
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Engeneering Physics

Sub-Doppler precision laser spectroscopy of
trifloromethane at 8.6 µm

Supervisor: Dr. Gianluca GALZERANO

Co-supervisor: Dr. Alessio Gambetta

Master Thesis of:
Edoardo VICENTINI

Matr. 841450

Academic Year 2016-2017





Contents

List of Figures i

List of Tables iv

Acknowledgements vi

Abstract vii

Sommario viii

Introduction ix

1 Absorption 1

1.1 Linear absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Widths and profiles of spectral lines . . . . . . . . . . . . . . . . . 4

1.2.1 Natural linewidth . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Collisional Broadening . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Transit time broadening . . . . . . . . . . . . . . . . . . . 8

1.2.4 Doppler linewidth . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.5 Voigt profile . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Non-linear absorption . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Saturation of level population . . . . . . . . . . . . . . . . 12

1.3.2 Saturation of homogeneous line profiles . . . . . . . . . . . 14

1.3.3 Saturation of inhomogeneous line profiles . . . . . . . . . . 15

1.4 CHF3 around 8.6 µm . . . . . . . . . . . . . . . . . . . . . . . . 18

2 MIR Precision Spectroscopy 21

2.1 Doppler-free spectroscopy . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Wavelength modulation spectroscopy . . . . . . . . . . . . . . . . 23

2.3 Absolute frequency measurement . . . . . . . . . . . . . . . . . . 25

2.3.1 Optical frequency comb synthesizer . . . . . . . . . . . . . 26

2.3.2 Comb assisted spectroscopy: absolute frequency determina-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Comb state of art . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3



3 Comb-assisted Doppler-free spectroscopy of CHF3 35
3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Quantum Cascade Laser . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Optical Frequency Comb . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 QCL-OFC lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Direct saturated spectroscopy of CHF3 . . . . . . . . . . . . . . . 42
3.6 Wavelength modulation saturation spectroscopy of CHF3 . . . . . 49

4 Absolute frequency stabilization of a QCL to saturated absorp-
tion of CHF3 55
4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 QCL lock to saturated absorption . . . . . . . . . . . . . . . . . . 57
4.3 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Uncertainty budget . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Conclusion and perspectives 61

Peer reviewed publications 63

Bibliography 63



List of Figures

1.1 Two-level system interecting with EM field . . . . . . . . . . . . . 2
1.2 Natural linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Relation between the natural linewidth and the energy uncertanties 6
1.4 Potential curve as a function of interatomic distance R . . . . . . 7
1.5 Collisional broadening and shift . . . . . . . . . . . . . . . . . . . 8
1.6 Intensity profile of a gaussian beam . . . . . . . . . . . . . . . . . 9
1.7 Shifted frequency due to Doppler effec. ω′ frequency in molecules

frame of referece; ωL absorbed frequency[15] . . . . . . . . . . . . 10
1.8 Comparison between Lorentzian and Gaussian line profiles of equal

halfwidths[15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Voigt profile as a convolution of Lorentzian shape L(ω0 − ωi) of

molecules with different velocity component vzi and central absorp-
tion frequencies ωi = ω0(1 + vzi/c)[15] . . . . . . . . . . . . . . . . 12

1.10 Two level system with pumping and relaxing processes . . . . . . 13
1.11 Saturation broadening of a homogeneous line profile . . . . . . . . 14
1.12 Velocity-selective saturation of a Doppler-broadened transition . . 15
1.13 Bennet holes caused by the two counter-propagating waves for ω 6=

ω0 and ω = ω0 (dashed curve). Lamb dip in absorption profile[15] 17
1.14 Strurcture of Fluoroform molecule . . . . . . . . . . . . . . . . . . 18
1.15 Infrared spectrum of CHF3 . . . . . . . . . . . . . . . . . . . . . . 19
1.16 Fourier transform experimental spectrum (p=0.002tor, L=32,17m)

around 1158 cm−1. [17] . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Schematic setup for Lamb dip detection with same laser beam for
pump and probe . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Lamb dips for diffent saturation parameter . . . . . . . . . . . . . 23
2.3 Graphical representation of wavelength modulation technique . . . 24
2.4 Lorentzian profile α(ω) (a) with first (b), second (c) and third (d)

derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Amplitude of the first and third harmonic of demodulate signal

for increasing modulation parameter (dA= 0.2,0.6,1.0,...,3.0 for A1

; dA= 0.5,1.0,1.5,...,6.0 for A3 ) [18] . . . . . . . . . . . . . . . . . 26
2.6 a) Frequency comb output pulse electric field (red) and envelope

(black dashed). b)Frequency comb ideal pulse output (red) and
real with a phase offset (grey shaded). . . . . . . . . . . . . . . . 27

2.7 Frequency comb spectrum . . . . . . . . . . . . . . . . . . . . . . 28

i



2.8 CEO frequency detection principle. The longer wavelength part
(pink) of the spectrum is doubled and combined with original lower
part (blue) to obtain the νCEO . . . . . . . . . . . . . . . . . . . . 29

2.9 Representation of frequency spectrum of heterodyne detection be-
tween an optical frequency comb and an unknown CW laser. Blue
lines comb spectrum. Orange line train of beat-note signal. Black
dashed line represent a low pass filter . . . . . . . . . . . . . . . . 30

2.10 Absolute frequency emission determination with Optical Frequency
Comb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Optical frequency comb state of art. Graphical representation of
available technology for each spectral window . . . . . . . . . . . 31

3.1 Experimental setup for Doppler-free FM spectroscopy of CHF3 at
8.6 µm. BS: beam splitter; DBM: doubled-balanced mixer; DFG
OFCS: difference-frequency-generation optical frequency comb syn-
thesizer; L: lens; M: mirror; OI: optical isolator; PID: proportional-
integrative-derivative servo. . . . . . . . . . . . . . . . . . . . . . 36

3.2 Frequency to amplitude conversion provided by an absorption line 38

3.3 Bottom figure :Frequency noise PSD of the QCL laser i(dark-gray
line) together with the RIN contribution (blue), the noise floor
(gray), and the β-line, 8 ln 2π2f (black). Top figure: calculated
emission linewidth versus integration bandwidth. Inset: beat signal
(green line) between the DFG-comb and a narrow-linewidth laser
at 8.6 µm, together with its Gaussian fit (black line). . . . . . . . 38

3.4 (Color online) Spectra (left axis) and average power (dots, right
axis) of pump and signal pulses (a) and of the generated mid-IR
pulses (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 General scheme for locking between QCL and OFC with a PID
controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 A beat-note signal between the mid-IR comb and the QCL free-
running (green curve) and the phase-locked (blue curve) QCL. (b)
Phase-locked beat note with higher resolution. (c) Phase noise PSD
and integrated phase noise versus integra- tion bandwidth. . . . . 41

3.7 Right axis: frequency noise PSD of the QCL laser in slow-lock
(dark-gray line) and in phase-locked (red line) conditions together
with the RIN contribution (blue), the noise floor (gray), and the β-
line, 8 ln 2π2f (black). Left axis: calculated emission linewidth ver-
sus integration bandwidth. Inset: beat signal (green line) between
the DFG-comb and a narrow-linewidth laser at 8.6 µm, together
with its Gaussian fit (black line). . . . . . . . . . . . . . . . . . . 42

3.8 Saturated absorption (a)and FM dispersive (b)signal from a 25-cm-
long cell filled with CHF3 gas sample at 10 Pa. . . . . . . . . . . 43

3.9 a) Riga2 line profile at 6 Pa with a baseline (empty cell). b) Riga2
line profile for different pressure: 1 Pa, 2 Pa, 4 Pa, 10 Pa, 15 Pa . 44

ii



3.10 Fitted full width at half maximum as function of pressure for a)
Riga1 and b) Riga2. Error bar correspond to 95% confidence in-
tervals of fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Fitted line center as function of pressure for a) Riga1 and b) Riga2.
Error bar correspond to 95% confidence intervals of fitting. . . . . 45

3.12 Riga2 absorption profile, fitted curve and residual plot for 1pa, 2pa,
4pa e 10pa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.13 Riga2 absorption profile in dip proximity, fitted curve and residual
plot for 1pa, 2Pa, 4Pa e 10Pa in the Lamb dip proximity . . . . . 47

3.14 Riga1 absorption profile in the dip proximity, fitted curve and resid-
ual plot for 1Pa, 2Pa, 4Pa e 8Pa . . . . . . . . . . . . . . . . . . . 48

3.15 Comparison between absorption profile of Riga1 recorded in direct
a) and wavelength modulation b) setup at 6Pa . . . . . . . . . . . 49

3.16 Dispersion curves of Riga2 a) and Riga1 b) for different pressure . 50
3.17 Fitted full width at half maximum as function of pressure for a)

Riga1 and b) Riga2. Error bar correspond to 95% confidence in-
tervals of fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.18 Fitted Dip line center as function of pressure for a) Riga1 and b)
Riga2. Error bar correspond to 95% confidence intervals of fitting. 51

3.19 Riga2 absorption dispersion, fitted curve and residual plot for 1pa,
2pa, 4pa e 12pa in the Lamb dip proximity with wavelength mod-
ulation technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.20 Riga1 absorption dispersion, fitted curve and residual plot for 1pa,
2pa, 4pa e 12pa in the Lamb dip proximity with wavelength mod-
ulation technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Saturated absorption (a)and FM dispersive (b)signal from a 25-cm-

long cell filled with CHF3 gas sample at 10 Pa. . . . . . . . . . . 57
4.3 RF spectrum of the beat signal between the MIR OFCS and the

QCL: (a) QCL in free-running operation (frequency span from DC
to 260 MHz, 190 kHz resolution bandwidth); (b) QCL frequency
stabilized against the FM saturated absorption of the rR36(38) line:
as inferred by the spectral position of the servo bumps, here the
closed-loop bandwidth is ∼ 350 kHz. . . . . . . . . . . . . . . . . 58

4.4 Absolute frequency measurements.(a)Allan deviation of the Lamb-
dip-locked QCL frequency versus the integration time. The dotted
red line represents the best interpolation curve, σ2

y(τ) = 10−24/τ 2 +
0.6 · 10−22 + 6 · 10−24τ 2. (b) Pressure shift measurement of the
rR36(38) line. (c) Reproducibility in the line-center frequency de-
termination for different measurement sets, carried out under the
same experimental conditions. The error bars represent the com-
bined (type A and B) uncertainty whereas the dotted red line is
the rms of the average value. . . . . . . . . . . . . . . . . . . . . . 59

iii



iv



List of Tables

4.1 Measured sensitivity coefficients for the rR36(38) line and their
contribution to the uncertainty budget. . . . . . . . . . . . . . . . 60

v



Acknowledgements

I would like to express my deep gratitude toward Dr. Gianluca Galzerano, my
thesis supervisor, for his patient guidance, warm encouragement and useful cri-
tiques of this thesis work. Special thanks go to my co-supervisor Dr. Alessio
Gambetta for his help and guidance for the laboratory experiments. I would like
also to thank Dr. Nicola Coluccelli, Dr. Toney Fernandez and Eng. Yuchen Wang
for their support and advice each time I asked. Finally, I would like to thank my
family for their backing and patience.
Superamici 4evah.

vi



Abstract

This experimental thesis describes the spectroscopy in the sub-Doppler regime
of trifluoromethane, CHF3, in the medium infrared spectral region (vibrational
band ν5) by a single-mode quantum cascade laser at 8.6 µm. Measurements were
perform using a middle-infrared optical frequency comb generated by a frequency
difference process, which was frequency stabilized with respect to a Rb clock
referenced to the GPS.

In particular, two different methodologies are presented. The first one con-
sists on the quantum cascade laser frequency stabilization against a saturated
absorption of the CHF3 and on the absolute measure of the line center frequencies
through the mid-infrared comb. The second involves the quantum cascade laser
locking to an optical frequency comb tooth and spectroscopic registration of satu-
rated absorption by tuning the comb repetition frequency. This first methodology
showed relative precision at level of 10−12 (corresponding to 102 Hz) in determining
the central absorption frequencies. By the second technique, the line broadening
for pressure and the saturation intensities of CHF3 to 8.6 µm were also measured.
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Sommario

Questa tesi sperimentale descrive la spettroscopia in regime di saturazione (sub-
Doppler) del trifluorometano, CHF3, nella regione del medio infrarosso (banda
vibrazionale ν5) mediante laser a cascata quantica con emissione in singolo modo
e una lunghezza d’onda di 8.6 µm. Le misure sono state effettuate utilizzando
un pettine di frequenza ottico nel medio infrarosso generato per differenza di
frequenza, stabilizzato in frequenza rispetto ad un orologio al Rb asservito al
GPS.

In particolare sono presentate due differenti metodologie di misure. La prima
consiste nello stabilimento in frequenza del laser a cascata quantica rispetto ad un
assorbimento saturo del CHF3 e le misura assoluta delle frequenze del centro riga
mediante il pettine nel medio infrarosso. La seconda prevede invece l’aggancio
in fase del laser a cascata quantica ad un dente del pettine di frequenza e la
registrazione spettroscopica degli assorbimenti saturi mediante la sintonizzazione
della frequenza di ripetizione del pettine. La prima metodologie ha dimostrato
precisioni relative di 10−12 (corrispondenti a 3 · 103 Hz) nella determinazione delle
frequenze centrali degli assorbimenti. Mediante la seconda tecnica, sono state
misurate anche gli allargamenti di riga per pressione e potenza e le intensità di
saturazione del CHF3 a 8.6 µm.
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Introduction

For more than half a century, laser spectroscopy has played a crucial role in prob-
ing molecular structure and dynamics. Over the past decade high- resolution and
broadband spectroscopy has received a major boost from the advent of optical
frequency combs, highly-coherent light sources constituted by an array of evenly
spaced optical narrow lines whose absolute frequencies are known with a frac-
tional accuracy of 10−16 or even better. Originally developed to provide a direct
link between the optical and radio-frequency (RF) domains (2005 Nobel prize for
Physics to T. W. Hänsch and J. L. Hall ”for their contributions to the develop-
ment of laser-based precision spectroscopy, including the optical frequency comb
technique” [1][2]), optical frequency combs have spread in many other research ar-
eas such as attosecond science, optical waveform generation, remote sensing and
distance measurements, low-phase- noise microwave synthesis, optical communica-
tions, and astrophysics. Among the wide spectrum of fields affected by the advent
of frequency combs, broadband and precision spectroscopy plays a key role since
it is an invaluable tool for a variety of applications in physics, chemistry, biology,
medicine, and environmental sciences. The availability of a frequency comb, hun-
dreds of thousands of precise and accurate optical lines in a single optical source,
allows to a spectroscopic instrument the unique combination of large bandwidth
and high spectral resolution. Two general approaches have emerged for frequency
comb application as a spectroscopic tool. In the first approach, the optical fre-
quency comb serves simply as a frequency ruler against which a continuous-wave
(cw) probe tunable laser is referenced. Once locked to the n-th comb line, the
absolute frequency of the cw laser can be scanned across a desired molecular ab-
sorption by fine tuning of the comb tooth spacing frequency (the so called comb
repetition frequency). This approach is preferred when a single or few absorption
line have to be measured with highest frequency precision and sensitivity. The
second general approach employs the optical frequency comb to directly probe
atomic and molecular samples and is called direct comb spectroscopy [3].

Thanks to the breakthrough technologies originating respectively from the
world of ultracold quantum gases and that of femtosecond laser frequency combs
during the last decades, methods of precision spectroscopy have advanced to the
point where atomic/molecular transition frequencies can be determined with an
astonishing precision (down to a few parts in 1018), to such an extent that detect-
ing the influence of fundamental new physics at the eV energy scale is now within
reach [4]. In this frame, more and more challenging experiments are underway,
aiming at testing nature symmetries and constants with unprecedented sensitivity.
In particular, in the last few years a strong interest has focused on the possibility
that what we know as the fundamental physical constants might show variations
over cosmological time scales. Such an effect arises quite naturally in modern
theories (Lie Groups, String/M Theories, . . .) attempting either to establish
a Grand Unification Theory beyond the Standard Model or to reconcile this lat-
ter and General Relativity in a Theory of Everything[5][6][7]. Since variation of
dimensional constants cannot be distinguished from that of the units, it makes
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more sense to consider changes of dimensionless parameters. The prime target
is the fine structure constant, α = e2/4πε0h̄c, which defines the scale of quan-
tum electrodynamics; the second prominent quantity is the proton-to-electron
mass ratio, β = mp/me, which characterizes the strength of strong interaction in
terms of the electro-weak one. While in the former case the temporal stability
is conveniently probed through atomic transitions [8], the β ratio is more accu-
rately addressed with molecular systems where resorting to the inaccurate nuclear
Schmidt model is bypassed. One approach is to compare the frequencies of molec-
ular lines measured in the present epoch on Earth with the corresponding ones
from astronomical objects at high redshifts [9][10].

Concerning β ratio, a possible approach is a ultra-high resolution two-photon
spectroscopy with a molecular beam with intense flux, low temperature, and re-
duced longitudinal speed. This will be attained by combining buffer-gas cooling
and Stark manipulation. Since buffer-gas cooling operates with nearly all species,
potentially any molecule with a relatively high electric dipole moment (EDM)
and a favorable two-photon transition may be chosen for the experiment. The
fluoroform (CHF3) molecule exhibits both these features and it has been selected
for measurement of β ratio and its temporal variance [11]. Beside that CHF3, or
HFC-23, is also a potent greenhouse gas. The secretariat of the Clean Develop-
ment Mechanism estimates that a ton of HFC-23 in the atmosphere has the same
effect as 11,700 tons of carbon dioxide [12].

The activity performed during this experimental master thesis is concerned to
high precision spectroscopy of the ν5 vibrational band of room-temperature CHF3

molecule at around 8.6 µm. To increase frequency resolution of the spectroscopic
measurements anon-linear saturation regime is exploited combined with the use of
a single-frequency quantum cascade laser and a middle-infrared optical frequency
comb.

The main goal of this spectroscopic investigation is the accurate determination
with the highest precision of the main roto-vibrational absorption lines of CHF3

to select the best spectral region for the determination of the β-ratio. More-
over, thanks to the use of the mid-infrared comb-assisted method, a full spec-
troscopic characterization of the roto-vibrational transition in terms of pressure
line-broadening, line-shift and line saturation parameter is performed.

Finally the potential performance of a level of 10−12 of an optical frequency
standard at 8.6 µm based on frequency-stabilized QCL laser against saturated
absorption of CHF3 is also presented.

This thesis is structured in the following way:

• Chapter 1
In this chapter the main focus is on molecule absorption and its intensity
profile. In particular it deals with the main causes of line broadening and
shift. In the last part the non-linear absorption regime is also described.

• Chapter 2
This chapter reports the main techniques that allow to overcome Doppler
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broadened absorption and how to characterize them with the highest possi-
ble frequency resolution in the mid-infrared spectral region.

• Chapter 3
This third chapter presents a first experimental setup for Doppler-free spec-
troscopy of CHF3. Here it is characterized the performance on the system
itself and it presented the collected data from a sample line with two differ-
ent technique of acquisition: a direct measurement scheme and a wavelength
modulation method.

• Chapter 4
This last chapter presents a possible solution for the realization of a fre-
quency standard in mid-infrared spectral region based on frequency stabi-
lization of QCL against a sub-Doppler absorption line of CHF3 at 8.6 µm.
A detailed analysis on the frequency stability and reproducibility is also
presented.
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Chapter 1

Absorption

Most of our knowledge about the atomic structure of atoms comes from spec-
troscopic investigations. This tool is based on registration and analysis of the
absorbed and emitted spectra after that an electromagnetic field had interacted
with matter. Wavelength measurements of spectral lines allow to determine en-
ergy level structure, line intensity gives information, for example, about transi-
tion probability and, as consequence, the space charge distribution of electrons
in atoms or about linewidth offering the possibility to understand lifetime of the
involved energy levels or how the atom interact with environment (other atoms,
magnetic and electric field). These are only few examples of the information that
one can extrapolate from a spectroscopic investigation.

A correct model of absorption and emission phenomena is mandatory in other
to extract understandable data. This first chapter deals with a brief introduc-
tion to absorption mechanism seen through different physical microscopic and
macroscopic variable; after that a focus on broadening and shifting mechanism is
presented in order to be able to understand line shape of absorption spectra.

1.1 Linear absorption

Assume a monochromatic electromagnetic (EM) wave with an amplitude E0 at
angular frequency ω (Fig. 1.1). In a classical representation it can be written as

E(z, t) = E0 cos(ωt− kz) (1.1)

This radiation interacts with an atom represented by a two-level system, upper
level |a > and lower level |b >, that, in a quantum mechanic description, has
eigenstates at energy Ea and Eb with Ea > Eb and time independent eigenfunction
ua and ub. For wavelength λ = 2πc/ω � d, with d dimension of considered atom,
the phase of EM wave does not change much within the volume of an atom because
kz = (2π/λ)z � 1 and so it is possible to neglect the spatial variation of field
amplitude (dipole approximation). If the origin of the reference system is set in
the center of the atom, we can set kz ' 0 so that we can rewrite 1.1

E(z, t) = E0 cos(ωt) = A0(eiwt + e−iwt) with |A0| =
1

2
E0 (1.2)

1



Figure 1.1: Two-level system interecting with EM field

.
The Hamiltonian operator of the atom interacting with the EM field

H = H0 + V (1.3)

can be express as a sum of an unperturbed Hamiltonian H0 of the free atom
without EM field and an operator V that takes into account the light-matter
interaction. In the dipole approximation the operator V can be express

V = µ · E = µ · E0 cos(ωt) (1.4)

where µ = −er is the dipole operator..
If the interaction of EM field is weak we can use a perturbation theory to

study dynamical behavior of the system, in this way we can use unperturbed
atomic eigenfunctions and study rate of transitions between states. By means of
Fermi Golden Rule it’s possible to achieve transition rate Wab between states a
and b

Wab =
2π

h̄2 |H
′

ab|2δ(ωab − ω) (1.5)

with

H
′

ab =

∫
u∗aV ubdτ = −E

∫
u∗arubdτ = −Eµab (1.6)

δ(ωab − ω) delta di Kronecker (different from zero when ωab = ω), ωab = (Ea −
Eb)/h̄.

Matrix element H
′

ab can be express as function of dipole element µab

|H ′

ab|2 =
e2E2

0

12
|µab|2 (1.7)

We can describe this interaction also as a function of the density of energy
per unit volume ρ(ω), it this way we can write the transition rate of induced
absorption thanks to Einstein coefficient of stimulated absorption Bab so that

Wab = Babρ(ω) (1.8)

2



Bab =
πe2

3ε0h̄
2 |µab|

2 (1.9)

with a density of energy per unit volume ρ(ω) = I/c and with I = 1
2
ε0cE

2 energy
flux of EM wave [13].

If we take into account that level a and b can have a sub-level structure, with
gm |am > and gn |bn > sub-levels, it is possible to introduce the line strength Sabas

Sab =

gm∑
m=1

gn∑
n=1

|Dambn|2 (1.10)

In this way Einstein coefficient Bab can be written in a more general formulation
as

Bab =
π

3ε0h̄

1

ga
Sab (1.11)

Assume an ensemble of atoms or molecules with a density per unit volume
equal to N. Lower level |b > has a Nb population density and upper level |a > has
a Na, with Na +Nb = N and Na −Nb = ∆N .

The absorbed power per unit volume can be express through the transition
rate

P (ω)abs = h̄ωWab∆N (1.12)

The intensity decay of a plane EM wave propagating through a medium char-
acterized by an absorption coefficient α(ω) [m−1] is given by the LambertBeer
law

I(ω) = I0e
α(ω)z (1.13)

Energy conservation required that

−dI
dz

= Iα = Pabs = h̄ωWab∆N (1.14)

α(ω) =
2h̄ωWab∆N

ε0cE2
(1.15)

The absorption coefficient can be also obtained from the atomic susceptibility, in
particular its imaginary part [14]:

α(ω) =
kχ”

2n2
(1.16)

This is valid only in linear absorption regime where α(ω) does not depend of
incoming intensity. Non-linear absorption will be analyses in section 1.3.

Another way of describing the interaction of radiation with matter involves
the definition of the cross section parameter σ [m2].It is expressed as units of area
and represents the probability that a molecule, as a target, be hit by the incoming
photon flux. The total power absorbed by the ensemble

P tot = PabsN = σ(ω)I(ω) (1.17)

so that

σ(ω) =
α(ω)

N
(1.18)

3



Figure 1.2: a) Damped oscillation; b) The frequency distribution of |A(ω)|2[15]

1.2 Widths and profiles of spectral lines

Spectral absorption lines are never strictly monochromatic. Even with a very
high resolution interferometers, one observes a spectral distribution I(ω) around
the central frequency ω of transitions. This is called line profile. This is due to
several causes mainly divided in two classes: homogeneous broadening where all
atoms/molecules manifest the same broadening, and inhomogeneous broadening
where different atoms/molecules had different effect. In this chapter both these
classes will be analyze in particular it will deal about natural linewidth, Doppler
broadening, collisional broadening, transit time broadening.

1.2.1 Natural linewidth

An atom/molecule can emit energy as spontaneous radiation. In order to under-
stand the spectral distribution of this kind of decay, it can be useful to introduce
a classical model of a damped oscillator to describe atomic electron motion. This
oscillator is define by its mass m, its force constant k and its damping factor γ.

The amplitude of the oscillation x(t) can be obtain by solving its differential
equation of motion

ẍ+ γẋ+ ω2
0x = 0 (1.19)

where ω2
0 = k/m. The real solution of 1.19 with initial value x(0) = x0, ẋ = 0

and a small damping parameter γ can be approximated

x(t) = x0e
−(γ/2)t cos(ω0t) (1.20)

This is a dumped oscillation (Fig. 1.2 a) with frequency ω0 corresponds to the
central frequency of an atomic transition between Ea and Eb such that ω0 = (Ea−
Eb)/h̄. Since oscillation x(t) is no longer constant but it decrees, the frequency of
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the emitted radiation is no more monochromatic. Its spectral distribution can be
retrieve by a Fourier transformation of x(t). The amplitude A(ω) is

A(ω) =
1√
2π

∫ ∞
−∞

x(t)e−iωt (1.21)

if x(t) = 0 for t < 0 this integral can be solved giving

A(ω) =
x0√
8π

(
1

i(ω − ω0) + γ/2
+

1

i(ω + ω0) + γ/2

)
(1.22)

The intensity I(ω) ∝ A(ω)A∗(ω) (Fig 1.2 b) and in the proximity of ω0 where
(ω0 − ω)2 � ω2, the terms with (ω + ω0) can be neglect so that it’s possible to
retrieve the intensity profile

I(ω − ω0) =
C

(ω − ω0)2 + (γ/2)2
(1.23)

with C a normalization constant. Setting C = I0γ/2π line profile became Lorentzian

L(ω) =
γ/2π

(ω − ωab)2 + ()γ/2)2
(1.24)

so that
I(ω − ω0) = I0L(ω − ω0) (1.25)

This line broadening can be link to the finite lifetime of energy levels. Multiplying
equation 1.19 by mẋ

mẍẋ+mω2
0xẋ = −γmẋ2 (1.26)

Left side is time derivative of total energy W , sum of kinetic and potential energy
of an armonic oscillator, and it can be written

d

dt

(m
2
ẋ2 +

m

2
ω2x2

)
=
dW

dt
= −γmẋ2 (1.27)

Inserting x(t) from equation 1.20, neglecting terms with γ2 and time avereging we
get the time-avereged radiant power P

P (t) = −γ
2
mx2

0ω
2
0e
−γt (1.28)

This radiant power must be compare with the radiant power emitted by spon-
taneous emission. In fact an atom in exited state Ei can emit for spontaneous
emission with a rate given by Ai Einstein coefficient so that given a population
Ni of atoms in excite state they decay as

dNi = −AiNidt (1.29)

that integrated with Ni(0) = N0 become

Ni(t) = N0e
−Ait (1.30)
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Figure 1.3: Illustration of uncertanty principle, which relates the natural linewidth
to the energy uncertanties of the upper anfd lower level[15]

The radiant power P is proportional to N(t)

P (t) = Ni(t)h̄ωabAi = ce−Ait (1.31)

Comparing equation 1.28 and 1.31 we can state that natural linewidth is due
to a finite lifetime of exited state with γ ∝ Ai.

This can also be retrieve from the uncertainty principle (Fig. 1.3). An energy
level uncertainty ∆E can be related to mean lifetime τi as ∆Ei ' h̄/τi. The
transition frequency ωik = (Ei − Ek)/h̄ has therefore an uncertainty

δω = ∆E/h̄ = 1/τ (1.32)

If the lower level Ek is not in the ground state it also have a finite lifetime τk so
that the total frequency uncertanty can be written as

δωn =
√

(1/τ 2
i + 1/τ 2

k ) (1.33)

1.2.2 Collisional Broadening

When two atoms A and B approach each other their energy levels shift because of
interaction. In general, these shifts are different for each energy level and can be
positive or negative depending on the kind of interaction (repulsive or attractive).

Typical potential curves of interaction as function of distance R between A
and B are present in figure 1.4.

This interaction at distances R < Rc is called collision and the Rc radius the
collision radius. If no energy is transfered between the pair this collision is said
elastic. Without any recombination mechanism the partner interact for a typical
collision time τc ' Rc/v, which depends on relative velocity v.

If atom A undergoes a radiative transition between energy level Ek and Ei
during collision time, the frequency ωik = (Ei(R)−Ek(R))/h̄ of absorbed radiation
depends on the distance R(t) at time of transition.
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Figure 1.4: Potential curve as a function of interatomic distance R[15]

Intensity profile I(ω) of collision-broadened and shifted emission line can be
obtained from

I(ω) ∝
∫
AikPcol(R) [Ei(R)− Ek(R)] dR (1.34)

where Aik(R) is the spontaneous transition probability, which depends on R be-
cause electronic wave function of the collision pair (AB) depends on R, and Pcol(R)
is the probability per unit time that the distance between A and B lies in the range
from R to R + dR. The probability that B has a distance between R and R+dR
is proportional to 4πR2dR and to the Boltzmann factor exp [−V (R)/kT ]. The
number N(R) of collision partners B with a distance R from A is

N(R)dR = N04πR2e−V (R)/kTdR (1.35)

where N0 is the average density of molecules B.
Beside elastic collisions, inelastic collisions may also take place in which the

excitation energy Ei of atom A is transfered partially or totally to atom B. Such
collisions are often called quenching collisions because they quench the florescence
by decreasing number of exited states in level Ei. It’s probability Acoli is

Acoli = NBσiv (1.36)

with

v =

√
8kT

πµ
, µ =

MAMB

MA +MB

(1.37)

The total probability Ai that level Ei is depopulated is due to spontaneous emis-
sion and inelastic collision so that

Ai = Aradi + Acolli (1.38)
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Figure 1.5: Shift and broadening of a Lorentzian line profile by collision[15]

This probability of depopulation causes a corresponding line broadening, similar
to natural linewidth, keeping a Lorentzian profile, such that

I(ω) =
C

(ω − ω0)2 + [(γn + γcol)/2]2
(1.39)

Summarizing with elastic and inelastic collision intensity profile of absorption
I(ω) become

I(ω) =
C∗

(ω − ω0 − δω)2 + [(γn + γcol)/2]2
(1.40)

with C∗ = (I0/2π)(γ +NBvσb). Line shift δω

δω = NBvσs (1.41)

and line broadening γ

γ = γn +NBvσb (1.42)

can be calculated with the number of density NB of collision parameters B and
the collision cross-section σs for line shift and the σb for broadening.

1.2.3 Transit time broadening

In transitions with a long spontaneous lifetime, e.g. rotational-vibrational tran-
sitions, the transit time T = d/|v| of a molecules, through a laser beam of di-
ameter d, must be taken in consideration in broadening mechanism. Linewidth
of Doppler-free molecular transitions are no longer limited by the spontaneous
transition probabilities, but by the time of interaction with laser beam.

This can be seen as an harmonic oscillator that interact with Gaussian distri-
bution of the EM field

E = E0e
−r2/w2

cos(ωt) (1.43)
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Figure 1.6: Intensity profile of an atom traversing a laser beam with a Gaussian
profile with linewidth 2w[15]

where 2w is the diameter of the beam. Coming back to the frequency spectrum
of a damped oscillator of equation 1.21 and substituting x(t) = αE one obtain an
intensity profile

I(ω) = I0 exp

(
− (ω − ω0)2 w

2

2v2

)
(1.44)

This is a Gaussian profile with a FWHM

δωtt =
2v

w

√
2 ln 2 ' 2.4v/w → δνtt ' 0.4v/w (1.45)

Until now, we have considered a plane wave front for the interacting radiation
and a molecules moving parallel to these planes. However, the phase surfaces of
a Gaussian beam are curved. If this effected is included in the calculation as an
addition phase shift depending on the location of different molecules respect to
wavefront we obtain the transit time broadened halfwidth, including the wavefront
curvature effect,

δω =
2v

w

√
2 ln 2

[
1 +

(
πw2

Rλ

)2
]1/2

= δωtt

[
1 +

(
πw2

Rλ

)2
]1/2

(1.46)

1.2.4 Doppler linewidth

In general natural linewidth can not be observed because its Lorentzian profile is
concealed by other broadening effects. One of these major contribute come from
Doppler width, which is due to the thermal motion of molecules.
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Figure 1.7: Shifted frequency due to Doppler effec. ω′ frequency in molecules frame
of referece; ωL absorbed frequency[15]

Consider a molecules with a velocity v relative to the frame of reference of
the observer. The central frequency of molecular emission ω0 in the molecular
coordinate system shifts, because of Doppler effect, to

ωe = ω0 + k · v (1.47)

where k = 2π
λ

ûk is the wave vector of the emitted radiation.
An observer see an increasing ωe if molecules move towards him (k · v > 0)

and decreasing if molecules moves in opposite direction (k · v < 0). Similarly, the
frequency of a plane EM wave E = E0 exp(i(ωt+ k · r)) is shifted and in moving
molecule frame of reference become

ω
′
= ω − k · v (1.48)

Molecule can absorb only frequency ω
′
equal to ω0 so that the absorbed frequency

ω = ωa (Fig. 1.7)
ωa = ω0 + k · v (1.49)

Absorption happens at higher frequency if molecules moves parallel to wave
propagation. If z-direction is choose coincident with light direction so that k =
{0, 0, kz} (and k = 2π/λ) equation 1.49 become

ωa = ω0 + (1 + vz/c) (1.50)

At thermal equilibrium the number of molecules per unit volume ni(vz)dvz in
level Ei with a velocity between vz and vz + dvz is

ni(vz)dvz =
Ni

vp
√
π
e−(vz/vp)2dvz (1.51)

where Ni is the density of the molecules in Ei level, vp = (2kT/m)1/2 is the most
probable velocity, m is the mass of the molecule,T is absolute temperature and k
is the Boltzmann constant. Using relation 1.50 for velocity vz and frequency ω

ni(ω)dω =
Nic

ω0vp
√
π

exp

[
−
(
c(ω − ω0)

ω0vp

)2
]
dω (1.52)
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Figure 1.8: Comparison between Lorentzian and Gaussian line profiles of equal
halfwidths[15]

Since absorbed power P (ω)dω is proportional to the density n(ω)dω of molecules,
the intensity profile of a Doppler-broadened spectral line becomes

I(ω) = I0 exp

[
−
(
c(ω − ω0)

ω0vp

)2
]

(1.53)

This is a Gaussian profile with a FWHM δωD

δωD = 2
√

ln 2ω0vp/c =
ω0

c

√
8kT ln 2/m (1.54)

or using mass of a mole M = NAm and gas constant R = NAk (NA Avogadro
number), in frequency unit

δνD = 7.16× 10−7ν0

√
T/M (1.55)

1.2.5 Voigt profile

When different broadening contribution are present a spectral line can not be
strictly represented by a Gaussian profile or by a Lorentzian profile. For example
if we take into account finite lifetime of molecules and a Doppler broadening effect,
not all molecules absorb at the same frequency ω

′
= ω0(1 + vz/c). Because of the

finite lifetimes of molecular energy levels, the frequency respond of these molecules
is represented by a Lorentzian profile 1.25 with central frequency ω′.

Let n(ω′)dω′ = n(vz)dvz be the number of molecules per unit volume with
velocity between vz e vz + dvz, the spectral intensity distribution I(ω) of total
absorption is then

I(ω) = I0

∫
n(ω

′
)L(ω − ω′

)dω
′

(1.56)
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Figure 1.9: Voigt profile as a convolution of Lorentzian shape L(ω0 − ωi) of
molecules with different velocity component vzi and central absorption frequencies
ωi = ω0(1 + vzi/c)[15]

so

I(ω) = C

∫ ∞
0

exp
{
−
[
(c/vp)

(
ω0 − ω

′)
/ω0

]2}
(ω − ω′)2 + (γ/2)2 dω

′
(1.57)

with

C =
γNic

2vpπ3/2ω0

(1.58)

This intensity profile, which is a convolution of Lorentzian and Gaussian pro-
file, is called Voigt profile (Fig. 1.9).

1.3 Non-linear absorption

At sufficiently large laser intensities, the pumping rate becomes higher than the
relaxation rates resulting in a decrease of the population in absorbing level. This
result in a nonlinear dependence, a saturation, of the absorbed radiation power
on the incident power. In the following section the basic physics of nonlinear
absorption is discussed. The spectral profile of such partially saturated transition
are different for homogeneous and inhomogeneous broadened line so they will be
treated separately.

1.3.1 Saturation of level population

Consider a 2 level system with population densities N1 and N2 of respective levels.
This two levels are coupled each other by absorption and emission processes as
shown in figure 1.10.
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Figure 1.10: Two level system with pumping and relaxing processes[15]

With probability P = B12ρ(ω) for transition |1 >→ |2 > by absorption of
a photon h̄ω and relaxation probability Ri for level |i >, the rate equation for
population densities is

dN1

dt
= −dN2

dt
= −PN1 −R1N1 + PN2 +R2N2 (1.59)

At the stationary regime (dNi/dt = 0) we obtain with N = N1 +N2

(P +R1)N1 = (P +R2)(N −N1)⇒ N1 = N
P +R2

2P +R1 +R2

(1.60a)

(P +R2)N2 = (P +R1)(N −N2)⇒ N2 = N
P +R1

2P +R1 +R2

(1.60b)

For high pumping rate (P →∞), populations approach to N/2 so that absorption
coefficient α = σ(N1 −N2) approaches zero.

Without any pumping mechanism (P = 0) the population densities are

N10 =
R2

R1 +R2

N, N20 =
R1

R1 +R2

N (1.61)

With ∆N = N1 −N2 and ∆N0 = N10 −N20 we could write

∆N = N
R2 −R1

2P +R1 +R2

(1.62a)

∆N0 = N
R2 −R1

R1 +R2

(1.62b)

which gives

∆N =
∆N0

1 + 2P/(R1 +R2)
=

∆N0

1 + S
(1.63)

The saturation parameter

S =
2P

(R1 +R2)
=
P

R
(1.64)
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Figure 1.11: Saturation broadening of a homogeneous line profile[15]

represents the ratio between pumping rate P and the average relaxation rate
R = (R1 + R2)/2. We can also calculate the saturated absorption coefficient
α(ω) = σ12∆N

α =
α0

1 + S
(1.65)

being α0 the unsaturated absorption coefficient without pumping.

1.3.2 Saturation of homogeneous line profiles

According to equation 1.12 the power absorbed per unit volume on transition
|1 >→ |2 > by atoms with population densities N1 e N2 in a radiation field with
a spectral energy density ρ(ω) is

P = h̄ωB12ρ(ω)∆N = h̄ωB12ρ(ω)
∆N0

1 + S
= h̄ωR

∆N0

1 + S−1
(1.66)

with S = B12ρ(ω)/R.
We can also introduce a frequency dependent saturation parameter Sω, in

order to taking into account the Lorentzian profile of absorption probabilities, so
that

Sω =
B12ρ(ω)

R
L(ω − ω0) = S0

(γ/2)2

(ω − ω0)2 + (γ/2)2
(1.67)

with S0 = S(ω0). Substituting in equation 1.66 we obtain

P (ω) =
h̄ωR∆N0S0(γ/2)2

(ω − ω0)2 + (γ/2)2(1 + S0)
=

C

(ω − ω0)2 + (γs/2)2
(1.68)

This is again a Lorentzian profile but with an increased FWHM γs = γ
√

1 + S0.
From equation 1.68 is possible to retrieve the absorption coefficient α

αs(ω) = α0(ω0)
(γ/2)2

(ω − ω0)2 + (γs/2)2
=

α0(ω)

1 + Sω
(1.69)
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Figure 1.12: Velocity-selective saturation of a Doppler-broadened transition: a)
Bennet hole in the lower and Bennet dip in the upper state population distribution
Ni(vz); b) Saturated absorption profile (dashed curve) when the saturation laser
is tuned across the Doppler profile of a molecular transition[15]

where

α0(ω) =
α0(ω0)(γ/2)2

(ω − ω0)2 + (γ/2)2
; α0(ω0) =

2h̄ωB12∆N0

πcγ
(1.70)

This shows that the saturation decreases the absorption coefficient by (1 + Sω)
factor. At line center, this factor has its maximum value so that saturation is
stronger; at line wing saturation is weaker. This effect brings to a line broadening.

1.3.3 Saturation of inhomogeneous line profiles

The absorption cross-section for a molecule with a Maxwell-Boltzmann distribu-
tion of velocity around vz through a monochromatic light wave E = E0 cos(ωt+kz)
without saturation can be written as

σ12 = σ0
(γ/2)2

(ω − ω0 − kz)2 + (γ/2)2
(1.71)

where σ0 = σ(ω = ω0 + kz) is the maximum cross section at the line center of
Doppler-shifted molecular transition and γ natural linewidth of transition.

Due to saturation, density of population of levels changes: while lower level
|1 > with density N1(vz)dvz decreases in velocity interval dvz = γ/K, upper level
|2 > with density N2(vz)dvz increases correspondingly.
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With equation 1.63 and 1.67 it possible to write the new population densities
of level |1 > and |2 > as

N1(ω, vz) = N1
0 (vz)−

∆N0

γ1τ

[
S0(γ/2)2

(ω − ω0 − kz)2 + (γs/2)2

]
(1.72a)

N2(ω, vz) = N2
0 (vz) +

∆N0

γ2τ

[
S0(γ/2)2

(ω − ω0 − kz)2 + (γs/2)2

]
(1.72b)

where γ = γ1+γ2 denotes the homogeneous width of transition and γs = γ
√

1 + S0

(Fig. 1.12 a). The quantity

τ =
1

γ1

+
1

γ2

=
γ

γ1γ2

(1.72c)

is called the longitudinal relaxation time and

T =
1

γ1 + γ2

=
1

γ
(1.72d)

is the transverse relaxation time.
Subtracting (1.72b) from (1.72a) yields for the saturated population difference

∆N(ωs, vz) = ∆N0(vz)

[
1− S0(γ/2)2

(ω − ω0 − kz)2 + (γs/2)2

]
(1.73)

This distribution presents a minimum at vz = (ω − ω0)/k which is called Bennet
hole (Fig 1.12 a). This hole has an homogeneous width γs = γ

√
1 + S0 and a

depth at the center ∆N0S0/(1 + S0).
The total absorption coefficient can be calculated

α(ω) =

∫
∆N(vz)σ12(ω, vz)dvz (1.74)

Using ∆Nvz from (1.73), σ12 from (1.71) and ∆N0(vz) from (1.51) yields

α(ω) =
∆Nσ0

vp
√
π

∫
e−(vz/vp)2dvz

(ω − ω0 − kz)2 + (γs/2)2
(1.75)

that, despite saturation effect is again a Voigt profile but with a different amplitude
and linewidth (from γ to γs) (Fig. 1.12 b).

Integral (1.75) can be approximated taking into account that Doppler profile is
much larger than homogeneous width γs so that numerator does not vary much in
the interval ∆vz = γs/k. Therefore we can take out the exponential from integral
and solved with vz = (ω − ω0)/k

αs(ω) =
α0(ω0)√
1 + S0

exp

{
−
[
ω − ω0

0.6δωD

]2
}

(1.76)
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Figure 1.13: Bennet holes caused by the two counter-propagating waves for ω 6= ω0

and ω = ω0 (dashed curve). Lamb dip in absorption profile[15]

with the unsaturated absorption coefficient

α0(ω0) = ∆N0
σ0γc
√
π

vpω0

and Doppler width

δωD =
ω0

c

√
8kT ln 2

m

Bennet holes can not be directly detected; however it is possible to observe
them if two laser beams are used. The first pump laser burns a hole into the
population density whereas the second one, a weak probe laser, scans the created
hole. It is possible to use the same laser for pump and probe if the incident beam
is reflected back into the sample (Fig. 1.13).

If the intensity of the retro-reflect beam is weak respect the incoming one,
absorption coefficient can be express

αs(ω) = α0(ω)

[
1−

(
1 +

S0

2

(γs/2)2

(ω − ω0)2 + (Γ∗s/2)2

)]
(1.77)

This represent a Lorentzian saturation profile burned at the frequency ω0 with
a FWHM equal to Γ∗s = (γ + γs)/2 = (γ + γ

√
1 + S0)/2. This is called Lamb dip.
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1.4 CHF3 around 8.6 µm

Figure 1.14: Strurcture of Fluoroform molecule

Fluoroform is the chemical compound with the formula CHF3. It is one of
the ”haloforms”, a class of compounds with the formula CHX3 (X = halogen).
Fluoroform is used in diverse niche applications and is produced as a by-product
of the manufacture of Teflon. It is also generated biologically in small amounts
apparently by decarboxylation of trifluoroacetic acid. in addiction, CHF3 is used
in the semiconductor industry in plasma etching of silicon oxide and silicon ni-
tride. Known as R-23 or HFC-23, it is also a useful refrigerant, sometimes as a
replacement for chlorotrifluoromethane (cfc-13) and is a byproduct of its manu-
facture. Moreover, CHF3 is also a potent greenhouse gas. The secretariat of the
Clean Development Mechanism estimates that a ton of HFC-23 in the atmosphere
has the same effect as 11,700 tons of carbon dioxide [12].

This molecule has been selected in order to investigate proton-to-electron mass
ratio, β = mp/me, which characterizes the strength of strong interaction in terms
of the electro-weak one. This can be done by measure the frequency νvib of a
given molecular ro-vibrational transition relative to the clock hyperfine transition
νhyp in the Cs electronic ground state (|F = 4;mF = 0 >↔ |F = 3;mF = 0 >)
[11]. To enhance the spectroscopic interrogation time, which sets the ultimate
resolution achievable in a single measurement, a Ramsey-fringes technique will be
adopted [16]. In this scheme one first wants to minimize the fringe periodicity P,
given by the ratio of the mean longitudinal speed of the molecules in the beam,
to enlarge fringe contrast, which can be accomplished by reducing the velocity
dispersion, and to have a low rotational temperature. A two-photon spectroscopy
is perform with a molecular beam with intense flux, low temperature, and reduced
longitudinal speed. This will be attained by combining buffer-gas cooling and
Stark manipulation. Since buffer-gas cooling operates with nearly all species,
potentially any molecule with a relatively high electric dipole moment (EDM)
and a favorable two-photon transition may be chosen for the experiment. The
CHF3 molecule exhibits both these features.

The main vibrational mode of this molecule are These are ν1 (CH symmetric-
stretching) at 3025 cm−1, ν2 (CF3 symmetric-stretching) at 1141 cm−1, ν3 (CF3
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symmetric-deformation) at 700 cm−1, ν4 (CH bending) at 1377 cm−1, ν5 (CF3

asymmetric-stretching) at 1152 cm−1, ν6 (CF3 asymmetric-deformation) at 508 cm−1.

Figure 1.15: Infrared spectrum of CHF3

The infrared spectrum of CHF3 is shown in Fig 1.15. We can clearly distin-
guish 4 main vibrational transition band.

We will focus our analysis from 1155 cm−1 to 1160 cm−1 (frequency available
from our QCL source) where we can find an absorption around 1158.75 cm−1. This
transition has been select as a two photon transition for the Ramsey interrogation
[11].

This spectral region is very dense of absorption line due to the various roto-
vibrational transition.

Figure 1.16: Fourier transform experimental spectrum (p=0.002tor, L=32,17m)
around 1158 cm−1. [17]
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Chapter 2

MIR Precision Spectroscopy

As already explained in the previous chapter, the absolute measurement of the
line-center frequency of an atomic/molecular transition is limited by broadening
mechanisms. Even natural linewidth is difficult to observe because it is surrounded
by other effect, especially Doppler broadened width. Some spectroscopy technique
have been developed in order to overcome this limitation. Besides that, it is neces-
sary to set up a system to sense and absolute measure this sub-Doppler transition
line. Laser pump and probe beams should have an emission line narrower than the
scanned absorption line and their frequency should be know with high precision.

This chapter deals with this problem. It introduces Doppler-free spectroscopy
to overcome broadening effect, a frequency modulation method to sense with an
high sensitivity sub-Doppler line and an absolute frequency measure through an
optical frequency comb synthesizer(OFCS).

2.1 Doppler-free spectroscopy

Doppler-free spectroscopy, called also saturation spectroscopy, is a spectroscopic
method able to cancel the contribute (first order) of the Doppler broadening.
This kind of measurement gain one/two order of magnitude in sensing different
transitions. In fact, in the case of a gas sample, Doppler width is much lager than
other effect, e.g. collisional broadening, and can include within the same Doppler
profile more than one transition. Through saturation effect it is possible to make
measurable these sub-Doppler lines in order to identify with high precision these
transitions which, otherwise can not be detected.

As described in the previous chapter a simple Doppler-free spectroscopic method
is based on the pump and probe configuration. Pump beam should be enough
intense to produce non-linear effect and burn hole into population density of state
of transition; it select a specific class of the velocity distribution. Probe laser, in-
stead, has to sense the difference between population, but, it should not be much
intense in order to prevent other modification of states.

Among the different implementation of pump-probe spectroscopic setups, one
of the simplest exploits the same laser beam for pump and probe by retro-reflexing
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Figure 2.1: Schematic setup for Lamb dip detection with same laser beam for
pump and probe

the incident beam back into the a sample. Fig.2.1
In this case pump beam and probe beam has the same intensity and frequency

but different and opposite wavevectors. In this standing wave situation population
difference due to saturation is

∆N(vz) = ∆N0(vz)

[
1− S0(γ/2)2

(ω0 − ω − kvz)2 + (γs/2)2
− S0(γ/2)2

(ω0 − ω + kvz)2 + (γs/2)2

]
(2.1)

where S0 is saturation parameter due to I = I1 = I2. Because of opposite Doppler
shift two Bennet holes are created at velocity components vz = ±(ω0 − ω)/k.

The saturated absorption coefficient becomes

αs(ω) =

∫
∆N(vz) [σ(ω0 − ω − kvz) + ω0 − ω + kvz)] dvz (2.2)

Using equation (1.71) and (2.1) it’s possible to retrieve, in the approximation
S0 � 1 the saturated-absorption coefficient for a sample in standing wave field

αs(ω) = α0(ω)

[
1− S0

2

(
1 +

(γs/2)2

(ω − ω0)2 + (γs/2)2

)]
(2.3)

with γs = γ
√

1 + S0 and S0 = S(I, ω0).
This represent the Doppler-broadened absorption profile α0(ω) with a dip at

the line center ω = ω0, which is called Lamb dip (Fig 2.2). For ω = ω0 the
saturated absorption coefficient is α(ω0) = α0(ω0)(1 − S0) with S0 = BikI/cγs.
For (ω−ω0)� γs the saturated absorption coefficient is α(ω0) = α0(ω0)(1−S0/2).

If retro-reflected probe beam has an intensity I2 � I1 we obtain a similar
result but Γ∗s = (γs + γ)/2 must be substituted in order to obtain

αs(ω) = α0(ω)

[
1− S0

2

(
1 +

(γs/2)2

(ω − ω0)2 + (Γ∗s/2)2

)]
(2.4)

Fig. 2.2 shows Lamb dip for different saturation parameter S.
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Figure 2.2: Lamb dips for different saturation parameter S0[15]

2.2 Wavelength modulation spectroscopy

The sensitivity of direct absorption spectrometry is ultimately limited by technical
noise in both laser intensity and photodetectors, which has 1/f dependence (flicker
noise). In order to reduce the noise is enough to shift detection to higher frequency
and this can be done by modulation techniques. When modulated light is sent
through a sample, the information about the analyte is encoded at the modulation
frequency (and its overtones) and later retrieved by a synchronous demodulation of
the detected signal. In frequency modulation spectrometry (FMS) the modulation
frequency is in the RF range, of the same order of magnitude as the width of
the probed transition, while in wavelength modulation spectrometry (WMS) the
modulation is slower (at an audio frequency), while instead the amplitude is in
the range of the transition width.

In both the modulation schemes the laser frequency ω0 is modulated at a
frequency Ω which change ω0 periodically from ω0−∆ωL/2 to ω0 + ∆ωL/2. After
laser pass through the sample, absorption and dispersion profiles of the optical
resonance convert the frequency modulation in an amplitude modulation that can
be detected by a lock-in amplifier (phase sensitive detector) tuned to modulation
frequency Ω. This correspond to detect the difference ∆PΓ = PΓ(ωL −∆ωL/2)−
PΓ(ωL + ∆ωL/2). For small ∆ωL, it can be expand in Taylor series.

∆PΓ(ω) =
dPΓ

dω
∆ωL +

1

2!

d2PΓ

dω2
∆ω2

L + . . . (2.5)

The first term is dominant and it is proportion to the first derivative of absorption
spectrum α(ω), in fact

dα(ω)

dω
= − 1

P0L

dPΓ

dω
(2.6)

If laser frequency is sinusoidally modulated, ωL = ω0 + ∆ωL

2
sin Ωt , the Taylor
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Figure 2.3: Graphical representation of wavelength modulation technique

expansion become,

PΓ(ωL) = PΓ(ω0) +
∑
n

αn

n!
sinn Ωt

(
dnPΓ

dωn

)
(2.7)

For αL� 1 it is possible to write(
dnPΓ

dωn

)
ω=ω0

= −P0x

(
dnα(ω)

dωn

)
ω=ω0

(2.8)

Inserting in equation (2.7) and collecting isofrequency terms

∆PΓ

P0

= −αL

[
a

4

(
d2α

dω2

)
ω0

+
a3

64

(
d4α

dω4

)
ω0

+ . . .

]
+

+

[(
dα

dω

)
ω0

+
a2

8

(
d3α

dω3

)
ω0

+ . . .

]
sin(Ωt)+

+

[
−a

4

(
d2α

dω2

)
ω0

+
a3

48

(
d4α

dω4

)
ω0

+ . . .

]
cos(2Ωt)+

+

[
a2

24

(
d3α

dω3

)
ω0

+
a4

384

(
d5α

dω5

)
ω0

+ . . .

]
sin(3Ωt)+

+ . . .

For small modulation amplitude dA = ∆ωL/∆ωx � 1, with ∆ωx linewidth of
probed transition, the first terms in each bracket are dominant. So we can write
the signal S(nΩ) for each harmonic of modulation frequency Ω. In particular, the
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Figure 2.4: Lorentzian profile α(ω) (a) with first (b), second (c) and third (d)
derivative

signals for the first three derivatives of the absorption coefficient α(ω), shown in
Fig. 2.4, are

S(Ω) = −αLdα
dω

sin(Ωt) (2.9a)

S(2Ω) = +
α2

4
L
d2α

dω2
cos(2Ωt) (2.9b)

S(3Ω) = +
α3

24
L
d3α

dω3
sin(3Ωt) (2.9c)

For increasing modulation amplitude, but still with dA < 1, also the signal
S(nΩ) is increasing. For dA > 1 this is no more valid and the signal S(nΩ) starts
to deform. Fig. 2.5 shows how A1 = S(Ω) and A3 = S(3Ω) modify for increasing
dA ratio. For example S(Ω) shows the maximum peak to peak signal for dA = 1.8
but the maximum slope at around the line center is observed for dA = 1.

Frequency modulation of a laser source can be obtained in different ways.
For example by periodically changing the cavity length d (by mounting a cavity
mirror on a piezo) by means of an external frequency modulator (either electro-
or acoustic-optic modulator ) or, in the case of a semiconductor laser, simply by
modulating the injected pump current.

2.3 Absolute frequency measurement

Frequency can by far be measured with the highest precision of all physical quanti-
ties. In the radio frequency (rf) domain (say up to 100 GHz), electronics frequency
counters are routinely employed for a long time. Almost any of the most precise
measurements in physics have been performed with such a counter that uses an
atomic clock as a time base. To extend this accurate technique to higher fre-
quencies, so called harmonic frequency chains have been constructed since the
late 1960s [19]. In such a chain, nonlinear elements produce frequency multiples
(harmonics) of a given oscillator to which a subsequent oscillator is phase locked.
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Figure 2.5: Amplitude of the first and third harmonic of demodulate sig-
nal for increasing modulation parameter (dA= 0.2,0.6,1.0,...,3.0 for A1 ; dA=
0.5,1.0,1.5,...,6.0 for A3 ) [18]

Repeating the multiplication and phase-lock procedure many times makes it pos-
sible to convert a reference radio frequency, say from an atomic clock, to much
higher frequencies. Because of the large number of steps necessary to build a long
harmonic frequency chain, it was not before 1995 when visible laser light was first
referenced phase coherently to a cesium atomic clock using this method [20]. The
disadvantage of these harmonic frequency chains was not only that they could
easily fill several large laser laboratories at one time, but that they could be used
to measure only a single optical frequency. Even though mode-locked lasers for
optical frequency measurements were used in rudimentary form in the late 1970s
[21], this method did not become practical until the advent of femtosecond (fs)
mode-locked lasers and the invention of the optical frequency comb synthesizer.
[22]

2.3.1 Optical frequency comb synthesizer

A mode-locking laser creates optical pulse trains with a certain periodicity Tr that
is related to cavity length L, through the effective refraction index n and speed
of light c as

TR =
2nL

c
(2.10)

Figure 2.6.a shows the electric field of the generated pulse trains as a function of
time.
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(a) (b)

Figure 2.6: a) Frequency comb output pulse electric field (red) and envelope (black
dashed). b)Frequency comb ideal pulse output (red) and real with a phase offset
(grey shaded).

The red continuous curve represents the optical electric field intensity emitted
by the laser while the black dashed curve is the envelope. In the case where the
cavity and material dispersion are fully compensated the output pulse duration is
said to be transform limited and is directly related to the optical spectrum by:

∆τ =
k

∆ν
(2.11)

where k is the time-bandwidth product whose value depends on the pulse shape
and δν is the optical spectrum bandwidth.

In the spectral domain the same periodic structure appears with a tooth sep-
aration of frep called repetition rate and which is precisely the free spectral range
(FSR) of the laser cavity Fig 2.7.

frep =
1

Tr
(2.12)

The optical spectrum is mainly given by the active medium emission spectra and
its non linear effects. The FWHM gives the spectrum bandwidth ∆ν.

A more realistic pulse train is depicted in 2.6.b where the dashed grey curve
represents the ideal case while the red line is the more accurate electric field
behaviour. The periodicity is the same as before while the pulse peak appears as
moving in position from pulse to pulse. The phase difference between the ideal
and real peak position is called the Carrier Envelope Offset phase, φCEO, and is
related to the more useful frequency parameter νCEO by:

νCEO =
φCEO
2πTr

(2.13)

This phenomena is explained by the difference between the group vg and phase
vp velocities in the laser cavity that give rise to the phase slipping between the
carrier frequency electric field and the envelope profile. φCEO can be express ad
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Figure 2.7: Frequency comb spectrum

the sum of two contribution: a static offset φ0 and ∆φCEO represents the pulse-
to-pulse change in carrier envelope phase due to conditions inside the cavity of
the laser oscillator.

φCEO = φ0 + ∆φCEO (2.14)

As the pulse propagates through any medium outside the laser cavity (except vac-
uum), a difference between the phase and group velocities (caused by dispersion)
will cause φ0 to vary; so in reality,φ0 is not truly static. In a similar vein, the
physical origin of φCEO results from dispersion of the optical elements inside a
laser cavity. In the case of φ0, the pulse is sampled once per round-trip when it
hits the output coupler, and it is only the phase change modulo 2π that matters.
Specifically,

∆φCEO =

(
1

vg
− 1

vp

)
lcωcmod2π (2.15)

In the frequency domain this is a frequency offset meaning that the frequency
is not at zero but starts precisely at νCEO while teeth are still νr distant from each
other. In this way, the frequency of a generic n-th mode is

νn = nfrep + νCEO (2.16)

Both νCEO and frep are the two major parameters that, if controlled and stabilized,
led to the Optical Frequency Comb.

The repetition rate (mode spacing) frep can be measured with a fast photodi-
ode and compared or phase-locked to a microwave reference νref . Alternatively,
mode N of the comb can be heterodyned with a narrow emission linewidth exter-
nal cw laser at frequency νopt. Active feedback to the frequency comb can force
the comb mode to oscillate in phase with the cw laser, and as the other modes are
already locked in phase via the mode-locking mechanism, fr assumes the value of
fr = (νopt + νCEO)/N .

In nearly all cases, νCEO is measured by frequency-doubling a portion of the
octave-spanning spectrum obtaining 2νn = 2(nfrep + νCEO) , and heterodyning it
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Figure 2.8: CEO frequency detection principle. The longer wavelength part (pink)
of the spectrum is doubled and combined with original lower part (blue) to obtain
the νCEO

with the existing comb elements ν2n = 2nfrep + νCEO. Their frequency difference
is only the νCEO term. Measuring νCEO with narrower spectra is also possible, but
with the requirement of a higher-order nonlinearity, e.g., third harmonic versus
second harmonic.

2.3.2 Comb assisted spectroscopy: absolute frequency de-
termination

With the introduction of the optical frequency comb synthesizer the measure-
ment of an unknown optical frequency can be directly performed by means of
the heterodyne method The frequency comb, fully stabilized so that each tooth
frequency is well known by the relation 2.16, and the unknown laser frequency are
combined into a fast photodetector. The photogenerated current at the output
of the detector, as in the classical heterodyne method, presents components at
frequencies

fb = |νL − νcomb| = |νL − nfrep − νCEO| (2.17)

By writing n = NL + l with NL the number of the closest teeth to the laser
frequency and l an integer number we can express 2.17 as

fb = |νL −NLfrep − νCEO ± lfrep| = |fb0 ± lfrep| (2.18)

A periodic train of beat-note signals are present in the output spectrum of
the photodetector. By filtering the photocurrent, the fb0 beat-note can be easly
measured by an electronic frequency counter (Fig.2.9). The determination of the
integer order NL can be obtained using a wavemeter (WM) in order to measure
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Figure 2.9: Representation of frequency spectrum of heterodyne detection between
an optical frequency comb and an unknown CW laser. Blue lines comb spectrum.
Orange line train of beat-note signal. Black dashed line represent a low pass filter

νL with an accuracy better than frep/2

NL =
νWM

frep
(2.19)

Alternatively, NL can be determined by changing the comb repetition frequency
by a small amount frep+δfrep and measuring the beat-note deviation ∆fb, so that

NL =
∆fb
δfrep

(2.20)

Once the NL integer is determined, the unknown CW frequency is then:

νL = NLνrep ± fbeat + fCEO (2.21)

2.4 Comb state of art

During the past decade, the increased interest in optical frequency combs has
resulted in the development of new femtosecond laser sources, as well as the re-
visiting of existing sources with a focus on the frequency domain properties. The
rapid progress of frequency combs at the turn of the century benefited greatly
from development in the 1990’s of robust femtosecond solid state lasers, such as
those based on Ti:sapphire the first ones to be spectrally broadened to an octave
and self-referenced.[23] After that several other laser sources have been employed
as optical frequency comb. In figure 2.11 is shown a graphical representation of
some available optical frequency comb divided by spectral window.
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Figure 2.10: Absolute frequency emission determination with Optical Frequency
Comb

Figure 2.11: Optical frequency comb state of art. Graphical representation of
available technology for each spectral window

Different technique can be exploited in order to generate an optical frequency
comb. A first choice is to use a bulk solid state laser mode-locked such as
Ti:sapphire covering the visible, rare-Earth (Ytterbium or Erbium) doped crystal
and glasses emitting in near-infrared region [24][25] and very recently Chrome
doped crystal such as Cr2+:ZnSe or Cr2+:ZnS operating near 2.5 µm [26][27][28].
However, such lasers are rarely used in real-life applications outside the research
lab environment, owing to their complexity, very poor environmental stability,
large size, large power consumption, and reliance on water cooling. More re-
cently the emergence of fiber lasers, based on robust commercial optical fiber
technology, have driven a rapid development of the fiber-laser frequency comb
technology and thanks to small size, high efficiency, low price and remarkably
optical properties, they will become the inevitable trend in the technological de-
velopment of optical frequency combs[3][29]. Erbium-doped fiber operating near
1.5 µm has profound influence on the optical fiber communication technology [30]
[31]; Ytterbium-doped fiber offers higher efficiency as well as larger gain band-
width [32][33][34][35]; Thulium- and Holmium-doped, operating around 2 µm
wavelength, are also very important for many applications in nonlinear optics,
medicine and sensing [36][37][38][39][40].

Very few demonstration of fiber laser sources at wavelengths beyond 3 µm have
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been obtained. By contrast quantum cascade lasers can be tailored to operate at
nearly arbitrary wavelengths in mid and far infrared spectral region operating
also in mode-locking regime [41][42][43]. However, the comb properties of these
rather narrow (<50 cm−1) emission spectra have not yet been tested. In most
cases, a different route is taken to access the spectral region beyond 3 µm, in
which nonlinear optical effects are harnessed to transfer electromagnetic energy
from the visible or near-infrared domain into the mid-infrared[44]. For example,
all modes of a near-infrared frequency comb can simultaneously be subjected
to difference-frequency generation (DFG) [45]. When mixed with a continuous-
wave (CW), the modes of a comb can correspondingly be transferred in the mid-
infrared domain for an appropriately choose of CW frequency. The efficiency of
this process depends on the strength of the optical nonlinearity and also on the
ability to achieve phase-matching over the wide necessary bandwidth [46]. DFG
between two synchronized combs is also possible, at cost of more complexity [47].
Alternatively, difference-frequencies can be generated between the different teeth
of a single comb. In this case the combs carrierenvelope offset frequency is fixed
to zero, which simplifies the control of the comb structure [48][49][50].

A key challenge in sources based on nonlinear optics is the efficiency of the
desired photon-conversion process. One way of boosting efficiency is to use an
optical parametric oscillator (OPO). If pumped by a femtosecond laser, many
longitudinal signal modes of the resonator in an OPO can simultaneously ex-
perience gain that exceeds the threshold for parametric oscillation. Of course,
achieving oscillation for the many signal and idler modes requires, in addition
to phase matching, management of the resonators dispersion to ensure that the
equidistant signal modes coincide with the resonators modes across the desired
wide bandwidth[51][52][53].

Recently, researchers have reported that a special form of parametric oscil-
lation (sometimes referred to as hyper-parametric oscillation [54]) can be used
to generate a frequency comb in an optical microresonator. The resonator com-
prises a toroidal ring of sub-millimeter diameter that can sustain very-high-quality
optical whispering-gallery modes. If populated with a strong pump field, the
third-order nonlinearity of the dielectric resonator material can lead to four-wave
mixing. A single-frequency pump laser can give rise to a signal-idler pair, and
also to a massive cascade of signal and idler sidebands that become mutually
phase-locked by non-degenerate four-wave mixing. The resulting Kerr comb can
cover an entire octave and extend into the mid-infrared if pumped by a strong
near-infrared laser [55][56] [57].

An intense effort has been spent in the past few years to extend frequency
combs toward also the UV regions where electronic transitions of single atoms,
molecules, and ions can be used for metrological purposes, as a test for varia-
tion of fundamental constants, or for the development of novel primary temporal
[58]. Frequency doubling and quadrupoling of Ti:sapphire lasers, either outside or
within enhancement cavities, is used to achieve milliwatt-level combs in the UV
range [59]. Scaling toward the XUV range is far from trivial, since high-harmonic
generation (HHG) processes in gas jets need to be exploited in the high-repetition-
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rate regime [60].
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Chapter 3

Comb-assisted Doppler-free
spectroscopy of CHF3

In this experiment a Quantum Cascade Laser (QCL) is coupled in a 30 cm cell
filled with few Pascal of CHF3 in a double pass configuration in order to measure
saturated absorption profiles. Absolute frequency measurement is performed by
phase locking the QCL to a mid-infrared optical frequency comb synthesizer.
Changing the repetition frequency of the comb, keeping the QCL phase-locked
to the comb itself, it is possible to scan the frequency of the QCL around the
absorption spectra of the molecule. The major aim of this experiment is to fully
characterize CHF3 absorption spectra in 8.6 µm region. In particular we focus
on the saturated absorption line profile to precisely address absorption line center
frequencies, line broadening coefficients and saturation intensities

3.1 Experimental setup

Figure 3.1 shows the experimental setup for Doppler-free comb assisted spec-
troscopy of the CHF3 molecule. A Quantum Cascade Laser (QCL) with a tunable
frequency from 1155 cm−1 to 1160 cm−1, with a maximum optical power up to 50
mW and a linewidth of 1MHz is used as probe beam. After emerging from a 30-dB
optical isolator, the QCL output beam is collimated by a ZnSe plano-convex lens
(200mm focal length) followed by a 50/50 beam splitter (BS1) whose reflection
propagates as the strong pump beam through a 25 cm long stainless-steel cell
(equipped with anti-reflection coated ZnSe windows) containing the CHF3 gas
sample (98% purity) at room temperature, Troom, with a measured beam waist
diameter of 2.1 mm in the middle of the absorption cell as measured with a CCD
camera.

Reflection from a second 50/50 beam splitter (BS2) is directed to a liquid-
nitrogen-cooled HgCdTe (MCT) detector (1-MHz electrical bandwidth), PDlin, to
record the single-pass absorption; reflection from BS2 passes through a 50mm fo-
cusing lens and it is back-reflected by a mirror to generate the counter-propagating
weak probe beam (1/4 of the pump beam power) which is then superimposed to
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Figure 3.1: Experimental setup for Doppler-free FM spectroscopy of CHF3 at
8.6 µm. BS: beam splitter; DBM: doubled-balanced mixer; DFG OFCS: difference-
frequency-generation optical frequency comb synthesizer; L: lens; M: mirror; OI:
optical isolator; PID: proportional-integrative-derivative servo.

the pump beam in the gas cell with matched phase fronts (probe beam waist di-
ameter of 1.8 mm). To detect the saturated absorption signal, the probe beam
is transmitted by BS1 onto a four-stage thermo-electrically cooled MCT detector
(50 MHz bandwidth), PDsat.

The first transmission of BS1 is superimposed to a Difference Frequency Gen-
eration Optical Frequency Comb (DFG-OFC) at 8.6 µm whose repetition fre-
quency is stabilized against a radio-frequency (RF) synthesizer locked, in turn, to
a GPS-disciplined Rb clock. This Rb standard has a fractional stability (1-s Allan
deviation) and accuracy of 8 · 1012 and 1013 respectively. After filtering by means
of a 0.01 µm monochromator, the combined beams are focused onto a 200-MHz
bandwidth MCT detector, PDbeat, (5.7 · 104 V/W responsivity and 50 nV/pHz
noise floor at a temperature of 77 K).

This beat note is stabilized at 70 MHz against a frequency synthesizer through
a phase-detector using a proportional-integrative-derivative (PID) servo controller
acting on the QCL driving current.
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3.2 Quantum Cascade Laser

The development of QCL [61] allows a new and easier access to mid-infrared (3-
15µm) region with a modest/high power, narrow line and tunable single frequency
laser source. The emission central wavelength of 8.6 µm was chosen in accordance
to an important transition of the tri-fluoromethane (CHF3) gas molecule where
the line center is strongly influenced by the proton to electron mass ratio [11]. A
commercial single spatial mode and single longitudinal mode Distributed Feedback
Quantum Cascade Laser (DFB-QCL or QCL) The DFB-QCL operates at room
temperature (few mK of thermal stability provided by the thermal control) with
a maximum output power of 50 mW at 8.6 µm and slightly astigmatic beam with
a quality factor M2 = 1.1. A low-noise commercial current driver (Wave-length
Electronics QCL1500), with a nominal current noise spectral-density of 3 nA

√
Hz

and a 2 MHz modulation bandwidth, has been employed.
This source is tunable in power and wavelength by changing both injected

current and working temperature..
The frequency noise power spectral density of the QCL and its emission

linewidth was measured with an optical frequency discriminator based on the
sideof CHF3 absorption line. This noise refers to random fluctuations of instan-
taneous frequency of an oscillating signal. The instantaneous frequency is defined
as

ν(t) =
1

2π

dφ

dt
(3.1)

and it is essentially the temporal derivative of the oscillation phase φ. Any devi-
ation from a linear phase is considered noise. In the experiment, the frequency
noise is retrieved from a measurement of the intensity fluctuation of the laser after
interaction with an amplitude to frequency converter. The adopted discriminator
was a side of an absorption line of CHF3. The measured spectrum of the trans-
mitted intensity reproduces the spectrum of the laser scaled by the slope of the
absorption profile at around the operating point (Fig.3.2). If S∆ν(f) is the power
spectral density of frequency noise [Hz2/Hz] it can be converted in power spectral
density of amplitude SI(f) [V2/Hz] by a slope discriminator as

S∆ν (f) =
SI(f)

D2
(3.2)

Figure 3.3 shows the measured power spectral densities of the QCL with RIN
contribution.
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Figure 3.2: Frequency to amplitude conversion provided by an absorption line
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Figure 3.3: Bottom figure :Frequency noise PSD of the QCL laser i(dark-gray
line) together with the RIN contribution (blue), the noise floor (gray), and the β-
line, 8 ln 2π2f (black). Top figure: calculated emission linewidth versus integration
bandwidth. Inset: beat signal (green line) between the DFG-comb and a narrow-
linewidth laser at 8.6 µm, together with its Gaussian fit (black line).

38



3.3 Optical Frequency Comb

Figure 3.4: (Color online) Spectra (left axis) and average power (dots, right axis)
of pump and signal pulses (a) and of the generated mid-IR pulses (b).

The self-referenced optical frequency comb at around 8.6 µm is synthesized by a
different frequency generation process. The laser source chosen is a MenloSystems
M-Comb Erbium doped fiber laser with a repetition rate fr of 250 MHz. This
frequency is choose to be high enough to have teeth well separated in the spectral
domain, important point for spectroscopy, and not so high to lose peak power Ppeak
on the pulse, given by Ppeak = Pavg/frt, with t pulse duration. The comb repetition
rate frep was locked to an RF synthesizer referenced to a GPS-disciplined Rb
frequency standard .

The commercial source is equipped with two indipendent amplifier stages each
providing 0.5W averege power, femtosecond pulse train at 1.55 µm already pro-
vided with a self-frequency-shifted Raman soliton covering from 1.76µm to 1.93µm
with an average power of 200 mW spread over the whole spectrum. This process
is created starting from one of the 1.55 µm output and exploiting the Raman shift
effect [62] of nonlinear fibers [63].

In order to reach mid-IR region, the second 1.55 µm output, pump, and the
Raman shifted soliton, signal, are superimposed on a non-linear crystal, GaSe,
which combines high non-linearity with good transparency at this wavelength
and high damaging threshold. It is possible to tune the idler output frequency
by changing the Raman soliton wavelength with a corresponding adjustment of
the temporal overlap and phase-matching angle. The generated mid-IR spectra
recorded with a grating monochromator are shown in Fig. 3.4 together with the
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corresponding average output power levels. Mid-IR radiation spans from 8µm to
14µm with an increasing spectral width from 0.8 to 3 m when moving toward
longer wave- lengths, as a result of the improved group velocity matching between
signal and idler pulses in GaSe. The mid-IR output power peaks at 7.8 m with 4
mW (0.22 W per comb tooth), it remains in excess of 1 mW up to 10.2 m (55 nW
per comb tooth) while decreasing down to 110 W (6 nW per comb tooth) at the
maximum DFG wavelength of 13.6 m. This power drop is due to the combination
of reduced optical power in the SFS soliton, onset of linear absorption in GaSe
for wavelengths above 12 m and a strong decrease of the diffraction length of the
idler pulse for wavelengths comparable to the spot size dimension. [64] Among
the different approaches pursued so far to generate optical frequency combs in
the mid-IR spectral region, the DFG process is very appealing because it provides
intrinsic stabilization of the comb, due to the passive cancellation of the offset
frequency (νCEO) as well as the suppression of common mode noises of pump
and signal arms. The result is a narrow-linewidth harmonic comb, with the pulse
repetition frequency (frep) as the only free parameter. This removes the need of
further stages in order to detect and lock νCEO.

The comb νrep was locked to an RF synthesizer referenced to a GPS-disciplined
Rb frequency standard.

3.4 QCL-OFC lock

Figure 3.5: General scheme for locking between QCL and OFC with a PID con-
troller

The free running QCL has a 1-MHz linewidth in a 1 ms integration time while
the DFG comb modes characterized with a narrower linewidth of 20kHz. Comb
linewidth wes measured by heterodyne detection with an another QCL with a
4kHz linewidth Fig. 3.7(inserto). In this experiment mid-IR tooth has been used
as a transfer oscillator to phase lock the QCL in order to, at the same time, shrink
its linewidth and having an absolute reference for frequency measurement.

Fig. 3.5 shows the schematic for the implemented phase-locking-loop. A beat
note between QCL and OFC is created by superimposing them on a beam splitter
and, passing through a monochromator, it is measured by a 200-MHz bandwidth
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Figure 3.6: A beat-note signal between the mid-IR comb and the QCL free-running
(green curve) and the phase-locked (blue curve) QCL. (b) Phase-locked beat note
with higher resolution. (c) Phase noise PSD and integrated phase noise versus
integra- tion bandwidth.

MCT detector, PDbeat, (5.7104 V/W responsivity and 50 nV/pHz noise floor at
a temperature of 77 K). The measured signal passes through a 50dB amplifier,
a 70 MHz band pass filter (10 MHz bandwidth). In order to achieve a tight
phase locking the beat-note phase noise has to fit inside the 2π detection range of
the phase detector. In this sense the beat-note was initially shifted in frequency
with a local oscillator set at 890 MHz, divided by 16 obtaining a final beat-note
centered at 60 MHz and then compared with a local oscillator in a phase and
frequency detector. The error signal is further processed by a PID controller
and then fed back to the current driver of the QCL diode. Fig.3.6(a) shows
the comparison between unlocked beat-note with a 1 MHz line-width in a 1 kHz
resolution bandwidth and the phase locked condition with an impressive 30 dB
contrast which increases up to 60 dB in a 1 Hz RBW, as shown in fig.3.6(b). A
500 kHz phase-lock control-bandwidth can be inferred from the spectral-shape of
the closed-loop beat note signal. The phase-lock performance was characterized,
in terms of residual phase noise, by measuring the power spectral density (PSD) of
the error signal at the output of the phase detector. Fig.3.6(c) shows the measured
phase-noise PSD (right axis) together with the integrated residual phase noise (left
axis).

We characterized the frequency-noise properties of the QCL by using the side
of a Doppler broadened CHF3 line as an optical frequency discriminator and by
measuring the frequency-to-intensity converted noise-PSD. In tight-locking con-
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Figure 3.7: Right axis: frequency noise PSD of the QCL laser in slow-lock (dark-
gray line) and in phase-locked (red line) conditions together with the RIN con-
tribution (blue), the noise floor (gray), and the β-line, 8 ln 2π2f (black). Left
axis: calculated emission linewidth versus integration bandwidth. Inset: beat sig-
nal (green line) between the DFG-comb and a narrow-linewidth laser at 8.6 µm,
together with its Gaussian fit (black line).

ditions, the integrated value of ∼130 kHz (red dashed line of Fig. 3.7), entirely
due to the RIN contribution, fixes an upper limit for the QCL linewidth.

After locking, we can finely tune the QCL frequency only by acting on OFC
repetition rate, so that a δfrep is transfered as δfQCL = n ∗ δfrep where n is the
tooth order.

3.5 Direct saturated spectroscopy of CHF3

In these first measurements we investigate on linewidth and shift of absorption
transition due to pressure effect. These measurements are performed, as already
said in previous chapter, by locking the OFC repetition frequency to a synthesizer
referenced to the Rb clock and by locking of the QCL to the OFC stabilizing their
beat note. Thanks to this, QCL can be scan across the line profile only by changing
the repetition rate, always maintaining an absolute frequency calibration. Signal
coming from PDsat is acquired by a 16bit 40kSa ADC with an integration time
of 0.5s. Qcl power at gas cell is set to 5 mW.

A first characterization of the absorption lines around 1158, 907cm−1 was per-
formed applying a current ramp to the QCL. Signal coming from PDsat was
recorded with an oscilloscope triggered with the ramp. In addiction a first wave-
length modulation technique was execute by applying a modulation on the current
ramp.

Both the measurement are reported in fig.3.8. (X-axes is time).
For this work we focus on two different lines: ”Riga1” rR36(38) and ”Riga2”

rR39(44).
First data have been the registration of the entire absorption lines.
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Figure 3.8: Saturated absorption (a)and FM dispersive (b)signal from a 25-cm-
long cell filled with CHF3 gas sample at 10 Pa.

In Figure 3.9.a) we can see the baseline, without gas, and an absorption line at
8 Pa of Riga2. We can notice that baseline is not flat. This is due to optical feed-
back, any reflection of the QCL beam from optical element that are back reflected
to the source, create an interference patter. This effect is reduced thanks to the
optical isolator but it is not completely suppressed, so for every scan we need to
measure baseline and subtract from absorption line profile.The double pass mea-
sure clearly show a Lamb dip created by saturation effect. Several measurement
has been taken with different pressure for the two lines. (In fig 3.9.b) example
scanning of Riga2)

A simple fitting with a Gaussian function for the Doppler line and a Lorentzian
function for the Lamb dip has been implemented to retrieve line-center, linewidth
and line-intensity. This model is not accurate because as illustrated in first chapter
a single line profile should be Voigt and , beside that, what we call absorption line
in reality is a convolution of more than one transition.

Before fitting all the measurement coming from PDSat were normalized respect
to the empty cell baseline. Fig. 3.12 shows measured absorption profile (α =
− ln(T/T0) with T transmitted signal and T0 baseline) and their fitting curve
for different pressure. Despite normalization, fringes are still present and non-
negligible for the lower pressure. Interference fringes are not a fix patter and,
from a measure to another, they change. First of all this is due to the change of
the refractive index of the cell that change with the gas pressure. Beside that,
also for the same pressure measure registered in different time present different
pattern. Because of this we can not completely cancel out this kind of parasitic
effect. However, line profiles seems to be right fitted by our model except for lower
pressure where interference fringes became comparable with the signal an so they
create a distortion of the profile. Looking in the residual of the fitting process we
can see a structured pattern, periodic, that can again be linked to these fringes.
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(a) (b)

Figure 3.9: a) Riga2 line profile at 6 Pa with a baseline (empty cell). b) Riga2
line profile for different pressure: 1 Pa, 2 Pa, 4 Pa, 10 Pa, 15 Pa

Quantitative data coming out from this data analysis are not all reliable, par-
ticularly for what concern Lamb dip due to a too low number of point in the dip
sample. I need to underline that our cell suffer for leakage. This fact limit the
total measurement time, up to 150s, in order to limit the pressure variation to
10% of its initial value. This is reflected on the maximum number of point per
scan, up to 200 point, since for every point we need to spend about 0.8s (due to
communication, stabilization and integration time of the measure).

To better understand and characterize the Lamb dip we focus our scan only
in the neighbor of this. Fig. 3.13 and fig. 3.14 show an example of this short
scan. Fitting looks very good at least for pressure higher than 2 Pa, still because
of fringes but also for a lower signal to noise ratio.

Fig.3.10 reports the full width half maximum of the fitted data as a function
of pressure .

The full width at half maximum of this two lines are in the same range from 2 to
3 MHz and they follow the same trend. The FWHM decreases with the decreasing
pressure down to a minimum over which it restart to grow. This can be addressed
to the combination between power and pressure broadening. Pressure broadening
is reducing while power broadening is increasing at low pressure.

Moreover, line center frequency is difficult to interpret. We expect a pressure
shift but uncertainty of result can not allow to identify a clear trend. An improved
fitting model should be provided in order to clearly identify both these effects.

44



(a) Riga1 (b) Riga2

Figure 3.10: Fitted full width at half maximum as function of pressure for a)
Riga1 and b) Riga2. Error bar correspond to 95% confidence intervals of fitting.

(a) Riga1 (b) Riga2

Figure 3.11: Fitted line center as function of pressure for a) Riga1 and b) Riga2.
Error bar correspond to 95% confidence intervals of fitting.
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(a) (b)

(c) (d)

Figure 3.12: Riga2 absorption profile, fitted curve and residual plot for 1pa, 2pa,
4pa e 10pa
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(a) (b)

(c) (d)

Figure 3.13: Riga2 absorption profile in dip proximity, fitted curve and residual
plot for 1pa, 2Pa, 4Pa e 10Pa in the Lamb dip proximity
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(a) (b)

(c) (d)

Figure 3.14: Riga1 absorption profile in the dip proximity, fitted curve and residual
plot for 1Pa, 2Pa, 4Pa e 8Pa
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3.6 Wavelength modulation saturation spectroscopy

of CHF3

(a) (b)

Figure 3.15: Comparison between absorption profile of Riga1 recorded in direct a)
and wavelength modulation b) setup at 6Pa

In order to improve our setup performance we implement a wavelength mod-
ulation technique. We introduce a wavelength modulation around 10 kHz with
an amplitude of 320 kHz on the reference signal that we use to stabilize the beat
note between QCL and COMB. Thanks to the locking also the beat-note signal
is modulated and as consequence the QCL frequency. This kind of measurement
has two main advantage: first it increases the signal to noise ratio and, as second,
it has in output the derivative of the signal decreasing significantly the effects of
parasite etalon fringes.

Fig. 3.15 shows the same absorption line for the same nominal pressure of 6 Pa
with the direct method and the wavelength modulation. With this new method
now we can easily distinguish more that one saturated absorption profile within
the same Doppler broadened profile.

With this new setup we repeated the same measurement for the entire line
and the dip zoom(Fig. 3.16). Still looking for quantitative result, Lamb dip has
been fitted. In this case the fit is base on the derivative of a Lorentzian function
added on a linear base signal. Fitting looks good; from residual it is evident that
fringes effect are now canceled out, or not observable, but a ”W” structure is now
evident.

An improved model included high order derivative of Lorentzian properly
weighted has been tried but no significant benefit has been highlighted. This
could be addressed to the Lorentzian profile itself that is a good approximation
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(a) Riga2 (b) Riga1

Figure 3.16: Dispersion curves of Riga2 a) and Riga1 b) for different pressure

but not a real description. This is evident looking to low pressure measurement.
Fitted curve for 1 Pa e 2 Pa is now very far from their experimental data. This
can be due to the fact that at higher pressure the main cause of broadening is the
self collisions (with Lorentzian distribution), instead for low pressure transit time
is the limiting factor (with Gaussian distribution).

Another possibility can be the effect of lock-in integration time with respect
to the acquisition time between two consecutive data points. Further modeling
have to be develop to clearly understand these effects.

Aware of this, FWHM and line center of the Lamb dip are plotted in fig. 3.17
and fig. 3.18.
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(a) Riga1 (b) Riga2

Figure 3.17: Fitted full width at half maximum as function of pressure for a)
Riga1 and b) Riga2. Error bar correspond to 95% confidence intervals of fitting.

(a) Riga1 (b) Riga2

Figure 3.18: Fitted Dip line center as function of pressure for a) Riga1 and b)
Riga2. Error bar correspond to 95% confidence intervals of fitting.
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(a) (b)

(c) (d)

Figure 3.19: Riga2 absorption dispersion, fitted curve and residual plot for 1pa,
2pa, 4pa e 12pa in the Lamb dip proximity with wavelength modulation technique
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(a) (b)

(c) (d)

Figure 3.20: Riga1 absorption dispersion, fitted curve and residual plot for 1pa,
2pa, 4pa e 12pa in the Lamb dip proximity with wavelength modulation technique
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Chapter 4

Absolute frequency stabilization
of a QCL to saturated absorption
of CHF3

Quantum cascade lasers (QCLs), in particular room-temperature distributed-
feedback (DFB) lasers, are becoming the usual sources for accessing mid-IR spec-
tral region for applications ranging from high-sensitivity spectroscopy to frequency
metrology, environmental sensing, cold atoms, and molecule control.

For advanced applications in precision spectroscopy, it is need to develop a
technique enabling not only the narrowing of the QCL emission down to the
kilohertz level but also its referencing to a stable frequency standard. Indeed,
although the intrinsic emission linewidth of a QCL can be as low as a few hun-
dred hertz [65] [66], excess technical noise, such as the pump current noise, and
internally induced QCL structure noise [67], broadens the QCL emission linewidth
by several orders of magnitude up to few megahertz for 1 ms observation times.
We present an approach to a narrow emission, absolutely referenced mid-IR QCL.
It exploits the availability of a natural ruler of frequency references given by the
many strong molecular absorption lines, whose center frequency can be absolutely
measured with a sub-kilohertz precision.

4.1 Experimental setup

A Quantum Cascade Laser (QCL) with a tunable frequency from 1155 cm−1 to
1160 cm−1, with an optical power up to 40 mW and a linewidth of 1 MHz is used as
probe beam. After emerging from a 30-dB optical isolator, the QCL output beam
is collimated by a ZnSe plano-convex lens (200mm focal length) followed by a
50/50 beam splitter (BS1) whose reflection propagates as the strong pump beam
through a 25 cm long stainless-steel cell (equipped with anti-reflection coated
ZnSe windows) containing the CHF3 gas sample (98% purity) at room tempera-
ture, Troom, with a measured beam waist diameter of 2.1 mm in the middle of the
absorption cell. Reflection from a second 50/50 beam splitter (BS2) is directed to
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Figure 4.1: Experimental setup

a liquid-nitrogen-cooled HgCdTe (MCT) detector (1 MHz electrical bandwidth),
PDlin, to record the single-pass absorption; reflection from BS2 passes through a
50 mm focusing lens and it is back-reflected by a mirror to generate the counter-
propagating weak probe beam (1/4 of the pump beam power) which is then super-
imposed to the pump beam in the gas cell with matched phase fronts (probe beam
waist diameter of 1.8 mm). To detect the saturated absorption signal, the probe
beam is transmitted by BS1 onto a four-stage thermo-electrically cooled MCT
detector (50 MHz bandwidth), PDsat. In order to measure the absolute line-
center frequency of a given CHF3 transition, the QCL frequency is first locked to
the zero of the corresponding (dispersive) FM saturated absorption signal using
a proportional-integrative-derivative (PID) servo controller acting on the QCL
driving current. Then, the frequency-stabilized QCL is beaten against a suitable
mid- infrared (MIR) OFCS covering the 8-14 µm spectral region. The first trans-
mission of BS1 is superimposed to the Difference Frequency Generation Optical
Frequency Comb (DFG-OFC) at 8.6µm whose repetition frequency is stabilized
against a radio-frequency (RF) synthesizer locked, in turn, to a GPS-disciplined
Rb clock; this latter frequency-reference chain has a fractional frequency stability
(1-s Allan deviation) and accuracy of 8 ·1012 and 1013, respectively. After filtering
by means of a 0.01 µm monochromator, the combined beams are focused onto a
200 MHz bandwidth MCT detector, PDbeat, (5.7·104 V/W responsivity and 50
nV/pHz noise floor at a temperature of 77 K).
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Figure 4.2: Saturated absorption (a)and FM dispersive (b)signal from a 25-cm-
long cell filled with CHF3 gas sample at 10 Pa.

4.2 QCL lock to saturated absorption

In order to perform a frequency modulation spectroscopy method, the input cur-
rent to the QCL has been modulated at frequency fm = 1.56 MHz with an am-
plitude of 0.006 V with a digital Lock-in amplifier. Thanks to the current to
frequency conversion of QCL, a modulation in amplitude of input current corre-
spond to a frequency modulation of the probe beam. Thanks to the steep zero
crossing and high signal to noise ratio, the first derivative of saturated absorption
signal is a good reference for accurate stabilization of the laser frequency of the
QCL. Recoded signal from PDsat is sent back to the lock-in amplifier that demod-
ulate signal and, thanks to it is build in PID controller, it can lock to zero the
retrieved first derivative signal.

Figure 4.3.a shows the RF spectrum of the photocurrent measured when the
QCL is operated in free-running. Three main peaks are clearly distinguished from
the background noise: the beat-note signal at fb '53 MHz between the QCL mode
and the nearest comb tooth, the comb repetition rate at 250 MHz, and the beat
note between the QCL mode and the second nearest comb tooth (at a frequency of
'197 MHz). The main beat note, observed with a SNR of 40 dB, is characterized
by a FWHM linewidth of 600 kHz for an integration time of 50 µs (blue curve in
Fig. 3 (b)).

Further linewidth narrowing of the beat note, down to 100 kHz, is obtained
when the QCL is frequency stabilized against the FM saturated absorption signal,
for example of the rR38 (36) ro-vibrational component (red curve in Fig. 4.3.b).
The 100-kHz QCL line narrowing is mainly limited by the 350-kHz control-loop
bandwidth, which turns out to be strictly linked to the FM demodulation elec-
tronics finite bandwidth of 100 kHz.
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Figure 4.3: RF spectrum of the beat signal between the MIR OFCS and the QCL:
(a) QCL in free-running operation (frequency span from DC to 260 MHz, 190 kHz
resolution bandwidth); (b) QCL frequency stabilized against the FM saturated ab-
sorption of the rR36(38) line: as inferred by the spectral position of the servo
bumps, here the closed-loop bandwidth is ∼ 350 kHz.

4.3 Experimental result

To characterize the frequency stability of the Lamb-dip- locked QCL, the main
beat note frequency was directly measured by a reciprocal electronic counter with-
out any additional phase-locked-loop (transfer oscillator method). Figure 4.4.a
shows the corresponding Allan deviation (open circles) versus the integration time,
t, when the QCL is locked against the rR36(38) line for a CHF3 pressure of 7 Pa
(corresponding to the maximum SNR). In the same diagram, the Allan devia-
tion of the Rb clock (black curve), measured against a hydrogen maser, is also
reported for comparison. The QCL Allan deviation reaches a minimum value of
8.6 · 1012 at t= 1 s,which turns out to be limited by the frequency stability of
the adopted Rb clock. For shorter integration times, the stability is characterized
by a white phase noise contribution, σ(τ) = 1012 · τ−1, indicating a tight phase-
locking between the QCL and the Lamb-dip reference. For t > 1 s, a linear drift
of 4.5 kHz/min limits the long-term stability of the frequency stabilized QCL;
this drift, essentially due to the air-pressure-induced shift caused by the relatively
high leakage (0.14 Pa/min) from the gas cell, prevented us from extending the
duration of these measurement sets far above 100 s. By removing from the data
the measured linear frequency drift, the Allan deviation is limited at the level of
8 · 1012 by a flicker frequency noise contribution.
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Figure 4.4: Absolute frequency measurements.(a)Allan deviation of the Lamb-dip-
locked QCL frequency versus the integration time. The dotted red line represents
the best interpolation curve, σ2

y(τ) = 10−24/τ 2 + 0.6 · 10−22 + 6 · 10−24τ 2. (b)
Pressure shift measurement of the rR36(38) line. (c) Reproducibility in the line-
center frequency determination for different measurement sets, carried out under
the same experimental conditions. The error bars represent the combined (type A
and B) uncertainty whereas the dotted red line is the rms of the average value.
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4.4 Uncertainty budget

Afterwards, to thoroughly investigate any systematic effects in the line center
frequency determinations, we also measured the sensitivity coefficient of the Lamb-
dip-locked QCL frequency against the CHF3 pressure and gas cell leakage, the
pump and probe beam powers, the modulation frequency and depth, the electronic
offsets, and the etalon effects.

The other sensitivity coefficients, together with their influence on the system-
atic (type B) uncertainty of the absolute line-center frequency measurement, are
listed in Table 1. Such an analysis reveals that the major sources of type B
uncertainties are due to the 0.5% accuracy of the absolute pressure gauge used
in the experiments and the measured pressure shift coefficient (corresponding to
0.75 kHz), and to the gas cell leak- age during the measurement time (1.5 kHz).
Taking into account all the contributions, the estimated total type B uncertainty
is 1.8 kHz, corresponding to a fractional accuracy of 5·10−11.

Finally, to check the reproducibility of the line-center frequency determination,
for fixed experimental operating parameters (pCHF3= 7.00 ± 0.04 Pa, Troom=
22.1±0.5℃, Ppump= 5mW,Pprobe= 1.3 mW,fm= 1.56 MHz, am= 1.5 MHz), re-
peated measurements were performed with an integration time of 1 s (correspond-
ing to the minimum Allan deviation) and a measurement time of 100 s. Figure 4.4
reports fifteen independent measurements as performed over a few days, return-
ing a rms deviation of 2.3 kHz (6.6·1011), in a good agreement with the estimated
type B uncertainty. The measured average frequency of the QCL stabilized is
34 743 125 035(2) kHz (n = 138 972 and fr = 250 001 115.75 Hz). Taking into
account the pressure-shift coefficient, the line-center frequency of the rR36 (38)
transition extrapolated at zero pressure is 34 743 124 881(2) kHz (1 158.905 901
53(8) cm−1). [68]

Parameter Coefficient Type B uncertanty
CHF3 preassure, pCHF3 22(1) kHz/Pa 0.75 kHz
gas cell leakege, pleak 38(2) kHz/Pa 1.5 kHz

laser power, PQCL 45 kHz/mW 0.2 kHz
modulation frequency, fm 100 Hz/kHz negligible

modulation depth, am 16 kHz/MHz negligible
electronic offset 0.3 kHz/mV 0.2 kHz

etalon/interference effects 0.5 kHz
Rb-GPS-clock 0.04 kHz

Total type B uncertainty 1.8 kHz (5·1011 )

Table 4.1: Measured sensitivity coefficients for the rR36(38) line and their contri-
bution to the uncertainty budget.
[68]
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Conclusion and perspectives

This experimental thesis reports absolute frequency measurements of the sub-
Doppler absorption lines of CHF3 using a quantum cascade laser and an optical
frequency comb in two different methodologies. The first, providing the abso-
lute frequency stabilization of the QCL to saturated absorption line, demonstrate
a fractional precision and accuracy of 8·10−12 and 5·10−11 respectively, mainly
limited by the stability and by the reproducibility of the developed frequency-
modulation non-linear spectrometer. This method can be immediately extended
to realize a compact and fully transportable molecular-gas-cell optical frequency
standard in the mid-infrared with a potential accuracy at the 10−12 level.
The second technique, based on the frequency stabilization of the QCL against
the optical frequency comb, demonstrates a very high resolution both in frequency
and intensity of the recorded spectral profiles. Due to the high fidelity of the
recorded sub-Doppler line-shapes a more sophisticated line profiles have to be
employed to better interpolate these experimental data. However, using a single
Lorentzian profile for the sub-Doppler features, pressure broadening effects have
benn preliminary obtained.
The final aim of these spectroscopic measurements is the determination of the
β-ratio between electron and proton masses. To further increase the frequency-
resolution and accuracy in the determination of the line-center frequencies an
improved version of the experiment is under development based on cold CHF3

molecules. In particular, by using a 77 K hermetic gas cell, it will be possible
to record low-rotational number CHF3 transitions at pressure lower than 1 Pa
characterized by linewidth narrower than 100 kHz. In addiction, combining the
cold cell with an optical cavity also two-photon spectroscopy will be performed
to increase the signal to noise ratio with respect to conventional pump-probe
non-linear spectroscopy setup.
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Peer reviewed publications

• Absolute frequency measurements of CHF3 Doppler-free ro-vibrational tran-
sitions at 8.6 µm - Gambetta A, Vicentini E, Wang Y, Coluccelli N, Fasci
E, Gianfrani L, Castrillo A, Di Sarno V, Santamaria L, Maddaloni P, De
Natale P, Laporta P, Galzerano G. Optics Letters, 42(10), 1911-1914.

• Metrology grade sub.Doppler spectroscopy of CHF3 a 8.6 µm. Gambetta
A, Vicentini E, Wang, Y., Coluccelli N, Fernandez TT, Fasci E., Castillo
A, Gianfrani L, Santamaria L, Di Sarno V, Maddaloni P, Laporta P and
Galzerano G. (OSA conference proceeding, CLEO Europe 2017).
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