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Abstract 

 
Many infrastructures and mechanical structures are inevitable to suffer 

damage along with aging, which has drawn a lot of attention during the 

research of last decades in terms of the damage localization and 

quantification of engineering structures for health evaluation. Damage 

identification based on vibration-based data has been developed rapidly, 

since the change of physical structure naturally causes a change of 

system property such as natural frequency, modal damping and mode 

shape. There exists a variety of vibration-based methodologies for 

damage detection: by means of the change of natural frequency, the 

change of mode shape, the change of frequency response function and 

the change of transmissibility function, and so on. Among these 

methodologies, measuring the change of transmissibility function is 

preferable since it not only has a better sensitivity to the damage but 

also none prior information of the system loading is required.  

Transmissibility function as one of the most popular methods widely 

applied for identifying damage. Moreover, it is traditionally defined as 

response spectrum ratio between two degrees of freedom. During the 

recent decades, more damage indicators based on transmissibility 

function have been proposed and their results of damage identification 

have proved the excellent performance of this approach in terms of the 

sensitivity than the classical frequency response function (FRF). The 

author also points out the significance of poles and zeros to localize 

damage in the dynamic system. More recently, it has been proved that 

the value of transmissibility function converges to the mode shape ratio 

when frequency bandwidth is restricted to the system’s poles.  

The convenience and effectiveness of using transmissibility in practice 

is the basis of making it selected as the main research object in this work. 

A new conception, namely strain transmissibility function, has been 

proposed in this study due to the fact that strain is more sensitive 

regarding to damage in comparison with displacement, which could be 

proved through the related sensitivity analysis. In addition, the 



 

 

accuracy of damage localisation also relies on the number of sensors. 

Especially when dynamic test is performed on large structures such as 

bridges, tunnels and buildings, it is extremely difficult to reach the 

target of full coverage on the objects. Also, usually a large number of 

sensors are need and then the idea is impracticable mainly for economic 

reasons. Fortunately, distributed fiber optics techniques have kept 

developing rather maturely and they have been applied into various 

domains which can measure continuously strain and temperature along 

the structure layout. During the validation of the feasibility of the 

proposed new conception and approach, a series of simulation studies 

and the related experiments based on distributed fiber optics have been 

carried out. 

However, many researchers mainly concentrate on linear damage case 

where damage can be considered as the linear reduction of mass and 

stiffness, apparently, their methodology is unable to detect the change 

caused by the nonlinear damage. Damage scenarios in engineering 

structures are manifested as nonlinear behaviours in many cases, which 

could be deemed as the potential security hazard. Certain types of 

damage in MDOF systems create a significant nonlinear change instead 

of a linear one, such as breathing crack (Bilinear stiffness), post-buckled 

structures (Duffing nonlinearity) and rattling joints (The system with 

discontinuity), etc. Therefore, the study on nonlinear damage 

identification is of great importance. 

Another part of this study focuses on nonlinear damage identification 

based on the conception of nonlinear output frequency response function 

(NOFRF). The highlight of this work is the extension of the NOFRF 

approach to the general input condition and corresponding simulation 

on a MDOF system clearly demonstrates its availability. In particular, 

this work also discovers and proves the relationship between NOFRF-

based transmissibility function and Output-based transmissibility 

function under general input condition, which offers a more convenient 

and reliable strategy for detecting and localizing damaged components, 

on account of various damaged scenarios, including existence of single 

damaged component and multiple damaged components. In addition, 

various loading scenarios are taken into consideration as well, including 

single-point loading, multiple-point loading and distributed uniformed 

loading. 
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 CHAPTER 1 
Introduction 

 

 

 

1.1 Overview   

This chapter deals with a systematic literature review about structural 

damage identification concerning the field of Structural Health 

Monitoring (SHM). Due to the continuously increasing demand on 

damage identification for engineering infrastructures, the methods 

about vibration-based structural damage identification have drawn the 

attentions of many researchers. A brief review on above-mentioned 

methods is given. Afterwards, on the account of the rapid development 

of distributed fiber optics technology that show many distinct 

advantages, the potentials applied to SHM have been keeping 

investigated. A literature review of distributed fiber optics is presented 

later on, which involves the recent engineering applications. Finally, it 

clarifies the research objectives and the novel contributions of this thesis. 

1.2 Structural Health Monitoring  

The security issues of aerospace, civil and mechanical engineering 

infrastructures are increasingly catching the sight of many researches, 

because most of civil, mechanical and aerospace structures are 



Chapter 1. Introduction 

 

2 

vulnerable to damage due to human factors, natural disasters, prolonged 

fatigue and corrosion which makes SHM become strongly motivated. 

Damage is defined as changes of material or geometric characteristics, 

also including changes of boundary conditions and system connectivity. 

Loads of available effective non-destructive tools and researches have 

been emerged over the past 30 years, and damage identification becomes 

the coral basis of SHM.  

1.2.1 The conception of SHM 

The process of implementing a damage identification strategy for 

aerospace, civil and mechanical engineering infrastructure is referred to 

as structural health monitoring (SHM)[1]. The basic idea is to infer 

changes in structural properties and predict structural damage by 

measuring the response of the structure before and after abnormal loads, 

or to detect long-term structural degradation through continuous 

monitoring. For civil engineering structures, the SHM system can 

monitor structural damage under earthquake or explosion, or monitor 

health status of the structures for a long term under the surrounding 

environment and human activities. This information can provide an 

important reference for the structural safety assessment and can also be 

used for the maintenance of the structures and the assessment of their 

remaining life.  

SHM system generally consists of four main subsystems[2]: 1. Sensor 

system; 2. Signal acquisition and processing system; 3. Signal 

communication and transmission system; 4. Signal analysis and 

monitoring system. 

SHM technology is based on the measurement results from the same 

location of structures at different time stages to identify the health state 

of the structures, so historical data is critical, and the accuracy of 

recognition depends strongly on the sensors and the interpretation 

algorithms. It can be said, structural health monitoring is likely to be 

widely used offline, static, passive damage monitoring, into online, 

dynamic, real-time monitoring and control. However, current SHM 

systems to ensure the safety operation of bridges as the goal still need 

to be developed compared to the anticipation due to the main reason that 

the current SHM systems are devoting at damage detection after the 

existence of damage rather than damage prognosis. Therefore, damage 
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detection and damage prognosis can be composed of two main research 

topics of SHM and there is inherent difference between them: Damage 

detection is carried out based on the deterministic monitoring data[3-5], 

while damage prognosis is to predict the possible damage in the future 

based on historical monitoring data. The main purpose of damage 

prognosis is to remind the owner taking necessary technical measures 

to reduce the structural damage or prevent possible catastrophic 

damage before damage occurrence[6-8]. 

1.2.2 Model-based and data-driven approach 

Due to the higher performance and increasing demand for structural 

health monitoring system, damage detection has become more and more 

important with aiming to increase the safety and reliability of the 

structures. Early fault diagnosis can help to avoid abnormal events and 

reduce the loss of productivity, which in turn can be beneficial to avoid 

the main system failures and disasters. Therefore, fault diagnosis is a 

major research topic, attracted by industry practitioners and academic 

researchers. There is a lot of literature about the process of fault 

diagnosis from analysis methods to artificial intelligence and statistical 

methods. From the viewpoint of modeling, some methods need precise 

process models, semi quantitative or qualitative models. On the other 

hand, some methods don’t depend on any models, only rely on the time 

history data. The fault diagnosis methods from [9], [10] and [11] can be 

required is divided into two categories, model-based and data-driven 

methods regarding to the prior process knowledge.  

Model-based methods can be divided into qualitative[12, 13] and 

quantitative[9, 10, 14, 15] methods, given the provided prior knowledge, 

which is usually developed based on some basic understanding of the 

process of physics. In the quantitative model, the understanding of this 

model can be read from the relationship between system input and 

output function. As for qualitative model, qualitative functions can be 

used to describe the system. Data-driven methods take the availability 

of a large amount of time history data, which can be converted and 

presented as a priori knowledge to different ways of diagnosis system. 

Feature extraction can be made from those time history data in order to 

diagnose faults. The feature extraction process can be defined as 

quantitative or qualitative methods as well. In the quantitative feature 
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extraction, it can be divided into the methods based on statistical or non-

statistical way. 

Model-based method is mainly discussed in the finite element model 

development. After the initial development of the finite element model, 

the experimental data is used to update the dynamic characteristics of 

system matrix (mass, stiffness and damping), to make the model more 

accurate which is able to represent the experimental structure. Then 

making use of the measured structure data collected to perform damage 

identification through the inverse problem[16].  

Data-driven approach, as another hot topic of damage detection, has 

been continuously developing. The data-driven approaches do not need 

prior knowledge of the process, but aim at investigating the hidden 

information in the data through various data analysis and processing 

methods based on the historical process data, and obtaining the different 

data characteristic patterns under the normal operational condition and 

the damaged situation, thereby determining the operational status of 

the process. Because the data-driven method only relies on the time 

history data, it is general-purpose and suitable for the fault detection 

and diagnosis of various structures and devices. In the meantime, 

through the various data processing and analysis methods (such as 

multivariate statistical methods, cluster analysis, spectral analysis, 

wavelet analysis, etc.) to extract the feature from the data in order to 

identify the damage. Data-driven can be categorized into linear 

regression method[17], artificial neural network method[18-20], support 

vector machine method[21-23], fuzzy modeling methods[24-26]. The 

main advantage of data-driven methods is that it does not need to set up 

a complex mathematical model, which reduces the workload of theory 

and calculation, and avoids the error caused by modeling. And high-

dimensional data can be condensed into low-dimensional data to be 

analyzed[27]. But from another point of view, it is too dependent on the 

accuracy of vibration measurement signals. Measurement error and 

measurement noise will have a great impact on the recognition results. 

The most critical point is that data-driven methods are not directly 

related to the physical parameters of the structure itself, so it is difficult 

to achieve quantitative identification of structural damage. 
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1.2.3 Applications of SHM system 

Many infrastructures like towers, high-rise buildings and bridge 

structures must have been regularly assessed in order to achieve safety, 

maintenance, and obtain economic benefits. The structure maintenance 

and monitoring of the condition of the structure becomes a great 

challenge. The structural health monitoring (SHM) in recent decades in 

civil engineering, aerospace engineering, machinery and many other 

fields has aroused great concern. For an example, a variety of sensors 

have been installed in Akashi Kaikyo Bridge[28], as the world longest 

suspension bridge, in order to confirm the design assumptions and 

relevant parameter values of the bridge under strong wind and 

earthquake. Sensor devices like anemometers which are aiming to 

determine the wind characteristics of the bridge, seismometers, 

accelerometers are used to verity the dynamic behavior under 

earthquake, velocity gauges, girder edge displacement gauges, tuned 

mass damper (TMD) displacement gauges, thermometers and GPS. 

Three bridges of the Korea Expressway Corporation in Korea[29] have 

been chosen as a Korea-US joint research, various smart sensors and 

sensor configuration have been adopted such as piezoelectric sensors, 

wireless sensors, and also vision-based monitoring system, attempting 

to validate their independent research and development on the smart 

sensors, sensing monitoring system and data processing algorithms. 

Take another example, the Canton Tower in Guangzhou[30], China, 

with a total height of 600m, is a circular gradient grid structure. SHM 

system has been applied into this tower, with implementing 800 sensors 

to cover the complete tower itself, which contains 6 modules: Sensory 

system, Signal acquisition and transmission system, Signal processing 

and control system, Data management system and Maintenance system. 

In order to employ the SHM system, ambient vibration under different 

conditional stages has been carried out for a long term monitoring. FEM-

based mode update has been accomplished by comparing the 

experimental modal analysis. Also the relative modal parameters of the 

tower have been successfully identified. 
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1.3 Vibration-based structural damage 

identification 

With the advancement of science and technology, modern space 

structure is inclined to be large-scale and complexed due to the demand 

for industrial development, as well as the future development of 

mankind. However, these structures will be damaged under some 

environmental conditions which will change the characteristics of the 

structure, and lead to a greater structural damage accumulation. And 

eventually it will bring about sudden failure of the structure, so that the 

safety of the structure is being threatened. Therefore, structural damage 

identification has become the focus of attention of scholars all over the 

world. Especially, structural damage diagnosis based on structural 

vibration response and system dynamic characteristic parameters has 

become a focus of research in recent decades. And structural damage 

identification based on non-destructive testing methods is a current hot 

and difficult research. Nowadays non-destructive identification 

technology is widely used in the aerospace industry, power plant 

equipment, construction, metallurgy and machinery manufacturing etc. 

The basic idea is: damage can cause changes in the structures of the 

physical parameters (mass, stiffness, etc.), the modal parameters of the 

structures (modal frequencies, mode shapes, modal damping, etc.) will 

change accordingly, thus damage can be determined based on these 

variables.  

According to different technical levels, the damage identification and 

quality assessment of engineering structures can be divided into four 

levels[31]:  

1) Whether the structure is expected to be damaged;  

2) To determine the location of damage;  

3) To determine the degree of damage;  

4) Life expectancy after the structural damage.  

The following part demonstrates various vibration-based methods on 

damage identification briefly. 
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1.3.1 Based on the change of natural frequencies[32-37] 

Natural frequency is a function of structural stiffness and mass. An 

occurrence of damage to the structures will lead to a change of natural 

frequencies. For the actual engineering structures, the natural 

frequencies are easy to be measured and not related with the 

measurement position. The error of the frequency measurement is 

smaller than that of the vibration mode and the damping measurement. 

But it is not enough to provide sufficient information for damage 

identification. The advantage of using natural frequencies to detect 

damage is that the natural frequencies are easy to be obtained and the 

measurement accuracy is high. But natural frequencies of structural 

sometimes are not very sensitive to early damage, usually only existence 

of damage can be found, and the damage location cannot be determined 

due to that a damage at different locations can cause the same amount 

of frequency change. Some investigations have been published in 

relative articles, which claimed that damage identification based on 

natural frequencies can be merely feasible for some particular structures. 

The application on complexed structures is still a challenge and it needs 

to be developed. 

1.3.2 Based on the change of mode shapes[38-45] 

Structural damage will result in changes in mode shape, and mode 

shape contains the location information, hence the methods based on the 

vibration mode shape can not only identify the damage but locate the 

damage. The basic idea is to identify the mode shape before and after 

damage, and compare the difference for each measurement point which 

is capable to recognize and localize the damage. In addition, MAC and 

COMAC criteria could be useful damage indicators as well. Apart from 

the change of mode shape, the slope and curvature of mode shape could 

be used to damage identification based on the fact that the small 

perturbation caused by the damage on the mode shape will be amplified, 

resulting in a significant change in the slope and the curvature of the 

mode shape. Therefore, the slope and the curvature of the mode shape 

is more sensitive in terms of damage compared to mode shape itself. 

However, the measurement error of eigenvectors is rather larger than 

that of eigenvalues. The effectiveness of the mode shape based method 
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depends on the accuracy of the identified modes, and the accuracy of the 

modes is related to the quality of the test data and the number of 

measurement points. And the quality of test data relies on the 

instruments and the corresponding methods Generally the 

accelerometers and other traditional sensors have been applied into 

acquire the response, also there emerges some advanced test methods, 

such as laser Doppler vibrometer, Spot pattern interferometer, fiber 

optics, etc. 

1.3.3 Based on the change of flexibility[46-54] 

Under the condition that the modal normalization, the flexibility matrix 

is a function of the reciprocal of the frequency and the mode shape. As 

the frequency increases, the reciprocal effects of the high frequency in 

the compliance matrix are negligible, so that a matrix with good 

accuracy can be obtained as long as the first few lower order modal 

parameters and frequencies are measured. The largest element in each 

column of the difference matrix is obtained from the difference matrix of 

the two flexibility matrixes before and after damage, and the position of 

the damage can be found by checking the largest element in each column. 

Pandey and Biswas proposed a structure damage method based on 

flexibility matrix difference, and it is shown that the flexibility matrix 

difference is quite effective in locating and identifying the damage. 

Toksoy and Aktan[52] proposed a method to evaluate bridge condition 

based on modal flexibility obtained from measured processing data, and 

it has been applied into a three-span high way bridge. Moreover, Li 

Yongmei et al.[53] proposed a structure damage identification method 

based on flexibility difference curvature, and it is proved that only low 

modal orders are effective enough to be considered into assess the 

structural health conditions. Catbas et al.[54] further extended the 

application of modal flexibility and derived a practical approach to 

obtain modal flexibility from real modal tests data. 

1.3.4 Based on the change of FRF[55-59] 

When natural frequency or mode shape are considered as the basis for 

damage identification, the primary step is to identify the natural 

frequencies or mode shapes of the structure by means of modal 

identification methods, which is time-consuming and introduces 
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parameter identification errors. And even, when the damage occurs near 

the node of a certain mode, the changes of modal parameters, such as 

the natural frequency and mode shape, are very small before and after 

the structural damage, thus the structural damage cannot be identified 

based on those modal parameters. Therefore, using frequency response 

function considered as raw data without data post-processing could be a 

greater approach for damage detection. 

Based on the similar assumption of detecting the damage in accordance 

with the greatest change of mode shape, a new conception called 

“operational mode shape” could be utilized and applied into the damage 

detection, through finding the greatest change of operational mode 

shape during the selected frequency range. There are various existing 

methods for damage detection, which are based on FRF-operational 

mode shape, FRF-operational mode shape slope, FRF-operational mode 

shape curvature and its square. An issue needs to be noted, true damage 

location might be masked when a broader frequency range is considered 

into the selection for damage indicator calculation, due to the reason 

that the differences between undamaged and damaged frequency 

response functions where are near around resonances and anti-

resonances are going to be larger, which could cover the true damage 

location if a false damage location is identified under those frequencies. 

Therefore, a new conception of occurrence has been put forward in order 

to lower the possibility of identifying false damage locations, based on 

the idea that the location can be found where the maximum difference 

between undamaged and damaged frequency response functions under 

each frequency line. And occurrence will be counted and summed so as 

to locate the damage. 

1.3.5 Based on the change of transmissibility function[60-69] 

Transmissibility function as one of most popular methods widely applied 

for identifying damage has been proposed firstly in[60]. And it is 

traditionally defined as response spectrum ratio between two degrees of 

freedom. During the recent decades, more damage indicators based on 

transmissibility function have been proposed[60-62] and demonstrated 

their excellent performance in terms of damage identification, owing to 

the fact that transmissibility is more sensitive to local damage compared 

to FRF, which has been discussed in[65], and it points out the 
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significance of poles and zeros to localize damage in the dynamic system. 

More recently, it has proved that the value of transmissibility function 

converges to the mode shape ratio when frequency bandwidth is 

restricted to the system’s poles. Even though the methods based on 

transmissibility don’t need any mathematical model or a priori 

knowledge, and can effectively identify early structural damage, the 

number and position of the measurement points have a great influence 

on the damage identification accuracy[70]. 

However, many researches mainly concentrate on linear damage case 

where damage can be considered as the linear reduction of mass and 

stiffness, and it has been proved to be insensitive in terms of nonlinear 

damage. Few researches concentrate on the nonlinear damage situation 

based on the conception of transmissibility so far. It is worthy to mention 

that Timothy J. Johnson[65] introduced nonlinear component in MDOF 

system by utilizing cubic nonlinear stiffness on the spring. Lang[66] 

firstly proposed the damage index for detecting nonlinear component 

based on nonlinear output frequency response function under harmonic 

excitation, which has been proved effectively by mathematical 

derivation and relevant numerical simulations. Zhao and Lang[69] have 

recently proposed a new method based on transmissibility at super-

harmonic frequencies for identifying nonlinear components, that does 

not need the identification of NOFRFs, in other words, input signal 

doesn’t need to be measurable. 

1.4 Fiber optics 

Fiber optic transmission and sensing are two important areas of fiber 

technology[71]. Fiber-optic sensor is widely used because of its rapid 

development and application. Fiber-optic sensor has strong potentiality 

of anti-electromagnetic interference, high sensitivity, good electrical 

insulation, safe and reliable, corrosion-resistant. It can be applied in 

many fields such as industry, agriculture, biomedicine, national defense 

and so on, which could be reckoned as an innovational measurement 

placement instead of the traditional detection technology and 

instrumentation.  

Its enhancement on measurement technology and instrumentation can 

be reflected as the following aspects[71-74]: (1) High sensitivity. Because 



Chapter 1. Introduction 

 

11 

light is an electromagnetic wave with a very short wavelength, its optical 

length could be obtained through its light phase. The optical fiber 

interferometer, for example, because the diameter of fiber optics is very 

small, when the fiber is subject to a small mechanical external force or 

temperature changes, its optical length will change, that causes a large 

phase change. (2) Anti-electromagnetic interference, electrical 

insulation, corrosion resistance, intrinsically safe. As the optical fiber 

sensor is the use of optical transmission of information, also optical fiber 

is electrically insulated, corrosion-resistant transmission medium, and 

safe and reliable, which makes it effectively use for strong 

electromagnetic interference, flammable, explosive and other harsh 

environments. (3) High measurement speed. Light is the fastest and can 

transmit two-dimensional information, it can be used for high-speed 

measurements. Signal analysis of radar requires a very high detection 

rate, the application of electronic methods is difficult to achieve, while 

the use of high-speed spectrum analysis based on light diffraction 

phenomenon can be resolved. (4) Huge information capacity. In addition, 

fiber optic sensor also has a light weight, small size, able-curved, wide 

range of objects, reusability, and low cost. The optical fiber sensor has 

so many advantages, making its application is very extensive, involving 

petrochemical, power, medical, civil engineering and many other fields. 

So it will have a huge role in promoting on the development of science 

and technology, industrial and agricultural production and national 

defense construction. 

1.4.1 Fiber optics sensing technologies  

A typical fiber optic transmission configuration is shown in Fig. 1-1, 

which mainly contains five components and operate the process of 

transmitting the information. 

1) A converter should be used in order to transform electric signal into 

a signal which could be recognized by light source. 

2) A light emitter should be needed to transmit the light into fiber 

optics. 

3) The light signal should go through the fiber optic until it reaches the 

end of the fiber optics. 

4) It is a must to have a light detector, which is able to detect the light 

signal and reconvert the light signal into electric signal at the end of 
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the fiber optics. 

5) A converter is needed to reconvert the light signal back to the electric 

signal and complete the whole transmission process. 

 

 
Fig. 1-1 Configuration of a typical fiber optics transmission process 

 

The basic composition of a cross-sectional typical fiber optics is shown in 

Fig. 1-2, which are the core, the cladding and the coating. The optic fibers 

are usually made by transparent materials such as glass, and it is the 

core which surrounded by another cylindrical layer called cladding. And 

the outer layer is aiming to protect the fiber and provide stronger 

durability. Generally speaking, the diameter of the optical fiber is rather 

thin, like 0.1-0.3 mm. However, these parameters are not fixed and able 

to be adjusted according to the particular demands. 

 

Core

Cladding

Coating
 

Fig. 1-2 The basic composition of a typical fiber optics 

 

There are several existing fiber optics sensing technologies in recent 

days, and they have been already applied into commercial purpose. In 
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general, they can be classified into three types: grating-based sensors, 

distributed sensors and interferometric sensors[75]. There are loads of 

fiber optics applied into real industrial engineering field. An overview of 

the types of fiber optics based on the sensing technologies has been listed 

in Fig. 1-3. 

 

Fiber Optic
 Sensors 

Grating-based
Sensors

Distributed
Sensors

Interferometric
Sensors

Fiber Bragging
Grating Sensors

Long Period
Grating Sensors

Tilted Fiber
Bragging 

Grating Sensors

Rayleigh
Distributed

Sensors

Raman
Distributed

Sensors

Brilliouin
Distributed

Sensors

SOFO
Sensors

Mach-Zehnder
Sensors

Fabry-Perot
Sensors

Sagnac
Sensors

 
Fig. 1-3 A list of the types of fiber optics (adapted from [75]) 

 

1.4.1.1 Grating-based sensors 

Fiber Bragg Grating sensor is a nonlinear optical fiber sensor of 

wavelength modulation type[76]. It has been considered as the most 

mature fiber optics sensor, which have been already applied into many 

industrial fields. A basic functional principle of FBG can be found in  

Fig. 1-4. 
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Fig. 1-4 Functional principle of FBG sensor (adapted from [75]) 

 

The fiber Bragg grating sensor is one of the most widely used fiber optic 

sensor, which can change the wavelength of the reflected light according 

to the change of ambient temperature and / or strain[77, 78]. Fiber Bragg 

Grating is based on holographic interference or phase mask method, 

which makes a small piece of light-sensitive optical fiber exposed to a 

period distribution of light intensity. Thus the optical refractive index of 

the optical fiber is permanently changed depending on the intensity of 

the light to be irradiated. This method of periodic changes in refractive 

index of light is called Fiber Bragg Grating. 

When a beam of light with a broad spectrum is propagated to the fiber 

Bragg grating, each fraction of the fiber after the change in refractive 

index reflects only a specific wavelength of light, called the Bragg 

wavelength, as shown in the following equation(1-1). This characteristic 

makes the fiber Bragg grating reflect only a specific wavelength of light, 

and other wavelengths of light will be spread. 

 

2b n  
 (1-1) 

 

In equation, b  is the Bragg wavelength, n is the effective refractive 

index of fiber core and   is the interval between gratings is called the 

grating period. 
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Fig. 1-5 A perspective view of a fiber Bragg grating 

 

Strain and temperature will affect the effective refractive index n and 

the grating period Λ of fiber Bragg grating, which results in the change 

of grating reflected light wavelength. The change of the reflection 

wavelength of fiber Bragg grating with strain and temperature can be 

approximated by the relation in equation(1-2): 

 

   
0

1 e np T


  





     

 
(1-2) 

 
In equation, where   is the change of reflected wavelength and 0  is 
the initial reflected wavelength. 

The term  1 ep    indicates the effect of strain change on the reflection 

wavelength. Where ep  is the strain optical sensitivity coefficient, and ε 

is the change of strain effected by grating. The term  n T     

indicates the effect of temperature change on the wavelength. Where   

is the thermal expansion coefficient and n  is the temperature optical 

sensitivity coefficient. The coefficient   reflects the optical refractive 

index due to temperature changes and the coefficient n  reflects the 

same temperature changes caused by the grating cycle change. 

Because the fiber Bragg grating will be affected by strain and 

temperature changes at the same time, it is necessary to consider both 

of these factors during the calculation of reflection wavelength changes, 

but also to analyze them separately. When performing temperature 

measurements, the fiber Bragg grating must be kept completely free of 

strain. You can use the FBG temperature sensor that is specifically 

packaged for this purpose. This kind of sensor ensures that the 

properties of the fiber Bragg grating inside the package are not coupled 
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to any external bending, stretching, squeezing or twisting strain. In this 

case, the thermal expansion coefficient   of the glass is usually 

negligible in practical use. Therefore, the change in the reflection 

wavelength due to the temperature change can be mainly determined by 

the temperature optical sensitivity coefficient n  of the optical fiber. 

Fiber Bragg grating strain gauges are more complicated in some way 

because temperature and strain affect both the reflected wavelengths of 

the sensor. In order to perform the measurements correctly, the 

influence of the temperature on the fiber Bragg grating must be 

compensated during the test. In order to achieve this compensation, you 

can use a FBG strain sensor with good thermal contact FBG 

temperature sensor to complete. After obtaining the test results, simply 

subtracting the wavelength change measured by the FBG temperature 

sensor from the wavelength change measured by the FBG strain sensor 

can eliminate the second expression to the right of the plus sign from 

equation(1-2) and this compensates for the effect of temperature changes 

during strain tests. 

In addition to be used widely in strain and temperature monitoring 

applications, a new signal detection technology has been discovered 

based on acoustic or ultrasonic signals[79, 80], which could be effectively 

applied into structural health monitoring. The coral change for this 

technology is traditional PZT sensors have been placed by FBG sensors 

to collect acoustic or ultrasonic signals, which makes wring issue more 

simple. Full scale monitoring is on high demand for large infrastructures, 

FBG sensors are capable to meet this need by using the multiplexing 

technology.  

1.4.1.2 Distributed sensors 

Distributed fiber-optic sensor is arranged along the field, the field 

distribution and time-varying information can be measured and 

monitored by using the unique detection technology along the fiber 

transmission path along. They can provide a real distributed way to 

monitor the structures along the entire fiber. Due to the large amount 

of information obtained at the same time, the cost of unit information is 

greatly reduced, so that a high cost performance can be obtained. It is a 

very promising sensor which can be competitive with point sensing 
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sensors, so in recent years more and more attention has been caught on 

the research of distributed fiber optics sensors. The basic principle of 

distributed fiber optics is shown in Fig. 1-1.  

 

Light

Circuit

Light

Coupler

Measured field

Detector

Distributed fiber optics

 
Fig. 1-6 Basic principle of distributed fiber optics 

 

There are three main classification based on two different sensing 

technologies: OTDR, OFDR and POTDR, namely optical time domain 

reflectometry, optical frequency domain reflectometry and polarization 

optical time domain reflectometry respectively. Optical time domain 

reflectometry technology emerged at the beginning of 1980, aiming to 

test the optical cables for the use of telecommunications. In the OTDR 

technique[75, 81-83], a short light pulse is emitted into the fiber, and 

then the photodetector processes the amount of light which is 

backscattered as the beam propagates along the fiber.  

Generally speaking, light transmission in the fiber will occur three types 

of scattering, including Rayleigh scattering caused by the changes in the 

refractive index of fiber, optical phonon-induced Raman scattering, and 

Brillouin scattering caused by acoustic phonon[84]. Rayleigh scattering 

is an inherent property of optical fibers. When light waves propagate 

during the fiber, they encounter linear scattering due to the random 

fluctuation of refractive index n of the fiber core. Brillouin scattering is 

the result of the interaction of incident light with acoustic or propagating 
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pressure waves, which is equivalent to a dense grating moving at a 

constant velocity (and with a certain frequency). Therefore, the Brillouin 

scattering can be regarded as the scattering of the incident light on the 

moving grating, and the Doppler effect makes the frequency of the 

scattered light different from that of the incident light. When the 

scattered light, incident light and pressure wave under specific 

frequency meet the phase matching conditions (for grating, is 

corresponding to meet the Bragg (Bragg diffraction conditions)), the 

scattered light intensity is the maximum under this frequency. 

 

 
Fig. 1-7 Backscattering spectrum (adapted from [84]) 

 

Raman scattering is the phenomenon that a photon of the incident light 

is scattered into another low-frequency photon by an acoustical photon, 

and the acoustical phonon completes the transition between its two 

vibrational states. Raman scattering depends on the temperature of the 

fiber which has been found in[85, 86] so as to develop various unique 

technique of measurement. Raman scattered light contains Stokes light 

and anti-Stokes light. As shown in Fig. 1-7, Rayleigh scattering does not 

change its wavelength, while Raman scattering and Brillouin scattering 

are the information carried by the inelastic scattering of light and 

matter. And their scattering wavelength is shifted with respect to the 

incident wavelength.  

And it is worthy to mention that Rayleigh scattering, as a quasi-elastic 

or linear phenomenon, mostly relies on any external physical field. And 
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Rayleigh-based distributed fiber optics is used to measure propagation 

effects, which contains attenuation and gain, phase interference and 

polarization variation. However, Raman and Brillouin-based distributed 

fiber optics are influenced by the propagation effects as well, but it can 

be neglected due to the direct relation with the measurement 

parameters. 

 

Table. 1-1 concludes the characteristics and applications of the 

distributed fiber optics based on OTDR technology. 
 

Table. 1-1 The characteristics and applications of the distributed 

fiber optics based on OTDR technology 

Technology Advantages Shortcomings 
Main 

applications 

OTDR 

Continuously 

shows the 

variation of 

the loss of the 

entire fiber 

line relative 

to the 

distance. 

Non-

destructive 

measurement, 

multi-

function, easy 

to use 

There is always a 

blind spot. The 

attenuation values 

measured at both 

ends of the fiber are 

usually different, 

usually the average 

value is taken. 

For the 

detection of 

fiber damage 

points 

BOTDR 

For a single 

distribution of 

the 

measurement 

parameters 

have a high 

accuracy and 

spatial 

Because the 

Brillouin frequency 

shift is very small, 

and its line width is 

very narrow, which 

requires the laser 

has a very high 

frequency stability 

Stress and 

temperature 

monitoring 
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resolution and a very narrow 

(about kHz) 

adjustable line 

width, the optical 

filter also has high 

requirements. 

The system is 

complex and 

expensive to 

manufacture and 

use. The current 

focus is on 

temperature and 

stress sensing. 

BOTDA 

High 

precision and 

spatial 

resolution, 

dynamic 

range, high 

accuracy 

The system is more 

complex, pump 

laser and detection 

laser must be 

placed on both ends 

of the measured 

fiber, the practical 

application contains 

certain difficulties; 

It cannot be 

measured due to 

the existence of 

damaged sensing 

points; Application 

conditions are 

limited; 

Stress and 

temperature 

changes caused by 

more difficult to 

distinguish 

Stress and 

temperature 

monitoring 

ROTDR 
Improve the 

system's 

The return of the 

signal is very weak; 

Temperature 

monitoring 
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relative 

sensitivity 

and 

temperature 

measurement 

accuracy, 

expand the 

system's 

functionality 

and reduce 

costs 

High requirement 

on light source. 

 

 

Distributed fiber optics technologies based on OFDR mainly contains 

three different types: OFDR (based on Rayleigh scattering), ROFDR 

(based on Raman scattering) and BOFDA (based on Brillouin scattering). 

Optical frequency domain reflection (OFDR) systems[87-92] has drawn 

the attention from many research institutes with aiming to obtain the 

goal of short spatial resolutions and cost-effectiveness. In order to obtain 

the sensors with high spatial resolution by taking advantage of OTDR 

technique, a very narrow pulse of light is needed, leading to the 

proportion of backscatter signal in a level. Therefore, the noise level is 

also expected to increase in order to detect the small changes from 

backscatter signals due to strain and temperature is almost impossible. 

These combined factors make OTDR-based distributed fiber optics with 

the high spatial resolution become very expensive, which stimulates the 

development of the research on OFDR-based distributed fiber optics. 

The strongest mode of scattering in the fiber is Rayleigh scattering, 

which is about -45db of the incident light. Rayleigh scattering is an 

inherent property of the fiber. During the process of pulling the fiber 

from the molten state to the solidified state, the inhomogeneity of the 

silica is caused by the random fluctuation of the refractive index of the 

core. The experimental and theoretical results show that the 

temperature sensitivity of the Rayleigh scattering coefficient is 

extremely weak for the glass fiber. Therefore, the solid-fiber distribution 

system on monitoring temperature based on Rayleigh scattering is 

difficult to achieve and the temperature resolution is rather low.  

The distributed optical fiber temperature sensor based on optical 
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frequency domain Raman scattering technique is used to analyze the 

frequency domain signal by network analyzer according to the principle 

of Raman scattering effect, so as to determine the fiber complex 

baseband transfer function and achieve the distributed measurement on 

temperature. 

The distributed fiber-optic sensors based on Brillouin frequency-domain 

analysis is similar to that of Raman scattering principle, also through 

the network analyzer to measure the complex fiber baseband transfer 

function, and then temperature information can be extracted from the 

amplitude and phase information of complex baseband transmission 

function, which results in the temperature of the distributed 

measurement. 

This section gives a detailed description of OTDR and OFDR distributed 

fiber optics. And compared to OTDR, OFDR sensors have the distinctive 

advantage that OFDR sensors have higher sensitivity and spatial 

resolution. And Table. 1-2 shows the detailed configuration of diverse 

distributed fiber optics. It should be noted that FBGs can be achieved as 

quasi-distributed sensors. 
 

Table. 1-2 Specification of different distributed fiber optic sensors 

(adapted from [93]) 

Sensing 

technology 

Transducer 

type 

Sensing 

range 

Spatial 

resolution 
Measurands 

Raman 

OTDR 
Distributed 

1km 

37km 

1cm 

17m 
Temperature 

BOTDR Distributed 20-50km 1m 
Temperature, 

Strain 

BOTDA Distributed 
150-

200km 

2cm(2km) 

2m(150km) 

Temperature, 

Strain 

Rayleigh 

OFDR 
Distributed 50-70m 1mm 

Temperature, 

Strain 

FBG 
Quasi-

distributed 

100 

channels 
2mm 

Temperature, 

Strain and 

Displacement 
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1.4.2 SHM applications on distributed fiber optics 

The majority of the photons sensing technology has been applied widely 

in the field of civil engineering application such as discrete FBG sensors. 

The topics about applications on infrastructures during the past few 

decades have been widely discussed in the various publications of [94-

99]. Considering the scope of the most advanced papers, only the use of 

optical fibers based on distributed sensing technology has been reviewed 

in this section. 

Currently distributed fiber optic sensors are more attractive in the SHM 

practice due to its excellent performance, compared to more traditional 

sensors. Despite their cost is expensive, they are still the best candidates 

that are more adaptable to diverse challenging environmental 

conditions. Although there are many advantages for distributed fiber 

optics, there still exist some limitations and challenges needs to be 

understood as follows:(1) Sensor package and installation; (2) Optical 

loss; (3) Fiber break; (4) Temperature range of the cable; (5) Quite limit 

of sampling frequency; (6) Lack of anti-aliasing filter. However, it is still 

being developing, since few applications on SHM projects based on 

distributed fiber optics have been come true. Anyway, in the past two 

decades, a variety of civil, mechanical and aerospace engineering 

structures, such as bridges, dams, tunnels and composite materials, etc. 

have been applied with distributed fiber optics. More detailed 

application descriptions are given here. 

Inspection and maintenance of existing infrastructures is the most 

urgent task for national infrastructure managers. Because of higher 

quality inspection method which can offer more reliable bridge 

assessment to determine the maintenance strategy, and structural 

health monitoring system, and identify the early abnormal statement, 

so as to reduce the costs. For example, the rehabilitated RC girder 

bridges strengthened the simply supported RC T-beam has been 

installed health monitoring system by using BODTR sensors and FBG 

sensors in order to carry out a series of static and dynamic loading test 

and obtain the monitoring data. The configuration of health monitoring 

system is shown in Fig. 1-8[100]. 
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Fig. 1-8 Configuration of health monitoring system (adapted from 

[100]) 

 

 
Fig. 1-9 Configuration of health monitoring system (adapted from 

[101]) 

 

The distributed fiber optic sensors based on backscattering 

reflectometer have been used in reinforced concrete slab successfully in 

order to identify the crack through monitoring strain along the fiber 

continuously[101]. 

More recently, a prototype of 13.5 meters of wind turbine blades has 
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been designed in order to develop the methodology for embedding 

several different types of sensors, FBG, OBR and traditional strain 

gauges respectively, into the structure during the manufacturing 

process, aiming to detect the damage after performing the static 

loadings[102].  

Besides, more practical applications can be found in the 

publications[103-107]. 

 

 
Fig. 1-10 Configuration of sensors and damage locations in blade 

prototype. The units in mm (adapted from [102]) 

 

1.5 Research objective and scope 

Structural health monitoring has drawn a lot of attention from many 

researchers due to the fact that since along with the accumulation of 

damage gradually time by time, the security of structures is becoming 

risky. Therefore, the need of structural health monitoring seems 

essential and necessary, and damage detection is the vital part of it. 

So far structural damage identification is still a coral and challenging 

research topic in structural health monitoring field. Existing research 

mainly focuses on identification and detection of linear damage in 

structures using modal parameters. There exists a variety of vibration-

based methodologies applied into damage detection: based on the change 

of natural frequency, based on the change of mode shape, based on the 

change of frequency response function and based on the change of 

transmissibility function, and so on. Among the above methodologies, 

transmissibility function embodies its particular characteristics that it 

doesn’t need any prior information about specific forms of loading and it 
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expresses more sensitive to local damage.     

During my research, I aim to develop damage detection algorithm based 

on transmissibility function. The transmissibility is traditionally 

defined as the ratio of the spectra of two different system outputs, it has 

been comprehensively studied and it is widely used for damage detection 

and fault diagnosis. During the recent decades, more damage indicators 

based on transmissibility function have been proposed and applied into 

damage detection effectively due to its inherent characteristics. It is 

more capable to detect local change compared to the FRF and the 

corresponding sensitivity of transmissibility function in terms of damage, 

and it points out the significance of poles and zeros to localize damage 

in the dynamic system. More recently, the authors Christof Devriendt et 

have proposed that the convergence of transmissibility functions when 

frequency goes closely to system’s poles is equal to ratio of mode shape 

between two different measurement points. They also pointed out that 

by using only a small frequency band around the resonance frequencies 

of structures, the outcomes of damage identification are more reliable 

and independent from the force location.  

Although the methodologies based on transmissibility functions seem 

quite effective practically, most objective structures are considered as 

bearing linear damage which rarely happens in real engineering 

structures. And many researches mainly concentrate on linear damage 

case that damage can be considered as the linear reduction of mass and 

stiffness, which has been proved to be insensitive in terms of nonlinear 

damage. Few researches concentrate on the nonlinear damage situation 

based on the conception of transmissibility so far. It is worthy to mention 

that Timothy J. Johnson introduced nonlinear component in MDOF 

system by utilizing cubic nonlinear stiffness on the spring. Hence it is 

worth citing a recent study on the extension of the concept of 

transmissibility for non-linear systems using the concept of ‘‘non-linear 

output frequency response functions’’ (NOFRF) which is proposed by 

Lang.  

In my thesis, OFDR-based distributed fiber optics, as a novel 

measurement technique, has been adopted. Since the evaluation on 

damage detection relies on the number of measurement sensors, 

distributed fiber optics is capable to offer an excellent strategy regarding 

the sensing spatial solution. The methodologies for linear damage 
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detection and nonlinear damage detection have been put forward 

respectively based on transmissibility function by using OFDR-based 

distributed fiber optics. 

1.6 Outline of the thesis 

In general, the thesis has been organized as four chapters initially 

starting with introduction which contains the background of structural 

health monitoring, vibration-based structural damage identification 

methods, fiber optics development history and detailed demonstration 

on distributed fiber optics. 

Chapter 2 demonstrates a new conception and application of strain 

transmissibility function on linear damage identification by using 

distributed fiber optics. The conception of traditional transmissibility 

function and its damage indicators have been reviewed at the beginning, 

and sensitivity analysis of strain transmissibility proves its higher 

sensitivity compared to traditional transmissibility in terms of damage. 

In addition, distributed fiber optics is capable to offer loads of sensors 

that is helpful to locate the damage more precisely. The relative 

simulations and experiments have been performed. 

Chapter 3 puts forward the methodologies of detecting and locating 

single or multiple nonlinear components under general input for MDOF 

system respectively. Nonlinear damage here is considered as breathing 

crack. Firstly, nonlinear output frequency response function (NOFRF) 

has been given a short review. Then nonlinear damage identification 

methods by using NOFRF-based and Output-based transmissibility 

under general input have been demonstrated in details. Moreover, 

distributed fiber optics is still applied into the beam structure as a dense 

measurement tool. A series of simulations and experiments have been 

carried out which could validate the effectiveness of the proposed 

methodologies. 

Chapter 4 summaries the significant achievements which have been 

discussed in previous chapters. In addition, future research suggestion 

and prospective regarding to the research scope of this work have been 

provided. 
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 CHAPTER 2 
Linear damage identification method 

 

 

2.1 Overview 

Damage detection performed on modal parameters (natural frequency, 

mode shape and damping) has many advantages compared to other 

methods mainly due to the fact that modal parameters merely depend 

on the characteristics of structures themselves[108]. Since structural 

vibration characteristics depend on structural physical parameters, a 

change of the physical parameters due to a linear damage, for instance 

a stiffness reduction, will inevitably cause a change of the structural 

dynamic response. 

Modal parameters identification during a continuous monitoring is 

usually performed by using only output measurement data and 

operational modal analysis. However, this could be a troublesome point 

in some cases, because the a priori hypothesis about independency of the 

modal parameters on the excitation level and the requirement of a flat 

spectrum of the driving force is not always respected. Among the 

operational feature that can be estimated from the structure response, 
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transmissibility function drew the attention of many researchers, 

because it does not require any prior knowledge of the exciting force and 

no modal identification is needed. 

Transmissibility is conventionally defined as the ratio of the spectra of 

two different outputs of the system and it was proposed as damage 

feature firstly in[60]. The damage feature is usually the difference 

among the transmissibility functions of the health structure and an 

unknown scenario. As a fact that strain is more sensitive regarding to 

damage in comparison with displacement, strain transmissibility has 

been studied. In addition, the accuracy of damage localisation, based on 

the aforementioned transmissibility function, relies on the number of 

sensors as well. When dynamic test is performed on large structures 

such as bridges, tunnels and buildings, conventional sensors are 

extremely difficult to cover the entire target. Usually the number of 

sensors needed to do this is too big and then the idea is impracticable 

mainly for economic reasons. Fortunately, distributed fiber optics 

techniques have kept developing rather maturely and they have been 

applied into various domains [83], [109] and [110]. Distributed fiber 

optic sensors can measure continuously strain and temperature along 

the structure layout and in some cases they can also be embedded into 

concrete for checking the internal health status.  

This chapter demonstrates the development of strain transmissibility 

function and its corresponding damage indicator by using distributed 

fiber optic sensor. A short review of damage detection based on 

traditional transmissibility function algorithm is described at the 

beginning. And then the conception of strain transmissibility has been 

proposed and its sensitivity analysis has been performed compared to 

that of traditional transmissibility. Corresponding simulation and 

experiment activities have been carried out respectively.  

2.2 Traditional transmissibility and strain 

transmissibility 

Transmissibility function is traditionally defined as the ratio of two 

different output spectra. As for a MDOF system, let ( )kF s  be driving 

force at DOF k, then the transmissibility function 
( ) ( )ij kT s  can be 

calculated as: 
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X s H s F s
   (2-3) 

 

where ( )ikX s  and ( )jkX s  are the system outputs at DOF i and DOF j 

respectively; ( )ikH s  and ( )jkH s  are the frequency response functions 

at DOF i and DOF j respectively. 

Similarly, transmissibility functions can also be defined in the same way 

between the same pair DOF i and DOF j when there is damage in the 

structure: 

 

( )

( ) ( ) ( )
( )

( ) ( ) ( )

D D
D ik ik k

ij k D D

jk jk k

X s H s F s
T s

X s H s F s
   (2-4) 

 

where superscript D stands for the damaged status of the structure. 

Usually, traditional transmissibility function (TTF) is calculated by 

acquiring acceleration, velocity or displacement measurement data. In 

this paper strain data are considered as base for a new transmissibility 

function, named Strain Transmissibility Function (STF). The aim of this 

work is to prove that STF is more sensitive to damage compared to TTF, 

based on the research achievement of TM Whalen, who has proved that 

higher order mode shape derivatives (e.g., modal curvature, third 

derivatives, and fourth derivatives) show better performance in terms of 

damage than the mode shape for beam-like structures[111].  

The strain frequency response function between the loading point k and 

measurement point i can be written as: 

 

2 2
1
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( ) ( 2 )
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i ir kr
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rk r r r r

X
H
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
   

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 
 

  (2-5) 

 

Where ir  and kr  are the rth order strain mode shape and 

displacement mode shape respectively while r  is the resonance 

frequency. Variable k and i represent loading point and measurement 

output point respectively. Then the strain transmissibility function (STF) 

between two strain frequency response functions becomes: 
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(2-6) 

2.3 Damage indicators 

Johnson[64] proposed the following damage indicator based on 

transmissibility function: 
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Where ( ) ( )( ) log( ( ))ij k ij kTP T   

Additionally, literature also proposes a damage indicator based on 

occurrences that seems to provide more reliable and robust results 

according to the authors[112]. It can be briefly explained that an 

occurrence is counted for each frequency step at the location where the 

difference between intact and damaged transmissibility is maximum. 

Hence, the result of occurrence relies on the frequency band that you 

choose. The corresponding equation is 

 

( ) ( ) ( )( ) (max ( ) ( ) )D

ij k ij k ij kO Count TP TP


     (2-8) 

 

From equation(2-8), it is shown that damage element could correspond 

to the maximum value of damage indicator integrated over a range of 

frequency band. The paper also demonstrates that the integration of 

frequency band could be applied to a small frequency band around the 

resonance frequencies of the structure under different loading 

conditions.  

Similarly, the damage indicators for strain transmissibility can be 

written as follows: 
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 




 




   (2-9) 

 

( ) ( ) ( )( ) (max ( ) ( ) )D

ij k ij k ij kO Count TP TP 


   

 
(2-10) 

 

Where ( ) ( )( ) log( ( ))ij k ij kTP T    

2.4 Strain transmissibility sensitivity analysis 

The limit value of the transmissibility function equation(2-3), when 

variable s (the generic pole) approaches the system’s poles, depends only 

on the mode shapes[113]: 

 

( )lim ( )
m

im
ij k

s
jm

T s





  (2-11) 

Where im  and jm  are the scalar mode-shape values.  

It is obvious to observe that the limit value of transmissibility function 

is independent from the location and nature of the force. The variable k 

here defines the specific loading position. Therefore, the following 

equation is established: 

 

( ) ( )lim ( ) lim ( )
m m

ij k ij l
s s

T s T s
  

  (2-12) 

 

Damage indicator can be calculated by using the difference between 

intact and damage transmissibility under integrating a small range 

around resonance frequencies independently from the forcing 

location[112]. 

when the variable s approaches to the resonance frequencies, the limit 

value can be obtained according to STF definition equation(2-6). 
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 (2-13) 

 
It is known that FRFs can be decomposed into SDOF in modal space. 
When r  approaches to resonance frequencies, the corresponding mode 
will dominate the whole FRF. Similar to equation(2-11), (2-12) and (2-
13), it demonstrates the limit value of STF in system poles is strain mode 
shape ratio. 
Besides, it is known that the relationship between strain and bending 
moment according to beam’s elastic theory: 
 

max

M
h

EI
    (2-14) 

 

Where M is the section moment, EI is bending stiffness, is the distance 

from the measurement point to the neutral axis.  

However, bending curvature has the following relationship: 

 
2

2

1 M d y
C

EI dx
    (2-15) 

 

Where C is the curvature, is the radius of curvature, y is the 

displacement normal to the neutral beam axis. 

Therefore, the relationship between strain and displacement can be 

shown as: 

 
2

max2

d y
h

dx
    (2-16) 
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The dynamic displacement of beam structure at any position x and at 

any time t can be redefined as the product of space function and time 

function by applying separation variable method: 

 

1

( , ) ( ) ( )
N

i i

i

y x t x t 


  (2-17) 

 

Where ( )i x  and ( )i t   are mode shape and modal coordinate 

respectively. 

Therefore, substitute equation(2-17) into (2-16), strain can be rewritten 

as: 

 
2

max max2
1

max

1

( , )
( , ) ( ) ( )

                                     = ( ) ( )

N

i i

i

N

i i

i

d y x t
x t h h x t

dx

h x t

  

 





   






 (2-18) 

 

Where ( )i x  is strain mode shape. 

According to equation(2-16), strain is equal to the product between the 

second derivative of displacement and a constant which is the distance 

from the measurement point to neutral axis. By combing this final 

statement with the conclusion proposed by TM Whalen, that second 

mode shape derivatives are better damage indicator compared to the 

mode shape in terms of beam-like structures[111], it is possible to 

declare that strain mode shape is more sensitive than displacement 

mode shape to damage. Therefore, the assumption that STF in 

correspondence of system’s poles is more sensitive to damage than 

traditional TTF can be established. 

2.5 Simulation study 

In order to validate the effectiveness of the proposed assumption, 

harmonic response analysis has been performed on a simulated beam 

structure. Both displacement FRFs and strain FRFs have been extracted 

and used to calculate TTF and STF. 
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2.5.1 FEM modelling of the beam 

A clamped- clamped steel beam structure has been simulated by means 

of the commercial software ANSYS©. The dimensions are 1.5 m × 0.04 

m × 0.015 m. The beam is meshed with 25 beam elements and 26 nodes. 

Damage is simulated by adding a point mass (0.23kg, approximately 3% 

of the total mass, black block shown in Fig. 1) on element 19, which could 

be considered as linear damage that only changes the element mass 

between node 19 and node 20. Dynamic analysis is conducted for both 

intact and damaged beam, displacement responses and strain responses 

of all nodes have been acquired for both beams under two different 

scenarios. F1 and F2 are two impulse input forces on different node 

positions (node 3 and node 21 respectively) based on the fact that the 

intersections of two transmissibility functions on one specific 

measurement point under different loading situation corresponds to the 

natural frequencies of the system [18]. If there is damage, the 

intersections of those transmissibility functions are not coincidence with 

system’s natural frequencies anymore and the damage indexes should 

reveal this fact. 

 

 

 
Fig. 2-11 The whole beam frame of FEM model and beam cross-

section 
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2.5.2 Damage identification of numerical beam 

F1 and F2 have been imposed on the intact beam as shown in Fig. 2-11. 

According to equation(2-11), it is well known that the intersection of 

strain transmissibility functions under two different loading positions 

should be in accordance with systems’ poles. Fig. 2-12 shows the STFs 

acquired from 10th beam node and 11th 

node of the intact beam under the loadings F1(3th beam node) and F2 

(21th beam node) respectively. 

 

 

Fig. 2-12 10th measurement point STFs of intact beam for two 

different loading points 

 

The following conclusion can be obtained from equation(2-11), (2-12) and 

(2-13), the limited value of transmissibility is independent of the location 

of the input. Consequently, the subtraction of two transmissibility 

functions under two different input DOFs when the variable converges 

to the systems’ poles is equal to zero. 
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 ( ) ( )lim ( ) ( ) 0
r

ir ir
ij k ij l

jr jr

T T 

 

 
 

 
     (2-19) 

 

Therefore, the intersection points of two transmissibility under different 

input DOFs with the same output DOFs are corresponding to systems’ 

poles shown in Fig. 2-12. 

Zoom in the intersection area, and resonance frequencies from the 1st 

order to the 4th order are demonstrated in Fig. 2-13-Fig. 2-16. 

 

 

Fig. 2-13 The 1st order resonance frequency 35.06Hz 
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Fig. 2-14 The 2nd order resonance frequency 97.16Hz 

 

 

Fig. 2-15 The 3rd order resonance frequency 190.3Hz 
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Fig. 2-16 The 4th order resonance frequency 313.5Hz 

 

If a damage is introduced to this beam structure, the intersection points 

are not corresponding to the resonance frequencies any more due to the 

reason that the convergence value of transmissibility for damaged beam 

structure is not equal to the convergence value of transmissibility for 

intact beam structure. A derivation will occur between the intersection 

points from intact beam and those from damaged beam. Fig. 2-17-Fig. 2-

20 Fig present the intersection points under two different input DOFs 

with the same output DOFs, but one transmissibility is acquired from 

10th and 11th intact beam nodes and another one is from 10th and 11th 

damaged beam nodes. 
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Fig. 2-17 The 1st order resonance frequency 34.70Hz 

 

 

Fig. 2-18 The 2nd order resonance frequency 94.0Hz 
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Fig. 2-19 The 3rd order resonance frequency 182.88Hz 
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Fig. 2-20 The 4th order resonance frequency 305.50Hz 

 

The small deviations are caused by damage, hence, damage indicator 

can be calculated by selecting the frequency range around the resonance 

frequencies connected to the system characteristics directly. If there is 

no damage, the damage indicators obtained should be zeros, otherwise, 

the maximum value could be recognized as damage location. 

In order to locate damage properly, TTFs and STFs are estimated on 

pairs of consecutive measurement points to calculate both intact and 

damaged beam structures. Applying equations(2-3) to (2-10), damage 

features could be obtained for TTFs and STFs. In this case, a small 

frequency band around the first resonance frequency of the intact beam 

(35.06Hz) is selected to calculate the damage indicators by computing 

the difference between intact and damaged beam structure. The 

frequency band is fixed between 34-36Hz around the first mode. 

 

 

Fig. 2-21 The choice of frequency band 

 

Table 2-3 shows the natural frequencies before and after damage, from 

the column of relative difference, small frequency change occurs which 
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means, only small amount of damage has been introduced. In addition, 

the change of modal masses for the first modes is listed as Table 2-4. 

 

Table 2-3 The change of natural frequencies 

Natural 

frequency 
Intact Damaged 

Relative 

difference 

1st order 35.06 Hz 34.53 Hz 1.51% 

2nd order 97.16 Hz 92.97 Hz 4.31% 

3rd order 190.30 Hz 184.47 Hz 3.06% 

4th order 313.50 Hz 311.96 Hz 0.50% 
 

 

Table 2-4 The change of modal masses 

Modal mass Intact Damaged 
Relative 

difference 

1st order 2.8205 2.9203 3.54% 

2nd order 3.1208 3.2362 3.70% 

3rd order 3.1098 3.0290 2.60% 

4th order 3.0940 2.8047 9.35% 
 

 

 

Fig. 2-22 and Fig. 2-4 show the damage indicator DI by using TTFs and 

STFs respectively. 
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Fig. 2-22 Damage feature by using TTFs 

 

 

Fig. 2-23 Damage feature by using STFs 

 

The red bars point out the damage location, apparently both damage 

indicators are able to figure out the correct damage location 19th 

element. One more interesting thing needs to be noticed, damage 
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indicator calculated by STFs seems more explicit compared to the one 

from TTFs. Basically, the maximum damage feature could correspond to 

the true damage location which localizes at 19th element shown in Fig. 

2-22, however, the difference between 18th and 19th beam element is 

quite small in terms of damage indicator, which might make the result 

ambiguous. In contrast, damage indicator by using STFs in Fig. 2-23 

shows a very clear result since there is only one high value at the19th 

beam element obviously. 

The simulated data were also processed by the damage feature based on 

occurrences to test its performance. Fig. 2-24 and Fig. 2-25 show the 

results from occurrences and analogous conclusions to the previous case 

can be drawn. Both the measurements (displacement and strain) 

indicate precisely the damage location. Moreover, occurrences in Fig. 2-

25 demonstrates that STFs are more sensitive than TTFs in terms of 

damage detection since only one damaged bar is shown. 

 

 

Fig. 2-24 Occurrence by using TTFs 
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Fig. 2-25 Occurrence by using STFs 

 

Apparently, occurrence is able to locate damage in a more robust and 

effective way, though damage indicator by using difference between 

intact and damaged TFs is able to work properly. Besides, no matter 

which the damage feature is used, it has shown that STFs have better 

performance on damage identification with respect to TTFs. 

2.6 Experimental study 

Since damage localisation depends on the number of sensing points, 

distributed fiber optics sensor has been applied for strain measurement 

because it is capable to provide numerous sensing points. Therefore, 

LUNA ODiSI-B optical distributed sensor interrogator has been adopted; 

which uses optical frequency domain reflectometry technique to 

measure strain along one single fiber. 

2.6.1 Brief introduction of ODiSI-B 

Optical distributed sensor interrogator (Model ODiSI-B in Fig. 2-26) 

provides a paramount industrial solution for applications in many fields 

with outstanding spatial resolution. LUNA's ODiSI B is capable to cover 

more than 10 meters of dynamic measurement range with a high density 



Chapter 2. Linear damage identification method 

47 

of measurement points. ODiSI B can simultaneously demodulate 

thousands sensing points over a single optical fiber at a frequency of 

100Hz. 10 m maximum sensing distance and spatial resolution of 2.56 

mm make ODiSI B an extremely important tool as for strain and 

temperature sensing applications. Fig. 2-27 shows the operational 

interface of data acquisition software for ODiSI-B. 

 

 

Fig. 2-26 Model ODiSI-B 
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Fig. 2-27 Interface of DAQ system 

 

There are several specifications for the distributed fiber optics based on 

ODiSi-B shown in Fig. 2-28. 

 

 

Fig. 2-28 Different specification for various modes of operation 
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2.6.2 Experimental setup description of the beam 

A clamped-clamped steel beam has been utilized with dimension 1.5 m 

× 0.04 m × 0.015 m. In order to attach the fiber optics firmly, the steel 

beam surfaces were polished and then a specific glue was used to attach 

the fiber optics as shown in Fig. 2-29. 

 

 

Fig. 2-29 Beam attached with fiber optic 

 

Fig. 2-30 shows the whole frame of beam structure. Magnets are 

attached to the surface of the beam in order to increase the weight of 

beam itself, which is able to simulate linear damage situation due to the 

change of dynamic characteristic (Fig. 2-31). The weight of the magnets 

is about 0.23kg over 7.1kg of the beam. 
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Fig. 2-30 Beam experiment setup 
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Fig. 2-31 Magnets added into beam 

 

2.6.3 Damage identification of experimental beam 

The fiber optic we chose is 2 meters long and covers the full length of the 

beam, with sampling frequency 100 Hz and sensing space 2.6125 mm. 

Two damage scenarios are performed by placing the magnetics at two 

different locations (285mm left and 1170mm left respectively). A small 

range 38-42 Hz around the 1st resonant frequency is chosen to estimate 

the damage features. Since sampling frequency is 100 Hz, the maximum 

frequency component can be observed at 50 Hz. Within the frequency 

range of 0-50 Hz, only the first strain mode is correctly acquired. Along 

this 2m single fiber optic, 100 strain sensors with nearly 15 mm spacing 

are chosen. Fig. 2-32 shows the auto-spectra of the 100 strain sensing 

measurement points for intact beam. 
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Fig. 2-32 Autospectra from 100 fiber optic sensors for intact beam 

 

The damage identification process can be organized as the shown flow 

chart. A brief description is given: strain response signals are acquired 

from distributed fiber optics, and Fourier transform has been applied 

into the signals in order to get the corresponding spectra, which aims to 

calculate strain transmissibility. On account of the influence of noise 

and modal nodes, strain transmissibility coherence function has been 

considered so as to eliminate the unreliable transmissibility data. Then 

make a sentence on the value of strain transmissibility coherence, if the 

value is equal or larger 0.9, then it can be regarded as reliable data, 

otherwise, it would be discarded. 

 

Case 1: Scenario 1 is adding magnetics on the left side of the beam, and 

its configuration is shown in Fig. 2-33. 
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Fig. 2-33 Configuration of scenario 1 

 

In Fig. 2-34, red bar revealed the damage location at 19th beam element 

based on the damage index from equation(2-9) which is in accordance 

with the true location of additional magnets at 285mm. Seemingly to 

simulations, the damage indicator in 19th element is prominent in 

comparison with others, which is easy to be recognized as damage 

component.  

 

 

Fig. 2-34 Damage indicator of scenario 1 

 

Occurrence damage feature has been taken into consideration as well 

and the identification result is shown in Fig. 2-35. Apparently, 

occurrence shows a clear recognition of the damage element in contrast 

with damage indicator of Fig. 2-34. Only one nonzero value can be seen 

at the 19th beam element where the magnets are placed.  
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Fig. 2-35 Occurrence of scenario 1 

 

Case 2: Scenario 2 is made by adding magnetics on the right side of the 

beam. 

 

 

Fig. 2-36 Configuration of scenario 2 

 

In scenario 2, red bar indicates the location of additional magnets which 

appears at 78th beam element in Fig. 2-36. The damage identification 

result is in correspondence of the true location where the magnets are 

placed. Fig. 2-37 shows the result of occurrence that points out correctly 

the damage location. Even though there are two small non-zero values 

at element 19th and element 67th but they can be neglected compared 

to element 78th.  
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Fig. 2-37 Damage indicator of scenario 2 

 

 

Fig. 2-38 Occurrence of scenario 2 

 

Asterisks marked in Fig. 2-34 and Fig. 2-37 indicate the area where the 

damage feature is unreliable. This is due to the fact that those sensing 

points along the fiber are inside the area of strain nodes for the 1st strain 

mode which is basically equal to the curvature of the 1st mode shape of 

a clamped-clamped beam. 

 

Transmissibility coherence function has been calculated in order to 

discard the unreliable damage indicators. It can be defined as follows: 
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Where 
1,
( )

i iT T
G f 



 the cross spectral density between ith STF and i+1th 

STF, 
,

( )
i iT T

G f 
and

1 1,
( )

i iT T
G f 

 

are auto spectral density of ith STF and 

i+1th STF respectively. The value of 
1,
( )

i iT T
C f 



 is always between 0 and 

1 which reflects the extent of linearity between two consecutive nodes. 

 

 

Fig. 2-39 Strain transmissibility coherence function 

 

Fig. 2-39 shows the result of coherence function among the points used 

to estimate the transmissibility function. In this figure, 25 beam 

elements (sensors) have been selected evenly from the entire 100 sensors 

and corresponding strain transmissibility coherence functions have been 

calculated. The 1st resonance frequency is located in the area between 

two dash lines. In order to discard the unreliable ones, threshold for 

coherence function is set as 0.9. If the coherence values are closer to 1 

means the corresponding STFs are reliable. Since we are interested in 

the area around resonance frequency, it is easy to observe that there are 

two coherence functions under the threshold 0.9, actually lower than 0.1. 

Hence, these two corresponding damage indicators should be discarded. 

This gives an explanation for the results of Fig. 2-39 where the sensors 
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placed near or at strain mode nodes are flagged as unreliable data. 

 

Fig. 2-40 demonstrates the whole flow chart of damage identification 

process: Strain data acquired from distributed fiber optics, and then 

Fast Fourier transform (FFT) has been applied into strain data in order 

to obtain its spectra in frequency domain, used to calculate strain 

transmissibility. Strain transmissibility coherence function is 

established aiming to eliminate the unreliable data caused by noise and 

other interferences. Finally, damage location could be found according 

to the display of damage indicators. 

 

 

Fig. 2-40 Flow chart of damage identification process 

2.6.4 Aliasing issue of distributed fiber optics 

The A / D conversion places the signal at discrete levels, allows to know 

the value of the same signal only in well-defined time intervals, giving 

the fact the enormous information content is presented in the original 

signal. Of course, there are several types of sampling that allow you to 

save at least the important information while other information will be 

lost, unfortunately irreversible. It recalls that a non-recoverable and 

sampling error retrospectively because the lost information cannot be 

recovered. 

Overlap phenomenon occurred in the signal after sampling, that the 
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frequency components higher than half the sampling frequency will be 

reconstructed into less than half the sampling frequency of the signal, 

this is called the aliasing effect (Aliasing Effect). The reconstructed 

signal is called the aliasing of the original signal, since the two signals 

have the same sample value.  

There is the issue by referring to Fig. 2-41: in this figure x-axis you have 

the frequencies of the original signal, the analog signal is sampled, while 

the y-axis has the "apparent" frequencies, namely those resulting from 

the observation signal. The plot consists of a series of segments oriented 

alternately to +45°  and -45° . The diagram is used in the following 

manner: it enters the abscissa with the frequency of the real signal and, 

the point at which it intersects the curve is reflected into y-axis and read 

as the mirrored frequency component due to aliasing. 

 

 

Fig. 2-41 The aliasing effect in the frequency domain 

 

Due to the lack of anti-aliasing filter in the used distributed fiber optics, 

aliasing phenomenon occurred into the acquired signal. The sampling 

frequency of LUNA ODiSI-B is 100 Hz, therefore, the maximum 

frequency observed is 50Hz. Since the resonance frequencies are beyond 

the range of 50Hz apart from the 1st resonance frequency which is about 

39.5Hz. Fig. 2-42 shows the spectra of strain FRF from simulation. 
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Fig. 2-42 Strain FRF 

 

Aliasing occurred into the acquired signal from distributed fiber optics 

presented in Fig. 2-43. 
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Fig. 2-43 Strain FRF from experiment data 

 

2.7 Conclusion 

In this chapter, the conception of strain transmissibility function has 

been proposed into damage identification based on the fact that strain 

can be acquired directly from distributed fiber optics. Its sensitivity 

analysis has been performed through the approach that the convergence 

value of STFs into system poles is equal to the ratio of strain mode 

instead of the ratio of displacement mode regarding to TTFs, which has 

been proved its higher sensitivity compared to TTFs in terms of damage.  

Both displacement data and strain data have been extracted from a 

simulated beam structure model, aiming to the calculation of TTFs and 

STFs respectively. The results show the effectiveness and feasibility of 

the methodology based on both transmissibility data, however, the 

damage identification results based on STFs demonstrate the higher 

sensitivity to damage. 
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On account of precise localisation of damage, distributed fiber optics has 

been applied which could provide a considerable amount of sensors along 

one single fiber. A steel beam has been made covered by a 2meters 

distributed fiber optics, and an additional magnetic mass is considered 

as damage (Mass change). Both dynamic strain data have been acquired 

from the intact and damaged beam so as to obtain the strain 

transmissibility. And the experimental results validate the effectiveness 

of proposed strain transmissibility and the excellent performance of 

distributed fiber optics. 

And one thing needs to be noted that since there is no anti-aliasing filter 

during the measurement process, other frequency components will be 

reconstructed into the range within the analysed maximum frequency. 

Thus it is necessary to make clear that whether the reconstructed 

frequency components are mixed into the selected frequency range used 

to calculate damage indicators. 
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CHAPTER 3 
Nonlinear damage identification method  

  

  

  

3.1 Overview 

Damage scenarios in engineering structures are manifested as nonlinear 

behaviors in many cases such as breathing crack and structural bulking 

failures which could be deemed as potential security hazard. Chapter 2 

has proposed an approach on damage detection based on strain 

transmissibility conception, which is based on a linear system. Therefore, 

all the proposed methods based on the above assume behave linearly. 

However, certain types of damage in MDOF systems behave nonlinearly 

instead of linear damage, such as breathing crack (Bilinear stiffness), 

post-buckled structures (Duffing nonlinearity) and rattling joints (The 

system with discontinuity), etc. Therefore, the study on nonlinear 

damage identification is of great significance.  

Recently, a new conception of Nonlinear Output Frequency Response 

Function (NOFRF) has been proposed by Lang et al. [66], which is able 

to clearly describe and understand a nonlinear system in separate order 

similar to frequency response function of linear system. Also the 

methodology based on Nonlinear output frequency response function 

(NOFRF) of MDOF system under single harmonic excitation has been 
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proposed by Lang et al., aiming to identify the nonlinear components. 

Moreover, Zhao et al. [69] proposed more convenient approach on 

nonlinearity identification by using super harmonics based on NOFRF. 

However, due to the fact that general input, namely bandlimited signal 

here, contains broader frequency band compared to single harmonic 

input, in this chapter, NOFRF-based transmissibility function under 

general input has been studied and the important properties of the 

proposed methodology has been derived accordingly for MDOF system 

with nonlinear components. In addition, the relationship between 

NOFRF-based transmissibility functions and Output-based 

transmissibility functions has been revealed. On account of the existence 

of single nonlinear component and multiple nonlinear components 

resulting in a change of system solution, two corresponding 

methodologies for nonlinear components identification have been 

presented respectively. Furthermore, it also has discussed the approach 

considering nonlinear components identification under multiple points 

excitation. The feasibility and effectiveness of the proposed methods will 

be validated by relative simulation work and experiments. 

3.2 Nonlinear output frequency response 

function 

3.2.1 Conception of NOFRFs  

If a nonlinear system is stable at zero equilibrium which can be 

expressed in a mathematical way by using Volterra series[114] 

 

1

1 1

( ) ( , , ) ( )
nN

n n i i

n i

y t h u t d   
 

 
 

     (3-1) 

 

In equation(3-1), 1( , , )n nh    is Volterra kernel function, ( )u t  is input 

in time domain and the maximum nonlinear order of this system is N. 

Equation(3-1) demonstrates the output of this class of nonlinear system 

in time domain subjected to general input. And Lang and Billings in 

1990 have derived the output in frequency domain corresponding to 

equation(3-1), namely nonlinear output frequency response, as the 

following expression:  
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
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 (3-2) 

 

Where ( )nY j  is the nth order output spectra. ( )U j  and ( )Y j  are 

the system input and output spectra equation(3-2) states the 

relationship between the nth order output frequency response and input 

spectrum, and it states that the output frequency response is the 

summation of N different order output frequency response. Here 

1( , , )n nH j j   is nth order GFRF (Generalized frequency response 

function), which is the multidimensional Fourier transform of 

1( , , )n nh   [114]. It is defined as: 

 

1 1( )

1 1 1( , , ) ( , , ) n n j

n n n n nH j j h e d d
       

 
  

 
    (3-3) 

 

In terms of linear system, input and output signal contain the same 

frequency band. Whiles the frequency band of system output are wider 

compared to that of system input for nonlinear system. A general 

equation(3-4) can be used to reveal the relationship between output and 

input frequencies. 

 

1
n

N

Y Y

n

f f


  (3-4) 

 

Where Yf  stands for the overall output non-negative frequency 

components, and 
nYf is the frequency components due to the nth order 

nonlinearity. Lang and Billings have derived an explicit expression for 

nYf  in 1997. More details can be found in[114]. 

Based on the conception and characteristics of nonlinear output 

frequency response explained in this section, nonlinear output frequency 

response function (NOFRF), as a new conception proposed by Lang et al., 

has been reviewed in the following in order to represent a clearer and 
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deeper insight into the frequency response function due to nonlinear 

systems. 

Lang and Billings[114] have recently proposed a new method to describe 

the phenomenon of nonlinear system named nonlinear output frequency 

function (NOFRF), which is defined as: 
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Where equation(3-5) must satisfy the condition  

 

   
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i

U j U j d 
  

  
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   (3-6) 

 

Therefore, equation(3-2) can be rewritten by introducing the conception 

of NOFRF: 

 

       
1 1

N N

n n n

n n

Y j Y j G j U j   
 

    (3-7) 

 

Equation(3-7) is another expression for to a general class of nonlinear 

systems, which reveals the relationship between input and output of 

nonlinear systems. It shows the output is composed of a combined 

contribution from different order NOFRFs    1,...,nG j n N  and input 

   1,...,nU j n N  which can be regarded as the linear combination of 

output frequency response for linear system. Fig. 3-1 describes the input 

and output in frequency domain of linear system. Fig. 3-2 illustrates the 

relationship between input and output in frequency domain of nonlinear 

system which is the graphic expression of equation(3-7). The distinct 

merit of NOFRFs is that it is more convenient to implement the analysis 

of nonlinear system, since it is one-dimensional function of frequency 

compared to GFRFs   1,...,nH n N which is multi-dimensional and 

complexed to be interpreted.  
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 U j  Y j
   1H j G j 

 
Fig. 3-1 The output frequency response for linear systems 

 

 

 NU j

 Y j

 NG j

 2U j

 1U j

 2G j

 1G j
 

Fig. 3-2 The output frequency response for nonlinear systems 

 

3.2.2 Estimation of NOFRFs  

Equation(3-7) can be represented by using the product of two matrices: 

 

         1 1, , , ,
T

N NY j U j U j G j G j             
(3-8) 

 

Suppose the case that input is    u t u t    where   is a constant 

and  u t  is the base input signal, therefore the expression of nth order 

input signal in frequency domain can be rewritten as: 
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(3-9) 

 

Hence equation(3-8) can be rewritten by substituting equation(3-9): 
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         1 1, , , ,
T

N

N NY j U j U j G j G j                  
(3-10) 

 

Here    1 , ,
T

NG j G j     are the NOFRFs to be evaluated. 

In order to excite the system N times, it is need to adopt N different 

value for  . All  1, ,i i N   are constant and  

 

N N  (3-11) 

 

Meanwhile, the following relationship should be established: 

11
0

N N
  


    . 

Consider N times excitation for the system, the NOFRFs can be 

estimated as: 
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 (3-12) 

 

Therefore, NOFRFs    1 , ,
T

NG j G j      can be estimated by 

applying least square approach: 
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3.3 Transmissibility of MDOF nonlinear 

structural system under general input 

 

General input has been reckoned bandlimited input in this chapter 

which contains a broader frequency band compared to single harmonic 

input, and it can be considered approximately as a superposition of a 

succession of sinusoid signals. It starts from the transmissibility of 

MDOF nonlinear structural system. 

3.3.1 MDOF Nonlinear structural system description 

Consider a linear MDOF system which contains n degree of freedom. 

The input force, considered single point excitation, is applied on the Jth 

mass. The system of nonlinear MDOF is shown in Fig. 3-3. The 

governing motion equation is given as: 

 

( ) ( ) ( ) ( )t t t t  My Cy Ky F  (3-14) 

 

Where: M, C, K, F and y are the system mass matrix, damping matrix, 

stiffness matrix, force vector and response displacement vector 

respectively. 
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Assume there are ( 1)L L   nonlinear components (spring or damping) 

located between 1iL   and 
iL  masses, where 1,2,...,i L . The 

corresponding nonlinear restoring forces can be estimated as polynomial 

function of deformation and derivatives of deformation. These functions 

are assumed to be continuous, which can be approximated by a 

polynomial with its nonlinear part represented by (3-15). 
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nm

1Lk
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L
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1nk 

1nc 

2m1m
1k

1c 2c

2k

 
Fig. 3-3 MDOF nonlinear system 

 

Denote nonlinear restoring forces as: 

 

( , ) 1 ( , ) 1

1 1

( ( ) ( )) ( ( ) ( ))
i i i i i i i

N N
l l

L L l L L L l L L

l l

NonF y t y t y t y t  

 

      (3-15) 

 

Where 
( , )iL l  and 

( , )iL l  are nonlinear coefficients of polynomial 

functions. 

Therefore,  
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The nonlinear force vector can be written as  

 

1

( ) ( )
L

i

i

t nf t


NF  (3-17) 

 

So the nonlinear MDOF system can be defined as  

 

( ) ( ) ( ) ( ) ( )t t t t t   My Cy Ky F NF  (3-18) 

 

Equation(3-14) represents a typical MDOF moving equation. The term 

NF is nonlinear spring or damping. If there is only one input term F, it 

is SIMO system, otherwise it is MIMO system. 

In this chapter, a more effective approach aiming at nonlinear 

components identification on single and multiple nonlinear components 

situations has been studied, regarding SIMO and MIMO system 

respectively.  

3.3.2 Output frequency range of MDOF Nonlinear structural systems 

under general input 

This part shows the calculation of output frequency range for nonlinear 

system. One of the most important properties is the output frequency 

range of nonlinear system is much richer than the input, which is 

distinctly different with the case of linear system that the output 

frequency range is the same as the input. Lang and Billings[114] gave 

an explicit explanation of output frequency range of nonlinear system, 

and also proposed a set of formulas to calculate the output frequency 

range of nonlinear system.  

Now consider the situation when the system is excited under a general 

input, namely bandlimited signal, [ , ] 0a b b a    . 
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Where ( )U j  is the input spectrum.  

Lang and Billings have derived an approach to calculate output 

frequency range for nonlinear system when subjected to a general input 

expressed as (3-19).  

The output frequency range can be expressed as  
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(3-20) 

 

In equation(3-20), p  can be taken values from 1, 2, …, [N/2] which 

relies on the nonlinear system.   

In order to better explain the use of (3-20), here consider an example of 

output frequency range calculation for each NOFRF order. The 

frequency of input is belonging to [a, b] which a=7 Hz, b=10 Hz. Since 

we only consider first fourth orders NOFRFs, each different NOFRF has 

its corresponding output frequency range. Only the first 4 order system 

nonlinearity is considered. 
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3.3.3 NOFRF-based transmissibility of MDOF Nonlinear structural 

systems under general input 

The nonlinear system output can also be defined in frequency domain: 
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(3-21) 

                                                        

Where 
1 1

1

( , , ) ( , , ) ( )
n

n n n n i
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Y j j H j j U j    


     and 
1 n      

with    ,  or , , 1,2,...,i b a a b i n     , and 1,2,..., ;  n N N is the maximum 

analyzed nonlinear order.  

Starting from the first row of the system matrix (3-18), 

                                     

1 1 1 2 1 2 2 1 2 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 0m y t c c y t c y t k k y t k y t      
 (3-22) 

                     

By inserting the variable of (3-21) into (3-22), 
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(3-23) 

 

The expansion of equation(3-22) into different nonlinear order is shown 

in (3-23) by offsetting ( )nU j  
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(3-24) 

         

Rewrite equation(3-24) as: 
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(3-25) 

 

Equation(3-25) should always hold, therefore, the equation relationship 

can hold for each nonlinear order as well 
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(3-26) 

 

Then, the 2nd row of the system matrix (3-18) can be expended as a 

series of equations below: 
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(3-27) 

 

Similarly, the rth ( min( 1, , )i ir L L J   or max( 1, , )i ir L L J  , 1,2,...,i L ) 

row of the system matrix can be redefined as a series of equations below: 
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(3-28) 

 

When the mass is connected to the left side of 
iL th spring, the row of 

the system matrix can be redefined as below: 
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1,2,...,i L  (3-29) 

 

Here equation(3-29) cannot be expanded as (3-28) and ( )nU j  cannot 

be cancelled, due to the existence of nonlinear force on the right side. 

Similarly, the mass is connected to the right side of 
iL th spring, the row 

of the system matrix can be rewritten as below: 
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1,2,...,i L   (3-30) 

 

Expend the Jth row of the system(3-18) where the input is loaded at Jth 

mass as below: 
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(3-31) 

 

For the (n-1)th row of the system, 
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(3-32) 
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It has been known that equation(3-26) is the expression in time domain, 

therefore, equation(3-33) can be expressed in frequency domain.  
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(3-33) 

 

Define NOFRF-based transmissibility function as
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(3-34) 

 

Similarly, NOFRF-based transmissibility between mass 2 and mass 3 

from equation(3-27) can be obtained as equation(3-35) shown below 
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(3-35) 

 

Through iteratively calculation, NOFRF-based transmissibility between 

mass r and mass r+1 from equation(3-28) can be obtained as equation 

(34) 
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( min( 1, , )i ir L L J  or max( 1, , )i ir L L J  , 1,2,...,i L ) 

(3-36) 

 

Transmissibility between mass 1iL   and mass 
iL  can be defined from 

equation(3-29) into equation(3-37) shown below 
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1,2,...,i L  (3-37) 

 

And  

 

1 2( ) ( ) ( )
i i i iL L L LN

P NonF P NonF P NonF NonF     (3-38) 

 

Equation(3-37) reveals the fact that the relationship like (3-25) and (3-

26) cannot be held for (3-37), because of the nonzero value on the right 

side of (3-29). In order to construct a similar expression for (3-29), using

1 2( ), ( ),..., ( )
i i iL L LN

P NonF P NonF P NonF  to represent corresponding nonlinear 

force for each nonlinear order. Obviously, they should satisfy the 

condition of (3-38) and are not constant terms. In a similar way, equation 

(3-29) can be derived based on (3-30) for the masses which are connected 

to the right side of the nonlinear springs or dampers. 
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1,2,...,i L  (3-39) 

 

Accordingly, the transmissibility between mass J and mass J+1 from 

equation(3-31) can be calculated as equation 
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  (3-40) 
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where 1 2( ) ( ) ( )
N

P U P U P U U     

One interesting thing needs to be mentioned that ( )U j  is zero when 

frequency is out of range [a,b], which could make an diverse solution for 

the system. It will be discussed during the later sections. 

It can be easily deduced the similar expression of transmissibility 

between mass n-1 and mass n for equation(3-32). 
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(3-41) 

 

Staring from equation(3-41), it is easily to know that
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 (3-42) 

 

So the expression for 1, 2( )n n j   can be derived as (41), 
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(3-43) 

 

Through iteratively calculation from equations(3-22)-(3-32), it can be 

easily to deduce that the following relationship can be established for 

the masses which are not connected to the nonlinear masses and the Jth 

spring. 
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(3-44) 

 

Where  2 , 1, , ,  1,...,i ii n i L L J i L      

For the relationship among the masses connected to the left side of the 

nonlinear components can be rewritten as  
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1,2,...,i L   (3-45) 

where 
1 2( ) ( ) ( )

i i i iL L L LN
P NonF P NonF P NonF NonF     

For the relationship among the masses connected to the right side of the 

nonlinear components can be rewritten as  
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1,2,...,i L  (3-46) 
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For the Jth mass where the force is located, the relationship can be given 

as following 
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(3-47) 

 

where 1 2( ) ( ) ( )
N

P U P U P U U     

From Equations(3-14)-(3-47) the relationships about output spectra 

ratio for each order between two consecutive masses have been 

illustrated in two different perspectives.  

3.3.4 Output-based transmissibility of MDOF Nonlinear structural 

systems under general input 

According to the definition of NOFRFs in equation(3-7), the following 

relationship can be derived: 

 

     ( , ) ( , )i j i j jY j G j U j      1 ;  1i n j N     (3-48) 

 

Where subscript i means the output point, and j means the nonlinear 

order; when j=1, it means linear output. 

 

Therefore, Output-based transmissibility can be defined as  
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( , ) ( , ) ( , )

, 1

( 1, ) ( 1, ) ( 1, )

( ) ( ) ( ) ( )
( )=    

( ) ( ) ( ) ( )

                                                 ( 1,..., -1;  1,..., )

i j i j j i jj

i i

i j i j j i j

G j G j U j Y j
j

G j G j U j Y j

i n j N

   
 

   


  

 

   

(3-49) 

 

Substitute equation(3-48) into equation(3-26) and calculate interactively 

through Equations(3-26)-(3-32), for the masses which are not connected 

with nonlinear components and the Jth spring, 

 

1 11

1 1 1 1

1 2

2

( ,1) 1 ( ,1) 1 ( 1,1)

( ,1) 1 ( ,1) 1 ( 1,1) ( ,1)

2

( 1,2) 1

( ) ( ) ( ) ( )

0
( ) ( ) ( ) ( ) ( )

( ) ( )(

r r r r r r r

r r r r r r r r r

r r r r

m Y j j c c Y j j c Y j

j c Y j k k Y j k Y j k G j

m Y j j c c j

    

       

  

     

    

   

   

     

  

    
  
      
 

  
1 2

1 2 1 2 1 2

1 2 1 2

1

( ,2)

1 ( 1,2) ( ,2) 1 ( ,2)

1 ( 1,2) ( ,2)

2

1( , ) ( , )

) ( )

( ) ( ) ( ) ( ) 0

( ) ( )

( ) ( ) ( )
N

r

r r r r r r r

r r r r

r r rr N r N

Y j

j c Y j j c Y j k k Y j

k Y j k Y j

m Y j j c c Y j

  

        

     

  



    

 

   

 

       

     


  

 
 
 
     
 
  
 

  
1

1 1 1

1 1

1 1( 1, ) ( , ) ( , )

1 ( 1, ) ( , )

( ) ( ) ( ) ( ) 0

( ) ( )

N

N N N

N N

r r r rr N r N r N

r rr N r N

j c Y j j c Y j k k Y j

k Y j k Y j

  

        

     

    

 

  

          

       

 
 
 
     
 
  
 

 

min( 1, , )i ir L L J   or max( 1, , )i ir L L J   (3-50) 

 

It reveals that the transmissibility functions based on NOFRFs are 

independent of force. Through Equations(3-48)-(3-50), it can be 

concluded that transmissibility based on NOFRFs are the same as the 

ones based on output response under each nonlinear order. The 

derivation of the transmissibility based on output response (3-34)-(3-47) 

is also suitable for the transmissibility based on NOFRFs. The following 

parts will illustrate the important properties of aforementioned two 

types of transmissibility functions and their interactive relationships.  
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3.3.5 Some important properties of NOFRF-based transmissibility and 

Output-based transmissibility of nonlinear MDOF system under general 

input 

Transmissibility functions are strongly frequency-dependent due to the 

fact that the input signal is general input (bandlimited). 

 

 
 

0  ,
( )

0  ,

a b
U j

a b






 

 

 (3-51) 

 

If  ,a b , ( )U j in Equations(3-31), (3-40) and (3-47) are nonzero 

value; on the contrary when  ,a b , ( )U j in Equations(3-31), (3-40) 

and (3-47) are becoming zero. Therefore, the Equations(3-34)-(3-47) 

contain different solution concerning the choice of analyzed frequency 

range.  

 

A. When analyzed frequency  ,a b  under single point input 

Without loss of generality, assume that the system contains 

 i=1,2,...,L, L 1iL   nonlinear components, and it meets the condition 

1 2 L
L L L   , then the following properties of transmissibility 

functions based on output response under general input can be obtained 

for MDOF systems with multiple nonlinear components.  

 

1) If 
1J L ,then the NOFRF-based transmissibility between two 

consecutive masses ( 1 1 and 
L

i J L i n     ), the following 

relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    



 

(3-52) 

 

2) If 
1J L ,then the NOFRF-based transmissibility between two 

consecutive masses (
L

J i L  ), the following relationship holds  
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( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    

  

 

(3-53) 

 

3) If 
1 L

L J L  ,then the NOFRF-based transmissibility between two 

consecutive masses (
11 1 and 

L
i L L i n     ), the following 

relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    



 

(3-54) 

 

4) If 
1 L

L J L  ,then the NOFRF-based transmissibility between two 

consecutive masses (
1 L

L i L  ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    

  

 

(3-55) 

 

5) If 
L

J L ,then the NOFRF-based transmissibility between two 

consecutive masses (
11 1 and i L J i n     ), the following 

relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    



 

(3-56) 

 

6) If 
L

J L ,then the NOFRF-based transmissibility between two 

consecutive masses (
1 1L i J   ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    

  

 

(3-57) 
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Similarly, the following relationships for transmissibility functions 

based on output response of MDOF system with multiple nonlinear 

components can be established 

 

7) If 
1J L ,then the Output-based transmissibility between two 

consecutive masses ( 1 1 and 
L

i J L i n     ), the following 

relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    



 

(3-58) 

 

8) If 
1J L ,then the Output-based transmissibility between two 

consecutive masses ( 1
L

J i L   ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    

  

 

(3-59) 

 

9) If 
1 L

L J L  ,then the Output-based transmissibility between two 

consecutive masses (
11 1 and 

L
i L L i n     ), the following 

relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    



 

(3-60) 

 

10)  If 
1 L

L J L  ,then the Output-based transmissibility between two 

consecutive masses (
1 1

L
L i L   ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    

  

 

(3-61) 

 

11)  If 
L

J L ,then the Output-based transmissibility between two 

consecutive masses (
11 1 and i L J i n     ), the following 

relationship holds 
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( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    



 

(3-62) 

 

12)  If 
L

J L ,then the Output-based transmissibility between two 

consecutive masses (
1 1L i J   ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    

  

 

(3-63) 

 

B. When analyzed frequency  ,a b  (out of the range [a, b]) 

under single point input 

When  ,a b , ( )U j =0, thus the Equations(3-31), (3-40) and (3-47) 

will become as the following Equations(3-64), (3-65) and (3-66). 
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 
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 

 
 

 
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 

 

 

  
 

 



 
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


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  

  
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j e d
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


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 









 




 


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(3-64) 
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1 2

1 1 1
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1 1 1,

2 1 1
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J J
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 
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 

 
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 
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 
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      



      



     

1 2
1, )( )

N

N

J J J Jj c k j
   

      


 

(3-65) 

 

1
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1

, 1 2 1

1 1 1 1 1,

2
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1 1 1 1 1,

, 1 2

1 1
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J J
J J

J J J J J J J J J

J J
J J

J J J J J J J J J
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j
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j
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 
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 

    


 
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
 

  



     


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

 



      
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
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     
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N

N

J J Jk j
   

       


 

(3-66) 

 

All the terms related to ( )U j  become zeros as a result of Equations(3-

64)-(3-66). Based on this conclusion, Equations(3-22)-(3-32) can be 

rewritten as a matrix form  

 

1 2 1 2 1 2( ( )) ( ( )) ( ( ))j n j j jj Y j j                     

1,2,...,j N  (3-67) 

 

Where 

1 2 1 2

1 2

0          if 1, ,  1

( ( )) ( ( ))     if 1,  1

if ,  1( ( ))

x

x

i i L

j n j L j i L

i Lj L j

l L L x L

j P NonF j l L x L

l L x LP NonF j

     

  

    


            
     

 

 

So that  
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1

1 2 1 2 1 2( ( )) ( ( )) ( ( ))j j j j jY j j j                    

(3-68) 

 

Define 

 
1

1 2 1 2( ( )) ( ( ))j jj Q j            
 

(3-69) 

        

Therefore, the nth order nonlinear output spectrum for each mass can 

be obtained from Equations(3-66)-(3-69). 

 

, 1 1 2 1 2

, 1 2

1 , 1 2 1 2

( ( )) ( ( ))
( ( ))

( ( )) ( ( ))

L
x x

x x
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  

     





         
       

           
  

1,..., 1i n   (3-70) 

 

Equation(3-70) reveals the relationship between the number of 

nonlinear components and nth order nonlinear output spectra. When 

there is only one nonlinear component, that is, 1L  ,the nth order 

nonlinear output spectrum for each mass can be calculated as 

 

, 1 2 , 1 1 2 1 2

, 1 2 1 2
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     

          

      
 

(3-71) 

 

Then the transmissibility function for each consecutive masses 
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



  


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
       

 

(3-72) 

 

When there is more than one nonlinear component, that is, 1L   
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1,..., 1i n   (3-73) 

 

Equation(3-72) indicates that the transmissibility functions for each 

pair of consecutive masses are independent with nonlinear component, 

and only rely on the system’s physical parameters. While the situation 

with more than one nonlinear component is entirely converse, that is, 

the transmissibility functions not only depend on the system’s physical 

parameters but also the nonlinear restoring forces, observed from 

equation(3-73).  

Based on the aforementioned derivation, if there is only one nonlinear 

component in the MDOF system, there is no significance of considering 

nonlinear output frequency range (out of [a, b]) due to the fact that the 

transmissibility function merely depends on system physical 

parameters. However, if two or more than two nonlinear components 

exist, nonlinear output frequency range should be an effective way to 

recognize the location of multiple nonlinear components through the 

similar iterative perspective in Equations(3-14)-(3-47) given that the 

terms related to input are zeros, the remaining terms on the right side 

are nonlinear restoring forces in Equations(3-32)-(3-47). 

Therefore, the corresponding properties for identifying multiple 

nonlinear components can be obtained 

 

13)  For the Output-based transmissibility between two consecutive 

masses (
11 1 and 

L
i L L i n     ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    



 

(3-74) 

 



Chapter 3. Nonlinear damage identification method 

97 

14)  For the Output-based transmissibility between two consecutive 

masses (
1 1

L
L i L   ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j

 

    

  

 

(3-75) 

 

Similarly, the following relationships for transmissibility functions 

based on NOFRFs of MDOF system with multiple nonlinear components 

can be established 

 

15)  For the NOFRF-based transmissibility between two consecutive 

masses (
11 1 and 

L
i L L i n     ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
= =  

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    



 

(3-76) 

 

16)  For the transmissibility functions between two consecutive masses 

(
1 1

L
L i L   ), the following relationship holds 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    

  

 

(3-77) 

 

C. When analyzed frequency  ,a b  under multiple-point input 

The above situations and properties are only considered that there is 

single point excitation. This short session will discuss the methodology 

under multiple points excitation.  

First of all, analyzed frequency  ,a b  has been considered, in order 

not to loss generality, then assume that each mass has been loaded one 

force which means there are n points excitations on the MDOF system. 

And all the n loading forces have the same frequency range [a, b], 

amplitudes and phases could be diverse. Through the iterative 

calculation as Equations(3-14)-(3-47), it indicates that each 

transmissibility function contains one term related to output response, 

which is directly connected to effect of nonlinear restoring force.   
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Therefore, for all masses, the following relationship can be established 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

Y jY j Y j

Y j Y j Y j
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    

  

 

(3-78) 

 

( ,1) ( ,2) ( , )

( 1,1) ( 1,2) ( 1, )

( )( ) ( )
 

( ) ( ) ( )

i i i N

i i i N

G jG j G j

G j G j G j

 

    

  

 

(3-79) 

 

D. When analyzed frequency  ,a b  (out of the range [a, b]) 

under multiple-point input 

Consider if analyzed frequency  ,a b , even if there are n loading 

forces, because of zero values of input spectra, the term related to output 

response could be eliminated accordingly. Therefore, the properties 

under this condition could be the same as Equations(3-74)-(3-77). Also 

one note needs to be reminded, the properties of Equations(3-75)-(3-78) 

only can be established when there are two or more than two nonlinear 

components, no matter how many loading forces have been reckoned. 

 

3.3.6 Damage detection and localization method 

The properties aforementioned have explained the relationship of 

Output-based transmissibility function and NOFRF-based 

transmissibility function under each nonlinear order respectively. In the 

view of above-mentioned properties, the procedure for identifying single 

or multiple nonlinear components has been organized as follows. 

Those properties are also suitable for the transmissibility functions 

based on merely total output response instead of output response under 

each separate nonlinear order or NOFRFs, which could make the 

identification process simpler. Take an example of property (3-52) and 

(3-53). 
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(3-80) 
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(3-81) 

 

Therefore, the corresponding relationship between transmissibility 

based on total output and the one under each nonlinear order or 

NOFRFs can be deduced as the way (3-78) and (3-79). The coral idea of 

nonlinear components identification is on the account of that output 

response of nonlinear MDOF system depends on input including the 

frequency components and excitation intensity to a certain extent. 

Hence, two different loading forces with different excitation will be 

introduced. Still take the example of property (3-52) and (3-53) as an 

explanation. 

In the equation(3-52), 
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(3-82) 

 

Where the superscripts 
1f  and 

2f  in equation(3-82) stand for two 

different inputs which contain the same frequency band [a, b] but 
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diverse excitation intensities. 

 

Due to the reason that the transmissibility from equation(3-52) only rely 

on the physical parameters of the system. Therefore,  

 
(1) (2)

, 1 , 1( ) ( )i i i ij j    
 (3-83) 

 

While in the equation(3-53), 
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(3-84) 

 

The transmissibility functions are associated with nonlinear restoring 

forces which could be changeable under different loading conditions. 

Therefore, 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j    
 (3-85) 

 

Through the above-mentioned analysis, the following conclusions can be 

derived. 

3.3.6.1 When analyzed frequency  ,a b (within the range [a, b]) 

1) If 
1J L ,then the Output-based transmissibility between two 

consecutive masses (1 1 and 
L

i J L i n     ), the following relationship 

holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j    
 (3-86) 

 

The proof of (3-86) is demonstrated in the following. 

Proof: 
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When analyzed frequency  ,a b , from equation(3-34), it is easy to 

obtain the following relationship 

 
1 2

1,2 1,2 1,2( ) ( ) ( )Nj j j       
 (3-87) 

                                                                                    

Then substitute (3-87) into equation(3-35), the following relationship 

can be derived 

 
1 2

2,3 2,3 2,3( ) ( ) ( )Nj j j       
 (3-88) 

                                                                                 

Substitute iteratively until 1i J   based on the above approach, the 

same conclusion can be obtained. 

Start from another prospective equation(3-42), it is known that 

 
1 2

, 1 , 1 , 1( ) ( ) ( )N

n n n n n nj j j         
 (3-89) 

                                                                             

Then substitute (3-89) into equation(3-44), the following relationship 

can be derived 

 
1 2

1, 2 1, 2 1, 2( ) ( ) ( )N

n n n n n nj j j            
 (3-90) 

 

Substitute iteratively until 1
L

i L   based on the above approach, the 

property of (3-86) can be proved.  

 

2) If 
1J L ,then the Output-based transmissibility between two 

consecutive masses (
L

J i L  ), the following relationship holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j      (3-91) 

 

Proof: 

The transmissibility between mass J and mass J+1 is shown in 

equation(3-40), take an example of the first order transmissibility 
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 (3-92) 

From equation(3-92), it can be known that 1

, 1( )J J j   not only depends 

on system physical parameters, but input and output that is closely 

related to nonlinear components. Also because  
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(3-93) 

                                                                               

Therefore, substitute (3-93) into equation(3-40), (3-94) can be obtained  
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 (3-94) 

 

From another prospective, the transmissibility between mass 
L

L and 

mass 1
L

L  is shown in equation(3-46), due to the existence of nonlinear 

component in the express and  
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(3-95) 

 

Hence, (3-96) can be proved 

 
1 2

, 1 , 1 , 1( ) ( ) ( )
L L L L L L

N

L L L L L Lj j j         
 

(3-96) 

 

Until here, property of (3-91) has been proved. 

 

3) If 
1 L

L J L  ,then the Output-based transmissibility between two 

consecutive masses (
11 1 and 

L
i L L i n     ), the following relationship 

holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j    
 (3-97) 
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4) If 
1 L

L J L  ,then the Output-based transmissibility between two 

consecutive masses (
1 1

L
L i L   ), the following relationship holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j    
 (3-98) 

 

Proof: 

The similar proof process as the previous proofs has been demonstrated 

here, when analyzed frequency  ,a b , from equation(3-34), the 

relationship (3-87) is obtained. 

                                                                                

Then substitute (3-87) into equation(3-35), the relationship (3-88) can be 

derived. Substitute iteratively until 1 1i L   based on the above 

approach, the same conclusion can be obtained. 

Start from another prospective equation(3-42), the relationship (3-89) is 

obtained. 

                                                                        

Then substitute (3-89) into equation(3-44), the relationship (3-90) can be 

derived. Substitute iteratively until 1
L

i L   based on the above 

approach, the property of (3-86) and (3-98) can be proved.  

The following properties can be proved in a similar here, and the details 

are neglected here. 

 

5) If 
L

J L ,then the Output-based transmissibility between two 

consecutive masses (
11 1 and i L J i n     ), the following 

relationship holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j      (3-99) 

 

6) If 
L

J L ,then the Output-based transmissibility functions between 

two consecutive masses (
1 1L i J   ), the following relationship 

holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j      (3-
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100) 

 

3.3.6.2 When analyzed frequency  ,a b  (out of the range [a, b]) 

1) For the transmissibility functions between two consecutive masses 

(
11 1 and 

L
i L L i n     ), the following relationship holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j    
 (3-101) 

 

2) For the transmissibility functions between two consecutive masses 

(
1 1

L
L i L   ), the following relationship holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j      (3-102) 

 

Similarly, the following relationships for transmissibility functions 

based on NOFRFs of MDOF system with multiple nonlinear components 

can be established. 

 

3) For the NOFRF-based transmissibility between two consecutive 

masses (
11 1 and 

L
i L L i n     ), the following relationship holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j    
 

(3-103) 

 

4) For the NOFRF-based transmissibility between two consecutive 

masses (
1 1

L
L i L   ), the following relationship holds 

 
1 2

, 1 , 1( ) ( )
f f

i i i ij j      (3-104) 

 

Through the transmissibility function analysis under general input for 

MDOF system with single or multiple nonlinear components, the 

following steps are concluded for recognizing nonlinear components. 
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3.3.6.3 CASE 1: Damage identification if there is only one nonlinear 

component 

It has been concluded that only linear output frequency range  ,a b  

could be a useful choice for calculating transmissibility functions when 

only one nonlinear component exists in the system. 

 

Step 1: Two single forces with the same bandlimited frequency range [a, 

b] can be loaded at one mass separately, which contains different 

excitation intensity. 
1 2,f f  

Because in the expression of transmissibility in Equations(3-44)-(3-45), 

outputs are included which significantly rely on input in terms of the 

nonlinear MDOF system. Hence, outputs under two different excitation 

intensities could be various. 

 

Step 2: Calculate Output-based transmissibility function for each pair 

of consecutive masses. 
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(3-105) 

 

Step 3: Calculate the damage index (Difference between 
1 2

, 1 , 1( ) and ( ) 
f f

i i i ij j     ) 

 
2

1 2

1

, 1 , 1 , 1( ) ( ) 
f f

i i i i i iDI j j d





       
 

(3-106) 

 

Where 
1 2a b     

 

Step 4: According to relationship of nonzero values of DI and force 

location, localize the nonlinear component by referring to the properties 
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[Equations(3-86)-(3-100)]. The boundary of force and nonlinear 

component could be found. 

 

3.3.6.4 CASE 2: Damage identification if there are multiple nonlinear 

components under single point input 

For this situation, it is necessary to choose nonlinear output frequency 

range  ,a b . 

Step 1: Two single forces with the same bandlimited frequency range [a, 

b] can be loaded at one mass separately, which contains different 

excitation intensities. 1 2,f f  

 

Step 2: Calculate Output-based transmissibility function for each pair 

of consecutive masses. 
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(3-107) 

 

Step 3: Calculate the damage index (Difference between 
1 2

, 1 , 1( ) and ( ) 
f f

i i i ij j     ) 

 
2

1 2

1

, 1 , 1 , 1( ) ( ) 
f f

i i i i i iDI j j d





       
 

(3-108) 

 

Where 1 2 1 2 and [ , ], [ , ]a b a b       

 

Step 4: According to relationship of nonzero values of DI and, localize 

the nonlinear components by referring to properties [Equations(3-101)-

(3-104)]. The area of nonlinear components could be found. 
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3.3.6.5 CASE 3: Damage identification if there are multiple nonlinear 

components under multiple-point input 

More complicated situation that under multiple-point loading is 

considered here, the detailed analyzed process is demonstrated as 

follows. 

Starting from MDOF system, M, C, K, F and y are the system mass 

matrix, damping matrix, stiffness matrix, force vector and response 

displacement vector respectively. 
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0 0

0 0 0 n

m

m
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 
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 
 
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 
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1 2 2

2 2 3 3

1 1
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n n n n

n n
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c c c c
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C =  

1 2 2

2 2 3 3

1 1

0 0

0

0 0 0

n n n n

n n

k k k

k k k k

k k k k

k k

 

  
 
  

 
 
 

   
  

K =  

 1( ) ( ) ( )
T

nt u t u tF  

(3-109) 

 

Therefore, the moving equation of nonlinear MDOF system is defined as  

 

( ) ( ) ( ) ( ) ( )t t t t t   My Cy Ky F NF  (3-110) 

 

Here, F(t) contains multiple-point loadings u1, u2, …, un. NF(t) is 

nonlinear force matrix reckoned as the same as equation(3-18). Suppose 

all the inputs have the same frequency band [a, b], that is 
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 
 

0  ,
( )

0  ,

a b
Ui j

a b






 

 

 

i=1, 2, …, n 

(3-111) 

 

Starting from the first row of the new system matrix(3-110) 

 

1 1 1 2 1 2 2 1 2 1 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m y t c c y t c y t k k y t k y t u t      
 (3-112) 

 

The Output-based transmissibility function 1,2 ( )j   can be calculated 

 

2 2

2
1,2 2

1 1 2 1 2

1( )

( )
( )

( )

U j
k j c

Y j
j

m j c c k k





 

 

 


    

 (3-113) 

                                                                                              

From equation(3-111), it can be known that if  ,a b , 1( ) 0U j  , 

therefore 
2

1( )
0

( )

U j

Y j




 , and the value of this term will be changed 

accordingly if the input (Excitation intensity) has been changed, which 

means 
1 2

1 2

2 2

1 ( ) 1 ( )

( ) ( )

U j U j

Y j Y j

 

 
 . Therefore, 1 2

1,2 1,2( ) ( )
f fj j    , which is 

different with the case under single point excitation. 

if  ,a b , 1( ) 0U j  , so
2

1( )
0

( )

U j

Y j




 . Therefore, 1 2

1,2 1,2( ) ( )
f fj j    . In this 

case, the same conclusion could be obtained as the one under single point 

excitation. 

 

The analyzed process is the same for NOFRF-based transmissibility, due 

to the fact that 
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2 2

2
1,2 2

1 1 2 1 2

2 2
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2

1 1 2 1 2
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 


    

 


    



 (3-114) 

 

For the masses which are not connected to the nonlinear components. 

 ( min( 1, , )i ir L L J   or max( 1, , )i ir L L J  , 1,...,i L ) 

 

1 1

1
, 1 2 1

1 1 1,

( )

( )
( )

( ) ( )( )

r r

r
r r

r r r r r r r r r

Ur j
k j c

Y j
j

m j c c k k j c k j





 

    

 




  

 


      

 
(3-115) 

 

If  ,a b , ( ) 0Ur j  . Therefore,
1 2

1 2

1 1

( ) ( )

( ) ( )r r

Ur j Ur j

Y j Y j

 

  

 , and 

1 2

, 1 , 1( ) ( )r r r rj j     . 

if  ,a b , ( ) 0Ur j  . Therefore, 
1 2

1 2

1 1

( ) ( )

( ) ( )r r

Ur j Ur j

Y j Y j

 

  

  and

1 2

, 1 , 1( ) ( )r r r rj j     , which is the same conclusion as the one under 

single point excitation. 

For the masses which are connected to the nonlinear components, it can 

obtain the same conclusion as previous deduction. 

Through this deduction, it indicates that the transmissibility functions 

under multiple points excitation will be the same compared to the 

situation under single point excitation when the analyzed frequency is 

belonging to nonlinear output frequency range, that is  ,a b . In 

other words, when  ,a b , there is no feasible regular conclusion for 

damage detection, only when  ,a b , multiple nonlinear damages 

could be found. 

 

Therefore, the detailed steps are given here 
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Step 1: Two single forces with the same bandlimited frequency range [a, 

b] can be loaded at one mass separately, which contains different 

excitation intensities. 1 2,f f  

 

Step 2: Calculate Output-based transmissibility function for each pair 

of consecutive masses. 
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Step 3: Calculate the damage index (Difference between 
1 2

, 1 , 1( ) and ( ) 
f f

i i i ij j     ) 

 
2

1 2

1

, 1 , 1 , 1( ) ( ) 
f f

i i i i i iDI j j d





       
 

 

Where 1 2 1 2 and [ , ], [ , ]a b a b       

 

Step 4: According to relationship of nonzero values of DI and, localize 

the nonlinear components by referring to properties [Equations(3-101)-

(3-104)]. The area of nonlinear components could be found. 

 

3.3.7 Effect of boundary conditions 

The proposed theory is based on MDOF system, that means changes of 

boundary conditions do not change the obtained conclusions. Here 

illustrates an example of changing the system under fixed-fixed 

boundary condition shown in Fig. 3-3 into fixed-free shown in Fig. 3-4. 
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Fig. 3-4 Fixed-free MDOF nonlinear system 

 

According to the new MDOF nonlinear system, it can be found subtle 

changes occur into the stiffness matrix and damping matrix by using 
nk  

and 
nc  instead of 

1n nk k   and 
1n nc c    in the (2n, 2n)th element of K 

and C in the system(3-14) respectively. 
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K =  

 

That means let 
1 0nk    and 

1 0nc    in the equation(3-42), which 

doesn’t make a change for the conclusions. Similarly, the boundary 

conditions could be changed into free-free. 
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3.3.8 Simulation study 

In order to validate the proposed methodology, a 10 DOFs Mass-spring-

damper system has been simulated and coded in Software Matlab® 

shown in Fig. 3-5. Damping is assumed to be proportional damping, e.g., 

C=uK 

 

7m
5m

4m 8m
10m

5k

5c

8k

8c

11k

11c

2m1m
1k

1c 2c

2k

 
In order to validate the proposed methodology, a 10 DOFs Mass-

spring-damper system has been simulated and coded in Software 

Matlab® shown in Fig. 3-5 10DOFs mass-spring-damper system 

 

The detailed parameters are set as follows: 

1 2 10... 1m m m     

4

1 2 3 4 5 10 3.6 10k k k k k k        

6 7 8 10.8k k k k    

9 10.9k k  

0.01   

C K  

And N=3 in equation(3-15) 
2

( ,2) 10.8
iL k   

3

( ,3) 10.4
iL k   

( ,2) 0
iL   

( ,3) 0
iL   

Where 1,2,...,i L , L  is the number of nonlinear components in the 

system. 

In order to generate bandlimited input, the expression of input signal is 

given here: 

 

3 (sin(2 10 ) sin(2 7 ))
( )

2

t t
u t

t

 



 
  (3-116) 
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In equation(3-116), a bandlimited input signal has been generated as [7, 

10Hz], with sampling frequency 100Hz and acquired time 100s, the time 

history and it spectrum are shown in Fig. 3-6 and Fig. 3-7. The input 

that considers when t<0 is to construct a better spectra, containing even 

energy at each frequency bin. 

 
Fig. 3-6 Time history of the general input 
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Fig. 3-7 The spectrum of the general input 

 

3.3.8.1 Case study 1: one nonlinear component under single point loading 

Loading position J=2 

Number of nonlinear components 1L   and the spring is considered to 

be nonlinear that 
1 6L   (between mass 5 and mass 6) 

When the system is linear, the output of the system can be obtained by 

using a fifth order Runge–Kutta simulation method, and the response is 

shown in Fig. 3-8. 

 

0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

t(s)

U

Input spectrum

 

 



Chapter 3. Nonlinear damage identification method 

115 

 
Fig. 3-8 Response spectra of 10-DOF linear system 

 

From observing the results of Fig. 3-8, it is clear that the output 

frequency range is the same as the general input which is from 7Hz to 

10Hz, because of linear system.  

Following the process of single nonlinear component identification 

demonstrated in the section 3.3.6.3. 

 

Step 1: Two single forces with the same bandlimited frequency range [7, 

10Hz] can be loaded at one mass separately, which contains different 

excitation intensity. Here 
1 21, 10f f   

Considering adding the nonlinear component described in 

aforementioned parameters, the output in frequency domain can be 

obtained in Fig. 3-9 and Fig. 3-10 (in logarithms) when the excitation 

level is 10.  

Compared to Fig. 3-8, the spectra of output transfer some energy from 

[7, 10Hz] into lower frequency [0, 7Hz], and into some higher frequency 

[10, 20Hz]. 
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Fig. 3-9 Response spectra of 10-DOF nonlinear system 
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Fig. 3-10 Response spectra of 10-DOF nonlinear system 

 

Step 2: Calculate Output-based transmissibility function for each pair 

of consecutive masses. 
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And the corresponding transmissibility functions between two 

consecutive masses under two different excitation levels could be 

obtained shown in Fig. 3-11-Fig. 3-19. 

 

  
Fig. 3-11 TF  

between mass1 and mass2 

Fig. 3-12 TF  

between mass2 and mass3 
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Fig. 3-13 TF  

between mass3 and mass4 

Fig. 3-14 TF  

between mass4 and mass5 

 

  

Fig. 3-15 TF  

between mass5 and mass6 

Fig. 3-16 TF 

between mass6 and mass7 
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Fig. 3-17 TF 

between mass7 and mass8 

Fig. 3-18 TF 

between mass8 and mass9 

 

 
Fig. 3-19 TF 

between mass9 and mass10 

 

Step 3: Calculate the damage index (Difference between 
1 2

, 1 , 1( ) and ( ) 
f f

i i i ij j     ) 
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i i i i i iDI j j d
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Where 
1 27 10Hz Hz     

Damage index is shown in Fig. 3-20. 
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Fig. 3-20 Damage index of [7, 10Hz] 

 

Considering changing the frequency band into [8, 9Hz], the same 

damage index result should be obtained due to the reason that [8, 9Hz] 

is belong to the frequency range [7, 10Hz], which is shown in Fig. 3-21. 

 

 
Fig. 3-21 Damage index of [8, 9Hz] 
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If the frequency ranges outside [7, 10Hz] has been taken into consider, 

such as [1, 3Hz] and [12, 15Hz], the results are shown in the Fig. 3-22 

and Fig. 3-23. 

 

  

Fig. 3-22 Damage index  

of [1, 3Hz] 

Fig. 3-23 Damage index  

of [12, 15Hz] 

 

Step 4: According to relationship of nonzero values of DI and force 

location, localize the nonlinear component by referring to the properties 

[Equations(3-86)-(3-100)]. The boundary of force and nonlinear 

component could be found.  

As the location of loading J=2 is already known, then using the 

conclusion of (3-86), it is known that the DIs will not be zeros for the 

area [J, L1-1], since J=2, and L1-1 can be read from Fig. 3-20 or Fig. 3-

21, that is 5. Therefore, L1=5+1=6, which is accordance with the 

description at the beginning. So the only one nonlinear component can 

be localized between mass5 and mass6. 

 

3.3.8.2 Case study 2: one nonlinear component under single point loading 

Loading position J=8 

Number of nonlinear components L =1 and the spring is considered to 

be nonlinear that 1 5L   (between mass 4 and mass 5) 

The process of nonlinear damage is the same as the previous damage 

scenario 3.3.7.1. The detailed procedure is neglected here, only the 
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identification result is shown in Fig. 3-24 Damage index of [7, 10Hz]. 

The frequency range [7, 10Hz] is considered in terms of damage 

indicator. 

According to the conclusion (3-99) and (3-100), when the existence of 

nonzero values for DIs is only belonging to the area [ 1 1L  , 1J  ]. Since 

the nonzero value boundary can be read from the Fig. 3-24 Damage 

index of [7, 10Hz]is [4, 7], and location of loading J is already known as 

8J  . Therefore, 
1 1 4L   , and 

1 5L  , that means the nonlinear 

component is located between mass4 and mass5, which is in accordance 

with the provided description of damage scenario. 

 

 
Fig. 3-24 Damage index of [7, 10Hz] 

 

3.3.8.3 Case study 3: multiple nonlinear components under single point 
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Number of nonlinear components L =2 and the springs are considered 

to be nonlinear that 
1 6L   (between mass 5 and mass 6) and 2 9L   

(between mass 8 and mass 9). 

The number of nonlinear components is more than 1, the damage 

identification procedure should be followed as the section 3.3.6.4, which 

is for multiple nonlinear damage identification under single point 

loading. 

 

For this situation, it is necessary to choose nonlinear output frequency 

range  7,10Hz . 

 

Step 1: Two single forces with the same bandlimited frequency range [a, 

b] can be loaded at one mass separately, which contains different 

excitation intensities. 1 21, 10f f   

 

The output spectra of 10-DOF under two different excitation levels are 

shown in Fig. 3-25 and Fig. 3-26. 

 

 
Fig. 3-25 Response spectra of 10-DOF nonlinear system under 
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excitation f1=1 

 

 
Fig. 3-26 Response spectra of 10-DOF nonlinear system under 

excitation f2=10 

 

From Fig. 3-25 Response spectra of 10-DOF nonlinear system under 

excitation f1=1 and Fig. 3-26, it can be observed that part of energy is 

transferred from [7, 10Hz] into [0, 7Hz] and even [10, 30Hz] due to the 

existence of nonlinear components. 

 

Step 2: Calculate Output-based transmissibility function for each pair 

of consecutive masses. 
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Step 3: Calculate the damage index (Difference between 
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(3-117) 

 

Where 1 2 1 2 and [7,10 ], [7,10 ]Hz Hz      , here 1 212 , 15Hz Hz    

 

Here gives a detailed explanation about how to choose the calculated 

nonlinear frequency range. Because the output values are zeros or very 

small, which could result in a bigger error when calculating 

transmissibility between two tiny numbers. 

 

According to the calculation rules of NOFRFs (  ( )

n

i JG j ,J=2, n=1,...,N, 

i=1,..,10) under general input which has been demonstrated in section 

3.2.2. In this case only the first four NOFRFs are considered which are 

 1

( )i JG j  ,  2

( )i JG j  ,  3

( )i JG j  and  4

( )i JG j ( J=2, i=1,..,10). The 

condition for satisfying the least square approach, two different loading 

intensity are applied, which  in equation(3-9) are 1, 1.1, 1.2, 1.3, 1.4 

and 1.5, which satisfies the condition of Least Square Calculation(3-11). 

The output frequency range can be obtained in Table 1 and its 

calculation process is shown in section3.3.2:  

 

Table 1 Output frequency range for the first four orders 

 

Output under different 

order NOFRFs 
Frequency range 

1st (7Hz, 10Hz) 

2nd (0Hz, 3Hz) (14Hz, 20Hz) 

3rd (4Hz, 13Hz) (21Hz, 30Hz) 

4th (0Hz, 6Hz) (28Hz, 40Hz) 

 

And the first NOFRFs are shown in the Fig. 3-27. 

 



Chapter 3. Nonlinear damage identification method 

126 

 
Fig. 3-27 The first four NOFRF functions 

 

In order to evaluate the NOFRFs identification, Fig. 3-28 shows the 

estimated output spectrum and also the error regarding to the actual 

output spectrum from Runge–Kutta simulation. From the figure of 

estimated error, it can be known that the first four NOFRFs are enough 

to be considered because of the small error.  
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Fig. 3-28 The actual output spectrum, estimated output spectrum 

and the estimated error 

 

It can be observed from Fig. 3-27 that there are some zero-gap values for 

each NOFRF due to the reason of the inherent characteristic of output 

frequency range of nonlinear system. 

 

Therefore, the calculated nonlinear frequency range taken into damage 

indicator calculation in equation(3-117) should be chosen from [0,7Hz) 

and (10,40Hz]. 

 

Step 4: According to relationship of nonzero values of DI and, localize 

the nonlinear components by referring to properties [Equations(3-101)-
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(3-104)]. The area of nonlinear components could be found. 

 

 
Fig. 3-29 Damage index of [12, 15Hz] 

 

According to the conclusion [Equations(3-101)-(3-104)], the nonzero 

values of DI should be 
1 1 1

L
L i L     and it doesn’t associate with 

loads for the situation that there are multiple nonlinear components in 

the system. From Fig. 3-29, the nonlinear components boundary can be 

read as from DI5 to DI8. Therefore, by matching the result read from 

Fig. 3-29 and equation(3-101), it is easy to know, 1L =6, 2 9L  . 

 

If considering the frequency range within [7, 10Hz], such as [8, 9Hz], the 

damage indicator result is shown in Fig. 3-30. It can be observed that 

the nonlinear components’ area is not accordance with the provided 

condition. Because the calculated frequency range is belonging into the 

input frequency range, therefore, the nonzero value outcome should be 

the boundary between the loading and the nonlinear component farthest 

away from the loading. So, J=2, 2 9L   is the information extracted from 

Fig. 3-30, according to conclusion (3-98). 
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Fig. 3-30 Damage index of [8, 9Hz] 

3.3.8.4 Case study 4: multiple nonlinear components under single point 

loading 

Loading position J=8 

Number of nonlinear components L =2 and the springs are considered 

to be nonlinear that 1 6L   (between mass 5 and mass 6) and 2 9L   

(between mass 8 and mass 9). 

 

In this case, the only changed condition is loading position from mass2 

to mass8. The detailed recognized process is neglected here. Fig. 3-31 

shows the identification result with choosing frequency range [12, 14Hz]. 

The correct nonlinear components’ area has been identified which is 

1 1 5L   , 2 1 8L   , therefore, 1 6L  , 2 9L  . It means nonlinear 

components are located between mass5 and mass8, which is in 

accordance with the provided description of damage scenario. 
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Fig. 3-31 Damage index of [12, 14Hz] 

 

While Fig. 3-32 shows the identification result by choosing the frequency 

range [8, 9Hz] within input frequency range [7, 10Hz]. 

 

 
Fig. 3-32 Damage index of [8, 9Hz] 
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It can be seen that the recognized result is the same as the Fig. 3-31, 

that is because the loading position is between the two nonlinear 

components according to the conclusions(3-97) and (3-98). 

3.3.8.5 Case study 5: multiple nonlinear components under multiple-

point loading 

Loading position 1 2J  , 2 4J   and 3 8J   

Number of nonlinear components L =3 and the springs are considered 

to be nonlinear that 1 6L   (between mass 5 and mass 6), 2 8L   

(between mass 7 and mass 8) and 3 9L   (between mass 8 and mass 9) 

This process should be followed as section 3.3.6.5 Case3. 

 

Step 1: Two single forces with the same bandlimited frequency range [7, 

10Hz] can be loaded at one mass separately, which contains different 

excitation intensities. 1 21, 10f f   

 

 
Fig. 3-33 Response spectra of 10-DOF nonlinear system under 
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excitation f1=1 
 

 
Fig. 3-34 Response spectra of 10-DOF nonlinear system under 

excitation f1=10 

 

The output spectra of 10-DOF points are shown in the Fig. 3-33 and Fig. 

3-34 under two different excitation levels. 

 

Step 2: Calculate Output-based transmissibility function for each pair 

of consecutive masses. 
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Step 3: Calculate the damage index (Difference between 
1 2
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Step 4: According to relationship of nonzero values of DI and, localize 

the nonlinear components by referring to properties [Equations(3-101)-

(3-104)]. The area of nonlinear components could be found. 

 

 
Fig. 3-35 Damage index of [12, 15Hz] 

 

The nonlinear components’ area can be read as DI5-DI8. That can be 

matched by using Equations(3-101)-(3-104) to find the nonlinear 

components’ boundary which is 1 1 5L   , 3 1 8L   , therefore, 1 6L  , 

3 9L  , and it means the nonlinear components are located between 

mass5 and mass9. Also it is accordance with the provided description of 

damage scenario. 
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3.3.8.6 Case study 6: multiple nonlinear components under uniform 

distributed loading 

Loading position iJ i  ,where i=1, 2, …,10 

Number of nonlinear components L =3 and the springs are considered 

to be nonlinear that 
1 6L   (between mass 5 and mass 6), 

2 8L   

(between mass 7 and mass 8) and 3 9L   (between mass 8 and mass 9) 

 

As for distributed load, which should be considered as the same case as 

section 3.3.7.5 Case study 5. Hence, the direct identified result is shown 

in Fig. 3-36. According to Equations(3-101)-(3-104), nonlinear 

components’ area could be found at the boundary 1 31 1L i L    , 

therefore, in comparison with the outcome shown in Fig. 3-36, it is easy 

to find that 1 1 5L   , 3 1 8L   . That is 1 6L   and 3 9L  , it means the 

nonlinear components are located between mass5 and mass9, which is 

accordance with the provided damage condition. 

 

 
Fig. 3-36 Damage index of [12, 15Hz] 
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3.3.9 Experimental study 

In order to verify the effectiveness of the proposed methodology, 

nonlinear damage detection should be performed not only in numerical 

simulation cases, but also under the real working condition. The 

experimental tests are organized into two different setups, which are 

blade and steel beam structures with cracks that behaviors nonlinearly.  

3.3.9.1 Case study 1: Nonlinear damage identification on blade structure 

The blade model is made by wood proportionally in terms of the shape 

of real blade structures, aiming to carry out experiments in lab 

conveniently. Four laser sensors have been applied as data acquisition 

ports, considered as non-contact measurement. The sensing unit is 

millimeter. The experimental setup is shown in Fig. 3-37. The blade was 

mounted on an actuator near sensor 4.  
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SENSOR 2

SENSOR 3
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Fig. 3-37 Experimental setup: blade model and laser sensor 

 

Two damage scenarios will be taken into consideration: single crack and 

two cracks (breathing crack here). The detailed experimental schedule 

is shown in Table 2. 

 

Table 2. Experimental schedule 

    Input Amplitude 

 

 

Bandlimited 

A B 

3-7Hz ✓ ✓ 

7-12Hz ✓ ✓ 

10-15Hz ✓ ✓ 

 

Three bandlimited input signals, here considered as white noise, are 

generated with different frequency band. In the meantime, two different 

excitation levels are taken into account. (A>B, adjusted by the power 

amplifier).  
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Fig. 3-38 Experimental setup configuration 

 

a. blade model with one crack 

The experimental configuration is shown in Fig. 3-38. The crack was 

made by using a very thin saw between laser sensor 1 and laser sensor 

2, in order to make it behavior nonlinearly, shown in Fig. 3-39. 

 

 

Fig. 3-39 Blade model with one crack 

 

The laser sensors are capable to measure the displacement with 

sampling frequency 2500Hz, and the responses of the four laser sensors 

in time domain under input amplitude A is presented in Fig. 3-40. The 
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input frequency band is chosen as 3-7Hz. 

 

 
Fig. 3-40 The response of laser sensors in time domain  

under excitation amplitude A 

 

In Fig. 3-40, it is apparent to observe that displacement acquired from 

sensor 1 has the maximum amplitude and the one acquired from sensor 

4 has the minimum amplitude due to the fact that sensor 1 is mounted 

on the cantilevered end and sensor 4 is mounted on the clamped end. 

Fig. 3-41 shows the spectra of the four sensors. 
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Fig. 3-41 Spectra of the four sensors under excitation amplitude A 

 

From the Fig. 3-41 of response spectra, the area covered by two dash 

lines is the input frequency band [3-7Hz], due to the existence of crack, 

more frequency bands appear especially from 7-35Hz. Part of energy 

originally stored in the frequency band [3-7Hz] has been transferred into 

the frequency band [7-35Hz] because of the nonlinearity of the system. 

Also, two resonance frequencies could be detected obviously, that have 

been marked in the Fig. 3-41, they are 6.167Hz and 27Hz in accordance 

with the first and second modal frequency of the blade model. 

In order to perform the nonlinear damage identification procedure, two 

different loading conditions should be considered. Therefore, the same 

process has been carried out under the input with a higher excitation 

amplitude B. The responses from the sensors in time domain and in 

frequency domain are shown in Fig. 3-42 and Fig. 3-43 respectively. 
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Fig. 3-42 The response of laser sensors in time domain 

under excitation amplitude B 

 

 
Fig. 3-43 Spectra of the four sensors under excitation amplitude B 
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Follow the nonlinear identification procedure from step1 to step4 in 

section 3.3.6.3, 1 2,   are valued as 3Hz and 7Hz in the equation(3-105) 

and equation(3-106). The procedure has been repeated for 5 times, and 

identified damage index can be reached by averaging the damage index 

obtained separately from those 5 times.   

 

 
Fig. 3-44 Damage index under [3-7Hz] 

 

Fig. 3-44 shows the damage index. According to the conclusion of the 

proposed method in the section 3.3.6.1, there exists nonzero values for 

all damage index 
1,2DI 2,3 3,4 and DI DI , in other words, 

1,2 0DI   

2,3  0, DI   
3,4and 0DI  , which is in accordance with the identified result 

shown in Fig. 3-44.. 

Same identification procedures have been carried out for the other two 

scenarios that vary the frequency band of input [7-12Hz] and [10-15Hz].  

The damage indexes for the case of [7-12Hz] and [10-15Hz] have been 

presented in the Fig. 3-45 and Fig. 3-46 respectively. 
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Fig. 3-45 Damage index under [7-12Hz] 
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Fig. 3-46 Damage index under [10-15Hz] 

 

Apparently, both identification results indicate the same conclusion 

regarding to the scenario under input with bandwidth [3-7Hz], that is 

1,2 2,30,  0, DI DI  3,4and 0DI  . 

 

b. blade model with two cracks 

Two cracks have been created, one is located between sensor 1 and 

sensor 2, the other is located between sensor 2 and sensor 3. The blade 

with two cracks is shown in Fig. 3-47. 

 

 
Fig. 3-47 Blade model with two cracks 

 

The responses under bandlimited input with the frequency band [3-7Hz] 

obtained from the laser sensors in time domain and frequency domain 

have been shown in the Fig. 3-48 - Fig. 3-51, considering two excitation 

levels: amplitude A and B. 
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Fig. 3-48 The response of laser sensors in time domain 

under excitation amplitude A 

 

 
Fig. 3-49 The response of laser sensors in time domain 

under excitation amplitude B 
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Fig. 3-50 Spectra of the four sensors under excitation amplitude A 

 

 
Fig. 3-51 Spectra of the four sensors under excitation amplitude B 

 

From the Fig. 3-50 and Fig. 3-51, the occurrence of energy located within 

frequency range [5-8Hz], [20-35Hz] and [45-55Hz] can be clearly 

observed. Because the system output frequency response is the effect of 

a combination of the output frequency responses of the involved 
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homogeneous non-linear systems. 

To confirm the effectiveness of proposed method for multiple nonlinear 

components identification, step1-step4 described in section 3.3.6.4 

should be applied here. And 1 2 and    should be considered outside of 

range [10-15Hz], the frequency range [20-30Hz] made a great 

contribution to the system output which could be the good choice of  

1 2 and   , that is 1 2=20Hz   30Hz   . 

The damage identification is shown in the Fig. 3-52. According to the 

proposition of section 3.3.6.2, there exists only nonzero values in 

1,2 2,3 and DI DI , and other damage indexes should be zero. Considering the 

provided result below, it is correspondence with the description of that 

proposition, 
1,2 2,3 3,4 0,  0,  0DI DI DI   . Actually, a small value can be 

observed from
3,4  DI , which could be the result of noise and other source 

of interference, and it has been indicated by the red dash line. 

 
Fig. 3-52 Damage index under [10-15Hz] 

 

Same operations for other scenarios: under input with bandwidth [3-7Hz] 

and [7-12Hz] have been performed, and their identification results are 

displayed in the Fig. 3-53 and Fig. 3-54 respectively. It can be clearly 
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understood that the same conclusions have been obtained in comparison 

with Fig. 3-52, which significantly verifies the feasibility of the proposed 

methodology. 

 

 
Fig. 3-53 Damage index under [3-7Hz] 
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Fig. 3-54 Damage index under [7-12Hz] 

 

The experimental procedures on damage identification are shown in the 

framework of Fig. 3-55. Note: A and B in the Fig. 3-55 stand for different 

excitation levels of input. 
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Fig. 3-55 Framework of experiments on nonlinear damage detection 

3.3.9.2 Case study 2: Nonlinear damage identification on beam structure 

by using distributed fiber optics 

Due to the limited number of sensors applied in case study 1, the cracks 

cannot be precisely localized based on scant information provided. In 

case study 2, a beam structure will be deeply studied with breathing 

cracks, and acquisition sensor will be substituted by using distributed 

fiber optics. The core idea of the research project is the use of huge 

amount of data, both in time and space, for damage detection. 

Traditional transducers can sense the vibrations of mechanical systems 

like vibration velocity, acceleration and displacement, etc. and convert 

into usable output signal. They can provide dynamic measurements 

(huge information in time domain) but are usually limited sensing points. 

Thanks to the dense measurement points provided by distributed fiber 

optics, the proposed work is to apply this new measurement device, 

LUNA Optical distributed sensor interrogator, to acquire vibrations in 

terms of dynamic strain.  

 

In order to make breathing crack, fatigue experiments could be the best 

approach. However, in this case study, another way to create “breathing 

crack” has been applied which is more convenient to reach the target 

and able to save time. The details about crack creation are described as 

follows: A rectangular block gap has been cut with the dimension 40mm  

× 3mm × 2mm (length × width × thickness), and the removed block gap 

will be plugged with a steel block with the same width of removed gap 

by using the particular glue, resulting in breathing behavior when the 

beam is deforming under periodic loading. The configuration of this 

crack is displayed in Fig. 3-56. 

 



Chapter 3. Nonlinear damage identification method 

151 

2
 m

m

3 mm

4
0

 m
m

1
5

 m
m

1500 mm

Effective distributed 
fiber optics

700 mm

 
Fig. 3-56 Configuration of beam structure with crack and distributed 

fiber optics 

 

A clamped-clamped steel beam has been utilized with dimension 1.5 m 

× 0.04 m × 0.015 m. Red dash line in the above figure indicates the 

installation configuration of distributed fiber optics. 2meters distributed 

fiber optics has been attached on the surface of the beam, only 

1.28meters effective distributed fiber optics are taken into consideration 

due to the limitation of beam length. The block crack is located on the 

700mm left regarding the initial effective part.  

 

There are 497 sensors along the effective distributed fiber optics with 

the sampling frequency 250Hz and 2.6125mm sensing space. The crack 

is located around the 267th sensor, it can be calculated considering the 

distance and sensing space:  

distance/sensing space=700mm/2.6125mm=267 

The Fig. 3-57 shows the crack made in the beam. 
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Fig. 3-57 Crack in the beam 

 

The description of system configuration is presented in Fig. 3-58. 

Bandlimited input signal is generated by using NI-MyDAQ, which is 

transferred into Power Amplifier and reached at the mini-Shake to 

create the input signal into the beam. Meanwhile, the strain dynamic 

responses are acquired through the attached distributed fiber optics, 

and the signals are demodulated by LUNA OSiDI-B into the display port 

PC2. 

 

Power Amplifier NI-My DAQ PC1

LUNA OSIDI-B PC2

Distributed Fiber Optics

Shaker

 
Fig. 3-58 System configuration 

 

And Fig. 3-59 and Fig. 3-60 show the configuration of the corresponding 

experimental system. 
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Fig. 3-59 Configuration of experimental system(A) 

 

 
Fig. 3-60 Configuration of experimental system(B) 
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Two operational scenarios have been considered as following 

demonstration. 

 

Case 1: Input on the left side of the beam, and its configuration is shown 

in Fig. 3-61. 

 

570mm

700mm

1500mm  
Fig. 3-61 Configuration of scenario 1 

 

Input has been chosen as chirp signal, which contains bandwidth 

frequency band [25Hz,45Hz]. Two different excitation levels are taken 

into consideration, namely level A and level B, and they satisfy the 

condition: A>B. The chirp signal with bandwidth [25Hz,45Hz] under 

unit excitation amplitude in time domain and frequency domain is 

shown in Fig. 3-62 and Fig. 3-63. 
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Fig. 3-62 Chirp input signal with bandwidth [25Hz,45Hz]  

• in time domain (unit amplitude) and its partial enlarged drawing 

 

 
Fig. 3-63 Chirp input signal with bandwidth [25Hz,45Hz]  

in frequency domain 

 

The input signal was generated by the mini-shaker, which is located at 

570mm to the left side of the fiber optics, corresponding to the 219th 

3 3.1 3.2 3.3 3.4

-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

F
o

rc
e

0 20 40 60 80 100 120 140 160 180 200
0

0.01

0.02

0.03

0.04

0.05

0.06

Frequency (Hz)



Chapter 3. Nonlinear damage identification method 

156 

sensor. And the crack is located at 700mm to the left side of the fiber 

optics, corresponding to the 267th sensor. 

 

The Fig. 3-64 and Fig. 3-65 show the strain responses of all the 497 

sensors along with the distributed fiber optics under excitation level A 

and B in time domain respectively. 

 

 
Fig. 3-64 Strain responses of the 497 sensors along with the 

distributed fiber optics under excitation level A in time domain 
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Fig. 3-65 Strain responses of the 497 sensors along with the 

distributed fiber optics under excitation level A in time domain 

 

From the above figures, it can be noticed that the strain response in the 

Fig. 3-65 is bigger than that of Fig. 3-64 due to the two different 

excitation levels. 

Meantime, the strain responses in frequency domain can be obtained by 

performing Fourier Transform, and they are shown in the Fig. 3-66 and 

Fig. 3-67. 
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Fig. 3-66 Strain response spectra of the 497 sensors along with the 

distributed fiber optics under excitation level A 

 

 
Fig. 3-67 Strain response spectra of the 497 sensors along with the 

distributed fiber optics under excitation level B 

 

The areas covered by two red dash lines in the Fig. 3-66 and Fig. 3-67 
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indicate that the spectra concentrated on the frequency band 

[25Hz,45Hz] corresponds with input frequency range. And the peak 

within the frequency band remarks the 1st order resonance frequency, 

the bandwidth [25Hz,45Hz] has been chosen around resonance 

frequency in order to obtain more stable output response. 

However, there exist two mode nodes during the first strain mode, which 

can be found in the Fig. 3-68. 

The 1st unscaled mode shape of intact beam has been extracted by using 

the method[115] under hammer impact, it is shown in Fig. 3-68 
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Fig. 3-68 Unscaled strain mode shape of intact beam 

 

It can be observed that the values of two zeros marked by red circles in 

the Fig. 3-68 are very subtle, close to zero, which are corresponding to 

the 1st strain mode nodes. 

Those beam elements nearby the mode nodes cannot be taken into 

damage identification procedure, therefore, transmissibility coherence 

function should be introduced here, as the same as the section 2.6 

performed. And the threshold for eliminating the unreliable beam nodes 

has been selected as 0.8. 
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Fig. 3-69 shows the transmissibility coherence function under excitation 

level A, and the areas covered by the green dash lines are unreliable that 

are lower than 0.8. Hence the corresponding beam elements are not 

taken into account. 

 
Fig. 3-69 Transmissibility coherence function  

under excitation level A 

 

Aiming to nonlinear damage identification, the procedure step1 to step4 

3.3.6.3 has been applied. And the frequency band here has been chosen 

as [25Hz,45Hz], which are the values of a and b in step1 in section 

3.3.6.3. 

Damage indicator can be obtained from equation(3-106) and it is shown 

in Fig. 3-70. 
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Fig. 3-70 Damage indicator of scenario 1 

 

The asterisks in the Fig. 3-70 indicate the unreliable beam elements. 

According to the deduction (3-58) and (3-59), the boundary of the area 

composed by loading force and nonlinear component is  1, 1J L  . In this 

scenario, 219J  and 1 267L  , therefore, the boundary should be 

[219,266]. In Fig. 3-70, the red bars are the identified boundary between 

loading force and nonlinear component which are 216 and 272 

respectively. Given that the location of loading force could be considered 

as prior information, red bar at beam element 267 should be recognized 

as nonlinear component. Considering the small spatial resolution of the 

fiber optics and uncertainties of the installation of distributed fiber 

optics, noise effect and practical operations, the recognized boundary can 

be acceptable compared to the theoretical boundary. 

 

Case 2: Input on the right side of the beam, and its configuration is 

shown in Fig. 3-71. 
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950mm

700mm

1500mm  
Fig. 3-71 Configuration of scenario 2 

 

The input signal was generated by the mini-shaker, which is located at 

950mm to the left side of the fiber optics, corresponding to the 364th 

sensor. And the crack is located at 700mm to the left side of the fiber 

optics, corresponding to the 267th sensor. 

A chirp signal, as input, contains different bandwidth frequency band 

[25Hz,40Hz] instead of [25Hz,45Hz]. Also, two different excitation levels 

(level A and level B) are considered, and they satisfy the condition: A>B. 

The chirp signal with bandwidth [25Hz,40Hz] under unit excitation 

amplitude in time domain and frequency domain is shown in Fig. 3-72 

and Fig. 3-73. 

 

 
Fig. 3-72 Chirp input signal with bandwidth [25Hz,40Hz] 

in time domain (unit amplitude) 
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Fig. 3-73 Chirp input signal with bandwidth [25Hz,40Hz] 

in frequency domain 

 

 
Fig. 3-74 Strain responses of the 497 sensors along with the 

distributed fiber optics under excitation level A in time domain 
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Fig. 3-75 Strain responses of the 497 sensors along with the 

distributed fiber optics under excitation level B in time domain 

 

 
Fig. 3-76 Strain responses of the 497 sensors along with the 

distributed fiber optics under excitation level A in frequency domain 
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Fig. 3-77 Strain responses of the 497 sensors along with the 

distributed fiber optics under excitation level B in frequency domain 

 

Each test is carried out for 5 times, aiming to noise reduction by 

averaging manipulation. 

The marked two red dash lines indicate the correspondent frequency 

band of input [25Hz,40Hz] in Fig. 3-76 and Fig. 3-77. In order to discard 

the unreliable vibration response, transmissibility coherence function 

has been performed as well and shown in Fig. 3-78. The red dash line 

demonstrates the threshold 0.8 for the choice of reliable beam elements. 
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Fig. 3-78 Transmissibility coherence function  

under excitation level A 

 

Same procedure step1 to step4 3.3.6.3 has been applied for identifying 

the boundary of loading force and nonlinear component. The frequency 

band here has been chosen as [25Hz,40Hz], which are the values of a 

and b in step1 in section 3.3.6.3. 

Damage indicator can be obtained from equation(3-106) and it is shown 

in Fig. 3-79.  
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Fig. 3-79 Damage indicator of scenario 2 

 

The asterisks in the Fig. 3-79 illustrate the discarded beam elements. 

From the deduction (3-62) and (3-63), the boundary of the area between 

loading force and nonlinear component is  1 1, 1L J  . According to the 

real experimental configuration 1 267L   and 364J  , therefore, the 

boundary between loading force and crack should be [266,363]. In Fig. 

3-70, the red bars are the identified boundary of loading and nonlinear 

component which are 268 and 367. The recognized boundary is a little 

bit differentiated in terms of the real situation, considering the 

uncertainties of the system and operations. 

This case study demonstrates the experiment process on identification 

of signal nonlinear component, here breathing crack, by means of 

distributed fiber optics. The framework of experiment process is shown 

in Fig. 3-80. Through the recognition of boundary covered by loading 

force and crack, crack could be localized based on the condition of known 

position of loading force. Otherwise, at least two different tests should 

be performed in order to find the coincidence boundary, which could be 

identified as nonlinear component.  
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Fig. 3-80 Framework of experiments on nonlinear damage detection 
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3.4 Conclusion 

 

The methodology about identifying single or multiple nonlinear 

components for MDOF system under general input has been put forward. 

The important properties of transmissibility functions based on different 

nonlinear order NOFRFs and output have been illustrated and it clearly 

figures out the relationship between transmissibility functions based on 

the total system output and the output under different nonlinear order 

or NOFRFs. According to the linear frequency range and nonlinear 

frequency range, different damage identification procedures are 

proposed respectively. Moreover, it is helpful to replenish the knowledge 

and application of NOFRFs on damage identification under general 

input. The conclusion finds that it is more convenient to use the Output-

based transmissibility, which is derived from NOFRF-based 

transmissibility, in terms of nonlinear damage identification, regarding 

the fact that NOFRF-based transmissibility needs another complicated 

process of parameter identification of calculation, and Output-based 

transmissibility skips the errors caused by NOFRF identification.  

In addition, a series of simulation studies have been carried out 

considering diverse situation:  

1) Only existence of one nonlinear component; 

2) Existence of multiple nonlinear components;  

3) Only single point loading; 

4) Existence of multiple-point loading; 

5) Existence of uniform distributed loading. 

All the simulation results have indicated the feasibility and 

effectiveness of proposed methodology. 

As for the experiments, a wood blade model with cracks has been studied 

by using 4 laser sensors considering two damage situations: single crack 

and two cracks. The experimental results validate the effectiveness of 

proposed methodology, however, the damage location cannot be 

precisely localized due to the limited number of sensors applied. Based 

on this consideration, distributed fiber optics have been applied which 

is capable to provide huge number of sensors, hence another series of 

damage identification experiments on beam structure by means of 

distributed fiber optics have been conducted. Through the recognized 

damage indicator, rather good consequence could be achieved even if 
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there exists a small fluctuation, but within the range of tolerance. 
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CHAPTER 4 
Conclusion and future research 

 

 

 

Structural damage identification is crucial for engineering structures, 

but it is still a tough issue concerning the practical conduction and 

implementation. Correct and rapid identification of these damage is able 

to ensure the safe operation of the structures and to prevent accidents, 

which has an important significance. Currently the methods of damage 

detection are still in the state of development. In this thesis, a novel 

damage detection approach on linear damage and nonlinear damage 

based on transmissibility function has been mainly studied. 

4.1 Conclusions 

In this thesis, several damage identification methods have been 

reviewed shortly, and it points out that transmissibility could be the 

better damage indicators among those methods.  

Due to the fact that strain could be the second derivative of displacement, 

which has been proved its better sensitivity in terms of damage in the 

paper[111], distributed fiber optics have been applied into this study, 

taking into account that it can directly measure strain data and it is 

capable to offer a huge number of sensors along one single fiber. 

In chapter 2, based on study of strain data, strain transmissibility 
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function (STF) has been proposed and it has been verified more sensitive 

compared to traditional transmissibility functions (TTF) (displacement, 

acceleration and velocity), calculated through the approach that the 

convergence value of STFs into system poles is equal to the ratio of strain 

mode instead of the ratio of displacement mode from TTFs. 

Corresponding simulation studies have been performed in order to verify 

the outcome of higher sensitivity of STF compared to TTF. Moreover, its 

feasibility has also been validated based on experimental studies of 

beam structure by applying a distributed fiber optics.   

All the proposed methods are based on the assumption that the system 

behavior of structure is linear. However, many damages in real 

engineering structures are manifested as nonlinear behaviors. Under 

this situation, the damage identification methods based on linear system 

are not so sensitive to nonlinear damage, even not working functionally. 

Considering that there is a few research on the topic of nonlinear 

damage identification by using transmissibility function. In chapter 3, 

the method based on transmissibility by using NOFRFs has been 

selected as a base study, with aiming to develop into more general 

applicable cases, since the proposed method for nonlinear damage 

identification is only applicable to the system under single harmonic 

excitation. Thus, transmissibility based on NOFRFs has been developed 

into adapt the system under general input, namely bandlimited input, 

which contains richer frequency components compared to signal 

harmonic input.   

Therefore, this thesis puts forward the methodologies of detecting and 

locating single and multiple nonlinear components under general input 

for MDOF system respectively. Through the discovery of the 

relationship between NOFRF-based transmissibility and Output-based 

transmissibility under general input, it is proved that Output-based 

transmissibility contains exactly the same properties as NOFRF-based 

transmissibility. The main consequence is that Output-based 

transmissibility could be more convenient and manipulative for damage 

identification, because it skips the complicated mathematical 

computation process of NOFRFs. Moreover, the detailed identification 

procedure for nonlinear components has been proposed. A short review 

on frequency response function of nonlinear system and Conception of 

Nonlinear output frequency response function has been described in the 

beginning. And then it discusses the NOFRF-based transmissibility 
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functions under general input for MDOF system. The Output-based 

transmissibility has been studied which is derived from NOFRF-based 

transmissibility. Some important properties of NOFRF-based 

transmissibility and Output-based transmissibility have been concluded 

respectively, which offers the strategy for detecting and locating 

nonlinear components. In the end, it brings up the concrete steps for 

identifying single and multiple nonlinear components, concerning the 

loading conditions: single point excitation and multiple points excitation.  

 

4.2 Contribution to knowledge 

In this thesis, the contribution to knowledge can be listed as the 

following points. 

 

For linear damage identification 

1. Conception of strain transmissibility function (STF) has been 

proposed; 

2. The feasibility and effectiveness of damage detection by using STF 

have been verified by a series of simulation studies and experimental 

studies. 

3. Higher sensitivity of STF has been proved compared to TTF 

(Traditional transmissibility function) in terms of damage. 

4. Distributed fiber optics based on OFDR technology has been 

successfully applied into damage identification of beam structures. 

 

For nonlinear damage identification 

1. Some important properties of NOFRF-based transmissibility of 

MDOF system under general input have been discovered; 

2. The relationship between NOFRF-based and Output-based 

transmissibility of MDOF system under general input has been 

demonstrated clearly. 

3. Accordingly, some important properties of NOFRF-based 

transmissibility of MDOF system under general input have been 

discovered; 

4. The methodology for nonlinear damage identification based on 

NOFRF-based and Output-based transmissibility of MDOF system 

under general input has been proposed in details, considering 
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different working conditions which include the existence of single 

and multiple nonlinear components, the existence of single point 

loading, multiple-point loading and uniform distributed loading. 

5. Since the method of nonlinear damage identification based on 

harmonic loading has been studied maturely already by Lang et al. 

This part of work has been contributed into development of NOFRF 

system theory.  

6. Distributed fiber optics based on OFDR technology has been applied 

into nonlinear damage identification (breathing crack) successfully 

as well. 

 

4.3 Future work prospects 

Based on the aforementioned work of this thesis, here lists the 

recommendations for the future work. 

 

1. The threshold for distinguishing the level of uncertainty while 

carrying out the experiments, which could be from mechanical 

operations, noise and other external disturbance. 

2. Different fiber optic sensors should be applied in order to compare 

their corresponding performance. 

3. Applications of damage detection on more complicated engineering 

structures based on strain transmissibility function should be 

practiced, such as bridges and high buildings. 

4. More nonlinear damage behaviors, apart from breathing crack, and 

real engineering structures should be applied in order to verify the 

proposed nonlinear damage identification method.
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