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Abstract

We present algebraic multigrid solvers for elliptic problems discretized by high order

continuous and discontinuous Galerkin �nite element methods. Algebraic multigrid

is an e�ective technique for solving the linear system of equations stemming from

the discretization of partial di�erential equations.

For continuous Galerkin �nite element methods we consider classical and smoothed

aggregation algebraic multigrid methods and show their e�ectiveness. For high order

discontinuous Galerkin methods standard multigrid approaches cannot be employed

because of redundancy of the degrees of freedom associated to the same grid point.

In this case we present suitable modi�cations of standard agglomeration procedures

and present new approaches, which are tested on extensive numerical experiments.





Sommario

In questa tesi verrá studiata una famiglia di solutori algebraic multigrid per proble-

mi ellittici discretizzati attraverso i metodi agli elementi �niti di Galerkin continui

e discontinui. Il metodo algebraic multigrid è una tecnica iterativa per risolvere

i sistemi lineari risultanti dalla discretizzazione di equazioni alle derivate parziali.

Per i metodi agli elementi �niti di Galerkin continui verranno studiati i metodi alge-
braic multigrid classico e di smoothed aggregation e verrá mostrata la loro e�cienza

computazionale. Per i metodi di alto ordine agli elementi �niti di Galerkin disconti-

nui non è possibile utilizzare approcci multigrid standard a causa della ridondanza

del numero di gradi di libertá associati allo stesso punto di griglia. In questo caso

verranno proposte opportune modi�che delle procedure standard di aggregazione e

saranno studiati nuovi approcci, testati su numerosi esperimenti numerici.
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Introduction

The numerical solution of partial di�erential equations is of fundamental importance

in the description of phenomena in Engineering and Applied Science. An obvious

demand that arises is the high accuracy of the numerical solution of the mathemat-

ical model, and therefore highly e�cient arbitrarily accurate numerical techniques

are needed.

This thesis focuses on multigrid methods for solving the linear system of equations

stemming from high order conforming and discontinuous Galerkin discretizations of

second order elliptic di�erential equations. Multigrid methods can be viewed as an

acceleration of iterative schemes featuring a smoothing property. The smoothing

property refers to an e�cient reduction of oscillatory components of the error than

the smooth ones. The main idea behind multigrid methods is to project the smooth

error modes onto a coarser level where a relaxation will be more e�ective on all error

components.

There are two main categories of multigrid methods: geometric and algebraic multi-

grid. The �rst depends on a hierarchy of geometric grids, the second is based on a

purely algebraic approach to generalize the geometric multigrid whenever grid levels

are not available.

The �rst multigrid methods have been proposed for linear conforming Galerkin dis-

cretizations. They were introduced with the geometric approach by [Fedorenko,

1961] but the methods have become frequently used only later on with the work

of [Brandt, 1977a, Hackbusch, 1985, Bramble, 1993]. The �rst algebraic multigrid

approach was proposed by [Brandt et al., 1982] with the idea of using the algebraic

information provided by the sti�ness matrix of the problem and later generalized

by [Stüben, 1983,Ruge and Stüben, 1985]. The algebraic multigrid generalizations

consists in three main techniques: classical, cf. [Ruge and Stüben, 1987], smoothed

aggregation, cf. [Van¥k et al., 1996], and energy minimization-based algebraic multi-

grid, cf. [Mandel et al., 1999,Wan et al., 1999]. All these techniques have then been

used as preconditioners for conjugate gradient, cf. [Braess, 1995]. In recent years,

the algebraic multigrid approaches have been extended to high order conforming

�nite element methods, cf. [Heys et al., 2005], but it is still a research �eld.

Since the pioneer work of [Gopalakrishnan and Kanschat, 2003], multigrid meth-

ods have been extended to discontinuous Galerkin �nite element discretizations of

partial di�erential equations, especially for elliptic problems. The reason is that

discontinuous Galerkin methods have become of great interest because of their �exi-
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bility in dealing with non-conforming grids and varying local approximation orders.

The �rst developments of multigrid methods for linear discontinuous Galerkin meth-

ods can be found in the geometric framework, cf. [Gopalakrishnan and Kanschat,

2003, van Raalte and Hemker, 2005, Brenner and Zhao, 2005, Dobrev et al., 2006,

Brenner and Owens, 2007,Brenner et al., 2009,Brenner et al., 2011]. Then, thanks

to the �exibility of these methods, techniques of coupling geometric and p multi-

grid have been also proposed, cf. [Helenbrook and Atkins, 2006, Helenbrook and

Atkins, 2008,Mascarenhas et al., 2010]. Moreover, more recent researches have pro-

posed a new approach of hp-multigrid schemes for high order discontinuous Galerkin

discretizations, cf. [Nastase and Mavriplis, 2006,Antonietti et al., 2015,Antonietti

et al., 2017].

Geometric multigrid methods have been successfully applied to several problems,

but they are often costly since the problem has to be rediscretized for each coarser

level: this motivates an algebraic approach. Algebraic multigrid techniques for ma-

trices stemming from low order discontinuous Galerkin �nite element discretizations

of elliptic equations can be found in [Prill et al., 2009,Bastian et al., 2012,Schroder,

2012], but it is unclear how to extend them to the high order framework. The �rst

scalable algebraic multigrid for high order discontinuous Galerkin discretizations of

the Poisson operator is developed by [Olson and Schroder, 2011], but it assumes

the access to the mesh points in order to perform the �rst step of coarsening. This

leads purely algebraic multigrid methods for high order discontinuous Galerkin dis-

cretizations to be still an open research topic.

The aim of this thesis is to develop multigrid methods for the e�cient solution of the

linear system of equations stemming from high order conforming and discontinuous

Galerkin approximations of second order elliptic problems. The goal is to develop

an algebraic solver that is both h- and p-independent, especially in the high order

discontinuous Galerkin setting.

We describe in detail the organization of the thesis by summarizing the contents of

the various chapters.

In Chapter 1 we introduce the Poisson problem, present its variational formula-

tion and analyze its well-posedness. Then we introduce the Galerkin �nite element

method, �rst for conforming discretizations, and then for discontinuous ones.

In Chapter 2 we describe the multigrid principles: error smoothing and coarse grid

correction. We then explain how they are combined to form a multigrid method.

First we introduce the two-grid correction scheme in a geometric framework, then we

extend it to the algebraic setting. Finally we discuss the multigrid cycles, e.g. V- and

W-cycles, and show their employment as stand-alone solvers or as preconditioners

for the conjugate gradient method.
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In Chapter 3 we introduce the discussion on coarsening strategies and interpolation

operators to build the coarser matrices in the conforming Galerkin discretizations

framework based on classical and smoothed aggregation algebraic multigrid meth-

ods. Then, we focus on the application of algebraic multigrid methods to high order

conforming discretizations.

In Chapter 4 we provide a numerical comparison of classical and smoothed aggre-

gation algebraic multigrid methods for conforming Galerkin discretizations and we

illustrate their performance and robustness.

In Chapter 5 we explain the coarsening strategies and interpolation operators to

build the coarser matrices in the discontinuous Galerkin discretizations framework.

We propose new algebraic multigrid methods based on the employment of classi-

cal and smoothed aggregation and extend the latter to high order discontinuous

discretizations.

In Chapter 6 we present extensive numerical experiments to investigate the e�ciency

and robustness of our hybrid and smoothed block aggregation algebraic multigrid

methods for discontinuous Galerkin discretizations.

In Chapter 7 we give a summary of the achieved results and we discuss open problems

for future research.





Chapter 1

The Poisson Equation

In this chapter we present the Poisson problem and discretize it by using as a

guideline the references [Quarteroni, 2014] for the continuous �nite element method

and [Rivière, 2008] for the discontinuous Galerkin one. Moreover throughout the

chapter we will use the standard notation for Sobolev spaces, cf. [Adams, 1975].

1.1 Model Problem

Let Ω ⊂ R2 be a bounded domain and let n be the unit outward normal vector to

the boundary ∂Ω. For a given function f in L2(Ω) and a given g in H
1
2 (∂Ω), we

consider the following Poisson problem.

Problem 1.1. {
−∆u = f in Ω

u = g on ∂Ω

If we assume additional smoothness on f and g, Problem 1.1 has a strong solution

u ∈ C2(Ω) ∩ C(Ω̄).

1.1.1 Weak Formulation

To write the variational formulation of Problem 1.1 in the Hilbert space H1(Ω) we

introduce the following bilinear form aC : H1(Ω)×H1
0 (Ω)→ R

aC(u, v) =

∫
Ω
∇u · ∇v dΩ,

and the following functional FC : H1
0 (Ω)→ R

FC(v) =

∫
Ω
fv dΩ.

The weak formulation reads as follows

Problem 1.2. Find u ∈ H1(Ω), u = g on ∂Ω, such that

aC(u, v) = FC(v) ∀v ∈ H1
0 (Ω)

The solution u ∈ H1(Ω) is the weak solution of the Problem 1.1. By employing the

Lax-Milgram lemma we can prove existence and uniqueness of u.
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Proposition 1.1. The solution of Problem 1.2 exists and is unique.

Proof. In order to prove existence and uniqueness of the solution we show that

Lax-Milgram lemma is satis�ed. We have to check that the bilinear form aC(·, ·)
is continuous and coercive and that the linear functional FC(·) is continuous with

respect to norm ‖ · ‖H1(Ω), i.e.,

aC(u, u) & ‖u‖2H1(Ω) ∀u ∈ H
1(Ω), (1.1)

aC(u, v) . ‖u‖H1(Ω)‖v‖H1(Ω) ∀u, v ∈ H1(Ω), (1.2)

FC(v) . ‖v‖H1(Ω) ∀v ∈ H1(Ω). (1.3)

Conditions (1.2) and (1.3) are a consequence of the Cauchy-Schwarz inequality, while

condition (1.1) is a consequence of the Poincarè inequality with the use of the lifting

operator.

Therefore, Lax-Milgram lemma is satis�ed and there exists a unique u ∈ H1(Ω)

solution of Problem 1.2.

1.2 Numerical Approximation

In this section we describe the numerical solution of the Poisson problem by using

the continuous and discontinuous �nite element methods.

We begin by constructing a quasi-uniform mesh Th of the domain Ω ⊂ R2 made

of non-overlapping shape regular triangles. The partition Th is such that for any

element T ∈ Th we have maxx,y∈T |x− y| ≤ h.
We present two methods: the continuous Galerkin (CG) �nite element method and

discontinuous Galerkin (DG) �nite element one.

Before presenting these methods it is useful to provide some preliminary results.

First of all we introduce the space of polynomials Pp of degree lower than or equal

to p ≥ 1 de�ned as

Pp = {g(x) =
∑
i,j≥0
i+j≤p

aij x
i yj , aij ∈ R}.

The dimension of Pp is given by

Np = dimPp =
(p+ 1)(p+ 2)

2
.

1.2.1 Continuous Galerkin Finite Element Methods

In this section we introduce the continuous Galerkin �nite element method. Let

V C
hp ⊂ H1(Ω) be a family of �nite dimensional spaces parametrized by the mesh

parameter h and de�ned as

V C
hp = {vh ∈ C(Ω̄) : vh|T ∈ Pp ∀T ∈ Th}, p = 1, 2, . . .
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and let V̊ C
hp be a family of its �nite dimensional subspaces

V̊ C
hp = {vh ∈ V C

hp : vh|∂Ω = 0}.

The approximate problem is called Galerkin problem and is of the form

Problem 1.3. Find uh ∈ V C
hp, uh = gh on ∂Ω ∩ Th, such that

aC(uh, vh) = FC(vh) ∀vh ∈ V̊ C
hp.

Here gh is the approximation of the boundary data.

The spaces V C
hp and V̊

C
hp are well suited to approximate the Hilbert spaces H1(Ω) and

H1
0 (Ω), respectively. In fact if v ∈ C(Ω̄) and v ∈ H1(T ) ∀T ∈ Th then v ∈ H1(Ω).

Proposition 1.2. The solution of Problem 1.3 exists and is unique.

Proof. Since V C
hp ⊂ H1(Ω), aC(·, ·) and FC(·) are the same of Problem 1.2, Propo-

sition 1.2 follows from Proposition 1.1.

We are also interested in the error estimates, cf. [Babu²ka and Suri, 1987,Babu²ka

and Suri, 1994,Schwab, 1998].

Theorem 1.1. Let u ∈ H1(Ω) be the exact solution of the weak formulation de-
�ned in Problem 1.2 and let uh ∈ V C

hp be its approximate solution obtained from
Problem 1.3. If u ∈ C(Ω̄)∩Hs+1(Ω), s > 0, then the following error estimates hold

‖u− uh‖H1(Ω) .
hη

ps
‖u‖Hs+1(Ω), η = min{s, p},

‖u− uh‖L2(Ω) .
hη+1

ps
‖u‖Hs+1(Ω), η = min{s, p}.

The notations ‖ · ‖L2(Ω) and ‖ · ‖Hk(Ω) denote the standard norms in L2(Ω) and in
Hk(Ω), k ≥ 1, respectively.

Let {φj}Nh
j=1 be a basis of functions for the �nite element space V C

hp such that

V C
hp = span{φj}Nh

j=1, then Problem 1.3 is equivalent to the following linear system of

equations

Au = f ,

where

A ∈ RNh×Nh , aij = aC(φj , φi) i, j = 1, . . . , Nh, (1.4)

f ∈ RNh , fi = FC(φi) i = 1, . . . , Nh

and u ∈ RNh , u = [u1, . . . , uNh
]T is the vector containing the unknown coe�cients

of the expansion of the discrete solution uh in the chosen basis.

The sti�ness matrix A associated to the continuous Galerkin �nite element method

has the following property.
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Property 1.1. The matrix A de�ned in (1.4) is symmetric and positive de�nite.

Property 1.1 holds because the bilinear form aC(·, ·) associated to the matrix A is

coercive and symmetric.

1.2.2 Discontinuous Galerkin Finite Element Methods

In this section we introduce the discontinuous Galerkin �nite element method. We

de�ne the broken Sobolev space on the grid Th as

Hs(Th) = {v ∈ L2(Ω) : v|T ∈ Hs(T ) ∀T ∈ Th},

s > 3/2. We denote by e the edges of elements of Th. Let ΓE be the set of interior

edges of the mesh Th. If e ∈ ΓE then e has a unit normal vector ne. If e ∈ ∂Ω then

ne coincides with n, the unit outward normal vector to ∂Ω.

Let T e1 and T e2 be two adjacent elements that share one common side e. We know

that if v ∈ Hs(Th), s ≥ 1, the trace of v along any side of one element T is well

de�ned. It follows that T e1 and T e2 have the two traces of v well de�ned on e.

We can add those values and obtain an average {v} for v along e or we can subtract

and get a jump [v] for v along e. We assume that the normal vector ne is oriented

from T e1 to T e2 .

{v} =
1

2
v|T e

1
+

1

2
v|T e

2
[v] = v|T e

1
− v|T e

2
∀e = ∂T e1 ∩ ∂T e2 .

If e belongs to the boundary ∂Ω we extend these de�nitions as follows

{v} = [v] = v|T e
1
∀e = ∂T e1 ∩ ∂Ω.

Now we introduce the following bilinear form J : Hs(Th)×Hs(Th)→ R

J(u, v) =
∑

e∈ΓE∪∂Ω

σe
p2

|e|β

∫
e
[u][v] dγ,

which penalizes the jump of the function. Here σe is the penalty parameter and

β > 0 depends on the dimension of the domain (in our case Ω ⊂ R2 and β = 1).

The notation |e| means the length of the edge e.

Next we de�ne the bilinear form aD : Hs(Th)×Hs(Th)→ R as

aD(u, v) =
∑
T∈Th

∫
T
∇u · ∇v dΩ−

∑
e∈ΓE∪∂Ω

∫
e
{∇u · ne}[v] dγ

−
∑

e∈ΓE∪∂Ω

∫
e
{∇v · ne}[u] dγ + J(u, v),

and the functional FD : Hs(Th)→ R as

FD(v) =

∫
Ω
fv dΩ−

∑
e∈∂Ω

∫
e
∇v · ne g dγ +

∑
e∈∂Ω

∫
e
σe

p2

|e|β
vg dγ.
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The weak formulation of the Poisson Problem 1.1 in the broken Sobolev space

Hs(Th) is given by

Problem 1.4. Find u ∈ Hs(Th), s > 3/2, such that

aD(u, v) = FD(v) ∀v ∈ Hs(Th).

Note that Dirichlet boundary condition are weakly imposed.

Now we can proceed to the discretization of this alternative formulation of the

Poisson Problem 1.1. Let V D
hp ⊂ Hs(Th), s > 3/2, be a family of �nite dimensional

spaces de�ned as

V D
hp = {v ∈ L2(Ω) : v|T ∈ Pp ∀T ∈ Th}.

The approximate DG problem is of the form

Problem 1.5. Find uh ∈ V D
hp such that

aD(uh, vh) = FD(vh) ∀vh ∈ V D
hp .

We note that the functions in V D
hp are discontinuous along the edges of Th. Be-

cause of this, the basis functions of V D
hp have a support contained in one element T .

Formulation de�ned in Problem 1.5 is known as symmetric interior penalty (SIP)

method [Wheeler, 1978, Arnold, 1982]. In order to prove the Proposition 1.3, we

de�ne the DG norm and we recall some useful properties.

The �rst one is the inverse inequality, while the second one gives the trace inequal-

ities, cf. [Ciarlet, 1978,Warburton and Hesthaven, 2003].

De�nition 1.1. The space V D
hp is equipped with the norm

‖v‖2DG =
∑
T∈Th

‖∇v‖2L2(T ) +
∑

e∈ΓE∪∂Ω

‖

√
σe

p2

|e|β
[v]‖2L2(e).

Property 1.2. For any v|T ∈ Pp, T ∈ Th, we have the inverse inequality

‖∇v‖2L2(T ) . p4h−2‖v‖2L2(T ).

Property 1.3. For any v|T ∈ Pp, T ∈ Th, we have the trace inequalities

‖v‖2L2(e) . p2h−1‖v‖2L2(T ), ‖∇v · ne‖2L2(e) . p2h−1‖∇v‖2L2(T ),

where e ∈ ΓE ∪ ∂Ω is an edge of the element T ∈ Th.

The following result ensures the well-posedness of Problem 1.5, cf. [Houston et al.,

2002,Epshteyn and Rivière, 2007,Antonietti and Houston, 2011].
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Proposition 1.3. If σe � σmin, the solution of Problem 1.5 exists and is unique.

Proof. In order to prove existence and uniqueness of the solution of Problem 1.5

we verify that Strang lemma is satis�ed. We have to check that the bilinear form

aD(·, ·) is continuous and coercive and that the linear functional FD(·) is continuous
with respect to the DG norm.

We have to show that

aD(u, u) & ‖u‖2DG ∀u ∈ V D
hp ,

aD(u, v) . ‖u‖DG‖v‖DG ∀u, v ∈ V D
hp ,

FD(v) . ‖v‖DG ∀v ∈ V D
hp .

We begin by demonstrating the continuity of aD(·, ·). Using Cauchy-Schwarz in-

equality, we get ∑
T∈Th

∫
T
∇u · ∇v dΩ ≤

∑
T∈Th

‖∇u‖L2(T )‖∇v‖L2(T ),

∑
e∈ΓE∪∂Ω

σe
p2

|e|β

∫
e
[u][v] dγ .

∑
e∈ΓE∪∂Ω

‖[u]‖L2(e)‖[v]‖L2(e),∫
e
{∇u · ne}[v] dγ ≤ ‖{∇u · ne}‖L2(e)‖[v]‖L2(e).

Now from Properties 1.2 and 1.3, we �nd∫
e
{∇u · ne}[v] dγ .

(
‖∇u‖2L2(T e

1 ) + ‖∇u‖2L2(T e
2 )

)1/2
(

1

|e|β

)1/2

‖[v]‖L2(e),

where T e1 , T
e
2 ∈ Th are the elements that share edge e. Summing over all the edges,

we have

∑
e∈ΓE∪∂Ω

∫
e
{∇u · ne}[v] dγ .

∑
T∈Th

‖∇u‖2L2(T )

1/2 ∑
e∈ΓE∪∂Ω

1

|e|β
‖[v]‖2L2(e)

1/2

.

(1.5)

We observe that the term ∑
e∈ΓE∪∂Ω

∫
e
{∇v · ne}[u] dγ

can be bounded in a similar way.

Collecting all of the previous estimates, we deduce that the bilinear form aD(·, ·) is
continuous. We now proceed by proving the coercivity of aD(·, ·). We have

aD(u, u) =
∑
T∈Th

‖∇u‖2L2(T ) − 2
∑

e∈ΓE∪∂Ω

∫
e
{∇u · ne}[u] dγ

+
∑

e∈ΓE∪∂Ω

‖

√
σe

p2

|e|β
[u]‖2L2(e).
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Recalling equation (1.5) and applying Young inequality, for any δ ∈ [0, 1], we �nd∑
e∈ΓE∪∂Ω

∫
e
{∇u · ne}[v] dγ ≤ δ

2

∑
T∈Th

‖∇u‖2L2(T ) +
α

2δ

∑
e∈ΓE∪∂Ω

1

|e|β
‖[v]‖2L2(e),

where α > 0 is a constant dependent on h and p that derives from Properties 1.2

and 1.3.

Thus we obtain the following lower bound for aD(·, ·)

aD(u, u) ≥ (1− δ)
∑
T∈Th

‖∇u‖2L2(T ) +
∑

e∈ΓE∪∂Ω

σep2 − α
δ

|e|β
‖[v]‖2L2(e).

Choosing, for instance, δ = 1/2 and σe large enough, then we have the coercivity

result. Finally, using again Cauchy-Schwarz inequality and Properties 1.2 and 1.3,

we get that F (·) is continuous.

The error estimates are the following, cf. [Perugia and Schötzau, 2002,Houston et al.,

2002,Stamm and Wihler, 2010,Antonietti et al., 2015].

Theorem 1.2. Let u ∈ Hs+1(Th), s ≥ 1, be the exact solution of the weak formu-
lation de�ned in Problem 1.4 and let uh ∈ V D

hp be its approximate solution obtained
from Problem 1.5. Then the following error estimates hold

‖u− uh‖DG .
hη

ps−1/2
‖u‖Hs+1(Th), η = min{s, p},

‖u− uh‖L2(Ω) .
hη+1

ps
‖u‖Hs+1(Th), η = min{s, p}.

The notations ‖ · ‖L2(Ω) and ‖ · ‖Hk(Th) denote the standard norms in L2(Ω) and in
the broken Sobolev space Hk(Th), respectively.

As we did in the previous section, we can state the �nite element method for the

approximation of the Poisson Problem 1.5. Let {φj}Nh
j=1 be a basis of functions for

the �nite element space V D
hp such that V D

hp = span{φj}Nh
j=1, then Problem 1.5 is

equivalent to the following linear system of equations

Au = f ,

where

A ∈ RNh×Nh , aij = aD(φj , φi) i, j = 1, . . . , Nh, (1.6)

f ∈ RNh , fi = FD(φi) i = 1, . . . , Nh

and u ∈ RNh , u = [u1, . . . , uNh
]T is the vector containing the unknown coe�cients

of the expansion of the discrete solution uh in the chosen basis.

The sti�ness matrixA associated to the discontinuous Galerkin �nite element method

has the following property.
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Property 1.4. The matrix A de�ned in (1.6) is symmetric and positive de�nite.

Property 1.4 holds because the bilinear form aD(·, ·) associated to the matrix A is

coercive (see Proposition 1.3) and symmetric.

1.3 Basis Functions for the Finite Element Spaces

In this section we describe the choice of the shape functions employed to span the

conforming and the discontinuous �nite element spaces.

We assume that vh ∈ V C
hp is characterized by the values it takes at the points

Ni = (xi, yi), with i = 1, . . . , Nh, and consequently the shape functions associated

to the �nite element space V C
hp are de�ned as the Lagrangian functions associated

to the nodes.

We de�ne the nodes on the reference element T̂ = {(x, y) : x, y ≥ 0, x + y ≤ 1} as
Fekete points [Taylor et al., 2000, Briani et al., 2012]. In Figure 1.1 we show the

Fekete points on the reference triangle for p = 1, 2, 4, 10.

0 1
0

1

x

y

(a)

0 1
0

1

x

y

(b)

0 1
0

1

x

y

(c)

0 1
0

1

x

y

(d)

Figure 1.1: Fekete points on the reference triangle (a) p = 1, (b) p = 2, (c) p = 4,

(d) p = 10.
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The discrete space V C
hp is spanned by V C

hp = span{φj}Nh
j=1, where φi is the character-

istic Lagrangian function of degree p associated to the Fekete point Ni, i.e.,

φj(Ni) = δij =

0 i 6= j

1 i = j
i, j = 1, . . . , Nh,

cf. [Ciarlet and Raviart, 1972].

We employ the same set of shape functions to span V D
hp = span{φj}Nh

j=1, but now

without any inter-element continuity constraint. We point out that other choices

can be made for the basis functions, for example we can consider the ones based

on modal expansion [Koornwinder, 1975,Dubiner, 1991,Hesthaven and Warburton,

2008].





Chapter 2

Multigrid Principles

In this chapter, we discuss how to solve a generic linear system of equations

Au = f (2.1)

stemming from the discretization of di�erential equations, where A is a symmetric

and positive de�nite matrix and sparse. A possibility is to use classical iterative

methods such as Jacobi, dumped Jacobi, Gauss-Seidel, conjugate gradient and so

on. The big defect that most of these methods have is that they su�er from stag-

nation after a few iterations. Indeed such methods possess the so-called smoothing

property [Chan and Elman, 1989]. The error can be represented as a linear com-

bination of the eigenvectors of the iteration matrix associated with the selected

iterative method. Eigenvectors associated with high wavenumbers represent os-

cillatory modes, whereas eigenvectors associated with low wavenumbers represent

smooth modes. The smoothing property refers to more e�cient reduction of os-

cillatory components of the error than the smooth ones. For this reason multigrid

methods have become one of the most powerful method to solve the large linear

system of the form (2.1) [Brandt, 1982,Hackbusch, 1982,McCormick, 1987,Briggs

et al., 2000,Trottenberg et al., 2001].

There are two main categories of multigrid methods: geometric and algebraic multi-

grid. Both are based on the representation of smooth error modes as oscillatory

ones so the relaxation of the chosen iterative method (e.g. Jacobi or Gauss-Seidel

method) will be more e�ective on all error components. In the following, we are

going to detail how this representation occurs.

In this work we are interested in the algebraic multigrid method (AMG), but since

it is based on some elementary concepts that arise from geometric multigrid it is

natural to present both of them in a geometric "setting".

2.1 Geometric Multigrid

We follow the presentation of [Stüben and Trottenberg, 1982].

Let Th be a �ne grid associated with a discretized problem with numerical solution

uh. Thanks to the local Fourier analysis introduced by [Brandt, 1977b], we know

that smooth error components on Th can be represented as oscillatory modes if they
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are projected on TH , where TH is a coarser grid respect to Th. The transition of

the error from the �ne grid Th to the coarser one TH is possible thanks to suitable

intergrid operators. With the coarse grid idea in mind we can distinguish two

basic elements of geometric multigrid: error smoothing by relaxation method and

recursive correction on coarser grids, cf. Sections 2.1.2 and 2.1.3 below.

2.1.1 Intergrid Operators

In the geometric multigrid method there are two type of information transfers, there-

fore we need to de�ne two intergrid operators based on the geometric information

of the problem: prolongation and restriction operators, that are de�ned in the fol-

lowing.

Given a pair of coarser and �ner meshes TH and Th, respectively, we denote by VH
and Vh two �nite dimensional element spaces associated to TH and Th, respectively,
such that dim(VH) < dim(Vh) < +∞.

De�nition 2.1. Let vh ∈ Vh and vH ∈ VH be discrete functions de�ned on Vh and
VH , respectively. The interpolation or prolongation operator IhH : VH → Vh is such
that

IhHvH = vh.

De�nition 2.2. Let vh ∈ Vh and vH ∈ VH be discrete functions de�ned on Vh and
VH , respectively. The restriction operator IHh : Vh → VH is such that

IHh vh = vH .

If VH ⊆ Vh, a simple example of these operators is given by the interpolation as IhH
and the injection as IHh , cf. [Brandt, 1982,Gaspar et al., 2009,Gaspar et al., 2010]

for example.

2.1.2 Smoothing

The geometric multigrid method involves the use of classical iterative methods like

those of Jacobi or Gauss-Seidel featuring the smoothing property: after few itera-

tions there will be an e�cient reduction of oscillatory components of the error but

the smooth ones will remain [Chan and Elman, 1989].

Denoting by u∗ the approximate solution of (2.1) obtained via an iterative relaxation

scheme, the error is de�ned as

e = u− u∗, (2.2)

where u denotes the exact solution of (2.1) and the residual is given by

r = f −Au∗. (2.3)

There exists a important relationship between the error and the residual.
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Problem 2.1. The residual equation read as follows

Ae = r,

where e and r are the error and the residual de�ned in (2.2) and (2.3).

Having de�ned the two equations that guide the multigrid method we can now

understand the role they have.

2.1.3 Coarse-Grid Correction

The geometric multigrid method is based on the concepts of smoothing and coarse-

grid correction which are designed to complement each other. There are two reasons

why we want to solve the problem on a coarser grid: �rst of all we can solve a smaller

numerical problem, secondly with the use of a coarser grid we can improve the speed

of convergence.

Since we use iterative methods with smoothing property to solve the problem on

the �ne grid Th we know that after few iterations the convergence deteriorates. So

we are interested to move on a coarser grid TH in order to convert the smooth error

components into oscillatory ones and then solve the residual equation on TH . The
solution of the residual equation is an approximation of the error and it is then

interpolated back on Th and used to improve convergence of the iterative methods.

Now we give a rigorous and formal structure to the newly introduced concepts. They

can be represented by the procedure in Algorithm 2.1 which is known as two-grid

correction scheme [Briggs et al., 2000].

Algorithm 2.1 One Iteration of Two-Grid Correction Scheme

function MG(ν1,ν2,Ah,u
0
h,fh,AH ,I

H
h ,IhH)

Relax ν1 times on Ahuh = fh with initial guess u0
h

Compute the �ne-grid residual rν1h = fh −Ahuν1h
Restrict rν1h to the coarse grid by rH = IHh rν1h
Solve AHeH = rH

Interpolate the coarse-grid error eH to the �ne grid by eh = IhHeH

Correct the �ne-grid approximation by uν1+1
h = uν1h + eh

Relax ν2 times on Ahuh = fh with initial guess uν1+1
h

return uν1+ν2+1
h

end function

As input we must provide two integer values ν1 and ν2 that are the number of

pre-smoothing and post-smoothing iterations. We have also to give some geometric

information about the problem: Th and TH are the two grids, Ah and AH are the

sti�ness matrices de�ned on the �ne and coarse grid, respectively. The relationship
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between the discrete spaces associated with Th and TH is given by the intergrid

operators IHh and IhH . Finally we have to provide the datum fh and an initial guess

for the solution uh.

To solve the residual equation on the coarser grid TH we will employ a direct method.

2.1.4 Variational Properties

The coarse-grid problem operator, as presented by [Mandel et al., 1987,Briggs et al.,

2000], can be de�ned so that it respects the following Galerkin condition

AH = IHh AhI
h
H (2.4)

and

IHh = c IhH
T

c ∈ R.

Equation (2.4) de�nes the coarse-grid operator. The second property is the rela-

tionship between the intergrid operators: it has to preserve constant vectors. These

properties are desirable for most applications.

2.2 Algebraic Multigrid

In this section we de�ne the algebraic multigrid method (AMG) from the multigrid

concepts presented in Section 2.1. In [Briggs et al., 2000] we �nd an explanation

of the AMG method with frequent analogies to the geometric multigrid one. More

technical and detailed explanations on algebraic multigrid methods can be found

in [Stüben, 1999, Xu and Zikatanov, 2017]. The �rst developments of the AMG

method date back to [Brandt et al., 1985,Brandt, 1986].

In order to de�ne the AMGmethod we need to build de�nitions, strategies, problems

and properties without the use of geometric structures.

In the geometric multigrid the unknown variables are de�ned at grid points on a �ne

grid and we then select a subset of these points as a coarse grid. In the algebraic

context, we identify the �ne grid points as the indices of the unknowns, so the coarse

grid is a subset of variables indices.

At this point starting from a linear system we must build a structure similar to the

geometric one, based on graph theory.

2.2.1 Graph Theory

Given a symmetric matrix A ∈ Rn×n we want represent its geometric information

using the graph theory [Gibbons, 1985, Diestel, 2010]. Before that we give some

preliminary de�nitions on graphs useful for the sequel.
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De�nition 2.3. An undirected graph G is a pair (V,E) where V is a set of vertices
(points) and E is a set of edges. An edge e ∈ E is an unordered pair (j,k), where
j, k ∈ V, j 6= k.

De�nition 2.4. The neighborhood Ni of a vertex i are the vertices adjacent to the
vertex i, that is

Ni = {j : (i, j) ∈ E}.

De�nition 2.5. The degree of a vertex is the number of edges connected to it de�ned
as

di = |{j : (i, j) ∈ E}|.

De�nition 2.6. A graph G0 = (V0, E0) is called subgraph of G = (V, E) if V0 ⊂ V
and E0 ⊂ E.

De�nition 2.7. Given a graph G = (V, E), an independent set VS ⊆ V is a subset
of vertices in which for each pair of nodes i, j ∈ VS it follows (i, j) /∈ E. A maximal
independent set VM is a set such that VM ∪ {i} is not independent for every i ∈
V \ VM .

De�nition 2.8. The adjacency graph of a symmetric matrix A ∈ Rn×n is an undi-
rected graph denoted by G(A) = (V, E) with V and E de�ned as

V = {1, . . . , n}, E = {(j, k) : ajk 6= 0}.

An example of adjacency graph of a symmetric matrix is given in Figure 2.1.

A =



∗ ∗ ∗ ∗ ∗ 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ 0 ∗ ∗ ∗ ∗
∗ 0 0 ∗ ∗ 0

0 0 0 ∗ 0 ∗


1

2

34

5

6

Figure 2.1: Symmetric matrix (left) and its associated adjacency graph (right).

The adjacency graph of a matrix gives us all the geometric information that we

need: the grid is entirely de�ned by that graph. Now that we can represent the �ne

grid we want to understand how to build the coarse grid. Our goal is to select a

subgraph of the adjacency graph associated to a given symmetric matrix A ∈ Rn×n.
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2.2.2 Algebraic Smoothing

In the geometric context we can de�ne the smoothing property of an iterative method

with the local Fourier analysis of the error modes. Instead in the algebraic one we

must proceed by analogy. Thus, we de�ne algebraic smooth error to be any error

that is not reduced e�ectively by the chosen iterative method [Brandt, 1986].

Given a smoothing operator R ∈ Rn×n associated to the selected iterative method,

formally we write:

De�nition 2.9. We de�ne an error e ∈ Rn to be algebraically smooth if it converges
slowly with respect to a given smoothing operator R, that is, if Re ≈ e.

If the error is algebraically smooth, from the error equation Ae = r we get

Ae ≈ 0, (2.5)

which means that smooth error has relatively small residual. One immediate impli-

cation of (2.5) is that ri ≈ 0, i = 1, . . . , n, so

aiiei ≈ −
∑
j 6=i

aijej i = 1, . . . , n. (2.6)

Equation (2.6) says that if e is a smooth error then ei, i = 1, . . . , n, can be ap-

proximate by a weighted average of its neighbors. This condition is important to

construct the transfer operators.

A key step is to build the coarse-grid subgraph of G(A). This subgraph has to well

represent the �ne-grid smooth error as oscillatory on the coarse grid.

In the following we present some basic principles to select the coarse-grid subgraph.

2.2.3 In�uence and Dependence

The �ne grid can be represented by the adjacency graph of matrix A ∈ Rn×n. We

need to identify vertices to be deleted from the graph to provide an appropriate

subgraph of G(A). To do this we must provide a measure of the importance of the

vertex through its connections. A strength function associated to a matrix is such

that

s : V × V → R+.

De�nition 2.10. Given a threshold 0 < θ ≤ 1, we say that the vertex i strongly
depends on j if

s(i, j) ≥ θ.

De�nition 2.11. If the vertex i strongly depends on j, then j strongly in�uences i.
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There are several de�nitions of strength functions, some examples are reported be-

low.

s1(i, j) = − aij
maxk 6=i(−aik)

, (2.7)

s2(i, j) =
|aij |

1
|N(i)|

∑
k 6=i |aik|

, (2.8)

s3(i, j) = − aij
min (maxk 6=i(−aik),maxk 6=j(−ajk))

, (2.9)

s4(i, j) =
|aij |

min
(

1
|N(i)|

∑
k 6=i |aik|,

1
|N(j)|

∑
k 6=j |ajk|

) , (2.10)

s5(i, j) =
|aij |√
aiiajj

. (2.11)

The strength functions de�ned in (2.9), (2.10) and (2.11) are symmetric. In particu-

lar (2.9) and (2.10) are the symmetrized version of strength functions de�ned in (2.7)

and (2.8), respectively. If the strength function is symmetric, i.e. s(i, j) = s(j, i),

De�nitions 2.10 and 2.11 can be written as a unique de�nition as follows

De�nition 2.12. Given a threshold 0 < θ ≤ 1, we say that the vertices i and j are
strongly connected if

s(i, j) ≥ θ.

We then de�ne the strength matrix S ∈ Rn×n with entries

sij =

1 s(i, j) ≥ θ

0 otherwise
.

2.2.4 Coarsening Strategies

Coarsening strategies are all based on graph partitioning of grid domain [Saad,

2003]. The most relevant techniques are based on maximal independent set and

aggregation algorithms. In this section we give a general explanation that will be

detailed in later chapters. As in the geometric problem, the coarse grid must be

selected so that the smooth error can be well represented and that has fewer points

than the �ne grid, so that the residual problem can be solved with little expense.

Given the strength matrix S ∈ Rn×n we want to select the subgraph of G(A) that

best represents it. To do this we use the information in matrix S because it repre-

sents the strong connections. Therefore we apply the coarsening algorithms on G(S)

which does not have the weak connections of G(A).

Without getting into the details we have that these algorithms have the following

inputs/outputs.
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Algorithm 2.2 Maximal Independent Set (MIS)

Input: Graph G(S) with n vertices

Output: V = C ∪ F , where C is a set of disconnected vertices and F = V \ C

Algorithm 2.3 Aggregation

Input: Graph G(S) with n vertices

Output: V =
⋃m
k=1 Vk, m ≤ n, and Vk ∩ Vj = ∅ for k 6= j

Note that we refer to the graph G(A) and to its subgraph with the terminology of

the geometric multigrid, that is, G(A) is the �ne grid and the subgraph is the coarse

one.

2.2.5 Transfer and Coarse-Grid Operators

With the strategies de�ned in the previous section we understand how to build the

coarse grid. At this point it is good to introduce a suitable notation to refer to the

�ne or coarse grid: as in the geometric case we refer to �ne grid with the subindex

h and to coarse one with the subindex H. More precisely for a matrix M and a

vector v we have: on "�ne" grid Mh ∈ RNh×Nh , vh ∈ RNh and on "coarse" grid

MH ∈ RNH×NH , vH ∈ RNH , with NH ≤ Nh.

We de�ne the algebraic transfer operators as follows.

De�nition 2.13. Let vh ∈ RNh and vH ∈ RNH be approximate functions. The
interpolation or prolongation operator IhH : RNH → RNh is such that

IhHvH = vh.

De�nition 2.14. Let vh ∈ RNh and vH ∈ RNH be approximate functions. The
restriction operator IHh : RNh → RNH is such that

IHh vh = vH .

We want that the properties de�ned in Section 2.1.4 hold also in the algebraic

context [Mandel et al., 1987,Briggs et al., 2000]. For transfer operators we have

IHh = IhH
T
, (2.12)

instead the coarse-grid operator is constructed using the Galerkin condition

AH = IHh AhI
h
H . (2.13)

In the next chapters we will de�ne the interpolation operator and then, thanks to

(2.12) and (2.13), the restriction and coarse-grid operators will be automatically

de�ned.
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2.2.6 Two-Level Correction

In this section we revise the concepts introduced in Section 2.1.3 within an algebraic

setting. The idea at the basis of the algorithm is the same, but the geometrical

notions are replaced by algebraic ones.

As input we must provide the number of smoothing iterations ν1 and ν2, Ah ∈
RNh×Nh and the relationship between the two grids is given by the algebraic transfer

operators IHh and IhH . Finally, we have to provide the datum fh ∈ RNh and an initial

guess for the solution u0
h ∈ RNh . One iteration of the AMG algorithm is shown in

Algorithm 2.4.

Algorithm 2.4 One Iteration of the Algebraic Two-Grid Correction Scheme

function AMG(ν1,ν2,Ah,u
0
h,fh,AH ,I

H
h ,IhH)

Relax ν1 times on Ahuh = fh with initial guess u0
h . Pre-smoothing

rν1h = fh −Ahuν1h . Residual

rH = IHh rν1h . Restriction

Solve AHeH = rH

eh = IhHeH . Interpolation

uν1+1
h = uν1h + eh . Correction

Relax ν2 times on Ahuh = fh with initial guess uν1+1
h . Post-smoothing

return uν1+ν2+1
h

end function

2.3 Multigrid Cycles

Till now we have seen multigrid concepts on two grids, in the following we will extend

them to more levels [Briggs, 1987, Briggs et al., 2000]. Since we are particularly

interested in AMG we present the extension of the two-level multigrid in algebraic

context [Briggs and McCormick, 1987]. We need a new notation associated with

levels: the current level is denoted by k and the number of unknowns on the level

by Nk.

Denoting by K the coarsest level, the following components are needed for AMG:

1. Grid Operators: A = A1, . . . , AK ;

2. Intergrid Operators: Ikk+1 : RNk+1 → RNk and Ik+1
k : RNk → RNk+1 ,

k = 1, . . . ,K − 1.

With the use of the grid and intergrid operators introduced above, we solve the linear

system of equations de�ned in (2.1): the stopping criterion is given by a maximum

number of iterations (Niter ≤ Nmax) and the residual norm normalized respect to

the datum must be under a certain given tolerance (||r|| ≤ tol ||f ||).



24 Chapter 2. Multigrid Principles

As shown in Algorithm 2.5, until the stopping criterion is satis�ed, we repeat an it-

eration of a generic algebraic µ-cycle scheme (AMG-µCycle). Precisely, the family of

algebraic µ-cycle schemes combine recursively the concept of coarse-grid correction.

Algorithm 2.5 AMG Solve Phase

while Niter ≤ Nmax & ||r|| ≤ tol ||f || do
u =AMG-µCycle(A,f)

r = f −Au
end while

2.3.1 Algebraic µ-cycle Scheme

In this section we present the algebraic µ-cycle schemes: they combines the coarse-

grid correction idea on more levels [Briggs and McCormick, 1987], as shown in

Algorithm 2.6.

Algorithm 2.6 One Iteration of Algebraic µ-cycle Scheme (AMG-µCycle)

function AMG-µCycle(ν1,ν2,Ak,u
0
k,fk,I

k+1
k ,Ikk+1)

if k = K then

Solve AKuK = fK . Coarsest level

return uK

else

Relax ν1 times on Akuk = fk with initial guess u0
k . Pre-smoothing

rν1k = fk −Akuν1k . Residual

fk+1 = Ik+1
k rν1k . Restriction

u0
k+1 = 0

uν1+ν2+1
k+1 = AMG-µCycle(ν1,ν2,Ak+1,u

0
k+1,fk+1,I

k+2
k+1 ,I

k+1
k+2 ) µ volte

uν1+1
k = uν1k + Ikk+1u

ν1+ν2+1
k+1 . Interpolation and Correction

Relax ν2 times on Akuk = fk with initial guess uν1+1
k . Post-smoothing

return uν1+ν2+1
k

end if

end function

In practice, only µ = 1 and µ = 2 are used. If we have a µ-cycle scheme with µ = 1

we refer to it as a V-cycle, instead if we have µ = 2 we call the method W-cycle. In

particular we denote with V(ν1,ν2)-cycle and W(ν1,ν2)-cycle the two methods above

with ν1 pre-smoothing and ν2 post-smoothing iterations [Briggs et al., 2000].

In Figures 2.2 and 2.3 we report the pictures describing the di�erent approaches

detailed in this section.
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(a) (b)

Figure 2.2: Illustration of multigrid cycles on three levels: (a) V-cycle and

(b) W-cycle.

(a) (b)

Figure 2.3: Illustration of multigrid cycles on four levels: (a) V-cycle and

(b) W-cycle.

2.4 Algebraic Multigrid as Preconditioner

Algebraic multigrid was initially construct as a stand-alone solver, but in order to

increase the robustness it is useful to combine it with other methods. In the simplest

case AMG can be used as a preconditioner to accelerate the convergence of Krylov

based iterative schemes, such as conjugate gradient [Kettler, 1982].

The need to use AMG with acceleration methods such as conjugate gradient comes

from the fact that in many practical cases the selection of coarse grid and transfer

operators is not optimal. For this reason AMG is used as preconditioner to accelerate

the convergence.

In the AMG preconditioned conjugate gradient method we have to compute the

preconditioned residual z, by AMG as a preconditioner, i.e.

z = AMG-µCycle(A, r).

For more details on the preconditioned conjugate gradient method with AMG see

Algorithm 2.7, cf. [Quarteroni et al., 2007].



26 Chapter 2. Multigrid Principles

Algorithm 2.7 Preconditioned Conjugate Gradient with AMG

function PCG-µCycle(A,u0,f ,Nmax,tol)

Niter = 0

r0 = f −Au0

z0 = AMG-µCycle(A, r0) . PCG-step

p0 = z0

while Niter ≤ Nmax & ||r0|| ≤ tol ||f || do . PCG-iteration

α =
rT0 z0

pT
0 Ap0

u = u0 + αp0

r = r0 − αAp0

z = AMG-µCycle(A, r) . PCG-step

β = rT z
rT0 z0

p = z + βp0

u0 = u, r0 = r, p0 = p, z0 = z . Save old variables

Niter = Niter + 1

end while

end function



Chapter 3

Algebraic Multigrid for

Conforming Finite

Element Method

In this chapter we discuss algebraic multigrid methods for the solution of the linear

system stemming from continuous Galerkin �nite element approximations of the

Poisson problem. We have to construct suitable coarsening strategies and de�ne

how to construct the associated transfer operators. There are three techniques in

the literature: classical, aggregation and energy minimization algebraic multigrid.

Classical AMG [Stüben, 1983,Ruge and Stüben, 1987] is based on maximal inde-

pendent set as coarsening strategy and its transfer operators are de�ned with the

de�nition of smooth error. Aggregation and energy minimization AMG are both

based on aggregation strategies, but they di�er for the de�nition of transfer op-

erators. Aggregation algebraic multigrid [Vakhutinsky et al., 1979, Blaheta, 1986]

de�nes the transfer operators in such a way that constant vectors are preserved,

whereas energy minimization AMG operators have to satisfy certain conditions on

the energy of the problem [Mandel et al., 1999,Olson et al., 2011]. Here we focus

on classical and smoothed aggregation algebraic multigrid methods. The smoothed

aggregation technique [Van¥k, 1992,Van¥k et al., 1996] is an improvement of method

based on aggregation strategy.

The development of these methods is based on the hypothesis that the matrix as-

sociated with the linear system is an M-matrix, that is,

De�nition 3.1. A symmetric de�nite positive matrix A ∈ Rn×n is called M-matrix
if it satisfy the following properties:

aii > 0 i = 1, . . . , n,

aij ≤ 0 i 6= j, i, j = 1, . . . , n.

The matrices stemming from low order (i.e. linear) continuous Galerkin �nite ele-

ment discretizations are M-matrices, whereas if p ≥ 2 the resulting sti�ness matrices

belong to the class of essentially positive matrices [Brandt, 1986]. For this reason
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we �rst present the two techniques for the M-matrices because there is a direct cor-

respondence between grid points and unknown variables and it allows us to build

the algebraic multigrid method based on the geometric one. Then we will extend

these concepts to essentially positive matrices for which the unknown variables are

associated to grid points and high order degrees of freedom.

Without loss of generality in this chapter we will consider only two-level methods,

except for convergence estimates.

Finally, we introduce the following inner products, that will be useful for convergence

estimates.

De�nition 3.2. Given a symmetric positive de�nite matrix A ∈ Rn×n, let D ∈
Rn×n be the diagonal matrix of A, we de�ne

(u,v)0 = (Du,v), (u,v)1 = (Au,v), ∀u,v ∈ Rn,

where (·, ·) is the Euclidian product. With the notation || · ||0, || · ||1 we denote their
induced norms.

3.1 Classical Algebraic Multigrid for M-matrices

In this section we present the classical algebraic multigrid developed by [Stüben,

1983,Ruge and Stüben, 1987]. Later developments can be found in [Cleary et al.,

1998,Cleary et al., 2000]. The topic is described using as a guideline [Stüben, 1999].

Since this method is based on the de�nition of algebraic smooth error we �rst give a

new interpretation of it and then we detail how to construct the coarsening strategy

and the interpolation operator. After that we show the convergence results.

3.1.1 Interpretation of Algebraic Smooth Error

We have seen in Section 2.2.2 that, for a given smoothing operator Rh ∈ RNh×Nh ,

the algebraic smooth error is characterized by the relation Rheh ≈ eh. Recalling

that if the error is smooth then Aheh ≈ 0h, it follows that

aiiei ≈ −
∑
j 6=i

aijej i = 1, . . . , Nh. (3.1)

If A is an M-matrix equation (3.1) can be written with a more intuitive interpreta-

tion. An algebraic smooth error satis�es the following property [Brandt, 1986,Ruge

and Stüben, 1987]

1

2

Nh∑
i,j=1

(−aij)(ei − ej)2 +

Nh∑
i=1

 Nh∑
j=1

aij

 e2
i �

Nh∑
i=1

aiiei. (3.2)
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If
∑

i 6=j |aij | ≈ aii, equation (3.2) means that, on the average for each i

Nh∑
j=1
j 6=i

|aij |
aii

(ei − ej)2

e2
i

� 1 i = 1, . . . , Nh.

That is, algebraic smooth error varies slowly in the direction of strong connections,

i.e., if |aij | � aii, with aij < 0, then ei ≈ ej . This observation is crucial to choose

the best de�nition of strong connections and then to de�ne the transfer operators.

3.1.2 Coarsening: Colouring Scheme

Given an M-matrix Ah ∈ RNh×Nh and its adjacency graph G = (V, E) we want

to de�ne a coarsening strategy based on maximal independent set. We construct

a C/F-splitting based on strong couplings: C is the set of points of coarse grid

and in F there are the points which belong only to the �ne grid. Thanks to the

interpretation of algebraic smooth error given in the previous section we assume the

strength function to be

s(i, j) = − aij
maxk 6=i(−aik)

. (3.3)

Recalling the De�nitions 2.10 and 2.11 from Section 2.2.3, we construct the strength

matrix S ∈ RNh×Nh with entries

sij =

1 −aij ≥ θmaxk 6=i(−aik)

0 otherwise

and its adjacency graph GS = (VS , ES), GS ⊂ G. Recalling the general concepts

of coarsening strategies given in Section 2.2.4, we describe in detail the algorithm

known as colouring scheme [Stüben, 1983,Ruge and Stüben, 1987]. Before describ-

ing the coarsening approach in detail, we need to give some more de�nitions and

to introduce certain heuristic rules useful for the construction of the interpolation

operator.

De�nition 3.3. We de�ne the set Si of all strong connections of the index i as

Si = {j : (i, j) ∈ ES}.

De�nition 3.4. We de�ne the set STi of variables strongly connected to the vertex
i as

STi = {j ∈ V : i ∈ Sj}.

Since the relation of variables strongly connected is generally non-symmetric it is

useful to have de�ned both Si and S
T
i .
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De�nition 3.5. Let Ni be the neighborhood of the vertex i as de�ned in De�ni-
tion 2.4. For a given C/F-splitting its points can be divided into three categories:

1. the coarse interpolatory set for i: Ci = C ∩ Si,

2. the strong non-interpolatory set for i: Ds
i = F ∩ Si,

3. the weak non-interpolatory set for i: Dw
i = Ni \ Si.

Note that the set Dw
i may contain both coarse- and �ne-grid points. Armed with

these de�nitions, the heuristic criteria that guide the initial selection of the C-points

are the following:

Heuristic 3.1. For each i ∈ F , every point j ∈ Si should either be in C, or should
be strongly connected to at least one point in Ci.

Heuristic 3.2. C should be a maximal subset of all points with the property that no
C-point strongly depends on another C-point.

Heuristic 3.1 is used to construct the interpolation operator (see Section 3.1.3 below)

whereas Heuristic 3.2 is designed to control the size of the coarse grid. Since it is not

always possible to enforce both Heuristics 3.1 and 3.2, we choose to enforce Heuris-

tic 3.1 because the interpolation formula depends on it, while we use Heuristic 3.2

as a guide.

We now have all the ingredients to de�ne the colouring scheme [Stüben, 1983,Ruge

and Stüben, 1987]: the algorithm proceeds in two steps. We �rst make an initial

partition into C- and F-points. The goal in the �rst step is to create a set of C-

points that satis�es Heuristic 3.2 (see Algorithm 3.1). Then we make a second step,

modifying initial F-points to C-points as necessary to enforce Heuristic 3.1 (see

Algorithm 3.2). Note that in Algorithm 3.1 the notation | · | denotes the cardinality
of a set.

Algorithm 3.1 Preliminary C-point choice

C = ∅, F = ∅, U = V
λi = |STi |, i ∈ U
while U 6= ∅ do

Select i with maximum λi, i ∈ U
C = C ∪ {i}, U = U \ {i}
For all j ∈ STi ∩ U : F = F ∪ {j}, U = U \ {j}
λi = |STi ∩ U |+ 2|STi ∩ F |, i ∈ U

end while

In Algorithm 3.1 we start by picking a �rst point to be a C-point. Then all points

strongly connected to it are selected as F-points. Next we select another point from
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the remaining unselected points in set U to become a C-point and all points which

are strongly connected to it become again F-points. This process is repeated until all

points in U have been assigned to C or F . In order to avoid random C/F-splitting,

we introduce λi which measure the value of the point i ∈ U as a C-point: the point

that has maximum measure is the best candidate to become a C-point.

Algorithm 3.2 Final C-point choice

T = ∅
while T ⊂ F do

Pick i ∈ F \ T , T = T ∪ {i}
Ci = C ∩ Si, Ds

i = F ∩ Si, Dw
i = Ni \ Si, C̃i = ∅

for all j ∈ Ds
i do

if Sj ∩ Ci = ∅ then
if C̃i 6= ∅ then

C = C ∪ {i}, F = F \ {i}
C̃i = ∅
exit for

else

C̃i = {j}, Ci = Ci ∪ {j}, Ds
i = Ds

i \ {j}
end if

end if

end for

C = C ∪ C̃i, F = F \ C̃i
end while

Algorithm 3.2 veri�es that, for each F-point i, all points in Ds
i have a strong connec-

tion to at least one point in Ci. If there exists only one point j ∈ Ds
i such that i ∈ F

does not satisfy Heuristic 3.1, then j becomes a C-point, otherwise, if the algorithm

�nds more than one point in Ds
i such that i ∈ F does not satisfy Heuristic 3.1, then

the F-point i is put into C. This is done in order to minimize the number of new

C-points introduced. The algorithm terminates when all F-points have been tested,

i.e. when the set T , which denotes the tested F-points, is such that T ⊇ F .

We next discuss a variant of Algorithm 3.2 where we introduce a simpli�cation:

when the F-point i is such that at least one point j ∈ Ds
i does not strongly depend

on Ci, then i becomes a C-point. In this way there are fewer checks to be performed,

cf. Algorithm 3.3.
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Algorithm 3.3 Final C-point choice (Variant)

T = ∅
while T ⊂ F do

Pick i ∈ F \ T , T = T ∪ {i}
Ci = C ∩ Si, Ds

i = F ∩ Si, Dw
i = Ni \ Si

for all j ∈ Ds
i do

if Sj ∩ Ci = ∅ then
C = C ∪ {i}, F = F \ {i}

end if

end for

end while

Now we present a classic example in the literature of the colouring scheme for the

Poisson problem with linear conforming discretizations on simplicial (Figure 3.1)

and on cartesian (Figure 3.2) meshes [Stüben, 1999].

Figure 3.1: First steps and �nal result of the colouring scheme in case of simplicial

meshes (black bullets are points in the set C, light grey bullets are points in the set

F ).

Figure 3.2: First steps and �nal result of the colouring scheme in case of cartesian

meshes (black bullets are points in the set C, light grey bullets are points in the set

F ).

In Figures 3.1 and 3.2, the C-points are shown in black, the F-points are shown in

grey and the undecided points are white. Edges of the graph are removed as the

algorithm accounts for the dependencies of the new C- and F-points.
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3.1.3 Interpolation Operator

Given a C/F-splitting we can de�ne the interpolation operator. Two strategies are

possible: standard [Ruge and Stüben, 1987] and direct interpolation [Stüben, 1983].

The di�erence between them is that the �rst technique takes into account all the

connections, both weak and strong, while the second accounts only the strong ones.

Here, we focus on the technique of [Ruge and Stüben, 1987].

We assume that, given eH ∈ RNH , the interpolation operator is constructed such

that

[eh]i = [IhHeH ]i =

eHi i ∈ C∑
k∈Ci

wike
H
k i ∈ F

, i = 1, . . . , Nh,

where the interpolation weights wik have to be determined. As anticipated in Sec-

tion 3.1.1, we are guided by the de�nition of smooth error to �nd good coe�cients.

Given the operator Ah ∈ RNh×Nh , we write equation (3.1) with the information of

its adjacency graph G = (V, E) in the following way

aiie
h
i ≈ −

∑
j∈Ni

aije
h
j i = 1, . . . , Nh. (3.4)

Taking into account the splitting of the neighborhood Ni as in De�nition 3.5, equa-

tion (3.4) can be rewritten as

aiie
h
i ≈ −

∑
j∈Ci

aije
h
j −

∑
j∈Ds

i

aije
h
j −

∑
j∈Dw

i

aije
h
j i = 1, . . . , Nh.

To determine wik, we need to replace ehj with approximations in terms of ehi or eHk ,

where k ∈ Ci.
The substitution in the summation on Ci is trivial: we have only to relabel ehj in

eHk . Instead, for summations on Ds
i and D

w
i we have to make some considerations

on the representation of the smooth error.

For points j ∈ Dw
i , we can replace ehj by ehi , obtainingaii +
∑
j∈Dw

i

aij

 ehi ≈ −
∑
k∈Ci

aike
H
k −

∑
j∈Ds

i

aije
h
j i = 1, . . . , Nh. (3.5)

We can justify this substitution in the following way: in Dw
i there are the points j

with weak connections respect to point i which have small aij , so any error commit-

ted in making this assignment will be relatively insigni�cant.

For points j ∈ Ds
i it is a bit more complicated. Since those points are strongly

connected to ones in the interpolatory set Ci, we make the following approximation

ehj ≈
∑

k∈Ci
ajke

H
k∑

k∈Ci
ajk

. (3.6)
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Notice that this approximation requires the Heuristic 3.1 to be veri�ed and it is

made such that it preserves constant vectors.

If we now substitute equation (3.6) into (3.5), which is then solved for ehi , we �nd

that the interpolation weights are given by

wik = −
aik +

∑
j∈Ds

i

aijajk∑
l∈Ci

ajl

aii +
∑

j∈Dw
i
aij

.

3.1.4 Convergence of the V-cycle

In this section we consider convergence analysis for the V-cycle AMG classical meth-

ods.

The following result is due to [McCormick, 1985,Ruge and Stüben, 1987].

Theorem 3.1. Let Ak > 0, k = 1, . . . ,K. Suppose that the interpolation operators
Ikk+1, k = 1, . . . ,K − 1, have full rank and that the restriction and coarse-grid
operators are constructed with the variational properties de�ned in Section 2.2.5.
Let Rk > 0, k = 1, . . . ,K, satisfy the smoothing property, i.e.,

||Rkek||21 ≤ ||ek||21 − α||Tkek||21,

with α > 0 independent of k and ek, and Tk, k = 1, . . . ,K − 1, de�ned as

Tk = Ik − Ikk+1A
−1
k+1I

k+1
k Ak,

Ik being the identity matrix of dimension Nk. Then α ≤ 1 and the V-cycle conver-
gence factor is bounded by

√
1− α with respect to the energy norm.

3.2 Smoothed Aggregation Algebraic Multigrid for

M-matrices

In this section it is presented the smoothed aggregation algebraic multigrid [Van¥k,

1995,Van¥k et al., 1996]. Its �rst developments are in [Van¥k, 1992,Míka and Van¥k,

1992]. Since the smoothed aggregation is an improvement of the "unsmoothed"

aggregation method [Blaheta, 1986] we will be point out the main di�erences.

3.2.1 Coarsening: Aggregation Algorithm

In this section we construct a disjoint decomposition of the set of points based on

aggregation strategy. Formally, given the matrix Ah ∈ RNh×Nh and its adjacency

graph G = (V, E), we want to split the set of points in a disjoint covering such that
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V =
⋃NH
j=1 Vj , NH ≤ Nh, and Vl∩Vj = ∅ for l 6= j. We assume the strength function

to be

s(i, j) =
|aij |√
aiiajj

. (3.7)

Given the symmetric strength function in equation (3.7) we recall De�nition 2.12

from Section 2.2.3.

De�nition 3.6. Given a threshold 0 < θ ≤ 1, we say the nodes i and j are strongly
connected if

|aij | ≥ θ
√
aiiajj .

With these de�nitions, as described in Section 2.2.3, we construct the strength

matrix S ∈ RNh×Nh with entries

sij =

1 |aij | ≥ θ
√
aiiajj

0 otherwise

and its adjacency graph GS = (VS , ES), GS ⊂ G. Before describing the aggregation

scheme of [Van¥k, 1995,Van¥k et al., 1996], we give two useful de�nitions.

De�nition 3.7. Let Si be the set of the strongly neighborhood of point i de�ned as

Si = {j : (i, j) ∈ ES} ∪ {i}.

De�nition 3.8. Let I be the set of isolated points de�ned as

I = {i : Ni = ∅},

where Ni is de�ned in De�nition 2.4.

With these de�nitions we can proceed to de�ne the aggregation scheme as presented

in [Van¥k et al., 1996], cf. Algorithm 3.4.

The aggregation scheme is made of four steps: initialization, startup aggregation,

enlargement of the decomposition sets and handling the remnants. The �rst one

de�ne the set U of points to be aggregate. Then the second step creates an initial

covering of disjoint set which does not necessary include all the points. In the

third step we add, if possible, the remaining points i ∈ U to one of the set Vk
to which node i is strongly connected. If more than one set exists the function

find_strongest_connection(k) choose the one to which the point has the strongest

connection. Finally, the last step creates aggregates with the remaining nodes i ∈ U
formed by subsets of strongly connected neighborhoods.
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Algorithm 3.4 Aggregation Scheme

U = VS \ I, j = 0 . Initialization

for all i ∈ U do . Startup Aggregation

if Si ⊂ U then

j = j + 1, Vj = Si, U = U \ Si
end if

end for

for k = 1 : j do . Enlarging the Decomposition Sets

Ṽk = Vk
end for

for all i ∈ U do

if ∃k : Si ∩ Ṽk 6= ∅ then
K = �nd_strongest_connection(k);

VK = VK ∪ {i}, U = U \ {i}
end if

end for

for all i ∈ U do . Handling the Remnants

j = j + 1, Vj = U ∩ Si, U = U \ Vj
end for

In Figures 3.3 and 3.4 we report an example of the aggregation scheme for the

Poisson problem with linear conforming discretizations on simplicial and on cartesian

meshes, cf. [Yang, 2006]. Black points denote root-points, the ones coloured in grey

are points associated to the second step and the lines make the aggregates.

Figure 3.3: First steps and �nal result of the aggregation scheme in case of simplicial

meshes.

Figure 3.4: First steps and �nal result of the aggregation scheme in case of cartesian

meshes.
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3.2.2 Interpolation Operator

Now we describe the interpolation operator. First we construct a tentative piecewise

constant interpolation such that it preserves constant vectors. Then it will improved

by smoothing. The tentative operator is de�ned as

[ĨhH ]ij =

1 i ∈ Vj
0 otherwise

, i = 1, . . . , Nh, j = 1, . . . , NH .

Then we apply the Gram-Schmidt orthonormalization algorithm to each column of

ĨhH to improve conditioning.

Until now we have used the concepts of unsmoothed aggregation [Blaheta, 1986],

now we proceed in the smoothing step as proposed in [Van¥k et al., 1996]. The �nal

interpolation will now be improved by a simple damped Jacobi smoothing to get

IhH = (Ih − ωD−1
h AFh )ĨhH , (3.8)

where ω = 2/3 and AFh is the �ltered matrix given by

aFij =

aij j ∈ Si, i 6= j

0 otherwise
, aFii = aii −

∑
j=1
j 6=i

(aij − aFij), (3.9)

whereDh denotes the diagonal of Ah and Ih is the identity matrix. The matrix AFh is

built in order to take into account of the weak connections so that the interpolation

will be more e�ective on strong ones.

3.2.3 Convergence of the V-cycle

In this section we present the convergence analysis of the smoothed aggregation

algebraic multigrid method. Unlike the classical one, we have less restrictive as-

sumptions to be respected and therefore we get a di�erent convergence estimate.

This analysis was introduced in [Bramble et al., 1991] and then extended for the

proposed method by [Van¥k et al., 2001,Brezina et al., 2012]. The estimate result

reads as follows.

Theorem 3.2. Let the interpolation operators Ikk+1, k = 1, . . . ,K − 1, be de�ned
as described in Section 3.2.2 and let the restriction and coarse-grid operators be
constructed as described in Section 2.2.5. Let the smoothers Rk > 0, k = 1, . . . ,K,
be symmetric positive de�nite matrices satisfying

λmin(Ik −RkAk) ≥ 0 and λmin(Rk) &
1

maxi λi(Ak)
,
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where Ik is the identity matrix of dimension Nk. Finally, let {Vkj }
Nk
j=1, k = 1, . . .,

K−1, be the aggregates de�ned in Section 3.2.1 and assume that for every vk ∈ RNk ,
k = 1, . . . ,K, it holds

Nk∑
j=1

min
w∈R
||vk − w1||2l2(Vk

j )
. Ck−1||vk||21,

where 1 ∈ RNk is the unitary vector and

||vk||2l2(Vk
j )

=
∑
m∈Vk

j

v2
m.

Then the V-cycle convergence factor is bounded by 1− 1/g(K) in the energy norm,
with g(K) ∼ (K − 1)3.

3.3 Algebraic Multigrid Methods for Essentially

Positive Matrices

High order continuous �nite element discretizations of the Poisson problem does not

lead to M-matrices. Nevertheless the resulting matrices are essentially positive type

matrices, according to the following de�nition.

De�nition 3.9. Given a matrix A ∈ Rn×n we de�ne

a−ij =

aij aij < 0

0 aij ≥ 0
and a−ij =

0 aij ≤ 0

aij aij > 0
, i, j = 1, . . . , n,

that denote negative and positive entries, respectively.

De�nition 3.10. A positive de�nite matrix A ∈ Rn×n is called essentially positive
type matrix if there exists a constant β > 0 such that, for all e ∈ Rn,

n∑
i,j=1

(−aij)(ei − ej)2 ≥ β
n∑

i,j=1

(−a−ij)(ei − ej)
2.

According to [Brandt, 1986,Stüben, 1999] we have the following result.

Theorem 3.3. Let A be the sti�ness matrix stemming from high order continuous
Galerkin �nite element discretizations of the Poisson problem, then A is essentially
positive.
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3.3.1 Classical Algebraic Multigrid

Let Ah ∈ RNh×Nh be an essentially positive type matrix. In this case, we have that

equation (3.2) becomes

β

2

Nh∑
i,j=1

(−a−ij)(ei − ej)
2 +

Nh∑
i=1

 Nh∑
j=1

aij

 e2
i �

Nh∑
i=1

aiiei, (3.10)

which leads to the conclusion that the algebraic smooth error for essentially positive

matrices varies slowly in the direction of large negative connections. Therefore, we

need to split the connectivity structure only with negative o�-diagonal entries. We

then extend the classical algebraic multigrid to essentially positive type matrices.

As proposed in [Ruge and Stüben, 1987,Stüben, 1999,Xu and Zikatanov, 2017], we

proceed by constructing the �ltered M-matrix AMh as

aMij = a−ij , i 6= j, aMii = aii +

Nh∑
j=1
j 6=i

a+
ij , (3.11)

and employ AMh to construct the C/F-splitting and the interpolation operator as

done in Section 3.1.

We can then generalize the convergence result of Theorem 3.1 as follows, cf. [Ruge

and Stüben, 1987,Stüben, 1999].

Theorem 3.4. Let Ak > 0, k = 1, . . . ,K, be essentially positive type matrix with∑Nk
j=1 aij ≥ 0 that satis�es equation (3.10). Suppose that the interpolation operators

Ikk+1, k = 1, . . . ,K − 1, have full rank and that the restriction and coarse-grid
operators are constructed with the variational properties de�ned in Section 2.2.5.
Let Rk > 0, k = 1, . . . ,K, satisfy the smoothing property, i.e.,

||Rkek||21 ≤ ||ek||21 − α||Tkek||21,

with α > 0 independent of k and ek, and Tk, k = 1, . . . ,K − 1, de�ned as

Tk = Ik − Ikk+1A
−1
k+1I

k+1
k Ak,

Ik being the identity matrix of dimension Nk. Then αβ ≤ 1 and the V-cycle con-
vergence factor is bounded by

√
1− αβ with respect to the energy norm.

3.3.2 Smoothed Aggregation Algebraic Multigrid

In this section we extend the smoothed algebraic multigrid to essentially positive

type matrices.

We can use the method explained in Section 3.2 using either the matrix Ah ∈
RNh×Nh , cf. [Van¥k et al., 1996] or the �ltered M-matrix AMh ∈ RNh×Nh as de�ned
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in equation (3.11), cf. [Xu and Zikatanov, 2017], but the smoothing step of the

interpolation formula must be changed.

Indeed for essentially positive type matrices, if we �lter the matrix as in equa-

tion (3.9), it means to distribute badly the matrix entries values associated to weak

connections because they may be of any sign.

If we use the matrix Ah ∈ RNh×Nh , we have to substitute equation (3.8) with

IhH = (Ih − ωD−1
h Ah)ĨhH , (3.12)

otherwise if we use the �ltered M-matrix AMh ∈ RNh×Nh we set

IhH = (Ih − ωD−1
h AMh )ĨhH . (3.13)

It can be shown that the convergence result is the same of the Theorem 3.2, cf.

[Van¥k et al., 2001,Brezina et al., 2012].



Chapter 4

Numerical Experiments:

Algebraic Multigrid for

Conforming Finite

Element Method

In this chapter we demonstrate the robustness and the e�ciency of algebraic multi-

grid in solving the linear system of equations stemming from conforming �nite ele-

ment discretizations of the Poisson problem. The test problem is given by{
−∆u = −(x2 + y2)exy in Ω

u = exy on ∂Ω
,

where u(x, y) = exy is the exact solution and Ω = (0, 1)2. We consider a sequence

of structured and unstructured simplicial meshes, see Figures 4.1 and 4.2, respec-

tively, of mesh size h = 1/2, 1/4, 1/8, 1/16, 1/32. Moreover we let the polynomial

approximation degree p vary from 1 to 10.

(a) (b) (c)

(d) (e)

Figure 4.1: Sequence of structured simplicial meshes (a) h = 1/2, (b) h = 1/4,

(c) h = 1/8, (d) h = 1/16, (e) h = 1/32.
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(a) (b) (c)

(d) (e)

Figure 4.2: Sequence of unstructured simplicial meshes (a) h = 1/2, (b) h = 1/4,

(c) h = 1/8, (d) h = 1/16, (e) h = 1/32.

For each h and p, we obtain a linear system of equations that we solve with algebraic

multigrid methods presented in Chapters 2 and 3. Therefore, we have to choose

its parameters, distinguishing the ones associated with the setup phase, i.e. the

construction of coarser matrices and interpolation operators, and those associated

with the solution phase.

4.1 Setup Phase

Given the matrix Ah ∈ RNh×Nh , (also denoted A1 in multilevel setting), we �x the

threshold of strong connection θ = 0.25. Let K be the number of desired coarser

"grids", then we build the coarser matrices and the interpolation operators with

classical or smoothed aggregation setup. In general in our tests we have K = 4, but

in order to show numerical convergence results we also let K vary from 2 to 5.

For classical AMG method we construct the coarser matrices as detailed in Chap-

ter 3, whereas for smoothed aggregation AMG one we make an additional assump-

tion about the smoothing step of interpolation operator, cf. Sections 3.2.2 and 3.3.2.

Given the tentative interpolation operator ĨhH , we assume the �nal one to be

IhH =

(Ih − ωD−1
h Ah)ĨhH p ≤ 5

(Ih − ωD−1
h AMh )ĨhH p > 5

. (4.1)

This choice is made on the basis of some numerical evidence: if p > 5 and we

use (3.12) as smoothing step then the solution phase has a worse convergence be-

haviour than to use (3.13), on the other hand if we use for all p formula (3.13) we
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build unnecessarily the �ltered M-matrix AMh for lower p. Therefore (4.1) is a good

compromise.

In our numerical results we denote with C-AMG the classical algebraic multigrid,

whereas we use SA-AMG to refer to the smoothed aggregation one.

4.2 Solution Phase

After the setup phase is completed we have to decide how to set the AMG-µCycle

(Section 2.3), then we have to choose if we use it in a stand-alone algebraic multigrid

solver or if we employ it as preconditioner to accelerate the convergence of the

conjugate gradient method.

Relaxation is performed by Gauss-Seidel method with ν1 and ν2 as pre-smoothing

and post-smoothing iterations, therefore we get the V(ν1,ν2)- and W(ν1,ν2)-cycles.

In our numerical tests, for all h and p associated with �nite element discretizations,

we focus on V(1,1)- and W(1,1)-cycles in a stand-alone AMG solver, whereas we

employ the V(2,2)-cycle with PCG method because if we use the V(1,1)-cycle the

convergence of SA-AMG degenerates for higher values of p. We denote the pre-

conditioned conjugate gradient with V(2,2)-cycle as PCG V(2,2)-cycle. In order to

show numerical convergence results varying the number of smoothing iterations, we

also study the V(ν1,ν2)- and W(ν1,ν2)-cycles with ν = ν1 = ν2 = 1, 2, 3 with some

�xed h and p.

All algorithms have as stopping criteria a tolerance of 10−8 on the relative residual

norm and a maximum number of iterations of 150.

4.3 Numerical Results

Given the iteration counts N needed to reduce the initial relative residual below a

tolerance tol = 10−8,we compute the convergence factor ρ de�ned by

ρ = exp

(
1

N
log
||rN ||
||r0||

)
,

where rN and r0 are the �nal and initial residuals, respectively.

Before showing the numerical results we specify that the "-" notation indicates that

the method does not satis�ed the stopping criteria within 150 iterations.

In Tables 4.1, 4.2 and 4.3 we report the iteration counts and the convergence

factor for the C-AMG and SA-AMG methods when varying both the mesh size

h = 1/2, . . . , 1/32 and the polynomial approximation degree p = 1, . . . , 10.

Results shown in Table 4.1 have been obtained based on employing the V(1,1)-cycle

algorithm on both structured and unstructured grids. We have repeated the same
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set of experiments based on employing the W(1,1)-cycle and PCG V(2,2)-cycle al-

gorithms; the results are reported in Tables 4.2 and 4.3, respectively.

From the results reported in Tables 4.1, 4.2 and 4.3 we can conclude that C-AMG

and SA-AMG methods have the same behaviour of p-independence for p = 1, . . . , 6

on both structured and unstructured meshes, whereas for p > 6 the two methods

show p-dependence. This can be expected because the constant de�ning the essen-

tially positive matrices (Section 3.3) depends on p.

In particular we note that V(1,1)- and W(1,1)-cycles have the same convergence

behaviour and that the best performance is obtained with the PCG V(2,2)-cycle

because of both a bigger number of smoothing iterations and the acceleration by

conjugate gradient method. Indeed if we use PCG V(2,2)-cycle we can have a better

p-independence for p = 1, . . . , 8. These results are also shown in Figure 4.3, and are

in agreement with some references in the literature.

[Cleary et al., 2000] show that the convergence factor for C-AMG applied to the

Poisson problem discretization is much better on structured mesh than unstruc-

tured one when the number of grid points of the mesh becomes very large. Since

the matrices used in our tests have a relatively small size in terms of the number

of grid points, we agree with [Cleary et al., 2000] that the behaviour on the two

meshes is similar. Other details on multigrid convergence for unstructured grids can

be found in [Chan et al., 1998].

A comparison between C-AMG and SA-AMG is also reported in [Stüben, 2001]. In

general C-AMG performs better than SA-AMG when the complexity of problem

is high. Indeed when the problem complexity becomes higher SA-AMG may show

h-dependence, in particular for the V-cycle. In our tests we can appreciate this

behaviour in few cases of SA-AMG because of relatively small matrices complexity:

one of these, where it is particularly evident, is the case of unstructured mesh and

p = 7, as shown in Figure 4.4.

[Braess, 1995] shows that AMG is an uniform preconditioner, as expected from the-

oretical results: this occurred in all our tests.

Finally in Tables 4.4, 4.5 and 4.6 we report the iteration counts needed to achieve

convergence and the convergence factor for the C-AMG and SA-AMGmethods when

varying the number of smoothing iterations ν = 1, 2, 3. In Tables 4.7, 4.8 and 4.9

we report the same results varying the number of coarsening levels K = 2, . . . , 5.

From the results reported in Tables 4.4, 4.5 and 4.6 we can conclude that the per-

formance of AMG methods improves for larger values of smoothing iterations.

From the results in Tables 4.7, 4.8 and 4.9 we observe that, as predicted from The-

orems 3.1 and 3.4, C-AMG has a constant convergence factor independently of K,

whereas SA-AMG seems to exhibit a mild pre-asymptotic dependence on K proba-

bly because of the small complexity of the problem and the reduced number of grid

points of the meshes.
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In conclusion our numerical results show that both C-AMG and SA-AMG are e�ec-

tive solvers for matrices stemming from the conforming discretizations of the Poisson

problem at least for p = 1, . . . , 6. For higher values of p new interpolation formulas

are mandatory to achieve full scalability.
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Table 4.1: Iteration counts and convergence factor: V(1,1)-cycle, K = 4.

p h Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

1 1/2 1 0 1 0 5 0.0236 6 0.0395

1/4 4 0.0099 6 0.0325 5 0.0184 5 0.0228

1/8 6 0.0371 10 0.1456 5 0.0243 6 0.0298

1/16 6 0.0436 11 0.1871 6 0.0311 6 0.0331

1/32 6 0.0439 13 0.2384 6 0.0330 8 0.0775

2 1/2 6 0.0250 6 0.0266 7 0.0538 6 0.0456

1/4 6 0.0329 12 0.2041 6 0.0381 7 0.0479

1/8 6 0.0347 19 0.3786 6 0.0425 6 0.0342

1/16 6 0.0340 19 0.3770 7 0.0707 8 0.0851

1/32 6 0.0334 19 0.3694 7 0.0538 11 0.1806

3 1/2 6 0.0341 10 0.1557 7 0.0609 13 0.2291

1/4 10 0.1321 16 0.3007 9 0.1137 11 0.1728

1/8 9 0.1214 17 0.3257 9 0.1083 10 0.1471

1/16 9 0.1211 17 0.3232 10 0.1539 15 0.2928

1/32 9 0.1207 16 0.3154 13 0.2375 28 0.5125

4 1/2 12 0.2049 16 0.3162 13 0.2241 16 0.3050

1/4 12 0.2106 18 0.3474 10 0.1583 15 0.2851

1/8 11 0.1793 18 0.3480 13 0.2225 16 0.2981

1/16 11 0.1845 17 0.3344 13 0.2365 20 0.3921

1/32 11 0.1820 18 0.3519 14 0.2634 35 0.5864

5 1/2 14 0.2579 20 0.3837 13 0.2207 22 0.4224

1/4 13 0.2365 24 0.4546 14 0.2667 21 0.4158

1/8 13 0.2393 25 0.4681 16 0.3125 22 0.4217

1/16 13 0.2414 26 0.4905 14 0.2667 24 0.4589

6 1/2 16 0.3136 21 0.4119 21 0.4091 20 0.3907

1/4 16 0.3152 22 0.4237 22 0.4282 18 0.3586

1/8 17 0.3231 23 0.4385 21 0.4055 21 0.4134

1/16 17 0.3224 26 0.4888 21 0.4055 28 0.5085

7 1/2 43 0.6511 48 0.6773 25 0.4702 52 0.7014

1/4 44 0.6567 54 0.7080 27 0.5038 45 0.6610

1/8 45 0.6626 54 0.7088 31 0.5459 49 0.6836

1/16 44 0.6579 56 0.7192 32 0.5610 96 0.8252

8 1/2 26 0.4854 28 0.5170 27 0.5027 26 0.4894

1/4 25 0.4721 36 0.5944 24 0.4634 24 0.4594

1/8 25 0.4713 36 0.5969 21 0.4058 30 0.5358

9 1/2 48 0.6803 40 0.6296 36 0.5956 45 0.6614

1/4 47 0.6734 61 0.7379 39 0.6225 42 0.6433

1/8 46 0.6667 64 0.7489 45 0.6608 38 0.6155

10 1/2 71 0.7698 - - 86 0.8064 - -

1/4 112 0.8480 - - 117 0.8543 - -

1/8 108 0.8431 - - 136 0.8732 - -
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Table 4.2: Iteration counts and convergence factor: W(1,1)-cycle, K = 4.

p h Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

1 1/2 1 0 1 0 5 0.0236 6 0.0395

1/4 5 0.0095 6 0.0325 5 0.0173 5 0.0135

1/8 6 0.0375 10 0.1456 5 0.0230 5 0.0153

1/16 6 0.0461 11 0.1872 5 0.0247 5 0.0200

1/32 6 0.0461 13 0.2317 6 0.0304 5 0.0222

2 1/2 6 0.0304 6 0.0266 7 0.0562 6 0.0413

1/4 6 0.0253 12 0.2044 6 0.0366 6 0.0376

1/8 6 0.0269 19 0.3782 6 0.0447 6 0.0265

1/16 6 0.0264 19 0.3757 7 0.0715 7 0.0529

1/32 6 0.0258 19 0.3676 6 0.0456 9 0.1212

3 1/2 6 0.0344 10 0.1557 6 0.0452 13 0.2254

1/4 8 0.0756 16 0.3004 8 0.0758 11 0.1735

1/8 8 0.0806 17 0.3230 8 0.0782 10 0.1431

1/16 8 0.0827 16 0.3162 10 0.1476 14 0.2469

1/32 8 0.0838 16 0.3125 13 0.2299 19 0.3688

4 1/2 11 0.1854 16 0.3162 13 0.2223 16 0.3053

1/4 12 0.2143 18 0.3492 10 0.1585 15 0.2835

1/8 12 0.2097 18 0.3473 12 0.2116 15 0.2917

1/16 12 0.2054 17 0.3375 13 0.2233 19 0.3758

1/32 12 0.2006 17 0.3349 14 0.2524 21 0.4141

5 1/2 14 0.2598 20 0.3876 12 0.2029 20 0.3958

1/4 13 0.2332 23 0.4463 13 0.2367 19 0.3758

1/8 13 0.2372 24 0.4557 15 0.2785 19 0.3701

1/16 13 0.2391 24 0.4600 13 0.2407 22 0.4261

6 1/2 15 0.2853 21 0.4127 21 0.4119 20 0.3903

1/4 16 0.3045 22 0.4277 22 0.4229 18 0.3579

1/8 16 0.3085 23 0.4365 20 0.3888 21 0.4101

1/16 16 0.3090 23 0.4386 20 0.3870 25 0.4764

7 1/2 40 0.6292 47 0.6756 23 0.4403 53 0.7034

1/4 44 0.6542 54 0.7082 27 0.4986 44 0.6564

1/8 43 0.6516 53 0.7044 30 0.5397 41 0.6342

1/16 43 0.6515 53 0.7051 31 0.5503 51 0.6956

8 1/2 21 0.4127 29 0.5214 26 0.4891 27 0.4976

1/4 20 0.3966 36 0.5959 23 0.4431 24 0.4587

1/8 21 0.4020 37 0.6038 20 0.3903 25 0.4683

9 1/2 36 0.5939 46 0.6668 32 0.5577 43 0.6503

1/4 32 0.5592 61 0.7380 36 0.5966 40 0.6279

1/8 31 0.5506 64 0.7481 37 0.6066 34 0.5813

10 1/2 57 0.7231 - - 73 0.7759 - -

1/4 100 0.8315 - - 108 0.8426 - -

1/8 98 0.8282 - - 130 0.8677 - -
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Table 4.3: Iteration counts and convergence factor: PCG V(2,2)-cycle, K = 4.

p h Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

1 1/2 1 0 1 0 3 0.0007 3 0.0005

1/4 4 0.0046 4 0.0069 4 0.0029 4 0.0034

1/8 4 0.0077 6 0.0320 4 0.0072 4 0.0047

1/16 4 0.0096 7 0.0562 5 0.0120 5 0.0088

1/32 5 0.0121 8 0.0716 5 0.0103 6 0.0230

2 1/2 4 0.0089 4 0.0118 5 0.0129 5 0.0146

1/4 4 0.0083 8 0.0895 5 0.0143 5 0.0153

1/8 4 0.0080 9 0.1055 5 0.0102 5 0.0105

1/16 4 0.0087 9 0.1141 5 0.0172 6 0.0295

1/32 5 0.0091 9 0.1149 5 0.0139 8 0.0620

3 1/2 6 0.0329 6 0.0447 6 0.0334 6 0.0370

1/4 7 0.0594 8 0.0859 7 0.0505 6 0.0386

1/8 7 0.0604 9 0.1210 7 0.0523 6 0.0406

1/16 7 0.0605 10 0.1396 7 0.0594 9 0.0891

1/32 8 0.0652 11 0.1492 9 0.0974 12 0.1608

4 1/2 9 0.1129 8 0.0962 6 0.0445 11 0.1843

1/4 8 0.0901 9 0.1196 7 0.0551 8 0.0927

1/8 8 0.0896 9 0.1215 9 0.0978 8 0.0904

1/16 8 0.0880 9 0.1208 8 0.0917 10 0.1241

1/32 8 0.0863 10 0.1355 9 0.1007 12 0.1871

5 1/2 8 0.0881 9 0.1332 8 0.0837 11 0.1767

1/4 8 0.0831 10 0.1706 8 0.1011 11 0.1631

1/8 8 0.0796 12 0.2090 9 0.1171 11 0.1675

1/16 8 0.0788 13 0.2365 9 0.1164 12 0.1868

6 1/2 9 0.1367 16 0.3318 11 0.1812 11 0.1812

1/4 9 0.1334 13 0.2486 11 0.1799 11 0.1751

1/8 9 0.1309 13 0.2367 11 0.1828 10 0.1459

1/16 9 0.1305 14 0.2529 12 0.1900 13 0.2094

7 1/2 19 0.3795 12 0.2407 11 0.1884 15 0.2993

1/4 15 0.3029 15 0.3138 12 0.2084 16 0.3185

1/8 16 0.3192 17 0.3481 12 0.2048 17 0.3325

1/16 16 0.3273 20 0.3939 13 0.2295 32 0.5413

8 1/2 13 0.2449 19 0.3884 11 0.1848 13 0.2268

1/4 13 0.2488 19 0.3977 12 0.1976 13 0.2408

1/8 13 0.2522 22 0.4414 11 0.1721 16 0.2883

9 1/2 20 0.4143 - - 14 0.2783 45 0.6792

1/4 20 0.4012 - - 19 0.3838 27 0.5180

1/8 20 0.3984 - - 19 0.3741 42 0.6547

10 1/2 17 0.3424 - - 26 0.4927 - -

1/4 26 0.5017 - - 25 0.4827 - -

1/8 26 0.4973 - - 27 0.4940 - -
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Figure 4.3: Iteration counts as a function of p for (a) C-AMG: structured mesh,

(b) C-AMG: unstructured mesh, (c) SA-AMG: structured mesh, (d) SA-AMG: un-

structured mesh.
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Figure 4.4: Iteration counts as a function of h for SA-AMG: unstructured mesh,

p = 7.
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Table 4.4: Iteration counts and convergence factor: V(ν,ν)-cycle, K = 4.

ν Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

p = 1 1 6 0.0439 13 0.2384 6 0.0330 8 0.0775

h = 1/32 2 5 0.0174 10 0.1488 5 0.0151 7 0.0519

3 5 0.0122 9 0.1194 4 0.0093 6 0.0351

p = 4 1 11 0.1793 18 0.3480 13 0.2225 16 0.2981

h = 1/8 2 11 0.1786 12 0.2150 11 0.1789 12 0.2113

3 10 0.1538 11 0.1782 10 0.1542 11 0.1848

p = 10 1 71 0.7698 - - 86 0.8064 - -

h = 1/2 2 42 0.6416 107 0.8414 59 0.7301 114 0.8502

3 32 0.5616 73 0.7754 45 0.6610 78 0.7890

Table 4.5: Iteration counts and convergence factor: W(ν,ν)-cycle, K = 4.

ν Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

p = 1 1 6 0.0461 13 0.2317 6 0.0304 5 0.0222

h = 1/32 2 5 0.0106 10 0.1452 4 0.0097 4 0.0055

3 4 0.0050 9 0.1272 4 0.0062 4 0.0037

p = 4 1 12 0.2097 18 0.3473 12 0.2116 15 0.2917

h = 1/8 2 10 0.1482 13 0.2264 11 0.1717 12 0.2007

3 9 0.1263 11 0.1832 10 0.1457 11 0.1727

p = 10 1 57 0.7231 - - 73 0.7759 - -

h = 1/2 2 35 0.5897 107 0.8414 50 0.6917 114 0.8502

3 31 0.5452 73 0.7754 39 0.6223 78 0.7890

Table 4.6: Iteration counts and convergence factor: PCG V(ν,ν)-cycle, K = 4.

ν Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

p = 1 1 8 0.1009 15 0.2737 8 0.0853 7 0.0586

h = 1/32 2 5 0.0121 8 0.0716 5 0.0103 6 0.0230

3 4 0.0054 7 0.0534 4 0.0049 6 0.0148

p = 4 1 13 0.2563 14 0.2754 12 0.2107 11 0.1882

h = 1/8 2 8 0.0896 9 0.1215 9 0.0978 8 0.0904

3 7 0.0576 8 0.0865 7 0.0635 8 0.0701

p = 10 1 51 0.7116 - - - - - -

h = 1/2 2 17 0.3424 - - 26 0.4927 - -

3 14 0.2596 28 0.5299 16 0.3084 30 0.5458
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Table 4.7: Iteration counts and convergence factor: V(1,1)-cycle.

K Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

p = 1 2 6 0.0461 13 0.2317 6 0.0304 5 0.0130

h = 1/32 3 6 0.0444 13 0.2317 6 0.0271 6 0.0422

4 6 0.0439 13 0.2384 6 0.0330 8 0.0775

5 6 0.0434 13 0.2376 6 0.0373 7 0.0719

p = 4 2 12 0.2090 18 0.3473 12 0.2117 15 0.2916

h = 1/8 3 12 0.2127 17 0.3361 12 0.2115 15 0.2914

4 11 0.1793 18 0.3480 13 0.2225 16 0.2981

5 12 0.2104 18 0.3484 13 0.2272 16 0.2981

p = 10 2 54 0.7092 - - 70 0.7683 - -

h = 1/2 3 65 0.7516 - - 88 0.8108 - -

4 71 0.7698 - - 86 0.8064 - -

5 70 0.7678 - - 85 0.8046 - -

Table 4.8: Iteration counts and convergence factor: W(1,1)-cycle.

K Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

p = 1 2 6 0.0461 13 0.2317 6 0.0304 5 0.0130

h = 1/32 3 6 0.0461 13 0.2317 6 0.0304 5 0.0224

4 6 0.0461 13 0.2317 6 0.0304 5 0.0222

5 6 0.0461 13 0.2317 6 0.0304 5 0.0222

p = 4 2 12 0.2090 18 0.3473 12 0.2117 15 0.2916

h = 1/8 3 12 0.2097 18 0.3473 12 0.2116 15 0.2916

4 12 0.2097 18 0.3473 12 0.2116 15 0.2917

5 12 0.2097 18 0.3473 12 0.2116 15 0.2917

p = 10 2 54 0.7092 - - 70 0.7683 - -

h = 1/2 3 57 0.7229 - - 73 0.7761 - -

4 57 0.7231 - - 73 0.7759 - -

5 57 0.7231 - - 73 0.7759 - -
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Table 4.9: Iteration counts and convergence factor: PCG V(2,2)-cycle.

K Structured Mesh Unstructured Mesh

C-AMG SA-AMG C-AMG SA-AMG

N ρ N ρ N ρ N ρ

p = 1 2 4 0.0086 8 0.0697 4 0.0075 3 0.0009

h = 1/32 3 5 0.0111 8 0.0697 4 0.0088 6 0.0167

4 5 0.0121 8 0.0716 5 0.0103 6 0.0230

5 5 0.0121 8 0.0716 5 0.0109 6 0.0229

p = 4 2 8 0.0819 9 0.1224 9 0.0988 8 0.0897

h = 1/8 3 8 0.0880 9 0.1207 9 0.0968 8 0.0896

4 8 0.0896 9 0.1215 9 0.0978 8 0.0904

5 8 0.0909 9 0.1214 9 0.0980 8 0.0904

p = 10 2 15 0.3006 - - 19 0.3861 - -

h = 1/2 3 17 0.3365 - - 25 0.4829 - -

4 17 0.3424 - - 26 0.4927 - -

5 17 0.3426 - - 27 0.5018 - -



Chapter 5

Algebraic Multigrid for

Discontinuous Finite

Element Method

In this chapter we present algebraic multigrid methods for the e�cient solution of

the linear system of equations stemming from discontinuous Galerkin �nite element

approximations of the Poisson problem. In particular we discuss algorithms that

extend those presented in Chapter 3. For discontinuous Galerkin methods standard

multigrid techniques cannot be employed because of redundancy of the degrees of

freedom associated to the same mesh nodes, therefore some multigrid principles

described in Chapter 2 must be revised, in particular the coarsening strategies and

the de�nition of the transfer operators.

Works by [Hemker et al., 2003,Hemker et al., 2004] show that Fourier error analysis

on two-level grids is valid also for discontinuous Galerkin methods, consequently

there are the premises for constructing multigrid methods. Guided by the geomet-

ric multigrid for discontinuous �nite element setting [Brenner et al., 2009,Brenner

et al., 2011, Antonietti et al., 2015, Antonietti et al., 2017], we propose algebraic

multigrid methods based on classical and smoothed aggregation ones. Hybrid alge-

braic multigrid extend the method by [Chang et al., 1996], whereas the smoothed

block aggregation improves the ones by [Van¥k et al., 1996, Olson and Schroder,

2011].

The main problem we have to deal with is the multiplicity of degrees of freedom

associated to each grid points. A similar issue occurs for partial di�erential equations

systems where there exists multiple unknowns at the same nodal location. This

di�culty can be solved with strategies known as "point" or "block" approaches

[Ruge and Stüben, 1987, Van¥k et al., 1996]: these techniques are based on local

aggregation of variables associated to the same grid point. Moreover we have to

build appropriately the interpolation operator taking into account that the matrices

arising from discontinuous approximations cannot be approximated by �ltered M-

matrices.

The remaining part of this chapter is organized as follows: �rst we describe the local

aggregation with the associated interpolation operator, then we discuss the hybrid
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and smoothed block aggregation algebraic multigrid algorithms.

5.1 Local Aggregation

Block aggregation is of crucial importance for algebraic multigrid for discontinuous

Galerkin �nite element methods. This is based on the access to mesh points, cf.

[Ruge and Stüben, 1987,Van¥k et al., 1996,Olson and Schroder, 2011]

In this work we propose a new coarsening strategy purely algebraic based on block

aggregation. The algorithm that we present is built through to the analysis of the

matrix entries associated with each degree of freedom on the mesh, as described in

the following.

5.1.1 Coarsening: Algebraic Block Aggregation

Given the matrix Ah ∈ RNh×Nh and its adjacency graph G = (V, E), we split the set

of points in a disjoint covering such that V =
⋃NH
j=1 Vj , NH ≤ Nh, and Vl ∩ Vj = ∅

for l 6= j. In particular, given the adjacency graph GS+ = (VS+ , ES+) associated

to a generic strongest connection matrix, the algorithm aims at providing suitable

sets such that each one of them contains the multiple variables associated to a grid

point, cf. Algorithm 5.1.

Algorithm 5.1 is made of three steps: startup singleton or aggregation, enlargement

of the decomposition sets, and deleting the empty sets. First, for each i ∈ V, the
function find_strongest_connection(i) chooses the node I ∈ V to which the point i

has the strongest connection. If the strongest connection between i and I is negative,

then the nodes i and I are grouped together (startup aggregation), otherwise the

node i is processed alone (startup singleton). Once the startup phase is concluded,

the algorithm proceeds with the enlargement of the decomposition sets, based on

joining sets with at least one node in common. Finally, empty sets are deleted from

the disjoint covering.

5.1.2 Interpolation Operator

Given the disjoint partition V =
⋃NH
j=1 Vj , NH ≤ Nh given by Algorithm 5.1, it is

natural to construct the interpolation operator in a similar manner as done for the

smoothed aggregation algebraic multigrid by [Van¥k et al., 1996].

In particular, we modify the algorithm of [Van¥k et al., 1996] as follows. We de�ne

algebraically smooth error modes to be grid functions with a small Rayleigh quotient,

cf. [McCormick and Ruge, 1982] and therefore equivalent to the near null-space or

low energy modes. Hence the tentative interpolation operator is constructed such

that it preserves the near null-space mode vector w ∈ RNh , cf. [Brezina et al.,
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Algorithm 5.1 Block Aggregation Scheme

k = 0

for all i ∈ VS+ do

I=�nd_strongest_connection(i)

if aiI > 0 then

if ∀k : Vk ∩ {i} = ∅ then . Startup Singleton

k = k + 1, Vk = {i}
end if

else

if ∀k : Vk ∩ {i, I} = ∅ then . Startup Aggregation

k = k + 1, Vk = {i, I}
else . Enlarging the Decomposition Sets

if ∃k̃ : Vk̃ ∩ {i} 6= ∅ & ∀k : Vk ∩ {I} = ∅ then
Vk̃ = Vk̃ ∪ {I}

else if ∃k̃ : Vk̃ ∩ {I} 6= ∅ & ∀k : Vk ∩ {i} = ∅ then
Vk̃ = Vk̃ ∪ {i}

else if ∃k̃1 : Vk̃1 ∩ {i} 6= ∅ & ∃k̃2 : Vk̃2 ∩ {I} 6= ∅ & k̃1 6= k̃2 then

Vk̃1 = Vk̃1 ∪ Vk̃2 , Vk̃2 = ∅
end if

end if

end if

end for

j = 0 . Deleting the Empty Sets

for all k do

if Vk 6= ∅ then
j = j + 1, Vj = Vk

end if

end for

2005, Brannick et al., 2006, Olson et al., 2011]. The vector w is the numerical

solution of Aw = 0 obtained after η smoothing steps with initial guess w0 = 1.

Therefore the operator is de�ned as

[ĨhH ]ij =

wi i ∈ Vj
0 otherwise

, i = 1, .., Nh, j = 1, .., NH .

and �nally the interpolation is improved by a simple damped Jacobi smoothing to

get

IhH = (Ih − ωD−1
h Ah)ĨhH , (5.1)

where ω = 2/3, Dh is the diagonal of Ah and Ih is the identity matrix. As it
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was done for smoothed aggregation algebraic multigrid in Section 3.2.2, we apply

the Gram-Schmidt orthonormalization algorithm to each column of ĨhH to improve

conditioning.

5.2 Hybrid Algebraic Multigrid

In this section we present our new method: we join together the algebraic block

aggregation with the extension to general matrices of classical algebraic multigrid

presented in [Chang et al., 1992,Chang et al., 1996]. This last algorithm modi�es

the strength function and the interpolation operator of classical algebraic multigrid

methods for M-matrices. Indeed if we employ the method presented in Section 3.1 for

general matrices, the setup phase may fail. Therefore instead of using the strength

function de�ned in (3.3), we assume it to be

s(i, j) =
|aij |

maxk 6=i |aik|
. (5.2)

The �rst step of the hybrid algebraic multigrid algorithm is to apply the alge-

braic block aggregation, cf. Algorithm 5.1, therefore we detail how the function

find_strongest_connection(i) works.

Guided by the strength function de�nition in (5.2), we assume that the strongest

connected points to i are given by

S+
i = {j : |aij | = max

k 6=i
|aik|}. (5.3)

Therefore the function find_strongest_connection(i) returns one of the point in the

set S+
i .

5.2.1 Coarsening

Given the strength function in (5.2), we construct the strength matrix S ∈ RNh×Nh

with entries

sij =

1 |aij | ≥ θmaxk 6=i |aik|

0 otherwise

and its adjacency graph GS = (VS , ES), GS ⊂ G. Given the strongest connection

de�nition in (5.3), we build the matrix S+ ∈ RNh×Nh with entries

s+
ij =

1 |aij | = maxk 6=i |aik|

0 otherwise

and its adjacency graph GS+ = (VS+ , ES+), GS+ ⊂ GS .
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Then we apply the coarsening strategy: block aggregation on GS+ , cf. Algorithm 5.1

and colouring scheme on GS , cf. Algorithms 3.1, 3.2 and 3.3.

In Figures 5.1 and 5.2 we show some examples of block aggregation with the de�ni-

tion of strongest connection given in (5.3) for matrices stemming from discontinuous

Galerkin discretizations on structured and unstructured simplicial meshes. Each ag-

gregate set is represented with distinct colour and mark.

In order to do this we have to �x the penalty parameter σe, e.g. σe = 5, 10, 20, 30,

cf. Section 1.2.2.

(a) (b)

Figure 5.1: Examples of block aggregation for (a) structured and (b) unstructured

meshes with p = 1, h = 1/2 and σe = 5.

(a) (b)

Figure 5.2: Examples of block aggregation for (a) structured and (b) unstructured

meshes with p = 1, h = 1/2 and σe = 10, 20, 30.

We note that for σe big enough the block aggregation scheme produces the same

disjoint covering of degrees of freedom.
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5.2.2 Interpretation of Algebraic Smooth Error

Recalling from Sections 2.2.2 and 3.1.2, given a C/F-splitting we divide the neigh-

borhood into three categories as proposed in De�nition 3.5 and from the de�nition

of an algebraically smooth error, i.e. Aheh ≈ 0h, we get

aiie
h
i ≈ −

∑
j∈Ci

aije
h
j −

∑
j∈Ds

i

aije
h
j −

∑
j∈Dw

i

aije
h
j i = 1, .., Nh. (5.4)

Now we introduce a geometric assumption that will guide us in de�ning the interpo-

lation operator coe�cients, cf. [Chang et al., 1992,Chang et al., 1996]. We assume

that the algebraic error is smooth between points i and j if aij < 0 or |aij| is small,

and it is oscillating if aij > 0 is large. With this idea, we have to de�ne measures

to understand the nature of the error in order to decide how to interpolate it.

Let the following quantities be measures of nature of the algebraic error between

points i and j:

ξij = −
∑

k∈Ci
ajk∑

k∈Ci
|ajk|

and

ηij =
|aji|lij∑
k∈Ci
|ajk|

,

where lij is the cardinality of the set

Lij = {k : k ∈ Ci, ajk 6= 0}.

The quantity ξij indicates whether there exists a large positive connection ajk be-

tween j and k ∈ Lij and by the geometric assumption it follows that the error

between points i and j is smooth if ξij ≥ 0.5 and aij < 0. The quantity ηij approxi-

mately gives the ratio of the strength between points j and i to the average strength

between j and elements in the set Lij , therefore it describes how much these points

are strongly connected.

5.2.3 Interpolation Operator

In this section we de�ne the interpolation operator taking into account the con-

siderations about the algebraic smooth or oscillating error made in the previous

one.

As in Section 3.1.3 we assume that, given eH ∈ RNH , the interpolation operator is

constructed as follows

[eh]i = [IhHeH ]i =

eHi i ∈ C∑
k∈Ci

wike
H
k i ∈ F

, i = 1, .., Nh,

where the interpolation weights wik have to be determined.
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Reasoning as in Section 5.2.2, we replace the ehj in equation (5.4) by its approxima-

tion in terms of ehi or eHk , with k ∈ Ci. The substitution in the summation on Ci is

made relabelling ehj in eHk . Instead, for summations on Ds
i and D

w
i we de�ne

gjk =
|ajk|∑
k∈Ci
|ajk|

, j ∈ Ds
i ∪Dw

i , k ∈ Ci

in order to preserve constant vectors and we make the following approximations.

For points j ∈ Dw
i we have

ehj =


ehi lij = 0, aij < 0

−ehi lij = 0, aij > 0

2
∑

k∈Ci
gjke

H
k − ehi lij > 0, ξij ≥ 0.5, aij < 0∑

k∈Ci
gjke

H
k otherwise

(5.5)

and for points j ∈ Ds
i we propose

ehj =


2
∑

k∈Ci
gjke

H
k − ehi ηij < 0.75, ξij ≥ 0.5, aij < 0

1
2

(∑
k∈Ci

gjke
H
k + ehi

)
ηij > 2, ξij ≥ 0.5, aij < 0∑

k∈Ci
gjke

H
k otherwise

. (5.6)

Substituting the equations (5.5) and (5.6) into (5.4) and de�ning the following sets

G1
i = {j ∈ Dw

i : lij = 0},

G2
i ={j ∈ Dw

i : lij > 0, ξij ≥ 0.5, aij < 0}
∪ {j ∈ Ds

i : ηij < 0.75, ξij ≥ 0.5, aij < 0},

G3
i = {j ∈ Ds

i : ηij > 2, ξij ≥ 0.5, aij < 0},

G4
i = {j ∈ Dw

i : j /∈ G1
i , j /∈ G2

i , j /∈ G3
i },

we get the interpolations weights de�ned as

wik = − āik
āii
.

with

āik = aik + 2
∑
j∈G2

i

aijgjk +
1

2

∑
j∈G3

i

aijgjk +
∑
j∈G4

i

aijgjk,

āii = aii −
∑
j∈G1

i

|aij | −
∑
j∈G2

i

aij +
1

2

∑
j∈G3

i

aij .

Note that the construction of the interpolation operator makes sense for matrices

stemming from discontinuous Galerkin approximations of order p = 1, 2 because

for p ≥ 3 the block aggregation scheme, cf. Algorithm 5.1 tends to aggregate the
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"bubbles" and this is not desirable for the given interpolation formula. Moreover

this interpolation operator is constructed assuming a linear conforming �nite element

discretization and a certain regularity of the mesh, cf. [Chang et al., 1992, Chang

et al., 1996] so we expect that it can fail in the case of higher order discretizations

or non-regular meshes.

5.3 Smoothed Block Aggregation Algebraic Multigrid

In this section we present a new algebraic multigrid method for matrices arising from

high order discontinuous Galerkin �nite element methods. The method is smoothed

aggregation-based [Van¥k et al., 1996] and it takes account of its improvements for

DG problems made by [Olson and Schroder, 2011].

5.3.1 Evolution Measure

The strength function of standard smoothed aggregation multigrid, cf. equation (3.7)

is motivated by the assumption that the matrix is stemming from conforming �nite

element methods. Therefore it does not hold in this framework and we need to

de�ne a new strength measure.

We present the evolution measure proposed by [Olson et al., 2010] which combines

the local knowledge of both algebraic smooth error and the behaviour of the inter-

polation.

In order to take account for algebraic smooth error, we de�ne the z function, ac-

cording to weighted Jacobi, as

z = (Ih − ωD−1
h Ah)mδi

where δi is the δ-function centered at i. Typical values are ω = 1/ρ(D−1
h Ah) and

m = 2.

Then we have to consider the local knowledge of the interpolation. Assume that the

interpolation operator is de�ned as in Section 5.1.2. Given a point i ∈ V we would

like to be able to measure the ability of each column of ĨhH to interpolate z for all

points j in the algebraic neighborhood of i, i.e. j ∈ Ni. Therefore this quantity is

measured only for points j ∈ Ni, in particular with exact interpolation enforced at

point i.

Thanks to all these considerations, the evolution measure reads as follows

e(i, j) =

∣∣∣∣1− bjzi
bizj

∣∣∣∣
and its symmetrized version is

eS(i, j) = e(i, j) + e(j, i).
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Finally the symmetric evolution strength function is de�ned as

s(i, j) =
eS(i, j)

mink 6=i eS(i, k)
. (5.7)

According to this new strength function, since smaller values indicate a stronger

connection, the De�nition 2.12 must be changed as follows.

De�nition 5.1. Given a threshold 2 ≤ θ ≤ 4, we say that the vertices i and j are
strongly connected if

s(i, j) ≤ θ.

In order to apply the algebraic block aggregation, cf. Algorithm 5.1, we have to

explain how the function find_strongest_connection(i) works.

Guided by the strength function de�nition in (5.7), we assume that the strongest

connected points to i are given by

S+
i = {j : eS(i, j) = min

k 6=i
eS(i, k)}. (5.8)

Therefore the function find_strongest_connection(i) returns one of the point in the

set S+
i .

5.3.2 Coarsening and Interpolation Operator

In this section we discuss the coarsening strategy and the de�nition of the interpo-

lation operator for our smoothed block aggregation algebraic multigrid taking into

account all the tools introduced so far.

As �rst level coarsening we use the local aggregation algorithm with strongest evo-

lution connection, cf. Algorithm 5.1, then we have to treat all other levels.

In Figures 5.3, 5.4 and 5.5 we show some examples of block aggregation with the

de�nition of strongest connection in (5.8) for matrices stemming from discontinuous

Galerkin discretizations on structured and unstructured simplicial meshes. Each

aggregate set is represented with distinct colour and mark. In order to do this we

have to �x the penalty parameter σe, e.g. σe = 5, 10, 20, 30, cf. Section 1.2.2.

We note that for σe big enough the block aggregation scheme produces the same

disjoint covering of degrees of freedom.
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(a) (b)

Figure 5.3: Examples of block aggregation for (a) structured and (b) unstructured

meshes with p = 1, h = 1/2 and σe = 5.

(a) (b)

Figure 5.4: Examples of block aggregation for (a) structured and (b) unstructured

meshes with p = 1, h = 1/2 and σe = 10.

(a) (b)

Figure 5.5: Examples of block aggregation for (a) structured and (b) unstructured

meshes with p = 1, h = 1/2 and σe = 20, 30.
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Returning to our method, since it is aggregation based, we have two choice of aggre-

gation algorithms for coarser levels: we can use the standard smoothing aggregation

one with evolution measure, cf. Algorithm 3.4, or we can extend the use of local

aggregation algorithm with strongest evolution connection, cf. Algorithm 5.1.

In order to perform these proposed methods, we have to build the strength and

the strongest connection matrices and their associated adjacency graphs. Given the

strength function in (5.7) and guided by De�nition 5.1, we construct the strength

matrix S ∈ RNh×Nh with entries

sij =

1 eS(i, j) ≤ θmink 6=i eS(i, k)

0 otherwise

and its adjacency graph GS = (VS , ES), GS ⊂ G. Given the strongest connection

de�nition in (5.8), we build the matrix S+ ∈ RNh×Nh with entries

s+
ij =

1 eS(i, j) = mink 6=i eS(i, k)

0 otherwise

and its adjacency graph GS+ = (VS+ , ES+), GS+ ⊂ GS .
The main di�erence between the two proposed coarsening strategies is the type

of aggregation: aggressive or non-aggressive. In some cases it may be necessary

to require a non-aggressive aggregation because otherwise the aggregation fails in

capturing all grid information and therefore the method does not reduce the residual.

In both cases the associated interpolation operator is the one proposed in Sec-

tion 5.1.2 to all multigrid levels with η = p, where p is the polynomial degree.

Numerical results reported in Chapter 6 have been obtained with the aggressive

strategy: block aggregation for �nest matrix, cf. Algorithm 5.1 and standard aggre-

gation for coarser matrices, cf. Algorithm 3.4.





Chapter 6

Numerical Experiments:

Algebraic Multigrid for

Discontinuous Finite

Element Method

In this chapter we present some numerical results to investigate the e�ciency and ro-

bustness of our algebraic multigrid methods in solving the linear system of equations

stemming from discontinuous �nite element discretizations of the Poisson problem.

The test problem and the meshes are as those considered in Chapter 4. In order

to discretize the Poisson problem with discontinuous �nite element methods we set

σe = 10, cf. Section 1.2.2.

6.1 Setup Phase

Given the matrix Ah ∈ RNh×Nh , (also denoted A1 in multilevel setting), we �x the

number K of desired coarser "grids", then we build the coarser matrices and the

interpolation operators with hybrid or smoothed block aggregation setup. In our

tests we have K = 4, but in order to show numerical results varying the number of

coarser matrices we also study K varies from 2 to 5 for some �xed h and p associated

with the �nite element discretizations.

Since the hybrid and the smoothed block aggregation AMG have di�erent setup

phases we describe them in two sections. In our numerical results we denote with

H-AMG the hybrid algebraic multigrid, whereas we use SBA-AMG to refer to

smoothed block aggregation one.

6.1.1 Setup Phase of Hybrid Algebraic Multigrid

We remark that the hybrid AMG method cannot be employed for the polynomial

approximation degree p ≥ 3. For this method we construct the coarser matrices

and interpolation operators as detailed in Section 5.2. If we denote by k the current

"grid" level, the hybrid AMG method can be summarized as in Table 6.1.
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Table 6.1: Setup Phase of Hybrid Algebraic Multigrid

level k Coarsening Strategy Interpolation Operator Ikk+1

1 Block Aggregation Smoothing Step Based

2, . . . ,K C/F-splitting Smooth Error Based

If k = 1 we apply the block aggregation scheme, cf. Algorithm 5.1, to the matrix

A1 = Ah with the strongest connection function de�ned in Section 5.2 and the

interpolation formula in Section 5.1.2 with η = p, otherwise if k = 2, . . . ,K we

build the coarser matrices with the colouring scheme with θ = 0.25 as described in

Section 3.1.2 and the interpolation operator is constructed with instructions given

in Section 5.2.3.

6.1.2 Setup Phase of Smoothed Block Aggregation Algebraic

Multigrid

For smoothed block aggregation AMG method we construct the coarser matrices

and interpolation operators as detailed in Section 5.3. The SBA-AMG method can

be summarized as in Table 6.2.

Table 6.2: Setup Phase of Smoothed Block Aggregation Algebraic Multigrid

level k Coarsening Strategy Interpolation Operator Ikk+1

1 Block Aggregation Smoothing Step Based

2, . . . ,K Standard Aggregation Smoothing Step Based

If k = 1 we apply the block aggregation scheme, cf. Algorithm 5.1, to the matrix

A1 = Ah with the evolution measure as strongest connection function de�ned in

Section 5.3.1 with parameter m = 4, cf. [Olson and Schroder, 2011] and the inter-

polation formula in Section 5.1.2 with η = p, otherwise if k = 2, . . . ,K we build the

coarser matrices with the aggregation scheme with θ = 2 as described in Section 5.3.

For smoothed block aggregation AMG we make an additional assumption about

the smoothing step of interpolation operator, cf. Section 5.3. Given the tentative

interpolation operator ĨhH , we assume the �nal one to be

IhH =

(Ih − ωD−1
h Ah)ĨhH p ≤ 7

(Ih − ωD−1
h AMh )ĨhH p > 7

, (6.1)

where AMh is the M-�ltered matrix of Ah. This choice is done under the hypothesis

that the most important connections have negative entries in the matrix. The choice

of the new smoothing step of the interpolation operator is made on the basis of some

numerical experiments: if p > 7 and we use (5.1) as smoothing step then the solution
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phase could be not convergent at all because the matrix conditioning deteriorates

as p increase, therefore we try to improve it using (6.1).

6.2 Solution Phase

The solution phase associated with algebraic multigrid methods for matrices stem-

ming from discontinuous discretizations of the Poisson problem is the same of Sec-

tion 4.2, except for the PCG V(2,2)-cycle which is substitute by the PCG W(2,2)-

cycle because in discontinuous �nite element framework the W-cycle seems to per-

form better, cf. [Brenner et al., 2009,Brenner et al., 2011,Antonietti et al., 2015].

6.3 Numerical Results

In this section we compute the convergence factor ρ as done in Chapter 4. In the

following "*" means that the method cannot be employed.

In order to underline the importance of aggregating the multiple degrees of freedom

associated with a grid point in discontinuous Galerkin discretization framework we

show an example of the use of H-AMG and SBA-AMG without the block aggre-

gation scheme, cf. Algorithm 5.1 applied to matrices stemming from discontinuous

discretizations with p = 1, 2 and h = 1/32 with the use of W(1,1)-cycle on both

structured and unstructured meshes, cf. Table 6.3.

We specify that SBA-AMG seems to have a good performance also without the

block aggregation scheme, but we point out that the Algorithm 5.1 is important for

higher values of p.

Table 6.3: Iteration counts and convergence factor: W(1,1)-cycle, K = 4, no Block

Aggregation Scheme
Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

p = 1, h = 1/32 56 0.7183 11 0.1707 45 0.6626 12 0.2062

p = 2, h = 1/32 78 0.7880 8 0.0822 - - 8 0.0852

In Tables 6.4, 6.5 and 6.6 we report the iteration counts needed to achieve conver-

gence and the convergence factor for the H-AMG and SBA-AMG methods when

varying both the mesh size h = 1/2, . . . , 1/32 and the polynomial approximation

degree p = 1, . . . , 10.

Results shown in Table 6.4 have been obtained based on employing the V(1,1)-cycle

algorithm on both structured and unstructured grids. We have repeated the same
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set of experiments based on employing the W(1,1)-cycle and PCG W(2,2)-cycle al-

gorithms; the results are reported in Tables 6.5 and 6.6, respectively.

From the results reported in Tables 6.4, 6.5 and 6.6 we can conclude that H-AMG

is a method which does not have good results except for the W(1,1)- and PCG

W(2,2)-cycles for structured mesh. This is because the block aggregation scheme

does not provide a perfect description of the geometric aggregation of degrees of

freedom which is required by the interpolation formula in Section 5.2.3. Despite

the results obtained are not satisfactory, we note that the block aggregation scheme

greatly improves the convergence of the method that does not take it into account,

cf. Table 6.3. We report this information in Figure 6.1 and show the h-dependence

of the H-AMG method.

Instead the SBA-AMGmethod has an optimal performance of h- and p-independence

for p = 1, . . . , 7 on both structured and unstructured meshes for all tests that have

been done, whereas for p > 7 the method show h- and p-dependence: we note that

our additional assumption in (6.1) is not su�cient to have h- and p-independence

for V(1,1)- and W(1,1)-cycle, but it is shown that the PCG W(2,2)-cycle performs

well.

In particular we note if we use PCG W(2,2)-cycle we can have a quasi optimal h-

and p-independence for all h = 1/2, . . . , 1/32 and p = 1, . . . , 10 thanks to the accel-

eration by conjugate gradient method and a bigger number of smoothing iterations.

In Figures 6.2 and 6.3 we report the same results obtained with SBA-AMG.

We point out that these results are in agreement with analogous ones reported in

the literature, cf. [Olson and Schroder, 2011].

In Tables 6.7, 6.8 and 6.9 we report the iteration counts and the convergence factor

for the H-AMG and SBA-AMG methods when varying the number of smoothing

iterations ν = 1, 2, 3. In Tables 6.10, 6.11 and 6.12 we report the results obtained

when varying the number of coarsening levels K = 2, . . . , 5.

From the results reported in Tables 6.7, 6.8 and 6.9 we can conclude that, as ex-

pected, for discontinuous Galerkin �nite element methods AMG performs better for

larger number of smoothing iterations.

From the results of Tables 6.10, 6.11 and 6.12 we can conclude that H-AMG seems

not to be uniformly convergent independently of the number of levels K, whereas

SBA-AMG shows K-independence

Finally, we observe that SBA-AMG seems to be a good solver for matrices stem-

ming from the discontinuous discretization of the Poisson problem for p = 1, . . . , 7.

For higher values of p is better to investigate the energy minimization algebraic

multigrid as done by [Olson and Schroder, 2011, Olson et al., 2011], where alge-

braic multigrid is coupled with geometric block aggregation on �nest matrix and a

standard algebraic aggregation with the evolution measure on coarser ones.
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Table 6.4: Iteration counts and convergence factor: V(1,1)-cycle, K = 4.

p h Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

1 1/2 9 0.1088 8 0.0988 10 0.1342 9 0.1173

1/4 9 0.1198 9 0.1190 9 0.1167 9 0.1187

1/8 9 0.1290 9 0.1203 14 0.2551 10 0.1560

1/16 10 0.1354 10 0.1523 25 0.4736 9 0.1209

1/32 10 0.1355 10 0.1457 59 0.7295 10 0.1502

2 1/2 7 0.0690 7 0.0642 7 0.0559 6 0.0396

1/4 8 0.0871 8 0.0849 9 0.1199 8 0.0969

1/8 8 0.0949 8 0.0925 29 0.5245 9 0.1249

1/16 12 0.2026 9 0.1116 75 0.7812 10 0.1472

1/32 27 0.5006 9 0.1144 - - 11 0.1717

3 1/2 * * 6 0.0461 * * 7 0.0544

1/4 * * 7 0.0671 * * 8 0.0818

1/8 * * 7 0.0680 * * 10 0.1554

1/16 * * 7 0.0701 * * 10 0.1530

1/32 * * 7 0.0708 * * 10 0.1528

4 1/2 * * 6 0.0392 * * 6 0.0448

1/4 * * 8 0.0912 * * 10 0.1475

1/8 * * 8 0.0969 * * 10 0.1512

1/16 * * 8 0.0970 * * 11 0.1863

1/32 * * 8 0.0966 * * 11 0.1796

5 1/2 * * 12 0.2040 * * 15 0.2901

1/4 * * 16 0.3043 * * 18 0.3515

1/8 * * 16 0.3105 * * 19 0.3701

1/16 * * 17 0.3284 * * 19 0.3712

6 1/2 * * 20 0.3933 * * 14 0.2619

1/4 * * 20 0.3902 * * 13 0.2367

1/8 * * 19 0.3736 * * 16 0.3080

1/16 * * 19 0.3750 * * 12 0.2080

7 1/2 * * 16 0.3020 * * 18 0.3478

1/4 * * 20 0.3965 * * 21 0.4085

1/8 * * 24 0.4571 * * 18 0.3571

1/16 * * 27 0.5044 * * 19 0.3604

8 1/2 * * 18 0.3548 * * 37 0.6060

1/4 * * 32 0.5580 * * 38 0.6157

1/8 * * 43 0.6499 * * 44 0.6558

9 1/2 * * 33 0.5694 * * 30 0.5385

1/4 * * 35 0.5896 * * 40 0.6291

1/8 * * 51 0.6964 * * 53 0.6983

10 1/2 * * 35 0.5900 * * 40 0.6301

1/4 * * 41 0.6366 * * 43 0.6501

1/8 * * 57 0.7238 * * 61 0.7429
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Table 6.5: Iteration counts and convergence factor: W(1,1)-cycle, K = 4.

p h Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

1 1/2 9 0.1084 9 0.1087 9 0.1041 10 0.1340

1/4 9 0.1184 9 0.1186 9 0.1073 9 0.1193

1/8 9 0.1226 9 0.1239 9 0.1121 9 0.1139

1/16 10 0.1357 10 0.1368 12 0.2003 9 0.1161

1/32 10 0.1389 10 0.1397 28 0.5131 9 0.1197

2 1/2 7 0.0608 7 0.0656 6 0.0394 6 0.0393

1/4 8 0.0831 8 0.0830 7 0.0695 7 0.0627

1/8 8 0.0837 8 0.0837 15 0.2754 8 0.0783

1/16 8 0.0852 8 0.0849 36 0.5975 8 0.0830

1/32 10 0.1492 8 0.0856 127 0.8648 8 0.0855

3 1/2 * * 6 0.0345 * * 6 0.0452

1/4 * * 7 0.0609 * * 7 0.0680

1/8 * * 7 0.0633 * * 9 0.1116

1/16 * * 7 0.0648 * * 8 0.0995

1/32 * * 7 0.0645 * * 9 0.1111

4 1/2 * * 6 0.0348 * * 6 0.0394

1/4 * * 7 0.0647 * * 7 0.0532

1/8 * * 7 0.0693 * * 7 0.0617

1/16 * * 7 0.0715 * * 7 0.0639

1/32 * * 8 0.0795 * * 7 0.0641

5 1/2 * * 12 0.2089 * * 15 0.2841

1/4 * * 15 0.2920 * * 14 0.2534

1/8 * * 16 0.3122 * * 14 0.2567

1/16 * * 16 0.3096 * * 14 0.2622

6 1/2 * * 18 0.3591 * * 13 0.2372

1/4 * * 19 0.3758 * * 12 0.1965

1/8 * * 19 0.3752 * * 14 0.2577

1/16 * * 19 0.3718 * * 12 0.2046

7 1/2 * * 13 0.2366 * * 14 0.2669

1/4 * * 15 0.2884 * * 17 0.3242

1/8 * * 15 0.2911 * * 15 0.2803

1/16 * * 15 0.2922 * * 16 0.2987

8 1/2 * * 18 0.3505 * * 30 0.5389

1/4 * * 26 0.4854 * * 32 0.5607

1/8 * * 32 0.5620 * * 31 0.5513

9 1/2 * * 20 0.3877 * * 23 0.4472

1/4 * * 24 0.4641 * * 23 0.4479

1/8 * * 32 0.5602 * * 27 0.5102

10 1/2 * * 24 0.4553 * * 25 0.4749

1/4 * * 31 0.5460 * * 27 0.5039

1/8 * * 39 0.6209 * * 31 0.5411
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Table 6.6: Iteration counts and convergence factor: PCG W(2,2)-cycle, K = 4.

p h Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

1 1/2 5 0.0172 5 0.0172 6 0.0519 8 0.0935

1/4 5 0.0245 5 0.0250 7 0.0596 7 0.0711

1/8 5 0.0282 5 0.0284 6 0.0497 7 0.0517

1/16 6 0.0324 6 0.0328 8 0.0754 7 0.0524

1/32 6 0.0331 6 0.0335 10 0.1290 7 0.0556

2 1/2 4 0.0102 4 0.0102 4 0.0087 4 0.0087

1/4 4 0.0115 4 0.0115 5 0.0158 4 0.0115

1/8 5 0.0164 4 0.0130 7 0.0590 5 0.0177

1/16 5 0.0186 5 0.0172 11 0.1420 5 0.0191

1/32 6 0.0361 5 0.0178 20 0.3554 5 0.0207

3 1/2 * * 4 0.0059 * * 5 0.0179

1/4 * * 5 0.0212 * * 5 0.0269

1/8 * * 5 0.0231 * * 6 0.0381

1/16 * * 6 0.0271 * * 6 0.0385

1/32 * * 6 0.0270 * * 7 0.0438

4 1/2 * * 4 0.0119 * * 5 0.0189

1/4 * * 5 0.0233 * * 5 0.0179

1/8 * * 6 0.0306 * * 5 0.0178

1/16 * * 6 0.0318 * * 5 0.0181

1/32 * * 6 0.0319 * * 5 0.0183

5 1/2 * * 6 0.0489 * * 8 0.0901

1/4 * * 8 0.0919 * * 8 0.0870

1/8 * * 9 0.1142 * * 8 0.0875

1/16 * * 9 0.1139 * * 8 0.0865

6 1/2 * * 7 0.0775 * * 6 0.0519

1/4 * * 8 0.0825 * * 7 0.0572

1/8 * * 8 0.0836 * * 7 0.0699

1/16 * * 8 0.0832 * * 7 0.0542

7 1/2 * * 7 0.0685 * * 7 0.0752

1/4 * * 7 0.0738 * * 7 0.0741

1/8 * * 8 0.0842 * * 7 0.0720

1/16 * * 8 0.0860 * * 7 0.0733

8 1/2 * * 9 0.1218 * * 12 0.2170

1/4 * * 11 0.1760 * * 13 0.2377

1/8 * * 13 0.2292 * * 13 0.2392

9 1/2 * * 8 0.1020 * * 10 0.1440

1/4 * * 11 0.1725 * * 11 0.1783

1/8 * * 13 0.2229 * * 13 0.2347

10 1/2 * * 9 0.1298 * * 10 0.1507

1/4 * * 11 0.1716 * * 11 0.1635

1/8 * * 13 0.2276 * * 13 0.2358
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Figure 6.1: Iteration counts as a function of h for H-AMG: (a) structured mesh,

p = 1, (b) unstructured mesh, p = 1, (c) structured mesh, p = 2, (d) unstructured

mesh, p = 2.
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Figure 6.2: Iteration counts as a function of p for SBA-AMG: (a) structured mesh,

(b) unstructured mesh.
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Figure 6.3: Iteration counts as a function of h for SBA-AMG: (a) structured mesh,

p = 8, (b) unstructured mesh, p = 8, (c) structured mesh, p = 9, (d) unstructured

mesh, p = 9, (e) structured mesh, p = 10, (f) unstructured mesh, p = 10.
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Table 6.7: Iteration counts and convergence factor: V(ν,ν)-cycle, K = 4.

ν Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

p = 1 1 10 0.1355 10 0.1457 59 0.7295 10 0.1502

h = 1/32 2 7 0.0556 6 0.0419 54 0.7085 7 0.0713

3 6 0.0391 6 0.0378 51 0.6958 7 0.0561

p = 4 1 * * 8 0.0969 * * 10 0.1512

h = 1/8 2 * * 7 0.0682 * * 8 0.0891

3 * * 7 0.0579 * * 7 0.0671

p = 10 1 * * 35 0.5900 * * 40 0.6301

h = 1/2 2 * * 27 0.4983 * * 29 0.5275

3 * * 24 0.4581 * * 25 0.4743

Table 6.8: Iteration counts and convergence factor: W(ν,ν)-cycle, K = 4.

ν Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

p = 1 1 10 0.1389 10 0.1397 28 0.5131 9 0.1197

h = 1/32 2 6 0.0279 6 0.0276 26 0.4855 5 0.0251

3 5 0.0112 4 0.0099 25 0.4708 5 0.0141

p = 4 1 * * 7 0.0693 * * 7 0.0617

h = 1/8 2 * * 7 0.0573 * * 5 0.0218

3 * * 6 0.0455 * * 5 0.0196

p = 10 1 * * 24 0.4553 * * 25 0.4749

h = 1/2 2 * * 21 0.4042 * * 20 0.3980

3 * * 20 0.3863 * * 19 0.3709

Table 6.9: Iteration counts and convergence factor: PCG W(ν,ν)-cycle, K = 4.

ν Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

p = 1 1 18 0.3840 17 0.3655 - - - -

h = 1/32 2 6 0.0331 6 0.0335 10 0.1290 7 0.0556

3 5 0.0122 5 0.0121 9 0.0765 5 0.0148

p = 4 1 * * 6 0.0482 * * 6 0.0509

h = 1/8 2 * * 6 0.0306 * * 5 0.0178

3 * * 5 0.0228 * * 5 0.0150

p = 10 1 * * 11 0.1913 * * 12 0.2064

h = 1/2 2 * * 9 0.1298 * * 10 0.1507

3 * * 9 0.1165 * * 10 0.1389
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Table 6.10: Iteration counts and convergence factor: V(1,1)-cycle.

K Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

p = 1 2 10 0.1397 10 0.1397 9 0.1190 9 0.1196

h = 1/32 3 9 0.1289 10 0.1458 55 0.7133 10 0.1388

4 10 0.1355 10 0.1457 59 0.7295 10 0.1502

5 10 0.1360 10 0.1468 61 0.7383 10 0.1550

p = 4 2 * * 7 0.0686 * * 7 0.0615

h = 1/8 3 * * 8 0.0921 * * 9 0.1275

4 * * 8 0.0969 * * 10 0.1512

5 * * 8 0.0976 * * 10 0.1549

p = 10 2 * * 22 0.4220 * * 20 0.3923

h = 1/2 3 * * 34 0.5800 * * 40 0.6282

4 * * 35 0.5900 * * 40 0.6301

5 * * 35 0.5895 * * 40 0.6300

Table 6.11: Iteration counts and convergence factor: W(1,1)-cycle.

K Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

p = 1 2 10 0.1397 10 0.1397 9 0.1190 9 0.1196

h = 1/32 3 10 0.1389 10 0.1397 28 0.5120 9 0.1197

4 10 0.1389 10 0.1397 28 0.5131 9 0.1197

5 10 0.1389 10 0.1397 28 0.5132 9 0.1197

p = 4 2 * * 7 0.0686 * * 7 0.0615

h = 1/8 3 * * 7 0.0693 * * 7 0.0617

4 * * 7 0.0693 * * 7 0.0617

5 * * 7 0.0693 * * 7 0.0617

p = 10 2 * * 22 0.4220 * * 20 0.3923

h = 1/2 3 * * 24 0.4553 * * 25 0.4748

4 * * 24 0.4553 * * 25 0.4749

5 * * 24 0.4553 * * 25 0.4749
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Table 6.12: Iteration counts and convergence factor: PCG W(2,2)-cycle.

K Structured Mesh Unstructured Mesh

H-AMG SBA-AMG H-AMG SBA-AMG

N ρ N ρ N ρ N ρ

p = 1 2 6 0.0335 6 0.0335 7 0.0549 7 0.0557

h = 1/32 3 6 0.0331 6 0.0335 10 0.1287 7 0.0556

4 6 0.0331 6 0.0335 10 0.1290 7 0.0556

5 6 0.0331 6 0.0335 10 0.1290 7 0.0556

p = 4 2 * * 6 0.0306 * * 5 0.0160

h = 1/8 3 * * 6 0.0306 * * 5 0.0178

4 * * 6 0.0306 * * 5 0.0178

5 * * 6 0.0306 * * 5 0.0178

p = 10 2 * * 9 0.1239 * * 9 0.1280

h = 1/2 3 * * 9 0.1298 * * 10 0.1507

4 * * 9 0.1298 * * 10 0.1507

5 * * 9 0.1298 * * 10 0.1507



Chapter 7

Conclusions and Future Work

In this thesis we have presented new algebraic multigrid methods for solving the

linear system of equations stemming from high order conforming and discontinuous

Galerkin �nite element discretizations of second order elliptic problems.

For each method, we have shown their e�ectiveness highlighting the advantages and

disadvantages. Classical and smoothed aggregation algebraic multigrid methods

designed for M-matrices, cf. [Ruge and Stüben, 1987, Van¥k et al., 1996] are well

extended to essentially positive matrices stemming from conforming discretizations

when p = 1, . . . , 6. On the other hand, in order to achieve good scalability for

problems discretized with discontinuous Galerkin �nite element methods we have

extended the standard algebraic multigrid methods, by proposing a new algebraic

block aggregation scheme to address the di�culty of the redundancy of the degrees

of freedom associated to the same grid point. In addiction, as proposed by [Olson

and Schroder, 2011], we have employed a new strength of connection well suited

for general matrices, cf. [Olson et al., 2010] and an adaptive smoothed aggregation

method, cf. [Brezina et al., 2005]. The obtained results show that the smoothed

block aggregation scheme is the �rst purely scalable algebraic multigrid method for

discontinuous Galerkin discretizations of the Poisson problem with a good perfor-

mance at least for moderate values of p.

Possible further extensions include the following improvements. For the smoothed

aggregation and the smoothed block aggregation algebraic multrigrid methods, we

can substitute the classic interpolation smoothing step of weighted Jacobi with the

use of a di�erent interpolation operator which improves the accuracy, cf. [Man-

del et al., 1999,Wan et al., 1999, Olson et al., 2011], in order to have a better p-

independence of the AMG methods. In particular the algebraic multigrid methods

for high order conforming and discontinuous Galerkin discretizations are studied

in [Heys et al., 2005, Olson, 2007, Olson and Schroder, 2011, Sundar et al., 2015],

therefore these works can be a starting point to improve the proposed methods.

Possible future developments also include the testing for higher values of p. In ad-

dition we will expand the proposed methods to convection-di�usion and anisotropic
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di�usion for both conforming, cf. [Morano et al., 1998] and discontinuous discretiza-

tions, cf. [Schroder, 2012].

Moreover, instead of considering a quasi-uniform mesh of the domain made of non-

overlapping shape regular triangles, it is possible to consider polygonal and polyhe-

dral meshes, cf. [Antonietti et al., 2017].

Concerning the computational aspects we point out that for higher values of p

the construction of the coarser matrices and interpolation operators becomes more

expensive, therefore we should develop new methods based on parallel strategies,

cf. [Cleary et al., 1998,Siefert et al., 2014].

Finally we could deepen new algebraic multigrid methods built without geometric

assumptions, cf. [Falgout and Vassilevski, 2004] which are therefore more suitable

for general matrices.
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