) = G—QM, Vs € S, Ya € A, (319)

Za’eA e #
where 3 is the temperature parameter tuned to manage the exploration/exploitation

trade off. Under this policy, the log-likelihood of the N expert’s trajectories is given
by:

N T(Ti)fl
log L(w) =1ogp(11, 72, o TNlW) = Y . D T(ar 457, 0). (3.20)
=1 t=0

The likelihood can be maximized by means of gradient ascent approaches, thanks to
the differentiability of the Boltzmann policy. Once the maximum likelihood weights

wME are found, the algorithm outputs the reward (wM¥)Tp.

3.5 Planning and Supervised approaches to IRL

Another view of the IRL problem consists in looking at the reward function as a
mapping from the state space (or state-action space) to the real numbers. This
way, we can formulate the problem of recovering a reward function as a supervised
learning problem. This class of methods originates from the Mazimum Margin Plan-
ning (MMP) [I0I]. We will present MMP and the Structured Classification based
IRL (SCIRL) proposed in [60, [6I]. The most relevant difference w.r.t. the previous
approaches is that the set of expert’s trajectories {Ti}fil is seen in an ‘“unfolded”
form as set of state-action pairs {(s;, a;)}M,, where each pair (s;, a;) means that the
expert in state s; performed action a;.

3.5.1 Maximum Margin Planning

Maximum Margin Planning [I01] exploits the learning to plan framework in order to

make the agent mimicking the expert. Given a set of expert’s demonstrations {7; })¥
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the learner’s goal is to predict the same sequence of actions. This problem can be
tackled as a supervised learning problem, assuming that the reward is represented
again as a linear combination of given features {;}¥_;. The principal innovation
w.r.t. feature expectation IRL is the introduction of a loss function £ measuring
the distance between the actions taken by the expert and the actions induced by a
candidate policy, determined by a specific reward parametrization. In other words,
such loss function quantifies the distance between the expert’s policy and the optimal
policy under a specific reward. Among all feasible solutions, the maximum margin
principle looks for a reward function that makes the candidate policy significantly
better than alternative policies. Such reward can be found solving the following
quadratic programming problem [115]:

minimize \w 3+ Z Bi&!

weRP EcRN
T

subject to w” pu(m)+& > _max {w (15) + L(75)} i=1,2,...,N.
j=

The intuition behind these constraints is that we allow only weight vectors w for
which the candidate policies have higher expected reward than all other policies
by a margin that scales with the loss. C is a hyperparameter, ¢ € {1,2} is used
to distinguish between L1 and L2 penalty and the coefficients (; allow weighting
differently the available examples. The authors suggest selecting a linear loss function
proportional to the state visitation frequencies in order to increment the contribution
of the highly visited states. Under linearity of the loss function, the problem can
be reformulated as a convex quadratic program [I0I]. The algorithm is extended to
non-linear parametrizations of the reward function in [I00] and contextualized in the
framework of learning to search in [102].

3.5.2 Structured Classification based IRL

While MMP adopts a regression approach to determine the parameters of the re-
ward function, Structured Classification IRL [60] casts the problem of recovering
the reward function into a multi-class classification problem. Starting from a linear
reward parametrization R(s,a) = w’(s,a), we can derive the Q-function using
feature expectations:

QL (s,a) = E [Z FwTap(s, a)} =wlpg,(m), VseS, Vac A,
Tep(so=s,a0=a,1,P) L =

where p,,(7) is the feature expectation restricted to all trajectories starting with

state s and action a. The inputs of the classifier are the states, the labels are the

actions and the decision rule of the classifier is greedy policy w.r.t. the Q-function,

which corresponds to the apprenticeship policy 778 :

7¢(s) = argmax QT (s, a), Vs e S. (3.21)
acA
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Thus, the Q-function acts as a classification score function. Clearly, the weights w
are obtained by training the multi-class classifier.

The algorithm was extended in [6I] considering a multi-stage architecture, the
approach is named Cascaded Supervised IRL (CSI). It consists in two subsequent
classification problems. The first aims to recover an approximation of the Q-function
with no assumption on the representational model (linear or non-linear). The second
consists in recovering the reward function, again with linear or non-linear classifiers.
This latter stage requires reversing the Bellman Equation in order to relate the
reward with the Q-function.

This class of IRL techniques displayed good results when the expert feature ex-
pectation are accurately computed. However, the main assumption is that the expert
is optimal and plays a deterministic policy, the case of imperfect expert is not ad-

dressed.

3.6 Policy Gradient-based algorithms

This section is devoted to the presentation of a class of IRL algorithms that ex-
ploit policy gradient to recover the reward function. First-order necessary con-
ditions have already been used in the field of control to determine a cost func-
tion. The Inverse-KKT optimization [32] assumes a quadratic cost model ¢y, (s,a) =
¥ (s,a)Tdiag(w)i(s,a) in which w are the parameters to determine. The authors
claim that, when the control is optimal, the Karush-Kuhn-Tucker conditions [19]
must be fulfilled and derive from this an optimization problem.

The policy gradient has been used in imitation learning [47] to directly learn
the parameters of an apprenticeship policy starting from an optimality criterion very
similar to the one proposed in [113]. We now focus on Gradient Inverse Reinforcement
Learning (GIRL) [94], an algorithm that recovers the reward function by minimizing
the policy gradient.

3.6.1 Gradient Inverse Reinforcement Learning

The main bottleneck of feature expectation algorithms is the requirement of solving
multiple forward RL problems. GIRL considers a (possibly non-linear) parametriza-
tion of the reward function R, (s,a) depending on the vector of parameters w. To
overcome the ambiguity problem the authors suggest to restrict the domain of the
parameters to the fundamental simplex. We assume to have access to a parametric
representation of the expert’s policy WOEH When the expert’s policy is determinis-
tic the model must be available or the policy must be forced to be stochastic. For
continuous state-action domains, the latter approach can be easily implemented by
adding zero-mean Gaussian noise. Instead, the Boltzmann model is suited for dis-

*If the expert is playing a non-parametric policy or only trajectories are available the policy gz
can be estimated using behavioral cloning.
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crete actions, because the stochasticity can be regulated by varying the temperature
parameter. Under regularity assumptions on the policy, we can write the policy
gradient:

VeJ(0,w)= E [ve log e (als) Rus(s, a)] . (3.22)

T
oF
srvdy

a~mor ()

Clearly, the reward parametrization optimized by the expert w? is the one making
the expert’s policy myr a stationary point of .J (8, w? ). However, it might be the case
the chosen reward parametrization is not powerful enough to represent the reward
optimized by the expert. Thus, the authors suggest minimizing the norm of the
policy gradient:

w? = argmin Ve (8,w)]| - (3.23)

weRP a

An important property of GIRL is that the objective function is convex whenever the

parametric reward model is convex w.r.t. w [94]. From an analytic point of view, w4

represents the minimum norm gradient, i.e., the reward that induces the minimum
interest in changing in the policy parameters.

The authors also provide a multi-objective interpretation of the problem when

the reward model is linear, i.e., Ry (s,a) = w’1(s,a). In this case, the expected

return can be decomposed as:

D T(r)-1 D
J(0,w) = Zwi]ET[ > A(sea, aT,t)] = wiJi(6) =w"j(6). (3.24)
i=1 t=0 i=1

This equation can be interpreted as a weighted sum of the components of the objec-
tive vector j(0) = (J1(6), J2(8), ..., Jp(O))T. Thus, maximizing J (0, w) corresponds
to finding the parameters that make the expert Pareto optimal.

The main innovation proposed by this work is the complete removal of the need
of solving the direct RL problem as an internal step of the IRL algorithm. The
approach yields good results when compared with structured IRL approaches on
the benchmark problems Linear Quadratic Gaussian Regulator [30] and Mountain
Car [77]. Nevertheless, in more complex problems it might be the case that a first-
order condition is not sufficient to ensure that w4 is a maximum of .J. Therefore, we
should resort to second-order criteria in order to discard minima and saddle points.

3.7 Feature Construction in IRL

Almost all IRL approaches presented so far share the necessity to define a priori a set
of handcrafted features, spanning the approximation space of the reward functions.
This may affect significantly the performance of the algorithm, since a wrong choice of
the feature space compromises the quality of the recovered reward. The importance of
incorporating feature construction in IRL has been known in literature for a while. A
wide range of approaches have focused on exploiting the capability of neural networks
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and in particular those of deep learning to automatically construct features out of
the provided data [35], 47, [45]. However, by exploiting a “black box” approach, these
methods sometimes do not take advantage from the structure of the underlying MDP.
The problem of feature construction has been explicitly addressed only by FIRL
(Feature Construction for Inverse Reinforcement Learning) [64] in which features
are iteratively generated in order to better describe regions where the old features
were too coarse.

3.7.1 Feature Construction for Inverse Reinforcement Learning

FIRL [64] iteratively constructs both the feature set and the reward function, as a
linear projection in the feature space. The algorithm alternates between optimization
and fitting phases. The optimization phase aims to recover a reward function, from
the current feature set as a linear projection, such that the associated optimal policy
is consistent with the demonstrations. In the fitting phase new features are created
(using a regression tree) in order to better explain regions where the old features
were too coarse. The features ¢ correspond to the leaf nodes of the regression tree
and are represented as a set of states. Thus, the current set of features U®) is a set
of sets of states.

Optimization step

The t-th optimization step consists in computing the reward function r® using
expert’s trajectories and the current set of features ¥(—1Y. This reward function
is chosen so that the optimal policy under the reward is consistent with the expert’s
trajectories and so that it minimizes the sum of squared errors between r*) and its
projection onto the linear basis of features W®). This is formalized introducing the
matrices:

[t ifs €

0 otherwise 0 otherwise

TRw(w,@—{ ,TWR<S,¢>—{1 Tsev yses wew.

Thus, Tr_yTy_gr is a vector where the reward in each state is the average
over all rewards in the feature that state belongs to. The optimization problem is
the following:

minimize Ir — TrowTupr(3
reRISI

subject to 7 (s) = a, V(s,a) € D.

However, the constraint is not convex thus we must resort to a relaxation of the
optimal Bellman equation (similarly to the linear programming problem [96]). These
constraints operate both on observed and unobserved state-action pairs and require
the knowledge of the transition kernel.
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Fitting step

Once the reward function r®) for the current feature set ¢ is computed, we
formulate a new feature hypothesis U®) that is able to better represent this reward
function. The objective of this step is to construct a set of features that gives greater
resolution in regions where the old features are too coarse, and lower resolution in
regions where the old features are unnecessarily fine. U® are obtained by building
a regression tree for r® over the state space S. This step requires computing the
optimal policy in order to evaluate the consistency with the demonstrations. The
authors suggest solving this forward problem using value iteration.

The detailed description of the algorithm can be found in [64]. One of the most
interesting properties of the reward functions produced by FIRL is transferability. A
reward function is transferable when it can be plugged into a new environment and
allows recovering the optimal policy. In real-world applications of IRL the issue of
transferability becomes substantial. In the highway driving, for instance, we expect
the agent to behave well even if the traffic pattern has never been experimented
by the expert. This problem has been addressed only in FIRL for the Grid World
problem and in [65] for the simulated highway driving. These works demonstrate
that a non-accurate choice of the reward features might make the agent perform
poorly on transfer environments (obtained in these cases by placing distractors on
the original one) even if it performs well in the training environment.

The issue of transferability is analyised also in Gaussian Process Inverse Re-
inforcement Learning (GPIRL) [65], a Bayesian approach for learning non-linear
rewards. The authors leverage on Gaussian processes to learn the reward as a non-
linear function, while also determining the relevance of each feature to the expert’s
policy.

3.7.2 Deep Learning approaches

We already mentioned in Section[3.4.2]an IRL algorithm based on a deep architecture,
DeepIRL [122]. However, this method requires specifying a set of basis functions
that combined non-linearly define the approximation space for the reward function.
Here we focus on the approaches that aim, through deep learning architectures, to
construct both features and the reward function. We will mainly discuss Guided Cost
Learning [35] and mention Deep Q-learning from Demonstrations (DQfD) [45].
Guided Cost Learning [35] addresses two key challenges: first, the need for in-
formative features and effective regularization to impose structure on the cost, and
second, the difficulty of learning the cost function under unknown dynamics for high-
dimensional continuous systems. For the former goal, the authors exploit the neural
networks capabilities to represent non-linear models, whereas for the latter they re-
sort to a sample-based approximation of the Maximum Entropy IRL. The neural
network has the double objective to represent the cost function and suggest the op-
timal action. At each backpropagation step the parameters of the (non-linear) cost
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function are updated while optimizing the maximum entropy cost function (3.16]).
The recovered cost function, however, is hardly transferable since, as hypothesized
by the authors, training the policy on a new instance of the task provides the al-
gorithm with additional information about task variation, producing a better cost
function and reducing overfitting. While the expressive power of nonlinear cost func-
tions brings a range of benefits, it introduces significant model complexity requiring
to apply regularization techniques. The approach was successful on several robotic
simulators and on real-world robotic applications.

Deep Q-learning from Demonstrations (DQfD) [45] is a hybrid algorithm that uses
expert’s demonstration to speed up the forward learning. The method is built on
top of Deep Q-Networks [75] and combines classic temporal difference learning with
large-margin classification of the demonstrated actions. The architecture showed
better performance w.r.t. Deep Q-Networks in terms of training time, when tested
on Atari games.

3.7.3 Bayesian approaches

In the context of feature construction for IRL other methods have been proposed.
We mention the Bayesian Nonparametric Feature Construction for Inverce Reinforce-
ment Learning BNP-FIRL [22]. BNP-FIRL works under the assumption that the
features are binary; it builds composite features as logical conjunctions of the prede-
fined atomic features. The reward function is then represented as a linear combina-
tion of the composite features. Being the logical conjunction a non-linear operation,
BNP-FIRL can improve the representational power of the linearly parametrized IRL
methods.

3.8 Discussion

In this chapter, we presented several approaches to the problem of imitation learning,
focusing on the inverse reinforcement learning algorithms. In this section, we perform
a comparative analysis highlighting the most relevant strengths and weaknesses of
the presented algorithms.

A first notable dichotomy is between model-based and model-free algorithms.
The former, such as NR-IRL or LPAL, are hardly deployable to real-world applica-
tions, since they require to have access to the environment transition model. The
estimation of the transition model is particularly challenging when the state (or
action) space is continuous, but it is even more difficult if we have only expert’s
demonstrations at our disposal. An expert is typically an optimal (or near-optimal)
agent, thus it is going to explore a very limited region of the state space, resulting in
a poor estimation of the transition model. As an alternative we could collect trajec-
tories using an explorative (e.g., random) policy, but this would potentially increase
the execution cost. Other methods, like feature expectation algorithms, do not re-
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quire explicitly the transition model even if they need to sample the environment in
order to solve the direct reinforcement learning problem. These algorithms belong
to a gray zone in between model-based and model-free.

Few algorithms, among which we illustrated, can be defined really model-free.
Besides deep learning approaches, only GIRL is able to recover a reward function
from a set of expert’s trajectories only. Furthermore, several algorithms cannot be ex-
tended straightforwardly to infinite state spaces. Clearly, general purpose discretiza-
tion techniques can be applied whenever the method does not consider explicitly this
possibility.

Another relevant issue underlined in this chapter is reward ambiguity. The choice
of a reward function among all feasible ones is, of course, related to the notion of
optimality we decide to employ. Indeed, literature has not treated this issue in a
comprehensive way yet. Intuitively, we aim to find a reward with good learning
properties, i.e., a reward able to learn the optimal policy quickly. However, the
learning speed is an algorithm-dependent property. Only ME-IRL dealt with this
issue explicitly, proposing an optimality criterion based on the maximum entropy
principle.

The choice of the reward approximation space is a further issue. Early IRL
methods had a preference for linear parametrizations, most of them work with a
linear parametrizations only. Resorting to linear models is risky for, essentially,
two reasons. First, a linear model might not be able to learn the possibly complex
dynamics going on in the features. Second, a bad choice of the features might harm
the process of reward recovery. Research tried to tackle both problems. Algorithms
able to generate automatically the feature space, like FIRL, overcome the latter
problem. Indeed, with a good feature construction mechanism, even a linear model
is effective. Instead, linear approximators are replaced with expressive non-linear
neural networks in deep learning architectures which are able to deal with both
problems at once.

Finally, we need to think about the usage of the reward function once it has been
recovered. In real-world applications we have to be able to plug the reward function
in new environments and still manage to recover the optimal policy. Therefore, the
transferability of the reward is a required property. Nevertheless, only FIRL and
GPIRL, focused on this aspect.






Chapter 4

Compatible Reward Inverse
Reinforcement Learning

Apprenticeship learning aims to learn to perform a task by observing only expert’s
demonstrations. We consider the settings where only expert’s demonstrations are
given, no information about the dynamics and the objective of the problem is pro-
vided (e.g., reward) or ability to query for additional samples. In Chapter , we
presented extensively several algorithms that roughly fall into two classes: behav-
ioral cloning and inverse reinforcement learning. We also pointed out few issues of
both classes not completely solved yet. First, several IRL methods require solving
the forward problem as part of an inner loop |e.g., I, [I12]. Literature has extensively
focused on removing this limitation [61} 92, [94] in order to scale IRL to real-world ap-
plications [35], [46], [45]. Second, IRL methods generally require designing the function
space by providing features that capture the structure of the reward function [e.g.,
1l 101l 112, 611 ©, 94]. This information, provided in addition to expert’s demon-
strations, is critical for the success of the IRL approach. The issue of designing the
function space is a well-known problem in supervised learning, but it is even more
critical in IRL since a wrong choice might prevent from finding good solutions to
the IRL problem [82] [79], especially when linear reward models are considered. The
importance of incorporating feature construction in IRL has been known in literature
for a while [I], but, as far as we know, it has been explicitly addressed only in [64].
Recently, IRL literature, by mimicking supervised learning one, has focused on ex-
ploiting neural network capability of automatically constructing relevant features
out of the provided data [35], [47, 45]. By exploiting a “black-box” approach, these
methods do not take advantage of the structure of the underlying Markov decision
process (in the phase of feature construction).

We present an IRL algorithm that constructs reward features directly from ex-
pert’s demonstrations. The proposed algorithm is model-free and does not require
solving the forward problem (i.e., finding an optimal policy given a candidate reward
function) as an inner step. The Compatible Reward Inverse Reinforcement Learning
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(CR-IRL) algorithm builds a reward function that is compatible with the expert’s
policy. It mixes BC and IRL in order to recover the “optimal” and most “informa-
tive” reward function in the space spanned by the recovered features. Inspired by
the gradient-minimization IRL approach proposed in [94], we focus on the space of
reward functions that makes the policy gradient of the expert vanish. Since a zero
gradient is only a necessary condition for optimality, we consider a second order
optimality criterion based on the policy Hessian to rank the reward functions and
finally select the best one (i.e., the one that penalizes the most a deviation from the
expert’s policy).

The chapter is organized as follows. In section [{.1]we provide a high level descrip-
tion of CR-IRL. In Section we discuss the problem of recovering a parametric
representation of the expert’s policy. Section [4.2] recalls some concepts about policy
gradient and describes the process of feature extraction for the Q-function, particu-
larizing the procedure for the discrete and continuous domains. Section[d.3]illustrates
how to derive the space of reward features from the Q-function features. Section [4.5|
is devoted to the second-order criteria used to single out a reward function from the
set of reward features. Finally, in Section [4.6] we perform the computational analysis
of the algorithm.

4.1 Algorithm Overview

CR-IRL takes as input a parametric policy space Ilg and a set of rewardless trajec-
tories from the expert policy 7%, denoted by D. CR-IRL is a non-iterative algorithm
that recovers a reward function for which the expert is optimal without requiring
to specify a reward function space. It starts building the features {¢;} of the value
function that are compatible with policy 7%, i.e., that make the policy gradient van-
ish. This step requires a parametric representation myr € Ilg of the expert’s policy
which can be obtained through behavioral cloningE The choice of the policy space
[Ig influences the size of the functional space used by CR-IRL for representing the
value function (and the reward function) associated with the expert’s policy. In order
to formalize this notion, we introduce the policy rank, a quantity that represents the
ability of a parametric policy to reduce the dimensions of the approximation space for
the value function of the expert’s policy. Once these value features have been built,
they can be transformed into reward features {1);} by means of the Bellman equa-
tion [96] (model-based) or reward shaping [81] (model-free). All the rewards spanned
by the features {1;} satisfy the first-order necessary optimality condition [83], but
we are not sure about their nature (minima, maxima or saddle points). The final
step is thus to recover a reward function that is maximized by the expert’s policy.
This is achieved by considering a second-order optimality condition, with the idea

"We want to stress that our primal objective is to recover the reward function since we aim to
explain the motivations that guide the expert and to transfer it, not just to replicate the behavior.
We aim to exploit the synergy between BC and IRL.
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that we want the reward function that penalizes the most a deviation from the pa-
rameters of the expert’s policy mge. This criterion is similar in spirit to what done
in [82], [, [I0T], where the goal is to identify the reward function that makes the ex-
pert’s policy better than any other policy by a margin. The algorithmic structure is
reported in Alg. [4.1]

IRL literature usually considers two different settings: optimal or sub-optimal
expert. This distinction is necessary when a fixed reward space is provided. In
fact, the demonstrated behavior may be not optimal under the considered reward
space. In this case, the problem becomes somehow not well defined and additional
“optimality” criteria are required [79]. This is not the case for CR-IRL that is able to
automatically generate the space of reward functions that make the policy gradient
vanish, containing also reward functions under which the recovered expert’s policy
Tge is optimal.

4.2 Expert’s policy estimation

In general the full expert’s policy is not available but it can be estimated from
samples exploiting the available expert’s trajectories. In this section, we discuss the
approach we adopted to determine a parametric representation of the expert’s policy.
Given a set of expert’s demonstrations D = {(Sn,o, A7y 0y« - s Sn,T(n%an,T(n))}i:p
and a parametric policy space Ilg = {mg : @ € © C R¥} we need to estimate the
parameters of a policy that approximates the expert’s policy. As we have discussed in
Section[3.1] this is a probability estimation problem and we resort to the minimization
of the Kullback-Leibler divergence (KL-div). Given two policies 71 (-|s) and ma(-|s)
in a state s € §, the KL-div is given by:

dgr(mi(-]s), m(:]s)) = E [log Wl(as)]‘ (4.1)

arm (-]s) m2(als)

However, we would like to obtain a score function for the overall policy, not just in
a single state. Thus, we can alternatively integrate over the state space or compute
the KL-div over the trajectory space:

T(r)-1

Z log m(aT’t’ST’t)] , (4.2)

dgi,(m,m) = E
(s, m2) U maarglsr)

T~p1

where p;(7) is the probability density function of trajectory 7 € T when policy m is
played. The latter can be estimated from samples via the Monte Carlo estimator:

T(r:)—1

M
- 1 T (Qr, t]87;,
dir(m1,m2) = 47 YY) log <1(1t’t)>7 (4.3)

—~ 72 (ar; ] 57;.1)

where the M independent trajectories are collected with the policy 7.
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Thus, we can determine the parameters of policy Tg by minimizing dx . (7, 7q).
Notice that the gradient of equation (4.3) does not depend on the expert’s policy
7% which is usually unknown, therefore the minimization can be carried out with

standard gradient descent techniques. Minimizing the estimator CZKL(T('E

,Tg) COr-
responds to finding the Maximum Likelihood (ML) parameters, given the set of

independent expert’s trajectories (see Appendix for the derivation):

M T(Ti)—l
oML = arg maxz Z log mo(ar, t|5+,4)- (4.4)
0€0 =1 =0

Clearly, the choice of the parametric policy space has an impact at least for what
concerns the ability to represent the expert’s policy. It is important to point out
that policy mgue will not be used to collect samples, as we are assuming to have the
provided trajectories only, but just to extract the features for the reward function, as
explained in the following sections. Therefore, even an imperfect choice of the policy
space has a limited effect on the performance of the algorithm. Nevertheless, a highly
inaccurate choice of the policy space might produce a non-optimal approximation
space, compromising the effectiveness of the algorithm.

It is worth noting that the ML policy mguw is not necessarily the optimal policy
g+ in the policy space Ilg, i.e., the policy that maximizes the expected return:

0" = argmax J(0).
0co

When the policy space Ilg is sufficiently expressive to contain the expert’s policy,
i.e., there exists 8F € © such that 7F = me, ML policy converges almost surely
to the expert’s policy. On the contrary, when the expert’s policy falls outside Ilg,
TuL converges to the minimum KL-div policy. For brevity in the followings, we will
indicate with mg the parametric representation of the expert’s policy.

4.3 Expert’s Compatible Value Features

In this section, we present the procedure to obtain the set {¢;}!_; of Expert’s COm-
patible Q-features (ECO-Q) that make the policy gradient vanishE] We recall from
Chapter |2 the policy gradient and the associated first-order optimality condition.
We will indicate with T the set of all possible trajectories, pg(7) the probabil-
ity density of trajectory 7 and R(7) the v-discounted trajectory reward defined as
R(t) = Zgg) Y R(s4,ar) that, in our settings, is obtained as a linear combina-
tion of reward features. Given a policy mg, the expected y-discounted return for an
infinite horizon MDP is:

J@)= E [R(s,a)] = E [R(T)],

(s,a)~6,,2, T~Pe

2Notice that any linear combination of the ECO-Q also satisfies the first-order optimality con-
dition.
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670 (s,a) = dje (s)mg(als) is the y-discounted future state-action occupancy, which
represents the expected discounted number of times action a is executed in state s
given y as initial state distribution and following policy me; d2 ( ) is the v-discounted
future state occupancy [110]. If mg is differentiable W.r.t. the parameter @, the
gradient of the expected reward (policy gradient) [110), 121] is:

VeJ(0) = E Vglogm;(a\s)@”e(s,a)}:

(s»a)“‘éz,ew

E |Vologpe(r)R(r)]. (15)

T~Pe

When 7g is an optimal policy in the class of policies Ilg = {mg : 8 € ® C RF}
then 0 is a stationary point of the expected return and thus VJ(0) = 0 (first-order
necessary conditions for optimality [83]).

We assume the space S x A is a Hilbert space [17] equipped with the weighted
inner product{]

(f,9um= E {f(s,a // f(s,a)6%,(s,a)g(s,a)dsda.  (4.6)

(s:a)"‘(sz,g"/

When 7g is optimal for the MDP, Vg log mg and Q™ are orthogonal w.r.t. the inner
product . We can exploit the orthogonality property to build an approximation
space for the Q-function. Let G, = {Vglogmpax : o € RF} the subspace spanned
by the gradient of the log-policy mg. From equation finding an approximation
space for the Q-function is equivalent to finding the orthogonal complement of the
subspace Gr,, which in turn corresponds to finding the null space of the functional:

Grold) = (Vo logma, &) re- (4.7)

We define an Expert’s COmpatible Q-feature as any function ¢ making the functional
1) null. This space G’#e = null(Gy, ) represents the Hilbert subspace of the features
for the Q-function that are compatible with the policy mg in the sense that any Q-
function optimized by policy mg can be expressed as a linear combination of those
features. Section [4.3.2] and [£.3.3] describe how to compute the ECO-Q from samples
in finite and continuous MDPs, respectively. The dimension of G#e is typically very
large since the number k of policy parameters is significantly smaller than the number
of state-action pairs. A formal discussion of this issue for finite MDPs is presented
in the next section.

4.3.1 Policy rank

The parametrization of the expert’s policy influences the size of G,{e. Intuition
suggests that the larger the number k£ of the parameters the more the policy is

3The inner product as defined is clearly symmetric, positive definite and linear, but there could
be state-action pairs never visited, i.e., 6,%(s,a) = 0, making (f, f)u,ry = O for non-zero f. To
ensure the properties of the inner product, we assume to compute it only on visited state-action
pairs.
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informative to infer the Q-function and so the reward function. This is motivated by
the following rationale. Consider representing the expert’s policy using two different
policy models such that one model is a superclass of the other one (for instance,
assume to use linear models where the features used in the simpler model are a
subset of the features used by policies in the other model). All the reward functions
that make the policy gradient vanish with the rich policy model, do the same with
the simpler model, while the vice versa does not hold. This suggests that complex
policy models are able to reduce more the space of optimal reward function w.r.t.
simpler models. This notion plays an important role for finite MDPs, i.e., MDPs
where the state-action space is finite. We formalize the ability of a policy to infer
the characteristics of the MDP with the concept of policy rank.

Definition 4.1. Let mg a policy with k parameters belonging to the class llg and
differentiable in 0. The policy rank is the dimension of the space of the linear com-
binations of the partial derivatives of mg w.r.t. 0:

rank(mg) = dim(T'y,), Trp = {Vemea : a € RF}.

A first important note is that the policy rank depends not only on the policy
model Ilg, but also on the value of the parameters of the policy mg. So the policy
rank is a property of the policy not of the policy model. The following bound on the
policy rank holds.

Proposition 4.1. Given a finite MDP M, let mg a policy with k parameters belong-
ing to the class llg and differentiable in @, then:

rank(mg) < min {k, |S||.A| — |S|}.

Proof. T, = {Vemgax : a € R} is a subspace of RISIMI generated by k vectors,
thus its dimension cannot be larger than k. For each state s € S it holds that mg(+|s)
is a probability density function thus:

Zﬂ'g(a|8) =1, Vs € S.
acA

For all parameters 6;, j = 1,...,k the partial derivatives of the previous equation

results in: 5
S TOals) =0,  VseS, j=12..k

acA 80‘7

Let us consider h € I'z,, by definition of I'r,, it can be written as a linear combination
of the partial derivatives of my:

k Omg
h= 2 g,
=1 !
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so for all the states s:

Zh(a|s):0, Vs € S.

acA
These are |S| linearly independent equations, thus the dimension of I';, cannot be
larger then |S||A| — |S]. O

From an intuitive point of view this is justified by the fact that mg(:|s) is a
probability distribution. As a consequence, for all s € S the probabilities mg(als)
must sum up to one, removing |S| degrees of freedom. This has a relevant impact
on the algorithm since it induces a lower bound on the dimension of the orthogonal
complement dim(Gy,) > max {|S||A| — k,|S|}, thus even the most flexible policy
(i.e., a policy model with a parameter for each state-action pair) cannot determine a
unique reward function that makes the expert’s policy optimal, leaving |S| degrees
of freedom. It follows that it makes no sense to consider a policy with more than
|S||A|] — |S| parameters.

The bound on the policy rank does not assume any information about the opti-
mality of the policy within the class Ilg. 'y, might lose further dimensions when it
is obtained as the maximum likelihood policy from the set of expert’s trajectories.

4.3.2 Construction of ECO-Q in Finite MDPs

We now develop in details the algorithm to generate ECO-Q in the case of finite
MDPs. From now on we will indicate with D the set of state-action pairs visited by
the expert along the available trajectories. Moreover, we will denote with Sp C S
and Ap C A the subsets of states and actions respectively visited along the available
trajectories D. When the state-action space is finite the inner product can be
written in matrix notation as:

<fa g>,u,7r9 - fTDW97g7

where f, g and §7%, are real vectors with |D| components and D2, = diag(d7,%,). The
term Vg log g is a |D| x k real matrix, thus finding the null space of the functional
is equivalent to finding the null space of the matrix Vg logmg D”‘9 This can
be done for instance through SVD which allows to obtain a set of orthogonal basis
functions ®. Given that the weight vector §7¢ (s, a) is usually unknown, it needs to
be estimated. A simple Monte Carlo estimate exploiting the expert’s demonstrations
in D is:

N T(r)-1

Z Y (57,1 = 8,054 = a), V(s,a) € D. (4.8)
i=1 =0

5”9

Z\H

However, since the policy 7g is known and recalling that 7% (s, a) = d}}% (s)mg(als),
we need to estimate just dje, (s):
T(1;)

N
1
d’r" Z V(87,0 = 8), Vs € Sp. (4.9)
'L:l t

—~

I
=)
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In Appendix we derive mean and variance of the latter estimator.

4.3.3 Construction of ECO-Q in Continuous MDPs

To extend the previous approach to the continuous domain we assume that the state-
action space is equipped with the Euclidean distance. Now we can adopt an approach
similar to the one exploited to extend Proto-Value Functions (PVF) [67,68] to infinite
observation spaces [69]. The problem is treated as a discrete one considering only the
state-action pairs visited along the collected trajectories. A Nystrom interpolation
method is used to approximate the value of a feature in a non-visited state-action
pair as a weighted mean of the values of the closest k features. The weight of each
feature is computed by means of a Gaussian kernel placed over the Euclidean space

S x A:
1 1
K((s,a),(s',a’)) = eXp(—2HS—S/H%—2”a—a/H%>, Vs, s' €S, Va,a’ € A,
20% 20%

where os and o4 are respectively the state and action bandwidth. In our setting
this approach is fully equivalent to a kernel k-Nearest Neighbors regression:

2 (s ) EKNN((s,0),1,0)) K((5,a), (s, a"))o(s', &)

o(s,a) =
(&2) (s, EKNN((s,0),5,0)) K((8,2), (s, @)

, Vse S, VaeA,

where KNN((s, a), k, D) is the set of the k closest state-action pairs according to the
Euclidean distance and given samples in the dataset D. The main difference with
the PVF extension is that we need to interpolate over the state-action space (not
only over the state space) since we aim to recover a state-action reward function.

4.4 Expert’s Compatible Reward Features

The set of ECO-Q basis functions allow representing the optimal value function
under the policy mg. In this section, we will show how it is possible to exploit
ECO-Q functions to generate basis functions for the reward representation.

We propose two approaches: the first is based on explicit application of Bellman
equation and requires the knowledge of the transition model; the second is model-free
and exploits optimality-invariant reward transformations. The obtained features,
named Expert’s COmpatible Reward features (ECO-R), still satisfy the first-order
optimality condition.

4.4.1 Model-Based Construction of Reward Features

The relation between the reward and the Q-function is given by the Bellman equation:

Q™ (s,a) = R(s,a) +~ H%l : [Q(s',d")]. (4.10)
s'~P(-|s,a
a’'~mg(:|s)
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Considering only the state-action pairs visited along the available expert’s trajecto-
ries D, we can express the Bellman equation in matrix form:

q™® =r + yPmeq"®. 4.11
Y

Similarly to [61], we can obtain the reward function by reversing the equation r =
(I—~yPmg)q™. Thus the set of ECO-R {¢;}!_; are obtained by means of the linear
mapping of the ECO-Q {¢;}!_;:

U = (I—~Pmy)®. (4.12)

This transformation however requires the knowledge of the transition model P which
in most of the real cases cannot be assumed. As shown in [61], in order to exploit only
expert’s demonstrations it is necessary to resort to heuristics that may be hard to
compute in practice or to additional samples for exploration of the system dynamics.

4.4.2 Model-Free Construction of Reward Features

Reversing the Bellman equation allows finding the reward space that generates the
estimated Q-function. However, IRL is interested in finding just a reward space
under which the expert’s policy is optimal. This problem can be seen as an instance
of reward shaping [81] where the authors show that the space of all the reward
functions sharing the same optimal policy is given by:

R(s,a)=R(s,a)+7 E  [x(s)] = x(s),
s'~P(:|s,a)
where x(s) is a state-dependent potential function. A smart choice [81] is to set
x = V™ under which the new reward space is given by the advantage function:
R'(s,a) = Q™ (s,a) — VT (s) = A™(s,a). Thus the expert’s advantage function
is an admissible reward optimized by the expert’s policy itself. This choice is, of
course, related to using Q™ as reward. However, the advantage function encodes a
more local and more transferable information w.r.t. the Q-function. In general, the
advantage function can be expressed in matrix form as:

a™ =q" —v" = (I—-mg)q™, (4.13)

where v7® is a |S||.A|-dimensional vector obtained from the |S|-dimensional vector
v7e repeating each component |A| times. Analogously 7y is a |S||.A| x |S||.A| matrix
obtained from the |S| x |S||.A| matrix 7 repeating each row |.A| times. This holds for
the full state-action space. When the expert visited a limited number of state-action
pairs, the transformation requires repeating only the rows of matrix g associated to
visited states for a number of times equal to the number of distinct actions performed
by the expert in that state. Thus, the space of reward features can be recovered
through matrix equality:

U = (I—mp)®. (4.14)
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Notice that this is a simple linear transformation through the expert’s policy. How-
ever, the transformation does not preserve the orthogonality of features ®, thus it is
necessary to apply SVD again to get an orthogonal basis of the recovered approxima-
tion space. Furthermore, since I — 7y is not full-rank, therefore the recovered space
has a smaller dimensionality. The specific choice of the state-potential function has
the advantage to improve the learning capabilities of any RL algorithm [81]. This
is not the only choice of the potential function possible, but it has the advantage of
allowing model-free estimation.

Once the ECO-R basis functions have been generated, they can be used to feed
any IRL algorithm that represents the expert’s reward through a linear combination
of basis functions. In the next section, we propose a new method based on the op-
timization of a second-order criterion that favors reward functions that significantly
penalize deviations from the expert’s policy.

4.5 Reward Selection via Second-Order Criterion

Any linear combination of the ECO-R {v;}}_, makes the gradient vanish, however
in general this is not sufficient to ensure that the policy parameter € is a maximum
of J(@). Combinations that lead to minima or saddle points should be discarded.
Furthermore, provided that a subset of ECO-R leading to maxima has been selected,
we should identify a single reward function in the space spanned by this subset
of features. Both these requirements can be enforced by imposing a second-order
optimality criterion based on the policy Hessian that is given by [54] 38]:

Ho(0.0) = E- | (Valog po(r) Vo oz po(r)” + Mooz po()) A(riw) |

where w is the reward weight and the reward is obtained as a linear combination of

the ECO-R:
T(r)

R(r,w) = Zwi fytwi(smg, art). (4.15)

It is worth to point out that the linear parametrization, in this case, does not rep-
resent a limitation of the algorithm. Indeed, we defined the approximation space of
the reward function as the Hilbert space whose functions make the policy gradient
vanish. This space will contain all the reward functions optimized by the expert’s
policy and each function in that space can be expressed as a linear combination of
the elements in the basis, like ECO-R.

4.5.1 Maximum eigenvalue optimality criterion

To retain only maxima we need to impose that the Hessian is negative definite which
is equivalent to require that the maximum eigenvalue A\pax(HeJ(0,w)) is negative.
The requirement Amax(HeJ(0,w)) < 0 is only a constraint, in order to single out a
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reward function we need an optimality criterion over the Hessian. We aim to find the
reward function that best represents the optimal policy parametrization in the sense
that even a slight alteration of the policy parameters induces a dramatic degradation
of the performance. Geometrically this corresponds to finding the reward function
for which the expected return locally represents the sharpest hyper-paraboloid. An-
alytically this condition can be enforced by minimizing the maximum eigenvalue of
the Hessian whose eigenvector corresponds to the direction of minimum curvature
(mazimum eigenvalue optimality criterion, ME-opt). The problem can be formalized
using Semi-Definite Programming (SDP):
minimize Amax(HeJ(0,w))
weRP
subject to HgJ(0,w) + €l <0
w2 <1,

where € > 0 is a threshold to ensure the Hessian is (strictly) negative definite.
The constraint ||w||2 < 1 on the reward parameters is necessary to ensure that the
problem is bounded, otherwise, if the problem is feasible, the maximum eigenvalue
can be made arbitrarily negative. Clearly the constraint on the weights will be
satisfied with equality, i.e., [|w]||2 = 1, when the problem admits a solution.

In our framework, the reward function can be expressed as a linear combination
of the ECO-R so we can rewrite the Hessian as:

HoJ(0,w) = Zp:wngJi(e), (4.16)
i=1

where J;(0) is the expected return considering as reward function ;.

Being the Hessian symmetric and defined through an affine function of the vari-
ables w, the maximum eigenvalue is convex [85]. This is due to the fact that we
can define Apax(HeJ (0, w)) = max|x|,<1 xT"HgJ(0,w)x, which is the maximum of
an affine function in w over a convex set ||x|l2 < 1. Anyway, we can rephrase the
problem by removing the Ap.x function:

minimize ¢

weERP
subject to  HgJ(O,w) —tI <0
t < —e
Jwlls < 1.

This optimization problem is for sure feasible (for sufficiently small €) since, as
already seen, the true reward function and the advantage function make the expert’s
policy parametrization optimal. However, in most of the cases, it is impractical to
solve, at least for two reasons. First, the computational effort is enormous even
for few policy parameters. Second, it might be the case that the strict negative
definiteness constraint is never satisfied due to blocked-to-zero eigenvalues. This
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problem arises quite often and is related to the presence of “useless” policy parameters
that even if modified do not affect the policy performance (for instance, a subset of
parameters which are linearly dependent). In those cases Apax(HegJ (0, w)) would be
zero no matter which reward weights w are selected.

4.5.2 Trace optimality criterion

In order to account for the possible presence of blocked-to-zero eigenvalues we need
to consider all the eigenvalues of the Hessian matrix instead of the maximum one
only. When in the direction of minimum curvature the curve is flat (like in case of
blocked-to-zero eigenvalues) we aim to maximize an index of the overall concavity.
The trace of the Hessian, being the sum of the eigenvalues, can be used for this
purpose. Minimizing the trace of the Hessian (trace optimality criterion, TR-opt)
can be formulated in the following semi-definite programming problem:

minimize tr(HeJ(0,w))

w€eRP
subject to HeJ(0,w) + €l <0 (4.17)
lwll2 <1
The trace is a linear function, i.e., tr(HeJ(0,w)) = >0, witr(HeJi(0)), thus the

objective function is for sure convex. Like for the maximum eigenvalue optimality
criterion a normalization constraint on the reward parameters is necessary to ensure
boundedness. The negative definiteness constraint becomes substantial to ensure the
optimality, since there might be ECO-R with negative trace but positive eigenvalues.
Moreover, in presence of blocked-to-zero eigenvalues € should be set to zero to ensure
feasibility. This formulation, although less demanding w.r.t. the previous one, still
displays performance degradation as the number of basis functions increases due to
the negative definiteness constraint.

4.5.3 Trace heuristic criterion

Solving the semidefinite programming problem of one of the presented optimality
criteria is unfeasible for almost all the real world problems. We are interested in for-
mulating a non-SDP problem, which is a surrogate of the trace optimality criterion,
that can be solved more efficiently (trace heuristic criterion, TR-heu). Essentially,
we need to get rid of the semi-definite constraint.

We assume that the ECO-R are orthonormal in order to compare them[f] The
main challenge is how to select the weight w in order to get a (near-)optimal trace
minimizer that preserves the negative semidefinite constraint.

Given two symmetric matrices A and B, it holds from Weyl’s inequality that
Amax(A) + Amax(B) < Amax(A + B), thus any linear combination of semidefinite ma-

4A normalization condition is necessary since the magnitude of the trace of a matrix can be
arbitrarily changed by multiplying the matrix by a constant.
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trices with positive coefficients for the negative semidefinite ones and negative coeffi-
cients for the positive semidefinite ones is guaranteed to yield a negative semidefinite
matrix. In principle, nothing can be ensured for the indefinite matrices, without
looking to the magnitude of the eigenvalues. Therefore, we get a feasible solution by
retaining only the ECO-R yielding a semidefinite Hessian and switching sign to those
with positive semidefinite Hessian. Notice that, in this way, we can lose the optimal
solution since the trace minimizer might assign a non-zero weight to a ECO-R with
indefinite Hessian. For brevity, we will indicate with ¢tr; = tr(HeJ;(0)) and tr the
vector whose components are tr;, ¢ = 1,2, ...,p. SDP is no longer needed:

minimize w?tr (4.18)

weRP

subject to  ||w|]2 = 1.

The constraint ||w|2 = 1 ensures that, when the ECO-R are orthonormal, the result-
ing ECO-R has Euclidean norm one. This is a convex programming problem with
linear objective function and quadratic constraint, the closed form solution can be
found with Lagrange multipliers:

t,
T —1.2

- . i=1,2,...p. 419
erll (4.19)

W; =

Proof. We assume to consider a set of ECO-R, yielding negative semidefinite Hessian.
The Lagragian function is:

P P
L(w, o) = Zwitm + O‘(ZW? — 1>,
i=1 i=1
where « is the Lagrange multiplier. We impose that partial derivatives of £ w.r.t.

wj and « vanish, thus:

oL .
%j:trj—|—2awj =0, 7=12,..,p,

oL &
i=1
From the first equation, for a # 0, we obtain an expression of w; as a function of a:

The case o = 0 is uninteresting since it is feasible only if all traces are null. By
substitution we obtain an expression for «:
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Since we are looking for a minimum, provided that all traces are non positive, the

objective function is minimized for non negative weights:

tr; tr;
wj = — T] :_Htr‘h y ]: 1,2,...,p.
2 r
Doyt 2
O
Algorithm 4.1 CR-IRL with trace heuristic.
Input: D = { 87,05 A7y 05+« -5 Sz, T(mi) an,T(n))}i]il a set of expert’s trajectories col-

lected with the exptert’s pohcy 7P and a parametric representation of the expert’s
policy g
Output: trace heuristic solution RTR—heu

1: Estimate 079 (s, a) = d}}% (s)mg(als) for the visited state-action pairs using equa-

tion (4.9)):

1 ()
d”" =~ Z V(57,4 = 5), Vs € Sp.
=1 t=0
2: Collect 679 (s, a) in the |D| x |D| diagonal matrix D¢, and Vg logmg(s,a) in the
|D| x k matrix Vg log mg
3: Get the set of ECO-Q by computing the null space of matrix Vg log ﬂgTDng
through SVD:
® = null(Vglogmg" D7)

4: Get, the set of ECO-R by applying reward shaping to the set of ECO-Q:
U=(1-myP

5: Apply SVD to orthogonalize W
6: Estimate the policy Hessian for each ECO-R ;, ¢ = 1,2,...;p using the
REINFORCE-like estimator with optimal baseline:

N
HoJi(0) = %Z (V@ log pe(7;)Ve logpg(T]) + He IOgPO(Tj)) <1/1i(7j) - b)

Jj=1

7: Discard the ECO-R having indefinite Hessian, switch sign for those having pos-
itive semidefinite Hessian, compute the traces of each Hessian and collect them
in the vector tr

8: Compute the trace heuristic ECO-R as:

tr

RTtheu _ \Ilw, w=—
[tr(2

9: (Optional) Apply penalization to unexplored state-action pairs
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4.5.4 Multi-Objective interpretation of the second-order criteria

The intuitive idea behind the second-order criteria we presented in the previous
sections consists in preferring rewards that penalize the most deviations from the
expert’s policy. This notion can be formalized, in the general case, as the multi-
objective SDP problem of minimizing the vector of eigenvalues of the policy Hessian:
miuglgélpize Alw) = (M (w), Ao (w), ..., \p(w))
subject to  HgJ(0,w) + €I <0,

[wll2 =1,

where \;(w) = A\j(HoJ(0,w)) for i = 1,2,...,k is the i-th largest eigenvalue of the
policy Hessian. Clearly, among all possible feasible solutions we seek for the (strict)
Pareto optimal ones w?’ | i.e., those for which there exist no feasible weight vector
w such that \;(w) < N(wF), i = 1,2,...,k with at least one strict inequality. It
is well-known that the Pareto frontier (the set of all the Pareto optimal solutions)
cannot be computed efficiently in most of the cases. A standard approach to tackle
this problem is scalarization [49]. Scalarization consists in formulating a single-
objective optimization problem such that the optimal solutions to the single-objective
problem are Pareto optimal solutions to the multi-objective problem and vice versa.
A common choice is linear scalarization, that consists in combining the multiple
objectives via a linear function:

k
LAW),7) = Y 7idi(w) = 7" Aw). (4.20)
=1

It can be proved that the minimizer of the scalar objective L(A(w),7y) is a Pareto
optimal solution for every value of v > 0. However, this scalarization is guaranteed
to yield all Pareto optimal solutions only when the Pareto frontier is convex, which
is not the our case as, for instance, A\i(w) is concave.

It is worth noting that the maximum eigenvalue and the trace optimality criteria
fall in this formulation. The former is obtained by setting v; =1 and v, = 0, ¢ =
2,3, ..., k, while the latter is obtained by setting v, =1, ¢ = 1,2, ..., k. Therefore, we
are sure that those criteria provide Pareto optimal solutions. Furthermore, the two
criteria correspond to popular solution concepts in multi-agent decision theory [116].
The maximum eigenvalue optimality criterion recovers the egalitarian social welfere
solution, i.e., the solution that minimizes the maximum unsatisfaction, whereas the
trace optimality criterion seeks for the utilitarian solution, i.e., the solution that
maximizes the sum of profits. The trace heuristic, however, does not guarantee that
the recovered solution is Pareto optimal.

Furthermore, the single-objective function is not convex for all values of ~.
It can be proved that a sufficient condition for convexity is that v; > v > ... > . >
0 [74], to which both maximum eigenvalue and trace optimality criteria comply.
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CR-IRL does not assume to know the state space S and the action space A,
thus the recovered reward is defined only in the state-action pairs visited by the
expert along the trajectories in D. When the state and action spaces are known,
we can complete the reward function also for unexplored state-action pairs assigning
a penalized reward (e.g., a large negative value), otherwise the penalization can be
performed online when the recovered reward is used to solve the forward RL problem.

Refer to Alg. for a complete overview of CR-IRL.

4.6 Computational analysis

The main sources of computational complexity in CR-IRL are the SVD, the compu-
tation of the Hessian and its eigenvalue computation for each ECO-R. For a m x n
matrix it is well known that SVD has complexity O(min{mn?,nm?}). We apply
SVD twice: the first time it is applied to matrix Vg log TI'QTDZ" of dimension k x |D|
and the second time to matrix ¥ of dimension at most |D| x |D|. Assuming k < |D|,
the second application dominates yielding a complexity of O(|D|3). The computa-
tion of the Hessian is linear in the number of ECO-R (at maximum |D|) and in the
number of samples (|D|]) and quadratic in the number of parameters &, thus the com-
plexity is O(k?|D|?). Finally the computation of the eigenvalues is cubic in the order
of the matrix (k) and has to be done for every ECO-R, yielding a cost of O(k?|D]),
which is dominated by O(k%|D|?) as k < |D|. Overall the complexity of CR-IRL is
O(max{?|D[2, [DI*}).



Chapter 5

Experiments

This chapter is devoted to the experimental evaluation of CR-IRL on classic bench-
mark problems, both discrete and continuous: the Taxi problem (Section , the
Linear Quadratic Gaussian Regulator (Section and the Car on the Hill environ-
ment (Section [5.4)).

We compare CR-IRL with classic IRL algorithms in order to evaluate the perfor-
mance of the recovered reward functions. In particular the experiments are intended
to evaluate both the phases of CR-IRL: the feature construction and the reward
recovery. For the feature construction phase, we compare the ECO-R with prede-
termined set of features automatically generated (Proto-Value Functions); while for
the reward recovery phase we evaluate CR-IRL against popular state-of-the-art IRL
algorithms able to output a reward as linear combination of features when fed with
ECO-R.

We start presenting the evaluation metrics we adopt to compare the considered
algorithms (Section and then we report the full results of the experiments.

5.1 Evaluation metrics

Defining a metric to evaluate the intuitive notion of “good reward” is a hard task
and literature has not formalized it yet. Intuition suggests that we aim to recover
a reward function that allows the agent to learn a policy as close as possible to the
expert’s policy. However, there are problems in which even if the learned policy and
the expert’s policy are significantly different the average return is very close, and vice
versa. In other words, a small policy deviation might attain a large return deviation.
Furthermore, all other things being equal, we should prefer a reward function with
faster learning curve. Clearly, this last property is algorithm-dependent. For these
reasons we resort to multiple metrics:

e learning speed: the number of iterations of the forward RL algorithm needed
for converging to the optimal policy;



82 Chapter 5. Experiments

DI~

O = N W A

Y B
01 2 3 4

Figure 5.1: The Taxi Domain (from [29)]).

e average return: the average return J of the policy learned with the recovered
reward function, compared with expert’s average return J%;

e policy distance: the distance between the expert’s policy 7% and the learned
policy 7 (Kullback-Leibler divergence);

e parameter distance: when both the expert’s policy and the learned policy are
parametric policies of the same class, the distance (in norm) between the ex-
pert’s parameters OF and the learned parameters 0

5.2 Taxi

This section is devoted to the experiments performed on the Taxi domain, defined
in [29]. The environment corresponds to a 5x5 grid in which there are 4 locations,
labeled by different letters (R, G, B and Y). The job of the taxi driver is to pick up
the passenger at one location and drop him off in another. You receive 420 points
for a successful dropoff and lose 1 point for every timestep it takes. There is also a 10
point penalty for illegal pick-up and drop-off actions. The available actions are the
movements in the four directions (North, East, South, West), pick-up and drop-off
(all actions are deterministic). The passenger position, the destination position and
the initial position of the taxi represent the state. The distribution of the initial
state is uniform and the discount factor is 0.99 (Figure [5.1]).

We compute the optimal deterministic policy via value iteration [13] and we use it
to fit via maximum likelihood the parameters of expert’s policy by minimizing
the KL-divergence between the deterministic policy and the expert’s policy. We
consider the class of e-Boltzmann policy with fixed eE]

( ’ ) (1 ) 605 ' ‘ (5 1)
mglals) = € — + , )
) 0-,¢, A

Ea’EAeac ’ ‘

!Parameter distance is not always a good metric, in particular in presence of parameters that
do not affect the policy performance. We will use it only for the case of the LQG.

2We made the choice to use e-Boltzmann instead of Boltzmann policy since we can leverage on
€ to control the exploration-exploitation trade off.
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Figure 5.2: Singular values of the Vglogmg .. When € = 0 the gap between non-zero and
zero singular values is clear; while the behavior is smoother when € = 0.1 but the magnitude
of the singular values is significantly smaller.

where the policy features ¢, are the following state features: current location, pas-
senger location, destination location, whether the passenger has already been picked
up. In order to test the robustness of CR-IRL to imperfect experts we introduce a
noise € in the expert’s policy (also named exploration level in the followings). We
consider the cases ¢ = 0 and € = 0.1. The resulting policy has 240 parameters,
however the policy rank is smaller (195 for ¢ = 0 and 185 for ¢ = 0.1) due to the
presence of parameters that do not affect the policy performance (Figure . The
derivation of the gradient and the Hessian of policy are reported in Appendix
B.3l

We compare the performance of CR-IRL with trace heuristics criterionﬂ against
Behavioral Cloning (BC), obtained by recovering the maximum likelihood Boltzmann
policy from expert’s trajectories, Maximum Entropy IRL (ME-IRL) [125] and Linear
Programming Apprenticeship Learning (LPAL) [112].

In order to recover the set of ECO-R we collect 100 expert’s trajectories. For
this experiment we evaluate both model-free and model-based versions of CR-IRL.
For the latter case the transition model is estimated from expert’s trajectories via
the Monte Carlo estimator:

N T(Ti)—l Y _ .
Zi:l t=0 ]l(sTi,t-H =38,0rt = Ay Sr;t = 5)

T(r)—1
ZZ]\LI ZtZ(SZ) ]]'(aTivt = CL, sTivt = S)

P(s'|s,a) = (5.2)

Implementation issues

In the Taxi domain when the agent reaches the terminal state it will receives zero
reward forever. However, the reward function recovered by CR-IRL could assign
non-zero reward to the terminal state. For implementation reasons, we translate the

3The maximum eigenvalue optimality criterion is not suitable for this case due to the presence
of blocked-to-zero eigenvalues.
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recovered reward in order to ensure zero-reward to the terminal state. Furthermore,
the recovered reward function is extended to the unvisited state-action pairs assigning
the minimum value among the rewards of the visited state-action pairs.

5.2.1 Learning speed experiments

This set of experiments is meant to compare the learning speed of the reward func-
tions recovered by the considered IRL methods when a Boltzmann policy (e = 0) is
trained with REINFORCE [121]. The training is performed with Adam [58] (learning
rate 0.008, other parameters with default value), at each iteration 100 trajectories
are used to estimate the gradient, the maximum number of iterations is 1000 and the
initial parameter is 0 = 0 so that the initial policy Fé?()) is the random policy. All
data are averaged over 40 runs and the error bars correspond to the 95% confidence

intervals.

Figure [5.3] shows that model-free CR-IRL, with 100 expert’s trajectories, out-
performs the original reward function in terms of convergence speed regardless the
exploration level. Behavioral Cloning (BC), obtained by recovering the maximum
likelihood Boltzmann policy from expert’s trajectories, is very susceptible to noise,
as expected.

We compare also the second-order criterion of CR-IRL to single out the reward
function with Maximum Entropy IRL (ME-IRL) [125] and Linear Programming Ap-
prenticeship Learning (LPAL) [I12] using as reward features the set of model-free
ECO-R. We can see in Figure that ME-IRL does not perform well when ¢ = 0,
since the transition model is badly estimated. The convergence speed remains very
slow also for € = 0.1, since ME-IRL does not guarantee that the recovered reward is
a maximum of J. LPAL provides as output an apprenticeship policy (not a reward
function) and, like BC, is very sensitive to noise and to the quality of the estimated
transition model.

e=0.0 e=0.1
T T T T T T T T
0 —F——F—F—F—F— == or ____:/“':;_/_‘:Z':F’-"gv‘—"‘ 7
= —100 - 18 —100} - T 2
% % iy : :
g o 11
| | | | | | | |
0 50 100 150 0 50 100 150
iteration iteration
—e— Reward CR-IRL —=— Maximum entropy —¢— LPAL —— BC ---- Expert

Figure 5.3: Average return of the Taxi problem as a function of the number of iterations of
REINFORCE for model-free ECO-R.
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Figure 5.4: Kullback-Leibler divergence between expert’s policy and learned policy in the
Taxi problem as a function of the number of iterations of REINFORCE for model-free

ECO-R.

Besides the average return, we compare the recovered reward functions in terms
of distance between the expert’s policy and the learned policy (Kullback-Leibler
divergence) estimated with (4.3)). Figure confirms the faster convergence of CR-
IRL over the original reward and ME-IRL. We observe that LPAL is able to recover
a policy that is more similar to the expert’s policy w.r.t. that of BC, however the
average return is worse (this is a consequence of the fact that LPAL does not learn
well to perform pick-up and drop-off actions that are associated with the largest
rewards).

We also test the model-based version of CR-IRL, where the transition model is
estimated with . In Figure and Figure We notice that the usage of model-
based ECO-R instead of model-free ECO-R has no relevant impact on CR-IRL and
LPAL, while ME-IRL benefits from the model-based features only when the expert

is not noisy.
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Figure 5.5: Average return of the Taxi problem as a function of the number of iterations of
REINFORCE for reward functions recovered from model-based ECO-Rs.
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Figure 5.6: Kullback-Leibler divergence between expert’s policy and learned policy in the
Taxi problem as a function of the number of iterations of REINFORCE for model-based

ECO-R.

The previous experiments demonstrate that the set of ECO-R constructed by
CR-IRL when coped with the trace heuristic criterion allows to recover policies that
outperform popular IRL methods and display a faster learning curve w.r.t. the origi-
nal reward function. The fact that ECO-R do not perform well with traditional IRL
methods is simply explained. ECO-R are built exploiting a first-order optimality
condition on the policy gradient with no need of a preselection of an approximation
space; traditional IRL methods are designed to deal with handcrafted features that,

in some intuitive sense, represent the underlying dynamics of the problem.

The trace heuristic can be also used when a given set of features (different from
ECO-R) is provided. Since the usage of the Hessian makes sense only when all
the considered features are a stationary point of the policy gradient we first need
to remove the orthogonal projections over the space spanned by the gradient log-
policy. We compare (Figure the learning performance of the set of the first 100
Proto-Value Functions (PVF) [67] when linearly combined with ME-IRL, LPAL and
our trace heuristic. We notice that LPAL outperforms both the maximum entropy
and the Hessian approaches regardless of the exploration level. Trace heuristic is
slightly more effective w.r.t. maximum entropy when the expert is not noisy. The
poor performance of trace heuristic with predefined approximation space is due to
the fact that such space might not be sufficiently expressive to represent a sharp

maximum of J.

Overall, we notice that the two phases of CR-IRL (feature construction and
reward recovery) are not fully independent because both share a strong relation
to optimality conditions on the policy gradient and Hessian. In all scenarios we

considered the best performance is obtained with the combination of the two phases.



5.2. Taxi 87

e=0.0 e=0.1
T T T T T T T T
0 ~mmmmmmmmmmmmmmmmmomomoee- . e e L L e e e et |

£ £
2 2
2 —100| {2 —100} 8% 88 & 558§ |
[} [}
2 //P{»’**H_’ & I -]
o) & o) 5
2 00l / 18 o0l /m |

[ 1

| | | | | |
0 100 200 300 0 100 200 300

iteration iteration
—e— Trace heuristic Maximum entropy —— LPAL ---- Expert

Figure 5.7: Average return of the Taxi problem as a function of the number of iterations of
REINFORCE with the reward function obtained from PVFs.

5.2.2 Sensitivity to the number of expert’s trajectories

The last set of experiments is aimed to evaluate the effect of the number of expert’s
trajectories on the average return of the recovered reward functions (Figure and
Figure . The experiment is performed with model-free ECO-R. We notice that
CR-IRL is susceptible to the number of expert’s trajectories only when ¢ = 0.1:
the expert demonstrates a suboptimal behavior and this is more likely when the
trajectories are many. This reflects on the estimation of the reward function that does
not penalize suboptimal actions performed by the expert. LPAL shows the expected
behavior, improving the average return as the number of trajectories increases. Also
BC improves overall with the number of trajectories, more effectively when the expert

is not noisy.
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Figure 5.8: Average return of the Taxi problem as a function of the number of expert’s
trajectories.
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Figure 5.9: KL-divergence between expert’s policy and learned policy for the Taxi problem
as a function of the number of expert’s trajectories.

5.3 Linear Quadratic Gaussian Regulator

The Linear Quadratic Gaussian Regulator (LQG) [30] corresponds to the discrete
time control problem in a continuous state-action space. The state and reward

equations are given by:

St+1 = ASt -+ Bat + s

T T
ry = —s; Qs; — a; Ray,

where A, B, Q and R are coeflicient matrices and 7, is a noise process assumed to
be a Gaussian white noise 17, ~ A(0, A) with uncorrelated components A = L.
The goal of the agent is to reach as soon as possible the origin since it receives, at
each time step, a penalization proportional to the magnitude of the state and the
action. The optimal control policy in steady state conditions is the linear controller
a; = Ks; where matrix K can be found by solving the Riccati equation [30]. For
the expert’s policy, we consider the class of Gaussian policies a; ~ N (Ks;, X) with
parameter K (X is fixed):

a; = Ks; + &, (5.3)

where &, is a Gaussian white noise &, ~ N(0,X) with uncorrelated components
(X = ¢%I) and uncorrelated with n,. For implementation reasons, we consider a
bounded state-action space § = [—-10, —10]", A = [—8, 8]™, where n is the dimension
of the state (and action) space. All components of the initial state are fixed to —4,
the discount factor is 0.99 and the trajectory horizon 100. Like in the Taxi problem
we consider the case of imperfect expert; we use o2 (policy variance) to tune the
degree of exploration of the expert (we consider o2 € {1,0.01}).

We perform experiments in the one-dimensional case (n = 1, 1D-LQG), the values
of the coefficients are reported in Table The derivation of k*, the gradient and

Hessian of policy (|5.3) are reported in Appendix
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Table 5.1: Coefficients of the 1D-LQG experiments.

a b q r A\ k*
1.0 1.0 09 09 0.1 -0.61525

Table 5.2: Policy gradient Vg.J(8) of the recovered reward functions of 1D-LQG for different
values of o2.

a2 =10.01
0.03185 4+ 0.08893

Reward function o2 =1

Original reward —0.09203 £ 0.5076

Advantage function
CR-IRL
GIRL-abs-val
GIRL-square

—0.09356 + 0.4983
2.822 + 10.77
(—2.587 + 1.422)e—15
(—1.256 + 1.534)e—14

0.9083 =+ 1.467
—0.7514 + 55.45
(1.858 + 6.068)e—14
(—2.144 + 5.232)e—14

Table 5.3: Policy Hessian HgJ(0) of the recovered reward functions of 1D-LQG for different

values o2.

Reward function =1 a2 =0.01

Original reward —3.064 £ 7.262 —6.371 £ 5.847
Advantage function —3.601 +6.521 —223.1+114.4
CR-IRL —1854 £ 1475  —28702 £ 2586
GIRL-abs-val 3.572+12.33 —17.25+32.84
GIRL-square —0.3941 +8.218 —6.213 +4.956

We compare CR-IRL with GIRL [94] using two linear parametrizations of the
reward function:

R(s,a,w) = w15% + woa? (GIRL-square),

R(s,a,w) = wi|s| + walal (GIRL-abs-val).

Table and Table show the values of the policy gradient and the policy
Hessian computed for the different recovered reward functions. GIRL, by construc-
tion, yields the reward functions with the smallest gradient in absolute value. On
the contrary CR-IRL provides a reward function with larger gradient variance; this
is justified by the fact that the Hessian is a large negative number making the policy
parameter value a very unstable point for the expected return and so the gradient
estimation more noisy.

In Figure the recovered reward functions are represented. We can see that
GIRL-square is able to recover almost exactly the original reward (but it is very sen-
sitive to the available expert’s trajectories), indeed the original reward function falls
into the considered class of rewards. CR-IRL recovers rewards that penalize signifi-
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cantly the disadvantageous regions, this favors the learning speed as the experiments

2

demonstrate. Clearly, as 0 increases the penalized region reduces.

5.3.1 Learning speed experiments

The training is performed using REINFORCE [12I] with Adam [58] (learning rate
0.002, other parameters with default value), at each iteration 100 trajectories are
used to estimate the gradient, the maximum number of iterations is 600 and the
initial parameter is k = —0.2. All data are averaged over 40 runs and the error bars
correspond to the 95% confidence intervals.

Figure [5.11] shows the parameter value learned with REINFORCE using a Gaus-
sian policy with two different variances. We notice that CR-IRL, fed with 20 ex-
pert’s trajectories, converges closer and faster to the expert’s parameter w.r.t. to
the original reward, advantage function and GIRL with both parametrizations when
0% = 0.01. Instead, the convergence value of CR-IRL when the expert is explorative
0% = 1.0 deviates significantly from the optimal value. This however, does not affect
the average return, as shown in Figure Indeed, when the variance is large the
effect of the parameter k (the mean of the distribution) on the average return is less
relevant.

5.3.2 Sensitivity to the number of expert’s trajectories

We investigate the effect of the number of expert’s demonstrations on the perfor-
mance of the considered IRL algorithms. Figure reports the convergence pa-
rameter value and the average return for a variable number of expert’s trajectories.
We notice that CR-IRL is less sensitive w.r.t. to GIRL since, even if few expert’s
trajectories are provided, CR-IRL penalizes the regions that the expert did not visit,
avoiding the agent to fall into low-reward regions.

5.3.3 Soft penalization

In order to extend the recovered reward function to unseen state-action pairs we
adopt a 2NN model with a Gaussian kernel (bandwidth og = 04 = 4). Differently
from the discrete case, in the continuous case the penalization must be “soft”, i.e.,
the more a non-visited state-action pair is far from the visited ones the more it
is penalized. The penalized reward function is obtained as a convex combination
(v = 0.5) between the non-penalized reward function and a measure of the state-

action occupancy:
‘Rpenalized(57 a) — aRnon*penalized(Sy a) + (1 _ Oz)ﬁ(S, a)7 V(S, a) ¢ D,

where Rron—penalized i o scaled version of the recovered reward within the interval
[0,1] and p is computed with a “non-normalized” Gaussian kernel KNN approach
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Figure 5.10: Representation of the recovered reward functions for 1D-LQG.
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Figure 5.11: Parameter value of 1D-LQG as a function of the number of iterations of RE-
INFORCE.
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Figure 5.12: Average return of 1D-LQG as a function of the number of iterations of REIN-
FORCE.

(bandwidth o5 = 4) as:

Z(s’,a’)eKNN((s,a),k,D)) IC((S7 a)v (Slv a/))
MAX (s ) eD D (s, eKNN((s”,a7) kD)) K (87, a”), (8, "))

p(s,a) = V(s,a) € SxA,

where KNN((s,a),k,D) is the set of the k closest state-action pairs according to
the Euclidean distance and given samples in the dataset D (we use k = 5) and K
is a Gaussian kernel. The resulting penalized reward function ranges in the interval
[0,1]. We tested other approaches to perform penalization, such as RPemalized(g a) =
Rnon—penalized (g a)5(s a), no significant difference in performance was detected.
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Figure 5.13: Parameter and average return of 1D-LQG as a function of the number of
expert’s trajectories.

5.3.4 Sensitivity to penalization and number of neighbors

We also investigate the effect of the number of neighbors in the extension of the
recovered reward function on unvisited state-action pairs. Figure shows the pa-
rameter value and the average return as a function of the number of iterations (the
bandwidth of the Gaussian kernel are fixed to s = 04 = 4) and for different values
of the expert’s policy variance 2. The KNN interpolation allows reconstructing the
reward even in regions of the state-action space that are very far from the region vis-
ited by the expert, however, in those regions, the recovered reward is not reliable. We
compared the performance of the recovered reward function as it is and the perfor-
mance achieved by penalizing the state-action pairs far from the expert exploration
region. In the former case (dashed lines) the convergence is slow and displays a high
variance, while in the latter case (solid lines) the learning curve converges faster to
the optimal parameter. The number of neighbors has no relevant impact, at least for
sufficiently small values, when penalization is applied; while when no penalization
is applied the effect is more visible. In particular, when the expert is explorative
the recovered reward is smoother (many state-action pairs are visited) so 1NN yields
the best performance. As the expert becomes less explorative, a large number of
neighbors (50NN) performs better since the recovered reward is more discontinuous.
We notice that the penalization becomes more beneficial when the expert’s policy is
exploitative (02 = 0.01).

5.3.5 Experiments with two-dimensional LQG

In order to compare the second-order criteria we discussed in Chapter 4, we perform
a series of experiments with the two-dimensional LQG (2D-LQG). We consider two
settings, as reported in Table In the first case (a) the dynamics of the two states
are fully independent, this is equivalent to considering two one-dimensional LQG
running in parallel. In the second case (b), instead, one state influences the other in
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Figure 5.14: Parameter value and average return of 1D-LQG as a function of the number of
iterations of REINFORCE with different number of neighbors.

a symmetric manner; as a consequence, the optimal controller matrix K* is no longer
diagonal. We collect 20 trajectories of length 100 from a Gaussian expert’s policy
N(K*s,X), with covariance matrix 3 = 0.01I. We use them to fit via maximum
likelihood the parameters (see Table for the ML parameter) of a Gaussian policy:

To2 ~ N (diag(k)s, diag(c?)). (5.4)

Essentially, we restrict our attention to the diagonal control matrices K = diag(k)
and we assume that the components of the Gaussian policy are fully uncorrelated
3 = diag(o?) = 0.011. Clearly, the optimal Gaussian controller for the case in which
the state dynamics are independent falls into this class of policies (a), whereas these
policies are not able to represent the optimal controller for the second case (b).

We compare the maximum eigenvalue optimality criterion (ME-opt), the trace
optimality criterion (TR-opt) and the trace heuristic (TR-heu). Tables and
report the eigenvalues and the trace of the recovered reward functions for cases (a)
and (b) respectively. In Figurethe expected return is represented with its second

order approximation as a paraboloid in canonical form:

~  ~ ~ 2 ~ 2
J(ky, ko) = J(KME EMEY £ Xy (k™ — BV 4 Mg (ko™ — KDTE)2 (5.5)

where k:~1 and k?g correspond to the directions associated to the first and the
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Table 5.4: Coefficients of the 2D-LQG experiments.

case A B Q R X K* kML

1 0 —0.618 0 —0.618
@ (o 1) 1 ooer esr ox (0B (T00K)

101 —0.621 —0.083)  (—0.690
b I 09I 09I 0.1
(b) <o.1 1 ) 0oL 0900 (—0.083 —0.621) (—0.690)

Table 5.5: Eigenvalues and trace of the policy Hessian for the recovered reward functions
for the 2D-LQG case (a).

Reward function first eigenvalue second eigenvalue trace

ME-opt (-1.34+£0.129)e +4 (—1.34+£0.129)e+4 (—2.68 +0.258)e +4
TR-opt (—2.72+£0.273)e+4 (—6.66 =1.46)e+3 (—3.40+0.285)e +4
TR-he (=158 £0.171)e+4 (=7.79+1.13)e+3 (—2.36 £0.249)e +4

Table 5.6: Eigenvalues and trace of the policy Hessian for the recovered reward functions
for the 2D-LQG case (b).

Reward function first eigenvalue second eigenvalue trace

ME-opt (=2.79+0478)e +4 (—2.18+0.232)e+4 (—4.971+0.664)e + 4
TR-opt (=2.94+£0.112)e+5 (—1.58+0.920)e+3 (—2.96+0.113)e+5
TR-he (-1.72+£0.134)e+5 (=7.76+1.50)e+3 (—1.80+0.146)e +5

second eigenvector. Note that the first degree term is missing since (kM1 k311) is a

stationary point of the expected return.

From Figure we observe that for case (a) the recovered rewards display a
similar shape. This is a consequence of the fact that the two dynamics are indepen-
dent, therefore the directions of the eigenvectors are not affected one another. On
the contrary in case (b), we observe some differences. The ME-opt criterion tends
to recover rewards with isotropic shape: the eigenvalues (see Tables and are
very close. The TR~opt and the TR~heu, which is its surrogate, tend to sharpen the
curve in one direction as much as possible leaving the other direction almost flat.

In terms of learning speed we observe in Figure that all the reward functions
recovered by CR-IRL allow reaching closely the optimal parameter faster w.r.t. the
original reward function. However, in case (a), it is visible that the original reward
function converges closer to the optimal parameter. The three criteria, in case (a),
do not display significant differences. On the contrary, in case (b), we observe that
the reward function recovered by ME-opt displays a better performance w.r.t. the
original reward function, converging closer and faster to the optimal parameter. The
deviation from the optimal parameter, however, does not have a visible effect on the
average return, since all curves in Figure [5.17] are almost overlapping.



96 Chapter 5. Experiments
Maximum Eigenvalue optimal (a) Maximum Eigenvalue optimal (b)
g =
2 3
g E
) )
Q Q
3] 31
Q (5]
& a,
>< <
5] ()
g £
= 3
2 E
8 \\\\\:\%\\\V —8
51 AN 51
g, \\\\\\\\\\\\\\\\\\ 2,
8 P s
2 E
E E
2 g
s 3

Figure 5.15: Second order approximation of the expected return for the 2D-LQG.
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Figure 5.18: Representation of Hill(p) (shape of the hill) and of the different forces applied
to the car (from [33]).

5.4 Car on the Hill

We further experiment CR-IRL in the continuous Car on the Hill domain [33]. The
environment considers a car modeled by a point mass that is traveling on a hill (the
shape of which is given by the function Hill(p) of Figure . The action a acts
directly on the acceleration of the car. The original formulation assumes to have only
two extreme values (full acceleration (a = 4) or full deceleration (a = —4)), but for
our convenience we admit the full range a € [—4,4]. The control problem objective
is roughly to bring the car in a minimum time to the top of the hill (p = 1 in Figure
while preventing the position p of the car to become smaller than —1 and its
speed v to go outside the interval [—3, 3]. Therefore, the state space is continuous of
dimension two (the position p and the speed v of the car).

The dynamics of the problem is reported in the followings:

p=wv,
B a B gHill'(p) B v2Hill (p)Hill” (p)
T om(1+ Hl(p)2) 1+ Hill(p)2 L+ Hill'(p)?

where m is set to 1 and g = 9.81 is the gravitational acceleration. The function
Hill(p) is defined as:

p’+p ifp<O,
b if p>0.

v/ 1+5p?

Hill(p) = (5.6)

The discrete-time dynamics is obtained by discretizing the time with the time be-
tween ¢ and t + 1 chosen equal to 0.1s. If p;41 and vy are such that [pi+1] > 1 or
|vg1| > 3 then a terminal state is reached. The reward function R(p,v,a) is defined
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through the following expression:

=1 if pry1 < —1or |vpa] > 3,
R(p, v ar) = 41 if pryy > 1 and |vgq1| < 3, (5.7)

0 otherwise.

The decay factor « has been chosen equal to 0.95 and the initial state is pg = —0.5
and vg = 0. From now on we will indicate with s the pair (p,v).

We approximate the optimal deterministic policy WEQ ; via FQI [33] run on 1000
random trajectories, using 50 Extremely Randomized Trees [39] (criterion: mse, min
samples split: 5, min samples leaf: 2, iterations: 20). We consider different levels of
noisy expert, so that a random action is selected with probability e € {0,0.1,0.2}:

7T€E(CL|S) =(1- e)rrgQI(a\s) + €Mrandom (GS).

We exploit N = 20 expert’s trajectories to estimate the parameters w of a Gaus-
sian policy mw(als) ~ N (yw(s), 02), with o2 set to 0.01. The mean yw(s) is obtained
as a radial basis function network [16]:

k
_ _a. 12
Yw(s) = E wiedls=sil®, (5.8)
i=1

where § = 0.01 and we consider 40 x 40 centers s; uniformly distributed in the two-
dimensional (position-speed) state space [—4,4] x [—3,3]. The detailed derivation
of gradient and Hessian of the policy is reported in Appendix [B:6] Notice that this
policy allows to perform actions in the interval [—4,4] and not only in {—4,4}.

Figure shows the original reward function and the reward functions recovered
by CR-IRL for the different values of €. The original reward function displays three
regions associated to the reward values +1, 0 and —1. However, most of the +1 region
is never reached resulting in penalization when considering the reward functions
recovered by CR-IRL. Those functions assign non-zero reward only to the region to
which the original reward would assign 0 and to the absorbing state reached as the
car gets to the top of the hill with sufficiently small speed. At first glance the reward
functions recovered by CR-IRL are significantly different w.r.t. the original reward
and seem not to be informative. Nevertheless, the empirical evaluation (see [5.4.1))
demonstrates that they allow computing the optimal policy.

5.4.1 Learning speed experiments

This experiment is intended to show that the reward function recovered by CR-IRL
does not necessary need to be used with policy gradient approaches. We compare
the average return as a function of the number of iterations of FQI, fed with the
different recovered rewards.

Figure [5.20] shows that FQI converges faster to optimal policy when coped with
the reward recovered by CR-IRL rather than with the original reward, regardless of
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Figure 5.19: Representation of the recovered reward functions for Car on the Hill.
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Figure 5.20: Average return of Car On Hill problem as a function of FQI iterations varying
the value of exploration e.

the exploration level e. When the expert is deterministic (e = 0), BC reaches the
expert’s performance, since the considered class of parametric policies is sufficiently
expressive to represent the optimal deterministic policy. Also CR-IRL reaches the
expert’s performance in one iteration only.

BC however is not resilient to noise, displaying a significant performance degra-
dation as € increases. CR-IRL, on the other hand, is able to recover the optimal
policy quickly even in case of explorative experts.

In Figure [5.21] we compare the trajectories of the expert’s policy, the maximum
likelihood policy (BC) and the policy computed via FQI from the reward recovered
by CR-IRL. We can see that when the expert is deterministic the trajectories are
almost overlapping. On the contrary, when the exploration rate € increases we can
see that some expert’s trajectories fail to reach the profitable absorbing state. This
is a consequence of the fact that a random action is taken with probability e. BC
is almost always able to get the final +1 reward but not optimally in terms of
number of decision epochs required. Finally, CR-IRL, even if trained with a noisy
expert, recovers a reward function that induces a policy which is near-optimal, as all
trajectories get to the +1 final reward in almost the minimum number of steps.
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Figure 5.21: Trajectories of the expert’s policy, the ML policy and the policy computed via
FQI from the reward recovered by CR-IRL for different values of e.



Chapter 6

Conclusions

This thesis provided several algorithmic and experimental contributions to the In-
verse Reinforcement Learning area. IRL methods experienced a notable advancement
in the last years and several successful applications have been proposed, mainly re-
lated to the field of autonomous locomotion. However, most of the state-of-the-art
algorithms remain limited to simple domains due to the need of the environment
model and to the computational demands. Early approaches to IRL are not, in most
of the cases, suitable for real-world applications due to the requirement of solving
the forward RL problem for each candidate reward function. Besides being expen-
sive in terms of samples and execution time, this step requires having access to the
environment in order to learn the optimal policy or even to know the complete tran-
sition kernel. Moreover, the need of defining a priori a set of engineered reward
features represents a further obstacle. Approaches based on deep learning overcome
both problems, exploiting the representational capabilities of neural networks. Nev-
ertheless, those methods require the availability of huge amount of expert’s data and
powerful computational resources.

The demand of approaching the IRL problem in a flexible and efficient way is
becoming more crucial. Clearly, behavioral cloning reduces the computational effort
and does not require the access to the environment. Nevertheless, BC is constrained
to the choice of a specific policy space, sometimes unable to represent the expert’s
behavior with sufficient degree of accuracy. Furthermore, the optimal policy, as
recovered by BC, cannot be transferred across different environments. The optimal
policy and the reward function are different ways to encode an optimal behavior: a
reward function induces an optimal policy, while a policy is optimal under certain
classes of rewards. However, these concepts are not exchangeable when the dynamics
of the environment in unknown. Knowing the reward allows recomputing the optimal
policy even under modifications of the environment model, whereas the optimal
policy is deeply related to the specific environment.

We believe that a key step towards enforcing the scalability of IRL to real-world
domains is the availability of an algorithm able to construct transferable reward
functions requiring just a set of expert’s trajectories. Most of the contributions of
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this work point to that direction. In Chapter [4] we presented CR-IRL that mixes
BC and IRL in order to construct the features and single out a reward function.
BC represents a preliminar step, necessary in order to extract the set of ECO-Q
making the gradient vanish. It is worth noting that, for our algorithm, the choice of
the policy model is less constraining w.r.t. pure behavioral cloning. The maximum
likelihood policy is never used to collect samples, thus the performance gap w.r.t. the
expert’s policy is not so relevant. Nevertheless, this represents a limitation of CR-
IRL, as a poor approximation would make the algorithm extract a suboptimal set of
ECO-Q. The main theoretical contribution of this thesis lies in the notion of policy
rank. We think that the informativity of a parametric policy is an appealing notion
that, together with the bound , can be used also outside the area of IRL and
particularized for specific classes of policies. Once the ECO-Q have been extracted,
we proposed two methods to construct the set of ECO-R. Clearly, we focused on
the model-free approach that exploits reward shaping in order to build the space
of advantage functions. This choice, of course, causes the reduction of the space
dimensionality that prevents CR-IRL from considering certain classes of rewards.
Nevertheless, using the advantage function as reward function is beneficial for almost
all RL algorithms. Finally, we introduced several second-order approaches to select a
reward function in the constructed space. The multi-objective interpretation offers a
unifying view of the problem, that we particularized for specific choices of optimality
criteria, ending in a heuristic that provides good empirical results.

Comparing the quality of different reward functions for the same environment
is a non trivial task. The metrics we choose are directed towards the evaluation of
the ability of the recovered reward functions of quickly learning the optimal policy.
Clearly, this notion is algorithm-dependent, but it is so intuitive that we believe it
is the most suitable comparison approach. In Chapter [5 we showed that CR-IRL is
able to recover reward functions that can be used to learn optimal policies (in terms
of expected return) but at a faster learning rate w.r.t. the original reward function
of the problem. Moreover, even though CR-IRL exploits BC to get a parametric
representation of the expert’s policy, the policies learned with the reward function
recovered by CR-IRL significantly outperform BC. We think this is a key strength
of our algorithm, resulting from merging BC and IRL. BC brings to CR-IRL the
ability to avoid low-reward regions that the expert has never visited, while IRL,
producing a reward representation, allows to overcome the limit of the fixed policy
model. Furthermore, CR-IRL outperforms several popular IRL methods designed to
recover a reward function as a linear combination of given features, when fed with
the set of ECO-R. On the other hand, the performance of the trace heuristic when
CR-IRL is fed with automatically generated features, such as Proto-Value Functions,
is somehow unsatisfactory. This is a consequence of the fact that the two phases of
CR-IRL, feature construction and reward recovery, both originate from conditions
on the policy gradient and Hessian and therefore are not independent. The second-
order optimality criteria make sense only when the policy gradient is null and take
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into account only the regions of the environment visited by the expert.

Even though the algorithm we proposed resulted effective in several problems,
numerous questions remain open. We believe there is space for further research in
this topic, mainly directed towards theoretical and experimental settings. We outline
in the followings the main research lines.

Theoretical analysis of the maximum likelihood policy

CR-IRL, as already seen, requires to estimate a parametric representation of the
expert’s policy from the available trajectories. This is a critical point since it requires
the choice of a policy model. Although the estimated policy is not used to collect
samples, its accuracy might affect the construction of the ECO-Q space and, as a
result, the recovered reward function. We have identified two sources of error. First,
the maximum likelihood estimation is based on expert’s trajectories, few trajectories
lead to poor approximation even if the expert’s policy falls into the chosen policy
space. Second, when the expert’s policy cannot be represented by the policy space,
how does the distance between the expert’s policy and the maximum likelihood
policy affect the reward construction? In particular, it should be interesting deriving
a bound relating the performance gap and the policy distance and study how this
error propagates in the policy gradient and for the construction of the set of ECO-Q
and ECO-R. We have already encountered this problem in the empirical evaluation
of the Car on the Hill problem. The expert’s policy, built via FQI with ExtraTrees,
is used to collect samples and fit a Gaussian policy. Although the latter displayed a
significantly smaller expected return, the reward provided by CR-IRL allows learning,
via FQI, a policy whose performance is comparable with that of the expert.

Direct construction of ECO-R

Our approach requires a two-step procedure to build the approximation space for the
reward function. Besides introducing further sources of computational complexity
(in particular the usage of SVD to orthogonalize the set of ECO-R), this contributes
to the propagation of the error introduced in the maximum likelihood estimation of
the expert’s policy. In order to overcome this limitation we could resort to trajectory-
based formulations of the policy gradient, like , in which the reward function
appears in place of the Q-function. These equations can be used to build directly
the set of ECO-R with no need to pass through the approximation space of the
Q-function.

Experiments extension

One of the main goals of CR-IRL is to overcome the need of the transition model
in order to scale IRL to real-world applications. The experimental evaluation we
proposed is based on classic benchmark problems. Even though they allow having
full control on the different phases of the algorithm and interpreting effectively the
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results, we cannot avoid the comparison in more complex domains. We believe that
an extension of the experimental evaluation is needed in order to consider real-world
domains, such as Atari games. Furthermore, in those cases, we need to evaluate
CR-IRL against suitable IRL methods, such as deep learning IRL approaches.

Reward transferability

The issue of reward transferability is substantial in any real-world application of IRL.
This problem has been addressed in few works and only for simple problems, such as
the Grid World and the simulated highway driving. In this thesis we have not eval-
uated the transferability properties of the reward functions recovered by CR-IRL.
Intuitively, CR-IRL penalizes deviations from the expert’s policy thus the recovered
reward drives the learning process towards the expert’s behavior. Thus it seems
that no transferability is enforced by CR-IRL as the agent will tend to reproduce
the expert’s policy. Clearly, IRL methods that exploit handcrafted features, encod-
ing implicitly similarities between states and actions, are more suitable to enforce
tranferability. Nevertheless, if we consider very explorative experts, yielding tra-
jectories in which almost all states and actions are visited, CR-IRL would assign a
non-penalized reward even to suboptimal trajectories, producing a more transferable
reward.

From reward to policy

The common thread of this thesis is the duality between the optimal policy and the
reward function. We exercised this duality in the direction of IRL only: given the
expert’s (optimal) policy we recovered a reward function making the expert optimal.
Most of the considerations made in this thesis hold also for the other direction. It
is worth investigating whether the knowledge of the reward model can be exploited
to restrict the class of policies to consider in order to determine the optimal one.
Clearly, this goal lies outside the scope of IRL, but it might bring beneficial results
in the context of policy search methods.
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Appendix A

Matrix notation for finite Markov
Decision Processes

In this Appendix we report the conventions we adopted for the matrix representation
of the finite MDPs.
The transition model P is represented as a |S||.A| x |S| stochastic matrix P, such
that:
Pye = P(5']s,0a), Vs,s' €8, ac A

Sometimes it is convenient to think to the transition model as a |S| x |A| x [S]|
stochastic tensor P:

Psas = P(5']s,a), Vs,s' €8S, ac A

The policy of a MDP is represented as a |S| x |S||A| block-diagonal matrix 7, defined

as:
m(als) if s =s
Tssla = (als) , Vs,s' €8, a€ A,
0 otherwise
m(ai|s1) ... w(ajqls1) .. 0 0
T = : ' : ' . . . .
0 0 7T(a1|5‘3‘) ﬂ'(a‘_A||$|3‘)

The distribution of the initial state is represented by a stochastic vector pu €
[0,1]!5]. The reward is represented by a vector r € RISIMI. The state value function
of policy  is a vector v € RISl whereas the action value function and the advantage
RISIAIL

function are vectors q™,a"™ € Furthermore, we denote with P™ the state

transition kernel, i.e., the |S| x |S| stochastic matrix defined as:
P™ ==nP.
We indicate with r™ € RIS! the state reward, defined as:

r" = 7r.
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Using Neumann series, we can define the state occupancy in matrix form as:

+0o0 T
a7 = ( T (WP”)t> w=(1-1P") " (A1)

t=0

Moreover, by unfolding the series we obtain a recursive equation:

dj; = (f (VP”)t>Tu =

t=0

=p+ <+Zoo (fyP”)t)T,,, -

t=1 (A.2)
T 400 . T
= u+(P7) (Z (vP7) ) =
t=0
™ T K
=p+~(P7) dj.
Similarly, the state-action occupancy is defined as:
400 T
d;, = (Z (’yPﬂ')t) iy = (I—+Pm) 7T71'Tu, (A.3)

t=0

where 1 is a |S||.A|-dimensional vector representing the state-action initial distri-
bution, i.e., the probability to start the problem in state s performing action a. Like
before, we can derive a recursive equation:

- (5 oper) -

t=0

=+ <+ZOO (yPﬂ)t>T7,Tu =

=1 (A.4)

~+oo ; T
=nlp+ ’yﬂTPT< (vP) ) iy =
=0

=l (p+ 7PT5;;).
Clearly, dj, = wd},. Now we can express the expected return in different ways:
J’_dﬂ'Tﬂ'_(sTl'T_TTI'_T ™ A5
=(d}) ' r" =) r=p v =p wq". (A.5)

When considering parametric policies mg, the gradient of log policies Vg log mg
are |S| x |S||A| x k tensors. However, for computational reasons they are typically
treated as |S||A| x k matrices:

Ologmg(als)

i=1,2,..., k.
o0, , VseS, Vac A, j 22 ey

Vo log mgs,; =



Appendix B

Proofs and derivations

This Appendix provides the proofs and derivations omitted in the thesis.

B.1 Kullback Leibler minimization and Maximum Like-
lihood estimation

We show that maximum likelihood estimation of the policy parameters is identical
to the minimization of empirical Kullback-Leibler divergence between the expert’s
policy and the approximating parametric policy.

Proof. Let D = {(s7,0,0r,0), - (Sn,T(n)ﬂn,T(n))}iJL be a set of independent tra-
jectories, collected with the expert’s policy 7%. The likelihood function is given

by:

N
L£(0) = p(r1,72,...., TN|0) = Hpe(Ti),

Taking the logarithm of previous equation we get:

log £(0) = Zlogpo(ﬂ‘) =

T(ri)—1 T(r:)—1
= |logu(sr0)+ Y 108 P(srs41lsrt0m0) + > logme(ar, ilsr 1) |-
L t=0 t=0

The only terms depending on @ are the logmg(ar, ¢|sr,¢), thus maximizing the
log-likelihood is equivalent to maximizing only the quantity:

>

i=1

T(ri)—
Z log mg(ar, t|5r.t)-
t=0

Let us now consider the KL-div from samples between the expert’s policy 7 and
the approximating parametric policy mg:
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WE(GT“t

M T(Ti)fl
< i STi)t)> —
7o (ar t|S7,t)

1 M 1 M T(r)—1
- M Z Z IOgﬂE(aﬂ,t S7i,t) Z Z log mo(ar, t|S7;.t)-
i=1 =0 M= =

As before, the only terms depending on @ are the log mg(ar, ¢|S7,+). Thus, mini-
mizing the KL-div corresponds to minimizing only:

1 M T(m)-1
M Z log mg(ar; t|Sr;.t)-
=1 t=0

B.2 Mean and Variance of occupancy estimators

We derive the mean and the variance of the state occupancy estimator as defined in

).

Proof. Let us consider a set of N independent trajectories:

o] E v

i=1 t=0

T(t)
lzﬂs”_s]: (B.1)

t=0

+oo

= Z’ytp(st =
t=0

= d;?’Y(S)’

where we exploited the identity E[1(w)] = P(w). Thus, the estimator is unbiased.
Since the trajectories are independent we just need to compute the variance of one
of them, as:

Var, {du 7(s)} = %VarT

We decompose the variance into:

T(7)

Z’y]lsrt—s

t=0

T(t)

()

t=0

Var, =E,

—E. l(jﬁ:ytn(sm = s))] 2.

(B.2)

We compute only the first term of the sum, as the second term has already been

computed in equation (B.1)):
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T(r) 2 T(r)
E- ( Z 'Yt-ﬂ(s‘nt - 5)) ] =E, Z ’YQtIL(STt = S) +
t=0 t=0
T(r) T(r)
+ 2 Z Z ’y”t/ll(sm =s)L(s; v =5)|.
t=0 t/=t+1

We observe that 1(s,¢ = s)? = 1(s;+ = s) and 1(sr¢ = s)L(s,p = s) = L(s, =
s,sry = 5), by taking the expectation we get:

T(7) 2 +00 +o0co  +oo )
< Z’y 1(srr=s > ] = Z’Y%P(St =5s) —|—22 Z VP (sy = 5,50 = 5). (B.3)
=0 t=0 t'=t+1
By replacing it into equation (B.2):
T(r) +o00  +oo )
Var, Zy]lsﬂ—s] ZWQt]P’ 3)—!—22 Z VHEP(sp = 5,5 = 8)+
t=0 t=0t/'=t+1
2
B <Z'7tp(5t = S)) =
t=0
+oo 400
= Z Z VT P(sy = 5,50 = 5) — P(s¢ = 5)P(s5¢ = 5).
t=0 t/'=t+1
Finally the variance is given by:
+oo  +oo
VarT |:dﬂ-9 :| Z Z ( St = 8, S¢ = S) - P(St = S)P(St/ = S)) .
t 0t'=t+1
Therefore the estimator is consistent. ]

B.3 Gradient and Hessian for e-Boltzmann policy

We derive the gradient and Hessian for the case in which the features depend on the
state-action pair ¢,, and the parameters are independent from states and actions 6.
The case considered in the thesis (state-dependent features ¢, and action-dependent
parameters 0,) can be rephrased in this shape by considering the following matrix
construction:
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0., o of ¢t
6., _ : [SIIA]xk|A|
_ k| A| ¢=1 : : . |eRr .
0= : € R™, T o’ h
: sis)
O, 0" ¢ o’
o" 0" ... ¢
The e-Boltzmann policy can be written as:
GTCm €
meclals) =(1 —€) ——
9,6( | ) ( ) |.A|

> ’eAe Caa!

The gradient of the log e-Boltzmann policy is given by:

€

67¢.0 €
N, + - —
Za’EA e Coar |A|
:V9<10g ((1_6 67¢., + \A| Z 0" Caar )

a’€A
Te o7 , T
B (1—€)¢,,e0 oo+ ﬁza,eA Con€? Csa - Swea Cypre? Coar

(1 _ e)eeTcm + TZIZa’GA 0T Coar Za’eA 0T Cour

In the remarkable case when € = 0 (Boltzmann policy) the gradient becomes:

Vo logme (als) = Vglog ((1 —€)

(B.4)

)

a’€eA

0T¢, .
Za/ cA Csa/e Coa
ZQ’EA QOTCM/

For sake of brevity we define the following symbols:

:Csa_

Ve log e o(als)

Zo(s,a) = €® Guo
=D Zo(s.a) = Y G,
a’€A a’€A
Vng(s a) = eGTCSa,
Vng Z Vg,Zg S, a Z CsaleeTCS“',
a’ €A a’ceA
HoZg(s,a) = VoV Zg(s, ) CoulT 0" e
MHoZo(s) = > Ho, Zo(s,d') = > Cou CsTafee Gt
a’€A a’c A
We.c(s,a) = (1 — ¢)Zo(s, a) + ﬁZ@(s),
VoWe.(s,a) = (1 — €)VeZo(s,a) + —VeZe(s),

Al
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HeWg)e(S, CL) = (1 — 6)7‘[929(8, a) + ﬁ%ng(s).

Thus the gradient (B.4) becomes:

(1—-¢€)VoZg(s,a) + ﬁVng(s) VoZo(s)

Vo logme,c(als) =

(1—€)Zo(s,a) + 15 Ze(s)  Za(s)
_ VQWQ)G(S,G) . Vng(S)
Wg,e(s,a) Zg(S) ’

We now can compute the Hessian:

He logmg (als) = VoV} log mo,(als)
_ HoWeo (s,a)Wo c(s,a) — VoW (s, a)V9Wg,E(s,a)T+
Wae.e(s,a)? (B.5)
~ HeZo(s)Ze(s) — VoZo(s)VeZg(s)T
Zg(s)? '

B.4 Gradient and Hessian for LQG Gaussian policy

The LQG policy is a multivariate Gaussian policy in n dimensions having matrix K

as parameter:

rics(als) = ! (E)exp( ~ (a-Ks)'8 " (a -~ Ks)). (B.6)

(2m)det 2

Using some matrix equalities provided in [91] we compute the gradient:

1
Vk log mk s (als) = Vi log — VK( - §(a ~Ks)'x t(a— Ks)) =

1
(2m)ndet ()
=2 Ha—-Ks)sT.
In order to compute the Hessian, it is convenient to rewrite matrix K in terms of its

n n
K=) Y K;jJ,

i=1 j=1

components:

where J¥ is the single-entry matrix with 1 at (4,7) and zero elsewhere. Now the
gradient can be rewritten as:
Vi logmk s(als) = X7 (a — Ks)s! =

=Y lag?’ — ¥ 'Kss” =

n

=>lasT —x! (Z zn: KijJij> ssT =

i=1 j=1

n n
=Y las’ — E E KUE_IJ”SST.
i=1 j=1
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Thus, the Hessian, which is a n X n X n X n tensor, can be computed element-wise
as:
(Hk 10g7rK7g(a]s))ij = 2 1JigsT Vi,j=1,2,...,n. (B.7)

B.4.1 One-dimensional case

When we consider the one-dimensional case (n = 1), the gradient and the Hessian
are simply computed:

(als) = e+
T o2(als) = e T,
ko V2mo?
1 1(a—ks)?> s(a—ks)
Vilogmyg2(als) = Vilog =5 = Vig 9= = = o

Hy log mp, 2 (als) = Vi V} log my, ,2(als) = Vi——— = ——.

B.5 Optimal control for the LQG

We outline the derivation of the optimal controller for the LQG and we solve it for
the one-dimensional case, the complete derivation can be found in [57]. We aim to
minimize the cost function:

T-1

J(K) = ET [SZTQST,T + Z ’Yt (SZ—:tQST,t + aztRaT,t):| =
t=0
T—1

= ET [SZTQST,T] + Z ’VtET [SZtQST,t + aZ:tRaT,t:| )
t=0

where we considered a finite horizon T'. If Q and R are positive semidefinite matrices,
minimizing J(K) corresponds to minimizing each term J;(K) = sz?thm + athRamg
for all time instants t. We restrict our analysis to the linear time-variant controllers
of the form a; = Kys;. Following the derivation shown in [57], the optimal parameter
K evolves according to equation:

K= _(BTXt+1B + R)_IBTXHIA t=T7-1,..0, (B-8)

where X is determined by the following matrix Riccati difference equation (DRE)
that runs backward in time, with starting condition X7 = Q:

X, = ATX; 1A - ATX,  B(B"X;;1B+R) 'BX; 1 A+Q t=T-1,..0,

(B.9)
where we impose X; to be symmetric positive definite. When the time horizon T
tends to infinity the optimal controller becomes time invariant and the difference
Riccati equation is replaced with the algebraic Riccati equation (ARE):

X = ATXA - ATXB(B"XB + R) 'BXA +Q, (B.10)
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which yields the optimal steady-state controller with parameter K = —(BTXB +
R)_lBTXA. The solution of the ARE can be found by using iterative methods.
For the one dimensional case we can determine the closed form solution.

B.5.1 Optimal LQG control in one dimension

The ARE in the one dimensional case becomes scalar:

a’b?x?

m:a21:—27
b’x +r

+4,

Since x > 0 and r > 0 the denominator never vanishes. Thus the equation is
equivalent to finding the positive solutions of the second degree equation:

v2z? + [(1- a?)r — bzq]az —qr =0,

yielding the real solutions with opposite sign:

1

T e

( - [(1 - a2)7" — b2q] + \/[(1 — a2)r — 52q}2 + 452qr>.

We are interested in the positive solution only, which is the one obtained with the +
sign. We can now compute the optimal parameter:

bax 1
B2z +r  2abr

k= ( — [(@* = 1)r — b%q] + \/[(1 —a?)r — bzq]2 + 4b2qr).

In the case we considered in the experiments, i.e., a = b =1 and r = ¢ = 0.9, the
parameter is given by k =1 — ¢ = %(1 —+/5) ~ —0.618, where ¢ is the golden ratio.

B.6 Gradient and Hessian for Car on the Hill policy

The policy is a univariate Gaussian:

1 _ 1 (a—ys)?
e 2 o2

7TW,U2 (a’S) = \/W 9

where the mean is defined as a radial basis function network:

k
_ _ <. ll12
puls) = 3w smsil = w7 g(s),
=1

where ¢;(s) = 6*5”5_51'“2, fori=1,2,...,k. We compute the gradient using the chain
rule. We first derive:

1 1 (a — yw(s))? 1
Vo (s) log Tw.o2(als) = Vi (s) l0g ——= — Vyw(s)Q(()) = —Q(a — yw(s)),

2mo?
vaw(s) = vWVVT(:b(S) = ¢(S),
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and now the gradient is:

1
Vw108 Ty 52(als) = Vi, (s) 108 Tw 2 (a]s) Viwyw(s) = —5(a = yw(s))d(s)-
We differentiate again to get the Hessian:
Hw log Ty ,2(als) = VWV log Tw.o2(als) =

Vb @ )T =
— L )BT

B.7 Closed form solution for ML parameters of Car on
the Hill policy

The log-likelihood function, taken over NV independent expert’s trajectories, is given

by:
N T(Tz

1
log L(w) = N log Nora 202 Z Z Uyt — W B(s7,4))%,
i=1 t=0

which is maximized as the following term is minimized:

>3

=1 t=

T(7:)

aT'ut - W ()b STu ))2
0

This corresponds to a linear regression with ¢ as basis functions. The solution can
be found in closed form as:

T(7) -1/ N T(m)
(Z Z O(s7,.t) S‘ri,t)T> (Z Z ¢(Sn,t)an,t>.

=1 t=0
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