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Abstract

In this master project, we explore isogeometric collocation methods based on B-splines to solve
partial differential equations. More specifically, we concentrate our work on one-dimensional
problems of first and second order and we analyse the convergence of the error under h-refinement
using several kind of collocation methods. Our analysis is motivated by the search of an iso-
geometric collocation method that converges with the same rate of convergence as the Galerkin
isogeometric analysis.

Two different families of isogeometric collocation methods are explored. First, we mimic
the equivalence between the Galerkin spectral element method with numerical integration and
its collocation counterpart, using the isogeometric paradigm. However, we will show that this
equivalence is still missing for the isogeometric analysis. Then, inspired from the Gauss-Lobatto
Lagrange extraction of B-splines [Nguyen and Schillinger, 2017], a B-spline basis that is inter-
polatory at the Gauss-Legendre-Lobatto nodes is built, and collocation at some subsets of such
nodes is studied. Subsets of Gauss-Legendre-Lobatto nodes are chosen so that the collocation
methods derived from them converge with the best possible rate under h-refinement and so that
the condition number of the collocation matrix is minimal. A good convergence of the error is
obtained, however it is still not optimal: when the B-spline order p is even, the L2- and the
H1-errors behave asymptotically as hp where h is the mesh size; when p is odd, both errors
behave asymptotically as hp−1.
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Notation

We describe some notation and abbreviations that will be used throughout this document.

Pk(Ω) Set of polynomials of total degree at most k, in Ω
Qk(Ω) Set of polynomials of degree at most k in each variable, in Ω
P0
k(Ω) Set of polynomials belonging to Pk(Ω) that are 0 on ∂Ω

Q0
k(Ω) Set of polynomials belonging to Qk(Ω) that are 0 on ∂Ω

f |Ω Restriction of a function f to the space Ω
k(A) Condition number of matrix A
#S Cardinality of a set S
N {0, 1, 2, . . .}, the set containing the positive integers and zero
Bcp(Ω) Set of B-splines, piecewise polynomial of degree k on Ω and Cc-continuous

between each element, such that 0 ≤ c ≤ p− 1
f(x+) The limit limξ→

>
x f(ξ)

f(x−) The limit limξ→
<
x f(ξ)

IGA Isogeometric analysis
FEM Finite element method
SEM Spectral element method
SEM G-NI Galerkin spectral element method with numerical integration
GLL Gauss-Legendre-Lobatto
NURBS Non-uniform rational B-spline
PDE Partial differential equation
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Chapter 1

Introduction

Many physical and Engineering fields, such as Mechanics, Biology or Chemistry among many
others, are mostly described by a strong mathematical tool: the partial differential equations
(PDE). Those equations can be very complex; one can think for example of the Navier-Stokes
equations that describe the fluid dynamics. They can be so complex that mathematicians have
not found a way to solve them analytically yet, and it is from this observation that computational
mathematics and numerical approximation have been developed. The growing importance of
computers and computer science in the last decades, together with the development of more
powerful computing machines, have helped and fostered the development of efficient numerical
and computational methods. Nowadays, scientific computing has become essential, and the most
used and widely spread numerical method is the Finite Element Method [26], applied in most
fields with success.

However, the performance of the Finite Element Method in many problems comes with an
important drawback which shows the limit between the real world of application problems and
the numerical tools. Indeed, the Finite Element Method requires the generation of a mesh on
top of the geometrical domain on which the differential problem is defined. That is, even if
Engineers and designers use an exact representation of the geometries they are working with,
thanks to Computed Aided Design (CAD) tools for example, an additional step of geometry
reconstruction by meshing is required in order to use the Finite Element Method. Not only
does it approximate the geometrical domain instead of considering the exact one, and this can
lead to accuracy problems, but it also requires a lot of additional computational time. More
specifically, it can take up to 80% of the total computational time [10], including the time to solve
the numerical problem, and an automatic mesh generation can only be done in some particular
cases.

In order to overcome this difficulty, another numerical method has been developed in the last
years, firstly introduced by Hughes, Cottrell and Bazilevs, and called Isogeometric Analysis [17].
The first idea was to develop a method that always preserves the geometry exactly, no matter
how coarse the mesh, and that simplifies the refinement of the mesh. To satisfy this requirement,
Isogeometric Analysis (IGA) has been directly designed from the basic components of any CAD:
the B-splines, or more generally, the Non-Uniform Rational B-Splines (NURBS). To introduce
briefly this method, IGA shares many properties with the Finite Element Method, but instead
of piecewise polynomial functions, the basis functions of IGA are B-splines (or NURBS), that
is, the exact same functions from which CAD geometries are built. Consequently, the basis
functions used in IGA highly depend on the representation of the geometrical domain, and this
fact is called isogeometric concept, hence the name Isogeometric Analysis.

IGA has given promising results on diverse applications such as in fluid mechanics [4, 5],
wave propagation problems [13] or even in electromagnetism [6]. Moreover, comparisons of IGA
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with the classical Finite Element or Spectral Element methods have been performed [9, 18],
and IGA shows superior approximation properties with respect to the total number of degrees
of freedom while allowing more regular approximation. That is, the error obtained with IGA
converges faster than the one obtained with the Finite Element or the Spectral Element method,
when the number of degrees of freedom is fixed but the underlying polynomial degree or B-spline
order is increased.

The most common way to solve a PDE is by using the Galerkin method, that is, the differ-
ential problem is formulated and treated in a weak sense: the whole equation is first multiplied
by a test function and integrated over the computational domain, then the solution is sought in
a suitable discrete space [26]. An alternative way to proceed is to work directly on the strong
formulation of the PDE, and this can lead to the so-called collocation method. In this case,
basis functions need to be sufficiently regular to be fed into the considered differential operator,
but the advantage of collocation methods is to be cheaper with respect to the formation of
the problem and the matrix assembly. IGA collocation methods have been first introduced by
Auricchio and al. in [2] where the theoretical basis and a first insight on simple problems are
given.

Nevertheless, isogeometric collocation methods proposed so far do not perform as well as
the Galerkin isogeometric method, more specifically in terms of rate of convergence [1, 23, 24].
An interesting paper from Gomez and De Lorenzis [15] show however that there must exist a
set of collocation points that reproduces exactly the Galerkin solution, and therefore such that
the error of the collocation method built from those points has the same rate of convergence as
the Galerkin isogeometric method. Such collocation points, called the Cauchy-Galerkin points
and leading to the so-called variational collocation method, are determined thanks to a simple
application of the mean value theorem of integral calculus [16] on the Galerkin formulation of
the problem, but they highly depend on the Galerkin solution itself. Therefore, the variational
collocation method cannot be used when the Galerkin solution is not known, so that attempts
have been done to approximate the Cauchy-Galerkin points without knowing the Galerkin solu-
tion [1, 15]. But again, this does not always lead to an optimal isogeometric collocation method,
that is, the error obtained with the Galerkin isogeometric method still converges in some cases
with a greater rate of convergence.

Consequently, this project aims at analyzing and providing an insight into isogeometric
collocation methods. Therefore, we explore the literature about collocation methods and select
ideas from which we develop new isogeometric collocation methods. More precisely, this report
is organized in the following way:

• After this first introductory chapter, we present in more details the isogeometric analysis in
Chapter 2, and in particular the concept of isogeometric collocation method. Isogeometric
collocation methods at Greville or Demko abscissae are presented as the most widely used
such methods found in literature [14, 17].

• Then, it is now well known that the Galerkin Spectral Element Method with Numerical
Integration (SEM G-NI) is equivalent to the spectral collocation method in which the
collocation points are the Gauss-Legendre-Lobatto nodes on each element [8]. Those nodes
are in particular the optimal quadrature nodes used in the numerical integration of the
weak Galerkin spectral element problem. Therefore, in Chapter 3, an attempt to imitate
this equivalence in the isogeometric framework is given. In particular, we find quadrature
formulas that allow the exact integration of the mass and the stiffness matrices obtained
when using the Galerkin isogeometric method on a second order differential problem. We
hope to find suitable collocation points from the quadrature nodes, but instead we show
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that this is actually not possible to obtain.

• In Chapter 4, we develop an isogeometric collocation method based on the paper from
Nguyen and Schillinger [24]. In this article, an extraction operator is introduced, linking
Gauss-Lobatto Lagrange functions with B-splines. This transformation operator is used
in order to define a basis of B-splines, still strongly dependent on the geometrical domain,
but whose functions are interpolatory at the Gauss-Legendre-Lobatto nodes. We hope
that a subset of the Gauss-Legendre-Lobatto nodes will be a good set of collocation sites
when this basis is used, that leads to a well convergent isogeometric collocation method.
It will indeed lead to a convergent method, but it will not always be optimal.

• Finally, we draw our conclusions in the last Chapter 5, together with some future possible
developments and perspectives.

Finally, the scope of our research is the following:

• Only one dimensional problems will be considered since in higher dimensions, collocation
points are defined by means of tensor product rules (see Chapter 2).

• Only B-spline functions and geometries are considered. The generalization to NURBS
should be done in a complementary work but should not be complicated since all properties
of B-splines are inherited to NURBS (see Chapter 2).

• Work is concentrated on B-spline spaces whose function have the same continuity between
all elements. More precisely, we concentrate on spaces Bp−1

p where p ∈ N \ {0}, that is,
on spaces of B-splines of order p that are globally Cp−1-continuous, i.e. that are Cp−1-
continuous between each pair of elements. Those are indeed the most widely used B-spline
spaces found so far in the literature.
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Chapter 2

Isogeometric Analysis

Domains of practical interest in which we aim at solving partial differential equations are often
represented by B-splines, NURBS (Non-Uniform Rational B-Splines) or T-splines. Most of
computed aided design (CAD) softwares are also based on those types of curves and can represent
exactly the geometries that Engineers and designers want to reproduce. Isogeometric analysis
(IGA) makes a link between CAD geometries and the classical finite element methods (FEM).
Indeed, the FEM approach usually requires to build a mesh on top of the already existing
geometry, and solves the problem on this mesh. This may affect the error of the numerical
solution, and it can be computationally very expensive. Instead, in the IGA approach, both the
underlying geometry and the space in which lies the numerical solution are represented by the
same basis functions that are composed of B-splines or NURBS: a lot of computational time is
saved and the solution is no more affected by the approximated geometry.

In this chapter, we introduce briefly what B-splines and NURBS are, the isogeometric analy-
sis, and how it can be used to solve differential equations as a Galerkin or a collocation method.
The structure of this introduction to IGA is inspired from [10].

2.1 B-splines and NURBS

2.1.1 Parametric space and knot vectors

In order to define B-splines and NURBS, we first need a parametric space. Recall that in finite
element analysis, each element is represented in a parametric space and has its own mapping
into the physical geometry. Unlike it, in the isogeometric analysis framework, sets of multiple
elements are considered, called patches and representing subsets of the full considered geometry;
each patch has its own mapping from a parametric space to the physical geometry. Patches
are chosen so that they fulfill uniformity properties, from the point of view of element types or
models used. In the following, we will always consider a single patch geometry.

B-splines are piecewise polynomial functions with high global regularity that compose a
finite dimensional function space and that can then be defined from a finite basis. Let n be the
dimension of this space, and p be the degree of the piecewise underlying polynomials. p is more
generally called the order of the B-spline. Thanks to the parametric space considered, the B-
spline basis is defined through the concept of knot vector introduced in the following definition.
Let first consider a one-dimensional parametric space Ω̂.

Definition 2.1.1 (Knot vector) A finite subset of Ω̂ made of non-decreasing real numbers
representing coordinates in this parametric space Ω̂ is called knot vector and is written

Ξ = {ξ1, . . . , ξn+p+1} ⊂ Ω̂.
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Each real ξi, i = 1, . . . , n+ p+ 1 is a knot, hence the name knot vector.

Knots in a knot vector are not necessarily distinct, so we can define the multiplicity of a knot:

Definition 2.1.2 (Multiplicity of a knot) A knot has multiplicity k, k ∈ N\{0}, if it is repeated
k times in the knot vector.

We will see that the multiplicity of each knot has important consequences in the properties of
the B-spline basis defined from the knot vector considered. We now introduce the notion of knot
span:

Definition 2.1.3 (Knot span) Each interval [ξi, ξi+1] for i = 1, . . . , n+ p is called knot span.

Note that the knots in a knot vector are not necessarily distinct, so that a knot span can have
length zero. Moreover, the interval [ξ1, ξn+p+1] contains n+p knot spans that are not necessarily
distinct neither. This notion of knot span should not be mixed with the notion of element:

Definition 2.1.4 (Element) Each internal knot span, that is each [ξi, ξi+1] such that ξi+1 6= ξ1
and ξi 6= ξn+p+1, i = 1, . . . , n+ p, is called element.

This notion of element can be compared with the notion of element found in finite element
analysis, but it will play a slight different role in IGA and one has to be careful not to mix them
up. Note moreover that the case of a zero-length element is not excluded. In the following, only
uniform open knot vectors will be considered:

Definition 2.1.5 (Uniform and open knot vector) A knot vector is said to be uniform if its
distinct knots are uniformly spaced in [ξ1, ξn+p+1], that is, if they are equally distributed. It is
said to be open if its first and last knots have multiplicity p + 1, that is if ξ1 = . . . = ξp+1 and
ξn+1, . . . , ξn+p+1.

We have now all the ingredients to be able to define the B-spline and the NURBS basis functions.

2.1.2 B-spline and NURBS basis functions

Let us first define univariate B-spline basis functions, that is B-spline basis functions that are
defined from a one-dimensional parametric space Ω̂. As before, let p be the order of the B-splines
considered, and n be the dimension of the B-spline space.

Definition 2.1.6 (Univariate B-spline basis functions) Let Ξ = {ξ1, . . . , ξn+p+1} be a knot
vector of a parametric space Ω̂. Then, the n univariate B-spline basis functions of order p, say
{Ni,p : Ω̂→ R}ni=1, are recursively defined on the order by: ∀i ∈ {1, . . . , n},

Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1,

0 otherwise,
Ni,k(ξ) = ξ−ξi

ξi+k−ξi
Ni,k−1(ξ) + ξi+k+1−ξ

ξi+k+1−ξi+1
Ni+1,k−1(ξ), for k = 1, . . . , p.

(2.1)

This formula is called Cox-de Boor recursion formula from the names of C. de Boor and M.G.
Cox that have first defined it [11]. By convention, we consider that Nn+1,k is identically zero,
for all k > 0, and that 0

0 = 0. Indeed, the latter case can happen in (2.1) whenever ξi+k = ξi
or if ξi+k+1 = ξi+1. Remark that Ni,0, i = 1, . . . , n, are indicator functions corresponding to
the first n knot spans of Ξ. In particular, they are piecewise constant functions. Since Ni,k, for
k > 0 and i = 1, . . . , n, are linear combinations of the precedent Ni,k−1 and Ni+1,k−1, then they
are piecewise polynomial functions as desired.
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Figure 2.1: B-spline basis functions of order p = 3 defined by the uniform and open knot vector
Ξ = {−1,−1,−1,−1,−2
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3 , 1, 1, 1, 1}.

As an example, Figure 2.1 shows the B-spline basis functions of order p = 3 defined by the
uniform open knot vector Ξ = {−1,−1,−1,−1,−2

3 ,−1
3 , 0,

1
3 ,

2
3 , 1, 1, 1, 1}. Note that this knot

vector is both open and uniform and in this case, n = 9. Moreover, the number of elements nel
is equal to 6, so we remark that n = nel +p. This gives a first hint into the following proposition.

Proposition 2.1.7 Let Ξ = {ξ1, . . . , ξn+p+1} be an open knot vector, such that n ∈ N \ {0} is
the corresponding number of B-spline basis functions, and p ∈ N \ {0} their order. Let nel be the
number of elements of Ξ. Then n = nel + p.

Proof. Ξ being open, p + 1 knots are equal to ξ1 and p + 1 other knots are equal to ξn+p+1.
Consequently, if nint is the number of internal knots, we have (n+p+1)−2(p+1) = nint = nel−1.
Therefore, n− p− 1 = nel − 1 and thus n = p+ nel.

B-spline basis functions have some important properties stated in the following proposition:

Proposition 2.1.8 Let p be the order of univariate B-spline basis functions {Ni,p}ni=1 defined
from a knot vector Ξ ⊂ Ω̂.

1. If a knot has multiplicity k, the basis is Cp−k-continuous at that knot. In particular, if
internal knots are not repeated, B-splines basis functions are Cp−1-continuous. If a knot
has multiplicity p, then the basis is C0-continuous and interpolatory at that location.

2. On the interior of each knot span, the basis functions are polynomials of order p, and thus
in particular, they are C∞-continuous.

3. The support of each basis function is compact and only consists of a small number of
elements, corresponding to p+ 1 knot spans.

4. Each knot span is in the support of p+ 1 basis functions.

5. For all i = 1, . . . , n and for all ξ ∈ Ω̂, Ni,p(ξ) ≥ 0.

6. The B-spline basis functions form a partition of the unity, i.e. for all ξ ∈ Ω̂,
n∑
i=1

Ni,p(ξ) = 1.

7



−1 −2
3 −1

3 0 1
3

2
3 1

0

0.2

0.4

0.6

0.8

1

x

N
i3

(x
)

Figure 2.2: B-spline basis functions of order p = 3 defined by the uniform and open knot vector
Ξ = {−1,−1,−1,−1,−2

3 ,−1
3 , 0, 0, 0,

1
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1
3 ,

2
3 , 1, 1, 1, 1}.

Proof. The proof can be found in the book [10] from J.A. Cottrell, T.J.R. Hughes and Y.
Bazilevs.

Note from property 1 that the B-spline basis functions are interpolatory at the boundary of the
patch when an open knot vector is considered. Moreover, those properties can be easily checked
in the specific example of Figure 2.1. Furthermore, Figure 2.2 shows the B-spline basis functions
that are still of order p = 3, as in Figure 2.1, but that are defined by the uniform open knot
vector Ξ = {−1,−1,−1,−1,−2

3 ,−1
3 , 0, 0, 0,

1
3 ,

1
3 ,

2
3 , 1, 1, 1, 1}. We remark that in this case, there

are 12 basis functions instead of 9, and all the properties of Proposition 2.1.8 are still verified;
the comparison with Figure 2.1 is interesting.

Furthermore, multivariate B-spline basis functions are built in a similar way, by means of
tensor product rules, from the univariate B-spline basis functions. More precisely, a ν-variate
B-spline basis, ν ∈ N \ {0}, is defined from a parametric space Ω̂ of dimension ν, that can
be decomposed thanks to a cartesian product as ∏ν

i=1 Ω̂i, where each Ω̂i is a one-dimensional
parametric space. From this fact, we give the following formal definition:

Definition 2.1.9 (Multivariate B-spline basis functions) Let Ξi ⊂ Ω̂i, i = 1, . . . , ν, be ν knot
vectors that define ni univariate B-spline basis functions of order pi, i = 1, . . . , ν, respectively,
obtained from Cox-de Boor formula (2.1). Then the corresponding ν-variate B-spline basis is{

Nj,p : j = (j1, . . . , jν), 0 ≤ j1 ≤ n1, . . . , 0 ≤ jν ≤ nν ; p = (p1, . . . , pν)
}

such that for all ξ = (ξ1, . . . , ξν) ∈ Ω̂,

Nj,p(ξ) =
ν∏
i=1

Nji,pi(ξi).

Thanks to the tensor product structure of the multivariate B-spline basis functions, most prop-
erties of univariate B-spline basis functions given by Proposition 2.1.8 still hold: multivariate
B-spline basis functions are piecewise polynomials of degree pi, i = 1, . . . , ν, respectively in each
variable (i.e. in each direction of space), pointwise non-negative, form a partition of the unity
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and have compact support. Moreover, they are C∞-continuous in each element, where a multi-
dimensional element is also defined as the cartesian product of the corresponding one-dimensional
elements of each Ξi, i = 1, . . . , ν. Moreover, their regularity in each direction of space is the same
as the regularity of the underlying univariate B-spline basis corresponding to this direction. We
will call mesh the set of multi-dimensional elements used to define some B-spline basis functions.

Finally, non-uniform rational B-spline (NURBS) basis functions are an extension of the B-
spline basis functions, that is, they define a larger function space. Next section will explain more
in details why this generalization is important. Let us first define what a univariate NURBS
basis is.

Definition 2.1.10 (Univariate NURBS basis functions) Let Ω̂ be a one-dimensional parametric
space, and let Ξ be a knot vector on Ω̂ that generates the n univariate B-spline basis functions
of order p, {Ni,p : Ω̂ → R}ni=1, by Cox-de Boor formula (2.1). Then given n weights wi ∈ R,
i = 1, . . . , n, we can define the set of univariate NURBS basis functions as {Ri,p : Ω̂ → R}ni=1
such that for all i ∈ {1, . . . , n} and for all ξ ∈ Ω̂,

Ri,p(ξ) = Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

.

We call order of NURBS basis functions the order of the underlying B-spline basis functions.
Moreover, in general, positive weights are used to define NURBS basis functions, and most
properties from the B-spline basis functions are kept:

Proposition 2.1.11 Let p be the order of univariate NURBS basis functions {Ri,p}ni=1.

• The regularity of the NURBS basis functions is the same as the regularity of the underlying
B-spline basis.

• The support of each NURBS basis function consists of only p+1 knot spans and is compact.

• Each knot span is in the support of p+ 1 NURBS basis functions.

• If the weights defining the NURBS basis are positive, then for all i = 1, . . . , n and for all
ξ ∈ Ω̂, Ri,p(ξ) ≥ 0.

• The NURBS basis functions form a partition of the unity.

As in the B-spline case, the definition of multivariate NURBS basis functions follows naturally
from a tensor product rule from the definition of a univariate NURBS basis.

Definition 2.1.12 (Multivariate NURBS basis functions) Let Ω̂ = ∏ν
i=1 Ω̂i be a parametric

space of dimension ν ∈ N \ {0}, and let Ξi ⊂ Ω̂i, i = 1, . . . , ν be ν knot spans that generate∏ν
i=1 ni multivariate B-spline basis functions of multi-order p, say {Nj,p}j∈I where

I = {(i1, . . . , iν) : 0 ≤ i1 ≤ n1, . . . , 0 ≤ iν ≤ nν}.

Then given ∏ν
i=1 ni weights wi ∈ R, i ∈ I, we can define the set of ν-variate NURBS basis

functions as {Ri,p : Ω̂→ R}i∈I such that for all i ∈ I and for all ξ ∈ Ω̂,

Ri,p(ξ) = Ni,p(ξ)wi∑
j∈I Nj,p(ξ)wj

.
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Note that whenever the weights are constant, that is if wi = c ∈ R for all i ∈ I, then for
all ξ ∈ Ω̂, Ri,p(ξ) = Ni,p(ξ) thanks to the partition of unity property of the B-spline basis
functions, exposed in Proposition 2.1.8. This specific case show that B-splines are particular
cases of NURBS.

The definition and properties of multivariate B-spline and NURBS basis functions have been
given as a sake of completeness but in the following, only univariate B-spline functions will be
considered.

2.1.3 B-spline and NURBS geometries

The previously introduced B-spline basis functions are used to build geometrical domains called
B-spline geometries. As in the previous section, let us first define a one-dimensional B-spline
geometry in Rd, d ∈ N \ {0}, called B-spline curve.

Definition 2.1.13 (B-spline curve) Let Ω̂ be a one-dimensional parametric domain and let
Ξ be a knot span on Ω̂ that generates n univariate B-splines basis functions of order p, say
{Ni,p : Ω̂→ R}ni=1, thanks to Cox-de Boor formula (2.1). Given a set of n points {Pi}ni=1 ⊂ Rd,
d ∈ N \ {0}, called control points, a B-spline curve embedded in Rd is parametrically described
as

S : Ω̂→ Ω ⊂ Rd, S(ξ) =
n∑
i=1

Ni,p(ξ)Pi for all ξ ∈ Ω̂. (2.2)

That is, Ω is the geometrical subspace of Rd corresponding to the B-spline curve, while S is its
parametric description.

To sum up, a curve spline is parametrically defined as the linear combination of the univariate
B-spline basis functions, with control points in the real geometrical space Rd as coefficients.
Consequently, n is both the number of B-spline basis functions and the number of control points
required to define a B-spline curve.

Even if only B-spline curves will be considered in the following, we also give the generalization
of the definition of B-spline geometries of higher dimension as a sake of completeness. As in the
case of multivariate B-spline basis functions, B-spline geometries of dimension ν > 1 are defined
by means of tensor product rules from the B-spline curves.

Definition 2.1.14 (B-spline geometry) Let Ω̂ = ∏ν
i=1 Ω̂i be a ν-dimensional parametric domain,

and let Ξi ⊂ Ω̂i, i = 1, . . . , ν be ν knot spans that generate ∏ν
i=1 ni multivariate B-spline basis

functions of order p = (p1, . . . , pν), say {Nj,p : j = (j1, . . . , jν), 0 ≤ ji ≤ ni, i = 1, . . . , ν}. To
simplify the notation, let I := {j = (j1, . . . , jν), 0 ≤ ji ≤ ni, i = 1, . . . , ν}. Then given a set
of ∏ν

i=1 ni points {Pi}i∈I ⊂ Rd, d ∈ N \ {0}, still called control points, a B-spline geometry of
dimension ν embedded in Rd is parametrically described as

S : Ω̂→ Ω ⊂ Rd, S(ξ) =
∑
i∈I

Ni,p(ξ)Pi for all ξ ∈ Ω̂.

As in the one dimensional case, Ω is the geometrical subspace of Rd corresponding to the B-spline
geometry while S is its parametric description.

When ν = 2, B-spline geometries derived from bivariate B-spline basis functions are called B-
spline surfaces; when ν = 3, B-spline geometries are called B-spline solids. Moreover, we have
the following proposition:

Proposition 2.1.15 B-spline geometries inherit from all properties of the corresponding B-
spline basis functions. In particular:
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• the regularity of the B-spline geometry is determined by the regularity of the underlying
B-spline basis;

• the B-spline basis is not interpolatory, in general, except at knots whose multiplicity is p.
Consequently, the B-spline geometry does not pass through the control points, in general,
except at points where the tangent is discontinuous;

• since B-spline basis functions have reduced support, then changing a single control point
will only affect locally the B-spline geometry.

However, even if B-splines can already describe a wide range of geometries, we need to use
NURBS instead of B-splines to be able to define common geometrical objects such as circles or
ellipses, or in general any object containing conic sections. Now, we can then define a NURBS
curve/surface/solid, or more generally a NURBS geometry, similarly as a B-spline geometry.
We directly give the general definition of a NURBS geometry that is obtained from the one of
a NURBS curve by means of tensor product rules.

Definition 2.1.16 (NURBS geometry) Let Ω̂ = ∏ν
i=1 Ω̂i be a ν-dimensional domain, ν ∈ N\{0},

and let Ξi ⊂ Ω̂i, i = 1, . . . , ν be ν knot spans that generate ∏ν
i=1 ni B-spline basis functions

of order p. Let wi ∈ R, i ∈ I, I := {j = (j1, . . . , jν), 0 ≤ ji ≤ ni, i = 1, . . . , ν}, be ∏ν
i=1 ni

given weights. From those weights and the B-spline basis functions, we obtain a NURBS basis
{Ri,p}i∈I . Then given a set of ∏ν

i=1 ni points {Pi}i∈I ⊂ Rd, d ∈ N \ {0}, still called control
points, a NURBS geometry of dimension ν embedded in Rd is parametrically described as

F : Ω̂→ Ω ⊂ Rd, F(ξ) =
∑
i∈I

Ri,p(ξ)Pi ∈ Rd for all ξ ∈ Ω̂.

Therefore, as for B-spline geometries, a NURBS geometry is defined parametrically as a linear
combination of the NURBS basis functions, taking the control points as coefficients.

2.2 Isogeometric analysis and collocation methods
B-splines or NURBS-based isogeometric analysis uses respectively the B-splines or the NURBS
basis functions that have been used to build the geometrical domain in order to approximate the
solution of a PDE. More precisely, if F is the parametrization map of the B-spline or NURBS
region representing the geometry, as in Definitions 2.1.13, 2.1.14 and 2.1.16, then the finite
approximated space in which lies the numerical solution is

Bp = span{Rp ◦ F−1 : Rp is a B-spline or NURBS basis function of order p}.

The image of the elements in the parametric space are elements in the physical space and
constitute the physical mesh. In the following, h will represent the size of the elements in the
physical space. For more details about the theory of isogeometric analysis, we refer the interested
reader to [10].

To solve a PDE, the most widely used technique is the finite element method in which the
differential problem is transformed into its weak form: the PDE in its strong form is multiplied
by a test function and then integrated over the computational domain. From this weighted
residual formulation, the Galerkin method is often used. It consists in seeking the solution in
a suitable discrete space which is also the space in which belong the test functions [26]. In the
case of isogeometric analyis, the solution is sought in the space Bp [10].
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2.2.1 Refinement

It has been previously said that the isogeometric analysis had been invented in order to have
a method that is always geometrically exact, and that makes the refinement of the mesh eas-
ier. First, IGA preserves the geometry exactly since the meshing is defined directly from the
parametrization of the geometrical B-spline or NURBS geometry. In this section, we discuss
about refinement.

In order to have more detailed B-spline or NURBS geometries, and then in order to have more
precise IGA solutions to the differential problems on those geometries, three different procedures
called refinement can be followed. Two of them are similar to what is used in the finite element
method and are called p- and h-refinements; the third one is proper to IGA and is called k-
refinement. Since one of the principal goals of IGA is to always work on exact geometries, p-,
h- or k-refinements should never change the geometry considered.

Firstly, p-refinement, also called order elevation, consists in increasing the degree of the
underlying polynomials, and thus also in increasing the degree of the B-spline basis functions.
However, the regularity of the basis should not change in the whole domain. Furthermore, we
recall that the continuity of the basis at each knot is equal to p meines the multiplicity of each
knot. Consequently, to keep the same regularity in the basis when p is increased by 1, we also
need to increase the multiplicity of each knot by 1, and no additional knot needs to be inserted
into the underlying knot span(s). The original function space is embedded into the resulting
function space that we get from the span of the basis functions obtained from the new knot span,
that is, the basis is enriched. For more details about the algorithms used to do such refinement,
we refer the interesting reader to [25].

Secondly, h-refinement, also called knot insertion, consists in adding some knots to the
original knot vector. Still to keep the same geometry (parametrically and geometrically) and to
have the same regularity of the B-spline basis functions in the whole domain, we need to change
and choose appropriately the control points in the following way: let Ξ = {ξ1, . . . , ξn+p+1} be the
initial knot vector, and let Ξ̃ = {µ1 = ξ1, . . . , µn+m+p+1 = ξn+p+1} be the knot vector obtained
after adding m new knots. Moreover, let C be the original set of control points of cardinality
n. Then the new set of control points that one has to take in order to obtain the exact same
geometry is defined by the transformation T pC, where T p ∈ [ξ1, ξk](n+m)×n is defined recursively
as: for all i = 1, . . . , n+m, for all j = 1, . . . , n,

T 0
ij =

{
1 if ξj ≤ µi < ξj+1,

0 otherwise,
T q+1
ij = µi+q−ξj

ξj+q−ξj
T qij + ξj+q+1−µi+q

ξj+q+1−ξj+1
T qi(j+1), for q = 0, . . . , p− 1.

More details can be found in [25]. If an already existing knot is added, its multiplicity in the
knot vector is increased. Hence, the continuity of the basis functions is reduced, but thanks to
this choice of control points, the continuity of the geometry is conserved. As for the p-refinement
case, the original function space is embedded into the newly created function space. With this
type of refinement, both the number of basis functions and the number of elements increase.

Finally, k-refinement is a combination of order elevation and knot insertion. More precisely,
it consists first into elevating the order from some p to some q > p, and then into adding a
knot ξ̃ into the knot vector so that the basis functions at ξ̃ are Cq−1-continuous. One has to
be careful to the fact that this sequence of operations is not commutative. Indeed, if a knot
ξ̃ is inserted before elevating the order from p to q > p, then the basis functions at ξ̃ would
only be Cp−1-continuous. This type of refinement is unique to IGA and cannot be found in the
finite element analysis since in the latter case, basis functions are only C0-continuous between
elements.
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In the following, we will concentrate on B-spline geometries that always have the same fixed
continuity between elements. More precisely, we will work with the spaces Bp−1

p whose B-splines
have order p and are globally Cp−1-continuous. That is, they are Cp−1-continuous between
elements since they are already always C∞-continuous inside each element.

2.2.2 Isogeometric collocation methods

In contrast to the Galerkin isogeometric method, isogeometric collocation is based on the eval-
uation of the strong formulation of the PDE at some collocation nodes. This method requires
basis functions that are sufficiently smooth to handle possibly high order differential operators.
This is naturally the case with the basis functions used in isogeometric analysis presented pre-
viously. IGA collocation methods have been introduced by Auricchio and al. in [2]. The major
advantage of isogeometric collocation with respect to the Galerkin isogeometric analysis is the
low effort required for the construction of the problem and for the assembly. Indeed in Galerkin
methods, the construction of the problem and the assembly are based on full Gauss quadrature
to compute the integrals. This is very efficient for C0-continuous basis functions such as in the
finite element method, but it is inefficient for isogeometric analysis whose B-spline basis func-
tions have a higher order continuity [10, 17]. Instead, collocation methods only need one point
evaluation per basis function, reducing notably the computational costs.

However, in the actual state of the research, the rate of convergence of isogeometric collo-
cation methods are in general lower than in isogeometric Galerkin methods [1, 23, 24]. In the
following, we present more in details how to solve a PDE with an IGA collocation method,
together with the most widely used collocation points found in literature.

Let us introduce briefly the IGA collocation method. Let us consider the following general
differential problem: {

Lu = f in Ω,
Bu = g on ∂Ω,

where Ω ∈ Rr is the geometrical domain with r ∈ N\{0}, u : Ω→ R is the solution, L and B are
linear differential operators representing respectively the problem and the boundary conditions,
and f and g are given data functions. Any collocation method used to solve such problem is
based on the choice of a finite set of collocation points; the way to choose such points will be
discussed later on. In general, collocation points are defined in the parametric space Ω̂ from
which the B-spline or NURBS geometry Ω has been built. So let Ĉ := {τ̂i}i∈I ⊂ Ω̂ and let
τi := F(τ̂i), for all i ∈ I, where F is the parametrization map of Ω, as in section 2.2. We then
define C := {τi}i∈I ⊂ Ω. Let us separate C in two distinct sets: CB corresponds to the set of
collocation points belonging to the boundary ∂Ω, and CL corresponds to the set of collocation
points belonging to the interior of Ω. Note that this is equivalent to separating Ĉ into the set of
points belonging to the boundary ∂Ω̂ and the set of points belonging to the interior of Ω̂, and
then mapping the two sets to Ω through F. Then, the collocation problem reads{

Lu(τ) = f(τ), ∀τ ∈ CL,
Bu(τ) = g(τ), ∀τ ∈ CB.

Collocation points influence strongly the convergence and the stability of the method. Con-
sequently, they must be chosen carefully. Moreover, if multivariate NURBS or B-splines are
considered, collocation points are first defined on each direction of the parametric space and
then obtained on the whole space thanks to a tensor-product rule. That is why in the following,
we will mostly concentrate on one-dimensional B-spline spaces.
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Figure 2.3: Distribution of Greville abscissae. On top, p = 4 and n = 10, and the knot vector
used is Ξ = {−1,−1,−1,−1,−1,−2
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the knot vector used is Ξ = {−1,−1,−1,−1,−1,−1,−2
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3 , 1, 1, 1, 1, 1, 1}.

Let Bp be the space in which the solution of the differential equation is sought, where
p ∈ N\{0} is the order of the underlying B-splines, and let n be the dimension of Bp. Moreover,
let Ni,p, i = 1, . . . , n be the B-spline basis functions of Bp. Then there exist ui ∈ R, i = 1, . . . , n
such that u can be written as

u =
n∑
i=1

uiNi,p.

Consequently, the collocation problem is transformed into the following linear system whose
unknowns are the coefficients ui:{ ∑n

i=1 ui LNi,p(τ) = f(τ), ∀τ ∈ CL,∑n
i=1 ui BNi,p(τ) = g(τ), ∀τ ∈ CB.

This system can be rewritten under matrix form and if the choice of collocation points leads to
a well-posed problem, it can be easily solved to find the solution u ∈ Bp.

2.2.3 Greville and Demko abscissae

The most widely used IGA collocation points are the Greville abscissae [2]. Given a knot vector
Ξ = {ξ1, . . . , ξn+p+1}, and if univariate NURBS or B-splines are considered, they are defined as
the mean of p consecutive knots, that is:

τ̂i := ξi+1 + ξi+2 + . . .+ ξi+p
p

, τi = F(τ̂i),

for all i = 1, . . . , n. If open knots are used, ξ1 = ξ2 = . . . = ξp+1 and ξn+1 = ξn+2 = . . . = ξn+p+1.
Consequently, it is easy to see that in this case, τ̂1 = ξ1 and τ̂n = ξp+n+1. In the case of bivariate
NURBS or B-splines, Greville abscissae are defined by means of a tensor product rule: given
the two knot vectors Ξ = {ξ1, . . . , ξn+p+1} and H = {η1, . . . , ηm+q+1}, they are defined as:
∀i = 1, . . . , n, ∀j = 1, . . . ,m,

ξ̂i := ξi+1 + ξi+2 + . . .+ ξi+p
p

, η̂j := ηj+1 + ηj+2 + . . .+ ηj+q
q

, τij = F(ξ̂i, η̂j).

This is easily generalizable to get the Greville abscissae associated with any multivariate NURBS
or B-spline. Some results show that the method derived from those collocation points is stable
up to order 3, but it can be unstable on particular non-uniform meshes when the order is larger
than 19, see [20, 21].
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Figure 2.3 shows the distribution of Greville abscissae in the case in which Ω̂ = Ω = (−1, 1)
is divided into 6 elements and is represented by B-splines of order 4 or 5 that are globally C3-
and C4-continuous, respectively.

Other very widely used IGA collocation points in the literature are the Demko abscissae
proposed by Demko in [14]. Those points correspond to the extrema of the Chebyshev splines,
that is the splines whose extrema take the values ±1 and that have the maximum number of
oscillations. Demko abscissae can be obtained thanks to Remez iterative algorithm. For more
information, the interesting reader can look at the Matlab documentation of the spline toolbox
[12]. This is for now the only choice of collocation points which it is proved to lead to a stable
method for any mesh size and any B-spline order [2].

Figure 2.4 shows the distribution of Demko abscissae in the same case as Figure 2.3 for
Greville abscissae, that is in the case in which Ω̂ = Ω = (−1, 1) is divided into 6 elements and is
represented by B-splines of order 4 or 5 that are globally C3- and C4-continuous, respectively.
It can be clearly seen that Demko and Greville abscissae are not the same but their number in
each element is the same.

However, none of these choices of collocation points give an optimal error convergence. By
optimal, we mean the same convergence of the error as what we would get if the approximate
solution were obtained with the Galerkin isogeometric method [10, 26]. Indeed, it has been
seen in [3, 9, 10] that under h-refinement, that is under refinement of the mesh only, without
changing the order p of the spline basis functions nor their continuity, the error behaves as hp
in the H1-norm, and as hp+1 in the L2-norm, with h being the size of the elements of the mesh.
However, it has been shown ([14, 15, 23]) that Greville and Demko abscissae lead to isogeometric
collocation methods that converge:

• optimally in the H1-norm for even values of the B-spline order p, i.e. as hp;

• one order sub-optimally in the L2-norm for p even, i.e. as hp instead as hp+1;

• one order sub-optimally in the H1-norm for odd values of p, i.e. as hp−1 instead of hp;

• two orders sub-optimally in the L2-norm when p odd is used, i.e. as hp−1 instead of hp+1.

Furthermore, Auricchio and al. in [2] have shown under a theoretical framework that in the
L∞- and the W 1,∞-norms, the optimal convergence of the error of an isogeometric collocation
solution has a behavior in hp; while in the W 2,∞-norms, the optimal convergence of the error of
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an IGA collocation solution has a behavior in hp−1. Let us recall that

‖ · ‖W j,∞ =
j∑
i=0
‖Di · ‖L∞ ,

where Di is the operator representing the ith derivative. Finally, still in [2], it is shown that
when Greville or Demko abscissae are used, the error behaves optimally in the W 2,∞-norm for
any choice of p, and in the L∞- and in the W 1,∞-norms when p is even, but it is one order
sub-optimal in the L∞- and in the W 1,∞-norms when p is odd.
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Chapter 3

Collocation method via suitable
quadrature formulas

It is well known that the Galerkin spectral element method with numerical integration (SEM G-
NI) is equivalent to the spectral collocation method (collocated SM) on Gauss-Legendre-Lobatto
points, as it is shown in [8], see also [26]. In this chapter, our aim is to look for similar results
with IGA, that is to find a suitable quadrature formula so that the IGA Galerkin method can
be equivalent to the IGA collocation method.

We will first review how this is done in the case of the Galerkin spectral element method
with numerical integration, and then we will try to move this idea to the isogeometric analysis.

3.1 Equivalence between SEM G-NI and the spectral colloca-
tion method

In this section, we first present the Galerkin spectral element method with numerical integration,
and then prove the equivalence of this method and the spectral collocation method.

3.1.1 The spectral element method with numerical integration

As its name indicates, the Galerkin spectral element method with numerical integration (SEM
G-NI) is a Galerkin method on piecewise polynomial subspaces of high degree, which makes use
of Gaussian numerical integration on each element. The space where the solution is sought is
the same as the space of the test functions. As basis functions of this space, piecewise Lagrange
interpolants on well-chosen nodes are used. That is, the computational domain Ω is decomposed
into nel elements (xk, xk+1), k = 0, . . . , nel − 1, and basis functions are defined on each element.
Looking first on a single reference element (−1, 1), and given a set of n nodes {τi}ni=1 in (−1, 1),
the basis functions φ̂i for i ∈ {1, . . . , n} are:

φ̂i(x) =
n∏

j=1,j 6=i

x− τj
τi − τj

.

Usually, one chooses the Gauss-Legendre-Lobatto (GLL) nodes. That is, if p is the desired
underlying polynomial degree, then the nodes correspond to the roots of (1 − x2)L′p(x), where
Lp is the Legendre polynomial of degree p defined recursively in this way on the reference element
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(−1, 1): ∀x ∈ (−1, 1),
L0(x) = 1,
L1(x) = x,

Lk+1(x) = 2k+1
k+1 xLk(x)− k

k+1Lk−1(x), for k > 1.

There are p+ 1 such nodes. Therefore, if we let

Ξk(ξ) = (ξ + 1)xk+1 − xk
2 + xk, ξ ∈ [−1, 1],

be the affine transformation that maps (−1, 1) into (xk, xk+1), k = 0, . . . , nel− 1, then the basis
functions used in SEM on each element are φ(k)

i := φ̂i ◦ Ξ−1
k , k = 0, . . . , nel − 1, i = 0, . . . , p.

They correspond to Lagrange interpolants at the Gauss-Legendre-Lobatto nodes of the interval
(xk, xk+1), that is at the nodes in {Ξk(τi)}pi=0, for all k = 0, . . . , nel− 1. To define a global basis
from them, that is still interpolating at the Gauss-Legendre-Lobatto nodes on each element,
we first define the basis functions associated to internal nodes of each element (xk, xk+1), for
k = 0, . . . , nel − 1, as follows:

Φpk+(i+1)(x) =
{
φ

(k)
i (x), if x ∈ (xk, xk+1),

0, otherwise,
(3.1)

for all i = 1, . . . , p − 1. Then, we define the basis functions associated to element’s boundary
nodes:

Φpk+1(x) =


φ

(k)
0 (x), if x ∈ (xk, xk+1),
φ

(k−1)
p (x), if x ∈ (xk−1, xk),

0, otherwise,
(3.2)

for all k = 1, . . . , nel − 1. Finally, we define the basis functions associated to the boundaries of
Ω, Φ1 and Φpnel+1, as in equation (3.1) with k = 0, i = 0 and k = nel, i = 0, respectively. As
a consequence, the finite approximate function space in which the solution is sought is Qp(Ωh),
that is the set of continuous piecewise polynomials of degree at most p, where Ωh is a uniform
partition, approximation of Ω. Note that we will write Q0

p(Ωh) the set of functions in Qp(Ωh)
that are zero at the boundary of Ωh. If a single element is considered, we speak of spectral
method instead of spectral element method.

Moreover, from the weak formulation of the differential equation, SEM with numerical in-
tegration achieves efficiency by using quadrature formulas to compute the integrals. When not
made explicit, the quadrature rule used in SEM G-NI is the Gauss-Legendre-Lobatto quadrature
rule, for which the quadrature points reside at the nodal points. This quadrature rule results in
diagonal mass matrices since Lagrange basis functions are interpolant on the quadrature nodes.
Moreover, the weights of this quadrature rule on the reference element (−1, 1) are computed as
follows: for all j ∈ {0, . . . , p},

wj = 2
p(p+ 1)

1[
Lp (τj)

]2 .
The scaled weights on each element (xk, xk+1) are then Ξk(wj) for all j = 1, . . . , p. The degree
of accuracy of this quadrature formula is 2p−1. It will thus not compute exactly mass matrices.
For more details about the spectral element methods, we refer the interested reader to [7, 8].
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3.1.2 Equivalence between formulations

In the following, we will show that SEM G-NI is equivalent to the so-called spectral collocation
method. The spectral collocation method is the collocation method where the basis functions are
the same as the ones of SEM G-NI and where the collocation points are the Gauss-Legendre-
Lobatto nodes on each element of the space decomposition. We will see that, however, the
differential operator needs to be slightly modified.

Let us consider a general one-dimensional diffusion-transport-reaction problem with Dirichlet
homogeneous boundary conditions, which consists in finding u such that:{

Lu := (−µu′)′ + (cu)′ + σu = f in (a, b),
u(a) = u(b) = 0, (3.3)

with µ ∈ L∞(a, b), µ(x) ≥ µ > 0, c ∈ R, σ ∈ L2(a, b), σ ≥ 0 almost everywhere, a, b ∈ R and
f ∈ L2(a, b).

The weak formulation of this problem reads: find u ∈ V := H1
0 (a, b) such that for all v ∈ V ,

ˆ
Ω
µu′v′ dΩ−

ˆ
Ω
cuv′ dΩ +

ˆ
Ω
σuv dΩ =

ˆ
Ω
fv dΩ.

It is well known that this problem is well posed under the condition 1
2c
′ + σ ≥ 0 almost every-

where. That is, in this case, there exists a unique solution u in H1
0 (Ω), thanks to Lax-Milgram

theorem. For more details, refer to the book of Quarteroni [26]. Considering a space decomposi-
tion of (a, b), say Ωh = {(ti−1, ti)}nel

i=1, and fixing the order of the polynomials to p, the Galerkin
spectral element method with numerical integration states as follows: find up ∈ Vp := Q0

p(Ωh)
such that ∀vp ∈ Vp,

nel∑
i=1

[(
(µu′p)|(ti−1,ti), v

′
p|(ti−1,ti)

)
p
− ((cup)|(ti−1,ti), v

′
p|(ti−1,ti)

)
p

+
(
(σup)|(ti−1,ti), vp|(ti−1,ti)

)
p

]
=

nel∑
i=1

(f |(ti−1,ti), vp|(ti−1,ti))p, (3.4)

where (·, ·)p is the discrete Gauss-Legendre-Lobatto inner product defined as

(h, g)p =
p∑
i=0

αih(τi)g(τi) ∀h, g ∈ C0(I),

where I is any interval of R, {τi}pi=0 are the Gauss-Legendre-Lobatto nodes on I, and {αi}pi=0
are the corresponding Gauss-Legendre-Lobatto quadrature formula weights.

From equation (3.4), we want to retrieve the spectral collocation formulation of our prob-
lem. To do so, we would like to counter-integrate by parts (3.4). Let us recall that the basis
functions used on each element are the Lagrange interpolants on the Gauss-Legendre-Lobatto
nodes defined globally as it is done in section 3.1.1. Let Πp : C0([a, b]) → Vp be the inter-
polant operator such that Πp(g)|[ti,ti+1] = ∑p

j=0 g(τi,j)φi,j for all g ∈ Vp, where {φi,j}pj=0 are the
Legendre interpolants on the Gauss-Legendre-Lobatto nodes {τi,j}pj=0 on the interval [ti, ti+1],
for all i = 0, . . . , nel − 1. Finally, let {αi,j}pj=0 be the corresponding Gauss-Legendre-Lobatto
quadrature formula weights. Consequently, for all g ∈ C0([a, b]) and for all i = 0, . . . , nel − 1,
since Πpg is a polynomial of degree p,

p∑
j=0

αi,jg(τi,j) =
p∑
j=0

αi,jΠpg(τi,j) =
ˆ ti+1

ti

Πpg(x) dx.
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Therefore, since Πp(µu′p)v′p and [Πp(µu′p)]′vp belong to Q2p−1(Ωh) and since Gauss-Legendre-
Lobatto quadrature formula has a degree of exactness equal to 2p− 1, then

nel−1∑
i=0

(
(µu′p)|(ti,ti+1), v

′
p|(ti,ti+1)

)
p

=
nel−1∑
i=0

(
Πp(µu′p)|(ti,ti+1), v

′
p|(ti,ti+1)

)
p

=
nel−1∑
i=0

ˆ ti+1

ti

Πp(µu′p)|(ti,ti+1)v
′
p|(ti,ti+1) dx

=
ˆ b

a
Πp(µu′p)v′p dx

= −
ˆ b

a
[Πp(µu′p)]′vp dx

= −
nel−1∑
i=0

ˆ ti+1

ti

[Πp(µu′p)]′|(ti,ti+1)vp|(ti,ti+1) dx

= −
nel−1∑
i=0

(
[Πp(µu′p)]′|(ti,ti+1), vp|(ti,ti+1)

)
p
,

and similarly

−
nel−1∑
i=0

(
(cup)|(ti,ti+1), v

′
p|(ti,ti+1)

)
p

= −
nel−1∑
i=0

(
Πp(cup)|(ti,ti+1), v

′
p|(ti,ti+1)

)
p

= −
nel−1∑
i=0

ˆ ti+1

ti

Πp(cup)|(ti,ti+1)v
′
p|(ti,ti+1) dx

= −
ˆ b

a
Πp(cup)v′p dx

=
ˆ b

a
[Πp(cup)]′vp dx

=
nel−1∑
i=0

ˆ ti+1

ti

[Πp(cup)]′|(ti,ti+1)vp|(ti,ti+1) dx

=
nel−1∑
i=0

(
[Πp(cup)]′|(ti,ti+1), vp|(ti,ti+1)

)
p
.

Therefore, equation (3.4) can be rewritten as
nel−1∑
i=0

[
−
(
[Πp(µu′p)]′|(ti,ti+1), vp|(ti,ti+1)

)
p

+
(
[Πp(cup)]′|(ti,ti+1), vp|(ti,ti+1)

)
p

+
(
(σup)|(ti,ti+1), vp|(ti,ti+1)

)
p

]

=
nel−1∑
i=0

(f |(ti,ti+1), vp|(ti,ti+1))p,

for all vp ∈ Vp. Now, let us consider the global basis {Φi}pnel+1
i=1 of Vp as it is defined in

equations (3.1) and (3.2). Then, we choose vp to be any basis function of Vp, say Φpi+j for some
i = 0, . . . , nel − 1 and j = 0, . . . , p− 1, (i, j) 6= (0, 0), since we know that Φpi+j(τk,l) = δijδkl by
definition, for all k = 0, . . . , nel − 1, l = 0, . . . , p− 1, (k, l) 6= (0, 0), then

−[Πp(µu′p)]′(τi,j) + [Πp(cup)]′(τi,j) + (σup)(τi,j) = f(τi,j),
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according to the definition of the discrete Gauss-Legendre-Lobatto inner product.
Let Lp be the differential operator such that Lpg := −[Πp(µg′)]′ + [Πp(cg)]′ + σg, for any

suitable function g. Then the problem expressed with SEM G-NI in (3.4) is equivalent to the
following collocation problem: find up ∈ Qp(Ωh) such that{

Lpup(τi,j) = f(τi,j), for i = 0, . . . , nel − 1, j = 0, . . . , p− 1, (i, j) 6= (0, 0),
up(a) = up(b) = 0.

Notice that the number of collocation points without repetitions is nelp+ 1, which is exactly the
dimension of Qp(Ωh).

In the case in which other boundary conditions are considered, they have to be carefully
taken into account when integration and counter-integration by part is done. If another differ-
ential operator L is considered, the equivalent collocation problem is obtained by replacing L
by the so-called pseudo-spectral operator Lp, that is by substituting every derivative of L by
the corresponding derivative of the Gauss-Legendre-Lobatto interpolation.

The method just presented is mainly based on the two following ingredients:

1. the presence of a high precision quadrature formula (Gauss-Legendre-Lobatto formula) to
integrate the polynomials of Qp(Ωh), where Ωh is the partition of the geometrical domain
and p is a given polynomial degree;

2. the existence of interpolant basis functions of Qp(Ωh) (Legendre polynomials) that can be
used to interpolate any function at the quadrature nodes of ingredient 1.

In the following, we try to mimic what has just been done with SEM G-NI and translate it
to isogeometric analysis. Ingredient 2 is easier to obtain, so we first look for a high precision
quadrature formula as in ingredient 1.

3.2 Minimizing the quadrature error with a minimum number
of nodes

It has been seen in section 3.1 that for the diffusion-transport-reaction model problem (3.3), a
high precision formula is needed in particular to compute the mass and the stiffness matrices.
Consequently, let us concentrate on integrating as accurately as possible the stiffness and the
mass matrices, with the least possible number of nodes. Since B-splines are piecewise polynomial
functions, Gauss quadrature formulas are indeed valid but they require too many quadrature
points. Indeed, to build a collocation method out of a quadrature formula as in section 3.1, the
number of quadrature points has to be equal to the dimension of the space considered.

Let Ω = (a, b) still be the one dimensional domain considered. The following notation is
used:

• p: degree of the underlying polynomials/B-splines;

• nel: number of elements in the decomposition of the domain Ω;

• Bck(Ω): set of B-splines of degree k that are globally Cc-continuous on a domain Ω, with
0 ≤ c ≤ k − 1.

Consider the space Bp−1
p (Ω), let n = p + nel be its dimension, and let B = {φi}ni=1 be the

basis given by Cox-de-Boor recursion formula, see equation (2.1) in section 2.1. We look for
the best quadrature points so that

´ b
a φiφj dx and

´ b
a φ
′
iφ
′
j dx are as accurate as possible, for all
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i, j = 1, . . . , n. Note that any product of two elements of B belongs to Bp−1
2p , and any product

of the derivative of two elements of B belongs to Bp−2
2(p−1). Consequently, if we call Bm a basis of

Bp−1
2p and Bs a basis of Bp−2

2(p−1), it is enough to find the best quadrature formulas so that
´ b
a ψ dx,

∀ψ ∈ Bm and
´ b
a ϕ dx, ∀ϕ ∈ Bs are as accurate as possible. Note that the subscripts m and s

stand respectively for mass and stiffness matrices; they are used to simplify the notation.

3.2.1 Mass matrix

Let us first concentrate on the mass matrix, that is let us minimize√√√√√ ∑
ψ∈Bm

∣∣∣∣∣
ˆ b

a
ψ dx−

nq∑
i=1

αiψ(τi)
∣∣∣∣∣
2

, (3.5)

whose unknowns are

• the number nq of quadrature points;

• the quadrature points τi, i = 1, . . . , nq;

• the quadrature weights αi, i = 1, . . . , nq.

Once the quadrature points and their number nq are determined, the quadrature weights are

αi :=
ˆ b

a

nq∏
j=1,j 6=i

x− τj
τi − τj

dx, ∀i = 1, . . . , nq, (3.6)

that is we are looking for a Lagrange quadrature formula. Let N = p + nel(p + 1) be the
dimension of Bp−1

2p . The algorithm implemented to find the minimum of equation (3.5) is the
following:

Input: a, b, p, nel, tol.

1. Build Bm;

2. For each ψ ∈ Bm, compute the exact integral
´ b
a ψ dx thanks to the (non optimal but

exact) Gauss-Legendre quadrature formula requiring
⌈2p+1

2
⌉
function evaluations on each

element;

3. Loop over nq ranging from 1 to N :

a) Set conditions on the set of quadrature points τ to find: τ should be symmetric,
containing values between a and b, sorted in increasing order;

b) Loop over a certain number of trials nt ranging from 1 to nmax
t :

(i) Let τ0 be a random initial value of quadrature points τ ;
(ii) Find the minimum of the function f2min that, given as input a set of quadrature

points τ , computes the corresponding weights α as in equation (3.6), and returns
(3.5);

(iii) Let τnt be the argument of the minimum found;
c) Define

τnq := arg min
τ=τ1,...,τnmax

t

f2min(τnt);
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nel p 2p p− 1 (continuity) nq nodes nq − 2 interior nodes n N

1

1 2 0 3 1 2 3
2 4 1 4 2 3 5
3 6 2 5 3 4 7
4 8 3 6 4 5 9
5 10 4 7 5 6 11

2

1 2 0 4 2 3 5
2 4 1 5 3 4 8
3 6 2 7 5 5 11
4 8 3 8 6 6 14
5 10 4 10 8 7 17

3

1 2 0 6 4 4 7
2 4 1 8 6 5 11
3 6 2 10 8 6 15
4 8 3 19(12) 17(10) 7 19
5 10 4 17(13) 15(11) 8 23

4

1 2 0 8 6 5 9
2 4 1 10 8 6 14
3 6 2 19(12) 17(10) 7 19
4 8 3 24(15) 22(13) 8 24
5 10 4 29(16) 27(14) 9 29

Table 3.1: Minimal number of quadrature nodes needed to integrate exactly the mass matrix
with tol = 10−7, or between brackets tol = 10−6.

d) If f2min(τnq ) < tol, end the loop;

Output: nq, τnq .

We would like to get nq ≤ n. Note that it is important to know how to deal with the boundary
conditions. To stay in the same framework as section 3.1, consider a one-dimensional diffusion-
transport-reaction problem with constant parameters and homogeneous Dirichlet boundary con-
ditions that admits a unique solution, that is problem (3.3) with µ, c and σ constant. In this
case, we have to consider all basis functions Bm and force a and b to be nodes of quadrature.

The algorithm just presented has been implemented in Matlab thanks to the minimizer
function fmincon [22]. Table 3.1 sums up the minimal number of quadrature nodes obtained
when nel = 1, . . . , 4 and p = 1, . . . , 5 are used, with a tolerance tol = 10−7. Moreover, Figure
3.1 shows the distribution of the best quadrature nodes found, together with the basis functions
Bm of Bp−1

2p for each p and each nel. Since the minimization problem is not linear, the results
for nel ≥ 3 and p ≥ 3 may not be very precise and should be considered with care.

For nel = 1, the quadrature nodes obtained are the Gauss-Legendre-Lobatto nodes. We
could have expected this since on a single element, a B-spline is a polynomial and nothing more.
In this case, nq = p+ 2 = n+ 1, as it is already known for polynomials. Consequently, with one
element, the mass matrix cannot be exactly integrated with nq = p + 1 = n quadrature points
or fewer. When neq > 1, the situation is even worst: always more nodes are required and there
is no possibility to find n = nq quadrature points to integrate exactly the mass matrix. The
only case with nel > 1 for which Gauss points can be recognized is when nel = 2 and p = 1.
Here, the points found are the Gauss-Radau points on each of both elements. Note that when
p = 1, the space considered is B0

2 and the functions of this space are globally C0-continuous,
as the basis functions used in the spectral element method. However, Gauss quadrature nodes
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Figure 3.1: Distribution of the nodes minimizing the quadrature error for the mass matrix (red
circles ◦), with the respective basis Bm (black curves -). Blue crosses + separate elements.

should not necessarily be expected on each element since those quadrature nodes are optimal
for discontinuous functions at the elements’ boundaries, and not for C0-continuous functions.

Different initial values τ0 of point 3.b)(i) of the algorithm have been tried, such as equally
spaced points in (a, b) or the nq Gauss-Legendre-Lobatto points on the whole domain (a, b), but
the results do not significantly change. Also, if the basis functions considered in the sum of
equation (3.5) are only the basis functions that are zero on the boundaries a and b, the exact
same results are obtained, that is the algorithm finds the same quadrature points.

3.2.2 Stiffness matrix

Now, let us see what happens when the stiffness matrix is considered instead of the mass matrix,
that is let us minimize √√√√√∑

ϕ∈Bs

∣∣∣∣∣
ˆ b

a
ϕ dx−

nq∑
i=1

αiϕ(τi)
∣∣∣∣∣
2

, (3.7)

whose unknowns are still the number nq of quadrature points, the quadrature points τi, for
i = 1, . . . , nq, and the quadrature weights αi, i = 1, . . . , nq. The whole procedure and the
algorithm used are exactly the same as for the mass matrix, provided we replace Bp−1

2p by
Bp−2

2(p−1) and Bm by Bs. Moreover, in this case, the exact Gauss-Legendre quadrature formula

used in step 2 requires
⌈

2p−1
2

⌉
function evaluations on each element instead of

⌈
2p+1

2

⌉
.
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nel p nq nodes nq − 2 interior nodes n N

1

2 3 1 3 3
3 4 2 4 5
4 5 3 5 7
5 6 4 6 9

2

2 4 2 4 5
3 5 3 5 8
4 7 5 6 11
5 8 6 7 14

3

2 6 4 5 7
3 10(8) 8(6) 6 11
4 15(10) 13(8) 7 15
5 * * 8 19

4

2 8 6 6 9
3 14(10) 12(8) 7 14
4 * * 8 19
5 * * 9 24

Table 3.2: Minimal number of quadrature nodes needed to integrate exactly the stiffness matrix
with tol = 10−7, or between brackets tol = 10−6. Asterisks * correspond to cases in which the
algorithm did not converge, that is for which the quadrature error has stayed above 10−6 for all
nq = 1, . . . , N − 1, where N is the number of degrees of freedom of Bp−2

2(p−1).

Again, the algorithm has been implemented in Matlab thanks to the minimizer function
fmincon. Table 3.2 sums up the minimal number of quadrature nodes obtained when we use
nel = 1, . . . , 4 and p = 1, . . . , 5, with a tolerance tol = 10−7. Moreover, Figure 3.2 shows the
distribution of the best quadrature nodes found, together with the basis functions Bs of Bp−2

2(p−1)
for each p and each nel. As previously, since the minimization problem is not linear, the results
for nel ≥ 3 and p ≥ 3 may not be very precise and should be considered with care.

Still, for nel = 1, the quadrature nodes obtained are the Gauss-Legendre-Lobatto nodes since
on a single element, a B-spline is a polynomial and nothing more. In this case, nq = p+ 1 = n,
as it is already known for polynomials. Consequently, with one element, the stiffness matrix
can be exactly integrated with exactly nq = p + 1 = n quadrature points. When neq > 1, the
situation is getting worst: always more nodes are required and there is no possibility to find
n = nq quadrature points to integrate exactly the mass matrix.

Let us recall that the support of any B-spline basis function of order k defined by Cox-de-
Boor formula is equal to k + 1 knot spans. Moreover, the k first and the k last such B-spline
basis functions are influenced by the boundary since more than one boundary knot are used
to define them. Consequently, both for the mass and the stiffness matrices, we would expect
to see a certain repetition pattern appear far from the boundaries when the number of ba-
sis functions n is larger than 4p for the mass matrix, or when n > 4(p − 1) for the stiffness
matrix. Let us remember that the number of basis functions of Bck defined on nel elements is
(k + 1) + (nel − 1)(k − c). For the mass matrix, the space Bp−1

2p is considered, so in this case
n = (2p+ 1) + (nel− 1)(p+ 1). Consequently, a repetition pattern could be seen for nel ≥ 3. For
the stiffness matrix, the considered space is Bp−2

2(p−1), so in this case, n = (2p − 1) + (nel − 1)p.
Therefore, a repetition pattern could be also seen for nel ≥ 3. However, already when p = 1 in
the case in which the mass matrix is considered, we can easily see that it is not the case. Indeed,
when nel = 3, two nodes are present in the middle element and are symmetrically located with
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Figure 3.2: Distribution of the nodes minimizing the quadrature error for the stiffness matrix
(red circles ◦), with the respective basis Bs (black curves -). Elements are separated by the blue
crosses +.

respect to the center of the element. When nel = 4, two nodes are still present in each of the
two middle elements, but they are not symmetrically distributed inside their respective element.
Instead, they are pushed towards the boundary. When the stiffness matrix is considered with
p = 2, the result is even worst: only one quadrature node is present in the middle element when
nel = 3, while two nodes are present in the two middle elements when nel = 4.

The results above can be compared with the results of Hughes, Reali and Sangalli in [19].
In this paper, the authors try to find efficient quadrature rules for isogeometric analysis in a
similar way as it has been done previously in this section, that is by means of minimizing the
quadrature error, but the aim of this paper is not to find an IGA collocation method. As a
consequence, the boundary nodes a and b are not forced to be quadrature points. Moreover,
their study is only done on a biunit interval, that is when nel = 2. If in our algorithm, we do
not force a and b to be quadrature points anymore, then we find the same results as Hughes
and al. when nel = 2, that is we get a number of collocation points nq =

⌈
N
2
⌉
, where N is the
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number of degrees of freedom of the B-spline space considered. The coordinates of the optimal
quadrature points in this specific case can be found in Tables 8 and 10 of [19], when p = 1 and
p = 2, respectively.

Therefore, this confirms the results presented in this section. Unfortunately, it has just
been shown that there does not exist any quadrature formula obtained by minimization of the
quadrature error whose minimum number of quadrature nodes is equal to the number of basis
functions of the considered space, and which computes exactly either the mass or the stiffness
matrix of an isogeometric problem.

3.3 Convergence of the quadrature error
In the previous section 3.2, it has been shown that there does not exist any quadrature rule
that computes exactly the mass and the stiffness matrices of an isogeometric problem with a
number of nodes equal to the dimension of the B-spline space considered. However, this is also
the case when basis functions of the spectral element method are used. Indeed, in SEM G-NI,
the stiffness matrix is computed exactly, but the mass matrix is not, since Gauss-Legendre-
Lobatto quadrature formula has degree of exactness equal to 2p−1, where p is the degree of the
underlying polynomials. Nonetheless, the error introduced by the numerical integration with
Gauss-Legendre-Lobatto quadrature formula converges towards zero. An estimation of the rate
of convergence is given in [27]: let f ∈ Hs(a, b) with s ≥ 1, and let IGLL

n f be the approximation
of the integral of f between a and b obtained with the Gauss-Legendre-Lobatto quadrature
formula using n+ 1 nodes. Then

en :=
∣∣∣∣∣
ˆ b

a
f(x) dx− IGLL

n f

∣∣∣∣∣ ≤ C
( 1
n

)s
‖f‖Hs(a,b), (3.8)

where C is a constant independent from n but which could depend on s. In particular, if f is
the product of two polynomials of degree p, as it would be if the mass matrix were computed,
then en would tend to 0 when n tends to infinity.

In this section, the idea is to consider the quadrature formula obtained thanks to the al-
gorithm presented in section 3.2 when we fix the number of quadrature nodes nq to be the
dimension of the B-spline space n. Then, we want to see if it gives a quadrature error that
converges to 0 when the B-spline order p or the number of elements nel increases. In a few
words, we try to see if a property similar to inequality (3.8) holds for the isogeometric analysis.
Note that since in isogeometric analysis n = p + nel, increasing either p or nel by one will only
increase n and thus the number of quadrature points by 1.

The following Figure 3.3 shows the evolution of the minimum quadrature error when nq = n
quadrature points are used, on the mass matrix, computed as in equation (3.5), with respect to
the number of elements nel for some p fixed, pr with respect to p for some nel fixed. In Figure
3.4, this evolution of the error is represented when the quadrature error is computed on the
stiffness matrix instead of the mass matrix, as in equation (3.7).

Results are very disappointing. Indeed, in both cases, no convergence is observed at all when
the number of elements is increased. Instead, the quadrature error increases with nel and seems
to converge towards a value close to 10−1 for any value of p. Moreover, when p is increased,
the quadrature error converges, but a lot too slowly, except when nel = 1. In this case indeed,
quadrature points are the Gauss-Legendre-Lobatto points, so the quadrature formula found
verifies equation (3.8). This convergence is observed very well in the case in which the mass
matrix is considered, but not when the stiffness matrix is considered. This is due to round-off
errors, machine precision has been attained.
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Figure 3.3: Evolution of the quadrature error of optimal quadrature formulas found to numeri-
cally integrate the mass matrix.
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Figure 3.4: Evolution of the quadrature error of optimal quadrature formulas found to numeri-
cally integrate the stiffness matrix.

Consequently, fixing nq = n and launching the algorithm introduced in section 3.2 does not
lead to a convergent and usable quadrature formula.

3.4 Least-squares collocation method
In section 3.2, an algorithm has been introduced to find the minimum number of quadrature
nodes used to integrate exactly any space of B-splines. To seek the solution of a differential
problem such as problem (3.3) in a certain space Bp−1

p (Ω), p ≥ 1, where Ω is the B-spline
geometry considered, it is required to numerically integrate the mass and the stiffness matrices,
that is functions belonging to Bp−1

2p (Ω) and to Bp−2
2(p−1)(Ω) respectively. It has been found that the

number of quadrature nodes required to integrate such functions is greater than the dimension
of the original space Bp−1

p (Ω). Therefore, a collocation method derived from those quadrature
formulas, as it has been done for the spectral element method (see section 3.4), can not exist.

However, having more nodes than required, a least-squares collocation method can be cre-
ated, following roughly the idea of Anitescu and al. in [1] with different collocation points.
Let us see if the quadrature points that have been found in section 3.2 can serve as collocation
points in a least-squares sense. More precisely, let us consider a one dimensional simple Laplace
problem (second order differential problem) with homogeneous Dirichlet boundary conditions
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as follows: {
−u′′(x) = (mπ)2 sin (mπx) in (−1, 1),
u(−1) = u(1) = 0,

(3.9)

with m ∈ N. The exact solution of this differential problem is uex(x) = sin (mπx). Let nel be
the number of elements on which the B-spline geometry Ω := (−1, 1) is built. Let p ∈ N \ {0}
be the order of the B-spline basis in which the solution is sought, that is the space of solutions
considered is Bp−1

p (−1, 1). Let B = {Ni}ni=1 be a basis of Bp−1
p (−1, 1), where n = nel + p is the

dimension of this space.
The solution can thus be written as u = ∑n

i=1 uiNi. Let us recall that the weak formulation
of problem (3.9) writes: Find u ∈ H1

0 (Ω) such that for all v ∈ H1
0 (Ω),

ˆ 1

−1
u′v′ dx =

ˆ 1

−1
fv dx.

We thus have to deal with the stiffness matrix formed by the integrals
ˆ 1

−1
N ′iN

′
j dx, ∀i, j = 1, . . . , n.

Consequently, let {τi}nq

i=1 be the quadrature points found in section 3.2 that are optimal to
compute exactly the stiffness matrix in this case. By optimal, we mean the quadrature formula
that uses the minimum number of quadrature points. We order the quadrature points so that
the boundary points verify τ1 = −1 and τnq = 1. Consequently, the collocation problem of
equation 3.9 writes{

−∑n
i=1 uiN

′′
i (τj) = (mπ)2 sin(mπτj), ∀i = 1, . . . , n, ∀j = 2, . . . , nq − 1,∑n

i=1 uiNi(τ1) = ∑n
i=1 uiNi(τnq ) = 0.

Written in matricial form, this is equivalent to Au = f , where A ∈ Rnq×n, u ∈ Rn, f ∈ Rnq and

A :=


N1(τ1) . . . Nn(τ1)
N ′′1 (τ2) . . . N ′′n(τ2)

... . . . ...
N ′′1 (τnq−1) . . . N ′′n(τnq−1)
N1(τnq ) . . . N ′′n(τnq )

 , u :=

 u1
...
un

 and f :=


0

(mπ)2 sin(mπτ2)
...

(mπ)2 sin(mπτnq−1)
0


Recall that nq ≥ n as it has been seen in section 3.2. The principle of this least-squares
collocation method is to solve this system in the least-squares sense. However, we have to
impose strongly the boundary conditions, and not only in the least-squares sense, that is, we
need to introduce a discrete form of lifting. But in equation (3.9), boundary conditions are
homogeneous and consequently, we impose u1 = un = 0 since N1 and Nn are the only non-zero
basis functions at the boundaries −1 and 1 (see the Cox-de-Boor formula (2.1)). Then we solve
the reduced system Ãũ = b̃, with Ã being A without its first and last rows and columns, ũ
being u without its first and last entries, and b̃ also being b without its first and last entries.

Figure 3.5 shows the numerical solution in multiple cases, that is when m = 1 or when
m = 2, for p = 2 and different values of nel, and for nel = 2 and different values of p. We can
already see without computing the numerical error that when m = 1, we do not have a better
approximation of the solution when nel = 3 than when nel = 2, and we do not have neither a
better approximation of the solution when p = 3 than when p = 2. However, the solution seems
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Figure 3.5: Comparison of the exact and the numerical solution found with the least-squares
collocation method for m = 1 and m = 3, and for p = 2 and different values of nel, or nel = 2
and different values of p in the first and second rows respectively. The crosses + correspond to
the collocation points.

to converge. Instead, when m = 3, no convergence is observed at all and thus the least-squares
approximation does not lead to satisfying results.

Consequently, as it has already been seen in the previous sections, we have not found a way
to build any well convergent isogeometric collocation method from a Gauss quadrature formula
as it has been proposed in section 3.2, not even through a least-squares problem.

3.5 Maximizing the degree of exactness given a number of in-
tegration nodes

In the previous sections of this chapter, we have first tried to find the minimum number of
quadrature nodes required to minimize the quadrature error, and then, we have looked at the
evolution of the quadrature error when we fix the number of quadrature nodes to be equal
to the number of degrees of freedom of our B-spline space. In this section, we will approach
the problem from another point of view: the idea is to maximize the degree of exactness of a
quadrature formula, given a certain number of quadrature points. Let us use the same notation
as in section 3.2.

The problem is formulated in the following way: let us fix the number of elements nel in
the decomposition of the one dimensional domain Ω = (a, b), and let nq be a fixed number of
quadrature points. Then, the goal is to find the largest positive integer p such that there exist nq
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quadrature points τi, i = 1, . . . , nq, and nq corresponding quadrature weights αi, i = 1, . . . , nq,
such that the mass or the stiffness matrix is exactly computed thanks to the quadrature formula
derived from them, where the basis functions belong to Bp−1

p . Note that once the set {τi}nq

i=1 is
determined, the corresponding quadrature weights are given by equation (3.6). We now separate
the cases in which the mass matrix and the stiffness matrix are considered. In a similar way as
in section 3.2, let Bpm be a basis of Bp−1

2p , and Bps be a basis of Bp−2
2(p−1), for a given p ∈ N \ {0},

where the subscripts m and s stand respectively for mass and stiffness matrices.

3.5.1 Mass matrix

Let us first concentrate on the mass matrix, that is we want to find the largest positive integer
p such that there exist {τi}nq

i=1 and their corresponding weights {αi}nq

i=1 that verify

εp :=

√√√√√ ∑
ψ∈Bp

m

∣∣∣∣∣
ˆ b

a
ψ dx−

nq∑
i=1

αiψ(τi)
∣∣∣∣∣
2

= 0. (3.10)

The algorithm implemented to solve this problem is the following:

Input: a, b, nel, nq, tol.

1. Initialization: p = 0, ε = 0;

2. While ε < tol, do:

a) Set p = p+ 1;
b) Build Bpm;
c) For each ψ ∈ Bpm, compute the exact integral

´ b
a ψ dx thanks to the (non optimal but

exact) Gauss-Legendre quadrature formula requiring
⌈2p+1

2
⌉
function evaluations on

each element;
d) Set conditions on the set of quadrature points τ to find: τ should be symmetric,

containing values between a and b, sorted in increasing order;
e) Loop over a certain number of trials nt ranging from 1 to nmax

t :
(i) Let τ0 be a random initial value of quadrature points τ ;
(ii) Find the minimum of the function f2min that, given as input a set of quadrature

points τ , computes the corresponding weights α as in equation (3.6), and returns
ε as in equation (3.10);

(iii) Let ε be the the minimum found;

3. Decrement p by 1 to get the last value of p such that ε < tol;

Output: p.

Our hope is to get nq ≤ nel + p, since nel + p is the number of degrees of freedom of the
B-spline space Bp−1

p on nel elements. Note that it is important to know how to deal with the
boundary conditions. As in section 3.2, and to stay in the same framework as section 3.1, let
us consider a well defined one-dimensional diffusion-transport-reaction problem with constant
parameters and homogeneous Dirichlet boundary conditions, that is problem 3.3 with µ, c and
σ constant. In this case, we have to consider all basis functions of Bpm in the sum of equation
(3.10) and force a and b to be nodes of quadrature. Consequently, nq has to be greater than 2.
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nq
3 4 5 6 7 8 9 10

nel

1 1 2 3 4 5 6 7 8
2 – 1 2 2 3 4 4 5
3 – – – 1 1 2 1 3
4 – – – – – 1 1 2
(a) Maximal B-spline order p.

nq
3 4 5 6 7 8 9 10

nel

1 2 3 4 5 6 7 8 9
2 – 3 4 4 5 6 6 7
3 – – – 4 4 5 4 6
4 – – – – – 5 5 6

(b) Dimension of the largest B-spline space Bp−1
p

on nel elements.

Table 3.3: Maximal B-spline order p such that the mass matrix is exactly integrated by a
quadrature formula of nq nodes, and the dimension (number of degrees of freedom) of the
corresponding B-spline space Bp−1

p on nel elements.

The algorithm just presented has been implemented in Matlab thanks to the minimizer
function fmincon [22]. Table 3.3a gives the largest p in each case, for nel taking values from 1 to
4, and for nq taking values from 3 to 10. Moreover, Table 3.3b gives the corresponding degrees
of freedom of Bp−1

p on nel elements, where p is the value given in Table 3.3a.
Note that for nel = 1, p is equal to nq − 2 and we could have expected this result. Indeed,

in this case, B-splines are simple polynomials, and it is well known that the quadrature formula
that contains the domain boundaries as quadrature nodes, and that gives the largest degree
of exactness, is the Gauss-Legendre-Lobatto quadrature formula [26]. Moreover, we know that
such quadrature formula on nq nodes has degree of exactness equal to 2nq − 3. Consequently,
since we want to compute the mass matrix, then we need to integrate every product of two basis
functions of Bp−1

p . That is, on a single interval, we need to integrate a polynomial of degree 2p.
Therefore, p verifies 2p ≤ 2nq − 3, so p ≤ nq − 3

2 . Thus the maximal value of such p is nq − 2,
since p is a positive integer. And the value of the quadrature nodes found when nel = 1 are
indeed the nq Gauss-Legendre-Lobatto quadrature nodes.

Moreover, the value of p when nq = 9 and nel = 3 does not seem to be coherent and should
be taken into account with care. This error can be caused by the minimization function that has
not converged. Furthermore, it is interesting to notice that the values found are very coherent
with the ones of Table 3.1. Indeed, when we look at the same value of nel, the value of nq in
Table 3.1 always corresponds to the same value of p as in Table 3.3a, when this nq is present.
Moreover, the quadrature nodes found are also the same as the ones found in section 3.2.1. But
again, this shows that the results are not the ones we were hoping for. Indeed, when we look
at Table 3.3b, we notice that the dimension of the space Bp−1

p on nel elements, where p is the
value returned by the algorithm, is always strictly smaller than the chosen values of nq.

3.5.2 Stiffness matrix

Now, let us see what happens when the stiffness matrix is considered instead of the mass matrix.
In this case, we want to find the largest positive integer p such that there exist {τi}nq

i=1 and their
corresponding weights {αi}nq

i=1 that verify

εp :=

√√√√√∑
ψ∈Bp

s

∣∣∣∣∣
ˆ b

a
ψ dx−

nq∑
i=1

αiψ(τi)
∣∣∣∣∣
2

= 0.

The whole procedure and the algorithm used are exactly the same as for the mass ma-
trix, provided we replace Bp−1

2p by Bp−2
2(p−1) and Bpm by Bps . Moreover, in this case, the exact
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nq
3 4 5 6 7 8 9 10

nel

1 2 3 4 5 6 7 8 9
2 – 2 3 3 4 5 5 6
3 – – 1 2 3 3 2 5
4 – – – 1 1 2 3 3
(a) Maximal B-spline order p.

nq
3 4 5 6 7 8 9 10

nel

1 3 4 5 6 7 8 9 10
2 – 4 5 5 6 7 7 8
3 – – 4 5 6 6 5 8
4 – – – 5 5 6 7 7

(b) Dimension of the largest B-spline space Bp−1
p

on nel elements.

Table 3.4: Maximal B-spline order p such that the stiffness matrix is exactly integrated by
a quadrature formula of nq nodes, and the dimension (number of degrees of freedom) of the
corresponding B-spline space Bp−1

p on nel elements.

Gauss-Legendre quadrature formula used in step 2c requires
⌈

2p−1
2

⌉
function evaluations on

each element instead of
⌈

2p+1
2

⌉
.

Again, the algorithm has been implemented in Matlab thanks to the minimizer function
fmincon. As in the case of the mass matrix, Table 3.4a gives the largest p in each case, for nel
taking values from 1 to 4, and for nq taking values from 3 to 10. Moreover, Table 3.4b gives the
corresponding degrees of freedom of Bp−1

p on nel elements, where p is the value given in Table
3.4a.

Note that for nel = 1, p is equal to nq − 1 and we could have expected this result. Indeed, in
this case and as it has already been underlined when analysing the mass matrix, B-splines are
simple polynomials, and it is well known that the quadrature formula that contains the domain
boundaries as quadrature nodes, and that gives the largest degree of exactness, is the Gauss-
Legendre-Lobatto quadrature formula [26]. Moreover, we know that such quadrature formula
on nq nodes has degree of exactness equal to 2nq − 3. Consequently, since we want to compute
the stiffness matrix, then we need to integrate every product of the first derivative of two basis
functions of Bp−1

p . That is, on a single interval, we need to integrate a polynomial of degree
2(p − 1). Therefore, p verifies 2(p − 1) ≤ 2nq − 3, so p ≤ nq − 1

2 . Thus the maximal value of
such p is nq−1, since p is a positive integer. And the value of the quadrature nodes found when
nel = 1 are indeed the nq Gauss-Legendre-Lobatto quadrature nodes.

Moreover, the value of p when nq = 9 and nel = 3 does not seem to be coherent and should
be taken into account with care. This error can be caused by the minimization function that
has not converged. Furthermore, it is again interesting to notice that the values found are very
coherent with the ones of Table 3.2. Indeed, when we look at the same value of nel, the value of
nq in Table 3.2 almost always corresponds to the same value of p as in Table 3.3a, when this nq
is present. Moreover, the quadrature nodes found are also the same as the ones found in section
3.2.2. But again, this shows that the results are not the ones we were hoping for. Indeed, when
we look at Table 3.4b, we notice that the dimension of the space Bp−1

p on nel elements, where p
is the value returned by the algorithm, is always strictly smaller than the chosen values of nq,
except when nel = 1, or when nel = 2 and nq is very small.

3.6 Partial conclusions
Therefore, we have found quadrature formulas thanks to the minimization of the quadrature
error, but we have not been able to retrieve a collocation method from it since the number of
quadrature points needed is larger than the dimension of the problem. Moreover, forcing the
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number of quadrature points to be equal to the number of degrees of freedom does not lead to
a convergent quadrature error. Consequently, we cannot build a convergent collocation method
from it. And finally, solving the collocation problem in a least-squares sense does not lead to
a convergent method neither. The only case for which it works is when nel = 1 since in this
case, isogeometric analysis and the spectral element method are equivalent [26]. We should thus
change point of view on the problem.
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Chapter 4

Gauss-Lobatto Lagrange collocation
method

It is well known that the Galerkin spectral element method with numerical integration (also
known as SEM G-NI) is equivalent to the spectral collocation method on the Gauss-Legendre-
Lobatto nodes on each element [7, 8], as it has already been recalled in Chapter 3. Moreover,
Nguyen and Schillinger in [24] have used an extraction operator that links the Gauss-Lobatto
Lagrange functions, used as basis functions in SEM G-NI, with B-splines. This extraction
operator has been firstly introduced by Schillinger and al. in [29]. Thanks to this operator, they
are able to develop a new isogeometric collocation method that links the geometric flexibility and
the improved approximation properties of IGA, formation efficiency of the collocation methods
and the accuracy and robustness of the Galerkin methods. However, the full advantage of IGA is
not used, and more specifically, the higher continuity of the B-spline basis functions is not fully
exploited. In this chapter, we will combine the idea of Nguyen and Schillinger in [24] together
with the high order continuity of the B-splines.

4.1 Gauss-Lobatto Lagrange extraction of B-splines
In this section, the idea of Nguyen and Schillinger in [24] is briefly presented. The aim is to find a
link between the smooth B-splines and Gauss-Lobatto Lagrange polynomials. Since collocation
points as well as Gauss-Legendre-Lobatto points are constructed by means of tensor-products
of the one dimensional rule, we essentially concentrate on the one dimensional case, as it has
been done in the previous chapters.

Let Ω be a one dimensional B-spline domain, that is Ω is a B-spline curve. Then, let
Ω̂ = (a, b), a, b ∈ R, be the parametrization space of Ω. Ω, and thus also Ω̂, are discretized into
nel elements Ei with i = 0, . . . , nel−1, where Ei := (xi, xi+1) ⊂ Ω̂, x0 = a and xnel = b. Let
p ∈ N\{0} be the order of the B-spline domain Ω. In each element Ei, consider the p+1 Gauss-
Legendre-Lobatto nodes τij , j = 1, . . . , p + 1 and the corresponding Gauss-Lobatto Lagrange
basis functions Li(p+1)+j , that is Li(p+1)+j is a polynomial of degree p on Ei, it is identically 0
on Ω \ Ei, and it verifies

Li(p+1)+j(τik) = δjk, (4.1)

for all k = 1, . . . , p + 1 (for a more detailed presentation of such functions, see section 3.1). A
visual representation of this notation is given in Figure 4.1 in the case p = 3, nel = 2. Write L
the function vector containing all those Lagrange basis functions in order.

Let Bp(Ω) be the B-spline space of interest. No specific continuity is specified between
elements, it can be of any type. Then, let N = {Ni}ni=1 be the set of B-spline basis functions
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Figure 4.1: Explanation of the notation used in section 4.2 in the case nel = 2, p = 3.

defined by Cox-de-Boor formula (2.1), where n = nel + p is the dimension of the space. Note
that the basis functions take values in the parametric space Ω̂, and not in Ω itself. Finally, let
P = {Pi}ni=1 be the corresponding set of control points belonging to Rd. Consider P as a matrix
in Rn×d, whose ith line contains the coordinates of the ith control point Pi, and consider N as a
function vector. If we write S : Ω̂→ Ω the parametrization of Ω, then from (2.2), for all ξ ∈ Ω̂,

S(ξ) =
n∑
i=1

Ni(ξ)Pi = PTN(ξ).

Then, on each element Ei, i = 0, . . . , nel − 1, each Nj is a polynomial, j = 1, . . . , n. And
since {Li(p+1)+k}p+1

k=1 forms a basis of the polynomials on Ei, then

Nj |Ei =
p+1∑
k=1

β
(i)
jk Li(p+1)+k ⇒ Nj =

nel−1∑
i=0

p+1∑
k=1

β
(i)
jk Li(p+1)+k, (4.2)

where β(i)
jk ∈ R for all i = 0, . . . , nel − 1, j = 1, . . . , n, k = 1, . . . , p+ 1. More precisely, since the

Lagrange polynomials L are interpolatory, the coefficients are uniquely defined as

β
(i)
jk := Nj(τik).

Equation 4.2 can then be written in matrix form as

N = DTL, with DT =


β

(0)
11 β

(0)
12 . . . β

(0)
1(p+1) β

(1)
11 . . . β

(nel−1)
1(p+1)

β
(0)
21 β

(0)
22 . . . β

(0)
2(p+1) β

(1)
21 . . . β

(nel−1)
2(p+1)

... . . . . . . ...
β

(0)
n1 β

(0)
n2 . . . β

(0)
n(p+1) β

(1)
n1 . . . β

(nel−1)
n(p+1)

 .

Consequently, for all ξ ∈ Ω̂,

S(ξ) = PTN(ξ) = PTDTL(ξ) = (DP)T L(ξ). (4.3)

Therefore, the B-spline can be expressed with respect to the Gauss-Lobatto Legendre basis
functions instead of the classical Cox-de-Boor basis functions, and the control points P have
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been mapped to DP. It is important to note that since Lagrange polynomials are interpolatory
(this is not the case of the Cox-de-Boor basis B-splines), then the curve S passes through the
mapped control points.

Globally, the B-spline curve S expressed with n degrees of freedom is now expressed with
nel(p+1) degrees of freedom, so that not all properties of the B-splines are taken into account. In
particular, their higher continuity at the elements’ boundary is not considered. However, locally,
the B-spline function is still expressed with only p+1 degrees of freedom on each element. Indeed,
Cox-de-Boor formula gives the expression of the n B-spline basis functions built in such a way
that each element is included in the support of only p+ 1 basis functions. Consequently, S has
only p+ 1 degrees of freedom on each element. Nevertheless, note that the B-spline curve is still
the same, that is the higher continuity property is conserved.

In their work, Nguyen and Schillinger have developped an isogeometric collocation method
using the new expression of S given in equation (4.3). They show that this collocation method
together with reduced Gauss-Lobatto quadrature gives the same accuracy as the Galerkin iso-
geometric method with full Gauss quadrature. The use of reduced Gauss-Lobatto quadrature
is the only place where the properties of higher continuity of the B-splines are used [28]. In the
following, the aim is to use the Gauss-Lobatto Lagrange extraction of B-splines made explicit in
equation (4.3) and impose strongly the higher continuity condition on each elements’ boundary.
All of this in order to express back S with only n degrees of freedom on the whole domain.

4.2 Taking advantage of the higher continuity of B-splines
The idea is now to take the Gauss-Lobatto Lagrange basis functions and to impose the higher-
continuity conditions to obtain new basis functions made of B-splines. All of this is motivated
by the hope that a well-chosen subset of the Gauss-Legendre-Lobatto nodes could be a suitable
set of collocation points to obtain an optimally convergent isogeometric collocation method.

Let uex be the solution of a second order general differential problem Lu = f on Ω = (a, b),
where L is any differential operator, together with Dirichlet boundary conditions u(a) = d1 ∈ R,
u(b) = d2 ∈ R. We use the same notation and the same hypothesis as in the previous section
4.1. Let us assume that the exact and the discrete Galerkin problem on Bp−1

p admit unique
solutions, respectively. Let u be the discrete solution given by the Galerkin formulation. Then
on Ω,

u =
nel(p+1)∑
i=1

uiLi,

or equivalently on each element, that is for all i = 0, . . . , nel − 1, for all x ∈ Ei,

u(x) =
p+1∑
j=1

ui(p+1)+jLi(p+1)+j(x). (4.4)

Notice that without taking into account any boundary condition, this problem has nel(p + 1)
degrees of freedom, but the function described in this way is not even necessarily C0-continuous.
Let us now impose the conditions to have a Cp−1 global continuity solution u, as an isogeometric
solution in Bp−1

p has. The conditions are the following: for each interior node xi, i = 1, . . . , nel−1,

u(d)(x−i ) = u(d)(x+
i ), for all d = 0, . . . , p− 1,

where u(d) is the dth derivative of u, u(d)(x−i ) := limx→
<
xi u

(d)(x) and u(d)(x+
i ) := limx→

>
xi u

(d)(x).
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Thanks to equation (4.4), this translates as: for all i = 1, . . . , nel − 1,
p+1∑
j=1

u(i−1)(p+1)+jL
(d)
(i−1)(p+1)+j(x

−
i ) =

p+1∑
j=1

ui(p+1)+jL
(d)
i(p+1)+j(x

+
i ). (4.5)

This formula contains p(nel− 1) constraints, so that equation (4.4) together with equation (4.5)
reduces the number of degrees of freedom of u to nel(p+ 1)− p(nel − 1) = nel + p.

At this point, we need to choose nel+p degrees of freedom among the ui, i = 1, . . . , nel(p+1),
and re-express u using only them.

4.2.1 General case

Let I be the set of indices corresponding to the chosen degrees of freedom; its cardinality is
nel + p. Let Ī = {1, . . . , nel(p + 1)} \ I be the set of indices corresponding to the remaining
degrees of freedom, and let Ii := I ∩ Ei and Īi := Īi ∩ Ei, for all i = 0, . . . , nel − 1.

We note that for p ≥ 1, B-splines need to be at least C0-continuous at the internal nodes, that
is equation (4.5) needs to be satisfied with at least d = 0. This directly implies u(p+1)i = u(p+1)i+1
for all i = 1, . . . , nel − 1, thanks to equation (4.1). Consequently, it is clear that keeping both
degrees of freedom u(p+1)i and u(p+1)i+1 does not make sense: we choose only one of them. The
remaining p constraints are given by equation (4.5) for d = 1, . . . , p.

Now, let us put the nel + p degrees of freedom we have chosen on one side of the equality,
and the remaining ones on the other side. Then for all i = 1, . . . , nel− 1, for all d = 0, . . . , p+ 1,∑

j∈Ii−1

ujL
(d)
j (x−i )−

∑
j∈Ii

ujL
(d)
j (x+

i ) =
∑

j∈Īi−1

ujL
(d)
j (x+

i )−
∑
j∈Īi

ujL
(d)
j (x−i ). (4.6)

Let ki := ∑i
j=0 #Ij and k̄i := ∑i

j=0 #Īj , for all i = 0, . . . , nel − 1. Then equation (4.6) can be
written under matricial form as

Budof = Cū, (4.7)
where

udof ∈ Rnel+p such that udof
i = uI(i), ∀i = 1, . . . , nel + p,

ū ∈ Rp(nel−1) such that ūi = uĪ(i),∀i = 1, . . . , p(nel − 1),

B ∈ Rp(nel−1)×(p+nel) such that ∀d = 0, . . . , p− 1,∀i = 0, . . . , nel − 2,

Bip+d+1,j =


L

(d)
I(j)(x

−
i+1), if j = kl−1 + 1, . . . , kl,

−L(d)
I(j)(x

+
i+1), if j = kl + 1, . . . , kl+1,

0, otherwise,

C ∈ Rp(nel−1)×p(nel−1) such that ∀d = 0, . . . , p− 1,∀i = 0, . . . , nel − 2,

Cip+d+1,j =


−L(d)

Ī(j)(x
−
i+1), if j = k̄l−1 + 1, . . . , k̄l,

Cip+d+1,j = L
(d)
Ī(j)(x

+
i+1), if j = k̄l + 1, . . . , k̄l+1,

0, otherwise,

with I(i) and Ī(i) being respectively the ith entry of I and of Ī.
Let u be the vector of unknown coefficients of u in the decomposition (4.4), that we order

in the following way:

u :=
(
udof

ū

)
∈ Rnel(p+1).
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Moreover, let L(x) ∈ Rnel(p+1) be the vector of Gauss-Legendre-Lobatto Lagrange functions, as
in section 4.1, but ordered in the same way as u. That is,{

Li = LI−1(i) if i = 1, . . . , nel + p,

Li = LĪ−1(i−nel−p) if i = nel + p+ 1, . . . , nel(p+ 1).
(4.8)

Consequently, thanks to this notation and thanks to equation (4.7), equation (4.4) can be written
as: ∀x ∈ Ω,

u(x) = LT (x)u = LT (x)
(
udof

ū

)
= LT (x)

(
udof

C−1Budof

)
= LT (x)

(
Inel+p
C−1B

)
udof, (4.9)

if C is invertible. But note that C is always invertible since it is made of evaluations at different
nodes of the linearly independent piecewise polynomials Li ∈ Qp(Ωh), i ∈ Ī, of degree exactly
equal to p, and of their p − 1 first derivatives. Let F :=

(
Inel+p (C−1B)T

)
L(x), then F is

a new basis of piecewise polynomials that are globally Cp−1-continuous, that is a basis of B-
splines of Bp−1

p . Moreover, the new basis functions are linear combinations of the Gauss-Lobatto
Lagrange functions.

With this new basis, a natural choice of collocation points are the Gauss-Legendre-Lobatto
nodes corresponding to the chosen degrees of freedom, that is
{τ0, τnel(p+1)}∪τ, where τ = {τij : i(p+1)+j ∈ I, 1 ≤ j ≤ p+1, 0 ≤ i ≤ nel−1}\{τ0, τnel(p+1)},
since the new basis F has been built from those points and is interpolatory at those points.
Indeed, from equation (4.1), and given the ordering of L in equation (4.8), then

F(τij) =
(
Inel+p (C−1B)T

)
L(τij) =

(
Inel+p (C−1B)T

)
eI−1(i(p+1)+j)

and I−1(i(p+ 1) + j) ≤ nel + p since i(p+ 1) + j ∈ I. So F(τij) = eI−1(i(p+1)+j).
Consequently, taking into account the Dirichlet homogeneous boundary conditions and re-

membering our problem Lu = f on Ω = (a, b), the linear system to solve is simply:

Au = b, with A =

 F(a)T(LF(τ)
)T

F(b)T

 , b =

 d1
f(τ)
d2

 .
But note that F(a)T = ( 1 0 . . . 0 ) and F(b)T = ( 0 . . . 0 1 ), since the basis is inter-
polatory, so u1 = d1 and unel+p = d2. Consequently, it would be enough to solve

Aredured = bred,

and to impose u1 = d1 and unel+p = d2, with Ared ∈ R(nel+p−2)×(nel+p−2) being LF(τ) without
its first and last column, ured being u without its first and last entries, and bred being b also
without its first and last entries. Both problems returns the same solution.

Furthermore, note that for all x ∈ Ei−1 and for all i = 1, . . . , nel − 1, j = 1, . . . , p+ 1,
L(i−1)(p+1)+j(x) = Li(p+1)+j(xi + x)

by definition of the Lagrange functions on each element. Consequently, we also have

L
(d)
(i−1)(p+1)+j(x) = L

(d)
i(p+1)+j(xi + x),

for all x ∈ Ei−1 and for all d = 0, . . . , p. Therefore, to compute matrices B and C, we only
need to compute 2(p + 1)p values instead of nel(p + 1)p, and those values are L(d)

i (x−1 ) and
L

(d)
(p+1)+i(x

+
1 ), i = 1, . . . , p+ 1, d = 0, . . . , p.

Finally, if L were not a second order differential operator, or if boundary conditions were
different, the procedure would be similar but one has to be careful to handle correctly boundary
conditions.
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Figure 4.2: Initial choice of degrees of freedom, example with nel = 5, p = 3. Blue crosses +
separate elements, black crosses + correspond to the initial degrees of freedom, and bullets ©
correspond to the chosen ones. Note that 2 degrees of freedom are associated to each internal
node before C0-continuity is imposed, one corresponding to the interval for which this node is
the right bound, the other one corresponding to the interval for which it is the left bound. We
only keep the first one, i.e. ui(p+1) and not ui(p+1)+1, for each i = 1, . . . , nel − 1.

4.2.2 Initial choice of degrees of freedom: fill in one element

Our initial choice of degrees of freedom among the Gauss-Legendre-Lobatto nodes on each
element is the following: we choose ui for all i ∈ I := {1, 2, . . . , p + 1, 2(p + 1), . . . , nel(p + 1)}.
We easily check that #I = nel + p. This is represented graphically in Figure 4.2 with nel = 5
and p = 3.

As an example, we give the details of the construction of the new basis F as in section 4.2.1
with this choice of degrees of freedom and p = 2. With p = 2, C1-continuity is required on
the internal nodes. First, C0-continuity (that is equation (4.5) with d = 0) directly implies
u3i = u3i+1, for all i = 1, . . . , nel − 1, thanks to relation (4.1). Now, there is one remaining
condition on each internal node: for each i = 1, . . . , nel − 1,

3∑
j=1

u3(i−1)+jL
′
3(i−1)+j(x−i ) =

3∑
j=1

u3i+jL
′
3i+j(x+

i ).

It is required to eliminate the remaining variables u3i+2, i = 1, . . . , nel − 1 that are not degrees
of freedom anymore, keeping in mind that u3i = u3i+1. So:

u3i+2 = 1
L′3i+2(x+

i )

 3∑
j=1

u3(i−1)+jL
′
3(i−1)+j(x−i )− u3iL

′
3i+1(x+

i )− u3(i+1)L
′
3(i+1)(x+

i )

 . (4.10)

But this expression depends on the previous u3(i−1)+2 which is not a degree of freedom, except if
i = 1. Equation (4.10) is thus a recurrence relation with initial value u2 known. Note moreover
that Li(p+1)+j(x) = L(i+1)(p+1)+j(xi+1 + x), for all j = 1, . . . , p+ 1 and for all i = 0, . . . , nel − 2.
Consequently, we can transform equation (4.10) into

u3i+2 = 1
L′5(x+

1 )

 3∑
j=1

u3(i−1)+jL
′
j(x−1 )− u3iL

′
4(x+

1 )− u3(i+1)L
′
6(x+

1 )

 , ∀i = 1, . . . , nel − 1.

Re-writing u in function of the chosen degrees of freedom, we thus obtain

u = u1

[
L1(x) + L′1(x−1 )

L′5(x+
1 )
χ1

]
+ u2

[
L2(x) + L′2(x−1 )

L′5(x+
1 )
χ2

]

+
nel−2∑
i=1

u3i

L3i(x) + L3i+1(x)− L′6(x+
1 )

L′5(x+
1 )
χi−1 +

L′3
(
x−1
)
− L′4

(
x+

1

)
L′5(x+

1 )
χi + L′1(x−1 )

L′5(x+
1 )
χi+1


+ u3(nel−1)

L3(nel−1)(x) + L3(nel−1)+1(x)− L′6(x+
1 )

L′5(x+
1 )
χnel−2 +

L′3
(
x−1
)
− L′4

(
x+

1

)
L′5(x+

1 )
χnel−1


+ u3nel [L3nel(x)− χnel−1] ,
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given 
χnel−1 := L3nel−1,

χm := L3(m+1)−1 + χm+1
L′3(m+1)−1(x−m+1)
L′3(m+2)−1(x+

m+1) , for m = 1, . . . , nel − 2,

χ0 := 0.

This gives us the new basis of piecewise polynomials that are globally C1-continuous, that is
the basis of B-splines F we were looking for. To simplify the notation and keep the one of
section 4.2.1, we write F1 and F2 the terms between squared brackets that multiply respectively
u1 and u2, and we call F2+i, i = 1, . . . , nel, the terms between squared brackets that multiply
respectively u3i. Consequently,

u = u1F1 + u2F2 +
nel∑
i=1

u3iF2+i,

that is u is expressed with only nel +p = nel + 2 degrees of freedom, and the new basis functions
are linear combinations of the Gauss-Lobatto Lagrange functions.

Remark that this approach gives explicitly and in a recursive way the expression of the
new basis B-spline functions F. But with p increasing, it becomes very complex to obtain
such expression. The matricial way to find F, presented in section 4.2.1, also gives an explicit
expression of F and is easier to handle.

With this new basis, the natural choice of collocation points are the Gauss-Legendre Lobatto
nodes corresponding to the chosen degrees of freedom, that is τ0j for j = 1, 2 and τ3i for
i = 1, . . . , nel. Consequently, the linear system to solve is: Au = f , with

u1 = u1,u2 = u2,ui = u3i for i = 1, . . . , nel,

f2 = f(τ02), fi = f
(
τ3,(i−2)

)
if i = 3, . . . , nel + 1,

A2j = LFj(τ02), Aij = LFj
(
τ3(i−2)

)
if i = 3, . . . , nel + 1,

(4.11)

for all j = 1, . . . , nel + 2, and f1, fnel+1, A1j and Anel+2,j depend on the boundary conditions,
since only F1 is non-zero on a and only Fnel+2 is non-zero on b.

The main problem with this approach is that the extremities of each element are collocation
points, but it is exactly at those points that the continuity is limited to a Cp−1 = C1-continuity.
Consequently, the differential operator L cannot be of order larger than 1. But this is not a
problem only in the case p = 2, this issue exists with any p ∈ \N{0}: in general, the differential
operator L cannot be of order larger than p− 1. To overcome this difficulty, different degrees of
freedom should be chosen.

Example 1.a: Consider Lu = u′ and the problem Lu(x) = (5π) cos(5πx) in Ω = (−1, 1) with
Dirichlet homogeneous boundary condition u(−1) = 0. The exact solution of this problem is
uex(x) = sin(5πx), for all x ∈ Ω. We consider p = 2 as before, and nel takes powers of 2 between
21 and 28. Let us call h the mesh size, that is h := 1

nel
. The boundary condition u(−1) = 0

is imposed by setting f1 = 0, fnel+2 = f(τ3,nel), A1j = Fj(−1) and Anel+2,j = LFj(τ3,nel)
to complete the linear system (4.11). Otherwise, since we consider an homogeneous Dirichlet
boundary condition, we can solve the following reduced problem: Aredured = bred, where Ared ∈
R(nel+p−1)×(nel+p−1) is LF(τ) without its first column, ured is u without its first entry, and bred
is b also without its first entry. And in this case, we impose u1 = 0. Figure 4.3 shows the
convergence of the error in the L2-norm and the evolution of the condition number of A and of
Ared under h-refinement.

We can see that the error in the L2-norm behaves like hp, that is the rate of convergence
is one order sub-optimal. More precisely, algebraically, it has been calculated that the error in
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Figure 4.3: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 2, and when a first order differential operator is used.
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Figure 4.4: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 3, and when a first order differential operator is used.

the L2-norm behaves like h2.12. This has been computed thanks to the values of the error for
the smallest h we have, that is with h between 1

32 and 1
256 . Moreover, the condition number of

A behaves as h−3, while the one of Ared behaves as h−2. Consequently, it is better to solve the
reduced problem with Ared (refer to the end of section 4.2.1), imposing strongly the boundary
condition, instead of solving the full problem, especially when a large number of elements is
considered.

Example 1.b: Consider the first order problem of Example 1.a, but with p = 3, and with
h between 1

21 and 1
26 . Figure 4.4 shows the convergence of the error in the L2-norm and the

evolution of the condition number of A and of Ared under h-refinement.
It is difficult to deduce the convergence rate of the error from those results since the error

suddenly increases when h gets small. This comes from the fact that the condition number of
both matrices A and Ared increase exponentially when h decreases, as it can also be seen in this
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Figure 4.5: Basis functions F on the reference interval (−1, 1) with p = 3 and nel = 4.

Figure. This is due to the fact that the basis functions F oscillate around zero with an am-
plitude that is increasing with respect to the distance separating the first element to the point
on which those functions are evaluated. Equivalently, this means that the Lebesgue constant of
the basis functions interpolant grows with a high rate with respect to nel. Therefore, the more
elements, the more oscillatory is the behavior of the basis functions. This is shown in Figure 4.5.

Example 2.a: If we now consider a second order equation, for example Laplace equation
−u′′ = f , that is Lu = −u′′, on Ω = (a, b) with homogeneous Dirichlet boundary conditions,
then we have already seen that it is required to have p ≥ 3 since we require at least a C2-
continuity at the boundaries of each internal element of the discretization of Ω. Since we consider
homogeneous Dirichlet boundary conditions, we impose f1 = 0, fnel+p = 0, A1j = Fj(−1) and
Anel+p,j = Fj(1), for all j = 1, . . . , nel +p, to complete the linear system (4.11). Otherwise, since
we consider homogeneous Dirichlet boundary conditions, we can solve the following reduced
problem: Aredured = bred, where Ared ∈ R(nel+p−2)×(nel+p−2) is LF(τ) without its first and last
columns, ured is u without its first and last entries, and bred is b also without its first and last
entries. And in this case, we impose u1 = unel+p = 0.

Figure 4.6 shows the convergence of the error in the L2-norm, the H1-norm and the H1
0 -

norm under h-refinement, and the evolution of the condition number of A and of Ared also under
h-refinement. The following cases are considered: p = 3, nel = 2, 22, . . . , 26, Ω = (a, b) = (−1, 1)
and f(x) = (5π)2 sin(5πx) for all x ∈ Ω. Let still h = 1

nel
. Laplace equation with this forc-

ing term and with Dirichlet homogeneous boundary conditions admits a unique exact solution
uex(x) = sin(5πx), for all x ∈ Ω. Again, it is difficult to deduce the convergence rate of the
error from those results since the error suddenly increases when h gets small because of the
exponential increase of the condition number of either A or Ared. Note moreover that the error
is very large, and it is especially a lot larger than the error obtained when a similar first order
problem is considered.

We have thus seen that another choice of degrees of freedom is needed, for many reasons:
firstly because we want to use piecewise polynomials that are not necessarily of order strictly
larger than the order of the differential operator taken into account, and secondly because we
would like to reduce the amplitude of the oscillations of the basis functions.
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Figure 4.6: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 3, and when a second order differential operator is used.

Figure 4.7: Choice of degrees of freedom such as boundary nodes are avoided, example with
nel = 5, p = 3. Crosses are the initial degrees of freedom, bullets correspond to the chosen ones.
Note that 2 degrees of freedom are associated to each internal node, one corresponding to the
interval for which this node is the right bound, the other one corresponding to the interval for
which it is the left bound. None is kept.

4.2.3 Avoiding boundary nodes as degrees of freedom

Learning from the previous section, we decide to do the following choice of degrees of freedom:
we choose ui for all indices i ∈ I where

I := {1, . . . , p, p+ 3, 2(p+ 1) + 2, . . . , (nel − 1)(p+ 1) + 2, nel(p+ 1)}.

This is represented in Figure 4.7 with nel = 5 and p = 3.
The whole procedure used to build the new B-spline basis functions F is exactly the same as

the one previously introduced in section 4.2.1 with the right set I. We still chose as collocation
points the Gauss-Legendre-Lobatto nodes corresponding to the chosen degrees of freedom, that
is

τ = {τ0j : j = 1, . . . , p} ∪ {τ(p+1)i+2 : i = 1, . . . , nel − 1} ∪ {τnel(p+1)}.
Example 1.c: Consider the first order problem of Examples 1.a and 1.b. Figure 4.8 shows

the convergence of the error in the L2-norm and the evolution of the condition number of A and
of Ared under h-refinement, when p = 2; h takes values between 1

21 and 1
28 . Figure 4.9 shows

them when p = 3 instead, and h takes values between 1
21 and 1

26 .
In both cases, we observe a convergence of the error under h-refinement that behaves like hp

in the L2-norm as in the previous choice of degrees of freedom. However, the condition number
of matrix A still increases exponentially when h is reduced in the case in which p = 3. Because
of this high condition number, we cannot be sure neither that the behavior is asymptotically
the one observed. In particular, for h = 1

26 , the error suddenly increases because the condition
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Figure 4.8: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 2, and when a first order differential operator is used.
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Figure 4.9: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 3, and when a first order differential operator is used.

number is so high (around 1018) that the machine epsilon is attained. Note finally that for
p = 2, the chosen degrees of freedom are the only possible choice of degrees of freedom among
the Gauss-Legendre-Lobatto nodes that excludes elements’ boundaries except the boundaries of
the whole domain. We did not attain the optimal convergence of the L2-error, but almost (one
order of magnitude different), and the condition number of A behaves as h−1, and not like h−2

as it was the case with the initial choice of degrees of freedom. Algebraically, it has been found
that the slope of k(A) with respect to h is equal to −0.948. Furthermore, the condition number
of Ared behaves as h−2 instead of h−3 as it was the case with the initial choice of degrees of
freedom. Algebraically, it has been found that the slope of k(Ared) with respect to h is equal
to −1.872. This choice of degrees of freedom is consequently better than the previous one for
p = 2, since in the former the condition number increases with one less order of magnitude that
in the latter, with respect to nel. However, for p ≥ 3, we need to choose other degrees of freedom.
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Figure 4.10: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 2, and when a second order differential operator is used.

Example 2.b: Consider the second order problem of the previous Example 2.a, that is Laplace
equation with homogeneous Dirichlet boundary conditions. Let h take powers of 2 between 2−1

and 2−8, and let p = 2. The convergence of the error in both the H1- and the L2-norms behave
like hp. This is shown in Figure 4.10 where the convergence of the error in the L2-norm, the
H1-norm and the H1

0 -norm under h-refinement is represented, together with the evolution of
the condition number of A and of Ared also with respect to h. However, in some specific cases,
it has been noticed that a convergence of the L2-error as hp+1 can also be found (for example
when the exact solution is a simple cubic polynomial).

Moreover, the condition number of matrix A behaves as h−3, while the one of Ared behaves
as h−2. Consequently, again, it is better to work on the reduced problem. If we consider p = 3
instead of p = 2, the results are again difficult to interpret since the error gets suddenly very
big because of the bad conditioning of matrix A: when p = 3, it increases exponentially when h
is decreased.

Consequently, for both the first and the second order differential problems, we have found
a method that is optimal in the H1-norm and one order sub-optimal in the L2-norm, when
p = 2. Also in this case, the condition number of matrix Ared of the reduced problem grows as
the number of elements if a first order problem is considered, or as the square of the number
of elements if a second order problem is considered. However, for p > 2, the growth of the
condition number of A is exponential and the convergence of the error is both harder to analyze
and less accurate. This high k(A) (or k(Ared), similarly) is still due to the exponential increase
in amplitude of the oscillations present in the basis functions, because most of the quadrature
nodes are present in the first element. Another choice of degrees of freedom should then be
considered.

4.2.4 Well spread symmetric distribution of the degrees of freedom

Learning from sections 4.2.2 and 4.2.3, we need to choose degrees of freedom that are well
distributed among the elements, that is, not all of them should be concentrated on one or just
a few intervals, and they should be more numerous close to both boundaries of the domain. An
idea is to take them symmetrically distributed with respect to the whole interval.
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Figure 4.11: Well spread and symmetrically distributed degrees of freedom, example with nel =
5, p = 6. In this case, r = 2 and k = 0. Blue crosses + separate elements, black crosses +
correspond to the initial degrees of freedom, and bullets © correspond to the chosen ones. 2
degrees of freedom are associated to each internal node, one corresponding to the interval for
which this node is the right bound, the other one corresponding to the interval for which it is
the left bound. None is kept.

Assumption: p is even

We first make the assumption that p is even, so that in each element there are p + 1 Gauss-
Legendre-Lobatto nodes, that is an odd number of GLL nodes. In this way, there always exists
a GLL node that is exactly in the middle of each element. We have thus chosen nel nodes, being
those middle GLL nodes, plus the two boundary ones. Therefore, it remains to choose p − 2
degrees of freedom. We choose them as follows: let k and q be respectively the quotient and the
remainder of the euclidean division of p− 2 by 2nel, that is p− 2 = (2nel)k+ q. Since p is even,
then p − 2 is even too. Moreover, since 2nel is even, then q should be even too. Consequently,
let r be such that 2r = q. Then the chosen degrees of freedom are the ui with i ∈ I and

I := {1,
(i− 1)(p+ 1) + 2, . . . , (i− 1)(p+ 1) + k + 2 : i = 1, . . . , r,
(i− 1)(p+ 1) + 2, . . . , (i− 1)(p+ 1) + k + 1 : i = r + 1, . . . , nel − r,
(i− 1)(p+ 1) + p

2 + 1 : i = 1, . . . , nel, (4.12)

i(p+ 1)− k, . . . , i(p+ 1)− 1 : i = r + 1, . . . , nel − r,
i(p+ 1)− (k + 1), . . . , i(p+ 1)− 1 : i = nel − r + 1, . . . , nel,

nel(p+ 1)},

that is we add the first k + 1 internal GLL nodes of the first r elements, the last k + 1 internal
GLL nodes of the last r elements, and the first and last k internal GLL nodes of all the remaining
elements. This choice of degrees of freedom is represented in Figure 4.11 with nel = 5 and p = 6.

The whole procedure used to build the new B-spline basis functions F is exactly the same
as the one previously introduced in section 4.2.1 with the right set I. We still choose as collo-
cation points the Gauss-Legendre-Lobatto nodes corresponding to the chosen degrees of freedom.

Example 1.d: Consider the first order problem of the previous Examples 1.a, 1.b and 1.c.
Let h take powers of 2 between 2−1 and 2−8, and let p = 2 and p = 4. The convergence of the
error in the L2-norm behaves asymptotically like hp. This is shown in Figures 4.12 and 4.13,
where the convergence of the error in the L2-norm under h-refinement is represented, together
with the evolution of the condition number of A and of Ared also with respect to h. Moreover,
the condition number of matrix A behaves as h−2 when h is reduced while the one of matrix
Ared behaves as h−1 in both cases p = 2 and p = 4.

Remark that the results when p = 2 are the same as the results presented in Example 1.c
also with p = 2. We could have expected this result since in the case p = 2, both choices of
degrees of freedom lead to the same set I. Moreover, this choice of degrees of freedom lead to
a convergent method not only when p = 2. Indeed, we have managed to find a choice of GLL
degrees of freedom such that the condition number of both matrices A and Ared do not explode
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Figure 4.12: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 2, and when a first order differential operator is used.
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Figure 4.13: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 4, and when a first order differential operator is used.

exponentially, and lead to a converging error, for some p > 2.

Example 2.c: Consider the second order problem of the previous Examples 2.a and 2.b, that
is Laplace equation with homogeneous Dirichlet boundary conditions. Let h take powers of 2
between 2−1 and 2−8, and let p = 2 and p = 4. The convergence of the error in both the H1-
and the L2-norms behave asymptotically like hp. This is shown in Figures 4.14 and 4.15, where
the convergence of the error in the L2-norm, the H1-norm and the H1

0 -norm under h-refinement
is represented, together with the evolution of the condition number of A and of Ared also with
respect to h. Moreover, the condition number of A behaves as h−3 when p = 2, and slightly
more slowly when p = 4, while the one of Ared behaves as h−2 in both cases p = 2 and p = 4.

As in the case of a first order differential problem, remark that the results when p = 2 are the
same as the results presented in Example 2.b. It was again expectable since in the case p = 2,
both choices of degrees of freedom lead to the same set I. Moreover, this choice of degrees of
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Figure 4.14: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 2, and when a second order differential operator is used.
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Figure 4.15: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 4, and when a second order differential operator is used.

freedom confronted to a second order differential operator lead to a convergent method not only
when p = 2. Indeed, we have managed to find a choice of GLL degrees of freedom such that
the condition number of both matrices A and Ared do not explode exponentially, and lead to a
converging error, for some p > 2.

Consequently, this choice of degrees of freedom leads to a good method in which both the
L2- and the H1-error behave as hp under h refinement, when p is even. However, even if this
behavior is optimal in the H1-norm, it is one order sub-optimal in the L2-norm. Moreover, we
need to find a similar collocation point distribution in the case in which p is odd.
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Assumption: p is odd

When p is odd, we can not always obtain a symmetric pattern. Indeed, to choose p + nel − 2
GLL nodes among the nelp − 1 GLL nodes that are not on the boundary of any element, with
p odd and in order to have them symmetrically distributed with respect to the middle of the
domain, nel needs to be odd. Consequently, we choose the degrees of freedom such that when
nel is odd, the nodes are indeed symmetrically distributed. First, let us see which choices can be
done for p = 3, and then let us compare them. In a second time, we will do the same analysis
for p = 5 and then try to generalize it for p > 5, p odd.

So let p = 3 and nel be any positive integer. Since we want a symmetric pattern, we only
need to determine which GLL nodes to chose on the first dnel

2 e elements. Moreover, to have a
well spread distribution of nodes in the domain, we ask to have at least one node per element.
Since p = 3, we need to choose nel + 1 GLL nodes among the 3nel − 1 GLL nodes that are
not on the boundary of any element. Consequently, we will choose the two internal GLL nodes
of only one element. To keep the symmetrical distribution of the nodes when nel is odd, we
need it to be either the dnel

2 e-th element, or the bnel
2 + 1c-th one. Note that when nel is odd,

dnel
2 e = bnel

2 + 1c, and it corresponds exactly to the middle element. Without loss of generality,
since there is no preferential direction to our problem and since it would be enough to invert the
parametric space, we choose the dnel

2 e-th element as the one in which we choose both internal
GLL nodes. From these considerations, the four following almost exhaustive choices of degree
of freedom can be made: we choose {ui}i∈I such that:

1.

I = {1, i(p+ 1) + 2 : i = 0, . . . ,
⌈nel

2
⌉
,

i(p+ 1) + 3 : i =
⌈nel

2
⌉
, . . . , nel − 1, (4.13)

nel(p+ 1)},

2. or

I = {1, i(p+ 1) + 3 : i = 0, . . . ,
⌈nel

2
⌉
− 1,⌈nel

2
⌉
(p+ 1) + 2,

⌈nel
2
⌉
(p+ 1) + 3,

i(p+ 1) + 2 : i =
⌈nel

2
⌉
, . . . , nel − 1,

nel(p+ 1)},

3. or for any m = 0, . . . ,
⌈nel

2
⌉− 1,

I = {1, i(p+ 1) + 2 : i = 0, . . . ,m,

i(p+ 1) + 3 : i = m+ 1, . . . ,
⌈nel

2
⌉
− 1,⌈nel

2
⌉
(p+ 1) + 2,

⌈nel
2
⌉
(p+ 1) + 3,

i(p+ 1) + 2 : i =
⌈nel

2
⌉

+ 1, . . . , nel − 2−m,
i(p+ 1) + 3 : i = nel − 1−m, . . . , nel − 1,
nel(p+ 1)},
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(a) Degrees of freedom 1.

(b) Degrees of freedom 2.

(c) Degrees of freedom 3 with m = 0.

(d) Degrees of freedom 4 with m = 0.

Figure 4.16: Choices of well spread and symmetrically distributed degrees of freedom for p = 3,
example with nel = 5. Blue crosses + separate elements, black crosses + correspond to the
initial degrees of freedom, and bullets © correspond to the chosen ones. 2 degrees of freedom
are associated to each internal node, one corresponding to the interval for which this node is the
right bound, the other one corresponding to the interval for which it is the left bound. None of
them is ever taken into account.

4. or for any m = 0, . . . ,
⌈nel

2
⌉− 1,

I = {1, i(p+ 1) + 3 : i = 0, . . . ,m,

i(p+ 1) + 2 : i = m+ 1, . . . ,
⌈nel

2
⌉
,

i(p+ 1) + 3 : i =
⌈nel

2
⌉
, . . . , nel − 2−m,

i(p+ 1) + 2 : i = nel − 1−m, . . . , nel − 1,
nel(p+ 1)}.

Those different choices of degrees of freedom are represented in Figure 4.16 with nel = 5,
and with m = 0 in the cases 3 and 4. The whole procedure used to build the new B-spline basis
functions F is, in each case, exactly the same as the one previously introduced in section 4.2.1
with the right set I. We still choose as collocation points the Gauss-Legendre-Lobatto nodes
corresponding to the chosen degrees of freedom.

Example 2.d: Consider the second order problem of the previous Examples 2. Let nel take
powers of 2 between 21 and 28 and let p = 3. In Table 4.1, the asymptotic behaviors of the error
in both the L2-norm and the H1-norm, and of the condition number of matrices A and Ared are
reported in the different cases, under h-refinement.

We observe that in many cases, no convergence is obtained and the condition number of A
and Ared grows exponentially with the number of elements. Moreover, the optimal convergence
rate of the error is never attained, neither in the L2-norm nor in the H1-norm. In the different
cases in which convergence is observed, the L2- and H1-errors converge as h2, that is as hp−1.
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Degrees of freedom L2-error H1-error k(A) k (Ared)
1. O(h2) = O(hp−1) O(h2) = O(hp−1) O(n3

el) O(n2
el)

2. diverges diverges O
(

exp(nel)
)

O
(

exp(nel)
)

3. with m = 0 diverges diverges O
(

exp(nel)
)

O
(

exp(nel)
)

3. with m = 1 diverges diverges O
(

exp(nel)
)

O
(

exp(nel)
)

3. with m = 2 diverges diverges O
(

exp(nel)
)

O
(

exp(nel)
)

3. with m =
⌈nel

4
⌉

diverges diverges O
(

exp(nel)
)

O
(

exp(nel)
)

3. with m =
⌈nel

2
⌉− 1 O(h2) = O(hp−1) O(h2) = O(hp−1) O(n3

el) O(n2
el)

4. with m = 0 O(h2) = O(hp−1) O(h2) = O(hp−1) O(n3
el) O(n2

el)
4. with m = 1 O(h2) = O(hp−1) O(h2) = O(hp−1) O(n3

el) O(n2
el)

4. with m = 2 O(h2) = O(hp−1) O(h2) = O(hp−1) O(n3
el) O(n2

el)
4. with m =

⌈nel
4
⌉

diverges diverges O
(

exp(nel)
)

O
(

exp(nel)
)

4. with m =
⌈nel

2
⌉− 1 diverges diverges O

(
exp(nel)

)
O
(

exp(nel)
)

Table 4.1: Comparison of the asymptotic behavior of the error in the L2- and H1-norms, and
of the condition numbers of A and of Ared, when p = 3 and when different well spread and
symmetrically distributed collocation points are chosen.

This is one order sub-optimal in the H1-norm, and two orders sub-optimal in the L2-norm. In
those same cases in which convergence is obtained, the condition number of A grows as n3

el while
the condition number of Ared grows as in n2

el, as it was already the case when p = 2. Again, it
is thus better to solve the reduced problem.

Note that in the different cases analyzed, it was expectable to get similar results when
different degrees of freedom were chosen. Indeed, for example, choice 1 and choice 4 with m = 0
only differ by the choice of degrees of freedom on the two boundary elements. Consequently,
the behavior of the error and of the condition numbers are asymptotically the same. This is
also the case between choice 2 and choice 3 with m = 0 for example. Furthermore, choice 1
and choice 3 with m =

⌈nel
2
⌉ − 1 only differ by the choice of degrees of freedom on two middle

elements. Again, the behavior of the error and of the condition numbers are thus asymptotically
the same, and this is also the case between choice 2 and choice 4 with m =

⌈nel
2
⌉−1 for example.

Moreover, the difference between k(A) or k (Ared) corresponding to the two collocation methods
obtained with such similar choices is always smaller than an order of magnitude. Consequently,
the only interesting cases between the ones of Table 4.1 are the ones in which the degrees of
freedom correspond to choices 1, 2, 3 with m =

⌈nel
4
⌉
, and 4 with m =

⌈nel
4
⌉
are used. Among

those four possibilities, only choice 1 leads to a convergent method.
The convergence of the error in the H1- and L2-norms, and the condition numbers of ma-

trices A and Ared are shown in Figure 4.17 in this case, with nel taking values between 21 and
210. Convergence as reported in Table 4.1 can be observed. Note that by taking values of nel
between 21 and 210, we only consider even numbers of elements, that is we only consider the ex-
act cases in which symmetry cannot be observed. To make sure that this fact does not influence
the convergence of the error and the conditionning of matrices A and Ared, Figure 4.18 reports
the same information as Figure 4.17, but when nel takes values between 31 and 36, that is odd
values: the exact same results are observed. So with p odd, the error converges more slowly
than when p is even. This fact has already been observed with different collocation methods in
[1, 23, 24].

Example 1.e: Consider now the first order problem of the previous Examples 1. Let h take
powers of 2 between 2−1 and 2−6, let p = 3 and consider the degrees of freedom determined by
choice 1. The convergence of the error in the L2-norm, together with the condition numbers of

52



10−3 10−2 10−1 100

10−4

10−2

100

102

104

h

Er
ro

r
L2-norm
H1

0 -norm
H1-norm

h2

h3

10−3 10−2 10−1 100100

102

104

106

108

1010

h

C
on

di
tio

n
nu

m
be

r
k
(A

) k(A)
k(Ared)

h−2

h−3

Figure 4.17: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 3, when a second order differential operator and even numbers of elements
are used. Degrees of freedom of choice 1 have been used.
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Figure 4.18: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 3, when a second order differential operator and odd numbers of elements
are used. Degrees of freedom of choice 1 have been used.

matrices A and Ared are reported in Figure 4.19, under h-refinement. No convergence of the
error is obtained, and the condition numbers of A and of Ared grow exponentially when h is
decreased. The other choices of degrees of freedom have also been tried on this problem, but
convergence have never been obtained, and the condition numbers of A and of Ared always grow
exponentially when h is decreased. Consequently, for first order problems, no good collocation
method has been found.

So now, let us concentrate on second order problems, and let us find a way to choose the
degrees of freedom that lead to collocation methods with the best possible convergence rate, for
a general value of p odd. To do so, let us first choose the right degrees of freedom for p = 5, by
trying to extrapolate logically the best choices found for p = 2, 3, 4.
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Figure 4.19: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 3, and when a first order differential operator is used.

We have seen that for p = 3, the only element that contains two collocation points is the
dnel

2 e-th element, that is the middle element if nel is odd, or one of the two middle element if nel
is even. Instead, when p = 4, two elements need to contain two collocation points, and they are
the boundary elements. Consequently, for p = 5, if we require to have at least one collocation
point on each element, and if we require the boundary nodes of the domain to also be collocation
points, then we still have to choose 3 collocation points. To follow what has been found as best
for p = 3 and p = 4, we choose the two boundary elements and the dnel

2 e-th element to contain
two collocation points. In this way, we choose to analyze two possible sets of degrees of freedom:
we choose {ui}i∈I such that:

1.

I = {1, 2, 3,
i(p+ 1) + 2 : i = 1, . . . ,

⌈nel
2
⌉
,

i(p+ 1) + p : i =
⌈nel

2
⌉
, . . . , nel − 2,

(nel − 1)(p+ 1) + j : j = p− 1, p, p+ 1},

2. or

I = {1, 2,
i(p+ 1) + 3 : i = 0, . . . ,

⌈nel
2
⌉
, (4.14)

i(p+ 1) + p− 1 : i =
⌈nel

2
⌉
, . . . , nel − 1,

(nel − 1)(p+ 1) + j : j = p, p+ 1}.

Those different choices of degrees of freedom are represented in Figure 4.20 with nel = 5.
Other sets of degrees of freedom have been tested, but since their distributions do not follow a
logical sequence with the best nodes found for p = 2, 3, 4, and since it has never improved the
solution of the Laplace problem of Example 2, we only present in this report the results using
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(a) Degrees of freedom 1.

(b) Degrees of freedom 2.

Figure 4.20: Choices of well spread and symmetrically distributed degrees of freedom for p = 5,
example with nel = 5. Blue crosses + separate elements, black crosses + correspond to the
initial degrees of freedom, and bullets © correspond to the chosen ones. 2 degrees of freedom
are associated to each internal node, one corresponding to the interval for which this node is the
right bound, the other one corresponding to the interval for which it is the left bound. None of
them is ever taken into account.

those two sets. Again, the procedure used to build the new B-spline basis functions F is in each
case exactly the same as the one previously introduced in section 4.2.1 with the right set I. We
still choose as collocation points the Gauss-Legendre-Lobatto nodes corresponding to the chosen
degrees of freedom.

Example 2.e: Consider the second order problem of the previous Examples 2. Let h take
powers of 2 between 2−1 and 2−10 and let p = 5. The convergence of the error in the H1- and
L2-norms, and the condition numbers of matrices A and Ared are shown in Figure 4.21 under
h-refinement for both choices of degrees of freedom. In both cases, the asymptotic behavior
is exactly the same: both L2- and H1-errors behave asymptotically as h4 = hp−1, while k(A)
behaves asymptotically as h−3 and k (Ared) as h−2. We have thus chosen the right degrees of
freedom with p = 5 to observe the same behavior of the condition number of A and of Ared
as in the cases in which p = 2, 3 or 4. However, the convergence of the error is the same as
in the case p = 3, that is one order sub-optimal in the H1-norm, and two orders sub-optimal
in the L2-norm. Consequently, the method developed in this chapter seems to have a different
behavior whether p is odd or even, and it behaves better when p is even.

Putting together the definitions of the best degrees of freedom for p = 3 and for p = 5, that
is equations (4.13) and (4.14), we can generalize these choices to any odd integer p. Let k and
q be respectively the quotient and the remainder of the euclidean division of p− 2 by 2nel, that
is p− 2 = (2nel)k + q. Since p is odd, then p− 2 is odd too. Moreover, since 2nel is even, then
q should be odd too. Consequently, let r be such that 2r = q− 1. Then in this case, the chosen
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(a) Degrees of freedom 1.
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(b) Degrees of freedom 2.

Figure 4.21: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 5, and when a second order differential operator is used.

degrees of freedom are the ui with i ∈ I and

I := {1,
(i− 1)(p+ 1) + 2, . . . , (i− 1)(p+ 1) + k + 2 : i = 1, . . . , r,
(i− 1)(p+ 1) + 2, . . . , (i− 1)(p+ 1) + k + 1 : i = r + 1, . . . , nel − r,

(i− 1)(p+ 1) + p+ 1
2 : i = 1, . . . ,

⌈nel
2
⌉
, (4.15)

(i− 1)(p+ 1) + p+ 3
2 : i =

⌈nel
2
⌉
, . . . , nel

i(p+ 1)− k, . . . , i(p+ 1)− 1 : i = r + 1, . . . , nel − r,
i(p+ 1)− (k + 1), . . . , i(p+ 1)− 1 : i = nel − r + 1, . . . , nel,

nel(p+ 1)},
that is we add the first k+ 1 GLL nodes of the first r elements, the last k+ 1 GLL nodes of the
last r elements, and the first and last k GLL nodes of all the remaining elements. When we say
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Figure 4.22: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, for p = 7, and when a second order differential operator is used.

"first" or "last" GLL nodes, we do not consider elements’ boundaries GLL nodes. Moreover, the⌈
nel
2

⌉
-th element also contains an extra degree of freedom, coming from the fact that 2r = q− 1

and not 2r = q. It is easy to check that if p = 3, (4.15) is equivalent to (4.13), and if p = 5,
(4.15) is equivalent to (4.14). We have checked this formula again for p = 7, in the following
Example 2.f.

Example 2.f: Consider the second order problem of the previous Examples 2. Let h take
powers of 2 between 2−1 and 2−8 and let p = 7. The convergence of the error in the H1- and
L2-norms, and the condition numbers of matrices A and Ared are shown in Figure 4.22 under
h-refinement.

We can see that the condition number of A still behaves as h−3 while the condition number
of Ared still behaves as h−2. The linear system solved is thus the reduced one since it gives
more accurate results, especially when h is small. However and surprisingly, the error, both in
the L2-norm and in the H1-norm, seems to behave more as h7 = hp (or even faster) than as
h6 = hp−1. But this result is not reliable since the asymptotic behavior of the error cannot be
observed. Indeed, for h < 2−6, the condition number of Ared becomes too high and the machine
epsilon is attained. Consequently, the error does not decrease anymore. Indeed, in every pre-
vious example, we have observed that the error under h-refinement decreases faster when small
numbers of elements are considered, and then a bit slower when the asymptotic regime is found,
that is when a larger number of elements is considered. Therefore, it is justified to suppose that
the asymptotic regime is not visible in Figure 4.22.

To sum up, through expressions (4.12) for p even and (4.15) for p odd, we have found a
choice of degrees of freedom among the Gauss-Legendre-Lobatto nodes on each element that
leads to a convergent isogeometric collocation method with the rate of convergence as high
as possible. However, this IGA collocation method does not work with first order differential
problems. Moreover, with this new method, we have not improved the rate of convergence of the
error already found in the litterature with other IGA collocation methods [1, 23, 24]. When p
is even, our method gives an error that is one order of convergence sub-optimal in the L2-norm,
with respect to the IGA Galerkin method, even if it is optimal in the H1-norm. For p odd, the
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Norm Galerkin CG CGLL
p odd p even p odd p even

L2 p+ 1 p− 1 p p− 1 p

H1 p p− 1 p p− 1 p

Table 4.2: Comparison of IGA Galerkin method, IGA collocation method at Greville points
and IGA collocation method at specific Gauss-Legendre-Lobatto points, by means of orders of
convergence.

(a) p = 3.

(b) p = 4.

Figure 4.23: Choices of degrees of freedom for p = 3 and p = 4, example with nel = 5. CBlue
crosses + separate elements, black crosses + correspond to the initial degrees of freedom, bullets
© correspond to the chosen ones, and red stars ∗ correspond to Greville abscissae. Note that
2 degrees of freedom are associated to each internal node, one corresponding to the interval for
which this node is the right bound, the other one corresponding to the interval for which it is
the left bound. Only one of them is taken into account when necessary.

situation is worse, it is two orders of convergence sub-optimal in the L2-norm and one order of
convergence sub-optimal in the H1-norm. Therefore, there is still some room for improvement.

4.2.5 Greville abscissae distribution among elements

It is well known that Greville abscissae lead to convergent IGA collocation methods. However,
the rate of convergence of the error is not optimal for every value of B-spline order p, as it has
been recalled in section 2.2.3. The following Table 4.2 sums up the different rates of convergence
of the error in the L2- and H1-norm, when using Greville abscissae (CG, as Collocation at Gre-
ville points) or the method proposed and used in the previous section (CGLL, as Collocation
at GLL points), on a second order differential problem. It is interesting to notice that CG and
CGLL have the same rates of convergence in all cases.

Greville abscissae give an idea on how collocation nodes should be distributed among el-
ements, that is how many collocation nodes there should be on each element of the space
decomposition. The idea of this section is to exploit Greville abscissae in this way, in order to
choose wisely the right Gauss-Legendre-Lobatto nodes on which the problem is collocated, as
it has been explained in section 4.2.1. To do so, given any polynomial/B-spline order p and
any number of elements nel, Greville abscissae are first built. Then, for each Greville node, we
look for the closest corresponding GLL node. Note that by doing so, we necessarily have the
two domain boundary nodes. If two GLL nodes are exactly at the same distance of a Greville
node, we choose the smallest GLL node by default, but this case never happened is our tests.
In Figure 4.23, the chosen GLL points can be seen in the case nel = 5, and p = 3 or p = 4.

Example 1.f: Consider now the first order problem of the previous Examples 1. Let h take
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(a) p = 3.

10−3 10−2 10−1 100

10−9

10−7

10−5

10−3

10−1

101

103

h

Er
ro

r

L2-norm
h4

h5

10−3 10−2 10−1 100101

102

103

104

105

106

107

h

C
on

di
tio

n
nu

m
be

r
k
(A

) k(A)
k(Ared)

h−1

h−2

(b) p = 4.

Figure 4.24: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, when a first order differential operator is used.

powers of 2 between 2−1 and 2−10, and let p = 3 or p = 4. The convergence of the error in
the L2-norm and the condition numbers of matrices A and Ared are shown in Figure 4.24 under
h-refinement.

Not only do we observe that the collocation method constructed in this way converges when
a first order problem is considered, but it also converges optimally in the L2-norm when p is
odd; this means that in this case, the error converges as hp+1. It has also been verified with
p > 3, p odd. Nonetheless, observe in Figure 4.23 that when p = 3, the elements’ boundaries are
among the Greville abscissae, and thus they are taken into account as collocation points for our
method since they are also GLL points. Consequently, this optimal convergence also comes with
the drawback we previously wanted to avoid: at the elements’ boundaries, the basis functions
are limited to a Cp−1-continuity. So collocating the problem at those points means that the
differential operator has to be of order at most p − 1. However, when p is even, the error still
converges sub-optimally by one order of convergence: it behaves asymptotically as hp instead of
hp+1. Finally, as with the previous methods, the condition number of A behaves as h−1 while
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(a) p = 3.
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Figure 4.25: Error convergence and evolution of the condition number of A and of Ared under
h-refinement, when a second order differential operator is used.

the one of Ared behaves as h−2. Therefore, we solve the reduced problem instead of the full one.

Example 2.g: Now, let us consider the second order problem of the previous Examples 2. Let
h take powers of 2 between 2−1 and 2−8 and let p take values 3 and 4. The convergence of the
error in the H1- and L2-norms, and the condition numbers of matrices A and Ared are shown in
Figure 4.25 under h-refinement.

When p is odd, the optimal convergence of the L2-error observed in Example 1.f in the case
of a first order differential operator is not present when a second order problem is considered.
Instead, the error behaves as in section 4.2.4: that is for p odd, both the L2- and the H1-errors
behave asymptotically as hp−1, while for p even, both errors behave as hp. Consequently, for
second order problems, no improvement has been found with respect to the method found in
section 4.2.4.

Finally, the same procedure can be done with the Demko abscissae instead of the Greville
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ones. Graphical results are not presented here because the same convergence results have been
obtained in this case, that is, in the case in which for each Demko abscissae, we look for the
closest corresponding GLL node.

4.3 Partial conclusions
To sum up, we have found in section 4.2.4 a subset of GLL nodes that lead to an IGA colloca-
tion method that has the same rate of convergence as the IGA collocation method at Greville
abscissae on second order differential problems, thanks to the extraction operator introduced in
section 4.1. Moreover, the subset of Gauss-Legendre-Lobatto collocation points obtained from
Greville abscissae in section 4.2.5 does not lead to a better collocation method than in section
4.2.4 when a second order problem is considered. Instead, when a first order differential problem
is considered, convergence is obtained with a good order of convergence in the L2-norm: it is
optimal when p is odd, and just one order sub-optimal when p is even. However, when p is odd,
boundary points of the elements are considered, and this limits the type of problem that can be
taken into account when using this method.
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Chapter 5

Conclusions

In this project, we have explored and tested several ways to collocate first and second order
differential problems in the isogeometric framework. The problem of finding a good set of
collocation points in order to have an optimal convergence of the error is not easy and stays
open. This exploration of isogeometric methods has been developed around two main ideas
inspired from literature, whose results are summed up in this conclusion.

On one hand, we have numerically found optimal quadrature rules in order to integrate
exactly the mass and the stiffness matrices arising from the isogeometric analysis when a Galerkin
formulation is considered. If such quadrature formulas exist and require the evaluation of the
basis functions at exactly n nodes, where n is the number of degrees of freedom of the problem,
then we could have built an isogeometric collocation method from it. This is inspired by the
equivalence between the Galerkin spectral element method with numerical integration using
Gauss-Legendre-Lobatto quadrature formulas, and the spectral element collocation method [8].
However, we have seen numerically that any quadrature formula that integrates exactly functions
of Bp−1

2p (needed to exactly compute the mass matrix) or Bp−2
2(p−1) (needed to exactly compute

the stiffness matrix) require more quadrature points than degrees of freedom when nel > 1.
Indeed, the case nel = 1 is different since in this case, IGA is equivalent to the spectral element
method. This case has been verified through two different methods, leading to the same results:
we have first found the minimum number of quadrature nodes required to have exact quadrature
formulas, and then we have maximized the degree of exactness of a quadrature formula given a
fixed number of quadrature nodes.

However, in the case of SEM G-NI, the mass matrix is also not integrated exactly by the GLL
quadrature formula, but the quadrature error converges as hp when the mesh is refined, where
h is the mesh size and p is the degree of the underlying polynomials. Unfortunately, this is not
the case with the quadrature formulas found in the isogeometric context. Furthermore, since
we would like quadrature points to be collocation points, we have used the too large number of
quadrature points needed to integrate exactly the mass and stiffness matrices in order to solve
collocation problems in the least squares sense. No convergence of the error is observed in this
case, this method is thus not usable.

On the other hand, we have developed a new isogeometric collocation method based on the
Gauss-Lobatto Lagrange extraction of B-splines introduced by Nguyen and Schillinger in [24].
The extractor operator defined in this paper has allowed us to define a new basis of B-splines
that is interpolatory at the Gauss-Legendre-Lobatto nodes and that is still strongly linked with
the B-spline geometry on which the differential problem is defined, as the isogeometric paradigm
of IGA requires. By then making the right choice of degrees of freedom as a subset of the Gauss-
Legendre-Lobatto nodes, we have obtained a well convergent collocation method on second order
differential problems. The results are summarized as follows:
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• When the B-spline order p is even, the error in both the H1- and the L2-norms converges
as hp, i.e. the convergence order is the same as the Galerkin isogeometric method in the
H1-norm, and it is one order sub-optimal in the L2-norm. Therefore, when p is even, this
method converges with the same rate of convergence in both norms as the isogeometric col-
location method when Greville or Demko abscissae are used. This convergence is obtained
when either a first or a second order differential operator is used.

• When p is odd, the error in both the H1- and the L2-norms converges as hp−1, i.e. the
convergence order is one order sub-optimal in the H1-norm and two orders sub-optimal in
the L2-norm with respect to the convergence order of the Galerkin isogeometric method.
In this case, our method converges as well as the IGA collocation method given by Greville
or Demko abscissae, but the method we have developed only works for second order differ-
ential problems. For first order differential problems and still p odd, optimal convergence
has been obtained in the L2-norm when the chosen GLL collocation points are the ones
closest to Greville abscissae. However in this case, some collocation points are elements
boundaries, and thus the order of the differential operators that can be considered are
limited by the order continuity of the B-spline basis.

• When a first order differential problem is considered, the condition number of the col-
location matrix k(A) grows as n2

el where nel is the number of elements. This happens
when all basis functions are considered. But if we solve the reduced collocation problem
by considering only the basis functions that fulfill the boundary conditions, the condition
number of the reduced matrix, k(Ared) grows more slowly, as nel. In the case of a second
order differential problem, k(A) grows as n3

el and k(Ared) as n2
el. Therefore, the reduced

problem should always be preferred.

Other ideas have been treated during this work, for example the idea to use Hermite quadra-
ture formulas in Chapter 3 instead of the usual Gauss quadrature formulas, or the idea of con-
sidering the Gauss-Legendre points instead of the Gauss-Legendre-Lobatto points in Chapter 4,
but none of them have led to convincing results.

Moreover, only a heuristic and numerical search of collocation points has been performed,
without formal and analytic proof. Furthermore, once optimal collocation points have been
found for one dimensional problems using B-splines basis functions, it would be interesting to
study higher dimensional problems and NURBS-based isogeometric analysis. In a future work,
tests should also be performed on other differential equations, such as the bi-harmonic equation
for example, making the most of IGA as a high order numerical method.
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