
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioningenieria

Graph Summarization on Linked Open Data

Advisor: Prof. Marco Colombetti

Alejandro Onatra, matricola 763773

Academic year 2016-2017

To my family that above and beyond is the best thing that I have in my life.

Abstract

One of the biggest challenges in the area of intelligent information manage-

ment is the exploitation of the Web as a platform for data and information

integration as well as for search and querying. The Linked Data paradigm

has evolved as a powerful enabler for the transition of the current document-

oriented Web into a Web of interlinked Data and, ultimately, into the Seman-

tic Web. The most visible example of adoption and application of the Linked

Data principles has been the Linking Open Data Project. Despite the

wealth of information contained in the Web of Linked Data, ordinary Web

users, not familiar with Semantic Web technologies and the specific appli-

cation domains, are difficult to directly consume this information. In this

research we study the summarization of graphs stored as Linked Open Data

and its visualization, using heuristic and heterogeneous graph summariza-

tion algorithms. The purpose of the study was to understand the limitations

and advantages of this algorithms in the summarization process and to the

implement necessary changes to them in order to overcome this limitations

creating a comparison chart and to obtain possible direction to guide future

research on this topic. The selected set of algorithms were based on the Snap

algorithm, these, are a group of graph summarization algorithms that can

work on heterogeneous networks. In order to perform the observations we

develop a testing platform based on the LDVM (Linked Data Visualization

Model) with a Client-Server architecture. From the initial phase of the study

the LOD problems when summarizing a graph were partially solved modify-

ing using methods like Hub and compressing the graph as a post-processing

practice. Within the set of modified Snap family of algorithms used in this

work, the one that performed the best according to execution time and group-

ing number was the compressed, combined kSnap, Hub one. The advantages

of this algorithm was the initial big grouping, contained iterative cycles for

creating new groupings and cleaner output.

I

Sommario

Una delle sfide più importanti nella gestione intelligente delle informazioni è

costituita dallo sfruttamento del Web come piattaforma per l’integrazione di

dati e informazioni, nonché per la ricerca e la risposta a query. Il paradigma

dei linked data si è evoluto come un potente strumento per la transizione dal

Web orientato ai documenti a un Web di dati interconnessi e, infine, al Web

semantico. L’esempio più significativo di applicazione dei principi dei linked

data è stato il Linking Open Data Project. Nonostante la ricchezza delle

informazioni contenute nel Web deilinked data, gli utenti ordinari delWeb

hanno difficoltà a utilizzare direttamente questi dati a causa della loro scarsa

familiarità con le tecnologie del Web Semantico. La mia ricerca si occupa

della sintesi dei grafici memorizzati come Linked Open Data e della loro vi-

sualizzazione, utilizzando algoritmi euristici e eterogenei di sommarizzazione

di grafi. Lo scopo dello studio era comprendere i limiti e i vantaggi di questi

algoritmi nel processo di sommarizzazione e implementare le modifiche neces-

sarie per superare le limitazioni, operando un confronto sistematico in vista di

una possibile direzione futura di ricerca in questo ambito. Il set di algoritmi

selezionato si basava sull’algoritmo Snap: si tratta di un gruppo di algoritmi

di sommarizzazione di grafi che possono funzionare su reti eterogenee. Per

eseguire le nostre analisi abbiamo sviluppato una piattaforma di test basata

sul modello LDVM (Linked Data Visualization Model) con un’architettura

client-server. I problemi di sommarizzazione di grafi di Linked Open Data

sono stati parzialmente risolti utilizzando metodi come Hub e comprimendo

il grafo ottenuto in fase di post-elaborazione. Nell’ambito degli algoritmi

Snap modificati utilizzati in questo lavoro, quello che si è comportato meglio

in base al tempo di esecuzione e al numero di raggruppamenti è stato una

versione di kSnap. I vantaggi di questo algoritmo sono il grande raggruppa-

mento iniziale, i cicli iterativi per la creazione di nuovi raggruppamenti e i

risultati più trasparenti.

III

Acknowledgements

This work is dedicated to my parents that support me in the best way possible

in order to finish my academic life. My sister that have been always an

inspiration, keeping me motivated, motivation that help me finish this work.

Finally the friends that in spite of being ignored many weekends support me

and keep me company in the few moments that I had free time to share with

them. Many people contribute to this work directly or indirectly, to those

who I didn’t mentioned, than you!

V

Contents

Abstract I

Sommario III

Acknowledgements V

1 Introduction 1

1.1 Statement of the problem . 1

1.2 Scope and delimitation . 3

1.3 Methodology . 3

1.4 Significance of the study . 4

1.5 Document organization . 4

1.6 Acronyms . 5

2 Literature Review 7

2.1 Link Open Data . 8

2.1.1 The web of data . 9

2.1.2 Linked data . 11

2.1.3 Linked data technology stack 13

2.1.4 Linked Open Data . 15

2.2 Data Mining in Linked Open Data 17

2.3 Link Mining . 24

2.4 Graph Summarization . 30

2.5 Graph Visualization . 34

3 GSummarizer: Process model and algorithms 41

3.1 The Graph model in the GSummarizer 42

3.2 The LDVM model in the GSummarizer 44

3.3 Data Transformation . 47

VII

3.3.1 RDF Query Process 47

3.3.2 Graph Building . 51

3.4 Visualization Transformation 52

3.4.1 The SNAP algorithm 53

3.4.2 The kSNAP algorithm 58

3.4.3 The modified kSNAP algorithm kSNAP-LOD 64

3.4.4 HUB algorithm . 68

3.4.5 The compression algorithm 71

3.5 Visual Mapping Transformation 73

4 Experimental platform: GSummarizer 75

4.1 GSummarizer Overview . 75

4.1.1 Motivation . 75

4.1.2 Architectural Model 77

4.1.3 Technology Stack . 78

4.2 General Architecture . 79

4.2.1 The client . 80

4.2.2 The server . 80

4.3 Front-End . 81

4.4 Back-end . 83

5 Experimental Analysis 93

5.1 Experimental setup . 93

5.1.1 Hardware . 93

5.2 Experimental Design . 94

5.2.1 Nodes vs Execution time 96

5.2.2 Nodes vs Grouping . 96

5.2.3 Visualization Comparison 97

5.3 Experiments and Analysis . 97

5.3.1 Nodes vs Execution time 97

5.3.2 Nodes vs Grouping . 100

5.3.3 Visual grouping Comparison 102

6 Conclusions 107

6.1 Future work . 108

VIII

A Platform specific documentation 117

A.1 Data Extraction Module . 117

A.1.1 Query Builder . 117

IX

X

List of Figures

2.1 Sample RDF graph [58] . 10

2.2 RDF diagram depicting the subject - relation - object between

the nodes . 12

2.3 Linked Open Data Graph in 2007 15

2.4 Linked Open Data Graph in 2014 16

2.5 Linked Open Data Graph in 2017 18

2.6 Confluence of different multiple disciplines in the data mining

process. 20

2.7 Data mining process with the data mining system (DM-S) in

the Phases (1) Training Phase, (2) Test Phase and (3) Valida-

tion Phase. The data mining process works in a comparable

way in all types of data mining types like text mining or web

mining . Credits to [30]. 21

2.8 A summary graph (right) is generated for the original graph

(left) . 32

2.9 An example of S-Node representation (from [55]) 33

2.10 An example of MDL-based summary: G is the original graph,

S is the summary graph, and C is the set of edge corrections

(from [55]) . 34

2.11 The LDVM model (from [38]) 36

2.12 The LODViewer architecture (from [38]) 37

2.13 The Linked Data Browser comparison table (from [25]) 39

2.14 Functional diagram of the LOD viewer from [7] 40

3.1 General Linked Data Visualization Model 42

3.2 Graph model example . 43

3.3 GSummarization current LVDM model 45

3.4 Data Transformation section of the GSummarization LVDM

model . 47

XI

3.5 RDF Extraction logic . 48

3.6 Queried subgraph . 49

3.7 Queried subgraph with one-hop classes included 50

3.8 Visualization Transformation section of the GSummarization

LVDM model . 53

3.9 Scheme of the groups after a summarization ending with k

elements . 61

3.10 Scheme showing different classes instances either in the main-

class nodes and in the related-class ones 65

3.11 Scheme of the Φmax
A grouping without using the hub algorithm,

the related-classes clusters remain as single-node ones. 69

3.12 Visual Mapping Transformation section of the GSummariza-

tion LVDM model . 74

4.1 GSummarizer general process 76

4.2 GSummarizer general architecture model 77

4.3 GSummarizer general architecture with technologies 79

4.4 Front-end, GBuilder modules and its components 81

4.5 GBuilder sequence diagram for getting the parameter selection

interface ready for the user after the LOD endpoint selection. . 82

4.6 GBuilder sequence diagram for the events after submiting the

request for the graph summarization. 83

4.7 GSummarizer back-end diagram showing the high level func-

tional modules on the architecture 84

4.8 GSummarizer back-end diagram showing the current compo-

nents of the each of the functional modules on the architecture

. 85

4.9 GSummarizer back-end sequence diagram representing the re-

quest of the available LOD endpoints. 89

4.10 GSummarizer back-end sequence diagram representing the re-

quest of the set of classes, relationships and attributes avail-

able for the user in a given LOD dataset. 90

4.11 GSummarizer back-end first part of the sequence diagram rep-

resenting the request of a graph summarization. This part

shows how the graph is build using the LOD dataset. 91

XII

4.12 GSummarizer back-end second part of the sequence diagram

representing the request of a graph summarization. This part

shows how the summarization graph is build, using the obatained

graph build by the previous section. 92

5.1 Number of nodes vs. Execution time for all the algorithm

techniques . 97

5.2 Number of nodes vs. Execution time for all the algorithm

techniques . 99

5.3 Nodes vs. Grouping techniques 100

5.4 Grouping vs. Execution time 101

5.5 Raw graph . 103

5.6 The initial grouping algorithms 103

5.7 Comparisson of the kSnap and the SNAP algorithm 104

5.8 The comparisson of the main algorithms combined with the

Hub one. 105

5.9 The compressed algorithms . 105

5.10 kSnap+Hub+Compressed detail 106

XIII

XIV

Chapter 1

Introduction

In this chapter we will introduce the work done in this research and an

overview of the organization of this document. The first section presents the

general motivations of the study. The second one present the problem that

this work is solving. In the third section will present the scope of the work,

the fourth one will define the most important terms and acronyms. Finally

an overview of the document chapter will be presented.

1.1 Statement of the problem

Many data sets of interest today are best described as a linked collection of

interrelated objects. These may represent homogeneous networks, in which

there is a single-object type and link type, or richer, heterogeneous networks,

in which there may be multiple object and link types (and possibly other

semantic information). Examples of homogeneous networks include: single

mode social networks, such as people connected by friendship links, or the

WWW, a collection of linked web pages. Examples of heterogeneous networks

include those in medical domains describing patients, diseases, treatments

and contacts. Most of this information is stored as in an interconnected

network of data silos connected through the internet and may or may not be

available for the general public.

One of the biggest challenges in the area of intelligent information man-

agement is the exploitation of the Web as a platform for data and infor-

mation integration as well as for search and querying. The Linked Data

paradigm has evolved as a powerful enabler for the transition of the cur-

rent document-oriented Web into a Web of interlinked Data and, ultimately,

into the Semantic Web. Just as initially we published unstructured textual

information on the Web as HTML pages and search such information by us-

ing keyword-based search engines, now we are already able to easily publish

structured information, reliably interlink this information with other data

published on the Web and search the resulting data space by using more

expressive querying beyond simple keyword searches.

The most visible example of adoption and application of the Linked Data

principles has been the Linking Open Data Project a grassroots commu-

nity effort founded in January 2007 and supported by the W3C Semantic

Web Education and Outreach Group. The original and ongoing aim of the

project is to bootstrap the Web of Data by identifying existing data sets that

are available under open licenses, converting these to RDF according to the

Linked Data principles, and publishing them on the Web.

Imagine hundred thousands of nodes , holding the relationships and at-

tributes of individuals, one such type of networks are the social networks.

With the size of this networks, is difficult to grasp some of the underlying

implicit and explicit structures. There is an overwhelming wealth of informa-

tion encoded in these graphs, there is a critical need for tools to summarize

large graph data sets into concise forms that can be easily understood. Graph

summarization has attracted a lot of interest from a variety of research com-

munities, including sociology, physics, and computer science. It is a very

broad research area that covers many topics. Different ways of summarizing

and understanding graphs have been invented across these different research

communities. These different summarization approaches extract graph char-

acteristics from different perspectives and are often complementary to each

other.

Despite the wealth of information contained in the Web of Linked Data,

ordinary Web users, not familiar with Semantic Web technologies and the

specific application domains, are difficult to directly consume this information

resource. Linked Data visualization can alleviate this problem, visualization

can be a reasonable way to visually present the internal structure in the data

and the relationship between the data; friendly visualization interfaces allow

the users to identify any unreasonable, incorrect or duplicate data and links

in the Linked Data, thus helping the users intuitively and efficiently analyze

data.

Currently ordinary web users and experts can benefit from enhanced vi-

2

sualization methods that can aid them to understand implicit and explicit

information contained in the Linked Data. One such technique is graph sum-

marization that is at the core of aiding the user to obtain relevant information

from a graph by reducing the data space and presenting only the most im-

portant data. One such data sets are the ones belonging to the Linked Open

Data movement. These sets are used as base to diverse applications, one

such is the Google’s Knowledge Graph.

In order to better understand how summarization works in Linked Open

Data, a set of this kind of algorithms was chosen to test their behaviour and

define limitations and possible enhancements that could be implemented. The

algorithm set are based on the Snap algorithm, these, are a group of graph

summarization algorithms that can work on heterogeneous networks and un-

like others, focus on summarizing based on attributes and relationships. One

of the advantages of this set is the flexibility to implement them.

1.2 Scope and delimitation

The research presented in this document study the summarization of graphs

stored as Linked Open Data and its visualization, using heuristic and het-

erogeneous graph summarization algorithms. In order to do this the research

focuses in the areas of LinkMining, LinkData and GraphV isualization.

The purpose of the study is to understand the limitations and advantages

of this algorithms in the summarization process and to implement necessary

changes to them in order to overcome this limitations creating a comparison

chart and to obtain possible direction to guide future research on this topic.

1.3 Methodology

This study uses an exploratory approach in order to study the phenomenon

described on Section 1.2. Therefore there is no initial formal hypothesis on

how the summarization will behave on Linked Open Data. There are informal

hypothesis on the behaviour based on the conclusions from previous studies

on the subject.

In order to perform the observations it was necessary to have an experi-

mental setup. Up to the best of our knowledge there was no suitable exper-

imental platform at the moment that this work started so it was necessary

3

to create the GSummarizer experimental platform as part of the research.

The original algorithms were modified initially to adjust to multiple re-

lation and multiple attribute handling. The test were performed as a first

phase of the study. After the initial assessment, a set of changes and possible

optimizations were determined. For the second phase of the studies, a new

set of optimized algorithms were implemented to be tested and obtained the

final comparative results.

1.4 Significance of the study

The study of the Snap-based algorithms applied to LOD data sets will aid

the research done on graph visualization and graph summarization using

heuristic clustering algorithms. The research field will benefit of the insights

obtained from this research because it can direct future work towards better

graph summarization techniques and reuse the testing platform implemented.

1.5 Document organization

The body of this document is divided in six chapters starting with the current

one that introduce the reader to the overview of the research described in

this document. The chapters are organized as following:

• Chapter 2: This chapter presents the literature review and the state

of the art on the topics of this work.

• Chapter 3: The third chapter presents the original algorithms, the

initial modifications and the final optimizations.

• Chapter 4: Presents the testing platform, GSummarizer motivations,

design decisions and architectural details.

• Chapter 5: The fifht chapter describes the experimental procedures

and the experimental analysis and results.

• Chapter 6: This chapter presents the conclusions and future work

sections.

4

1.6 Acronyms

• LOD Linked Open Data

• LM Linked Mining

• DM Data Mining

• GS Graph Summarizer

• LDVM Linked Data Visualization Model

5

6

Chapter 2

Literature Review

This chapter describes chronologically how the literature was reviewed, com-

piled an analyzed in order to reach the critical to start the main researching

activity. As is expected this chapter will start by the bigger concept in which

this research is supported: Linked Open Data, from here, the literature

path topics will get more specific until reach the specific topic of interest:

Graph Summarization in Linked Open Data

This chapter discusses the literature as followed by us, covering the path

that we took to gather all the support information needed to start the main

experimental activities. The main sections of this chapter are ordered as fol-

lows, the first section will talk about the entry topic in owr research: Linked

Open Data (LOD), here we will start talking about Linked Data, from the

conceptual point of view and then we will discuss about the leading tech-

nologies implementing it, particularly focusing in the most common one, the

Resource Description Framework (RDF). The second section talks about the

concepts and state of the art of Data Mining (DM) and the problems that

arises when applied to LD, the third section will talk about, Link Mining

(LM) concepts and techniques and how LM solve some of the issues that

traditional DM techniques have when working with LD. Finally we will con-

nect the current state of the research with the main topic of this document:

Graph Summarizing (GSum), the main concepts of this topic and how it is

related to LM and how it is applied in general to LOD.

2.1 Link Open Data

Many data sets of interest today are best described as a linked collection of

interrelated objects. These may represent homogeneous networks, in which

there is a single-object type and link type, or richer, heterogeneous networks,

in which there may be multiple object and link types (and possibly other se-

mantic information). Examples of homogeneous networks include: single

mode social networks, such as people connected by friendship links, or the

WWW, a collection of linked web pages. Examples of heterogeneous net-

works include those in medical domains describing patients, diseases, treat-

ments and contacts [15]. One of this networks is the World Wide Web, this

one, has radically altered the way we share knowledge by making easier to

publish data with high accessibility. From the human accessibility point of

view hyperlinks allow users to traverse the data space (Websites, Media,

etc), Search engines exploit the structure of the World Wide Web to find

relevant documents for the users, inferring the user preference based on the

information and analyzing the link structure in them [41]. But for many

years, data published in the Web was available as raw dumps in formats as

CSV, XML or as HTML tables. The problem with this is that information

was lost over the lack of expressive power either from the previous formats

or HTML itself, this means that we were losing the description of individual

entities, the relations and the type of relations among them [3]. However, in

recent years the Web has evolved from a global information space of linked

documents to one where both documents and data are linked. One of the

advantages of being able to relate information with each other is that a ma-

chine can understand explicitly the relation between data, between concepts.

Underpinning this evolution is a set of best practices for publishing and con-

necting structured data on the Web known as Linked Data. The adoption

of the Linked Data best practices has lead to the extension of the Web with

a global data space connecting data from diverse domains such as people,

companies, books, scientific publications, films, music, television and radio

programmes, genes, proteins, drugs and clinical trials, on-line communities,

statistical and scientific data, and reviews. This Web of Data enables new

types of applications [3]. One of the most successful projects coming from the

Link Data paradigm is the Link Open Data projects, used as an open Link

Data repository where continuously data is being pushed either by automatic

programs, privates or public entities.

8

2.1.1 The web of data

Data can be expressed in many ways and one of the issues that systems have

in order to communicate among each other is that they don’t speak the same

language, they don’t see and define the world with the same model. A solu-

tion to this problem is the use of Application Programming Interface (APIs)

, due to the many ways APIs are typically designed application development

based on Web 2.0 mashups is often burdensome and doesn’t scale well. In

addition to requiring effort to repeatedly learn new interfaces, the so-called

created data is locked in its respective platform.[19]. Therefore, APIs work

as a middleware solution enforcing a contract between systems in order for

the communication to go as if the involved systems speak the same language,

still it doesnt scale well as if the two systems could speak in the same lan-

guage, or similarly enough. In order to two systems to speak in the same

language, they must define the world in a similar way, in order to do that,

their model have to be similar and their description language compatible or

the same. The RDF Vocabulary Definition Language (RDFS) [45] and the

Web Ontology Language (OWL) [40] provide a basis for creating vocabu-

laries that can be used to describe entities in the world and how they are

related. Vocabularies are collections of classes and properties. RDF Schema

allows enhancing the descriptions in RDF graphs by means of RDFS triples,

declaring semantic constraints between the graph classes and properties. The

RDFS constraints shown in Figure 2.1 lead to implicit triples which mabe

part of an RDF graph even though they are not physically present in it. An

implicit triple can be obtained by an immediate entailment step based on (i)

an RDFS constraint, and (ii) either a second constraint (also called schema

triple) or an RDF triple that is not a constraint (also termed data triple).

Vocabularies are themselves expressed in RDF, using terms from RDFS

and OWL, which provide varying degrees of expressivity in modelling do-

mains of interest. Anyone is free to publish vocabularies to the Web of

Data [2], which in turn can be connected by RDF triples that link classes

and properties in one vocabulary to those in another, thereby defining map-

pings between related vocabularies. By employing HTTP URIs to identify

resources, the HTTP protocol as retrieval mechanism, and the RDF data

model to represent resource descriptions, Linked Data directly builds on the

general architecture of the Web [57]. The Web of Data can therefore be seen

as an additional layer that is tightly interwoven with the classic document

9

Figure 2.1: Sample RDF graph [58]

Web and has many of the same properties:

• The Web of Data is generic and can contain any type of data.

• Anyone can publish data to the Web of Data.

• Data publishers are not constrained in choice of vocabularies with which

to represent data.

• Entities are connected by RDF links, creating a global data graph that

spans data sources and enables the discovery of new data sources.

From an application development perspective the Web of Data has the

following characteristics:

• Data is strictly separated from formatting and presentational aspects.

• Data is self-describing. If an application consuming Linked Data en-

counters data described with an unfamiliar vocabulary, the application

can dereference the URIs that identify vocabulary terms in order to

find their definition.

10

• The use of HTTP as a standardized data access mechanism and RDF

as a standardized data model simplifies data access compared to Web

APIs, which rely on heterogeneous data models and access interfaces.

• The Web of Data is open, meaning that applications do not have to be

implemented against a fixed set of data sources, but can discover new

data sources at run-time by following RDF links.

2.1.2 Linked data

One of the biggest challenges in the area of intelligent information manage-

ment is the exploitation of the Web as a platform for data and information

integration as well as for search and querying. Just as initially we published

unstructured textual information on the Web as HTML pages and search

such information by using keyword-based search engines, now we are already

able to easily publish structured information, reliably interlink this informa-

tion with other data published on the Web and search the resulting data

space by using more expressive querying beyond simple keyword searches.

The Linked Data paradigm has evolved as a powerful enabler for the

transition of the current document-oriented Web into a Web of interlinked

Data and, ultimately, into the Semantic Web. The term Linked Data here

refers to a set of best practices for publishing and connecting structured data

on the Web [37]. In summary, Linked Data is simply about using the Web

to create typed links between data from different sources. These may be as

diverse as databases maintained by two organisations in different geographi-

cal locations, or simply heterogeneous systems within one organisation that,

historically, have not easily being able to interoperate at the data level. Tech-

nically, Linked Data refers to data published on the Web in such a way that

it is machine-readable, its meaning is explicitly defined, it is linked to other

external data sets, and can in turn be linked to from external data sets. [3].

Linked Data relies on two technologies that are fundamental to the Web:

Uniform Resource Identifiers (URIs) [46] and the HyperText Transfer Proto-

col (HTTP). While Uniform Resource Locators (URLs) have become familiar

as addresses for documents and other entities that can be located on the Web,

Uniform Resource Identifiers provide a more generic means to identify any

entity that exists in the world. Where entities are identified by URIs that

use the http:// prefix scheme, these entities can be looked up simply by

dereferencing the URI over the HTTP protocol. In this way, the HTTP pro-

11

Figure 2.2: RDF diagram depicting the subject - relation - object between the nodes

tocol provides a simple yet universal mechanism for retrieving resources that

can be serialised as a stream of bytes (ie. The picture of a person). Whilst

HTML provides a means to structure and link documents on the Web, RDF

provides a generic, graph-based data model with which to structure and link

data that describes things in the world.

The RDF model encodes data in the form of subject, predicate, object

triples. The subject and object of a triple are both URIs that each identify

a resource, or a URI and a string literal respectively. The predicate specifies

how the subject and object are related, and is also represented by a URI [3].

For example, an RDF triple can state that a person Berners is a member of

the DIG department, the subject, object and predicate, each identified by

an URI. Similarly an RDF triple may relate two films using the predicate

sameAs in order to declare that the two URIs are referencing the same film.

Another example is presented in Figure 2.2

While the primary units of the hypertext Web are HTML (HyperText

Markup Language) documents connected by untyped hyperlinks, Linked

Data relies on documents containing data in RDF (Resource Description

Framework) format [44]. However, rather than simply connecting these doc-

uments, Linked Data uses RDF to make typed statements that link arbitrary

things in the world. The result, which we will refer to as the Web of Data,

12

may more accurately be described as a web of things in the world, described

by data on the Web. [48] outlined a set of ’rules’ for publishing data on the

Web in a way that all published data becomes part of a single global data

space:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the

standards (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

These have become known as the Linked Data principles, and provide

a basic recipe for publishing and connecting data using the infrastructure of

the Web while adhering to its architecture and standards.

2.1.3 Linked data technology stack

Linked Data [1, 21] denotes the emerging trend of publishing structured data

on the Web as interlinked RDF graphs [29] following a number of simple

principles: use HTTP URIs to name things, return RDF about those things

when their URIs are looked up, and include links to related RDF documents

elsewhere on the Web. These trends — and related trends with respect to

embedding metadata into HTML pages (such as promoted by schema.org)

have lead to a huge volume of RDF data being made openly available online,

contributing top the Web of Data.

The Semantic Web provides the necessary tools to query this data, (i)

firstly by defining RDF [29, 18] as a universal data format; (ii) secondly by

defining SPARQL [51, 52], a standard query language for RDF; and (iii)

lastly by providing schema languages such as RDF Schema (RDFS) [45] and

OWL [39], which allow for adding rich semantics to the data. These three

components, and in particular the reasoning capabilities enabled by RDFS

and OWL, are essential to enable usage of the Web of Data as one huge

database as originally envisioned by Tim Berners-Lee [56].

One of the goals of having a Web of Data is allow ”machines” to infer

or process from different sources of information describing the world in a

common language, and further more, reason and create statements on top

13

of it, but with the current technologies applied to the web of data and as

opposed to standard reasoning and query answering in OWL reasoning over

Linked Data poses several unique challenges [27]:

1. Linked Data is huge, that is, it needs highly scalable or modular rea-

soning techniques.

2. Linked Data is not ”pure” OWL, that is, a lot of RDF Data published

as Linked Data violates the strict syntactic corset of OWL DL, and

thus is not directly interpretable under OWL Direct Semantics.

3. Linked Data is inconsistent, that is, if you take the Web of Data in

its entirety, it is quite normal to encounter inconsistencies - not only

from accidental or malicious datasets but also because publishers may

express contradicting views.

4. Linked Data is evolving, that is, RDF Graphs on the Web evolve, they

change, information is added and removed.

5. Linked Data needs more than RDFS and OWL, that is, there is more

implicit data hidden in Linked Data than can be captured with the

semantics of RDFS and OWL alone.

The Resource Description Framework — RDF

Informally, all RDF data can be understood as a set of subject—predicate—

object triples, where all subjects and predicates are URIs, and in the object

position both URIs and literal values (such as numbers, strings, etc.) are

allowed. Furthermore, blank nodes can be used in the subject or object

resource to denote an unnamed resource with local scope. More formally,

given the set of URI references U , the set of blank nodes B, and the set of

literals L, the set of RDF constants is denoted by C := U ∪ B ∪ L A triple

t := (s, p, o) ∈ UB×U ×C is called an RDF triple, where s is called subject,

p predicate, and o object. A triple t := (s, p, o) ∈ Tr, Tr := C × C × C is

called a generalised triple [25], which allows any RDF constant in any triple

position: henceforth, we assume generalised triples unless explicitly stated

otherwise. We call a finite set of triples G ⊂ Tr a graph. In the Turtle syntax,

URIs are often denoted either in full form using strings delimited by angle

brackets (e.g. < http : //dbpedia.org/resource/Werner von Siemens >)

14

Figure 2.3: Linked Open Data Graph in 2007

or as shorthand prefixed names (e.g. dbr:Werner von Siemens). Literals

are delimited by double quotes (e.g. ”SAP” ”AG”) with an optional trailing

language tag (e.g. @en, @de) or a data type which itself is again identified by

a URI (e.g. ˆˆxsd:dateTime). Blank nodes are (typically) scoped to a local

document and are denoted in Turtle either by the ”prefix” : or alternatively

using square brackets ”[”, ”]”. Furthermore, Turtle allows use of ”a” as a

shortcut for rdf:type (denoting class membership) [5]. Finally, RDF triples

in Turtle notation are delimited by a trailing ’.’, where predicate-object-pairs

that share the same subject can be grouped using ’;’ and several objects for

the same predicate can be grouped using ’,’ [42]

2.1.4 Linked Open Data

The most visible example of adoption and application of the Linked Data

principles has been the Linking Open Data Project [53], a grassroots

community effort founded in January 2007 (Figure 2.3) and supported by

the W3C Semantic Web Education and Outreach Group. The original and

ongoing aim of the project is to bootstrap the Web of Data by identifying

existing data sets that are available under open licenses, converting these to

RDF according to the Linked Data principles, and publishing them on the

Web.

Participants in the early stages of the project were primarily researchers

and developers in university research labs and small companies. Since that

15

Figure 2.4: Linked Open Data Graph in 2014

time the project has grown considerably, to include significant involvement

from large organisations such as the BBC, Thomson Reuters and the Library

of Congress. This growth is enabled by the open nature of the project,

where anyone can participate simply by publishing a data set according to

the Linked Data principles and interlinking it with existing data sets. An

indication of the range and scale of the Web of Data originating from the

Linking Open Data project is provided in Figure 2.4. Each node in this cloud

diagram represents a distinct data set published as Linked Data.

The size of the Web of Data can be estimated based on the data set statis-

tics that are collected by the LOD community, according to these statistics,

the Web of Data currently consists of 4.7 billion RDF triples, which are in-

terlinked by around 142 million RDF links (May 2009). As Figures 2.3, 2.4

and 2.5 shows, certain data sets serve as linking hubs in the Web of Data.

For example, the DBpedia data set consists of RDF triples extracted from

the ”infoboxes” commonly seen on the right hand side of Wikipedia articles,

while http : //www.geonames.org/ontology/ provides RDF descriptions of

millions of geographical locations worldwide. As these two data sets provide

URIs and RDF descriptions for many common entities or concepts, they are

16

frequently referenced in other more specialised data sets and have therefore

developed into hubs to which an increasing number of other data sets are

connected.

The concept of LOD is based on the idea of linking publicly available data

”silos” on the internet by means of semantic methods and networks. By link-

ing data, all of the data objects (e.g., man, woman) become related to each

another. By determining a number of rules about these relationships, such

inter-linked data can be ”understood” by machines and algorithms, which

enables global data mining approaches and the discovery of truly new associ-

ations, patterns and knowledge. LOD is based on the Resource Description

Framework (RDF) data model, which formulates syntax and rules about data

and resources as well as their location on the internet. The RDF-model re-

sembles classic methods for concepts such as the EntityRelationship-Model

(ERM) or the Unified Modelling Language (UML) class diagram. RDF mod-

els have a formal semantic that is based on digraphs. The RDF syntax

extends the Extensible Hyper Text Markup Language (XHTML) of the web

by semantic annotation in support of linking up data. Along with RDF there

are also other standards such as the Web Ontology Language (OWL) that

enable more complex semantic annotations as discussed earlier in section

2.1.1. The LOD approach is not about expanding linkage of documents via

hyperlinks something which has been common on the Internet but, rather,

about the ”linking of all publically accessible data” together [3]. Publically

accessible data includes many areas of interest, such as weather, events, pol-

itics, business, news, geographic spatial data, videos, pictures, images and

much more.

More and more people, institutions, companies and research centers are

putting their data on the web in a machine readable form as per the LOD

approach thereby making it available to the general public for complex and

interdisciplinary data analysis. Google, for instance, uses LOD to improve

search functions. DBpedia is an LOD version of the open and free online

encyclopedia Wikipedia. [48]

2.2 Data Mining in Linked Open Data

Now that we understood Linked Open Data (LOD), the Resource Description

Frameworks (RDF) and how they are implemented currently, we will focus

on how this technologies can be used to expand the knowledge that we have

17

Figure 2.5: Linked Open Data Graph in 2017

regarding the data that they hold using data mining techniques.

Imagine hundred thousands of nodes , holding the relationships and at-

tributes of individuals. There must be a way to better understand the in-

formation contained in that graph, in that DB. The information may not be

explicitly available in plain sight, therefore we need a process to extract or

better, to infer data from it. In order to do this we will start exploring how

this is done for more traditional unstructured data sets and then move to

the more specific are of inference (INF) and knowledge extraction (KEX) in

an RDF based DB

The rapid development in information and computer technology has fa-

cilitated an extreme increase in the collection and storage of digital data.

However, the associated rapid increase in digital data volumes does not au-

tomatically correlate with new insights and advances in our understanding

of those data. The relatively new technique of data mining offers a promis-

ing way to extract knowledge and patterns from large, multidimensional and

complex data sets. The rapid technological advances in information technol-

ogy of the 21st century are intrinsically linked to a gigantic increase in data

and information. This is the result of increased networking and globalization,

18

continuous improvement in computer engineering, media storage, highly so-

phisticated data bases, the Internet as a platform for communication and of

the enormous expansion of automated data collection via sensors, monitoring

systems and mobile and smartphone applications. The ever smaller-scale au-

tomated measuring, cataloging and monitoring of so many areas of people’s

lives as well as their social environment and networks leads to a ”datafica-

tion” of the world refers to the phenomenon of growing data volume in all

areas of life also as ”information overload” [30]

With the increasing networking and ever-growing computing capacity we

find ourselves in a ”profound transformation process” of the 21st century

where more and more ”decision-making processes have to be outsourced to

technical systems” in order to be at all able to function. Internet services like

Facebook, Google and Wolfram Alpha aim ”to make all systematic knowledge

immediately computable and accessible to everyone”. For the sake of compar-

ison, ”it would take over five years to watch the amount of videos which were

transferred per second through the Internet in 2015” [30]. Whereas in the

1990s there was still a deficit in the availability of digital data, the relation

between data availability and existing evaluation methods and algorithms

has changed completely. Nowadays, generating data does not mean insight.

Only a fraction of the data is used to gain insight. As always, the statement

applies that ”data is not insight”. Those who have a lot of data ”have pos-

sibilities to gain insight, but those who have the right analytical tools and

instruments, also hold the key to acquiring insight”. While large amounts

of available data have, for the most part, been archived and stored, only

small parts have really been analyzed, used and understood and processed in

human-understandable ways [26]. In order to understand data and to gain in-

sight, the data has to be sorted, transformed, harmonized and processed both

statistically and analytically. The potential growth increase in data bases in

all areas makes the analysis of huge amounts of more complex information

more difficult and less clear. Using the procedures of classical statistics that

have been common up to now, it is becoming apparent that very limited

information and knowledge can be gleamed and insufficient progress made

from the huge and complex amounts of data. Only if future research suc-

ceeds in extracting information from this complex amount of data can this

be the basis for good operative and strategic decisions and projections. In

recent years, an enormous development in the area of complex data analysis

has been made with data mining. Data mining, often termed knowledge

19

Figure 2.6: Confluence of different multiple disciplines in the data mining process.

discovery (KDD) in databases, is defined as the ”non-trivial process of

identifying valid, new and potentially useful and understandable patterns in

data bases” [30] Data mining is a rather new field in computer science that

pursues the objective of extracting knowledge and analyzing complex data to

find existing associations, to extract structures, patterns and regularities in

large and complex data bases [28]. Currently, there are a number of com-

mon data mining techniques to analyze texts, web contents, images, pictures,

videos and spatial data. Compared to classical statistical techniques, all of

these data mining techniques exhibit very good results when it comes to

discovering and analyzing patterns and coherencies of the researched data.

Data mining involves the entire process from the provision of data right

up to the projection and application of model findings to new, unknown data

structures. This process includes:

• Techniques to preprocess data

• The actual data mining system

• Interpreting data

20

Figure 2.7: Data mining process with the data mining system (DM-S) in the Phases

(1) Training Phase, (2) Test Phase and (3) Validation Phase. The data mining process

works in a comparable way in all types of data mining types like text mining or web

mining . Credits to [30].

• Evaluating data

Necessary preprocessing steps for data mining include data selection, pre-

processing and transforming data into suitable data formats. The DM sys-

tem itself is at the core of the actual data mining process, which is made up

of three Phases: Training, Test and Validation as depicted in Figure 2.7.

Within this process the objective of data mining is to repeatedly attempt

to determine an estimated value (e.g., the buying behavior of a customer)

based on the researched data (e.g., market data), which is compared with

a predetermined reference value (target variable). This process is repeated

iteratively until the comparison of estimated and reference values results in

an acceptable value. This obtained model now forms the basis for Phase 3

of the interpretation and evaluation as well as for deriving knowledge based

on other, as yet unknown data.

Data mining includes the analysis of numeric and categorical data in large

21

and complex data sets. Often this term is used to generally describe more

specialized techniques, such as text, web or spatial data mining.

Text Mining: Text mining includes algorithms to analyze lexical and

grammatical aspects of texts. In text mining algorithms the actual text is

broken down into specific structures whereby patterns and core information

of the text are recorded and grouped and classified using data mining meth-

ods. The first text mining tools could record contents and structures of

simple text documents like Microsoft Word and Acrobat PDF documents.

New developments in text mining now scan and analyze unstructured text

in s, memos, surveys, chats, notes, white papers, forums and presentations

[28]. Web Mining: Web mining is understood to be the application of data

mining methods on information compiled on the Internet. In web mining,

a distinction is made between (1) web content mining, which is the analysis

of website contents; (2) web structure or relationship mining, i.e. the anal-

ysis of in-and outbound hyperlinks of websites and (3) web usage mining,

which records and analyses user interaction with websites by scanning log

files. Image-Mining: The goal of image mining techniques is to analyze

and extract spatial patterns in image data which are not explicitly stored

in the images [36]. Pattern extraction is done in a variety of ways based

on recognizing the existence and distribution of colors, texture, shape, dis-

tances and intensities in the image data. Spatial Data Mining (SDM):

Spatial data mining pursues the goal of discovering patterns in large, multi-

dimensional spatial data sets as created by remote sensing techniques in earth

observation. Extracting interesting patterns and associations from complex

and multi-dimensional spatial data bearing spatial dependencies and spatial-

temporal autocorrelations is more difficult than from traditional numeric and

categorical data [49]. If, in addition to spatial data, additional time series

are incorporated into the pattern analysis, the term spatial-temporal data

mining is used to describe this.

There are various methods in support of data mining, which can be

grouped according to the objective in question. Some of the most relevant

methods are: Association and sequence analysis: With the help of as-

sociation analysis, relationships between objects can be made and quanti-

fied. Using specific indicators, which, in most cases, include the support,

confidence and lift values, the strength of the identified associations can be

evaluated. Grouping and clustering: These are procedures which pool sim-

ilar objects into groups with the goal of having very similar objects within

22

one group and having the groups differ as much as possible from each an-

other. Numerous metrics are used for characterizing similarities in groups.

Regression: With the assistance of regression analysis, functional dependen-

cies are determined among the variables within a data set. Regression models

are used to estimate or predict variables. To represent dependencies there

are also linear and nonlinear (e.g., square, logistic or Poisson) regression ap-

proaches in addition to linear ones. Classification: The goal of classification

is to find functions and models with whose help data objects can be assigned

to previously identified classes. Deriving a model is based usually on a set

of objects for which the respective class allocation is known. With the help

of a model that has to be determined, objects are to be classified that have

no known classification. The models can be determined with the help of

neuronal networks, discriminant analyses or decision treesand random for-

est. NaÃ¯ve Bayes methods as well as support vector machines (SVM) can

also be used to classify data. There are a number of other procedures such as

time series analysis or visualization and evolutionary algorithms.

Linked Open Data (LOD) provide a way for exposing, sharing, and con-

necting data via dereferenceable URIs on the Web. There is an increasing

number of interesting open data sets available on the Web, such as DBPE-

DIA, GEONAMES, MusicBrainz, WORDNET, DBLP, etc. published under

various licenses. Dealing with knowledge bases in the Semantic Web poses

various challenges due to problems of uncertainty and sparsity in the data, as

well as issues with the scalability and rigidity of the processing mechanisms.

Hence the necessity of data-driven methods arises also in this context. So

far most of these tasks are tackled by borrowing and adapting text mining

techniques among others. Structured knowledge bases in the Semantic Web

need specific methods that are suitable for the specific data models employed

in this context [13]. Some of the biggest challenges while using Knowledge

discovery techniques are the following:

Sparse and Missing Data: Dealing with Semantic Web knowledge

bases faces various obstacles related to the very large scale and nature of

such data. As the worst case complexity of the algorithms for the basic rea-

soning tasks seems to indicate that they are unfeasible for application to large

scale knowledge bases, especially when expressed in rich standard represen-

tations. However, many reasoning engines demonstrate good scalability and

performance with a constant effort towards optimization (or approximation).

The most important problem when learning from LOD is data sparseness.

23

An abundance of missing data is due to the inherent open nature of the Se-

mantic Web which makes each attempt to circumscribe knowledge a failure.

Makinhe closed-world assumption (as in the context of databases) may (par-

tially) help coping with data sparseness but such an assumption would also

affect the intended semantics of the data. The same would happen adopt-

ing alternative forms of (auto-)epistemic inference. When querying the LOD

cloud, one is interested to statements (implicit triples) that may be derived

by some form of (deductive but also inductive) inference rather than those

that are already explicitly contained in the knowledge base. Hence, generally

some form of inferred closure is sought, i.e. the completion of the knowledge

base with (all the) statements that (definitively or likely) hold according to

the intended semantics. Complexity and Efficiency There is also an issue

with scalability of the underlying learning processes in terms of the complex-

ity of the datasets in terms of both size and representation given the graph

structure that can escalate quickly and render the methods quite complex

[13].

Semantic Web Mining constitutes a sub-field of Data Mining and Seman-

tic Web research that spans nearly over the last decade. Initially it has been

targeting the semantics hidden in the documents published on the Web with

techniques borrowed from text mining. With the advent of the Web of data,

new efforts have focused on mining ontologies in the Semantic Web. Adap-

tations of statistical relational learning methods to graphs or other standard

representations backing the ontologies in the Semantic Web have provided

new techniques for mining structured knowledge bases. In [13] the authors

expand more in detail the more mature techniques in this area. There is also

another subfield that works not directly with the ontology’s rather than with

the graph itself, it is the field of Link Mining that will be discussed in the

next section.

2.3 Link Mining

When working with RDF graphs, in order to extract the knowledge implicit

in it, we need to exploit its attributes and relations. Link Mining help us

to achieve this and as such is the next logical step in understanding how to

find the underlying patterns in the RDF graph and how this will help us to

infer knowledge not available at plain sight.

”Links,” or more generically relationships, among data instances are ubiq-

24

uitous. These links often exhibit patterns that can indicate properties of the

data instances such as the importance, rank, or category of the ob-

ject. In some cases, not all links will be observed; therefore, we may be

interested in predicting the existence of links between instances. In other

domains, where the links are evolving over time, our goal may be to pre-

dict whether a link will exist in the future, given the previously observed

links. By taking links into account, more complex patterns arise as well.

This leads to other challenges focused on discovering substructures, such as

communities, groups, or common subgraphs. Traditional data mining

algorithms such as association rule mining, market basket analysis, and clus-

ter analysis commonly attempt to find patterns in a dataset characterized by

a collection of independent instances of a single relation. This is consistent

with the classical statistical inference problem of trying to identify a model

given a independent, identically distributed (IID) sample. One can think of

this process as learning a model for the node attributes of a homogeneous

graph while ignoring the links between the nodes. A key emerging challenge

for data mining is tackling the problem of mining richly structured, heteroge-

neous datasets [16]. These kinds of datasets are best described as networks or

graphs. The domains often consist of a variety of object types; the objects

can be linked in a variety of ways. Thus, the graph may have different node

and edge (or hyperedge) types. Naively applying traditional statistical infer-

ence procedures, which assume that instances are independent, can lead to

inappropriate conclusions about the data. Care must be taken that potential

correlations due to links are handled appropriately. In fact, object linkage is

knowledge that should be exploited. This information can be used to improve

the predictive accuracy of the learned models: attributes of linked objects

are often correlated, and links are more likely to exist between objects that

have some commonality. In addition, the graph structure itself may be an

important element to include in the model. Structural properties such as

degree and connectivity can be important indicators. Link mining is a recent

research area that is at the intersection of the work in link analysis, hypertext

and web mining, relational learning and inductive logic programming, and

graph mining. [16] compile eight link mining tasks that can be broadly cat-

egorized as tasks that focus on objects, links, or graphs, these can be found

in the following list 2.3.

1. Object-Related Tasks

25

(a) Link-Based Object Ranking

(b) Link-Based Object Classification

(c) Object Clustering (Group Detection)

(d) Object Identification (Entity Resolution)

2. Link-Related Tasks

(a) Link Prediction

3. Graph-Related Tasks

(a) Sub-graph Discovery

(b) Graph Classification

(c) Generative Models for Graphs

While data representation and feature selection are significant issues for

traditional machine learning algorithms, data representation for linked data

is even more complex.[15] In the following sections, we will assume that a

data representation has been selected, that the designation of the objects

or nodes in the graph has been made, and that the links or edges in the

graph have been defined. However, when applying link mining to real world

domains, one should not underestimate the effort required in choosing an

appropriate representation.

Object-Related Tasks

Link-Based Object Ranking — Perhaps the most well known link mining

task is that of link-based object ranking (LBR), which is a primary focus

of the link analysis community. The objective of LBR is to exploit the link

structure of a graph to order or prioritize the set of objects within the graph.

Much of this research focuses on graphs with a single object type and a sin-

gle link type. In the context of web information retrieval, the PageRank and

HITS algorithms are the most notable approaches to LBR. Link-Based Object

Classification — Traditional machine learning has focused on the classifica-

tion of data consisting of identically structured objects that are typically

assumed to be IID. Many real-world datasets, however, lack this homogene-

ity of structure. The discerning feature of LBC that makes it different from

traditional classification is that in many cases, the labels of related objects

tend to be correlated. The challenge is to design algorithms for collective

26

classification that exploit such correlations and jointly infer the categorical

values associated with the objects in the graph. Group Detection — A third

object-centric task is group detection. The goal of group detection is to clus-

ter the nodes in the graph into groups that share common characteristics. A

range of techniques have been presented in various communities to address

this general problem. In recent years, a central challenge has been to de-

velop scalable methods that can exploit increasingly complex graphs to aid

the knowledge discovery process. Object Identification — The final object-

centric task is entity resolution, which involves identifying the set of objects

in a domain. The goal of entity resolution is to determine which references in

the data refer to the same real-world entity. Examples of this problem arise

in databases (deduplication, data integration), natural language processing

(co-reference resolution, object consolidation), personal information manage-

ment, and other fields. The problem has been defined with many variations;

in the most general form, neither the domain entities nor the number of such

entities is assumed to be known.

Link-Related Tasks

Link Prediction — We next turn to edge-related tasks. Link prediction is

the problem of predicting the existence of a link between two entities, based

on attributes of the objects and other observed links. Examples include pre-

dicting links among actors in social networks, such as predicting friendships.

Graph-Related Tasks

Sub-graph Discovery — An area of data mining that is related to link

mining is the work on subgraph discovery. This work attempts to find in-

teresting or commonly occurring subgraphs in a set of graphs. Discovery

of these patterns may be the sole purpose of the systems, or the discov-

ered patterns may be used for graph classification. Graph Classification —

Unlike link-based object classification, which attempts to label nodes in a

graph, graph classification is a supervised learning problem in which the

goal is to categorize an entire graph as a positive or negative instance of a

concept. This is one of the earliest tasks addressed within the context of ap-

plying machine learning and data mining techniques to graph data. Graph

classification does not typically require collective inference, as is needed for

classifying objects and edges, because the graphs are generally assumed to

be independently generated. Three main approaches to graph classification

have been explored. These are based on feature mining on graphs, inductive

logic programming (ILP), and defining graph kernels. Generative Models for

27

Graphs — Generative models for a range of graph and dependency types

have been studied extensively in the social network analysis community. For

directed graphs with a single object and link type, there are several major

classes of random graph distributions discussed in the literature: Bernoulli

graph distributions, conditional uniform graph distributions, dyadic depen-

dence distributions, and p* models.

To try to overcome the problems that arise using conventional approaches,

[10] combines a logical approach together with a probabilistic one. At a min-

imum, a formal language for link mining must be (a) relational and (b)

probabilistic. Link mining problems are clearly relational, since each link

among objects can be viewed as a relation. First-order logic is a power-

ful and flexible way to represent relational knowledge. Important concepts

such as transitivity (e.g., ”My friend’s friend is also my friend”), homophily

(e.g., ”Friends have similar smoking habits”), and symmetry (e.g., ”Friend-

ship is mutual”) can be expressed as short formulas in first-order logic. It

is also possible to represent much more complex, domain-specific rules, such

as ”Each graduate student coauthors at least one publication with his or

her advisor.” Most link mining problems have a great deal of uncertainty as

well. Link data is typically very noisy and incomplete. Even with a perfect

model, few questions can be answered with certainty due to limited evidence

and inherently stochastic domains. The standard language for modeling un-

certainty is probability. In particular, probabilistic graphical models have

proven an effective tool in solving a wide variety of problems in data mining

and machine learning. Since link mining problems are both relational and

uncertain, they require methods that combine logic and probability. Neither

one alone suffices: firstorder logic is too brittle, and does not handle uncer-

tainty; standard graphical models assume data points are i.i.d. (independent

and identically distributed), and do not handle the relational dependencies

and variable-size networks present in link mining problems. Markov logic

is a simple yet powerful generalization of probabilistic graphical models and

first-order logic, making it ideally suited for link mining [10]. A Markov logic

network is a set of weighted first-order formulas, viewed as templates for con-

structing Markov networks, therefore the authors propose to approach Link

Mining problems using this type of model to learn and infer from the graph,

finally in their work they exemplify the power of this technique, showing how

can it be applied to classification problems.

In many current studies and applications, linked data are used to describe

28

systems consisting of interacted objects. Given that each node represents an

object, in linked data, node attributes contain features, preferences, and

actions, and links describe interactions between nodes. For instance, in a

social network like Facebook, each user is viewed as a node. Node attributes

may include gender, habits and number of friends (i.e. degree), and links can

represent if two users are friends, if one comments on another’s posts and

other types of interactions. The great expressive power of linked data enables

this data format to capture both characteristics and interactions of objects

in various systems, such as linked gene mutation databases and ecommerce

websites. Knowledge discovery on linked data is the process of leveraging

both node attributes and link structures for the learning on the corresponding

systems, and it is of great importance to understanding the characteristics

and interaction patterns in these systems. One of the major challenges in

mining linked data is how to effectively and efficiently utilize information

from both node attributes and link structures. For this challenge, many

existing models seek to represent link structures using selected statistics on

networks, then combine selected statistics with node attributes. For example,

in [23], [22], the authors characterized link structure using recursive egonet-

based statistics, and further used the statistics to learn object roles. In

[33], researchers detected spammers using degrees of friends. The primary

limitation of these approaches is that the topological statistics in each task

is usually subjectively selected. Therefore, such methods may miss critical

patterns in linked data. Moreover, when the aimed tasks are complex, it could

be very difficult to select or create relevant topological statistics. To avoid the

limitation of the above methods, other approaches aim to extract a shared

representation for both node attributes and link structures. For example,

in [34], links are viewed as interactions between latent features of connected

nodes. In [54], latent features are extracted with respect to the criterion that

objects from different clusters are dissimilar while objects in the same clusters

are similar. These methods usually rely on linear mappings to capture the

relations among node attributes, network structures and the aimed latent

feature representations of nodes. As a result, such approaches suffer from the

simplicity of linear mappings and fail to capture non-linear characteristics of

nodes and links. In order to address these issues, [31] propose a novel model

named LRBM, which stands for Restricted Boltzmann Machines for Latent

Feature Learning in Linked Data. Different from the aforementioned methods

using graph statistics, the proposed model does not rely on any subjectively

29

selected topological statistics, and is capable of characterizing both node

attributes and link structures in a unified framework. At the heart of this

model is a shared latent feature representation of each node, which is used

to formulate nonlinear relations among nodes, links and hidden units. To

avoid large amount of sampling, Contrastive Divergence (CD) [24] is applied

to train the model and other techniques such as fine-tune and parameter

sharing are also used to simplify the calculation.

2.4 Graph Summarization

Graphs provide a powerful primitive for modeling real-world objects and the

relationships between objects. Various modern applications have generated

large amount of graph data. Some of these application domains are [55]:

• Social networks such as Facebook (www.facebook.com), Twitter (www.twitter.com),

and LinkedIn (www.linkedin.com), these attract millions of users (nodes)

connected by their friendships (edges). Mining these social networks

can provide valuable information on social relationships and user com-

munities with common interests. Besides mining the friendship net-

work, one can also mine the ”implicit” interaction network formed by

dynamic interactions (such as sending a message to a friend).

• Market basket data, such as those produced from Amazon (www.amazon.com)

and Netflix (www.netflix.com), contain information about millions of

products purchased by millions of customers, which forms a bipartite

graph with edges connecting customers to products. Exploiting the

graph structure of the market basket data can improve customer seg-

mentation and targeted advertising.

• Coauthorship networks and citation networks constructed from

DBLP (www.informatik.uni−trier.de) and CiteSeer (citeseer.ist.psu.edu)

can help understand publication patterns of researchers.

• The World Wide Web can be naturally represented as a graph with

nodes representing web pages and directed edges representing the hy-

perlinks. According to the estimate at www.worldwidewebsize.com,

by May 15, 2009, the World Wide Web contains at least 30.05 billion

30

webpages. The graph structure of the World Wide Web has been exten-

sively exploited to improve search quality, discover web communities,

and detect link spam.

With the size of this networks, is difficult to grasp some of the underlying

implicit and explicit structures. There is an overwhelming wealth of informa-

tion encoded in these graphs, there is a critical need for tools to summarize

large graph data sets into concise forms that can be easily understood. Graph

summarization has attracted a lot of interest from a variety of research com-

munities, including sociology, physics, and computer science. It is a very

broad research area that covers many topics. Different ways of summarizing

and understanding graphs have been invented across these different research

communities. These different summarization approaches extract graph char-

acteristics from different perspectives and are often complementary to each

other. [58] summarize the graph, from the ontological point of view, doing it

based on the implicit ontology and information in the RDFS tags. Sociolo-

gists and physicists mostly apply statistical methods to study graph charac-

teristics. The summaries of graphs are statistical measures, such as degree

distributions for investigating the scale-free property of graphs, hop-plots for

studying the small world effect, and clustering coefficients for measuring the

clumpiness of large graphs. In the database research community, methods

for mining frequent subgraph patterns are used to understand the character-

istics of large graphs. The summaries produced by these methods are sets of

frequently occurring subgraphs (in the original graphs). Various graph clus-

tering (or partitioning) algorithms are used to detect community structures

(dense subgraphs) in large graphs. For these methods, the summaries that

are produced are partitions of the original graphs. Graph compression and

graph visualization are also related to the graph summarization problem,

the latter will be discussed in section 2.5 of this chapter. However the tech-

niques discussed in this chapter, focuses on a graph summarization method

that produces small and informative summaries, which themselves are also

graphs. We call them summary graphs. These summary graphs are much

more compact in size and provide valuable insight into the characteristics of

the original graphs. For example, in Figure 2.8, a graph with 7445 nodes

and 19,971 edges is shown on the left. Understanding this fairly small graph

by mere visual inspection of the raw graph structure is very challenging.

An example summary graph for the original graph is shown on the right

of Figure 2.8. In the summary graph, each node represents a set of nodes

31

Figure 2.8: A summary graph (right) is generated for the original graph (left)

from the original graph, and each edge of the summary graph represents the

connections between two corresponding sets of nodes.

The related problem of graph compression has been extensively studied,

[55] presents two main methods for the compression problem S-Node Rep-

resentation of the Web Graph The compression technique in employs a

top-down approach to compute the S-Node representation, Figure 2.9. This

algorithm starts from a set of supernodes that are generated based on the

URL domain names, then iteratively splits an existing supernode by exploit-

ing the URL patterns of the nodes inside this supernode and their links to

other supernodes. However, different from the graph summarization method

introduced in this chapter, this approach is specific to the web graph, thus

are not directly applicable to other problem domains. MDL Representa-

tion of Graphs Essentially, this proposed representation is equivalent to

the S-Node representation described above. The intranode graphs, positive

superedge graphs, and negative superedge graphs in the S-Node represen-

tation, collectively, can produce the edge corrections needed to reconstruct

the original graph from the summary graph. Based on Rissanen’s minimum

description length (MDL) principle, the authors formulated the graph com-

pression problem into an optimization problem, which minimizes the sum of

the size of the summary graph (the theory) and the size of the edge correction

set (encoding of the original graph based on the theory). The representation

with the minimum cost is called the MDL representation, Figure 2.10. Two

32

Figure 2.9: An example of S-Node representation (from [55])

heuristic-based algorithms are proposed in to compute the MDL representa-

tion of a graph. Both algorithms apply a bottom-up scheme: starting from

the original graph and iteratively merging node pairs into supernodes until

no further cost reduction can be achieved. The two algorithms differ in the

policy of choosing which pair of nodes should merge in each iteration.

An RDF resource may have: no types, one or several types (which may

or may not be related to each other). RDF Schema (RDFS) information

may optionally be attached to an RDF graph, to enhance the description

of its resources. Such statements also entail that in an RDF graph, some

data is implicit. According to the W3C RDF and SPARQL specification,

the semantics of an RDF graph comprises both its explicit and implicit data;

in particular, SPARQL query answers must be computed reflecting both the

explicit and implicit data. These features make RDF graphs complex, both

structurally and conceptually. It is intrinsically hard to get familiar with a

new RDF dataset, especially if an RDF schema is sparse or not available

at all. Graph summarizations deals with: given an input RDF graph G,

find an RDF graph SG which summarizes G as accurately as possible, while

being possibly orders of magnitude smaller than the original graph. Such a

summary can be used in a variety of contexts: to help an RDF applica-

tion designer get acquainted with a new dataset, as a first-level user

interface, or as a support for query optimization as typically used in

semi-structured graph data management, [58] approach is query-oriented so

they work in a summary that enables static analysis and help formulating

and optimizing queries; for instance, querying a summary of a graph should

33

Figure 2.10: An example of MDL-based summary: G is the original graph, S is the

summary graph, and C is the set of edge corrections (from [55])

reflect whether the query has some answers against this graph, or finding

a simpler way to formulate the query etc; at the time of the article, it was

the first semi-structured data summarization approach focused on partially

explicit, partially implicit RDF graphs.

In [55] the authors present a very unique approach to an interactive

querying scheme by allowing users to customize the summaries based on

user-selected node attributes and relationships. Furthermore, this method

empowers users to control the resolutions of the resulting summaries, in con-

junction with an intuitive ”drill-down” or ”roll-up” paradigm to navigate

through summaries with different resolution. This last aspect of drill-down

or roll-up capability is inspired by the OLAP-style aggregation methods in

the traditional database systems. Note that the method introduced in this

chapter is applicable for both directed and undirected graphs, a modified ver-

sion of the algorithm, will be the one used in this work and in later chapters

the information regarding it, will be expanded.

2.5 Graph Visualization

As stated in previous sections, specially in Section 2.4, the amount of infor-

mation contained in a graph can escalate very quickly and after a certain

point it will be very difficult for the human eye to understand this amount

of information [58] just by simply analyzing triples as tables without any

other representations, this can prove difficult even when there is an ontology

representing the data structure of the LD [58].

34

Despite the wealth of information contained in the Web of Linked Data,

ordinary Web users, not familiar with Semantic Web technologies and the

specific application domains, are difficult to directly consume this informa-

tion resource [20]. Linked Data visualization can alleviate this problem [9],

visualization can be a reasonable way to visually present the internal struc-

ture in the data and the relationship between the data; friendly visualization

interfaces allow the users to identify any unreasonable, incorrect or duplicate

data and links in the Linked Data [17], thus helping the users intuitively and

efficiently analyze data. The authors in [9] summarized the general design

guidelines and various user requirements for consuming Linked Data, and

then introduced a set of usability criteria. Visualization tools that follow

these usability criteria can help both tech-users and lay-users exploit Linked

Data. After analyzing the existing Lined Data visualization methods and

tools, they concluded that most existing methods/tools have been designed

for tech-users and cannot provide an overview of the data, that is, they

only meet certain aspects of the requirements and design guidelines. The

work done in [11] introduced a prototype tool, Field, for using and visually

analyzing large-scale Linked Open Data (LOD). The tool provides several

visualization ways, but the user needs to manually specify complex instruc-

tions, hence it is difficult for lay-users to operate. Sgvizler [50] is a tool for

rendering SPARQL query results in HTML pages, but users have to under-

stand the source codes of the Web pages and the query statements; the tool’s

configuration process is somewhat complicated.

Linked Data Visualization Model (LDVM)

LDVM can be used to quickly make representations of RDF data visually [5].

It permits users to connect to and extract data from different datasets with

different visualization techniques. The conceptual framework of the model

is based on Data State Reference Model (DSRM) model offered by [8] as a

result of adopting its stages’ operations, names and transformations so as to

fit the LD environment. The LDVM model may well be seen as a pipeline

and it consists of four stages to process data, and three transformation opera-

tions in between these stages as depicted in Figure 2.11. The stages are RDF

data: the raw data, Analytical extraction: to extract data from a previous

stage, Visual abstraction: the visualizable data and View: present the data

in different views. While the operations in between these stages are: Data

35

Figure 2.11: The LDVM model (from [38])

transformation, Visualization transformation, and Visual mapping transfor-

mation. So, the model can be sectioned into two core sections: data space

and visual space. To proof the LDVM concept, a prototype and a useful RDF

data browser is built based on the LDVM model called LODVisualization.

It gives multiple visualizations while browsing RDF datasets. Any endpoint

supporting JSON and SPARQL 1.1 is compatible with this prototype. Sev-

eral visualizations, such as charts, tables, treemaps, can be shown. The server

side of LODVisualization is written in Python, whereas the client-side built

using HTML, CSS, and JavaScript mostly using D3.js library17 and InfoVis

Toolkit18 . Google App Engine (GAE)

LODWheel is a LOD visualization tool, using two JavaScript libraries.

But this tool does not support formal SPARQL query and detailed, deep

data analysis, and it has a poor scalability. Currently, most LOD datasets

provide their SPARQL endpoint query services, through which users can re-

quest useful RDF data. Therefore, using these query services in visualization

tools is a key to consuming Linked Data [9]. Brunetti et al in [5] proposed

a universal Linked Data Visualization Model (LDVM), which supports dif-

ferent dataset connections and visualization ways and is based on a visual-

ization workflow, including analytical extraction and visual abstraction, to

36

Figure 2.12: The LODViewer architecture (from [38])

achieve flexibility and automation. Ni et al in [38] based on the LDVM

presented in [9] design Linked Data visualization algorithms, and develop a

lightweight, easy-to-use prototype tool, LODViewer, using the platform in-

dependent JavaScript language. LODViewer can visualize different sources

of RDF data including SPARQL endpoints for Linked Open Data (LOD)

sources, and display the data in different graphic illustrations, in their work

they verified the effectiveness and realizability of the proposed method. The

time complexity analysis and experimental test show that the run-time of

the proposed algorithms approximately exhibits a linear growth rate as the

visualized RDF triples size increases. The general architecture used by their

prototype system can be found in figure 2.12.

There are pieces of research that work on the issue about RDF visualiza-

tion. They aimed to operate a complex network in any visualization canvas

to be friendly for general users. We first reviewed some network visualization

tools. Motif Simplification [12] considered some topologies of subgraphs, and

replaced them with basic shapes such as diamonds, crescent, and tapered

diamonds. It intended to give a big picture of a network rather than the

detail of node-link. Gephi Open Viz Platform [32] is a powerful visualization

tool that generated a well-shaped layout of network, allowed users to filter

nodes and links, and had an option to set colors according to user preference.

Both tools are suitable for general networks, but they are not designed for

dealing with RDF data. One important issue of RDF data is a large number

of inferred links creating a hairball-like graph, so the tools should consider

this behavior in order to simplify a graph. RDF Gravity [14] provided an

interactive view. Users could zoom a graph to view much more detail, and

get details of nodes in the focus area using text overlay. Next, Fenfire [4] gave

37

an alternative view of RDF. It displayed the full details of the focused node

and its immediate neighbors, but the other links were faded away according

to the distance from the focus node. Both RDF Gravity and Fenfire offered

well-organized displays, but they do not point out the issue of redundant

data from inferred triples. Moreover, IsaViz [43] is an interactive RDF graph

browser that used graph style sheets to draw a graph. It provided meaning-

ful icons describing the type of each node such as foaf:Person, and grouped

its metadata into a table in order to reduce highly interlinked data. It also

allowed users to filter some nodes or properties to sparsify a dense graph, but

this task required human effort to select some preferred URIs one by one.

Karwan et al [25], presents some of the most important current tools

for data visualization, most of them are based on the LVDM principle and

they are exploratory tools in order for the user to understand better the LD

space. Here we will describe some of the most relevant ones for our research,

a full comparison can be found in their work and in Figure 2.13, there is

a table with a comparison between the tools, using a common set of pa-

rameters. LodLive is an LDB which uses standards of the LD to navigate

RDF resources with the aim of spreading the fundamentals of LD in dynamic

visual graphs through a user friendly interface [6]. Within the application,

resources located in different endpoints can be linked so as to discover unex-

pected connections. Also, inverse relations can be navigated even for different

endpoints. CubeViz is a faceted navigation browser and an extension of On-

toWiki10 tool to visualize statistical data represented in RDF [47]. Usually,

statistical data sets known as data cubes or basically cubes are distributed

as spreadsheets or bidimensional matrices. LODmilla is a generic LDB to

discover and edit LOD with the ability to combine the features of textual and

graph based LOD browsers [35]. The web application provides viewing and

searching LOD graphs as well as other browsing services. Smart View, or

SView, is a system that allows users to navigate entity descriptions for LD

perceptively . It uses Lenses, a group of organized features, to cluster and

organizes entity descriptions so as to support users find related information

easily.

Takeda et al in [7], introduces an approach to sparsify a graph using

the combination of three main functions: graph simplification, triple rank-

ing, and property selection. These functions are mostly initiated based on

the interpretation of RDF data as knowledge units together with statistical

analysis in order to deliver an easily-readable graph to users. By implement-

38

Figure 2.13: The Linked Data Browser comparison table (from [25])

ing a prototype they show the feasibility and how this kind of visualizations

helps users to understand better the data contained in the graph. The gen-

eral functional diagram of the LDB presented by the authors can be found

in Figure 2.14.

To conclude, there are many tools in the current landscape of the LOD

visualization, some of them apply the LDVM presented in [5] like the one

presented in [38] but in general there is still no common workground on how

the data should be extracted and presented to the the user in order to aid the

process to understand the LD graph. Some authors are using mode advance

transformation tools to increase the amount of useful information presented

to the user like the ones that worked in [7].

39

Figure 2.14: Functional diagram of the LOD viewer from [7]

40

Chapter 3

GSummarizer: Process model

and algorithms

In this chapter, we will present the GSummarizer application logical model

and the main algorithms that were used, the implementation details of the

platform will be discussed in chapter 4. The model used for this application

is based on the LDVM as seen in Figure 3.1. This starts by presenting the

graph model used in the application, the second section gives an overview

on how the LDVM is organized and the keypoints related to how was im-

plemented in this work, then the explanation follows from top to bottom

the model, starting by the Extraction algorithms used to obtained the data

needed, in this case it is RDF data, then the Data Transformation, it is were

the RDF data will be cleaned and transformed into a suitable representation

for the next step, fifth, the Data Visualization Transformation algorithms,

were the logical model will be transformed into a suitable model to be visual-

ized by the user, in this section the main algorithms for Graph Summarization

will be presented and how they were adapted in order to work better with

the LOD and finally a brief overview how the View algorithms use the visu-

alization model to present the information to the final user. Only the most

important algorithms for this work will be presented in this Section with high

technical detail.

Figure 3.1: General Linked Data Visualization Model

3.1 The Graph model in the GSummarizer

The software solutions presented in this work, GSummarizer, is used to study

the SNAP family of graph summarization algorithms in Linked Open Data,

these were introduced in section 2.4 of chapter 2 and these particular family

will be analyzed and presented in section 3.4 of this chapter. The algorithms

from the SNAP family work with a simple kind of graph model given the

input requirements of the algorithm (see Section 3.4), the graph model must

have:

• Set of n nodes

• Each node can have 0 or n attributes.

• Each node can have 0 or n relations.

In general in a Linked Data graph, objects are represented by nodes, and

relationships between objects are modeled as edges. In this work we follow

this genera graph model guidelines, were the graph have objects (nodes) with

associated attributes and different types of relationships (edges).

Definition 3.1.1 General Graph

42

Figure 3.2: Graph model example

We denote a graph G as (V,Υ,Λ) where V is the set of nodes, and Υ =

{E1, E2, ..., Er} is the set of edge types, with each Ei ⊆ V × V representing

the set of edges of a particular type. Nodes in a graph have a set of associated

attributes, which is denoted as Λ = {a1, a2, ..., at}. Each node has a value for

each attribute denoted as v(ai) where v ∈ V and aiinΛ. These attributes are

used to describe the features of the objects that the nodes represent.

For example, in Figure 3.2, a node representing a student may have at-

tributes that represent the student’s gender and department. Different types

of edges in a graph correspond to different types of relationships between

nodes, such as friends and classmates relationships. Note that two nodes can

be connected by different types of edges. For example, two students can be

classmates and friends at the same time.

The model presented in Definition 3.1.1 is not specific enough regarding

the structures that will hold the information of the node attributes and edges

between nodes. In order to improve the model for this purpose we will

introduce a more specific graph model. The following model was chosen in

part, to accommodate to the needs of the SNAP algorithms, this will be

further explain in Section 3.4.

Definition 3.1.2 Attribute Matrix

Given a graph G = (V,Υ,Λ) and the set of all possible attributes among

all the nodes v ∈ V , we define the Attribute Matrix MΛ associated to G as

43

{λi,j}||V |i=0|
|Λ|
j=0 where λi,j = aj(i), the value of the attribute j for the node i.

Therefore, the cardinality of the Attribute Matrix (AM) is |V | × |Λ|.

Definition 3.1.3 Relationship Matrix

Given a graph G = (V,Υ,Λ), the number of all the possible types of edges

or relationship being |Υ| and k ∈ |Υ|, we define the Relationship Matrix

MΥ associated to G as {υi,j}||V |i=0|
|V |
j=0 where υi,j = Ek(i, j), the Boolean value

{0, 1} that determines if exist (1) or not (0) an edge or relation of type

k between the nodes i and j. Therefore, the cardinality of the Relationship

Matrix (RM) is |V | × |V |.

Definition 3.1.4 Relationship Cube

Given a graph G = (V,Υ,Λ), the number of all the possible types of edges

or relationship being |Υ|, we define the Relationship Cube CΥ associated to

G as {υki,j}|
|Υ|
k=0|

|V |
i=0|

|V |
j=0 where υki,j = Ek(i, j). Therefore, the cardinality of the

Relationship Cube (RC) is |Υ| × |V | × |V |.

Definition 3.1.5 GSummarizer Graph

Given a graph G = (V,Υ,Λ), the associated Attribute Matrix and the as-

sociated Relationship Cube, we define the GSummarized Graph Model (GG)

Ggs as (V,CΥ,MΛ,Υ,Λ).

In the GG model we define the structures that will hold the information

of our graph, the definition above were based on the Associated Matrix of a

graph and the theory found in [55] in order to better adapt the graph model

to the algorithms that will use it in the next stage of the LDVM pipeline.

From this moment on, we will refer as a Graph to any structure that complies

with the GG definition.

3.2 The LDVM model in the GSummarizer

The logical model in the context of this work refers to the high level design

of the process of the application, mainly, describing the stages or modules of

the whole process, the flow of information and the responsibilities of each of

the modules. Throughout this chapter it is assumed that the end-user of the

system have had produced and input as a request that will be handled by an

external module to the LDVM pipeline and therefore we only focus on the

events after the user action.

44

Figure 3.3: GSummarization current LVDM model

45

Even thought this work use the SNAP algorithms to analyze the be-

haviour of summarization in LOD, the GSummarizer support the extension

of the transformation schemes and the type of data by making possible to use

other extraction and transformation operators that could use a different type

of graph model and summarization algorithms. This section will present a

general overview of the algorithms used in each of the transformation oper-

ations, the stages of the model where described in the chapter 2 and will be

followed as per the original design of the LDVM model.

1. Data Transformation: This transformation stage is composed of the

RDF data extraction process and the Graph building process.

2. Visualization Transformation: In this stage the transformation al-

gorithms must expect the output type of data from the previous stage

in this case, is the graph model presented in Definition ??. This stage

is composed of the preprocessing algorithms used and adapted from the

SNAP algorithms. The main transformation processes are focused on

the Summarization of the graph: SNAP/kSNAP adapted to be Multi-

attribute and Multi-relation, and adapted to the LOD problems. The

final step of the transformation focus on the post-processing: first the

HUB algorithm will further refine the grouping of the summarization

clusters and finally the compression algorithm will clean the useless

clusters.

3. Visual Mapping Transformation: This final transformation stage

focus on mapping the output of the previous one into a suitable vi-

sualization scheme for the end user. This stage is highly technology

dependent in this case, the processes and the technical details are out

of the scope of this section, it will be briefly introduced at the end of

this chapter and will be fully explained in chapter 4.

In this section we will present the overview of the process used to extract

the raw data from the LOD endpoint. In the second part of the section, we

will present the builder algorithm that builds the graph that will be used

as the starting point of the transformation process that will be presented in

Section 3.4. The modules involved in this process can be found in Figure 3.3

46

Figure 3.4: Data Transformation section of the GSummarization LVDM model

3.3 Data Transformation

In figure 3.4 the processes and stages related to the Data Transformation are

depicted.

3.3.1 RDF Query Process

The GSummarization pipeline, in its current implementation, expects an

Extraction Operator that will return a set of RDF triplets. In order to

obtain these RDF triplets is necessary to query the data from an RDF DB

endpoint, in this case , the extraction process is expecting a LOD endpoint

as the purpose of this work is analyze the behaviour of LM algorithms in this

type of data, for example dbpedia.org. The Extraction Operator must receive

a request and will give a response accordingly.

The extraction request

LOD data as seen on section 2.1 is structured according to an Ontology. The

RDF query will be based on the parameters that composed the Ontology, in

this case: Classes, Attributes and Relations. An example of an Ontology

structure is represented in the leftmost part of the figure 3.5, in this case a

Person has attributes height, weight and relation type friend.

The RDF extraction method must receive a set of parameters P =

{P1, P2, ..., Pn} and a number l that refers to the number of instances per

class that must be retrieved, in order query correctly the LOD end-point and

ultimately build the graph correctly.

Definition 3.3.1 LOD class

We denote a LOD class C as (Λ,Γ), where Λi = {a1, a2, ..., am} is the set

of attributes types that belong to the class C and Γi = {r1, r2, ..., rk} is the

set of relationship types that belong to C.

47

Figure 3.5: RDF Extraction logic

Definition 3.3.2 RDF Request Parameters

Be C = {C1, C2, ..., Ci, ..., Cr} the set of RDF classes in a LOD endpoint

EPLOD. We denote a request parameter Pi as (Ci, λi, γi) where Ci = (Λi,Γi),

λi ⊆ Λi and γi ⊆ Γi.

The target classes

When you query the general LOD graph defined by the parameters P , you

obtained will obtained a subgraph G with the nodes only contained in the

subset of classes chosen classes C attributed Λ and Relation types Γ as de-

picted in Figure 3.6.

In order being able to extract more information using the same parameters

we would need to expand the queried nodes, one strategy to do that is to

make a one hop jump to related classes, in this case the related classes

can be chosen based on the relationships Γi, this type of immediate related

classes will be defined as one-hop relationships as shown in Figure 3.7. If we

wanted to expand even more the class space we will need to make another

jump but we don’t have more information to do this due to the parameter

information limit. Some of the options to overcome this are:

• Let the user to query two-hop relationships and further n-hop ones.

• Use some predictive algorithm in order to choose automatically which

relations will be interesting for the user to explore based on the selection

of relations.

48

Figure 3.6: Queried subgraph

• Use some predictive algorithm in order to choose automatically which

relations will be interesting for the user to explore based on the user

profile, in this case it requires to get the profiling data before the query

is made.

This options are out of the scope of this work and will be discussed in

Section 6.1, left as future work. Therefore we define the expanded set of

one-hop distance classes as the target classes to query nodes from. One of

the issues with this approach is that the attributes and further relations of

the expanded nodes will not be available at the time of the summarization,

but this classes will be used in order to enhance the clustering at the time of

the summarization process, this will be further explained in section 3.4.

The queries

The query process is performed by the RDF Query Operator module, the

details are very technology dependent and will be expanded in Chapter 4;

the specifics can be found in the reference implementation and will not be

mentioned here given that they are out of the scope of this document. The

general query set of operations are divided into two parts: the ones for the

Class selection and the ones for the Graph building, the purpose of the

first ones will be named briefly because the latter are the ones that are of

most interest for this chapter:

The Class selection ones perform the following operations:

49

Figure 3.7: Queried subgraph with one-hop classes included

• Get all the available classes from the selected LOD graph

• Get all the available attributes and relations from the selected set of

classes

The Graph building ones perform the following operations:

• Instance from main classes — Given a class, get n instances from

that class. In the figure 3.6 the nodes represent the instances of the

main classes, each one with the attributes and relationships.

• Instance from related classes — Given a set of main class instances

and a set of relationships of that instance, get the connected nodes that

are related to the main class instances through the set of relations. In

the figure 3.7 the outer nodes will be the instances of the related classes,

this nodes don’t have relationships except for the ones connected with

the main classes instances.

• Attribute values for main class instances — Given the set of a

main class instances and a set of the main class attributes, get the

values of the set of attributes for the main class for the set of instances.

50

In figure 3.6 we can see the value of the attributes for some of the

classes, in this case, only the main classes, given that we don’t have

that information for the related classes (one-hop).

The specifics of some of the queries can be found in Section A.1.1. This

queries will be contained in a module that will be described in Section ??.

3.3.2 Graph Building

After understanding how to ask for the data needed for the graph summa-

rization and graph visualization process, we will describe in this section, how

the graph is build in accordance to the model presented in 3.1.5. In this

section we will present in more detail the most relevant algorihtms for the

GSummarization main process presented in this paper, the others can be

found in the open repository of the project described in Section ??

Algorithm 1: BuildGraph(P, l, ε)

Input: P the set of parameters, l the number of instances to retrieve

and ε the LOD endpoint.

Output: GSummarizer graph G = (V,Υ,Λ).

begin
V ←− ∅
for p ∈ P do

CreateNode(V, p, l, ε)

end

CΥ ←− ∅
MΛ ←− ∅
for p ∈ P do

UpdateRelationshipCube(CΥ, V, p, l, ε)

UpdateAttributeMatrix(MΛ, V, p, l, ε)

end

G←− Graph(V,CΥ,MΛ)

end

The BuildGraph algorithm first use the information contained in the

set of parameters P to create the nodes CreateNode. For each parameter

received a set of nodes is created. Not all the information regarding the

parameters will be stored in each of the nodes, that is why the relationship

and attributes have their own data structure, in this case the relationship

51

cube and the attribute matrix, in order to generate those there is a second

pass throughtout the set of parameters updating the structures in each pass

using UpdateRelationshipCube and UpdateAttributeMatrix. Lastly using

the updated structures, the Graph function puts it all together into the graph

G

The CreateNode function gets all the main classes and the related classes,

with each one, it creates a new node.

Algorithm 2: UpdateRelationshipCube(CΥ, V, p, l, ε)

Input: CΥ the set relationship cube structure, V the list of nodes, p

the request parameter, l the number of instances to retrieve

and ε the LOD endpoint.

Output: GSummarizer graph G = (V,Υ,Λ).

begin

for γ ∈ Γp do
∆←− GetCouples(p, γ, l)

for δ ∈ ∆ do
(i, j, f)←− FindCouplesIndex(δ)

if f == True then
υγi,j = True

end

end

end

end

The UpdateRelationshipCubemethod, get the list of couples usingGetCouples

function based on the current relationship γ and then per each couple, will

find the indexes in the matrix using FindCouplesIndex. The latter function

will stop as soon as it finds a couple, the worst case scenario will be search-

ing all over the node space. The UpdateAttributeMatrix is an even simpler

algorithm, it cycles through the attributes in Λp getting the values for each

of the attributes per each instance of a main class node.

3.4 Visualization Transformation

This part of Chapter 3 will present the logical specification for the base SNAP

algorithm and the kSNAP algorithm, this means the algorithms as presented

52

Figure 3.8: Visualization Transformation section of the GSummarization LVDM model

in their original work and their role in the achievement of the goals for this

work, in this section the variable naming will follow the original work. The

next section will present the main issues encountered while using this sum-

marization method in the LOD and the modifications made to the original

algorithm in order to overcome some of them. The following section will talk

about the post processing methods use to refine the clustering HUB algorithm

and to clean and compressed the obtained clusters given the characteristics

of the data obtained at the end of the summarization process. In figure 3.8

the processes and stages related to the Data Transformation are depicted.

3.4.1 The SNAP algorithm

The authors in [55] define the set of nodes of graph G as V (G), the set of

attributes as Λ(G), the actual value of attribute ai for node v as ai(v), the set

of edge types as Υ(G), and the set of edges of type Ei as Ei(G). In addition,

denoting the cardinality of a set S as |S|.
The SNAP operation produces a summary graph through homogeneous

grouping of the input graphs nodes, based on user-selected node attributes

and relationships. We now formally define this operation. To begin the

formal definition of the SNAP operation, first the concept of node-grouping

is defined as:

Definition 3.4.1 Node-Grouping of a Graph

For a graph G, Φ = {G1, G2, ..., Gk} is called a node-grouping of G,

if and only if:

53

1. ∀Gi ∈ Φ, Gi ⊆ V (G) and Gi 6= ∅,

2.
⋃
Gi∈Φ Gi = V (G),

3. ∀Gi, Gj ∈ Φ and (i 6= j), Gi ∩Gj = ∅.

Intuitively, a node-grouping partitions the nodes in a graph into non-

overlapping subsets. Each subset Gi is called a group. When there is no

ambiguity, we simply call a node grouping a grouping. For a given grouping

Φ of G, the group that node v belongs to is denoted as Φ(v). It is further

defined the size of a grouping as the number of groups it contains, also a

partial order relation � is defined on the set of all groupings of a graph as:

Definition 3.4.2 Dominance Relation

For a graph G, the grouping Φ dominates the grouping Φ′, denoted as

Φ � Φ′, if and only if ∀G′i ∈′, Gj ∈ Φ s.t G′i ⊆ Gj.

It is easy to see that the dominance relation � is reflexive, anti-symmetric

and transitive, hence it is a partial order relation. Next a special kind of

grouping is described, based on a set of user-selected attributes.

Definition 3.4.3 Attributes Compatible Grouping

For a set of attributes A ⊆ Λ(G), a grouping Φ is compatible with at-

tributes A or simply A-compatible, if it satisfies the following: ∀u, v ∈ V , if

Φ(u) = Φ(v) then ∀ai ∈ A, ai(u) = ai(v)

If a grouping Φ is compatible with A, it is simply denote it as Φ(A). In

each group of a A-compatible grouping, every node has exactly the same

values for the set of attributes A. Note that there could be more than one

grouping compatible with A. In fact a trivial grouping in which each node

is a group is always compatible with any set of attributes. There is a global

maximum grouping with respect to the dominance relation �.This global

maximum A-compatible grouping is denoted as Φmax
A . Φmax

A is also the A-

compatible grouping with the minimum cardinality. In fact, if it is consider

each node in a graph as a data record, then Φmax
A is very much like the result

of a group-by operation for these data records on the attributes A in the

relational database systems.

The A-compatible groupings only account for the node attributes. How-

ever, nodes do not just have attributes, but also participate in pairwise re-

lationships represented by the edges. Next, we consider relationships when

54

grouping nodes.For a grouping Φ, it is denoted the neighbor-groups of node

v in Ei as NeighborGroupsΦ,Ei
(v) = {Φ(u)|(u, v) ∈ Ei}. Now it is possible

to define groupings compatible with both node attributes and relationships.

Definition 3.4.4 Attributes and Relationships Compatible Grouping

For a set of attributes A ⊆ Λ(G) and a set of relationship types R ⊆ Γ(G),

a grouping Φ is compatible with attributes A and relationship types R or

simply (A,R)-compatible, if it satisfies the following:

1. Φ is A-compatible,

2. ∀u, v ∈ V (G), if Φ(u) = Φ(v), then ∀Ei ∈ R, NeighborGroupsΦ,Ei
(u) =

NeighborGroupsΦ,Ei
(u).

If a grouping Φ is compatible with A and R, it is denote it as Φ(A,R). In

each group of an (A,R)-compatible grouping, all the nodes are homogeneous

in terms of both attributes A and relationships in R. In other words, every

node inside a group has exactly the same values for attributes A, and is

adjacent to nodes in the same set of groups for all the relationships in R.

Given a grouping Φ(A,R), we can infer relationships between groups from

the relationships between nodes in R. For each edge type Ei ∈ R, it is defined

the corresponding group relationships as Ei(G,Φ(A,R)) = {(Gi, Gj)|Gi, Gi ∈
,Φ(A,R) and ∃u ∈ Gi, v ∈ Gj s.t. (u, v) ∈ Ei}. In fact, by the definition

of (A,R)-compatible groupings, if there is one node in a group adjacent

to some node(s) in the other group, then every node in the first group is

adjacent to some node(s) in the second. Similarly to attributes compatible

groupings, there could be more than one grouping compatible with the given

attributes and relationships. The grouping in which each node forms a group

is always compatible with any given attributes and relationships. Among all

the (A,R)-compatible groupings there is a global maximum grouping with

respect to the dominance relation �.

The global maximum (A,R)-compatible grouping is denoted as Φmax
(A,R).

Φmax
(A,R) is also the (A,R)-compatible grouping with the minimum cardinality.

Due to its compactness, this maximum grouping is more useful than other

(A,R)- compatible groupings. Now we will review the SNAP operation as

defined in its original work:

Definition 3.4.5 SNAP Operation

55

The SNAP operation takes as input a graph G, a set of attributes A ⊆
Λ(G), and a set of edge types R ⊆ Υ(G), and produces a summary graph

Gsnap, where V (Gsnap) = Φmax
(A,R), and Υ(Gsnap) = {Ei(G,Φmax

(A,R)) | Ei ∈ R}.

Intuitively, the SNAP operation produces a summary graph of the input

graph based on user-selected attributes and relationships. The nodes of this

summary graph correspond to the groups in the maximum (A,R)-compatible

grouping. And the edges of this summary graph are the group relationships

inferred from the node relationships in R. Before presenting the evaluation

algorithm for the SNAP operation, it is necessary describe the fundamental

data structures used in this and the other SNAP-like algorithms.

The SNAP data structures

Before presenting the evaluation algorithm it is necessary to define the data

structures that are needed to perform the evaluation, these data structures

can dynamically change during the snap process. The structures that will be

declared here are commonly used in both SNAP and kSNAP algorithm.

Definition 3.4.6 Neighbour-Group Bitmap

Given a graph G = (V,Υ,Λ), a set of relations E and a grouping Φ,

we define the Neighbour-Group Bitmap (NGBΦ) associated to G and Φ as

{ngbki,j} |
|Υ|
k=0|

|Φ|
i=0|

|V |
j=0 where Gi ⊆ Φ, vi ∈ V , k ∈ Υ and

ngbki,j =

{
1 if Gi ⊆ NeighborGroupsΦ,Ek

(vi)

0 o.c
(3.1)

Therefore, the cardinality of the Neighbour-Group Bitmap (NGB) is

|Φ| × |Υ| × |V |.

The NGB holds the information on the relationships between groups and

nodes if such node has a relationship with the group. This structure can be

updated fast because it holds only two possible values for the data. One of the

objectives of the SNAP algorithm is to understand the links between groups

and nodes, this can be done with the NGB, but in order to understand the

relationships between nodes the SNAP method relies on the following the

structure:

56

Definition 3.4.7 Participation cube

Given a graph G = (V,Υ,Λ), a set of relations E and a grouping Φ, we de-

fine the Participation cube (PCΦ) associated to G and Φ as {pcki,j}|
|Υ|
k=0|

|Φ|
i=0|

|Φ|
j=0

where Gi ⊆ Φ, k ∈ Υ and

pcki,j =
∑
∀l

ngbki,l l ∈ Gi and Gj ∈ NeighborGroupsΦ,Ek
(l) (3.2)

Therefore, the cardinality of the Participation cube (PC) is |Φ|×|Φ|×|Υ|.

The PC quantifies the strength of the relationship between groups per

each relationship k.

The SNAP evalutation algorithm

The evaluation algorithm that will be presented here is a modification from

the original in order to handle the multiple relationship and attributes pre-

sented as options to the user. In the original work of [55] the technique and

algorithm was defined for one relationship and one attribute but it signaled

that the extension to multiple attributes and relationships should be simple.

This topics will be addressed in section 3.4.3.

Algorithm 3: SNAP (G)

Input: G: a graph, where G = (V,CΥ,MΛ,Υ,Λ)

Output: Summarized graph.

begin
Φ←−MaxAttributeGrouping(G)

NGBΦ ←− BuildNgb(G)

PCΦ ←− BuildPc(G)

UpdateDataStructures(NGBΦ, PCΦ,Φ)

while ∃ v ∈ {pcki,j} , v 6= 0 ∧ v 6= |Gi|) do
Φ←− SnapSort(G,Φ)

UpdateDataStructures(NGBΦ, PCΦ,Φ)

end

Gsnap ←− BuildSummarizationGraph(G,Φ)

return Gsnap

end

The SNAP operation tries to find the maximum (A,R)- compatible group-

ing for a graph, a set of nodes attributes, and the set of relationships. The

57

evaluation algorithm starts calculating the maximum A-compatible grouping

MaxAttributeGrouping, and iteratively splits groups in the current group-

ing, until the grouping is also compatible with the relationships. The algo-

rithm for evaluating the SNAP operation is shown in Algorithm 3. In the

first step, the algorithm groups the nodes based only on the attributes by a

sorting on the attributes values. Then the data structures are initialized by

this maximum A-compatible grouping using UpdateDataStructures . Note

that if a grouping is compatible with the relationships, then all nodes inside

a group should have the same set of neighbor-groups, which means that they

have the same values in their rows of the bitmap. In addition, the participa-

tion array of each group should then only contain the values 0 or the size of

the group |Gi|. This criterion has been used as the terminating condition to

check whether the current grouping is compatible with the relationships. If

there exists a group whose participation array contains values other than 0 or

the size of this group, the nodes in this group are not homogeneous in terms

of the relationships. We can split this group into subgroups, each of which

contains nodes with the same set of neighbor-groups, this is achieved by

SnapSort. After this division, new groups are introduced. One of them con-

tinues to use the same group id of the split group, and the remaining groups

are added to the end of the group-array. Accordingly, each row of the bitmap

has to be widened. The nodes of this split group are distributed among the

new groups. As the group memberships of these nodes are changed, the

bitmap entries for them and their neighbor nodes have to be updated us-

ing again the UpdateDataStructures method. Then the algorithm goes to

the next iteration. This process continues until the condition does not hold

anymore. The nodes in the summary graph corresponds to the groups in

the result grouping. Therefore the nodes will be group, starting from the

grouping Φmax
A until the Φ(A,R) one.

3.4.2 The kSNAP algorithm

The SNAP operation produces a grouping in which nodes of each group

are homogeneous with respect to user-selected attributes and relationships.

Unfortunately, homogeneity is often too restrictive in practice, as most real

life graph data is subject to noise and uncertainty; for example, some edges

may be missing because of the failure in the detection process, and some

edges may be spurious because of errors. Applying the SNAP operation on

58

noisy data, in our case, can result in a large number of small groups, and, in

the worst case, each node may end up an individual group, we will see that

with LOD data, that is the case. Such a large summary is not very useful in

practice. A better alternative is to let users control the sizes of the results

to get summaries with the resolutions that they can manage. Therefore, we

introduce a second operation, called k-SNAP, which relaxes the homogeneity

requirement for the relationships and allows users to control the sizes of the

summaries.

The relaxation of the homogeneity requirement for the relationships is

based on the following observation. For each pair of groups in the result of

the SNAP operation, if there is a group relationship between the two, then

every node in both groups participates in this group relationship. In other

words, every node in one group relates to some node(s) in the other group.

On the other hand, if there is no group relationship between two groups,

then absolutely no relationship connects any nodes across the two groups.

However, in reality, if most (not all) nodes in the two groups participate in

the group relationship, it is often a good indication of a strong relationship

between the two groups. Likewise, it is intuitive to mark two groups as being

weakly related if only a tiny fraction of nodes are connected between these

groups. Based on these observations, we relax the homogeneity requirement

for the relationships by not requiring that every node participates in a group

relationship. But we still maintain the homogeneity requirement for the at-

tributes, i.e. all the groupings should be compatible with the given attributes.

Users control how many groups are present in the summary by specifying the

required number of groups, denoted as k. There are many different group-

ings of size k compatible with the attributes, thus we need to measure the

qualities of the different groupings. We propose the ∆ −measure to assess

the quality of an A-compatible grouping by examining how different it is to

a hypothetical (A,R)-compatible grouping. Now in order to formalize these

concepts to reach a suitable metric, the following definition are needed:

Definition 3.4.8 Groups participating in a group relationship

It is defined the set of nodes in group Gi that participate in a group rela-

tionship (Gi, Gj) of type Et as:

PEt,Gj
(Gi) = {u|u ∈ Gi and Gj s.t (u, v) ∈ Et} (3.3)

Definition 3.4.9 Participation ratio

59

Given a group relationship (Gi, Gj) of type Et, their participation ration

is defined as:

pti,j =
|PEt,Gj

(Gi)|+ |PEt,Gi
(Gj)|

|Gi|+ |Gj|
(3.4)

For a group relationship, if its participation ratio is greater than 50%,

we call it a strong group relationship, otherwise, we call it a weak group

relationship. Note that in an (A, R)-compatible grouping, the participation

ratios are either 0% or 100%.

Definition 3.4.10 ∆−measure
Given a graph G = (V,Υ,Λ), a set of attributes A and a set of relation-

ships R, the ∆−measure of ΦA = {G1, G2, ..., Gk} is:

∆(ΦA) =
∑

Gi,Gj∈ΦA

∑
Et∈R

(δEt,Gj)(Gi) + δEt,Gi)(Gj)) (3.5)

where,

δEt,Gj)(Gi) =

{
|PEt,Gj

(Gi)| if pti,j ≤ 0.5

|Gi| − |PEt,Gj
(Gi)| otherwise

(3.6)

Intuitively, the ∆−measure counts the minimum number of differences in

participation’s of group relationships between the given A-compatible group-

ing and a hypothetical (A,R)-compatible grouping of the same size. The

measure looks at each pairwise group relationship: If this group relationship

is weak (pti,j ≤ 0.5), then it counts the participation differences between this

weak relationship and a non-relationship (pti,j = 0); on the other hand, if

the group relationship is strong, it counts the differences between this strong

relationship and a 100% participation-ratio group relationship. The δ func-

tion, defined in Equation 3.11, evaluates the part of the ∆ value contributed

by a group Gi with one of its neighbors Gj in a group relationship of type

Et.

Definition 3.4.11 k-SNAP operation

The k-SNAP operation takes as input a graph G, a set of attributes A ⊆
Λ(G), a set of edge types R ⊆ Υ(G) and the desired number of groups k, and

produces a summmary graph Gk−snap, where: V (Gk−snap) = ΦA, s.t |ΦA| = k

and ΦA = argminΦ′
A
{∆(Φ′A)}), and Υ(Gk−snap) = {Ei(G,ΦA)|Ei ∈ R}

60

Figure 3.9: Scheme of the groups after a summarization ending with k elements

Given the desired number of groups k, the k−SNAP operation produces

an A-compatible grouping with the minimum ∆ value.

The kSNAP evalutation algorithm

The k − SNAP operation allows a user to choose k, the number of groups

that are shown in the summary. For a given graph, a set of nodes attributes

A and the set of relationship types R, a meaningful k value should fall in

the range between |Φmax
A | and |Φmax

A,R |. However, if the user input is beyond

the meaningful range, i.e. k < |Φmax
A | or k > |Φmax

A,R |, then the evaluation

algorithms will return the summary corresponding to Φmax
A or Φmax

A,R , respec-

tively. For simplicity, it is assumed that the k values input to the algorithms

are always meaningful.We can see an schema of how the nodes will be group

starting from the Φmax
A until the Φk

(A,R) in Figure 3.9.

In the work presented by [55] it is proven that computing the exact answer

for the k-SNAP operation is NP-complete, therefore two incremental and

heuristic algorithms were proposed to approximate to the solution, namely

top-down and bottom-up approaches. The top-down approach starts from the

maximum grouping only based on attributes, and iteratively splits groups un-

til the number of groups reaches k. The other approach employs a bottom-up

scheme. This method first computes the maximum grouping compatible with

both attributes and relationships, and then iteratively merges groups until

the result satisfies the user defined k value. In both approaches, we apply the

61

same principle: nodes of a same group in the maximum (A, R)-compatible

grouping should always remain in a same group even in coarser summaries.

We call this principle KEAT (Keep the Equivalent Always Together) prin-

ciple. This principle guarantees that when k = |Φmax
A,R |, the result produced

by the k-SNAP evaluation algorithms is the same as the result of the SNAP

operation with the same inputs.

In the referenced work for the k-Snap evaluation algorithm, the approach

that yield better results was the Top-Down one, therefore this is the one that

we will present in this document and from now on any evaluation regarding

the k-Snap algorithm will be based on such approach.

Algorithm 4: kSNAP (G, k)

Input: G: a graph, where G = (V,CΥ,MΛ,Υ,Λ); k the required

number of groups in the summary

Output: Summarized graph.

begin
Φ←−MaxAttributeGrouping(G)

NGBΦ ←− BuildNgb(G)

PCΦ ←− BuildPc(G)

UpdateDataStructures(NGBΦ, PCΦ,Φ)

SplitGroups(G, k,Φ)

Gsnap ←− BuildSummarizationGraph(G,Φ)

return Gsnap

end

Similar to the SNAP evaluation algorithm, the top-down approach shown

in Algorithm 4 also starts from the maximum grouping based only on at-

tributes using MaxAttributeGrouping, and then iteratively splits existing

groups until the number of groups reaches k with SplitGroups. However,

in contrast to the SNAP evaluation algorithm, which randomly chooses a

splittable group and splits it into subgroups based on its bitmap entries, the

top-down approach has to make the following decisions at each iterative step:

(1) which group to split and (2) how to split it. Such decisions are critical

as once a group is split, the next step will operate on the new grouping. At

each step, we can only make the decision based on the current grouping. We

want each step to make the smallest move possible, to avoid going too far

away from the right direction. Therefore,we split one group into only two

subgroups at each iterative step. There are different ways to split one group

into two. One natural way is to divide the group based on whether nodes

62

have relationships with nodes in a neighbor group. After the split, nodes in

the two new groups either all or never participate in the group relationships

with this neighbor group. This way of splitting groups also ensures that the

resulting groups follow the KEAT principle.

Algorithm 5: SplitGroups(G, k,Φ)

Input: G: a graph, where G = (V,CΥ,MΛ,Υ,Λ); k the required

number of groups in the summary; Φ the current grouping

Output: Split grouping Φ based on k

begin
HΦ ←− BuildHeap(G)

UpdateDataStructures(NGBΦ, PCΦ,Φ)

while |Φ| < k do
Gmax ←− PopMaxCt(HΦ)

Gnew ←− Split(G,Φ, Gmax)

UpdateDataStructures(NGBΦ, PCΦ,Φ)

UpdateHeap(HΦ)

end

end

Now, the heuristic for deciding which group to split and how to split at

each iterative step will be presented. As stated previously, the k-SNAP oper-

ation tries to find the grouping with a minimum ∆−measure (see Equation

3.5) for a given k. The computation of the ∆−measure can be broken down

into each group with each of its neighbors (see the δ function in Equation

3.11). Therefore, the heuristic chooses the group that makes the most con-

tribution to the ∆ value with one of its neighbor groups. More formally, for

each group Gi, we define CT (Gi) as follows:

CT (Gi) = max
Gj

{δE,Gj
(Gi)} (3.7)

Then, at each iterative step, we always choose the group with the max-

imum CT value to split and then split it based on whether nodes in this

group Gi have relationships with nodes in its neighbor group Gt, where

Gt = arg max
Gj

{δE,Gj
(Gi)} (3.8)

As shown in Algorithm 5, to speed up the decision process, we build a

heap on the CT values of groups using BuildHeap(G). At each iteration, we

63

pop the group with the maximum CT value to split with PopMaxCt(HΦ).

Next Split(G,Gmax) receives the group with the maximum CT value and

the graph information, and splits Gmax into two, based on the Gt obtained

using Equation 3.8, returning an updated group referring to original Gmax

and a new group Gnew. At the end of each iteration, we update the heap ele-

ments corresponding to the neighbors of the split group, and insert elements

corresponding to the two new groups.

3.4.3 The modified kSNAP algorithm kSNAP-LOD

In this section we will present the modifications done to the k-Snap algo-

rithm in order to optimize the summarization results obtained when used

in a real world LOD data set. First we will analyze the current problems

encountered in LOD while trying to summarize the generated graph. Next

we will describe the challenges when using the specific k-Snap algorithm in

LOD, and finally we will present the modifications made to the algorithm in

order to improve the performance in some of the issues presented previously.

Incomplete data

In the tested LOD data sets, it is common to find instances of classes contain-

ing empty field attributes (ie. DBPedia (http://dbpedia.org/)). Attributes

are at the core of the summarization process, relating similar classes to each

other through the grouping ΦA generated by MaxAttributeGrouping. The

authors in [55] assume an attribute array without specifying the methods to

tackle sparse data. This will cause that the Attribute Matrix MΛ to have

many empty values, therefore to have a lot of sparsity.

The problem of the sparsity of our data structures is that we are investing

memory declaring them but the explicit information obtained is not useful

in the plain form of empty spaces in our data structures.

Multiple attribute and relationships

In any real world exploration of a LOD DB, it is possible to query the graph

on more than one class Ci at a time and more than one relation Ei and

attribute ai. In the present work by Tian et al [55], the algorithms don’t

specify how many attributes and relationships must be handled. In our case

we have a set of classes where each one contains a set of attributes and

64

Figure 3.10: Scheme showing different classes instances either in the main-class nodes

and in the related-class ones

parameters, therefore for each class Ci there will be a set of nodes Vi in the

graph, therefore a set of indexes in the data structures holding the nodes

indexes correspondingly, likewise for the one hop nodes.

• The Relationship Cube CΥ, will hold all the indexes of all the nodes

(main nodes or one hop nodes) involved in each relationship in Υ but

in each MΥ we will have as many empty spaces as nodes that are not

involved in that relationship.

• The Attribute Matrix MΛ, will hold all the indexes of all the nodes

and the indexes of all the attributes in Λ, that means that there will

be empty spaces for each node if it doesn’t have all the attributes in Λ

which it will be the most common case. This problem get worse when

the problem of incomplete data is present.

Heterogeneous nodes

The problem when using only main-class instances is that given a relationship

υ ∈ Υ we will have (u, v) ∈ Eυ where u ∈ Ci, v ∈ Cj, Ci 6= Cj and CjC(our

class set) (ie. Ci a main class and Cj is a related-class), but adding to the

graph only Ci instances we will loose the information from the relation with

65

the Cj nodes, this is shown in Figure 3.10. In a real world LOD dataset

the instances of a class are interlinked by relations and not self contained in

an set of nodes of the same class, therefore contributing to the previously

presented issues of sparsity of the Relationship Cube CΥ.

Attribute similarity

As seen in the previous section, introducing multiple attributes will cause

problems of sparsity and given the nature of real LOD data-sets, the incom-

pleteness of data problem is also present. There is also another topic that is

not specified in Tian et al [55], the attribute similarity measurement.

In the GSummarizer case we use a basic scheme to measure the similar-

ity between two nodes based on their attributes, the main assumption here

is that all the attributes participating are numerical, therefore the

GSummarizer only handles comparisons between numerical attributes and

only queries attributes that can be measured in this way. The similarity

measure assumes that the range of values of the attributes are unknown and

is defined as:

Definition 3.4.12 Attribute similarity

Given a graph G = (V,CΥ,MΛ,Υ,Λ), and two nodes v, w ∈ V we define

the attribute similarity between the two as:

θ(v, w) =

∑
ai∈Λ dif(v, w, ai)∑
ai∈Λ add(v, w, ai)

(3.9)

where,

dif(v, w, ai) =

{
|ai(v)| − |ai(w)| if |ai(v)|+ |ai(w)| 6= 0

0 otherwise
(3.10)

and

add(v, w, ai) =

{
|ai(v)|+ |ai(w)| if |ai(v)|+ |ai(w)| 6= 0

0 otherwise
(3.11)

66

One-hop nodes

One of the objectives of this work is to give to the user a meaningful aid in

order to understand a huge collection of data represented as a graph, such

as a LOD data set. The k-Snap algorithm present a summary of a graph

measuring the similarity between two nodes given its relationships with other

nodes and its attributes. In this case two ways to enrich the information set

for the summarization are:

1. More nodes related to each other, as we have seen previously, the lack

of relationship information will affect the CΥ and therefore the k-Snap

algorithm will not be able to identify in a more accurate way to which

group belongs each of the nodes, given that the participation ratio pti,j
can vary greatly, therefore the ∆−measure

2. Complete attribute information, as seen previously, a complete set of

attribute values can make the ΦA grouping more reliable due to the fact

that it uses them to compare how similarly are two nodes attribute-

wise.

As seen in Section 3.3.1, the query process involves one hop nodes be-

cause they enrich the relationship-based data structures, such as CΥ. From

the previously presented problems with the sparsity and incompleteness of

attributes from the LOD data set, we face issues while making the grouping

ΦA, because all relations are not self-contained in the same class of nodes.

This is one of the key issues that the k-Snap algorithm don’t handle well

in the reference work that we used. This will pose a problem given that

the k-Snap and Snap relies on creating a coarse summary Φmax
A and then

refine it iteratively based on the relationship information contained in the

relationship cube CΥ. In order to obtain a more coarse initial clustering,

more information is needed and therefore an strategy based on point (2) was

chosen. The strategy was to query the one-hop nodes based on the selected

relationships. This will increase the class pool and the size of the matrices

but it will provide a richer set of relationships, all of this without modifying

the parameter information requested to the user. In order to keep increasing

the completeness of the node set we could have continued querying for the

two-hop nodes but that would mean that (1) we should know the relation-

ships that the related-nodes have and (2) let the user select again which ones

the should be used in the second query process, both operations will make

67

the exploration of the graph more complex for the user and are out of the

scope of this research. Another approach to a query two-hop nodes is, based

on a pre-emptive analysis of the relationships of the one-hop nodes, select

throught and automatic procedure the best relations to query from the two-

hop nodes, this is an interesting approach that will be left for the Future work

section in chapter 6. In the following section we will present the algorithm

that will take advantage of this new set of information in order to perform a

richer initial clustering.

3.4.4 HUB algorithm

After performing the attribute-based grouping operation and obtaining Φmax
A

we had attribute-based clusters of only main class nodes. This means that,

initially we would have n set of main class-clusters but the same m related-

class nodes as single node clusters as seen on Figure 3.11, this approach will

not scale well, because on one side we need to reduce sparsity on the matri-

ces and increase the information for the summarization process to be more

effective. We device an algorithm, named Hub algorithm for this purpose

based on the following characteristics:

• All the relationships are equal given that we don’t have prior knowledge

on them. So all relationships weight the same.

• The new clusters should be disjoint and can be composed of main-class

nodes and related-class nodes

Now, lets introduce the concepts used in the algorithm:

Instead of giving an importance or wight to the relationships, given that

we don’t have any explicit information that can give us a sense of impor-

tance for them, we decide to search within the information that we had. The

graph as any other highly heterogeneous network can have nodes with more

connectivity than others and this is a central concept within the LOD net-

works, connectivity, this concept can be exploited to understand how two

one-hop nodes or even main-class nodes are related to each other without

having a direct connection through a relation. The central principles of the

hub algorithm are the following:

• Two nodes are related if both are connected to the same node (hub)

and the more they are connected to the same node through different

relationships, the more connected they will be with each other.

68

Figure 3.11: Scheme of the ΦmaxA grouping without using the hub algorithm, the

related-classes clusters remain as single-node ones.

• If two nodes are connected to the same hub , they are implicitly con-

nected to the cluster that the hub node belongs to.

• A hub have will a higher value proportional to the number of connected

nodes to it.

Now lets ground these principles into definitions:

Definition 3.4.13 Hub and Hub score

Given a graph G = (V,CΥ,MΛ,Υ,Λ), a hub can be any node v ∈ V and

the hub score µ(v) for v ∈ V is defined as:

µ(v) =
∑
r∈Υ

∑
w∈V,∀w 6=v

ρr(v, w) (3.12)

where,

ρr(v, w) =

{
1 if υrv,w = 1

0 otherwise
(3.13)

Therefore µ(v) measures to how many nodes, v is connected, so we can

associate each node to a hub score. With these score that we give to each

69

node, only the one above a threshold or non trivial ones will be taken into ac-

count. Now we will present the grouping algorithm that refines the clustering

process of the ΦA grouping.

Algorithm 6: HubGrouping(G,Φ)

Input: G: a graph, where G = (V,CΥ,MΛ,Υ,Λ); Φ the current

grouping

Output: Refined grouping Φhub

begin
HHΦ ←− BuildHeap()

forall v ∈ V do
scorev ←− HubScore(v, CΥ,Υ)

push(scorev, HHΦ)

end

v, score←− pop(HHΦ)

while score 6= 0 or Φ = ∅ do
φ′ ←− CreateCluster(v,Φ, CΥ,Υ)

if φ′ 6= ∅ then
push(φ′,Φ′)

end

v, score←− pop(HHΦ)

end

Φhub ←− append(Φ′,Φ)

end

The HubGrouping method first declares a Heap structure to hold the

scores and retrieve them in an efficient way. The first ForAll cycle will

calculate the scores using the HubScore method, this will perform the calcu-

lations based on the Equation 3.12. The next part of the algorithm focus on

clustering the related nodes to the different hubs starting from the one that

got the highest score, in this case, the algorithm will have a bias towards the

highest scores given that the previously assigned nodes cannot be assigned

again; to enforce this, the Φ′ is used. In other words the strongest hub gets

the nodes first. Each time the CreateCluster is used, the nodes that were

in previous clusters will be extracted from them in order to be part of the

current hub cluster, if any of the clusters is empty, it will be removed from

Φ. Also if the created cluster is empty, then it will not be added to the new

set of clusters Φ′. Finally the new set of clusters will be added to the old

ones in Φhub.

70

The modified k-Snap

The final modified k-Snap algorithm is defined as following:

Algorithm 7: ModKSnap(G, k)

Input: G: a graph, where G = (V,CΥ,MΛ,Υ,Λ); k the required

number of groups in the summary

Output: Summarized graph.

begin
Φmax
A ←−MaxAttributeGrouping(G)

Φhub ←− HubGrouping(G,Φmax
A)

Φ←− Φhub

NGBΦ ←− BuildNgb(G)

PCΦ ←− BuildPc(G)

UpdateDataStructures(NGBΦ, PCΦ,Φ)

SplitGroups(G, k,Φ)

Gsnap ←− BuildSummarizationGraph(G,Φ)

return Gsnap

end

The Algorithm 7 refines the clustering using the HUB algorithm and the

modifications stated before in order to handle the sparsity and incompleteness

problems.

3.4.5 The compression algorithm

After finishing the summarization, we have a graph G = (V,CΥ,MΛ,Υ,Λ)

with a grouping Φ in either of the cases mentioned before, the we use the

method BuildSummarizationGraph in order to pack the information given

by G and Φ and generate a Gsummarization. This new graph can have all the

information packed into a new structure:

Definition 3.4.14 Raw summarized graph

Given a graph G = (V,CΥ,MΛ,Υ,Λ), and a summarization grouping Φ

we define as a raw summarize graph as: G = (V,CΥ,MΛ,Υ,Λ,Φ)

This summarized graph has all the information of the original graph with

the following number of elements: |V | + |V |2|Υ| + |V ||Λ| + |Λ| + |Υ| + |Φ| ,

bare in mind that each element holds different amount of data depending to

which kind of data belongs to (ie. node).

71

This is a very heavy load for many systems and will not scale well spe-

cially for legacy devices and mobile phones that doesn’t have a huge amount

of memory and processing power at their disposal. In order to optimize for

displaying performance we compress the information found in the original

raw summarize node into a more compact summarization graph. The main

idea of the algorithm is to use the groupings found in Φ as the new nodes of

the graph and send only a summary of the data contained in each of them.

The data summarization is highly dependant on the displaying technology

used and is out of the scope of this document, an example of it can be found

on the experimental platform used for the tests GSummarization. Therefore,

the BuildSummarizationGraph will have to derivate methods, the first one

defined as BuildRawSummarizationGraph based on Definition 3.4.14, the

other one is BuildCompressedSummarizationGraph as seen in the Algo-

rithm 8:

Definition 3.4.15 Compressed summarized graph

Given a graph G = (V,CΥ,MΛ,Υ,Λ), and a summarization grouping Φ

we define as a compressed summarized graph as: Gcompressed = (V ′, C ′Υ,M
′
Λ,Υ,Λ)

where all the groups in Φ were transformed through a process Θ(Gi) = v′i
where Gi ∈ Φ, v′i ∈ V ′ and the structures C ′Υ and M ′

Λ by definition repre-

sents the relationship cube and the attribute matrix of the Gcompressed

This summarized graph only the information of the groups but not di-

rectly all the information of the each of the nodes from the original graph,

therefore now the information contained in the graph has the following num-

ber of elements: |Φ|+ |Φ|2|Υ| + |Φ||Λ|+ |Λ|+ |Υ|, in this case, depending on

the effectiveness of the summarization we will require less space to store the

graph, proportional to the size of Φ, if Φ is small, the compression will be

more effective by following the Definition 3.4.15.

72

Algorithm 8: BuildCompressedSummarizationGraph(G,Φ)

Input: G: a graph, where G = (V,CΥ,MΛ,Υ,Λ); Φ the required

number of groups in the summary

Output: Summarized graph.

begin
Vdisconnected ←− GetDisconnectedNodes(G)

G′ ←− DeleteNodesFromGrouping(Vdisconnected, G,Φ)

Gdisconnected ←− DeleteNodesFromGraph(Vdisconnected, G
′)

Φdisconnected ←− UpdateClusters(Gdisconnected,Φ)

Vnew ←− CreateNodesFromGroups(Gdisconnected,Φdisconnected)

Gnew ←− AddNodesToGraph(Gdisconnected, Vnew)

Vdelete ←− GetAllNodes(Φdisconnected)

Gcompressed ←− DeleteNodesFromGraph(Gnew)

return Gcompressed

end

This algorithm is straightforward as a pipeline, starts by cleaning the

graph from the nodes that are not connected to any other node. One of the

key aspects while deleting nodes from the matrices or in general the data

structures used in the algorithms presented here like the relationship ma-

trix or the attribute matrix is to delete them from the biggest index to the

lowest index. the second and third steps on the process focuses on delet-

ing the nodes from the groups and then from the graph structures with

DeleteNodesFromGrouping and DeleteNodesFromGraph. Next, the al-

gorithm creates nodes from the groups using a process Θ, in our case these

process or method is defined in the reference implementation GSummarizer.

Then, all the new nodes will be added to the graph Gdisconnected and finally

all the nodes that were in the previous grouping Φ are deleted, finally we ob-

tain a clean and compressed graph without any grouping extra information

Gcompressed

3.5 Visual Mapping Transformation

The visual mapping transformation (VMT) is highly dependant on the tech-

nology implemented in this case to visualize the graph and interact with the

user. Conceptually this transformation is out of the scope of this document

and the technical details can be found in the reference implementation of the

73

Figure 3.12: Visual Mapping Transformation section of the GSummarization LVDM

model

experimental platform GSummarizer. In Figure 3.12 we can see the part of

the LDVM that is involved in the VMT.

74

Chapter 4

Experimental platform:

GSummarizer

In order to perform the test for our study, a testing platform was necessary,

this chapter is devoted to the description of such testing application, it is

called the GSummarizer. This chapter will start by presenting an overview of

the platform, the motivations and the high level requirements of the platform.

The next section will describe the general architecture of the GSummarizer

, the technology stack, the design model and the motivation for each, after

that, we will describe the front-end and back-end general overview. Finally

the last two chapter will focus on the specifics of the front-end and back-end,

describing the static and dynamic structure relevant to the work presented

in this document.

4.1 GSummarizer Overview

4.1.1 Motivation

The main goal of this research is to understand the underlying problems of

summarizing a LOD graph subset using LM techniques. Given the previous

statement, we need to create a subset of the LOD graph, in other words, a

sub-graph. A general scheme of the testing process is represented in Figure

4.1.

In our case, the subset must respond to the user input and as seen in

Chapter 3, the user input was defined through a set of parameters Pi, these

must be collected with the user input. The input can be obtained in many

Figure 4.1: GSummarizer general process

ways, but in general this is handled by a user interface, therefore a module

that manages the user interactions from the user input. The second part of

the process is to build the target graphGtarget to be summarized, based on the

parameter set passed before by the user. The next part of the testing process

is to build the summarization Gsummarize using the parameters P , following

the Separation of concerns (SoC), the summarization can be handled by

a another module. Finally we need to display the results obtained in the

summarization, this is another interaction that must be handled for the final

user which is in-line with the responsibilities of the first module described

before. In Section 3.2 we present the visualization model LDVM and how it

will be applied to this work, so the modules involved in the platform must be

responsible of enforcing the visualization model as well. From the previous

analysis, the following are the requirements for the testing platform:

A Handling the interaction with the user: user input and displaying the

summarized graph.

B Getting the LOD data needed based on the user input parameters.

C Performing the graph summarization process according to the LDVM

model.

Based on the goals of this research and the future work in mind, the

testing platform must be extensible in the following aspects:

76

Figure 4.2: GSummarizer general architecture model

D Different user interactions, therefore having the possibility of extending

the way that the user interfaces with the testing platform from the user

graphical interface and input parameters.

E Being able to obtain data from different LOD sources.

F Process more than one type of LM algorithm.

G Displaying the graph in more than one way

There are different examples in Section 2.5 of visualization platforms com-

pliant with the LDVM, but to the best of our knowledge there is no single

platform or application that we have access to, that can fulfill the follow-

ing requirements. Therefore we had to create one using the best technologies

possible for our given requirements and within the constrains of this research.

4.1.2 Architectural Model

In Section 4.1.1 we talk about the principle of Separation of concerns (SoC)

and we describe how the testing process should have different modules in

charge of the specific requirements, therefore each module must handle dif-

ferent responsibilities, an initial separation of responsibilities in the process

can be found in Figure 4.1. Data analysis can be very expensive computer-

wise, this means that the computational power needed to perform the process

(summarization of a graph in our case), when escalating the amount of data,

will proportionally increase, (ie. exponentially or linearly) depending on the

efficiency of the algorithms, this means that it may not be feasible to process

the data in the same location where the user is. In the case of the GSum-

marizer it is reasonable to assume that the modules of the application that

77

handle the user interaction and the ones that handle the graph summariza-

tion, may not be in the same location (ie. cpu, server, cluster, ...etc), in

order to account for this we choose to use a Client-Server architecture.

Finally, following the SoC, and from Figure 4.1, three big components that

handle different parts of the process: Presentation/View, Summarization/-

Logic and Data/Model can be identified. Taking into account the previous

components we can benefit from using an architecture following the Model

- View - Controller (MVC) pattern. Therefore the GSummarizer will

have a Client-Server architecture combined with an MVC-like architectural

pattern as shown in Figure 4.2.

4.1.3 Technology Stack

Based on the architectural model defined for the GSummarizer testing plat-

form the following technologies where chosen for the solution:

• Server-side programming language: Python, this language is one of

the most used languages in data analysis, data mining and machine

learning.

• Server-side application server: Gunicorn, this is a light WSGI HTTP

web server build in python.

• Web application framework: Django, this python based framework

follows the MCV and can be implemented with a client-server archi-

tecture in mind.

• Client-side languages and technologies: For the presentation layer of the

application that it will be web-based, the languages will be JavaScript,

Html and CSS

• Client-side framework: Angular, this javascript based framework fol-

lows the MVC pattern, is scalable and well maintained by Google Inc.

• Graph visualizer: VisJs, a JavaScript base graphic library that can

handles graph visualization very efficiently.

This technologies were chosen thinking about the architectural require-

ments and the duration of the platform for testing future developments in

this area.

78

Figure 4.3: GSummarizer general architecture with technologies

4.2 General Architecture

In this section we will present the general architecture and design of the

GSummarizer application, starting with the high level architectural view

and going down until reaching the main modules that compose it. In each

level the static and dynamic design decisions will be presented motivated.

The description of each of the main modules will be left for Sections 4.3 and

4.4.

In Figure 4.3 we present the architecture of the application, specifying

the MVC-like model used and the technologies involved in each layer of the

platform. As stated before , the general architecture follows a Client-server,

in the case of the GSummarizer, the MVC-like pattern is used in a dis-

tributed way. The server and the client have components belonging to the

view, the controllers and the model, these components are shared but are

disjoint components and have different responsibilities regarding the views,

controllers and models, this means that the view component in the server

have different and disjoint responsibilities than the ones in the client. The

MVC distribution of responsibilities further allows the computation to be

79

balanced between the client and the server. The part of the model assigned

to the LOD sources is a static one, but is of key importance to the test-

ing platform overall, therefore it was included thought we cannot modify it

directly.

4.2.1 The client

The client in the case of the GSummarizer is responsible of displaying the

View that will give the information to the user to create a request, mean-

ing, the set of parameters P , this view needs updating according to the user

actions, therefore a View Controller is necessary; finally, the model is repre-

sented by the summarized graph, that will be updated according to the user

actions in the view. To support the display of the summarized graph in the

view the graphic library VisJS will be used. Therefore, the controller is in

charge of handling the users interaction, sending the request to the server

and displaying the response of it. The previously described scenario fulfills

the requirement A from Section 4.1.1. The module that will handle the client

side of the architecture will be named from now on as front-end. The front-

end use the framework AngularJs , this framework use the MVC pattern.

The explanation of the front-end will be expanded on Section 4.3.

4.2.2 The server

The GSummarizer server side follows the MVC architecture, as well as the

client. In this case, the Views are represented by the exposed services, specif-

ically the REST services that will be in charge of handling the clients re-

quests. The main requests is the information necessary so the user can cre-

ate a request, and , as seen on Figure 4.1, the summarization request. The

Controller module in this case will handle the data extraction and the sum-

marization logic. The Model is represented by the extracted data from the

LOD sources. The model in this case is represented using RDF format and

each LOD source will manage this format using their own Stack that is why

a further description of the sources is not relevant for the current document.

The GSummarizer was thought to handle different formats other than RDF

to build the source if the correct extraction were to be implemented. The

server-side component, from now on will be named as the Back-end of the

GSummarizer and the specifics of it will be presented on Section 4.4

80

Figure 4.4: Front-end, GBuilder modules and its components

4.3 Front-End

The front-end responsibilities were stated in the previous section. The front-

end use the services provided by the back-end in order to present a sum-

marization to it. We use the modified snap and k-snap that require specific

inputs, this may not be the case for all the summarization algorithms that

can be tested in the platform, with that in mind the front-end can be ex-

tended with other modules that will include their own View, Controller and

Model fulfilling the following requirements for the client-side module: [D], [F]

and [G], presented in Section 4.1.1. The module in our case is the GBuilder.

In figure 4.4 there is an schema of the main components of it.

The GBuilder module is composed of two views: Summarization Pa-

rameters and Summarized Graph, the first view interacts with the user by

creating and sending the request parameters P for the summarization. The

parameters will be chosen from the set of available classes with its attributes

and relationships, these depending on the chosen LOD dataset. The second

view is in charge of displaying the summarized graph. The controller layer of

the GBuilder is composed of the Summarization Controller and the GSum-

marization Services, the first one is in charge of managing the update of

the views due to the user interaction, either controlling how the views are

displayed internally or using the services to provide the views with the data

81

Figure 4.5: GBuilder sequence diagram for getting the parameter selection interface

ready for the user after the LOD endpoint selection.

needed for the user. The service component is in charge of sending the re-

quest to the back-end and retrieving the answer possibly updating the stored

model. In our case, the model that the front-end handles is represented by

the summarized graph returned from the back-end.

Before any interaction with the user, by default , the web client will

perform a request to the application server (AS). The AS will provide an

initial view while loading all the data needed for the view, in our case loading

to the client all the modules required for the front-end of the GSummarizer.

The scenario described above is the initial entry for the testing platform and

all the sequence diagrams assume the starting point, the time after the initial

request. In Figure 4.5 we can see the user waiting for the Summarization

Parameters view to be ready, in order for that to happen, the controller

must load all the information needed first (ie. list of all the LOD endpoints

available). The next step after the view is loaded, is for the user to choose a

LOD endpoint so all the classes, relationships and attributes can be loaded so

the user can build the request parameters. The description of the structure

of the parameters can be found in Section 3.3.1.

In Figure 4.6, the user has already selected the request parameters and

send the signal to the view to submit the request for the summarization to

be executed. The controller receive the signal and build the correct request

based on the parameters selected by the user. To send the request the con-

82

Figure 4.6: GBuilder sequence diagram for the events after submiting the request for

the graph summarization.

troller use the GSummarizer service. The front-end will wait for the callback

of the server, when this happens, the service will take the returned message

and deserialize it into an object suitable for the controller to handle. The

controller will take the object and it will process it ina a way that the visu-

alization artifact (in this case VisJs) will be able to display it to the user in

the Summarized Graph view.

4.4 Back-end

The GSummarizer back-end as stated on Section 4.1.3, uses DJango as the

web application framework, this partially restricts the architecture to the

framework design decisions, in our case we use DJango modules to orchestrate

the use of the GSummarizer core modules and the the communication with

the client. The GSummarizer core modules are the set of functional units

that are responsible of fulfilling the requirements stated on Section 4.1.1. A

high level detail of the composing modules of the back-end, can be seen in

Figure 4.7 Each of the modules responsibilities and how they map to the

previously defined requirements are presented in the following list:

• Extraction This module is responsible of getting the required data for

the caller module. The general input of will be the request parameters

and the data source. As output, the methods return a data struc-

ture contained in the messages module, this will enforce the interface

83

Figure 4.7: GSummarizer back-end diagram showing the high level functional modules

on the architecture .

contract between the external data and the internal components of the

GSummarizer. B, E

• Transformation This module exposes a set of transformation methods

that can be applied to a data structure. Depending on the method , the

input input requirements and output specifics can change. The input

and output structures must be located in the message module. C, F,

G

• Algorithms This module contains the algorithms that will be used in

the transformation process or directly by the service, as the transfor-

mation module, the input and output are data structures contained in

the message module. C, F

• Services This module is responsible of acting as a composer layer. This

module will expose to DJango services that it can use. This usually will

be a composition of extractions, transformations and algorithms. The

inputs and ouputs will be explain ahead when we enter in the detail of

each module.

• Model The model is responsible of saving the required data structures

that need to be persistent onto the DB. The model in this case is

84

Figure 4.8: GSummarizer back-end diagram showing the current components of the

each of the functional modules on the architecture .

distributed as data structures belonging to the message module in-

memory and the ones saved onto the DB. For some of the applications,

it may be that the model is always in-memory.

• Messages The message module is responsible of providing the defini-

tions for all the data structures that will be used as input or output of

the different processes in each of the modules.

In Figure 4.8, the components of the modules that are present in the

current implementation of the GSummarizer, are displayed.

Each module in Figure 4.7 represents a set of components whose combined

responsibility must enforce the module one. The global responsibility of the

module is not necessarily exactly the one for each of the components of the

module. From now on, when we refer to a component in Figure 4.8, we are

referring to a hierarchy of components that have the same responsibility but

85

that can have different strategies to achieve it. With this we ensure to sustain

the single responsibility principle, while making the modules extensible in

order to comply with the initial requirements stated in Section 4.1.1.

DJango Module

The DJango module has four main components:

• Serializer, contains the structure that describes how to serialize or

deserialize a data structure in order to use it as a message, serializing

it in the front-end or deserializing it in the back-end.

• Router, contains the descriptors on how to route the calls receive from

the client.

• Configuration, holds the descriptors on the properties of the general

framework.

• View, is responsible of holding the process on how the view will be

generated, templates, type of view, etc. In our case, all the views are

RestAPI methods, exposed to the front-end.

Extraction Module

The Extraction module has three main components:

• Data Extraction, is responsible of getting the data form the LOD

data sources. In this case uses the query builder in order to build the

correct query in order to extract the data. The type of data extraction

can be extended to fit different data extraction processes.

• Graph Builder, is responsible of transforming the input obtained from

the Data extraction component, into a data structure compatible with

the graph definitions contained in the messages module.

• Query Builder , is responsible of creating the correct query based on

the input parameters and the LOD endpoint. Different endpoints can

have different syntax so a set of components, one per LOD is how this

family of components will be organized.

86

Transformation Module

The Transformation module has two main components:

• Graph Compression, is responsible of performing the post-processing

operation of compressing a graph. The input of this method in our case

is a Basic Summarized Graph, the output is a Basic Graph.

• Graph Summarization, is responsible to perform the graph com-

pression processes. The input and output in our case are graphs, this

graph types are defined on the messages module.

Algorithms Module

The Algorithms module has four main components:

• Hub, is responsible of performing the Hub algorithm described in the

previous chapter.

• Snap is responsible of performing the Adjusted Snap algorithm de-

scribed in the previous chapter.

• k-Snap, is responsible of performing the Adjusted k-Snap algorithm

described in the previous chapter.

• Mod k-Snap, is responsible of performing the Adjusted Snap and Ad-

justed k-Snap combined with the Hub algorithm for better grouping.

Services Module

The Services module has two main components:

• Setup Data, is responsible to use the Extraction module in order to

get the initial information that must be displayed to the user before

the him/her choosing the summarization parameters in our case. In a

more general case this component will get all the necessary parameters

needed for the given algorithm selected by the user.

• Graph Summarization is responsible of using the core modules of

the application and the correct components in order to provide to the

user a summarization graph.

87

Messages Module

The Messages module has four main components:

• Basic Graph, represents the GSummarization graph data structure,

presented in the previous chapter.

• Basic Summarized Graph represents a Basic Graph structure with

the grouping description added.

• Snap Parameters represents the set of parameters needed to make the

summarization, corresponding to the set P described in the previous

chapter.

• Process State, this is a control data structure maintained through

the whole process, owned by the components in the service module.

While the component, execute the required components, this compo-

nent records the process outcome and steps.

We have presented the static structure of the GSummarizer back-end.

We presented the main high-level modules and the current components that

satisfy the requirements stated in Section 4.1.1. The sequence of interactions

are the dynamic part of the model of the back-end. Now we will explain

the main sequence of interactions between the components in order to fulfill

the requirements. These sequence are the continuation from the back-end

perspective of the ones presented in Section 4.3, in Figures ?? and ??.

Load Options

In Figure 4.6 the front-end requests the available options at the initial state

of the application to the back-end using the loadOptions() method. In our

case the set of options is only the set of available LOD endpoints. This is

not the only possibility and the initial options can be extended in the future

with more complex structures.

The request done by the front-end arrives to the back-end through the

Rest API exposed by it with the loadOptions() call, this call will be manged

by the service SetupData, this service uses the DataExtraction component.

The data extraction will take from a list the set of available LOD endpoints

and optionally validate checking if they’re alive (ie. isLive() method). The

result will be communicated to the front-end in the form of a serialized list.

We can see the sequence diagram of this process in Figure 4.9.

88

Figure 4.9: GSummarizer back-end sequence diagram representing the request of the

available LOD endpoints.

Get classes, attributes and relationships

In Figure 4.6 the front-end requests to the server the available LOD end-

point set first. Afterwards, the user selects one of this endpoints and re-

quests the set of available classes, attributes and relationships using the

getLodData(endpoint) method.

In the server side, the back-end will execute the call using the SetupData

service. The service will call the DataExtraction component. The compo-

nent will first create the right query in order to getLodData for the current

endpoint. The second step will be executing the query and parsing the query

result into a useful data structure that can be returned to the front-end. In

this case the structure is a map of class names as keys and as objects the

list of attributes and the list of relationships. At the end the map will be

serialized and returned to the front-end as seen on Figure 4.10

Graph summarization

In Figure 4.5 the front-end uses the summarization(parameters) call to re-

quest a summarization of the sub-graph that can be generated by the selected

parameters. The back-end process supporting this operation is represented

by Figures 4.11 and 4.12. In order to make simplify the diagram of the whole

process, the diagrams was divided in two.

In Figure 4.11 the view receives the call with the parameters and dese-

89

Figure 4.10: GSummarizer back-end sequence diagram representing the request of the

set of classes, relationships and attributes available for the user in a given LOD dataset.

rializes it into a common structure that enforces the input expected by the

back-end, the SnapParameters. The SnapParameters component belongs

to the message module, which responsibility is to enforce standard data

structures that can be used among modules components. The passed snap

parameters include the type of summarization needed, this information with

the deserialized parameters will be passed to the GraphSummarizer. The

GraphSummarizer will first build the graph from the parameters using the

GraphBuilder. In order to build the graph the back-end must build, using

the DataExtraction and the QueryBuilder, the right query in order to ob-

tain (1) the instances of the classes with the right (2) attributes value and

(3) the list of relatedclasses per type of relation. After generating the query

it will execute it using the LodEndpoint selected earlier. This data extrac-

tion component will return a data structure that can be parsed into Nodes,

RelationsCube and an AttributeMatrix. The individual components will

be joined into an structure, in this case, a BasicGraph. This BasicGraph

structure will be return to the orchestrator in this case the service compo-

nent.

In Figure 4.12 graph summarization service component call the

graph summarization transformation component using the summarization

method , passing as argument the build graph as seen in Figure 4.11. The

90

Figure 4.11: GSummarizer back-end first part of the sequence diagram representing

the request of a graph summarization. This part shows how the graph is build using

the LOD dataset.

91

Figure 4.12: GSummarizer back-end second part of the sequence diagram representing

the request of a graph summarization. This part shows how the summarization graph

is build, using the obatained graph build by the previous section.

Transformation component will use the summarization algorithm com-

ponent in order to perform the operation, this component can be , in our

case the component that performs the Snap, k-Snap or Modified k-Snap algo-

rithms. As an optional path, the algorithms have a version using the HUB

algorithm component. At the end of the summarization, the final grouping

and the graph information will be inserted in the Basic Summarized Graph

structure. This structure can be compressed using the Graph Compres-

sion component, this component will output a compressed graph, this graph

has the same structure as the BasicGraph in our case. As a final step it will

return serialized to the front-end through the view.

92

Chapter 5

Experimental Analysis

In this chapter we will present the experimental results obtained after using

the GSummarizer for testing our algorithms based on the SNAP techniques

family. We will start by describing the experimental setup, specifying the

hardware and software used. Then we will explain how the experiments were

design and their individual objectives, finally we will show the experimental

results of each of the test and our interpretations and analysis based on them.

5.1 Experimental setup

In this section we will present the specifics of the testing bench. We will

describe the most relevant hardware elements used in the experiments and

the software needed for testing the algorithms.

5.1.1 Hardware

The testing machines used for the experiments had the following hardware

configuration:

• PC: Dell System XPS L502X

• CPU: Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz, AMD64 capa-

ble

• GPU internal: 2nd Generation Core Processor Family Integrated

Graphics Controller

• GPU external: NVIDIA Corporation GF108M [GeForce GT 540M]

• RAM Memory: 8GB (2x4GiB) SODIMM DDR3 Synchronous 1333

MHz

• Hard Drive: Samsung SSD 840 , 250GB

• Network: Centrino Advanced-N 6230

The GSummarizer must integrate with the systems provided by the LOD

endpoints, but these are external to the project and will not be described

or taken into account for the purpose of this experiments.

Software

The technology stack for the GSummarizer was presented in Section 4.1.3.

At the moment of the experiments, these are the versions of the most relevant

software used for them:

• OS: Ubuntu 14.04

• Web Server: GUnicorn 19.6.0

• Web Framework: Django 2.7.12

• Server Language: Python 1.10

• Front-End framework: AngularJS 1.5.8

• Graphical library for graphs: VisJs 4.16.1

• Testing application: GSummarizer 1.0

5.2 Experimental Design

This section will present the description of the main tests that were done for

the platform. The description will contain the motivation for the test and

how the test will be measured and execute.

The GSummarizer interface provides the necessary key inputs and out-

puts to perform this test. All the tests contain a set of parameters in common

94

• SNAP parameters, the selected set of classes and their respective se-

lected attributes and relations.

• Desired number of instances, the desired number of instances to retrieve

per class.

• Algorithm Type, the type of algorithm (ie. A4)

The SNAP Parameters are composed of n different classes up to a max-

imum of 5 classes, but per class only one combination of relations and at-

tributes will be used in order to reestrict the number of possible combinations

for the tests.

The desired number of instances p, creates an equivalent number of n in-

stances per class, therefore the number of nodes is at least p×|selectedclasses|+
|relatedclassesinstances|. The problem with this approach is that the data

structures depend on the number of relations and attributes chosen. The

data structure that grows exponentially with the number of relation is the

RelationshipCube. In order to make a fair comparison among tests by the

number of nodes we simplify the effective number of nodes as:

nodeseffective = nfinal × |Γ| (5.1)

where nfinal is the final number of nodes in the output raw graph and Γ

is the set of relationships.

The algorithm types that will be used in all the tests are the following:

A1 Raw: The raw graph

A2 SNAP only attributes: The summarization using only the grouping

by attributes method.

A3 SNAP: The modifed snap algorithm

A4 kSNAP: The modified k-snap algorithm

A5 SNAP only attributes + HUB: The summarization using the group-

ing by attributes and then the grouping using the hub algorihtm.

A6 HUB + SNAP: The modified snap algorithm with the hub grouping.

A7 HUB + kSNAP: The modified k-snap algorithm with the hub group-

ing.

95

A8 HUB + SNAP + Compression: The compression of the modified

snap algorithm with the hub grouping.

A9 HUB + kSNAP + Compression: The modified k-snap algorithm

with the hub grouping.

The types of algorithms are combinations or single applications of the

algorithms described in Chapter 3.

5.2.1 Nodes vs Execution time

The execution time is a very important measure to determine how well a

system performs. In this case a user must interact with the system to achieve

a result and as such the execution time mus be studied. The idea of this test

is to determine the behaviour of the algorithms under different work loads.

The sets in this case will be composed of [1, 2, 3] classes with maximum 20

attributes overall and maximum of 6 relationships overall. From previously

run tests, the results yield that over these number the execution time results

go far beyond the usability spectrum for a web user.The desired number of

instances will be [20, 200, 600, 1000] these numbers are bounded by the same

logic as the previous one, increase times beyond these numbers are not usable

in the context of this study. Finally the execution time is the sum of the build

time for the raw graph, summarization time and in the cases that is relevant,

the compression time.

5.2.2 Nodes vs Grouping

One of the objectives of using a summarization technique, is to reduce the

size of the graph into a significantly more usable one. In the case of our

study , the relevance is a subjective measure, but how well it reduce the size

of the node based on an algorithm that produce relevant summarizations is

an indirect way to measure relevancy ??. Therefore this test measures the

initial node size vs how many groups were form after applying the algorithm.

In an indirect way, the smaller the grouping is, it is probable that the sum-

marization is better. The experimental configuration is the same as the one

presented in Section 5.2.1

96

Figure 5.1: Number of nodes vs. Execution time for all the algorithm techniques

5.2.3 Visualization Comparison

The objective in this experiments is to compare the different algorithms when

visualized in the front end while changing the parameters mentioned at the

beginning of this section. In order to do that, the variables will be used

accordingly to the experimental variations presented in Section 5.2.1.

5.3 Experiments and Analysis

In this section we will present the main results of the experiments done in

the GSummarizer platform.

5.3.1 Nodes vs Execution time

In Figure’s 5.1 scale we can observe that most of the algorithms curves are

below 1000seconds or 16minutes, but the techniques that increase the exe-

97

cution time exponentially are based on the SNAP algorithm, specifically the

SNAP+HUB and the SNAP+HUB+COMPRESSED algorithm. The expo-

nential growth in time of these algorithms is due to two factors, first both

will compute groupings until it arrives to Φmax
A,R grouping, unlike the kSnap

that will begin with the Φmax
A and iteratively will drill-down to reach the k

number. The second factor that affects these techniques is the use of the Hub

algorithms. The Hub algorithm will increase the size of the Φmax
A grouping.

The increase in size is necessary so the initial number of groupings is not

so low because of the incompleteness of attribute data problem explained in

Section 3.4.3. Therefore a bigger initial grouping means that it will take more

time for the Snap algorithm to reach Φmax
A,R . From this , all the techniques

that will use SNAP +HUB will be affected by these phenomenon.

As stated in Chapter 3.4.3 the incomplete data problem affects the Φ

grouping, causing a large initial grouping Φmax
A . The effect of a large initial

grouping in the case of the kSnap − based techniques is that the k number

will not affect the grouping in a significant way. In ?? they show that the

number k that scales more linearly is k = 10, therefore we use this number

in all the tests given that the output will not be affected significantly.

In Figure 5.2 we trim the curves that go above the 1000seconds for the

maximum number of nodes. In the curves presented on this Figure we see

that the technique that took the longest as expected is the Snap but still it

was faster than any of the Snap+HUB − based techniques. This is caused

because the initial grouping Φmax
A contains a lot of groups so it is closer to

the Φmax
A,R , than the ones using the Hub algorithm. The Hub algorithm create

a coarser grouping, leaving the algorithm to increase the number of itera-

tions in order to achieve Φmax
A,R , than with the Hub grouping, the generated

information will be greater.

The algorithms that took the less time where the baselines or references

algorithms, as expected the RAW , SnapAttribute and the Snapattribute+

Hub. The RAW algorithms is the main baseline given that it is the graph

information as-is. The other two algorithms create the Φmax
A and the lat-

ter creates a more coarse and information-rich grouping thanks to the Hub

algorithm. All three are the baselines for the subsequent algorithms so as

expected they have the lows latency.

The best algorithm with the lowest latency after the baselines is the

kSnap + HUB one. The main reason is that the baseline is coarser, the

modified Φmax
A contains information of the biggest relationship hubs as de-

98

Figure 5.2: Number of nodes vs. Execution time for all the algorithm techniques

99

Figure 5.3: Nodes vs. Grouping techniques

scribed in section 3.4.4. A coarser initial grouping means, less groups to

iterate over in order to calculate the next partition.

From Figures 5.1 and 5.2 , we can see that the kSnap algorithm combined

with the Hub have better performance in execution time but still we need to

check how is the grouping capabilities behind each of the algorithms.

5.3.2 Nodes vs Grouping

In Figure 5.3 we can observe the output of groups based on the input of nodes

per algorithm. This is a way of measuring the capacity of the algorithm to

summarize the node. We are not giving a qualification to the summarization

but instead we are using the grouping output as a quality measure because

at the end a smaller number of groups is better for the human eye in any

case. The Snap and the kSnap algorithms are the ones that performs the

worse, this is due to the big initial grouping problem mentioned earlier in

this chapter. If the initial size of Φmax
A is big, the output size of the grouping

100

Figure 5.4: Grouping vs. Execution time

cannot be small. The initial grouping size is aid by the HUB algorithm, as

such, the best performant techniques are the ones based on the kSnap+HUB

algorithm. From the best performant techniques we can observe a linear

behaviour in the increase of input nodes and the output grouping size.

The idea of a good algorithm in this case will be one that in short time

will create the smaller increase in grouping size. Is important not only that

the grouping is small in a certain point of time but that the size increment

over time is smaller because that would mean that the the increase of infor-

mation doesn’t increase as much the summarization, meaning that the earlier

version of the summarizations already capture the main conceptual peaces of

information from the graph. In Figure 5.4 we can see that the algorithm that

have the lowest inclination is the one from the Hub+kSnap+COMPRESS

technique. This means that the number of groupings will increase in a

more controlled way than in other cases, therefore the summarization will

be more scalable, given that it will not explode the number of groupings

101

like in the case of SNAPAttr. In the case of kSnap, it behave well in

NodesvsExecutionT ime, but now that is measured against the grouping

size , it escalates poorly.

At the end of the test depicted in figures 5.1, 5.2, 5.3 and 5.4 we see

that the best performant algorithm for used test is the Hub + kSnap +

COMPRESS. The algorithm performs better given that the Hub algo-

rithms helps to create a better and more coarsed initial grouping, making

the following iterative steps for the kSnap a less time consuming task and

finally it creates less groups by compressing the nodes, pruning the ones that

do not increase the information content of the summarization.

5.3.3 Visual grouping Comparison

In this section we will present the visual representations of the summarization

performed by the GSummarizer for a single set of parameters. This is an

illustrative set of tests in order to show the correspondence between the

results obtained in the previous section and the visual output of the tests. In

order to study the usefulness of the visualization is out of the scope of this

work and will be left for future studies. The tests where performed using

a fix set of input parameters P and recording the output for each of the

algorithms used in the previous sections.

In Figure 5.5 we have the raw graph of a request with an output of 3000

nodes. The nodes are represented by the colored circles, the raw visualization

display the nodes as blue only. We can see several groupings of nodes, towards

the center the most numerous ones, bear in mind that this is the raw graph

without any kind of grouping applied to it.

In Figures 5.6a and 5.6b we can see a summarization based on the attribute−
only grouping algorithm, therefore the clusters that we can see are the ones

belonging to Φmax
A output. The clusters in this case are represented by blue

squares and the nodes as colored circles. In the summarization on 5.6a we

can observed some clusters and nodes attached to them, but the density of

clusters is much lower compared to the ones on 5.6a. The contrast between

the two graph outputs is as expected from the two algorithms and coherent

with the previous findings, where the Hub algorithm enhances the grouping

process creating a new layer of clusters.

Now lets compare the two figures above: 5.7a and 5.7b, the kSnap gen-

erates more clusters given that the summarization is coarser. The coarser

102

Figure 5.5: Raw graph

(a) Snap Attributes (b) Snap Attributes + Hub

Figure 5.6: The initial grouping algorithms

103

(a) Snap (b) kSnap

Figure 5.7: Comparisson of the kSnap and the SNAP algorithm

summarization is as expected given that the kSnap dont reach the Φmax
A,R

grouping, but stops before in the usual case. The kSnap then will have more

clusters and more numerous than the Snap summarization.

The Hub algorithm provides an coarser initial grouping on top of the Φmax
A

one. An initial coarser grouping will lead to a coarser final grouping in the

case of the Snap (Figure 5.8a) and the kSnap (Figure 5.8b) algorithms. In

the Figures they seem similar but in reality, as we have seen in the previous

graphs, the latter algorithm creates a much coarser grouping in any case.

The compressed algorithms create a different kind of visualization in this

case. When the summarization is compressed, all nodes are in reality clus-

ters, therefore are shaped as squares. The bigger the cluster, the bigger the

squares. We can see in Figures 5.9a and 5.9b that usually the central clus-

ter wil be the biggest one. The central cluster in Figure 5.10 has 89 nodes

within it. We define how heavy a graphical summarization is by the quan-

tity of elements displayed. Both techniques shows a great increase in cluster

quantity and contain less visual weight than the previous visualization. The

compressed kSnap combine with Hub still delivers the less graphically heavy

of all the summarizations and this corresponds perfectly with the results

obtained in the previous sections.

104

(a) Snap + Hub (b) kSnap + Hub

Figure 5.8: The comparisson of the main algorithms combined with the Hub one.

(a) Snap+Hub+Compressed (b) kSnap+Hub+Compressed

Figure 5.9: The compressed algorithms

105

Figure 5.10: kSnap+Hub+Compressed detail

106

Chapter 6

Conclusions

This is the final chapter of this work. In this chapter we will present first

our conclusions after working on this research and then we will show the

suggestions to improve upon the current state of this investigation as a future

work section.

1. Within the set of modified Snap family of algorithms used in this work,

the one that performed the best according to execution time and group-

ing number was the compressed, combined kSnap, Hub one. As seen in

Chapter 5, the advantages of this algorithm was the initial big group-

ing, contained iterative cycles for creating new groupings and cleaner

output. The initial big grouping was provided by the Hub algorithm,

that augment the information and group size by clustering using the

one-hop relations. The kSnap provide the shorter iterative cycles than

the SNAP algorithm. The post processing or compressed algorithm

provide a better output graph removing useless information.

2. The resulting graph generated by the compressed algorithms presented

in this work represent implicitly a weighted network. The nodes in the

compressed graph represent clusters and each cluster have a value, in

this case the number of clusters. The previous weight can be combined

with the number of connections with other weighted nodes. This kind

of networks can be mine again for more information, therefore making

the output of this algorithms a possible source for other link mining

algorithms as a pre-processing scheme.

3. Real Linked Open Data like many real data sets contained a lot of miss-

ing information. Other problem presented is the duplication of data,

specifically with equivalent relationships. The LOD problems when

summarizing a graph were partially solved modifying using methods

like Hub and compressing the graph as a post-processing practice. But

from the experimental results in Chapter 5, the algorithms here create

a better base for a further summarization than being a clear summa-

rization by itself.

4. In order generate better summarizations from the LOD data set would

be advisable if not necessary to use two or more hops extraction given

that relationships in the graph provides more information between

classes of objects. Better relationship information, makes the rela-

tionship grouping algorithms like Hub to generate bigger and better

groups, with objects that are more related to each other, therefor aid-

ing the summarization methods that will use the initial grouping as

base. In this are , this work was limited by the restriction of getting

only one-hop nodes based on the relationship given by the user.

6.1 Future work

In this section we will present suggestion on how future researchers could

build upon the work done in the investigation presented in this document.

1. In order to increase the amount of information available to present a

better graph summarization, a n-hop extraction should be added to

the process of getting the raw graph data. In order to obtain a n-hop

extraction it would be necessary to have a second set of parameters

that specify, from the related node classes, the relationships that will

be used to extract the 2-hop related nodes or second level nodes. In a

general case we should have n-sets of related nodes starting from the

one-hop until the n-hop. One of the challenges of having this n-hop

extraction is to define the second set of relationships. To ask to the

user a second set of relationships is inconvenient, because , the user is

seeking advice to explore and visualize the LOD data set and we cannot

scale this process easily given that the user will have to input for n-sets

of relationships. A future enhancement to the work presenting in this

document and related works in the field of graph summarization and

link mining would be to search on how to automatically decide on the

108

best possible second set of relationships in order to extract the two-hop

instances and if it is possible and relevant determine how to do it for

n− hops.

2. The compressed kSnapplusHub algorithm provides a summarization

that groups the nodes based on their relationships and attributes, and

the compression clean the summarized graph from nodes that increase

the sparsity of the matrices describing the summarized graph. While

the summarization creates identifiable clusters that can be explored

by the user, if the requested initial amount of instances is big (with

respect to the numbers use in this study) it can increase the size of the

graph to a point that is still not easily readable for a user. In order

to create a more readable summarization, a future enhancement would

be to use other algorithms on top of this summarization, therefore

use it as a pre-processing method in order to build upon the already

summarize data. A suggested method would be one that can create

human-readable inferences from a graph.

109

110

Bibliography

[1] SÃ¶ren Auer et al. “Introduction to Linked Data and Its Lifecycle on

the Web”. In: Reasoning Web. Semantic Technologies for Intelligent

Data Access Lecture Notes in Computer Science (2013), 1â90. doi:

10.1007/978-3-642-39784-4_1.

[2] Best Practice Recipes for Publishing RDF Vocabularies. url: http:

//dret.net/biblio/reference/swbpvocabpub.

[3] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked Data”. In:

Semantic Services, Interoperability and Web Applications (), 205â227.

doi: 10.4018/978-1-60960-593-3.ch008.

[4] “Browsing Linked Data with Fenfire”. In: Linked Data on the Web

(LDOW2008). url: http : / / data . semanticweb . org / workshop /

LDOW/2008/paper/19.

[5] Josep Maria Brunetti et al. “Formal Linked Data Visualization Model”.

In: Proceedings of International Conference on Information Integration

and Web-based Applications Services - IIWAS ’13 (2013). doi: 10.

1145/2539150.2539162.

[6] Diego Valerio Camarda, Silvia Mazzini, and Alessandro Antonuccio.

“LodLive, exploring the web of data”. In: Proceedings of the 8th Inter-

national Conference on Semantic Systems - I-SEMANTICS ’12 (2012).

doi: 10.1145/2362499.2362532.

[7] Rathachai Chawuthai and Hideaki Takeda. “RDF Graph Visualization

by Interpreting Linked Data as Knowledge”. In: Semantic Technology

Lecture Notes in Computer Science (2016), 23â39.

111

[8] E.h. Chi. “A taxonomy of visualization techniques using the data state

reference model”. In: IEEE Symposium on Information Visualization

2000. INFOVIS 2000. Proceedings (). doi: 10.1109/infvis.2000.

885092.

[9] Dadzie and Rowe. “Approaches to visualizing linked data: a survey”.

In: Semantic Web 2.2 (2011), 89â124. doi: 10.3233/SW-2011-0037.

[10] Pedro Domingos et al. “Markov Logic: A Language and Algorithms for

Link Mining”. In: Link Mining: Models, Algorithms, and Applications

(2010), 135â161. doi: 10.1007/978-1-4419-6515-8_5.

[11] Marc Downie et al. “Evolving a rapid prototyping environment for visu-

ally and analytically exploring large-scale Linked Open Data”. In: 2011

IEEE Symposium on Large Data Analysis and Visualization (2011).

doi: 10.1109/ldav.2011.6092338.

[12] Cody Dunne and Ben Shneiderman. “Motif simplification”. In: Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing

Systems - CHI ’13 (2013). doi: 10.1145/2470654.2466444.

[13] Nicola Fanizzi, Claudia Damato, and Floriana Esposito. “Mining Linked

Open Data through Semi-supervised Learning Methods Based on Self-

Training”. In: 2012 IEEE Sixth International Conference on Semantic

Computing (2012). doi: 10.1109/icsc.2012.54.

[14] Flavius Frasincar, Alexandru Telea, and Geert-Jan Houben. “Adapting

Graph Visualization Techniques for the Visualization of RDF Data”.

In: Visualizing the Semantic Web (), 154â171. doi: 10.1007/1-84628-

290-x_9.

[15] Lise Getoor. “Link mining”. In: ACM SIGKDD Explorations Newslet-

ter 5.1 (2003), p. 84. doi: 10.1145/959242.959253.

[16] Lise Getoor and Christopher P. Diehl. “Link mining”. In: ACM SIGKDD

Explorations Newsletter 7.2 (2005), 3â12. doi: 10.1145/1117454.

1117456.

[17] Hugh Glaser and Harry Halpin. “The Linked Data Strategy for Global

Identity”. In: IEEE Internet Computing 16.2 (2012), 68â71. doi: 10.

1109/mic.2012.39.

112

[18] Olaf Hartig and Johann-Christoph Freytag. “Foundations of traversal

based query execution over linked data”. In: Proceedings of the 23rd

ACM conference on Hypertext and social media - HT ’12 (2012). doi:

10.1145/2309996.2310005.

[19] Michael Hausenblas. “Exploiting Linked Data to Build Web Appli-

cations”. In: IEEE Internet Computing 13.4 (2009), 68â73. doi: 10.

1109/mic.2009.79.

[20] Tom Heath. “Linked Data - Welcome to the Data Network”. In: IEEE

Internet Computing 15.6 (2011), 70â73. doi: 10.1109/mic.2011.153.

[21] Tom Heath and Christian Bizer. “Linked Data: Evolving the Web into a

Global Data Space”. In: Synthesis Lectures on the Semantic Web: The-

ory and Technology 1.1 (2011), 1â136. doi: 10.2200/s00334ed1v01y201102wbe001.

[22] Keith Henderson et al. “It’s who you know”. In: Proceedings of the 17th

ACM SIGKDD international conference on Knowledge discovery and

data mining - KDD ’11 (2011). doi: 10.1145/2020408.2020512.

[23] Keith Henderson et al. “RolX”. In: Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining -

KDD ’12 (2012). doi: 10.1145/2339530.2339723.

[24] G. E. Hinton. “Reducing the Dimensionality of Data with Neural Net-

works”. In: Science 313.5786 (2006), 504â507. doi: 10.1126/science.

1127647.

[25] Karwan Jacksi, Nazife Dimililer, and Subhi R. “State of the Art Ex-

ploration Systems for Linked Data: A Review”. In: International Jour-

nal of Advanced Computer Science and Applications 7.11 (2016). doi:

10.14569/ijacsa.2016.071120.

[26] Dr Eldhose T John, Bibu Skaria, and P.x. Shajan. “An Overview of

Web Content Mining Tools”. In: Bonfring International Journal of

Data Mining 6.1 (2016), 01â03. doi: 10.9756/bijdm.8126.

[27] Roman Kontchakov, Mariano RodrÃguez-Muro, and Michael Zakharyaschev.

“Ontology-Based Data Access with Databases: A Short Course”. In:

Reasoning Web. Semantic Technologies for Intelligent Data Access Lec-

ture Notes in Computer Science (2013), 194â229. doi: 10.1007/978-

3-642-39784-4_5.

113

[28] Dr. Sanjay Kumar. “A Comparative Study of Various Data Trans-

formation Techniques in Data Mining”. In: International Journal of

Scientific Engineering and Technology 4.3 (2015), 146â148. doi: 10.

17950/ijset/v4s3/305.

[29] Latest ”RDF Primer” versions. url: http://www.w3.org/TR/rdf-

primer/.

[30] Angela Lausch, Andreas Schmidt, and Lutz Tischendorf. “Data min-

ing and linked open data â New perspectives for data analysis in en-

vironmental research”. In: Ecological Modelling 295 (2015), 5â17. doi:

10.1016/j.ecolmodel.2014.09.018.

[31] Kang Li et al. “LRBM: A Restricted Boltzmann Machine Based Ap-

proach for Representation Learning on Linked Data”. In: 2014 IEEE

International Conference on Data Mining (2014). doi: 10.1109/icdm.

2014.22.

[32] M Mathieu, H Sebastien, and J Mathieu. “Gephi: an open source soft-

ware for exploring and manipulating networks”. In: AAAI (2009).

[33] M. Mccord and M. Chuah. “Spam Detection on Twitter Using Tradi-

tional Classifiers”. In: Lecture Notes in Computer Science Autonomic

and Trusted Computing (2011), 175â186. doi: 10.1007/978-3-642-

23496-5_13.

[34] Aditya Krishna Menon and Charles Elkan. “Link Prediction via Ma-

trix Factorization”. In: Machine Learning and Knowledge Discovery in

Databases Lecture Notes in Computer Science (2011), 437â452. doi:

10.1007/978-3-642-23783-6_28.

[35] AndrÃ¡s Micsik, ZoltÃ¡n TÃ3th, AndSÃ!‘ndorTurbucz. “LODmilla: Shared

Visualization of Linked Open Data”. In: Communications in Computer

and Information Science Theory and Practice of Digital Libraries –

TPDL 2013 Selected Workshops (2014), 89â100. doi: 10.1007/978-

3-319-08425-1_9.

[36] Aswini Kumar Mohanty, Manas Ranjan Senapati, and Saroj Kumar

Lenka. “A novel image mining technique for classification of mammo-

grams using hybrid feature selection”. In: Neural Computing and Ap-

plications 22.6 (2012), 1151â1161. doi: 10.1007/s00521-012-0881-x.

114

[37] Axel-Cyrille Ngonga Ngomo et al. “Introduction to Linked Data and

Its Lifecycle on the Web”. In: Reasoning Web. Reasoning on the Web

in the Big Data Era Lecture Notes in Computer Science (2014), 1â99.

doi: 10.1007/978-3-319-10587-1_1.

[38] Lixian Ni et al. “Visualizing Linked Data with JavaScript”. In: 2013

10th Web Information System and Application Conference (2013). doi:

10.1109/wisa.2013.48.

[39] OWL 2 Web Ontology Language Primer (Second Edition). url: http:

//www.w3.org/TR/owl2-primer/.

[40] OWL Web Ontology Language Overview. url: https://www.w3.org/

TR/owl-features/.

[41] “PageRank Algorithm, 1998; Brin, Page”. In: SpringerReference ().

doi: 10.1007/springerreference_57796.

[42] Axel Polleres et al. “RDFS and OWL Reasoning for Linked Data”.

In: Reasoning Web. Semantic Technologies for Intelligent Data Access

Lecture Notes in Computer Science (2013), 91â149. doi: 10.1007/978-

3-642-39784-4_2.

[43] A. Johannes Pretorius and Jarke J. Van Wijk. “What Does the User

Want to See? What do the Data Want to Be?” In: Information Visu-

alization 8.3 (2009), 153â166. doi: 10.1057/ivs.2009.13.

[44] RDF 1.1 Concepts and Abstract Syntax. url: http://www.w3.org/

TR/rdf11-concepts/.

[45] RDF Vocabulary Description Language 1.0: RDF Schema. url: https:

//www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[46] RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax. url:

http://tools.ietf.org/html/rfc3986.

[47] Percy E. Rivera Salas et al. “Publishing Statistical Data on the Web”.

In: 2012 IEEE Sixth International Conference on Semantic Computing

(2012). doi: 10.1109/icsc.2012.16.

[48] N. Shadbolt, T. Berners-Lee, and W. Hall. “The Semantic Web Re-

visited”. In: IEEE Intelligent Systems 21.3 (2006), 96â101. doi: 10.

1109/mis.2006.62.

115

[49] Shashi Shekhar, Pusheng Zhang, and Yan Huang. “Spatial Data Min-

ing”. In: Data Mining and Knowledge Discovery Handbook (2009),

837â854. doi: 10.1007/978-0-387-09823-4_43.

[50] Martin G. Skjaveland. “Sgvizler: A JavaScript Wrapper for Easy Visu-

alization of SPARQL Result Sets”. In: Lecture Notes in Computer Sci-

ence The Semantic Web: ESWC 2012 Satellite Events (2015), 361â365.

doi: 10.1007/978-3-662-46641-4_27.

[51] SPARQL 1.1 Query Language. url: http://www.w3.org/TR/sparql11-

query/.

[52] SPARQL Query Language for RDF. url: http://www.w3.org/TR/

rdf-sparql-query/.

[53] SweoIG/TaskForces/CommunityProjects/LinkingOpenData. url: https:

//www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData#Project_Description.

[54] Lei Tang and Huan Liu. “Relational learning via latent social dimen-

sions”. In: Proceedings of the 15th ACM SIGKDD international con-

ference on Knowledge discovery and data mining - KDD ’09 (2009).

doi: 10.1145/1557019.1557109.

[55] Yuanyuan Tian and Jignesh M. Patel. “Interactive Graph Summariza-

tion”. In: Link Mining: Models, Algorithms, and Applications (2010),

389â409. doi: 10.1007/978-1-4419-6515-8_15.

[56] “Weaving the Web: the original design and ultimate destiny of the

World Wide Web by its inventor”. In: Choice Reviews Online 37.07

(2000). doi: 10.5860/choice.37-3934.

[57] What Is a URI and Why Does It Matter? url: http://www.ariadne.

ac.uk/issue65/thompson-hs.

[58] Å ejla ÄebiriÄ, FranÃ§ois GoasdouÃ c©, and Ioana Manolescu. “Query-

oriented summarization of RDF graphs”. In: Proceedings of the VLDB

Endowment 8.12 (2015), 2012â2015. doi: 10.14778/2824032.2824124.

116

Appendix A

Platform specific

documentation

This chapter present the most important technology specific implementation

details mentioned throughout this document.

A.1 Data Extraction Module

A.1.1 Query Builder

Get all classes query builder method

def dbpedia_get_all_classes(self):

query = """

PREFIX dbpedia -owl:<http :// dbpedia.org/ontology

/>

PREFIX dbp:<http :// dbpedia.org/property/>

PREFIX dbo:<http :// dbpedia.org/ontology/>

PREFIX owl:<http :// www.w3.org /2002/07/ owl#/>

SELECT DISTINCT ?class_type

WHERE {

?class rdf:type ?class_type.

} LIMIT 1000

"""

return query

118 Appendix A. Platform specific documentation

Get all relations ffrom a class

def dbpedia_get_all_relations(self , class_name):

query = """

PREFIX dbpedia -owl:<http :// dbpedia.org/ontology

/>

PREFIX dbp:<http :// dbpedia.org/property/>

PREFIX dbo:<http :// dbpedia.org/ontology/>

PREFIX owl:<http :// www.w3.org /2002/07/ owl#/>

SELECT DISTINCT ?relation_type

WHERE {

?class rdf:type <""" + class_name + """

>;

?relation_type ?object .

FILTER (! isLiteral (? object))

} LIMIT 1000

"""

return query

Get all instances from a given class with given relationships

def dbpedia_get_class_subject_instances(self , class_list ,

relation_list , instance_number):

1. Build the class list for the IN clause

in_string = ’’

for class_url in class_list:

in_string += ’<’ + str(class_url) + ’>,’

-- Remove last character

in_string = in_string [:len(in_string) - 1]

--debug

print ’\n\nThe class url list for the query is: ’

print in_string

2. Build the relation list for the IN clause

in_relation_string = ’’

A.1. Data Extraction Module 119

for relation_url in relation_list:

in_relation_string += ’<’ + str(relation_url) +

’>,’

-- Remove last character

in_relation_string = in_relation_string [:len(

in_relation_string) - 1]

--debug

print ’\n\nThe relation url list for the query is

: ’

print in_relation_string

query = """

PREFIX dbpedia -owl:<http :// dbpedia.org/ontology

/>

PREFIX dbp:<http :// dbpedia.org/property/>

PREFIX dbo:<http :// dbpedia.org/ontology/>

PREFIX owl:<http :// www.w3.org /2002/07/ owl#/>

SELECT DISTINCT ?subject

WHERE {

?subject rdf:type ?class_type;

?relation ?object.

FILTER(?class_type IN (""" + in_string

+ """))

FILTER(?relation IN (""" +

in_relation_string + """))

}

LIMIT """ + str(instance_number) + """

"""

return query

Get all instances related to a given instance through a set of given relationships

def dbpedia_get_relation_records(self , instance_list ,

relation_list , record_number):

1. Build the instance list for the IN clause

in_instance_string = ’’

120 Appendix A. Platform specific documentation

for instance_url in instance_list:

in_instance_string += ’<’ + str(instance_url) +

’>,’

-- Remove last character

in_instance_string = in_instance_string [:len(

in_instance_string) - 1]

--debug

print ’\n\nThe instance url list for the query is

: ’

print in_instance_string

2. Build the relation list for the IN clause

in_relation_string = ’’

for relation_url in relation_list:

in_relation_string += ’<’ + str(relation_url) +

’>,’

-- Remove last character

in_relation_string = in_relation_string [:len(

in_relation_string) - 1]

--debug

print ’\n\nThe relation url list for the query is

: ’

print in_relation_string

query = """

PREFIX dbpedia -owl:<http :// dbpedia.org/ontology

/>

PREFIX dbp:<http :// dbpedia.org/property/>

PREFIX dbo:<http :// dbpedia.org/ontology/>

PREFIX owl:<http :// www.w3.org /2002/07/ owl#/>

SELECT DISTINCT ?subject ?relation ?object

WHERE {

?subject ?relation ?object.

FILTER(?subject IN (""" +

in_instance_string + """))

FILTER(?relation IN (""" +

in_relation_string + """))

}

A.1. Data Extraction Module 121

LIMIT """ + str(record_number) + """

"""

return query

