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Abstract

During the past years, due to the advent of digital media, the way in which

we were used to buy, collect and discover music has drastically changed. Per-

sonal music collections have reached enormous sizes thanks to the increase

of digital storage capability and the advent of musical streaming services

has enlarged the online availability of music. In this scenario arises the need

for methods capable of organizing, browsing and classifying such huge music

collections.

Music Information Retrieval (MIR) is a research field that deals with

the retrieval of useful informations from music. The most used informations

in the MIR field are the one that are extracted directly from the audio file

and we refer to them as being features or audio descriptors. One of the

main problems inside the scientific community of MIR is the difficulty for

researchers in finding uniform audio collections (i.e. audio collections com-

posed of songs that are encoded with the same encoding parameters). The

problem arises when non-uniform collections are used in MIR final appli-

cations, such as classification or clustering techniques. This fact leads to

having a non-uniform set of audio descriptors, since features values appear

to be influenced by lossy audio compression and in particular by the bit rate

value used during the encoding process.

This thesis work proposes various methods that are capable of unify-

ing such non-uniform music collections by compensating features values ex-

tracted from songs encoded at some bit rate value as if they were extracted
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from song encoded with an higher bit rate value. We will show that it is

needed to compensate feature values in the case of a real case MIR scenario

such as Music Emotion Recognition (MER), which makes use of various clas-

sification and clustering techniques, and that their performances are very

much influenced by features extracted from non-uniform music data sets.







Sommario

Nel corso degli ultimi anni, con l’avvento dei mezzi di comunicazione digitali,

il modo in cui si era abituati ad acquistare, collezionare e scoprire la musica

è drasticamente cambiato. Le collezioni musicali personali hanno raggiunto

dimensioni enormi grazie anche all’incremento della capacità di memoria sui

dispositivi digitali e all’avvento di servizi che offrono musica in streaming,

aumentando la disponibilità di musica online. In questo scenario insorge la

necessità di metodi capaci di organizzare e classificare queste vaste quantità

di musica.

Music Information Retrieval (MIR) è l’ambito di ricerca che si occupa di

recuperare informazioni utili dal contenuto musicale. Il tipo di informazioni

più utilizzati in ambito MIR sono quelle che vengono estratte direttamente

dal file audio, meglio conosciute nell’ambito come feature o descrittori audio.

Uno dei problemi principali all’interno della comunità scientifica del MIR è

la difficoltà per i ricercatori nel reperire collezioni audio uniformi (collezioni

audio composte da file audio codificati utilizzando gli stessi parametri in fase

di compressione). Il problema sorge quando vengono utilizzate collezioni au-

dio non uniformi per applicazioni MIR, come tecniche di classificazione o di

clustering. Questo porta ad avere un set non uniforme di descrittori audio,

dal momento che i valori delle feature risultano influenzati dalla compres-

sione con perdite (lossy) e, in particolare, dal valore di bit rate utilizzato

durante il processo di compressione.

Questo lavoro di tesi propone diversi metodi capaci di uniformare collezioni
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musicali non uniformi attraverso la compensazione dei valori delle feature

estratti da canzoni codificate utilizzando un certo valore di bit rate come

se fossero estratte da canzoni codificate utilizzando un valore di bit rate

più elevato. Mostreremo che è necessario compensare le feature nel caso

di applicazioni MIR quali Music Emotion Recognition (MER), che richiede

l’utilizzo di varie tecniche di classificazione e di clustering, e che le prestazioni

di questi sono influenzate nel caso di feature estratte da un data set musicale

non uniforme.
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Chapter 1

Introduction

1.1 Introduction

In the last decade we assisted to a fast mutation in the way we avail our-

selves of digital multimedia contents. The worldwide spread of fast internet

connection together with the increasing of storage capability and the diffu-

sion of digital audio formats has demolished several music distribution and

collection limitations. A consequence is the enlarged availability of online

multimedia contents. Moreover, with the advent of easy to use tools, de-

vices and software for audio, images or video production, the amount of user

generated contents has never been so massive with respect to the past. The

production and, therefore, the fruition of music, witnessed to the same evo-

lution. As a consequence of that, we assisted to the birth of several musical

streaming platforms like Spotify, Apple Music and SoundCloud among the

others, which now offer a large musical on-demand catalogue. Those new

services have changed the way in which we collect, deliver, buy, discover and

access to music.

In this scenario we need solutions that are smart, fast and scalable in or-

der to browse, classify and recommend large quantities of music. Some of the

already existing methods are based on context-based informations, they fo-

cus on the extraction and retrieval of contextual features and, therefore, they

rely on humans to manually tag the musical excerpts, by creating metadata-
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based systems. Adopting the context-based solution, however, turns out not

to be optimal when dealing with very huge quantities of musical excerpts.

Some other music retrieval methods are based on content-based techniques,

that aim at extracting musical and perceptual properties directly from musi-

cal excerpts. These informations are called features or audio descriptors and

are largely used in the Music Information Retrieval field. Recently, hybrid

methods are being adopted, that combine both context and content-based

techniques [7].

Content-based methods for the organization and retrieval of musical in-

formations combine audio feature extraction [9] together with machine learn-

ing techniques [32] and have been shown to be more suitable and fleet for the

purpose. Those machine learning methods serve to build systems for mu-

sic classification and recommendation (e.g., based on mood [19, 34], genre

[25, 33] ); music transcription [2, 20]; forensic analyses (e.g., plagiarism [1]

and bootleg detection [4] ); blind environmental inference [28], artist Iden-

tification, Instrument Recognition [9]; and others.

All the aforementioned methodologies are part of the Music Information

Retrieval (MIR) field, which is a branch of Multimedia Information Re-

trieval (MMIR) that aims at extracting informations from multimedia data

sources, facilitating the management and classification of large collections

of files, such as audio, image and video. MIR operates by the use of fea-

tures, which are abstract representations of the digital audio file, computed

directly from the raw audio signal. Audio feature analysis is a key step for

a large variety of information retrieval applications.

The possibility of storing large collections of digital media would have

been not so popular nowadays without the use of some sort of compression

of the data. MP3 compression (also known as MPEG-2 Audio Layer III ) is

often applied to audio files and the majority of tracks now available on the

internet is often not in a lossless format. However, frequently, musical collec-

tions can be made up of songs encoded at different bit rates or with different

types of encoders and settings. We refer to this kind of collections as being
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inhomogeneous [3]. This is the case of YouTube, Vimeo or SoundCloud,

where users are allowed to upload music in any type of formats. Some other

examples are Myspace, that hosts audio content encoded at 96kbps MP3,

and iTunes, which provides content encoded as 128kbps AAC. Thus, audio

encoding formats are not uniform across different collections and more often

there are cases in which they are not homogeneous even in the same audio

collection [44].

Nowadays, one of the crucial issues relating to MIR applications is the

difficulty in collecting big amounts of audio excerpts. Due to the lack of on-

line availability of large datasets, researchers often rely on collecting songs

from various sources, mainly in different compressed format, with the result

of having songs encoded with various encoders or at multiple bit rates [6].

It has been observed that the quality and performances of the final appli-

cations of MIR, such as classification or clustering, are influenced by the

quality (i.e. encoding settings) of the audio files under analysis [27]. For

that reason we need ways that make feature values extracted from the au-

dio collection under analysis the more uniform as possible by using features

compensation techniques.

Lossy compression is an irreversible process that aims at reducing the

weight and bandwidth of some multimedia data by producing a copy of the

original data containing less information with respect to the original one.

That is to say that the same feature (information) extracted from the same

audio file coded at different bit rates or, more generally, with different audio

codecs, might not assume the same value. In other words we can assert that

feature values are bit rate dependent. The same feature, when comparing

songs at equal bit rate value, can be very significant and discriminative than

when comparing the same feature in the case of songs encoded at different

bit rate values. Since feature values change depending on the compres-

sion bit rate and thus are less informative in case of a non-homogeneous

dataset, they negatively affect classification or clustering performances. We

will prove this fact in this thesis by performing classification and clustering

techniques and comparing the results obtained by using data sets encoded at
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mixed or non-mixed bit rates values and using two different types of feature

compensation techniques.

In this thesis we start by analysing the relationship and dependence

between coding bit rate and audio feature values, we show that feature

values are, indeed, bit rate dependent. We will show that it is possible (and

in some cases worth) to compensate feature values extracted from audio

files encoded at some given bit rate, as if they where extracted from the

same audio file encoded with a different bit rate value (e.g. high), and

that compensated features approach the ideal target value. The proposed

method compensates the degradation of feature values due to lossy audio

compression. Feature compensation enables the generation of homogeneus

train and test data sets that can be used to perform classification tasks. We

propose several supervised methods based on trained models. The models

have been validated on the CAL500 database, a collection of 500 audio

files ranging over a broad variety of musical genres, largely used for music

information retrieval’s final applications. In order to prove the effectiveness

and accuracy of the feature compensation method, we apply it to a real MIR

application, such as Music Emotion Recognition (MER).

1.2 Thesis Outline

Chapter 2 illustrates the current state-of-the-art methodologies. In chap-

ter 3 we provide the theoretical background that comprehend the definition

of the audio features used and the description of some of the most popu-

lar machine learning methods and algorithms. Chapter 4 is devoted to the

description of the methodology setup and of the implementation of the vari-

ous compensation methodologies. Experimental tests and results are shown

in chapter 5. Chapter 6 concludes the work and suggests possible future

improvements of the method.



Chapter 2

State of the Art

This chapter provides the reader with a review of the main works that are

present in the literature that comprise the use of audio descriptors in Music

Information Retrieval applications. We will discuss about the use of audio

features in the MIR field, as well as about the effects that audio coding

has on audio descriptors and their usage in performing supervised machine

learning tasks related to music retrieval. Another section is devoted to the

analysis of audio features among song collections encoded with different en-

coders/bit rates and their robustness in the case of audio classification and

others music information retrieval applications and tasks, such as music emo-

tion recognition, genre classification, artists identification, chord recognition

and onset detection tasks. Some other works presented treat the problem of

feature normalization against degradation due to audio compression. Then

there will be presented an overview on general audio classification and we

will devote a section introducing the problem of Music Emotion Recognition,

MER, a method performed in this thesis with the intent of evaluating the

effectiveness of our feature compensation method and test its efficiency in a

real case MIR scenario.

5
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2.1 The use of audio descriptors for MIR applica-

tions

In large audio collections it is very common to store audio files in a com-

pressed format. This is due to the fact that there exists a large number of

systems with which we can access to music and therefore the retrieval of

audio files coming from different sources leads to the storage of non uni-

form collections, especially in the case of a personal audio collection and

in case of collections employed for research purposes. However, also encod-

ing parameters usually vary from collection to collection or even within the

same collection. There exist a large variety of different parameters when

it comes to audio encoding, such as the codecs, bit rates, etc. Having this

non homogeneus audio assortment can be a problem when performing MIR

tasks, since information retrieval’s applications widely rely on the use of au-

dio features, that are audio descriptors extracted directly from audio files.

However, those audio descriptors turn out to be strongly dependent on au-

dio compression, in particular they depend on the choice of the compression

parameters.

For the purpose of this thesis we will mainly focus on the fact that audio

features are bit rate dependent, thus final MIR applications are negatively

influenced by this fact. In other words, feature values extracted from a song

encoded at different bitrates will vary depending on the bit rate value chosen

during the encoding process. We will see that the case of having an homo-

geneous audio collection, i.e. a data set of songs encoded with the same bit

rate value, will hield at least coherent results in a number of MIR appli-

cations, while working with an heterogeneous audio collection, i.e. a data

set of songs econded at mixed bit rate values, will result in poorer accuracy

with respect to the former case.

One of the fundamental problems in the Music Information Retrieval

field is Classification. Classification is a supervised machine learning tech-

nique and in the case of MMIR it is adopted when it is needed to label or

automatically categorize large multimedia collections. In the field of Music
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Information Retrieval (MIR), this problem refers to labeling each song based

on, for instance, genre, artists, mood etc. This is a key problem that has

already multiple applications and it is very useful for the purpose of music

organization and retrieval.

Audio Content Analysis (ACA) refers to the extraction of informations

from audio signals. Nowadays, lots of techniques are employed for that

purpose and it is becoming fast and easy to collect intelligence on formal,

perceptual, musical, and technical aspects of audio files. It is the case of

key and tempo analysis, useful for automatic music transcription of musical

scores, or the analysis of artists’ performances in order to attempt modeling

the human emotional affection in listening to music.

The most important step for the classification of audio files is audio

feature extraction of numerical descriptors that serve to capture useful in-

formations about the musical content. Those informations, in the case of

classification, should be very representative with respect to the music. In

fact, extracted features could provide, for instance, informations on the dy-

namic of a musical excerpt (usually energy features provide this type of

clue), on Timbre (spectral features), Harmony and Rythm. Over the years

the MIR community has developed fast methods and a large variety of tools

for automatic feature extraction. The audio descriptors extracted from the

audio files are organized as feature vectors in order to provide a representa-

tion of the examples to be classified. Given that, the goal of classification

is to find a mapping from the feature space to the output labels in order to

minimize the prediction error. Many audio features have been proposed for

audio classification and there exist different taxonomies for their categoriza-

tion. Depending on the classifier, feature representation for a song can be

carried on in different ways, therefore features vectors can be organized as:

a single feature vector per song, as a similarity measure calculated for each

group of songs, another approach can be to calculate the mean or median

value of each feature vector and so on [9]. In order to improve those types

of classifiers it is always adviced to use the most informative features, i.e.

the ones that account for, singularly or grouped, the largest amount of in-
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formation on the musical content.

In Table 2.1 we show the most common audio features used for the task

of Music Emotion Recognition [19] grouped by type of musical information,

in order to provide the reader an idea on the importance of the feature

extraction step in the MIR field.

TYPE FEATURES

Dynamics RMS energy

Timbre MFCCs, spectral shape, spectral contrast

Harmony Roughness, harmonic change, key clarity, majorness

Register Chromagram, chroma centroid and deviation

Rhytm Rhythm strength, regularity, tempo, beat histograms

Articulation Event density, attack slope, attack time

Table 2.1: Most used audio features for Mood Classification.

2.2 The effect of lossy audio encoding on the ro-

bustness of audio features

In [27] is introduced the Audio Degradation Toolbox (ADT), a tool for the

controlled degradation of audio signals, with the purpose of analysing the

robustness of various audio processing algorithms against different combina-

tions of audio degradations, including MP3 compression. This works shows

that the performances of different music informatics algorithms strongly

depends on a combination of method and degradation applied. Perceptual

audio coders may affect descriptors since they introduce distortions and per-

turbations to the original audio signal, usually by reducing high-frequency

content, by the introduction of blurring effects and smoothing of the spec-

tral envelope.

In [40] MP3 encoding is used to study the robustness of MFCCs and

Chroma features, which are among the most popular audio descriptors used

in MIR research, since they capture significant informations on timbre and
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tone. Results show that controlling encodings or analysis parameters does

not increase robustness significantly when the sampling rate is 22050 Hz.

Although the combination of different codecs and bit rates leads to more

robust descriptors.

[31] also treats the influence of MP3 coding on MFCCs, showing that

they are very robust in case of collections of songs encoded at high bit rates

values, while they exhibits some distortions on audio collections encoded

with low bit rate values.

In [39] is treated the case of audio compression on chord recognition

tasks, comparing chroma features extracted among music files encoded at

different bit rates with the one extracted from original PCM audio files.

Results indicate that the compression ratio influences the sound quality of

compressed songs, but in this case low bit rate compression does not strongly

affect the chord recognition accuracy.

[44] evaluates the effect of audio encodings on the onset detection tasks.

The results show that significant changes in onset detection accuracy only

occur at bit rates lower than 32kbps.

In [12] results show that if the music collection is heterogeneous, i.e.

audio files are encoded using mixed bit rate values, then MIR results are

significantly different with respect to results obtained by using music collec-

tions that consist of raw audio files. In this study it is proposed a method for

normalizing MFCCs which is effective in reducing the differences between

MIR results from mixed music collections.

Despite studies have been conducted on feature normalization techniques,

the solution for feature compensation has not been treated by the MIR

community. In this thesis we provide the implementation of various feature

compensation methods based on machine learning approaches. Results show

that it is possible to compensate feature values in order to improve MIR’s

final application tasks.



10 Chapter 2. State of the Art

2.3 The effect of lossy audio encoding on MIR

classification tasks

The purpose of [6] is to evaluate the impact of audio encoding bit rate on the

performance of audio-based music information retrieval tasks. Specifically,

it treats the case of how the accuracy of an automatic genre classification

task is effected by various audio encodings, using the Mel-frequency cepstral

coeffcients (MFCCs) as audio descriptors. The work proposed in [6] shows

that classification performances decrease as the encoding bit rate of the au-

dio files under analysis decreases. This result indicates that audio encoding

parameters have a singificant impact in this specific context, since low audio

quality resutls in poorer classification performance and heterogeneous mix-

tures of audio encodings significantly impact classification accuracy.

In [40] the robustness against audio quality and compression of MFCCs

and Chroma features is evaluated. This study shows that the amount of

degradation may depend on the musical genre of the songs under analy-

sis, thus affecting genre classification tasks. One of the main side effects of

applying perceptual encorders is infact the introduction of filters that re-

duce the high-frequency spectral content of the audio file. On genres that

make use of high-frequency sounds (e.g. cymbals and electronic tones) au-

dio compression should impact more than in genres not including them (e.g.

country, blues and classical). However, loss of performance does not in-

clude audio files encoded at high bit rate values, such as MP3 encoded at

128kbps, for which there is no evidence of decrease in classification accuracy.

[6] and [40] treat the case of genre classification and its performances

against lossy audio compression of the data set.

In the following sections we will instead study the effects of having a data

set of audio files compressed at various bit rate values in another popular

MIR application, such as Music Emotion Recognition, by performing both

classification and clustering techniques, in order to prove the effectiveness

of the feature compensation method proposed.



2.4. Music Emotion Recognition (MER) 11

2.4 Music Emotion Recognition (MER)

The problem of Music Emotion Recognition (Mood Classification), i.e. find-

ing a relationship between music and human emotions in order to auto-

matically tag music, has been studied for decades expecially in the field of

psychology. Since antiquity the role of music in society has been seen not

only as entertainment but also its social and psychological effects have been

considered. Thus, the main goal of MER systems is to automatically orga-

nize, label and retrieve music according to emotions. This type of analysis is

becoming more and more popular nowadays, since always more often, users

find very helpful browsing music according to emotions.

Before the introduction of Music Emotion Recognition (MER), the re-

trieval and classification of music has been carried on using standard infor-

mations such as: name of the composer, work title, year of release etc. Those

informations still remain important and widely used for a number of infor-

mation retrieval applications. However, we still need to identify deeper and

important cues that are representatives for humans and their relationship

with music and emotions. The problem of Music Emotion Recogniton has

been proposed for the first time in the MIR community back in 2007, during

the annual Music Information Research Evaluation eXchange (MIREX) [15].

In this chapter we give an overview on the studies conducted for the rep-

resentation of musical emotions in the field of psychology. Those models of

emotions are currently employed for MIR classification systems. Classifica-

tion algorithms and audio descriptors used for Music Emotion Recognition

are very similar to the one used for genre classification. Despite the need

for a training data set of mood annotations generated by humans through

perceptual experiments, contextual informations may result incomplete or

be entirely missing, due to the rapid growth of digital music libraries (i.e.

in case of brand new music). Also, manual annotation is a very time and

resources consuming activity. For this reason, content-based methodologies

for the representation of music need to be introduced. Human emotions

can be influenced by a number of musical attributes such as tempo, har-
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mony, timbre, loudness, harmonicity and so on. These musical properties

are acoustical features and they have been employed very successfully for

mood classification. Audio features result to be very discriminative in case of

both supervised (classification) and unsupervised (clustering) tasks, where

the need of very representative feature vectors is crucial in order to learn

the best model for class separability.

2.4.1 Representation of emotions

Music-IR systems tend to use either categorical descriptions or parametric

models of emotion for classification or recognition. Those representations

have been inferred by psychology researches. In those experiments, candi-

dates were asked to listen to music and then to rate or tag predefined adjec-

tive that represents at best perceived emotions during the listeining experi-

ence. Emotions are grouped into four categories: angry, fearful, surprised,

happy, and sad [26]. Despite cross-cultural studies suggest that there may

be universal psychophysical and emotional cues that transcend language and

acculturation [19], there exist several problems in recognizing moods from

music. In fact, one of the main difficulties in recognizing musical mood is

the ambiguity of human emotions. In other words, it is clear that different

individuals perceive and feel emotions induced by music in different ways.

Also, their individual way of expressing them using adjectives is biased by

a large number of variables. In fact, the human ability to associate music

with an emotional meaning depends on several factors, such as: the form

and structure of music, the attitude and previous experience of the listener,

their training, knowledge and psychological condition [14].

Categorical representation of emotions

Categorical approaches for the representation of emotions comprehend the

finding and the organization of a set of adjectives/tags/labels that are emo-

tional descriptors, based on their relevance and connection with music. One

of the first studies concerning the aforementioned approach is the one con-

ducted by Henver and published in 1936, in which the candidates of the

experiment were asked to chose from a list of 66 adjectives arranged in 14
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groups [14] as shown in Figure 2.1. In a more recent study, Zenter et al.

inferred a set of 801 “general” emotional terms into a subset of 146 terms

specific for music mood rating [26]. Mood adjectives used in the MIREX

Audio Mood Classification task [15] have been categorized songs into five

mood clusters, shown in Table 2.2
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Figure 2.1: Hevner Adjective Clusters.

Clusters Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured

Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding

Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

Table 2.2: Mood adjectives used in the MIREX Audio Mood Classification task.
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Scalar/dimensional representation

Other researches, such as the one conducted by Russell [30], suggests that

mood can be scaled and measured by a continuum of descriptors or sim-

ple multidimensional metrics. In this scenario, sets of mood descriptors are

organized into low-dimensional models, one of that models is the Valence-

Arousal (V-A) space (see Figure 2.2), in which emotions are organized on

a plane along independent axes of arousal (intensity) and valence (an ap-

praisal of polarity), ranging from positive-to-negative.

Figure 2.2: Russell’s Valence-Arousal space.
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Chapter 3

Theoretical Background

In this chapter we provide the theoretical background our methods are based

on. First we provide a general overview on audio coding techniques, then we

present a detailed description of the audio features used for this thesis work.

In the last section an overview of some of the most used machine learning

algorithms and methodologies is presented.

3.1 Overview on Audio Coding

Audio coding is a special technique employed mostly in order to provide a

more efficient transmission of data, by reducing the bandwidth and storage

of audio files. Audio codecs can be divided into two categories:

• Lossless. The first theory about data compression was formulated by

Claude E. Shannon in 1949. He proved that there exist a limit in

how much a data can be compressed without losing any information.

Therefore, the main property of lossless audio codecs is that they can

be de-coded to their uncompressed and original form.

• Lossy. A lossy audio coding format reduces the bit resolution of the

compressed data, i.e. the number of bits of information per sample.

Original data can not be retrieved back because some of the informa-

tion is lost during compression.

Lossy encorders take advantage from psychoacoustical studies, reasearches

aiming at understanding human ear and brain interactions with respect
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to musical stimuli. A perceptual audio codec is a codec that takes advan-

tages of human ear characteristics and psychoacoustical models in order to

cut useless informations (less human audible sounds/frequencies, not per-

ceived by the human ear) out of the audio file by reducing audio fidelity. In

particular, these techniques exploit a perceptual phenomenon such as the

frequency-dependent abdoslute threshold of earing, depicted in Figure 3.1,

which is a curve describing the amount of energy needed by a pure tone to

be detected by a listener in a noiseless environment [43].

Figure 3.1: The absolute threshold of hearing.

Another exploited phenomenon is masking, which is the effect that occurs

when the perception of a sound is affected (masked) by the presence of

another, usually louder, sound. The masking effect can occur either in the

time domain or in the frequency domain. Both the masking phenomenon

and the absolute threshold of earing are exploited by audio compression in

order to discriminate between useful and useless informations, i.e. the one

inaudible by the human ear, by the use of low pass filters and the removal

and smoothness of certain spectral peaks of the audio signal. Thus, as

a consequence, the analysis of lossy-compressed audio signals, rather than

the analysis of lossless versions of the same signals, may lead to different
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results. One of the main encoding parameters is the bit rate. It is an

user option that has to be set before starting with the encoding process.

The bit rate represents the amount of information (data) that can be stored

for every second of uncompressed audio. The choice of bit rate allows the

user to modify the quality of the encoding and thus of the resulting audio

file. The Layer III standard defines bitrates from 8 kbit/s up to 320 kbit/s,

default is usually 128 kbit/s. Higher bit rate values implies more precision

in measuring the samples and therefore much more audio resolution.

MP3 encoders also allow the possibility to specify between two different

types of bit rates [43] :

• Constant Bitrate (CBR): usually a default setting. It indicated that

every part of an audio file is encoded using the same amount of bits.

• Variable Bitrate (VBR): allows the bit rate to vary depending on the

dynamics of the audio signal. Frames within a song can be encoded

using different bit rate values.

There exist different types of lossy audio codecs:

• MP3 : The MPEG-1 Audio Layer 3 was released in 1993 becoming the

most popular audio format used for music files. It is supported by the

majority of platform and devices.

• AAC : Advanced Audio Coding, developed in 1997 as the successor of

the MP3 but it never prevailed over it. The AAC algorithm for music

compression is more complex than the one used by MP3 and it can

achieve better results compared to the same encoding parameters used

for MP3.

• OGG (Vorbis): it is a free and oper source software for lossy audio

encoding and it is able to produce a smaller file size with an equivalent

audio quality compared to the others formats.

• WMA: Windows Media Audio is the proprietary format created by Mi-

crosoft. In terms of performances and quality it is similar to AAC and

OGG (thus better than the MP3), but the fact that it is proprietary

makes it usually not well supported by various devices and platforms.
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For the purpose of this thesis we will only use the MP3 (MPEG-1 Audio

Layer 3) as audio codec, since it is the most used for audio compression.

3.2 Audio Features

The main purpose of Music Information Retrieval (MIR) community is to

study and investigate on the automatical understanding, organization and

retrieval of useful informations from music. All the elements involved in

music can be collected and described as going from low level, which is re-

lated to the sound signal and audio content, to higher levels of abstractions,

related to the human perception of sounds and music. These elements are

generally referred as features or descriptors.

Audio features can be grouped and described as follows:

• Low-Level Features (LLF): are the important building blocks for

audio systems, they are extracted directly from the audio signal using

signal processing techniques and they are able to characterize each

type of sound.

• Mid-Level Features (MLF): unlike low-level features, they capture

intrinsic properties of music that humans preceive. They add further

levels of semantics by referring to structural components of music such

as Melody, Harmony and Rhythm.

• High-Level Features (HLF): represent an high degree of semantic

abstraction, which make them easily understandable by humans. They

are the result of the composition of LLF and MLF. Example of HLF

are: mood, genre, social tags.

For the purpose of this thesis we used a mixture of low-level and mid-level

features. Table 3.1 shows the audio features used, grouped by type.

In the next section we will provide an overview of the features used in

this work. We refer to [42] and [17] for a more extensive explanation.
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TYPE FEATURES

Energy RMS Energy, Intensity, Intensity Ratio, Loudness.

Spectral

Spectral Centroid, Spectral Skewness, Spectral Kurtosis,

Spectral Inharmonicity, Spectral Slope, Spectral std devi-

ation, Irregularity k, Irregularity j, Tristimulus, Spectral

Variance, Spectral Flux, Spectral Contrast Valleys, Spec-

tral Contrast Peaks, Spectral Contrast Mean, Chromagram,

MFCCs, Crest, Odd-Even Ratio, Spectral Rolloff, Sharp-

ness, Spectral Smoothness, Spread, Flatness.

Temporal Zero Crossing Rate.

Waveform Average Deviation, Kurtosis, Variance, Skewness.

Table 3.1: Summary of all the used features, grouped by type.

3.2.1 Energy Features

Energy features are very useful for Music Information Retrieval studies.

Measuring the energy distribution and evolution of a sound can characterize

the listener’s perceptual experience or even the genre of the musical excerpt

under analysis.

Root-Mean-Square (RMS)

It is a measure of the total energy of a signal. It is defined as:

FRMS =

√√√√ 1

N

N−1∑
n=1

x(n)2. (3.1)

Where x(n) represents the audio signal andN is the total number of samples.

Figure 3.2 shows the RMS evaluated on 30 seconds of a musical excerpt. The

feature was extracted using the Python library Librosa 1.

1https://librosa.github.io/librosa/
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Figure 3.2: Root-Mean-Square (RMS) Energy of the song ”Army of Me” by Bjork.

Intensity and Intensity Ratio

The signal is divided into k sub-bands, ranging from Lp to Hp. For each sub-

band the intensity ration is defined as the ratio of that sub-band’s intensity

to the overall intensity I,

Iratio =
1

I

Hi∑
k=Li

S(k), (3.2)

where S(k) is the amplitude of the k-th bin of the frequency spectrum

and the Intensity I is computed as the summation of all the components:

I =

Fs/2∑
k=0

S(k). (3.3)

Loudness

Loudness is the hearing sensation referred to the intensity. It is associated to

the sound intensity of the stimulus, and it depends on the spectral content
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of the sound signal. While sound intensity can be measured, the sensation of

loudness can only be determined by the listener by comparing two audible

stimuli and deciding whether they are equal or not in loudness. These

experiments are useful for psychoacoustical purposes and studies.

3.2.2 Spectral Features

Short Time Fourier Transform (STFT)

The Short Time Fourier Transform (STFT) is a special Fourier transform

used to determine the spectral content of local sections of a signal that

changes over time. It is used for the computation of spectral features. The

STFT is evaluated by dividing the signal into segments and then computing

the Fourier transform of each segment separately. Its mathematical formu-

lation is:

Xm(ω) =
∞∑

n=−∞
x(n)ω(n−mR)ejωn, (3.4)

where:

• x(n) is the input signal at time n

• w(n) is a length M window function (e.g. Hamming)

• Xm(ω) is the Discrete Time Fourier Transform (DTFT) of the win-

dowed data centered at time mR

• R is the hop size between successive DTFTs in samples.

In figure 3.3 we show the STFT extracted from 30 seconds of the song

”Brazil” by Django Reinhardt.
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Figure 3.3: STFT of the song ”Brazil” by Django Reinhardt.

Spectral Centroid

The Spectral Centroid determines the centroid (center of gravity) of the

magnitude spectrum of the STFT. It is a measure of the amount of high or

low frequencies components present in the spectrum of a sound, it is related

to the brightness of the sound.

FSC =

∑K
k=1 f(k)Sl(k)∑K
k=1 Sl(k)

. (3.5)

Sl(k) is the Magnitude Spectrum, f(k) is the frequency and K is the

total number of frequency bins.

Figure 3.4 shows the Spectral Centroid extracted from 30 seconds of the

song ”Army of Me” by Bjork.
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Figure 3.4: Spectral Centroid of the song ”Army of Me” by Bjork.

Spectral Spread

The Spectral Spread is a measure that identify the frequency range of a

sound around the spectral centroid. It is defined as the normalized second

centered moment of the spectrum, i.e. the spectral variance.

FSS =

√∑K
k=1(f(k)− FSC)2∑K

k=1 Sl(k)
(3.6)

The spectral spread accounts for the sensation of timbral fullness or richness

of a sound.

Spectral Skewness

The Spectral Skewness provides an estimation of the symmetry property of

the spectral distribution in a frame. It can be obtained through the following

mathematical expression:
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FSSK =

∑K
k=1(Sl(k)− FSC)3

KF 3
SS

. (3.7)

Depending on its value the presence or absence of asymmetric concentration

is identified. A value equal to zero indicates a symmetric distribution of

spectral energy around the spectral centroid.

Spectral Kurtosis

The spectrum can be characterized in terms of its peakiness. This property

can be expressed by means of the spectral kurtosis.

FSK =

∑K
k=1(Sl(k)− FSC)4

KF 4
SS

. (3.8)

In particular, the kurtosis describes to what extent the spectral shape resem-

bles or differs from the shape of a Gaussian bell curve. For values below zero

the spectral energy tends towards a uniform distribution. Such behavior is

typically observed for wide-band sounds. Values larger than zero character-

ize a peaked spectral shape concentrated around the spectral centroid. Such

a spectral shape is typically obtained for narrow-band sounds.

Spectral Inharmonicity

Partial tones can be characterized by their degree of harmonicity, which

expresses the amount of consonance or dissonance perceived in a music ex-

cerpt.

Harmonic tones are composed of a fundamental tone and overtones whose

frequencies are integer multiples of the fundamental freqyency f0. Given a

set of partials, a measure of inharmonicity can be obtained by computing the

energy-weighted absolute deviation of the estimated partial tone frequencies

fµ̂ and the idealized harmonic frequencies µ̂f0.

FSH =
2

f0

∑K
k=1 |fk − kf0| (Sl(k))2∑K

k=1 Sl(k)2
. (3.9)

Which ranges from 0 (purely harmonic) to 1 (inharmonic).
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3.2.3 Irregularity K

Defined by [Krimphoff et al. 1994] [22] and it is the sum of the considered

amplitude minus the mean of the previous, next and considered amplitude

FIRK
=

N−1∑
k=2

∣∣∣∣Sl(k)− Sl(k − 1) + Sl(k) + Slk + 1

3

∣∣∣∣ . (3.10)

3.2.4 Irregularity J

The Irregularity defined by Jensen [18] is computed as the square of the

amplitude differences between adjacent partials.

FIRJ
=

∑K
k=1(Sl(k) + Sl(k + 1))2∑K

k=1 Sl(k)2
. (3.11)

Tristimulus

The relative energy of partial tones can be quantified by three parameters

which measure the energy ratio of the partials. For the first partial we have:

FT1 =
Sl(k = 1)2∑K
k=1 Sl(k)2

, (3.12)

for the second, third, and fourth partial

FT2 =

∑K
k∈2,3,4 Sl(k)2∑K
k=1 Sl(k)2

, (3.13)

and the remaining partials

FT3 =

∑K
k=5 Sl(k)2∑K
k=1 Sl(k)2

(3.14)

respectively, where Sl(k) represents the amplitude of the k-th partial

tone in the l-th frame, with k ∈ 1, 2, ..,K.

Spectral Flatness

It is a measure of the peakness of a signal, defined as the ratio between the

geometric mean and the arithmetic mean of the magnitude spectrum.
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FSF =

K

√∏K−1
k=0 Sl(k)∑K
k=1 Sl(k)

. (3.15)

A higher spectral flatness value indicates a more uniform spectral distribu-

tion, whereas a lower value implies a peaked and sparse spectrum.

Spectral Rolloff

It is defined as the frequency below which the 85% of the total energy is

contained

Kroll∑
k=0

Sl(k) = 0.85

K∑
k=0

Sl(k). (3.16)

The lower the value of Kroll, the more spectral energy is concentrated in low-

frequency regions. Spectral rolloff estimates the amount of high frequency

in the signal.

Figure 3.5 shows the exatracted Spectral Rolloff on 30 seconds of the song

”He War” by Cat Power.
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Figure 3.5: Spectral Rolloff of the song ”He War” by Cat Power.

Spectral Flux

It measures the amount of spectral change between consecutive signal frames.

The Spectral Flux is defined as the squared differences in frequency distri-

bution of two successive time frames, measures the rate of local change in

the spectrum

FSF =
1

K

K∑
k=1

[log(|(Sl(k)|+ δ)− log(|Sl+1(k)|+ δ)]2, (3.17)

where δ is a parameter used in order to avoid overflow during the calculus.

Sharpness

Sharpness is used as a Timbral descriptor and it is a measure of how much

the spectrum of a sound is in the high end, and can be computed as a

weighted sum of the specific loudness level in various bands.
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Mel Frequency Spectral Coefficients (MFCCs)

The Mel Frequency Spectral Coefficients are a set of features that model

the spectral envelope and the human auditory response. They are spectral

low-level features based on the Mel-Frequency scale, a model that consid-

ers the human auditory system’s perception of frequencies and provide a

psychoacoustical representation of the spectral content. MFCCs are widely

used in the field of MIR expecially for the discrimination between speech

and music or for genre classification.

MFCCs are obtained from the Discrete Cosine Transform (DCT) of a power

spectrum on a nonlinear Mel-Frequency scale (computed by a mel-filter

bank). The mathematical formulation is:

ci =

Kc∑
k=1

{
log(Ek)cos[i(k −

1

2
)
π

Kc
]

}
with1 ≤ i ≤ Nc, (3.18)

where ci is the i-th component, Ek is the spectral energy measured in the

critical band of the i-th mel-filter, Nc is the number of filters and Kc is is

the amount of cepstral coefficients ci extracted from each frame.

In Figure 3.6 we show the plot of the MFCCs for the song ”Strawberry Fields

Forever” by The Beatles.

Figure 3.6: MFCCs of the song ”Strawberry Fields Forever” by The Beatles.
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MFCCs are derived as follows:

• Pre-processing in time domain.

• Take the Fourier transform of the signal.

• Convert the powers of the spectrum obtained in the mel scale, using

triangular overlapping windows.

• Take the logs of the powers at each of the mel frequency and compute

the DCT.

• Finally retrieve the MFCCs, that are the amplitudes of the resulting

spectrum.

The Mel scale is a perceptual scale of pitches. A popular formula for the

convertion of f hertz into m mels is:

m = 2595 log10

(
1 +

f

700

)
(3.19)

Odd-Even Harm

They represent the even and odd harmonics of the spectrum, they are de-

rived as follows:

FEH =

√∑K
k=1(Sl(2k)2∑K
k=1(Sl(k))2

, (3.20)

FOH =

√∑K+1
k=1 (Sl(2k − 1)2∑K

k=1 Sl(k)2
. (3.21)

Chromagram

The chromagram is a special time-frequency representation of the musical

signal, the spectral energy of the signal is mapped onto spectral bins that

correspond to the twelve semitones of the chromatic scale.

Figure 3.7 shows an example of Chromagram extraction performed with

Librosa.
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Figure 3.7: Chromagram of the song ”Strawberry Fields Forever” by The Beatles.

Crest

Is is related to the noisness/harmonicity of the related signal and to the

flatness of the spectrum:

FCrest =
maxS(k)
1
K

∑
k S(k)

. (3.22)

Spectral Contrast (mean, peaks, valleys)

The Spectral Contrast is a measure of the relative distribution of the har-

monic and inharmonic components. It is computed by segmenting the track

into overlapping frames and computing the spectrum, then the signal is fil-

tered with an octave-scale filter that divides it into seven sub-bands. Let

consider p-th sub-bands (ap1, (a
p
2, ..., (a

p
K), peaks and valleys are defined as:

peak = log
1

αK

αK∑
k=1

apk, (3.23)

valley = log
1

αK

αK∑
k=1

apK−k+1, (3.24)

respectively, with α being a regulatization parameter.

Finally the Spectral Contrast is defined as:

contrast = peak − valley (3.25)
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Figure 3.8 shows an example of Spectral Contrast extracted from an

audio excerpt.

Figure 3.8: Spectral Contrast of the song ”Strawberry Fields Forever” by The Beatles.

Spectral Slope

Accounts for the rate of the spectral components that decrease towards

higher frequencies. The Spectral Slope is obtained by computing the linear

regression of the spectral amplitudes:

FSL =
1∑

k S(k)

K
∑

K f(k) · S(k)−
∑

K f(k) ·
∑

K S(k)

K
∑

K f(k)2 − (
∑

K f(k))2
, (3.26)

where f(k) is the k-th spectral component relative to the spectral amplitudes

S(k).



34 Chapter 3. Theoretical Background

Spectral Smoothness

It is the difference between adjacent spectral components:

FSSMO =
∑
K

∣∣∣∣20logS(k)− 20logS(k − 1) + 20logS(k) + 20logS(k + 1)

3

∣∣∣∣ .
(3.27)

Spectral Variance

It is related to the variance of the spectral amplitudes:

FSV AR =
1

K

∑
k

(S(k)− S̄)2. (3.28)

Spectral Standard Deviation

The standard deviation of the magnitude spectrum is obtained by taking

the square root of the Spectral Variance.

3.2.5 Temporal Features

Zero-Crossing Rate

It is a rough measure of the noisiness of a signal. It is the rate of sign-

changes of a signal, i.e. the rate at which the signal changes its value from

positive to negative or back. In the field of music retrieval it is useful to

classify percussive sounds.

FZCR =
1

2

N−1∑
n=1

|sgn(x(n))− sgn(x(n)| Fs
N
. (3.29)

Fs is the sample rate and N the number of samples of the signal x(n).

3.2.6 Waveform Features

Average Deviation

It is the mean of the absolute deviation of each sample of the signal from

the samples mean:

avgdev =

∑N
n=1 |x(n)− x̄|

N
, (3.30)

where N represents the number of samples in the frame, xn is the n-th

sample and x̄ is the mean value of the samples.
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Kurtosis

The definition is equal to the Spectral Kurtosis but in this case it is applied

to the samples of each frame.

Variance

The definition is equal to the Spectral Variance but in this case it is applied

to the samples of each frame.

Skewness

The definition is equal to the Spectral Skewness but in this case it is applied

to the samples of each frame.
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3.3 Machine Learning Methods

Machine learning methods are widely used in the field of statistics, data

mining and artificial intelligence and their main purpose is learning from

data. The typical scenario is the one in which we have some quantitative

measurements (or categorical) that we wish to predict using a set of features.

We have a training set data which is used to build prediction models. We

use these models (or learners) to predict the outcome of new unseen objects

using a test set. A good model is a model that is able to predict accurately

such an outcome. This type of approach is called supervised learning since we

use a training set to guide the learning process, opposed to the unsupervised

learning, in which we are given only the features without any measurements

of the outcome. Types of supervised learning are classification and regres-

sion problems, an example of unsupervised learning is clustering.

In Figure 3.9 and 3.10 we show the block diagrams for a generic supervised

and unsupervised machine learning method respectively.

Figure 3.9: Block diagram of training and testing phase for a generic supervised machine

learning problem.
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Figure 3.10: Block diagram of a generic unsupervised machine learning problem.

3.3.1 Classification

Classification is the problem of categorizing new observations on the basis

of models computed using a training set of data containing observations

whose categories are known. An example of classification could be the genre

classification in which we try to classify between, for instance, pop and rock

music based on some properties extracted from the audio files under analysis.

This type of classification belongs to the category of the binary problems,

where there are only two possible classes. An example of multi-class problem

is the one in which we consider more than two genres (classes) as possible

outputs to the system.

Support Vector Machine

SVMs are among the most used techniques for classification. Given a set

of training examples and known associated categories, an SVM training

algorithm builds a model for assigning new observations to classes. The

searching for the right model consists in constructing the optimal hyper-

plane so that the examples beloging to different classes are divided by a gap
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that is the widest as possible. New observation examples are then mapped

into the feature space and, depending on their position with respect to the

hyperplane, are classified accordingly.

In case of linear SVM, the hyperplane is defined as:

g(x) = wTx+ ω0, (3.31)

where w is the direction of the hyperplane and ω0 is its position.

The training phase of an SVM consists in finding the hyperplane for which

wTx+ ω0 > 1, ∀x ∈ ω1

wTx+ ω0 < −1, ∀x ∈ ω1

(3.32)

Figure 3.11 shows a graphical example in the case of linear and non linear

SVM.

Figure 3.11: Example of linear (right-hand side) and non-linear (left-hand side) SVM.
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3.3.2 Regression Models

Given a training set composed by N pairs of inputs and outputs:

(xi, yi), i ∈ {1, ..., N} (3.33)

where xi is a 1 × P feature vector and yi is the real value to predict, a

regressor r(·) is a function that minimizes the error ε between the expected

and the predicted values. A typical measure for the prediction error is the

mean squared error (MSE).

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (3.34)

Regression analysis is an example of supervised learning and it is used for

prediction and forecasting.

A regressor is estimated during two steps:

• training phase, where a training set is used to estimate the regression

function.

• testing phase, where a test set is used to estimate the regression pre-

formances.

Linear Regression

Consider the case in which we have an input vector XT = (X1, X2, ..., Xp)

and want to predict a real-valued output Y . The linear regression model

takes the form:

Y = f(X) = β0 +

p∑
j=1

Xjβj , (3.35)

where the βj ’s are unknown coefficients and Xj is the input.

A linear model assumes that the regression function is linear or that the lin-

ear model is a reasonable approximation. The parameters β are estimated

using a set of training data (x1, y1)...(xN , yN ) and the most popular method

for the estimation of such parameters is the least squares method, in which

the coefficients β = (β0, β1, ..., βp)
T are chosen in order that the following
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cost function is minimized:

RSS(β) =
N∑
i=1

(yi − f(xi))
2 =

N∑
i=1

(yi − β0 −
N∑
j=1

xijβj)
2 (3.36)

Polynomial Regression

Polynomial Regression is considered to be a special case of a linear regression

problem. It is a type of regression analysis in which the relationship between

the independent variable X and the dependent variable Y is modelled as an

n-th degree polynomial

Y = f(X) = β0 +

p∑
j=1,n=1

Xn
j βj . (3.37)

Ridge Regression

In ridge regression the coefficients are shrinked by modifying equation 3.35

by adding a new penalty term that controls the amount of shrinkage in

order to avoid building a model with high variance. The ridge coefficients

minimize the penalized residual sum of squares

β̂ridge = arg min
β


N∑
i=1

(yi − β0 −
N∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j

 . (3.38)

Here λ ≥ 0 is the parameter that controls the amount of shrinkage: the

larger λ, the greater the amount of shrinkage.

Ridge regression is employed in cases in which there are many correlated

variables in a linear regression model and the coefficients can become poorly

determined and the model exhibits high variance. For that reason, it may

happen that a large positive coefficient on one variable can be canceled by

a similar large and negative coefficient. By imposing the size constraint this

problem is minimized.

Support Vector Regression (SVR)

Support Vectors can be applied also to regression problems, in this case we

refer to them as Support Vector Regression (SVR) problems. SVR has been
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sucessfully applied in the field of forecasting and time series prediction. This

method offers many degrees of freedom during the modelling process, since it

admits the selection of kernel functions together with their parameters. The

standard Support Vector Regression (SVR) algorithm uses the ε-insensitive

loss function as proposed in [41]. This type of function allows a tolerance to

errors not greater than ε.

Let consider a number of training data points {(x1, y1), ..., (xl, yl)} from

which we want to construct the regression model. The SVR algorithm ap-

plies a transformation to the original data points from the initial Input Space

Φ to an higher-dimensional Feature Space F in which we construct a linear

model that corresponds to a non-linear model into the original space Φ.

Φ : Rn → F,w ∈ F (3.39)

f(x) = 〈w,Φ(x)〉+ b (3.40)

The function f that we are trying to find in order to fit to the data must

have a deviation less than ε and have to be as flat as possible. That means

we seek for a small weight vector w. One way to do this is to minimize the

quadratic norm of the vector w.

minimize

1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i ) (3.41)

subject to:

yi − 〈w,Φ(xi)〉 − b ≤ ε+ ξi

〈w,Φ(xi)〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, 2, ..., l

(3.42)
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In 3.41 parameter C accounts for the trade-off between generalization

capacity and accuracy in the trainin data, while parameter ε defines the

tolerance to errors.

In Figure 3.12 the situation is depicted graphically. We can see that the

points outside the shaded region contribute to the cost and the deviations

are linearly penalized.

Figure 3.12: Graphical interpretation of a linear SV machine.

We present in the following equations a more convenient representation

of the problem stated above.

w =

l∑
i=1

(α− α∗i )Φ(xi) (3.43)

f(x) =

l∑
i=1

(α− α∗i )K(xi, x)− b (3.44)

In 3.44 αi and α∗i are the dual variables, and the expression K(xi, x)

represents the inner product between Φ(xi) and Φ(x), which is known as

to be the kernel function. From this function we obtain a solution for the

original regression problem.

In Table 3.2 the most used kernel functions for SVR are presented, together

with their mathematical expressions.

Where σ denotes the kernel width.
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Type of kernel Definition

Polynomial k(x, x
′
) = (xTx

′
+ c)d

Gaussian k(x, x
′
) = exp(−‖x−x‖

2

2σ2 )

Table 3.2: Caption for the table.

3.3.3 Clustering

Clustering is the most important non supervised learning problem. Given

a set of unlabeled data, clustering algorithms try to find a structure within

data in order to group the one that are similar to each other. If two or more

objects are similar it means that they belong to the same class, conversely,

if they are not similar, it means they belong to different classes.

K-Means Clustering

One of the simplest unsupervised algorithm is the K-Means Clustering. Let

consider a set of clusters, the idea of K-Means is to find k centroids, one for

each cluster. Centroids need to be placed away from each other, then we take

each point in the data set and associate it to the nearest centroid. When

this process finishes the centroids are recomputed and the data points are

re-assigned to their closed centroid. This process is iterated until no more

changes can be done, since centroids can not modify their position anymore.

Figure 3.13 shows an example of a K-Means clustering algorithm in 6 steps.
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Figure 3.13: Example of a K-Means clustering algorithm.



Chapter 4

Method Overview

In this chapter we examine the effects caused by lossy audio compression on

audio features value. In the last section we provide a detailed description

of all the algorithms used for audio features compensation and the task of

Music Emotion Recognition is presented.

4.1 The effect of lossy compression on audio fea-

tures

In Chapter 3 we presented an overview on data compression. We discussed,

earlier in Chapter 2, about the key role and importance of feature extrac-

tion for Music Information Retreival’s applications. The goal of this thesis

is the compensation of audio features extracted from lossy-encoded audio

files. The audio compression algorithm used is the MP3 (also known as

MPEG-1 or MPEG-2 Audio Layer III). MP3 has become very a popular

coding format for digital audio. It is a type of lossy compression that works

by reducing the accuracy of certain portion of a continuous sound, by ex-

ploiting perceptual coding and psychoacoustical models.

The feature compensation method is employed in order to improve the

accuracy and performances of final music information retrieval tasks, such

as genre or mood classification and clustering. We focused on MP3 lossy

compression and, in particular, on the impact that the encoding at various
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bit rate values have on the extracted audio features. We show the effect

of lossy audio compression in figures 4.1 and 4.2, that represent the STFT

extracted from the same 30 seconds musical excerpt encoded at different bit

rate values. The STFT is a very important feature because it is the starting

point for the computation of a great number of other Spectral features.

(a) 32 kbps (b) 40 kbps

(c) 64 kbps (d) 96 kbps

Figure 4.1: STFT extracted from 30 seconds of the musical excerpt ”Song for Bob

Dylan” by David Bowie encoded at various bit rate values



4.1. The effect of lossy compression on audio features 47

The effect that coding bit rate produces on the Short-Time-Fourier-

Transform (STFT) is widely visible. In fact, when the coding bit rate is

very low (Figure 4.1 (a)), the STFT amount of spectral content results very

poor in the high frequency range.

(c) 112 kbps (d) 160 kbps

(c) 224 kbps (d) 320 kbps

Figure 4.2: STFT extracted from 30 seconds of the musical excerpt ”Song for Bob

Dylan” by David Bowie encoded at various bit rate values

The effect of lossy compression is visible as it aims at approximating

or discarding useless informations that are considered not audible by the

human ear by exploiting psichoacoustical models of sound perception. As a

consequence of that, it seems clear that the same feature extracted from the

same audio excerpt encoded at different bit rate values will not assumes the
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same value. We say that feature values are bit rate dependent.

In Figure 4.3 and 4.4 we see the feature-bit rate dependence more clearly

by showing the values of Spectral Centroid and Sharpness features respec-

tively, extracted from 3 songs (song 1, 2 and 5 from CAL500) encoded at

different bit rate values. As shown in the figures, feature values are bit

rate dependent. Due to lossy audio compression the same feature, extracted

from a song encoded at different bit rate values, assumes always diverse

values. This feature-bit rate dependence is highlighted in the figures as an

interpolated spline of the various feature values.

Figure 4.3: Behavior of feature Spectral Centroid extracted from 30 seconds excerpts

of songs 1 (green), 2 (red), and 5 (blue) of CAL500 dataset coded at different bitrates.

Dots represent measured values, lines are spline interpolations.
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Figure 4.4: Behavior of feature Sharpness extracted from 30 seconds excerpts of songs

1 (green), 2 (red), and 5 (blue) of CAL500 dataset coded at different bitrates. Dots

represent measured values, lines are spline interpolations.

4.2 Data visualization/distribution of the training

set

The following section is devoted to the data visualization and distribution

of the training set. This type of analysis is presented in order to prove some

of the choices that have been made on models, algorithms and machine

learning methods.

In Figures 4.5 and 4.6, the scatter matrices for features Spectral Centroid

and MFCC 17 are being shown respectively. Each sub matrix is the plot of

each pair of bitrates, on the x-axis there is the starting bitrate bo, on the

y-axis we have the target bit rate bt. We noticed that the distribution of the

data is very much linear, expecially where bitrates gets closer to the highest

bit rate value of 320kbps. If the distribution is linear it means that it would

be sufficient to use linear regression methods in order to approach the trend
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of the training dataset. We will show this trend in Section 5.



4.2. Data visualization/distribution of the training set 51

Figure 4.5: Scatter matrix for the feature Spectral Centroid.

Figure 4.6: Scatter matrix for feature MFCC 17.
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4.3 System overview

The feature compensation algorithm aims to predict a feature value ob-

tained from a song we have compressed at an original bitrate b0, as if it was

compressed at a target bitrate bt 6= b0. However, it easy to realize that the

case bt < b0 is trivial, since it is sufficient to re-compress the song at target

bitrate bt before feature extraction. Conversely, if bt > b0, recompressing

the audio file at bitrate bt is useless, since lossy audio compression is an ir-

reversible process. The audio file at b0 contains less informations compared

to the one encoded at bt and in this case the re-compression results not to

be feasible and another strategy must be adopted. In this section we outline

the proposed strategy to cope with the feature compensation problem in the

challenging scenario of bt > b0. In particular, the bit rate values used are:

bitrates(kbps) = [32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 192, 224, 256, 320].

(4.1)

In Figure 4.7 we show the general schema of the feature compensation

process proposed in this thesis work.

Figure 4.7: Block diagram of the feature compensation process.
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The feature compensation process is composed by two main phases:

• Training phase: during this phase models are computed using a

training data set.

• Compensation phase: the computed models are used for the feature

compensation. This phase is divided in two more phases:

– Validation phase: a validation set is used and the feature com-

pensation is performed using the computed models. An error

measure is computed in order to keep trace of the amount of

compensation ability for every bit rate pairs (b0, bt) and for every

feature f in order to further compensate only features that really

take advantage from the compensation.

– Test phase: a test set is employed in this phase and for every tuple

(f, b0, bt) a check is done on the compensation ability by looking

at the error values stored during the validation phase. If the

considered value is above a certain threshold, the compensation

can be performed.

We employed two main techniques for the training phase, that are:

• Rule-based audio features compensation: for each feature a set

of models is computed. This set of models is the set of all the compen-

sation curves fitted on features-bitrates values. Each song in the data

set is encoded a certain number of times using different bit rate val-

ues. Features values are extracted from the same song at different bit

rate values. Those feature values are fitted using a spline interpolating

curve. A curve is computed for each song in the training set. The set

of curves computed for a specific feature is the trained model (Fig.

4.3 and 4.4). During the compensation phase, for each tuple (f, b0, bt),

the new feature value at b0 is projected into the plane containing all

the curves that correspond to the feature f . The closest curve to the

new feature value at b0 is selected and the compensated feature at bt

becomes the feature value at bt that belongs to the selected curve.

This method can be improved by using machine learning techniques
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in order to account for a more accurate possible dependence between

bit rates.

• Machine learning based audio features compensation: in this

method, unlike the rule-based in which we build one model for each

feature, we compute a model for each feature f and for each bitrate

pair (b0, bt) in order to consider possible dependencies between the

pair (b0, bt). Validation and test phase are the same as described in

the rule-based approach.

4.4 Rule-based audio features compensation

The rule-based audio features compensation algorithm operates by first com-

puting a set of feature-bitrate models for each feature, using a training set.

Those models are the spline interpolations of the feature values considered

at different bitrates values. For each feature f we create a model, this model

is composed by all the curves fitted on the data of the training set and each

song in the training set has its own curve.

Figure 4.8 shows the model of feature Zero Crossing Rate composed by songs

from 1 to 20 of the CAL500 song dataset.
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Figure 4.8: Model of feature Zero Crossing Rate composed by songs from 1 to 20 of

the CAL500 song dataset.

The compensation algorithm works by considering all the possible com-

bination of bit rate pairs (b0, bt) for each feature.

The algorithm takes the feature value of the songs at bit rate b0 and com-

putes the distances between this value and the various models (interpolated

splines). The closest model is selected and the compensated feature assumes

the correspondent value at bit rate bt that lies on the selected spline.

Once the models have been computed for each feature, a different set (val-

idation set) is used to validate them by applying the feature compensation

algorithm and by computing an error measure. The error is computed in or-

der to measure the compensation ability of the method. The error measure

is defined as:

|feature error after compensation| < |feature error without compensation| ,
(4.2)

where the feature error after compensation represents the error between the
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compensated feature value and the actual feature value at bt, and the the

feature error without compensation is the error between the actual feature

value at bt and the feature value at b0.

Using the errors computed in the validation phase we finally test the com-

pensation method on a different set, the test set. Using the errors computed

in the validation phase, we apply a rule on whether the compensation can

or can not take place when tested on the test set.

All the algorithm’s steps are detailed in the following sections.

4.4.1 Feature-bitrate models computation

The first step of the algorithm consists in building a set of feature-bitrate

models for every feature.

Let consider:

Xs,f (b) with b ∈ B, f ∈ F, (4.3)

where:

• X is the average value of the extracted feature vector.

• f is the considered feature (i.e. Spectral Centroid, Zero-Crossing Rate

etc..).

• s is the compressed audio segment from which the feature has been

extracted.

• b is the bitrate value.

• B is the set of all possible bitrates (Equation 4.1).

• F is the set of all the extracted features (Table 3.1).

For simplicity we will now focus on describing the process of building a

model for a specific fixed feature f̄ .

Let consider Str, that is the set of training songs and s̄ ∈ Str, which is an

audio excerpt. We compute Xs̄,f̄ (b) for the finite set of bitrates b ∈ B.

The feature bitrate model is estimated as the natural spline interpolation of

the points Xs̄,f̄ (b) as shown in Figure 4.9.
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Figure 4.9: Spline Interpolation for feature Zero Crossing Rate and song 1 of the

CAL500 song dataset.

The spline interpolation can be formalized as:

X̂i
s̄,f̄

(b) = ais̄ · b

= ais̄,3b
3 + ais̄,2b

2 + ais̄,0,

b ∈ [bi, bi+1],

(4.4)

where ais̄ = [ais̄,3, ..., a
i
s̄,0] is the vector of coefficients describing the poly-

nomial model fitted, b = [b3, b2, b, 1] is the vector of bitrates in which the

polynomial is evaluated and [bi, bi+1] determines the bit rate interval (b0, bt)

At the end of the models computation we store Str models for each feature.

4.4.2 Feature compensation

After the computation of the models, we perform a validation step in or-

der to determine which triplets (f, b0, bt) acqually takes advantage from the
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compensation. This step is useful because for some features and for some bit

rate pairs, it may happen that non-compensated features are closer to target

values more than the compensated ones. This may happen, for instance, in

cases in which b0 and bt are very close bit rate values. In this case, the

compensation results useless. We compare compensated and target features

using a validation set Sval.

Let consider the case in which we need to compensate feature f̄ extracted

from excerpt ŝ ∈ Sval from bit rate b0 to bit rate bt. For doing that we first

compute the feature value Xŝ,f̄ (b0) at the given bit rate, then we select the

model (computed in the previous step) that best fits the song under analysis.

We select the best model by searcing for the model asi , s ∈ Str associated to

the polynomial curve whose value at b0 is the closest to the feature value

Xŝ,f̄ (b0), extracted from the song under analysis. Thus, we compute:

ŝ∗ = argmin
s∈Str

(
∣∣∣X̂i

s,f̄
(b0)− X̂i

ŝ,f̄
(b0)

∣∣∣)
= argmin

s∈Str

(
∣∣∣ais · b0 − X̂i

ŝ,f̄
(b0)

∣∣∣), (4.5)

where b0 = [b30, b
2
0, b0, 1] and ŝ∗ is the estimate of the song whose feature-

bitrate curve can be used ad a model for ŝ.

We then compute the feature value at bt using the estimated model:

X̂i
ŝ,f̄ (bt) = X̂j

ŝ∗,f̄
(bt) = ajŝ∗ · bt, (4.6)

where bt = [b3t , b
2
t , bt, 1].

We then repeat the feature compensation in Sval for each tuple (s, f, b0, bt)

and then we check the condition:

∣∣∣X̂s,f (bt)−Xs,f (bt)
∣∣∣ < |Xs,f (b0)−Xs,f (bt)| , (4.7)

which measure if the feature error after compensation (left-hand side) is

less than the error without compensation (right-hand side). Whe then fill a

matrix
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M(s, f, b0, bt) =


1 if (4.7) is verified,

0 otherwise

(4.8)

The fraction of songs whose feature f is worth being compensated from

bitrate b0 to bt is then given by

M̄(f, b0, bt) =
1

|Sval|
∑
s∈Sval

M(s, f, b0, bt). (4.9)

Figures 4.10 (a) and (b), represent validation matrices M̄ for feature

Irregularity J and Kurtosis respectively. Each cell of this matrix contains

the value of the overall compensation ability for the considered feature and

bit rate pair. Values can range from 0 to 1.

Note that the lower triangular part of the matrices (i.e. the case bt ≤ b0)

has not been considered since the relevant scenario is that of bt > b0

(a) (b)

Figure 4.10: Validation matrix for feature Irregularity k and Kurtosis.

After the validation step, the feature compensation algorithm is applied

on the test set Stest.

Given a feature f , extracted from a song ∈ Stest at bit rate b0, and given a

target bit rate bt, we compensate the feature by applying (4.6) only if the

worthy condition is verified
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M̄(f, b0, bt) > th, (4.10)

where th is a threshold equal to 0.5 in our experiments.

Equantion (4.10) indicates if a tuple (f, b0, bt) is worth to be compensated,

based on the analysis on the validation set.

Figure 4.11 shows an example of the rule-based feature compensation algo-

rithm in the case of b0 = 96, bt = 320.

Figure 4.11: Rule-based feature compensation example.

In Figure 4.11, Splines are the different models, the red cross represents

the feature value at bit rate b0 of the song we are trying to compensate. The

closest model is the one in green and the compensated feature value at bit

rate bt is shown as a red circle.

The rule-based audio feature compensation method compensates feature

values based on a simple rule on the choice of the best model, which is to

select the closest model to the feature values at b0 and assign as compensated

feature the feature value at bt belonging to the chosen model. Another
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problem is that models are too poorly constructed since there is too less

models with respect to the possible bit rate combination pairs (b0.bt), for that

reason we try building new models using other methods, that are machine

learning-based and treat the feature compensation problem as a regression

problem.
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4.5 Machine Learning based audio feature com-

pensation

The use of machine learning based approaches is needed in order to construct

more reliable bit rate models. In particular, unlike the rule-based audio

feature compensation method, in this approaches, we construct a model

for each tuple (f, b0, bt) ∈ Strain and in the compensation step we make

predictions using the computed model for each tuple (f, b0, bt) ∈ Stest.
Also in this case we compute validation matrices during the validation phase

in order to compensate feature values only when it is worthed. We tested

the following machine learning methods for feature compensation:

• Linear Regression

• Polynomial Regression

• Ridge Regression

• Support Vector Regression (SVR): using Linear, Non-Linear (Radial

Basis Function) and Polynomial kernels.

The steps for the machine learning approach are similar to the ones

shown in the previous sections:

• Models Computation: The train set Str is employed for the learning

step in order to find a model for each feature f , for each bit rate pair

(b0, bt). The best model has been chosen using a grid search method

for parameters selection.

• Validation: Using the validation set Sval, the models computed in

the previous step have been tested for each feature f , for each song

sval ∈ Sval and for each bit rate pair (b0, bt). The amount of cor-

rectly compensated features have been calculated by using (4.7) as

error measure.

• Test : Computed models have been used to perform prediction on the

test set, Stest. Before proceeding with the compensation, a check on

the validation matrices is done in order to compensate only the tuples
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(f, b0, bt) that really take advantage of the compensation, i.e. the ones

that follow the worthy condition (4.10).

Features are compensated differently depending on the method adopted,

thus, using only one method results in poor compensation ability for a cer-

tain number of bit rate pairs and features. In order to overcome this problem

we propose the Fusion method which is a method that merges all the pro-

posed models and finds, using the validation matrices, the best model in

order to perform the feature compensation for each tuple (f, b0, bt).
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4.6 Fusion Method

The Fusion method is a mixed technique for audio features compensation.

With this method we aim at employing only one of the model presented

in the previous sections for each tuple (f, b0, bt), by choosing among all the

avaliable ones.

The Fusion method does not have a model computation or validation phase,

since it selects among the models already computed with the rule-based and

machine learning based audio features compensation methods and using the

corresponding validation matrices.

Figure 4.12 shows the block diagram of the Fusion method.

Figure 4.12: Block diagram of the Fusion method.

For each tuple (f, b0, bt) we select the best model m ∈ M , where M

is the set of all possible models. The best model m is defined as the one

that scored the highest compensation ability during the validation phase of

the rule-based and machine learning based audio features compensation ap-

proaches. In order words, for each tuple (f, b0, bt) we first perform a check

on all the validation matrices of all the models corresponding to the feature

f , reading the value stored in the cell (b0, bt). All the values are stored so

that we end up having M values as M are all the possible models. We

select the maximum value and compensate the tuple (f, b0, bt) with the cor-

responding model if and only if this value is above a certain threshold (0.5

in our experiments).
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4.7 Music Emotion Recognition (MER)

The effectiveness of the feature compensation method has been tested in an

automatic Music Emotion Recognition (MER) application. Music Emotion

Recognition is among the most popular MIR applications, it is about classi-

fication and tagging of music according to human emotions. MER is based

on the analisys of audio features extracted from the audio files under anal-

ysis, thus, testing its performances in case of a non-homogeneus data sets,

i.e. song collections made of songs encoded at different bit rate values and

testing its performances in the case of a compensated data set, can provide

an idea of the effectiveness of the feature compensation in the MIR field.

We confronted two main problems:

• Binary problem: by selecting two pairs of affective terms from the

CAL500 annotations (happy-sad, arousing-calming) as described in

[34].

• Multi-class problem: by selecting four classes corresponding to the

excerpts annotated by the following four affective terms: Emotion-

Happy, Emotion-Angry, Emotion-Calming and Emotion-Emotional.

Two set of features have been used: MFCCs, which are very used for the

purpose of MER, and features selected from the whole features set (Table

3.1) through a ReliefF [29] technique, an algorithm that performs feature

selection (i.e. it selects a subset of features that are very discriminative for

that specific application, among all the available features).

Both Supervised (i.e. using a set of labelled examples for training the

classifier) and Unsupervised (i.e. using unlabelled examples and thus skip-

ping the training phase) techniques have been tested.
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Supervised MER

In Figure 4.13 the block diagram for a generic supervised MER problem is

depicted.

Figure 4.13: Music Emotion Recognition (MER) block diagram.

In general, a supervised MER task is composed by the following steps:

• Training phase: The training data set is composed of annotations and

audio descriptor extracted from the audio file. In this phase, a classifier

is trained using audio features vectors and annotations (emotions) as

labels/classes.

• Test phase: The classifier is then fed with unseen examples (i.e. feature

vectors) that are automatically labelled.

The machine learning techniques used for this classification task are:

Support Vector Machine (SVM) and K-Nearest Neighbors (KNN), which

represent some of the most used techniques for automatic annotation [25].

The data set was divided into training and test set. The test set was se-

lected to be composed of about the 25% of the whole dataset. A 3-fold cross

validation has been used in order to retrieve the optimal parameters space
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for each model.

The model was trained using the feature vectors containing the feature

values (of MFCCs and features selected by the ReliefF algorithm) at bit rate

bt (Xtarget) of all the songs in the training set, and tested on:

• Xtarget: the feature vectors containing the feature values at bit rate

bt.

• Xsource: the feature vectors containing the feature values at bit rate

b0.

• XcompM : the feature vectors containing the compensated feature val-

ues using the worthy condition (4.10)

• Xcomp: the feature vectors containing the compensated feature values

without using the worthy condition.

Unsupervised MER

The two aforementioned problems, binary and multi-class, have been also

tested in an unsupervised machine learning scenario.

The algorithm used for this problem is the K-Means. We tested the ability

of the clustering algorithm to generate separate clusters. A description of

the K-Means algorithm steps can be found in Chapter 3.
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Chapter 5

Experimental Results

In this section we present the experimental setup together with the test

results of the various feature compensation methods described in Chapter

4 and provide an analysis of the effect of the feature compensation in real

applications by performing Music Emotion Recogniton classification and

clustering, whose results are shown in section 5.4.

5.1 Experimental Setup

In this section we provide a description of the data set employed for the

purpose of feature compensation and Music Emotion Recognition. Moreover

we provide a description of the programming language, libraries and tools

used.

5.1.1 Dataset description and manipulation

The Computer Audition Lab 500-Song (CAL500) data set was first proposed

in [36] and it is composed of 500 popular music songs, ranging from a large

variery of musical genres. The original format of all songs in the dataset is

FLAC (lossless format).

For each song in the data set, we first performed the extraction of 30 seconds

for each excerpt. Then every song has been encoded at multiple bitrate

values, using the MP3 (MPEG-1 or MPEG-2 Audio Layer III) as audio

codec.
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The training set was composed of 200 songs, the validation set was composed

of 100 songs and the remaining 200 form the test set.

The bitrate values used can be found in equation 4.1.

We then performed the extraction of all the audio features already listed

in Chapter 3, Section 3.1, Table 3.1, and retained only the mean value of

each feature vector for each excerpt.

5.1.2 Programming language, libraries and tools

• Programming language: Python1

• Audio encoding library : FFmpy2, a Python package that allows the

usage of FFmpeg3 on Python.

• Audio analysis library : Librosa4.

• Feature exctraction tools: Vamp Plugins5 have been used in the fea-

tures extraction step. In particular we used: Libxtract6, Essentia7,

BBC Vamp Plugin8, Queen Mary Vamp Plugins9.

• Machine learning library : Scikit-Learn10, an open source Python tool

for data analysis and data mining.

1https://www.python.org/
2https://pypi.python.org/pypi/ffmpy
3https://ffmpeg.org/
4http://librosa.github.io/librosa/
5http://vamp-plugins.org/
6http://libxtract.sourceforge.net/
7http://essentia.upf.edu/documentation/
8https://github.com/bbc/bbc-vamp-plugins
9http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html

10http://scikit-learn.org/
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5.2 The feature compensation method: an overview

In the previous chapters we showed the effects that lossy audio compression

has on features values. In particular, we showed that the feature value of a

song encoded at different bit rate values assumes different values depending

on the compression bit rate used. Since audio features are crucial in a

great number of Music Information Retrieval application, and given the fact

that the majority of audio collections are composed of songs encoded at

different bit rate values or with different encoders or encoding paramenters

(we identified these types of collections as being inhomogeneous collections),

solutions to the problem of having variable feature values depending on

encoding parameters must be adopted. A solution to this problem is the

one proposed in this thesis and it is about compensating the feature values.

We recall the various steps for the feature compensation method:

• Models Computation: This is the learning phase, in which, for each

tuple (f, b0, bt), a model is computed.

• Compensation: The compensation phase is composed by two main

steps:

– Validation: During this phase models are tested using a valida-

tion set Sval and the validation matrices are computed.

– Test : In this phase the actual compensation takes place by con-

sidering one feature f and all its possible bit rate values com-

bination at a time for every song in the test set. Therefore, for

each tuple (f, b0, bt), first we perform a check on the validation

matrices, in order to only compensate the tuples that really take

advantage from the compensation.
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Table 5.1 shows the list of features and their corresponding index in the

bar plots depicted in the following sections.

index feature index feature

0 Spec. Centroid 21 Non zero count

1 Spec. Skewness 22 Odd-Even Ratio

2 Spec. Kurtosis 23 RMS Amplitude

3 Spec. Inharmonicity 24 Skewness

4 Spec. Slope 25 Crest

5 Spec. Std. Dev. 26 Spec. Variance

6 Irr. k 27 Std. Dev.

7 Irr. j 28 Sum

8 Spread 29 Variance

9 Flatness 30 Spec. Flux

10 Rolloff 31 Energy

11 Sharpness 32 RMS Delta

12 Smoothness 33 Intensity

13 ZCR 34:40 Intensity Ratio

14:16 Tristimulus 41:47 Spec. Cont. Valley

17 Avg Deviation 48:54 Spec. Cont. Peak

18 Kurtosis 55:61 Spec. Cont. Mean

19 Loudness 62:73 Chroma Features

20 Mean 74:93 MFCC

Table 5.1: Features index legend.

5.2.1 Feature compensation test results

Results of the compensation are shown as bar plots. On the x -axis there are

the features indexes, values of bars on the y-axis represent the compensation

ability for each feature, which represents the mean error evaluated on the

whole test set.
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Rule-based audio feature compensation method

In Fig. 5.1 we present the results of the test phase for the Rule-based audio

feature compensation method.

It can be noticed that in the majority of the cases the compensation ability

exceeds the 60% and that only in few cases (feature 14 − 15, 22, 31), the

compensation is never applied resulting in a 0% of compensation ability for

those specific features.

Figure 5.1: Rule-based audio feature compensation method test results.
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Linear Regression

Fig. 5.2 shows the test results of the test phase for the Linear Regression

method.

We notice that the majority of features exceed the 60% of compensation

ability and that there is only one case in which the compensation could not

be applied (feature 9).

Figure 5.2: Linear Regression test results.
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Polynomial Regression

In Fig. 5.3 and 5.4 the results of the test phase are plotted for the Polyno-

mial Regression method (degree 2 and 3 respectively).

Here results for both methods appear to be pretty much similar and although

there are a lot of cases in which the compensation has never been applied,

some features reach the 100% of compensation (features 66, 72). Meaning

that in all cases the compensated value approached the real feature value at

bt more than the one at b0, i.e. the compensation has been worthed in all

the cases.

Figure 5.3: Polynomial Regression, degree 2, test results.
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Figure 5.4: Polynomial Regression, degree 3, test results.
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Ridge Regression

In Fig. 5.5 we show the plot of the results of the test phase for the Ridge

Regression method. It can be noticed that some features try to approach

the 100 % (features 34-38) more than others meaning that for some features

models computed using the Ridge Regression result to be more accurate

with respect to others.

Figure 5.5: Ridge Regression test results.
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Support Vector Regression, Linear Kernel

Fig. 5.6 shows the results of the test phase are plotted for the SVR method

with linear kernel. This method works better than the other SVR methods

(SVR with polynomial and non-linear kernel). Since the distribution of data

appears linear it is rightful to expect better results using a linear kernel.

Figure 5.6: SVR Linear test results.
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Support Vector Regression, Non-linear Kernel

In Fig. 5.7 we show the results of the test phase for the SVR method with

non-linear kernel.

The plot shows that results using a non-linear kernel broadly approach the

one obtained with a linear kernel. It can be noticed by looking at the central

and right-hand portions of the figure and by make a comparison with the

same portions of the graph in Fig. 5.6.

Figure 5.7: SVR RBF test results.
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Support Vector Regression, Polynomial Kernel

In Fig. 5.8 we show the results of the test phase for the SVR method with

polynomial kernel of degree 2.

We notice that, in this case, performances decrease significantly with respect

to the previous methods.

Figure 5.8: SVR Polynomial, degree 2, test results.
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Fusion Method 1

Fig. 5.9 shows the results of the Fusion method performed using all the

computed models from all the proposed methods.

Fusion method approaches the Rule-based and the Linear Regression method.

There are only few cases in which features have a low compensation ability

and 0 cases in which the compensation has never been applied.

Figure 5.9: Fusion Method test results.
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Figure 5.10 shows the differences between the Fusion method and the

Linear Regression Method, since it results to be the one that provides the

best performances. The upper part of the graph indicates the cases in which

the Fusion method outperformed the Linear Regression method, while the

lower part indicates the cases in which the Linear regression outperformed

the Fusion method.

Figure 5.10: Differences between Fusion Method and Linear Regression method.

In order to provide a clearer idea of the compensation ability of each

tested method we provide Table 5.2 that shows the overall percentage of

compensated features per model. This measure accounts for the overall

compensation ability of the model under analysis and it is evaluated by

considering only the amount of compensated features that exceeded the

50% (see the bar plots) in the test phase. This measure is useful in finding

out what are the best models that can be employed for the Fusion method.

The overall percentage of compensated features per model is computed as:

modelcomp% =
compm · totf

100
, (5.1)

where compm is a variable that is increased every time the compensation
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value of a feature is greather than 50% and totf in this case is equal to 94

which is the number of features considered in this thesis. Table 5.2 is useful

in order to better estimate and understand the overall performances of each

method and to design a better Fusion method. Tested models are ranked

according to their percentage of compensated features from the highest to

the lowest.

model name
comp.

%

1 Linear Regression 78.96

2 Ridge Regression 73.32

3 Rule-based 67.68

4 Fusion Method 1 66.74

5 Polynomial Reg, degree 3 62.98

6 Polynomial Reg, degree 2 62.04

7 SVR Linear 61.1

8 SVR RBF 47.0

9 SVR Polynomial, degree 2 17.86

Table 5.2: Percentage of compensated features per model.



84 Chapter 5. Experimental Results

Fusion Method 2

Table 5.2 suggests that the highest percentage of compensated features be-

longs to the linear regression and ridge regression models, with the 78.96%

and 73.32% respectively. By exploiting this fact, we performed another fu-

sion test by considering only these two models, instead of considering all the

models as in the case of the first Fusion test. Results are shown in Figure

5.11 and in some cases they perform better with respect to the Fusion test

1 (features 55-75).

Figure 5.11: Fusion Method 2 test results.
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Figure 5.12 shows the differences between the Fusion method 2 and the

Linear Regression Method. The upper part of the graph indicates the cases

in which the Fusion method 2 outperformed the Linear Regression method,

while the lower part indicates the cases in which the Linear regression out-

performed the Fusion method 2.

Figure 5.12: Differences between Fusion Method 2 and Linear Regression method.

Table 5.2 is updated by adding the percentage of compensated features

belonging to the Fusion test 2. The updated results are shown in Table 5.3.

Results obtained with Fusion method 1 and with Fusion method 2 are very

close to each other. This means that it is possible, and maybe less com-

putational demanding, to use the Fusion method by only considering the

models that result in the highest overall compensation ability (in this case

2), instead of using all of them (i.e. 8).
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model name
comp.

%

1 Linear Regression 78.96

2 Ridge Regression 73.32

3 Rule-based 67.68

4 Fusion Method 1 66.74

5 Fusion Method 2 65.8

6 Polynomial Reg, degree 3 62.98

7 Polynomial Reg, degree 2 62.04

8 SVR Linear 61.1

9 SVR RBF 47.0

10 SVR Polynomial, degree 2 17.86

Table 5.3: Percentage of compensated features per model (updated).

5.3 Analysis of the results

Table 5.2 proves that in almost all the cases, it is possible (and worth) to

perform feature compensation, since in all cases but one, the overall com-

pensation ability is higher than the 50%.

From the results it is also clear that, in almost all the cases and more than

the 50% of the times, compensated features are very close to the original

value of the feature. We discovered that the best models for performing the

task of feature compensation are Linear Regression and Ridge Regression

with over the 73 % of compensation ability.

Performing feature compensation in a mixed fashion (i.e. testing the Fusion

method) results suitable because it outperforms half of the methods if they

are employed singularly.

The percentage of compensated features in the case of the second fusion test

(the one with Linear and Ridge regression models) performed is only 65.8%,
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which is slightly less than the percentage of the Fusion method performed

considering all the models (66.74%).

The fact that Linear regression, Ridge regresion and the the Rule-based ap-

proach, in this case, outperform both fusion methods could be due to the

choice of the training dataset used in the model computation phase and to

the validation datasets used for the validation phase. It may happen, for

instance, that some models perform better in the validation phase for a cer-

tain number of bit rate paris but worse in the test phase. The datasets must

therefore be chosen carefully in order to find the best possible combination

between validation and test set.

In Figure 5.13 we show, for each feature, the best compensation among all

the computed models, selected by considering the compensation percentage

among all the models and selecting the one provided the maximum value of

compensation.

Figure 5.13: Result of the best compensation models.
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5.4 Music Emotion Recognition (MER) results

In order to test the effect of the feature compensation methods in a real

case Music Information Retrieval’s scenario, we performed Music Emotion

Recognition (MER) by considering both supervised (classification) and un-

supervised (clustering) techniques.

We considered two main problems:

• Binary problem: We selected two pairs of affective terms from the

CAL500 vocabulary (happy-sad, arousing-calming).

• Multi-Class problem: We selected four classes Emotion-Happy, Emotion-

Angry, Emotion-Calming and Emotion-Emotional.

The dataset used is the CAL500 composed by 500 songs. For the super-

vised (classification) method, the train test was chosen to be composed of

the 75% of the total dataset, while the test set was chosen to be the 25%.

The target bit rate was set to 320 kbps and the starting bit rate values have

been chosen randomly between 32 and 256 kbps (see equation (4.1)). In

order to test different sets of features we considered two cases: i) MFCCs

only and ii) features selected from the whole features set by using a Reli-

efF [29] technique, which is an algorithm that performs feature selection by

selecting a subset of features that result to be very discriminative for that

specific application, among all the available features.

The supervised machine learning techniques used are Support Vector Ma-

chine (SVM) and K-Nearest Neighbors (KNN).

The unsupervised machine learning technique used is K-Means Clustering.

Table 5.4 and 5.5 show the results of the MER classification and clustering

respectively, where:

• Xtarget: is the feature value at bit rate bt.

• Xsource: is the feature value at bit rate b0.

• Xcomp: is the compensated feature value without using the worthy

condition.

• XcompM : is the compensated feature value using the worthy condition.
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Concerning the supervised scenario, the model was trained on the Xtarget

dataset, whereas the test were performed separately considering

Xtarget, Xsource, Xcomp, XcompM .

For the unsupervised scenario we exploited the Calinski-Harabasz (CH) [11]

measure as quality index.

Since from the previous section one of the best models for features compesa-

tion resulted to be the Linear Regression model, Xcomp, XcompM have been

computed using the Linear regression models.

In Tab. 5.4 we show the resulting accuracy of the binary and multi-class

classification and in Tab. 5.5 we show the clustering results in which the

higher is the Calinski-Harabasz index, the better is the clustering.
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SVM (%) KNN (%)

Xtarget 85.42 85.42

MFCC Xsource 77.08 77.08

Xcomp 85.42 85.42

happy XcompM 85.42 85.42

sad Xtarget 89.58 77.08

ReliefF Xsource 89.58 62.05

Xcomp 89.58 83.33

XcompM 89.58 75.0

Xtarget 79.89 77.25

MFCC Xsource 75.13 70.37

Xcomp 79.37 76.72

arousing XcompM 79.37 77.25

calming Xtarget 81.48 74.07

ReliefF Xsource 66.67 55.03

Xcomp 66.67 73.54

XcompM 66.67 71.43

Xtarget 44.44 50.0

MFCC Xsource 44.44 33.33

happy Xcomp 44.44 44.44

angry XcompM 44.44 44.44

calming Xtarget 44.44 50.0

emotional ReliefF Xsource 44.44 38.89

Xcomp 44.44 44.44

XcompM 44.44 44.44

Table 5.4: Accuracy results of the binary and four mood classes using supervised ma-

chine learning methods.
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CH

Xtarget 23.86

MFCC Xsource 14.16

Xcomp 26.89

happy XcompM 26.79

sad Xtarget 10.10

ReliefF Xsource 0.0

Xcomp 16.63

XcompM 0.18

Xtarget 86.61

MFCC Xsource 61.62

Xcomp 91.57

arousing XcompM 91.12

calming Xtarget 34.26

ReliefF Xsource 0.0

Xcomp 56.31

XcompM 0.35

Xtarget 2.14

MFCC Xsource 2.0

happy Xcomp 2.07

angry XcompM 2.07

calming Xtarget 0.63

emotional ReliefF Xsource 0.0

Xcomp 0.80

XcompM 0.37

Table 5.5: Results of the binary and four mood classes using unsupervised machine

learning methods.
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5.4.1 Music Emotion Recognition (MER), analysis of the re-

sults

Both supervised and unsupervised investigations confirm the need to per-

form feature compensation in case of a non-homogeneous data set.

In fact, in almost all the cases, the results obtained using Xtarget outperform

those obtained using Xsource.

Results shows that in most of the cases, tests using the feature compensa-

tion (with and without the worthy condition) are very close to the case of

Xtarget.

This fact means that compensated features (with and without worthy condi-

tion) approach the real value of the feature at bt and that using Xsource, i.e.

the feature value at b0, is not optimal when performing MIR applications.

In the specific case of MER, it appears clear that feature values play a key

role in order to obtain acceptable results in the identification of the various

classes and clusters.

In Fig.5.14 we show the happy/sad music emotion recognition and the com-

posed clustering. We noticed that the shape of the clusters in the case of

Xtarget, Xcomp and XcompM are very similar, while in the case of Xsource

clusters are not well separated and some examples seem to overlap in the

border region between the two clusters. This happens because the use of an

hinomogeneous dataset (i.e. composed of songs encoded at different bit rate

values) produces features vectors containing values that are not easily com-

parable to each other, thus resulting in being poorly discriminative when

projected on a feature space.
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(a) Xtarget (b) Xsource

(c) Xcomp (d) XcompM

Figure 5.14: Happy/Sad clustering plot.
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Chapter 6

Conclusions and Future

works

In this last Chapter we review the problems addressed in this thesis work

as well as the resolutive methods proposed to solve them.

We then present future studies on the problem of feature compensation as

well as developements of the proposed techniques.

6.1 Conclusions

In this thesis work we addressed the problem of compensating feature val-

ues extracted from songs encoded with mixed bit rate values. We showed

the effect that audio coding causes on audio features and in particular on

Music Information Retrieval applications, which results in poor classifica-

tion accuracy and clustering ability. We therefore showed that it is possible

to overcome the problem of having an hinomogeneous audio data set (i.e.

a song collection composed of songs encoded at different bit rate values)

by performing feature compensation. This allows the creation of an homo-

geneous dataset (i.e. a data set composed of features extracted from song

encoded using the same bit rate value), that is more suitable for the purpose

of MIR final applications. In particular, it is needful for obtaining choerent

results and high accuracy when performing classification or clustering prob-

lems.

95
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We presented various methods for compensating feature values extracted

from songs encoded at different bit rate values. We proved, with various

tests, that it is possible to compensate feature values and that the compen-

sation results useful in the 78.96 % of the cases.

We discussed about the effect of audio coding on feature values and its

consequent effect on MIR applications such as genre classification and oth-

ers. We tested our feature compensation method on a real case scenario in

the case of Music Emotion Recognition (MER) and proved that the case of

having a not homogeneous dataset is an issue that badly affects the ability of

classification and clustering methods in finding a proper subdivision of the

feature space and in providing high accuracy results. In fact, in the binary

classification arousing-calming and the case of the use of MFCCs features,

the accuracy value of Xtarget for the KNN is 77.25 %, while Xsource only

scored 70.37 % and both Xcomp and XcompM approach Xtarget with 76.72 %

and 77.25 % respectively.

The case of multi-class classification confirms better performances in case of

the use of an homogeneous dataset. In fact, in this case, the accuracy value

for Xtarget is 50.0%, the one for Xsource is only 33.33 % while both Xcomp

and XcompM try to approach Xtarget by scoring 44.44%.

The results obtained by applying clustering techniques confirms the ones

obtained for the classification. In fact, for the four moods case (happy, angry,

calming, emotional) the CH values for Xtarget, Xsource, Xcomp and XcompM

are 2.14, 2.0, 2.07, 2.07, respectively, confirming the lowest score belonging

to Xsource.

6.2 Future Developements

Further investigations need to be done by considering a larger number of

lossy encoders as well as encoding settings and parameters, since, for the

purpose of this thesis, we only focused on MP3 compression at various bit

rate values.

The use of only 500 songs from the CAL500 dataset may be not enough when
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using machine learning methods. In fact, the fusion method resulted to be

affected by the choice of the training and validation datasets. Therefore, a

larger song data set need to be used in order to build models that are more

accurate during the compensation.

Other future works will be devoted to the analysis and modeling of the

feature-bitrate behaviour and to the developement of a feature compensation

toolbox.
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bre des sons complexes. ii: Analyses acoustiques et quantification psy-

chophysique. Journal de Physique, 4(C5):625–628, 1994.

[23] C. Laurier, M. Sordo, Joan Serrà, and Perfecto Herrera. Music mood
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[29] Marko Robnik-Šikonja and Igor Kononenko. Theoretical and empirical

analysis of relieff and rrelieff. Machine Learning, 53(1):23–69, 2003.

[30] J. A. Russell. A circumspect model of affect. Journal of Psychology

and Social Psychology, vol. 39, no. 6, p. 1161, 1980.

[31] S. Sigurdsson, K. B. Petersen, and T. Lehn-Schiøler. Mel frequency

cepstral coefficients: An evaluation of robustness of mp3 encoded mu-

sic. In Proceedings of the Seventh International Conference on Music

Information Retrieval (ISMIR), 2006.

[32] B. L. Sturm. Alexander lerch: An introduction to audio content analy-

sis: Applications in signal processing and music informatics. Computer

Music Journal, 37(4):90–91, Dec 2013.

[33] B.L. Sturm. A survey of evaluation in music genre recognition, 2012.

[34] Bob L. Sturm. Evaluating music emotion recognition: Lessons from

music genre recognition? International Conference on Multimedia and

Expo, pages 1–6, 2013.

[35] Bo Shao Tao Li, Mitsunori Ogihara and DingdingWango. Machine

learning approaches for music information retrieval, theory and novel

applications of machine learning, meng joo er and yi zhou (ed.), intech,

doi: 10.5772/6687. 2009.

[36] Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet.

Towards musical query-by-semantic-description using the cal500 data

set. In Proceedings of the 30th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR

’07, pages 439–446, New York, NY, USA, 2007. ACM.

[37] Douglas Turnbull, Luke Barrington, David Torres, and Gert Lanckriet.

Towards musical query-by-semantic-description using the cal500 data

set. In Proceedings of the 30th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR

’07, pages 439–446, New York, NY, USA, 2007. ACM.



BIBLIOGRAPHY 103

[38] George Tzanetakis, Georg Essl, and Perry Cook. Automatic musical

genre classification of audio signals. In IEEE TRANSACTIONS ON

SPEECH AND AUDIO PROCESSING, pages 293–302, 2001.

[39] Aiko Uemura, Kazumasa Ishikura, and Jiro Katto. Effects of Audio

Compression on Chord Recognition, pages 345–352. Springer Interna-

tional Publishing, Cham, 2014.

[40] J. Urbano, Dmitry Bogdanov, Perfecto Herrera, Emilia Gómez, and
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