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Sommario

Grazie al fenomeno conosciuto come Industria 4.0, la robotica collaborativa sta
subendo una notevole diffusione come tecnologia fulcro delle applicazioni industri-
ali. Tale evoluzione, per quanto fondamentale nell’incrementare la flessibilità delle
linee di produzione, solleva questioni relative alla sicurezza a causa dello stretto
contatto tra umani e robot. Tuttavia, le attuali tecniche per la valutazione del ris-
chio richiedono tempi di realizzazione tendenzialmente lunghi e una preparazione di
carattere scientifico che spesso manca agli operatori.
Questa Tesi introduce un approccio basato su modelli astratti e supportato da un
tool automatico, il quale, a partire da una notazione grafica intuitiva, genera modelli
di logica formale alla base della metodologia SAFER-HRC. I risultati del processo
di verifica formale forniscono un quadro delle condizioni di sicurezza della task, in
base al quale l’utente può modificare il modello fino a riportare il livello di rischio
sotto la soglia desiderata. Lo strumento permette anche la traduzione del modello
in un’architettura ibrida basata sullo standard IEC61499 e ROS. L’applicazione di
Function Block così generata può essere, quindi, eseguita su risorse fisiche o sim-
ulate in ambiente virtuale. Per ottenere questi risultati, all’utente è richiesta la
creazione di diagrammi UML, costituenti il profilo HRC-TEAM, tramite il software
di modellazione Papyrus. Questo include Class Diagram per la definizione delle
risorse disponibili e Component Diagram per una rappresenzazione dettagliata delle
relative strutture interne. Una volta definito il contesto operativo, gli Activity Dia-
gram sono impiegati per definire il workflow dell’applicazione. Al fine di soddisfare le
esigenze di modellazione dovute al contesto specifico, la semantica dell’UML, ove ec-
cessivamente generica, è stata estesa tramite stereotipi da applicare dinamicamente
ai modelli in fase di elaborazione.
La procedura illustrata assiste l’utente durante l’intero processo di progettazione,
testing ed esecuzione dell’applicazione, consentendo un progressivo raffinamento del
modello. Inoltre, la natura visiva della notazione e l’alto livello di automazione la
rendono accessibile a un bacino di utenti più vasto e con diverso grado di esperienza.
Infine, l’approccio è stato testato su casi di studio realistici per valutarne in modo
più concreto efficacia e facilità d’uso.
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Abstract

Collaborative robotic applications are becoming increasingly widespread as a re-
sult of the Industry 4.0 phenomenon. This innovation, albeit instrumental in im-
proving production lines flexibility, raises safety issues due to humans and robots
working in close proximity. Current risk assessment methods, though, are either
overly time-consuming or require a strong scientific background which practitioners
usually lack.
This Thesis introduces a tool-supported model-driven approach facing these issues.
The proposal provides an intuitive graphical notation from which formal logic mod-
els, at the heart of the SAFER-HRC methodology, are automatically generated. The
results of the formal verification process provide insight into the task’s overall safety
conditions, on the basis of which the user can modify the model in order to bring the
estimated risk level below a certain threshold. The tool is also able to translate the
model into a hybrid IEC 61499 - ROS architecture. The generated Function Block
application can either be deployed on physical or emulated resources. In order to
achieve this result, the user is required to create a set of UML diagrams, constituting
the custom HRC-TEAM Profile, through the Papyrus modeling tool. This comprises
Class Diagrams for the definition of available resources and Component Diagrams
for a detailed description of their inner architectures. Once the operational environ-
ment is laid out, Activity Diagrams are used to define the application’s workflow.
Standard UML semantics, often overly generic to meet domain-specific demands,
has been extended through stereotypes which need to be dynamically applied to the
produced models.
The illustrated toolchain supports users throughout the whole application design,
testing and execution process, enabling successive refinements thanks to its auto-
mated nature. Moreover, its visual notation and high automation degree make it
accessible to a wider public with varying levels of expertise. Finally, the approach
has been tested against realistic case studies in order to evaluate its efficiency and
assess its usability.
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Chapter 1

Introduction

1.1 Goal and Motivations

Since the beginning of industrialization, significant technological leaps, from
mechanization to digitalization, have led to the occurrence of shifts which have
been ex-post labeled as industrial revolutions [1]. Nowadays, factories are undergo-
ing a new profound revision due to the introduction of Internet-related and future-
oriented technologies. This is prompting the conversion into smart objects, or –more
specifically– smart factories. For this reason the expression Industry 4.0 has been
coined to encompass the bundle of advancements currently under development.

The triggers behind the fourth industrial revolutions have a social, economic
and political connotation. Firstly, manufacturing industry poses increasingly exi-
gent demands that need to be fulfilled. Production processes will require shorter
development periods in order to favor a higher innovation rate. In the same way,
lines are pressed to hit new flexibility standards and be able to withstand higher
customization levels and a faster adaptation pace. On the other hand, buyers also
expect to be able to define the conditions of the trade and be granted product in-
dividualization, to the extent that the used expression is batch size one. A certain
deal of attention also starts being given to the matter of resource efficiency and
sustainability, so that improvements from an economic-efficiency point of view may
take place without undermining key ecological goals.

The transformation process is concretized by means of a series of approaches.
Firstly, autonomous manufacturing cells have ever higher levels of automation and
mechanization, which provide physical aid and support for the aforementioned ver-
satility demands [2]. Another major theme in this context is that of digitalization
of manufacturing and supporting tools. This allows the creation of a network of de-
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vices cooperating for the registration of actor- and sensor-data in support of control
and analysis functions. Concurrently, work is underway in the direction of device
miniaturization to broaden their applications field, especially towards production
and logistics.

In contrast to previous shifts, though, this time the core tendency involves ac-
tive integration of human-workers into cyber-physical systems with the intention of
highlighting and exploiting their individual skills and talents [3]. It is also possible
to predict that workers will have a wider set of responsabilities, ranging from super-
vision to working out production strategies, and problems to solve. This contributes
to the rise of needs for technological upgrades concerning the collection and repre-
sentation of data. In particular, in order to be properly assisted with the carrying of
his/her monitoring activities, the user will have to be able to rely on easily compre-
hensible visualizations of data and processes and standardized interfaces. A series
of innovative technologies is currently being introduced in factories to support these
requirements, such as Virtual Reality (VR) and Augmented Reality (AR).

Another aspect that is currently under deep revision is that of human-robot forms
of collaboration. In fact, the most common mode of collaboration so far has been
that of using robots as programmable machines working in isolated cells, often di-
vided from human-frequented areas by physical barriers. The vision is now evolving
towards a teamwork -like setting [4] in which humans and robots work shoulder-to-
shoulder, sharing the same workspace and operational tools. In this way, the robot
turns into an active team member working with the human to pursue the same goal
following a previously agreed-upon sequence of actions.

First talks about collaborative robotics go back to the mid-’90s [5], when such in-
novative perspective started showing its appeal. Over the years collaborative robots
sales have steadily risen, reaching an estimation of about 5.000 units for the year
2015 [6]. Collaboration, indeed, entails a number of well accepted improvements to
human operators’ working conditions. This is due to the fact that robots can step in
to bear activities that would otherwise inflict excessive physical exertion on workers
or result in overly dull and repetitive work [7]. Therefore, aside from health-related
benefits, this allows the worker to devote his/her time to higher-level duties such as
taking decisions about manufacturing processes.

Human-Robot-Collaborative (HRC) applications, due to their very nature, entail
operators and robots working in close proximity, hence making the occurrence of
physical contacts very likely. For this reason, it is possible to conclude that safety-
critical situations, i.e., hazards, will never be entirely preventable when collaboration
is in the picture. Nevertheless, it is possible to exploit the rigorous foundations of
formal methods to run safety assessments of the developed collaborative task. For
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this purpose, Askarpour et al. have worked out the SAFER-HRC methodology [8][9]
to formally verify the risk level of the application which is going to be implemented.
SAFER-HRC is based on the linear temporal logic TRIO notation, which is used
to model the operational system’s resources and the sequence of actions as sets of
logic formulae. These models are fed to an automatic model-checker which simulates
the evolution of the system and verifies the satisfiability of user-specified properties.
This feature is exploited to apply constraints on the maximum risk level and analyze
the resulting execution trace, which may be empty if no traces that carry an unac-
ceptable level of risk exist. Otherwise, the output can be used to visualize critical
circumstances that may arise in the current application design and to apply mod-
ifications if deemed necessary. On the other hand, producing such formal models
might be out of reach for users lacking a strong mathematical background, hence
limiting its target audience.

At the same time, developing distributed automation applications imposes addi-
tional requirements. As already mentioned, the rising level of automation requires
more complex solutions, possessing much higher degrees of flexibility and reconfig-
urability [10] to satisfy the aforementioned emerging industrial demands. The IEC
61499 standard [11] takes care of introducing a new application architectural model
to cope with these innovative issues. The model is based on the Function Block (FB)
unit, which is replicated and assembled in networks to form the final fully-fledged
application targeting industrial process measurement and control systems (IPCMC)
[12]. This development process envisages three main steps [13]: programming the
block’s inner code, allocating blocks to actual devices (resources), and mapping the
so-constructed application to underlying communication platforms. The proposal
by Iannacci et al. [14] extends such methodology so that it fits HRC modeling
purposes. This is achieved by implementing a IEC 61499 - ROS (Robot Operating
System) hybrid architecture which splits modeling and planning duties into four dif-
ferently allocated layers. The separation of concerns makes for a simpler and more
intuitive programming procedure since the user is only required to model the task
workflow by assembling elementary blocks.

This Thesis has been developed in collaboration with CNR-ITIA (Istituto di
Tecnologie Industriali e Automazione, Italian National Research Council). The main
goal is to build a connection among these two works, in order to achieve a comprehen-
sive modeling toolchain. The produced plan would simultaneously allow verification
and deployment of the collaborative task the user needs to carry out. Nevertheless,
a two-way translation from one formalism to the other cannot be envisaged. As a
matter of fact, the FB application requires access to a set of more technical data
which the SAFER-HRC models are missing and, viceversa, formal models require
insight on resources and environmental features which may be irrelevant for the IEC
61499 standard. In a nutshell, the two pools of data and modeling requirements are
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Figure 1.1: Initial toolchain scheme. Each block represents a step of the procedure, starting from
the Abstract Model (AM) necessary to model the collaborative task. Such model is then either
transformed into a FB application or the formal logic models, respectively deployed using FORTE
run-time (see Section 3.2.4) or verified through the model-checker ZOT. The user is then allowed
to modify the AM based on previous results and iterate the procedure until deemed necessary.

not identical, hence a direct translation would be unfeasible, whereas extending one
of the two environments specifically to solve this issue may lead to efficiency losses.
For this reason, the core issue of the project has shifted from the creation of the
single translation tool to a complete toolchain including a custom Abstract Model
(AM). The main goal of the AM is to push the modeling phase to a higher level, in
a position fit for covering all the illustrated needs. The produced models compliant
with this formalism are then to be translated into the target languages by a custom
automated tool, as summed up by the scheme in Figure 1.1.

This work is expected to allow a wide range of users to take advantage of a mod-
eling tool that covers most, if not all, of their needs. The so-resulting collaborative
tasks would thus be deployment-ready and more compliant with safety standards.
The usability and efficiency of the proposed approach was verified by testing it on
real-life case studies. In addition, the application to different examples showed the
conformity of the generated models to the ones that were previously manually pro-
duced.
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1.2 Thesis Outline

The Thesis is structured as follows.
The first important matter under consideration is the selection of the best suited
formalism for the Abstract Model. Chapter 2 comprises a survey of the method-
ologies already present in literature, together with an evaluation of their strength
with respect to our modeling needs. At the end of the chapter, the chosen notation
is selected.
Chapter 3 revolves around a detailed presentation of SAFER-HRC and the IEC
61499 - ROS architecture, in order to provide the reader with a comprehensive
overview of the project’s background and foundations.
Chapter 4 introduces the developed notation, describing in detail each of the imple-
mented elements, discussing their semantics and how this was changed with respect
to the standard when necessary in order to fit the specific HRC modeling require-
ments. Examples are provided of how the model applies to real case studies in order
to test its effictiveness.
After the introduction of the Abstract Model, it is necessary to examine how it lends
itself to the aforementioned translations and how the latter have been put into prac-
tice: Chapter 5 thus presents the translation procedure to automatically obtain the
equivalent formal model, whereas Chapter 6 introduces the FB application gener-
ation process starting from the developed models.
In Chapter 7, after an overview of the tools involved in the project, the results
obtained from the application of the developed approach to case studies are reported
to validate the two transformation processes.
Finally, Chapter 8 draws conclusions about the results obtained with respect to
the stated goals. It also presents suggestions about possible future developments to
improve and extend the toolchain’s potential.
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Chapter 2

State of the Art

This chapter presents a review of existing languages and methodologies concerning
the creation of an abstract model. Firstly, a collection of workflow-specific languages
is analysed in Section 2.1 to highlight the contextually relevant aspects of the matter.
Then, the survey is extended in Section 2.2 to more comprehensive modeling lan-
guages targeting the robotic domain, and subsequently UML’s stance in this scenario
is assessed in Section 2.3. Finally, Section 2.4 gathers the conclusions drawn from
the analysis.

2.1 Workflow Modeling Methodologies

Over the last twenty years a significant deal of effort has been put in the develop-
ment of workflow-related languages. The constantly growing demands of industrial
production planning have raised the need for an efficient and accessible tool that is
also able to encompass all the issues that may come up when dealing with a workflow
design. Having access to a language that satisfies such requirements grants remark-
able support for the task development process both during the construction and the
critical analysis phases.

The definition of the term workflow is not unanimously agreed upon, due to
the interdisciplinary nature of the matter, but some of them are reported by Geor-
gakopoulos’ work [15] about workflow management. For the purpose of industrial
robotics applications, the best suited definition seems to be that of a collection of
activities performed by actors involving the manipulation of objects (physical or ab-
stract) [15][16], coordinated with each other so that a specific goal is achieved by
the end of the execution. Each of the key elements, including the synchronization
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mechanisms, featured in such definition needs to be precisely identified and tailored
to the current task application domain while selecting or crafting the workflow mod-
eling language. In order to reach the goals of the Thesis, it is recommended that the
workflow modeling language of choice is able to encompass the following issues:

• Synchronization mechanisms coverage (SYN);

• State-based transitions definition (STB);

• Action referencing to resources (RES);

• Action parameters specification (PRM).

There is a vast variety of modeling languages serving this purpose, each of them
showing exclusive features and arguably suffering from limitations. Among all of
them, the concept of using Petri nets to model workflows is attracting notable atten-
tion among researchers [17]. In particular, it is claimed that specific Petri nets exten-
sion, such as coloured and timed Petri nets, are well-suited for capturing process and
case workflow dimensions [17]. More specifically, based on the standard definition of
Petri net as a directed graph consisting of places, transitions and arcs, and referring
to a task architecture, an action is represented by a transition, places correspond to
pre-conditions or resources and arcs serve as logic relationships regulating the flow
[17]. The strength of this approach lies on three main factors [18]. Firstly, the rigor-
ous mathematical foundation of this formalism [17][18], which makes it particularly
fit for modeling and verification of models featuring parallelism and synchronization
mechanisms. Moreover, the formal and unambiguous nature of this language can
also assign it the role of conflict-solving contract among different departments us-
ing the same workflow procedure [18]. The second reason resides in the state-based
versus event-based infrastructure of Petri nets: according to van der Aalst [18], this
allows for a better distinction between different phases of a task deployment, i.e.,
enablement and execution. Finally, there are a number of already existing and well-
established methods for qualitative and quantitative analysis. These respectively aim
at verifying correctness properties of the designed net, such as absence of deadlocks
and non-conflictive management of shared resources, and the fulfillment of specific
requirements, such as the time required to bring the task to completion [17].

Nevertheless, some limitations of using Petri nets emerge when evaluating them
based on the Workflow Patterns classifications, as discussed by van der Aalst in [19].
Workflow patterns were originally conceived at the end of the last Century by van
der Aalst and ter Hofstede [20][21] in order to precisely identify the points that an
all-encompassing workflow modeling language needs to hit and divide them in subcat-
egories. More specifically, Petri nets are weaker when it comes to patterns involving
multiple instances, advanced synchronization and cancellation [19]. To make up for
Petri nets weaknesses, the same authors have proposed a new modeling language,
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Figure 2.1: Example of Task described through YAWL notation, from [19]. The left-most play
button corresponds to the initial node, whereas tasks are represented as square blocks (register,
pay, hotel, f light and car in this case). As shown, register and pay are endowed with connectors
(the narrow blocks contaning a diamond) since the first one enables the three central ones, whereas
the latter can take place only after all three have been completed. The round blocks are needed to
collect the three completion tokens.

YAWL (Yet Another Workflow Language), which is built upon the same foundation
as Petri nets. According to such notation, a workflow specification is composed by
tasks, as in Figure 2.1, either simple or composite [19], connected to each other by
a variety of operators, which, once combined, allow for a remarkable coverage of
the above mentioned control flow patterns. Moreover, a detailed parametrization of
the tasks is possible in order to manage, in a compact and efficient fashion, flows
featuring multiple instances and dynamic versus static instantiation [19].

The previously provided definition is well embodied by WebWorkFlow, devel-
oped by Hemel et al. [16]. This is an object-oriented embedded language extending
WebDSL, specific for web applications development [16]. Workflows are formalized
through procedures definitions, which can either consist of single steps or a com-
bination of procedures, and are further characterized by a series of clauses, more
specifically who, when, view, do and process [16]. These respectively specify who is
allowed to apply the procedure, the constraints on the ordering of procedures, the
user interface, which action is taken when the procedures is applied and the compo-
sition of procedures to apply when the containing procedure is invoked [16]. Despite
offering some advanced features in terms of dynamic adaptation of the flow, the tex-
tual specification is commonly perceived as harder to read and interpret, which is
why studies point mostly in the direction of graphical tools [22].

According to Paternò, the crucial steps when first outlining a workflow [22] are
the definitions of smaller-scaled elements the task is going to be decomposed into
and the temporal relationships in which they are involved. The notation developed
by Paternò et al. features a hierarchical tree-like task architecture, as in Figure 2.2,
labeled as ConcurTaskTree (CTT). The sub-tasks composing each layer are linked
through temporal operators that specify their synchronization mode, as shown in
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Figure 2.2. The CTT structure might need refinements during the design phase if
found subject to ambiguity. While the temporal unravelment of the task execution
steps is exhaustively covered by the CTT notation, the representation of the infor-
mation about nodes and the objects that they are manipulating is deepened by the
work presented by Martinie et al. [23]. In CTT, subroutines are modeled as actions
manipulating an object, which can either be perceivable (such as images or sounds)
or internal (i.e., data and their status) [22]. Actions themselves can be differently
labeled based on their nature, that is to say whether they are entirely performed by
the user or by the system, if they require an interaction among the two or if they
are performed at a higher level of abstraction so that they do not fall in any of the
previous categories [22].

The work by Martinie et al. extends the CTT architecture by introducing the
HAMSTERS notation that includes concepts about knowledge representation inher-
ited from cognitive psychology. According to the latter [23] there are four main
types of knowledge the human brain can process and acquire, either through educa-
tion or through direct experience, which are: declarative knowledge, which deals with
the representation of objects and their properties, procedural knowledge, revolving
around the way the task is executed in order to reach its goal, and finally situational
and strategic knowledge, respectively related to case-based reasoning and planning
[23], that is to say taking into consideration and weighting multiple choices. All of the
above need to be addressed in some way by the task modeling language of choice,
so that all of the concepts which the human brain finds necessary for a complete
representation of the task, and not only those falling into one particular category,
can be matched by its model and be eventually processed by an artificial intelligence.

Figure 2.2: CTT task example, as presented in [22]. Sub-tasks are represented as blocks, con-
nected to each other by temporal operators. In this case, Edit&close and Handle are connected by
the synchronization operator. Application is connected to Edit&Select by the enabling operator,
which means the first one can start when the first one is done, and to Edit order by the interleaving
operator, that is to say the two actions can be performed in any order.
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Figure 2.3: Visualization of the EOFM task model for driving at the desired speed, from [24].
Activities are represented as rounded rectangles, actions as unrounded rectangles, preconditions as
inverted yellow triangles, and completion conditions as magenta triangles. Boolean expressions in
conditions use the syntax supported by transition guards in the SAL.

A significant proposal hinting at operational domain modeling is the EOFM (En-
hanced Operator Function Model) language presented by Bolton, Simicenau and Bass
[24]. Their work specifically aims at producing a notation, based on a finite-state
machine formalism, that models the system behavior and which is at the same time
formal-verification ready through an automated model transformation process. The
language is centered around the human operator model as an input/output system,
able to receive inputs in terms of data or mission goals from interfaces or other op-
erators, and issue outputs in the form of actions. Such actions constitute the basic
building block of a EOFM task model, an example of which is shown in Figure 2.3,
which, in this case, is meant as the collection of states the system can be in rather
than a sequence of activities assembled to achieve a specific goal. The transitions
between these states are controlled by conditions, also visible in Figure 2.3, such
as start, end and repeat conditions, written as linear temporal logic formulae and
featured in the EOFM model through dedicated symbols [24]. The formal verifica-
tion is performed by translating the EOFM model into a model checking language:
for this specific case the language of choice is SAL, which is a framework expressly
for the verification of concurrent systems’ properties [24]. The actual translation is
carried out automatically by a custom Java script which parses the EOFM’s XML
file and converts it into the SAL code [24]. For this context, its main weakness is
that most of the core features are already covered by SAFER-HRC, while it does
little to fulfill the remaining requirements. As a matter of fact, its operator-centric
and –even more importantly– its uni-operator nature does not really fit collaborative
modeling purposes.
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2.2 Domain-Specific Modeling Languages (DSMLs)

When dealing with advanced robotics issues, especially when human cooperation
is involved, the sole mission workflow modeling is not sufficient to cover all aspects
of an application. It is also necessary to provide the action sequence with a back-
ground on the agents involved, their specific skills and the environment they operate
in. This modeling step is also essential to provide an automatic tool performing a
model transformation procedure with a sufficient amount of information to meet the
target framework’s requirements. The approach that seems to deal with this issue
most efficiently, also according to [25], [26] and [27], is that of Domain-Specific (Mod-
eling) Languages (DSMLs) definition. Arguably, in some application fields, such as
Artificial Intelligence and Web services, also the concept of ontology is of paramount
importance. As a matter of fact, such formalization is fundamental for systems
design, interoperability and for an unambiguous collaboration among human users
or developers [28]. On the other hand, some engineering fields, including robotics,
tend to favor the use of DSLs (Domain Specific Languages), which provide a higher
level of security and robustness and are better suited to the development of software
toolchains [28]. A Domain-Specific Language can be defined as a notation aimed at
fulfilling the modeling needs of a restricted domain [29]. The main advantages with
adopting a DSL involve ease-of-use, especially when it is formulated as the speci-
fication of an already existing general-purpose language (GPL) [25], and a certain
degree of flexibility in terms of attainable level of detail and capacity to capture a
system from different perspectives [25]. Hence the two main characteristics a good
DSL must have, according to [26], are: expressive power sufficiently broad for the
target domain and a level of formalism which correctly balances approachability by
non-expert users and machine processability. Under these assumptions, among all
the existing forms of programming language [30], the natural choice was to survey
graphical manual input languages, which are attracting a growing amount of at-
tention among reseachers trying to close the flexibility gap with textual languages
[30]. With an approach similar to the one used in [26], the surveyed proposals were
evaluated based on their capability of abstracting the following real-life concepts,
considered relevant for the purposes of the Thesis:

• Robot(s) structure definition (ROB)

• Human operator(s) characterization (HUM)

• Agent skills definition (SKL)

• Operational environment representation (ENV)

• Task workflow modeling options (WKF)
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Figure 2.4: SmartTCL three-layer architecture scheme as it is pictured in [31]. The skill layer
comprises components operating on the level of sensors and actuators. The sequencing layer is
responsible for the situation-driven task execution. The deliberative layer processes deals with
symbolic task planning, simulations and system analysis. Each component of the system is repre-
sented in the knowledge base (KB) with associated information about state, parametrization and
constraints.

The languages under examination all share some key features, i.e., they all lean
towards the establishment of a toolchain that includes one or more transformations
of the main model, but were selected so that a variety of different approaches could
be weighted and inspected.

A proposal featuring a degree of complexity appropriate for robotics applications
is the one by Schlegel et al. [32] about SmartTCL (Task Coordination Language),
which is part of the SmartSoft-MDSD Eclipse-based toolchain. The most important
trait about this approach is that it does not only focus on the actual workflow struc-
ture for the task development, but it also involves a number of additional components,
ranging from planning and analysis tools, to skills and system resources models, end-
ing with simulation tools where possible, all orchestrated by the main sequencer [31].
The main reason behind such architecture, depicted in Figure 2.4 is that the appli-
cation field requires a broader comprehension of the resources participating to the
task and the skills that they possess, besides an insight on the environment they are
operating in. This is also related to the concept of task goal achievement appearing
in the definition at the beginning of this Section. As a matter of fact, for robotic ap-
plications this usually requires further deepening, in terms of additional constraints
that must be taken into consideration when evaluating whether the task ended with
a success or with a failure. In this particular approach, the selected enhancement
is related to variability management [32], that is to say variation points handling
thanks to a constraint solver, which uses specific rules to select strategies in response
to contingencies and assign them to task blocks [32]. In order to achieve these goals,
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the task structure also takes advantage of the aforementioned language architecture,
since it often requires access to events from system components or the knowledge
base, i.e., to query for a location coordinates or get updates about known objects [32].

The work by Blanc, Delatour and Ziadi exploits the advantages of model-driven
engineering (MDE) for the development of software systems for Aibo, which is a
family of robotic pets developed by Sony [33]. The project is founded on the no-
tion of MDA pyramid, which –in this specific case– is taken into consideration in
its four-layered form. The stack is constituted –from top to bottom– by the meta-
meta-model, meta-model (such as UML), the model level and the real world [33].
More specifically, three meta-models have been built for Aibo Software development.
Firstly, the Robot meta-model, aimed at characterizing the single members of the
Aibo members, secondly the Validation meta-model, that defines which states and
transitions are consistent or not, and finally the Behavior meta-model, which iden-
tifies the software that is going to be built, also ascribable to the programming
language category [33]. When the model is complete, it is possible to translate it
into code thanks to predefined templates [33]. In particular, the target programming
language is the Aibo platform-specific URBI, hence such transformation can be la-
beled as a model-to-text one, implementing a prearranged set of rules, one for each
meta-class of the Behavior meta-model [33].

Similarly, the joint research project BRICS (Best Practice in Robotics), carried on
by members of several research groups [34], launched in 2009 and completed in 2013,
aims at formalizing a robot development process in its entirety and provide tools to
support and accelerate such procedure. Its main objectives, as in similar cases, are
interoperability and best practice promotion, and the creation of an integrated devel-
opment environment, supported by two complementary software packages, BRIDE
(BRics Integrated Development Environment) and BROCRE (BRICS Open Code
Repository) [34]. The project is structured in seven activities, that is to say seven
different research areas. These aim at identifying patterns in robot architecture
systems and subsystems for re-usability purposes, and to achieve a sustainable [34]
software development process also in terms of future developments. They also work
on robustness with respect to external unexpected adverse situations, with minimum
system flexibility losses [34]. Finally, there are also research branches on the inte-
gration of a MDE model into the Eclipse toolchain and the provision of guidelines
and suggestion to work in the direction of inter-component harmonized interfaces.

The proposal by Rahman et al. [35] also supports the use of a MDA approach
and more specifically argues its strength in terms of software module reusability,
which is still a critical issue in the robotic field. Plus, the effectiveness in terms of
functional decompomposition to suit different development teams’ demands is also
a desirable asset of the MDA approach [35]. Their proposed meta-model is SysML,
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Figure 2.5: Schematic representation of the V3CMM views, taken from [36], showing the kind
of concepts appearing in each view and the loosely coupled relationships existing among them.

which is a general-purpose UML extension, featuring nine different diagrams, some
of them modified with respect to their standard UML form, and two new ones. The
additional diagrams are the parametric diagram, aimed at representing the mathe-
matical relationships among components of the system that is being designed, and
the requirement diagram, which allows the user to model relationships between re-
quirements in various forms and highlight which components satisfy them or not
[35]. The proposed modeling process can be split into three main phases. The first
one revolves around the actual robotic mission modeling and features context and
use case analysis together with functional and non-functional requirement analysis,
each of which is covered by a specific type of diagram. Secondly, there is a hardware
and software analysis phase, which features functional, structural and behavioral
analyses and, finally, a platform-oriented modeling phase with RTC blocks choice
and system implementation [35].

The work by Alonso et al. [36] discusses the limitations of current approaches
for robot frameworks development. According to them, this is mainly related to the
Object-Oriented approach which makes it impossible to verify whether system com-
ponents are correctly linked and which interaction protocols they will use, whereas
components should be modeled as architectural units rather than objects, which are
instead essential for the code-generation phase [36]. The core of their proposal is the
V3CMM (3-View Component Meta-Model) modeling language, which adopts con-
cepts from UML but is directly defined using OMG’s MOF (Meta-Object Facility),
and does not impose any platform-specific requirement [36]. V3CMM comprises, as
the name suggests, three different views, as shown in Figure 2.5, illustrated by three
different diagrams. Firstly, the structural view, capturing the static structure of sim-
ple and complex components, the coordination view that describes the event-driven
behavior of a component and, finally, the algorithmic view which encompasses the
functionalities of a component in its current state [36]. They are respectively modeled
with representations based on component diagrams, finite-state machines and activ-
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ity diagrams. The subsequent model-transformation into code must be preceded by a
formal mapping between the generic modeled components and the platform-specific
primitives and the completion with application-specific details: more specifically the
article covers the transformations from V3CMM to UML and from UML to Ada [36].

A similar approach is presented in the article by Klotzbücher [37] about BCM,
a minimal component model for robotic platforms. The term minimal is used to
highlight the fact that the notation focuses only on elements functional to the model
transformation and code generation phases. Such elements can be divided into two
classes mirroring the two main design phases this procedure consists of: the compo-
nent and the system design phases. The first one revolves around the development of
a single component, its interaction primitives, platform-independent computations
and configurable properties [37]. The second one aims at instantiating, configur-
ing and connecting such components in order to obtain a complete system ready
to be deployed [37]. Both phases are established on concepts inherited from UML,
in particular Component Diagrams, such as components themselves, state-machines,
properties and flow ports. The code generation process starts from semi-opaque
code components which are then parsed and transformed into actual opaque code
components thanks to a custom-built BCM API and, finally, transformed to the
appropriate framework API [37]. Currently, there is a compiler able to apply such
steps in order to transform BCM components into working ROS and OROCOS-RTT
components [37].

Another attempt at the formulation of a DSL for robotic systems is the PRO-
TEUS project, aimed at supporting the French robotic community’s growth [28].
The ontology defined in this project is able to model tasks and control systems, as

Figure 2.6: As it is illustrated in [27], a general view of the RobotML Domain Model (left) and
Architecture (right) packages, with relative sub-packages.
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well as component models, mechanical and electronical, and component databases.
The resulting tool is simultaneously adequate for testing and validation and linking
to hardware for real-life simulation [28]. The quest for all these functionalities justi-
fies why the language allows the user to model both the robot’s behavior and skills
and the environment it operates in [28].

The PROTEUS project has served as a base for the creation of RobotML, a DSL
for robotic applications implemented as a UML profile [27]. The target of this work
is to deliver a toolchain that automates the code generation phase, so that the user
is not required to deal with lower-level details that call for a stronger background in
robotics programming [27]. Their agenda includes eight main requirements, ranging
from ease of use to platform interoperability. The Eclipse-based toolchain starts with
the scenario modeling, for which the notation contemplates a collection of packages,
represented by UML Class Diagrams. The architecture package, shown in Figure
2.6, covers concepts regarding the robotic system components, the operational en-
vironment components, which data types will be exchanged between components,
the operational mission and data about the execution environment, such as robotic
middleware and simulators [27]. Additional packages, also featured in Figure 2.6
deal with communications details, exploiting the concepts of ports and connectors,
and the robotic system’s behavior, modeled through finite-state machines [27]. In
a second phase the user defines a deployment plan, whose specific details are also
covered by a package, to allocate the model components to the execution platform
and eventually reuse already deployed components [27].

2.3 UML for Workflow Modeling and Domain Rep-
resentation

Within the UML notation, Activity Diagrams are the ones devoted to workflow
modeling both for computational and organisational processes [38]. Similarly to the
cases illustrated in Section 2.1, in [38] Dumas and ter Hofstede conduct a critical
analysis on the suitability of Activity Diagrams as workflow specification languages
based on their coverage of advanced constructs from the workflow patterns collection
[20][21]. The conclusions they come to is that they present some weaknesses when
facing specific kinds of synchronisation such as the discriminator or N-out-of-M join
and do not fully support all produced-consumer patterns, but perform particularly
well when challenged with state-based patterns. The latter are especially relevant
when the collaboration between a human operator and a resource is involved and
it is necessary to distinguish between different states of an action, i.e., waiting and

17



CHAPTER 2. STATE OF THE ART

processing [38]. Further strong points involve the support of conceptual signal pro-
cessing and activity decomposition into subactivities [38].

From a more general point of view, they exhibit the same qualities as most UML
diagrams in terms of rigorousness and adaptability to numerous settings, also thanks
to UML functionalities targeting extensibility such as stereotypes, and have thus been
selected, in their standard or extended form, to model workflows for various appli-
cations. One example is the C-Wf approach, proposed by Bastos and Ruiz in [39],
which consists of an activity diagram extension to improve its usability for produc-
tion process modeling. The core concept of this proposal is the adaptation of UML
standard elements to concepts native to the business field through stereotyping. One
example of this is the swimlane notion which is reinterpreted as the representation
of a domain, that is to say the organisational unit where an enterprise activity will
be executed [39].

A similar approach can be found in the work by Brüning and Gogolla, who aim at
enriching activity diagram with dynamic properties [40]. The way this is achieved is
by defining execution semantics through OCL invariants. The latter express system
states, operations pre and post-conditions, and temporal relationships between ex-
isting elements [40]. During the execution, this semantics is interpreted and the flow
is modified based on the outcome, i.e., certain branches can become forbidden and
hence be deactivated [40]. Such control flow perspective is captured by a meta-model
and applied to the case study of a peri surgical emergency process. In such appli-
cation, another asset of Activity Diagrams which must be exploited and eventually
integrated by the meta-model is that of data flow management. As a matter of fact,
different types of information must be figured out or accessed during different phases
of the process, for example the generalities of the patient during transportation or
a database of symptoms when finding a diagnosis [40]. Specularly, the diagram also
needs to capture the generation of data during the execution of the process, i.e., the
produced documentation regarding medications [40].

As already stated in Section 2.2, it is necessary to capture the system from differ-
ent perspectives to accomplish the goals extablished for this thesis, hence it is also
imperative to have a comprehensive look at UML as a whole as a modeling language.
According to Bruccoleri, La Diega and Perrone [41], the object-oriented approach is
the most efficient when it comes to designing complex systems and UML was ex-
pressly designed to represent any software system and close the gap between OO
design area and OO programming by means of an integrative meta-model [41][42].
Thanks to UML it is possible to specify the notation and the semantics of a model or,
more specifically, display its requirements and its use-case realizations plus represent
a static structure of the system, its behavior and its physical implementation [41].
The adequacy of UML to model automation and control systems has been specifi-
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cally addressed in [43] and [44], both coming to the conclusion that its usage would
provide great support in the software development process [44] to control engineers
also during the system performance assessment phase, lifting the need for a deep
understanding of its inner working [43]. Ritala and Kuikka have furter exploited
such advantages by defining a UML automation profile [44]. Their work covers all
requirements of a control application, starting from the different levels of required
technicality, i.e., the local control of a device requires a much lower-level perspective
than the high-level supervisory control [44]. Similarly, the proposal profits from the
UML profile mechanism to hit other requirements, such as distribution of software
components, data exchange and simulation. The result is a language that possesses
sufficient expressive power to capture all aspects of an automation application while
maintaining an adequate degree of usability. Other examples of how a UML extension
can specifically address robotic applications issues [35][28][27] have been illustrated
and discussed in Section 2.2.

2.4 Discussion Conclusions

As a conclusion of the discussion carried on so far, Table 2.1 displays how the
investigated languages compare to the modeling requirements established in Sections
2.1 and 2.2. As for the workflow-specific languages, the main issue is that the work
in this field is mostly focused on improving them so that they can cover as many
advanced flow constructs as possible. This is to be expected due to the nature of the
problem, but when it comes to collaborative applications the focal point tends to
shift from the complexity of the flow, which is clearly still relevant to a certain degree,
to the expansion of actions’ properties. As illustrated in Section 2.3, a promising
path to a resolution of the matter is to consider the adoption of an extended version
of UML Activity Diagrams.

Proceeding to DSLs analysis, it is clear that most of the existing languages are
predominantly centered around the robotic system’s architecture and software com-
ponents, but lack the capacity to model the human operator(s) and the aspects
concerning the collaboration among the two, which is obviously imperative in HRC
applications. More in detail they tend to be very proficient in technical aspects, such
as lower-level control components, middlewares, and deployment specifics. From a
wider perspective, also the toolchains such languages are part of focus on target-
platforms requisites and optimizing software reusability and flexibility. All of these
qualities are very valuable when developing a procedure aimed at specifying the
robot mission and directly interacting with the real-life resource to be deployed,
hence requiring low-level technicalities, but lose relevance when it is necessary to
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capture more physical aspects, such as the positioning of agents inside a layout. As
a consequence, trying to employ these languages in a way that falls far beyond their
original scope would lead to a heavily under-performing and mediocre result. On the
other hand, as discussed in Section 2.3 and also reported in Table 2.1, adapting the
semantics of a standard UML element through stereotypes and collecting the latter
in a new profile has proved to be an efficient approach to target the modeling needs
of a specific domain, which precisely complies with the objectives of this Thesis.

Table 2.1: Surveyed languages features
Language KWB SYN STB RES PRM

Petri Nets X X X

YAWL X X

WebWorkFlow X X X

CTT X

HAMSTERS X X

EOFM X X X X

ROB HUM SKL ENV WKF

SmartTCL X X X X

AIBO X X

BRICS X X

SysML X X X X

V3CMM X X

BCM X X

PROTEUS X X X

RobotML X X X X

UML Profile X X X X X X X X
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Background

This Chapter presents the features of the two frameworks that the project of the
Thesis aims at connecting. Section 3.1 offers an overview on safety analysis and
then it focuses on the TRIO language, the Zot model-checker and the SAFER-HRC
methodology that are all exploited by the toolchain to formally verify the designed
task. In Section 3.2, the second environment, involving the IEC61499 standard and
ROS, is introduced as well as the Function Block element and the related software
tools that allow the verified task to be deployed.

3.1 Formal Methods for Safety Verification

Formal verification is a systematic process that mathematically checks whether
designed specifications satisfy requirements for implementation. More precisely, it
exhaustively explores all possible input values over time: this is the reason why high
observability is directly achieved with no need for simulation of multiple scenarios to
stimulate the desired design. However, in order to formally verify a project, it must
be firstly converted into a simpler verifiable mathematical model: it is the approach
based on model checking. For this purpose, a linear temporal logic language, TRIO,
has been used to describe the properties to be verified. Still, before inspecting the
adopted formal verification procedure, it is necessary to introduce the concept of
safety analysis and to explain what is meant by risk assessment in human-robot
collaborative task in the most recent literature.
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3.1.1 Risk Assessment

Control and, possibly, elimination of factors that may cause harm, particularly
to people, are issues increasingly considered in the scientific literature related to
human-robot collaboration, where close proximity and interactions are unavoidable.
In particular, the term Risk Assessment identifies a precise procedure that starts
with the hazards recognition and the evaluation of their severity and ends with the
determination of applicable countermeasures. Rigorous approaches are based on
standards, such as the ISO 10218-2 [45] that distinguishes four possible collaborative
modes between humans and industrial robots. Our project focuses on Power and
Force Limitation (PFL), the one involving actual physical contact which is strictly
associated with safety requirements in terms of pressure and force thresholds to limit
the effects on the human body. Another standard is the ISO 12100 [46] in which
existing hazards and unwanted situations due to misuses or errors of the operator are
identified; their consequences are then measured in terms of quantified risk values.
As schematically introduced in [9], five stages are the basic structure of a standard
iterative risk analysis. First of all, one has to determine the limits of the involved
machineries, their regulations and constraints together with the desired task to be
accomplished. Secondly, the hazards listed in product-specific standards are identi-
fied. Then, for each of them a risk value is measured, usually combining the severity
of the harm with its likelihood. Finally, the risks are evaluated understanding their
significances and, if one is not negligible, appropriate countermeasures are iteratively
introduced to reduce it. When the residual risk value is considered acceptable the
refining process is stopped.

[8] underlines the issue of viewing the operator as a proactive factor in safety vio-
lations. For this porpoise, the behavior of the human can be determined by means of
two approaches: the cognitive one involves a formal model for the human cognition,
whereas the task-analytic one identifies principles that generate plausible human
behaviors and formalized templates from cognitive psychology. However, cognitive
approaches are too specific models and they do not address human fallibility and
errors; instead, task-analytic approaches focus on all the possible combinations of
hazardous situations, regardless of their cognitive reasons, by hierarchical structures
of tasks to be then decomposed into smaller functional units. Moreover, traditional
formal approaches such as FMEA (Failure Mode and Effects Analysis) and FTA
(Fault Tree Analysis) are not well-suited for HRC applications because they do not
capture hazards due to human factors, produce false positives and are too dependent
on the analyzers team which makes them less generic [47]. Also [48], considering Fail-
ure Mode, Effects, and Criticality Analysis (FMECA), states the difficulty of having
a comprehensive view of the overall safety achieved by an autonomous robot when it
interacts with people. Due to the complexity of human-robot interactions and to the
lack of data concerning rate of failures associated with human actions, traditional
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risk assessment techniques are inconclusive.

In this project, the approach considered to automatically identify hazards and
retrieve adequate countermeasures is based on the SAFER-HRC (Safety Analysis
through Formal vERification in HRC applications) methodology. As stated in [9],
although it would be impossible to claim that all possible hazards can be discovered,
SAFER-HRC provides an exhaustive exploration of the behavior of the target system
which should be enough to guarantee that no significant hazardous situations will
be left unconsidered. Section 3.1.3 is dedicated to a deeper analysis of this method,
even if a brief step-by-step description (as in [8]) is provided here for the sake of
completeness of the Risk Assessment review. Firstly, it is necessary to achieve a
mutual understanding of the desired task regarding safety requirements, hazards
and their treatments, together with a precise definition of the applications that have
to guarantee a minimum level of safety. Then, the TRIO metric temporal logic can
be used to build a modular model of the task, to which an iterative verification by use
of the Zot tool is applied. Finally, a generalization of the model plus an evaluation of
the methodology through new tasks should create a proper framework to help safety
engineers, both a priori to design systems and, with extensions to runtime, “on the
fly” to monitor, detect hazards and introduce suitable risk reduction measures.

3.1.2 TRIO and ZOT

TRIO is a first order logical language that allows the user to express in a precise
and formal way temporal properties, which are of the utmost importance for real-
time systems. It is also augmented with temporal operators to establish the truth or
falsity of propositions at time instants different from the current one, which is left
implicit in the formula. On the other hand, it provides limited means to describe
the structure of large and complex systems: this is because TRIO specifications are
very finely structured whereas the language does not provide powerful abstraction
and classification mechanisms and it lacks an intuitive and expressive graphic nota-
tion [49]. Regarding the syntax and the semantics of TRIO, a brief introduction is
needed to accomplish a complete understanding, whereas detailed and formal defini-
tions may be found in [50]. Like in any first order language, the alphabet of TRIO
is composed of variable, function and predicate names, plus a fixed set of quantifiers
(∀ and ∃) and primitive or derived propositional connectors such as ¬,→, ∧, ∨ or↔.

A necessary analysis of these elements, as it is reported in [49], concerns the
time dependence. Indeed, time dependent variables can be distinguished from time
independent ones: the former have values that may change with time, the latter
present invariant values. The same differentiation can be carried out for formulae and
predicates, where independent predicates always express the same relation whereas
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a time dependent predicate corresponds to a changeable relation. In order to specify
the set of values that may be assumed by a variable, a type or domain has to
be declared for it. The Time Domain is the most noteworthy among them: it is a
numeric set of instants, equipped with a total order relation plus the usual arithmetic
relations and operators, and it represents where a TRIO formula may be evaluated.
Another special domain is the Distance Domain, a numeric domain composed of
the distances between instants of the Time Domain [51]. Usually, the predicates
are assumed to be time independent so that the associated relational operations are
applicable to elements of these domains. According to [52], the syntax of TRIO
founds the definition of new terms on an inductive methodology: each variable and
each n-ary function applied to n terms is defined as a term itself and atomic formulae
are adopted as predicate applied to terms of the proper type. More precisely, a
formula is inductively defined by 4 clauses:

• Every n-ary predicate, applied to n terms of the appropriate type, is a formula
(atomic formula);

• If A and B are formulae, Ā and A ∧ B are formulae;

• If A is a formula and x is a time independent variable, ∀ x · A is a formula;

• If A is a formula and t is a term of the temporal type, then Futr (A, t) and
Past (A, t) (see Table 3.1) are formulae.

Besides the usual propositional operators and the quantifiers, a single basic modal
operator, Dist (F, t), may be used to compose TRIO formulas [53]. It connects the
current time, to another time instant: the formula Dist (F, t), where F is a formula
and t a term indicating a time distance, states that F holds at a time instant exactly
at t time units from the current one. By means of propositional composition and first
order quantification on variables representing time distances, it is possible to derive
temporal operators from the basic Dist (F, t) operator, including all the operators of
classical linear temporal logic [51] summed up in Table 3.1.

Table 3.1: List of derived TRIO Operators
TRIO Operator Definition Meaning

Past (φ, d) d > 0∧Dist (φ,−d) φ occurred d time units in the past

Futr (φ, d) d > 0∧Dist (φ, d) φ will occur d time units in the
future

futr(v, d) ∼ c d > 0∧ Futr(v ∼ c, d) futr(v, d) indicates the value of
variable v sometimes d time units

in the future

Alw (φ) ∀t(Dist (φ, t)) φ always holds

AlwF (φ) ∀t(t > 0⇒ Dist (φ, t)) φ holds always in the future

AlwP (φ) ∀t(t > 0⇒ Dist (φ,−t)) φ holds always in the past
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Lasted (φ, d) ∀t(0 < t ≤ d Dist (φ, t)) φ occurs for the past d time units

Since (φ, ψ) ∃t(Past (ψ, t) ∧ (∀t′(0 < t′ < d⇒
Dist (φ,−t′))))

ψ occurred in the future and φ
held since then

Som (φ) ∃t(Dist (φ, t)) φ occurs sometimes

SomF (φ) ∃t(t > 0∧Dist (φ, t)) φ occurs sometimes in the future

SomP (φ) ∃t(t > 0∧Dist (φ,−t)) φ occurs sometimes in the past

Until (φ, ψ) ∃t(Futr (ψ, t) ∧ (∀t′(0 < t′ < d)⇒
Dist (φ, t′)))

ψ will occur in the future andφ will
hold until then

Untilw(φ, ψ) Until (φ, ψ) ∨Alw (φ) weak until: ψ may never occur in
the future

WithinF (φ, d) ∃t(0 < t < d ∧Dist (φ, t)) φ occurs within d time units

WithinP(φ, d) ∃t(0 < t < d Dist (φ, t)) φ occurs sometimes in the past

Moreover, it is also stated in [51] that the traditional operators of linear tempo-
ral logics can be defined as TRIO derived operators. So, since many different logic
formalisms can be described as particular cases of TRIO, this argues in favor of its
generality.

TRIO formulae have a precise and well defined mathematical meaning in order
to favor decidability and computability. Therefore, it grants a solid basis for TRIO
executability that allows mechanical and constructive proof of the satisfiability of a
TRIO formula (that is, of its consistency as a specification), by means of the gener-
ation of a model for it assigning values to variables and relations to predicates [52].
The TRIO formalism can thus become the kernel of a specification environment that
provides an abstract characterization of system behavior: an ideal input for programs
related to model checking. Indeed, different techniques have been developed in order
to furnish a fully automated response, positive or negative, to the satisfiability of
the stated property by the designed system. In [53], two kinds of model checking
are defined: Automata-theoretic, based on the transformation of temporal logic for-
mulae into automata and Satisfiability-based which follows the converse approach.
As a matter of fact, it transforms the operational model S of the system into an
equivalent logic formula FS, and then applies logic-based algorithms to a suitable
combination of FS and P.

The satisfiability-based model checker delegated to formal verification of the de-
signed project is Zot. As explained in [54], Zot presents at least two main advantages:
it is quite flexible and easily extendible since it is fairly concise and written in Com-
mon Lisp; it supports different logic languages and usage modalities by means of
plugins1. Zot guarantees these features because of its multilayered approach. In-
deed, the core uses Propositional Linear Temporal Logic (for a complete description
of PLTL formulae see [55]) and on top of it a decidable predictive fragment of TRIO

1The adopted plugin ae2sbvzot can be downloaded from https://github.com/fm-polimi/zot to-
gether with the model checker.
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is defined. The three available basic usage modalities are the Bounded satisfiability
checking (BSC), Bounded model checking (BMC) and History checking and comple-
tion (HCC). All of them return a history, a possible execution trace of the specified
system. Of course, if the history file is empty it means that it is impossible to satisfy
the specification. Even if the user has to set, in the Main file, a bound that is the
maximum temporal length of the provided output histories, they may still represent
infinite behaviors exploiting the loop selector variables that mark the beginning of
the periodic sections. For example, BSC and BMC can be used to check if a property
prop of the given specification spec holds over every periodic behavior with period
≤ k. In this case, the input file contains spec ∧ ¬prop, and, if prop indeed holds,
then the output history is empty. If this is not the case, the output history is a
counterexample, explaining why prop does not hold [54]. It is now apparent that
the validity of a formula r is demonstrated by showing that the opposite is not sat-
isfiable. This operation is computationally intensive, since the model generator tries
exhaustively all possible ways of building a structure verifying ¬r, and only after all
such attempts have failed r is declared as valid. Because of how the demonstration
is conducted, the prover is also suitable for disproving properties, finding proper
counterexamples [52]. This way of combining a TRIO specification together with an
automated model checker as Zot, turns out to be useful and effective in the design
phase of the human-robot task. As a matter of fact, this toolchain can create a pow-
erful iterative procedure that, based on a trial and error strategy, helps the user with
detecting the unattainable conjectures and redesigning the unfeasible constraints.

3.1.3 SAFER-HRC

The Safety Analysis through Formal vERification in HRC applications method-
ology (SAFER-HRC), as described in [9], provides a technique to identify hazards
through the exhaustive exploration of the behavior of the target system. It is pre-
cisely focused on operational hazards that are caused by human-robot interactions
and violation of safety requirements mentioned in ISO10218 [56]. Due to the impos-
sibility of foreseeing all possible behaviors of the operator, it cannot be claimed that
all possible interactions of operator and system are taken into account; nevertheless,
an iterative methodology based on formal verification techniques can eventually pro-
vide a thorough analysis of all significant ones. At the core of SAFER-HRC lies a
safety assessment team (SATeam), which includes robotic and formal methods ex-
perts with the purpose of studying the limitations of the machinery and the tasks
of the target robot, while predicting possible human-robot interactions. They also
determine which hazards may occur and evaluate its risk level, based on the list
present in ISO 12100 [46]. SATeam relies on a formal model of the HRC applica-
tion to support and systematize these activities: starting from the ideal concept of
the task, they build its formal representation through some modular files written in
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Figure 3.1: Overview of SAFER-HRC. The upper part shows the reference standard risk
analysis approach, whilst the scheme on the bottom summarizes the steps of the iterative
process based on formal verification defined by SAFER-HRC.

Common Lisp language observing TRIO rules. At each iteration of the process, if the
design fails to satisfy the desired safety requirements, it is possible to improve it by
activating risk reduction measures or redesigning the task or some of its constraints.
The essential aspect is the systematic validation of the constraints and their possible
violations at all steps of the application. The thoroughness of the validation ensures
that the selected safety strategy is failsafe. SAFER-HRC starts from informal, goal-
oriented descriptions of collaborative tasks, and converts them into formal models
built upon logical formulae, on which formal verification techniques are applied to
check whether the safety requirements are satisfied or not. After the original model
has been thoroughly analyzed, it can be modified and re-used to study different sce-
narios for the HRC application (e.g., combinations of different safety functions or
uncommon actions by the operator). The whole procedure is summed up by Figure
3.1.

As stated in [8], the formal model is composed of different files, which are divided
in folders: ORL-Module includes formal descriptions for operator O, robot R and
layout L; TaskLib contains a definition of the task; the main folder, with an arbitrary
name, groups the previous two folders and other files that will be introduced in a mo-
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ment. With the ORL-Module, the dynamics of the system are captured in terms of
relationships among the three agents and their descriptions. In particular, L is used
to set rules for the division of the layout into fine-grained regions, their adjacencies
and movement boundaries: in this way, movements and positions of operator and
robot are expressible; besides, O includes the list of the considered operator’s body
parts and their mutual constraints to guarantee a realistic arrangement of the oper-
ator in space. Moreover, the forbidden sections which the operator can not occupy
due to obstacles or design restrictions are also indexed. R describes the composition
of the chosen robotic arm and how its links are allowed to move: the first link is
confined to the Home section or an adjacent one, and the other links follow this
format recursively. The SAFER-HRC procedure acknowledges a double nature for
elements and constraints present in ORL-Module: some are common to all HRC
applications and therefore are always in the files (the description of the human body
parts), whereas others are instantiated depending on the specific HRC application
(the features of the robot and the predicates linked to the selected end-effector).

As far as TaskLib is concerned, a file T is compiled to model few task and action
parameters. Indeed, the possible agents involved in the activity and the available
states of each actions (described in the next paragraph) are listed. Secondly, another
file is inserted in the folder, T 1, to achieve a complete description of the task. The
first part of the file is standard and contains the formalisation of every action state
and applicable transition from state to state. Then, before the initialization of each
action subject, some properties are defined to guarantee a reasonable model: the
robot is forced to remain still if it is not the agent of any executing action, the oper-
ator can concurrently perform at most two actions. Finally, a compartment for each
operation is generated to enclose specific logic expressions that will be explained in
the next paragraph.

The remaining files are contained by the main folder together with the previous
two modules. Main incorporates the time span for the simulation, the assumptions
to set all the actions as not-started at the beginning and a condition to declare the
task completely executed. Hazards includes the parameters related to severity, risk,
location and consequences of dangers that may happen during the execution of the
prescribed activity. Two types of hazard are considered, impact and entanglement,
together with three macro-areas for the human body, head-shoulders, waist-part and
hand-arms. Moreover, the origin can be discriminated depending on three parts of
the robot, link1, link2 and end-effector so that five couples type-origin (end-effector
can not entangle anything). Thus, 15 hazards are described with proper formulae in
the file in order to be identified and reported during the simulation. REs stands for
Risk Estimator and consists of rules to determine the severity and the risk of each
hazard depending on information related to the method reported in [57]. This file is
integrated with REv that, according to the kind of hazard, defines the countermea-
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Figure 3.2: Finite-state-machine regulating the inner behavior of all action blocks, as it is pre-
sented in [8]. All actions start in the ns state and the evolution ends when either the dn or exit
states are reached. Transitions are regulated by guard conditions (preC and posC), predicates (e.g.,
opActs) and risk-reduction measures activation (see, for instance, ∃i(rrmi) from exe to sfex).

sures to be adopted. These solutions are described in RRM, stating what concrete
risk reduction measure has to be applied during the task execution. In conclusion, at
each iteration of the experiment, the full formal model is checked against the prop-
erties and, if an hazards occurs, its risk value is computed: if it is not less than an
acceptable fixed threshold, then Zot tries to apply the associated countermeasure. If
the risk value remains non-negligible, then the verification is considered failed and,
by means of the output of the tool, it is possible to retrieve the problematic states
and to refine the model accordingly.

The smallest possible functional units [9] are the actions that constitute the
task description presented in the TaskLib paragraph. Breaking down the model to
these basic elements grants correct relationships among O, R, L agents and a more
precise identification of hazards. SAFER-HRC characterizes each of the elementary
actions by three main features, formalized as TRIO formulae: its pre-conditions,
post-conditions, and safety properties [9]. Examples of compliant code segments
can be found in Listings B.8 and B.9. In order to clearly understand the difference
between these terms, it is necessary to analyze how a single action is modeled.
According to [8], it can be imagined as a finite state machine, pictured in Figure 3.2,
composing the internal structure and giving a precise guideline for the evolution of
the represented operation. Indeed, at any given time, each action can be in one of
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the following states:

• ns: the action is not started yet;

• wt: the action is not started yet and, being defined only for the operator, it
tries to mimic his hesitation to start the execution;

• exe: the action is under execution;

• sfex: the action is under execution and a risk reduction measure is simultane-
ously active;

• hd: at some point in the execution, the action is paused and temporally
stopped;

• dn: the execution is terminated and the action is done.

Now that the single action model has been clarified based on [9], the previously
introduced terms can be finally illustrated. Pre-conditions are the requirements that
must be true in order to move the action state from nsto exeor to wt, if it is ad-
missible by the nature of the agent. Post-conditions are the logic expressions that
trigger the end of the execution, moving the token of the final state machine into
the dnstate. Finally, the safety properties are the element to be evaluated during
the execution itself, that may cause the action to be paused (and resumed) or to be
definitively stopped. Each action has also a property called priority, which defines
its execution preference over other actions. More precisely, if at a time instant the
pre-conditions of multiple actions are satisfied, the one with higher priority starts to
execute. The current SAFER-HRC version considers that systems operate at their
maximum level of parallelism: i.e., all actions that have the highest priority among
those that are enabled start executing in parallel.

To retrieve consistent results from the formal verification procedure, the safety
experts need to tailor the ORL-Module to the desired HRC task. Among more
technical requirements, it is necessary to set the correct numbers of agents (how
many operators and robots) and all the sections in which the layout is divided, to
compile the R file accordingly to the appropriate robot type and model, to exclude
in the L file the agents from being in their forbidden sections. Having completed the
set-up phase, the procedure can be completed by launching the execution of the Zot
tool: the formal verification is able to check whether the model satisfies the desired
safety requirements and to find any errors that can cause hazards or any possible
incompatibilities between layout and task execution. If the model checker cannot
retrieve a feasible execution of the task, a counterexample is produced to highlight the
presence of one or more safety property violations in the system. Then, the designer
should improve the system model: by adding proper risk reduction measures, which
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correspond to TRIO formulae that should avoid the violation; or by including new
formulae to capture hazards that were undetected in the previous analysis. Next, a
new validation is carried out on the improved model. The model is refined iteratively
until no more violations occur. At each iteration, if the design fails to satisfy the
desired safety requirements, it is improved by adding new risk reduction measures.

3.2 Distributed Industrial Applications Design and
Deployment

After the formal verification has been accomplished and the task is designed in
a satisfactory way, it is possible to create a version of the application executable in
a real setting with concrete agents. This feature exploits an architecture compliant
with the IEC 61499 standard, introduced in Section 3.2.1, and based on the Function
Block unit, whose structure and characteristics are extensively explained in Section
3.2.1. Finally, Section 3.2.3 presents the architecture of the FB application which
is adopted as framework of the executable task, whereas the supporting tools are
displayed in Section 3.2.4.

3.2.1 International Standard IEC 61499

The standard IEC 61499 Function Blocks for Industrial Process Measurement and
Control Systems [58] specifies an architectural model that serves as a pivotal reference
for distributed, modular [59], and flexible applications in industrial processes and
control systems. In particular, the standard is dedicated to frameworks that meet
the following requirements:

• Portability: software tools ability to accept and interpret correctly library ele-
ments produced by other software tools;

• Configurability: the ability of devices and their software components to be
configured (selected, assigned locations, interconnected and parameterized) by
multiple tools;

• Interoperability: the ability of devices from different vendors operating together
to perform the functions specified by one or more distributed application.

The most important concepts of IEC 61499 are an event-driven execution model,
the key mechanism enabling transparent modelling of distributed systems, a manage-
ment interface capable of basic reconfiguration support and an application-centered
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modeling methodology. There are also some parts of the standard that are weak
and/or not defined in enough detail for specific implementations [60]. The standard
provides in principle an ideal starting base for the control architecture and the refer-
ence model for distributed industrial process, measurement and control systems. A
process represents an independent computational activity with its own set of vari-
ables (context) and communication channels with other processes via messages. The
event interface is well suited to model message-based inter-process communication
[61].

This result is achieved by the use of the Function Block, a basic unit for indus-
trial applications to define robust and re-usable software components [58], which will
be analyzed in detail in Section 3.2.1. The architecture of the standard IEC 61499
supports unlimited nesting of composite function block structures, and combination
of several diagram types: block-diagrams, state charts, and ladder logic in the same
design. The result of the design is a duality of the function block language construct:
it guarantees an executable specification of distributed automation systems, includ-
ing at the same time also models of devices and their network interconnections. On
the other hand, a function block may still represent just a piece of code executed
within another process. However, the process-like encapsulation mechanism provides
strength to this architecture, enabling arbitrary re-allocations of components to dis-
tributed execution domains without affecting their functionality. Moreover, strong
data encapsulation into components is another provision for portability: not only it
has been widely recognized by the software community as one of the pillars of creat-
ing safe and re-usable code, but it can also ensure the absence of hidden dependencies
between variables of several FBs [61].

Function Block Concept

In object-oriented terms, the Function Block is a class defining the behavior of
(possibly) multiple instances: its schematic structure is shown in Figure 3.3. It
includes input and output events to guarantee the synchronization in program exe-
cution in distributed systems [62]. They can store the software solution for various
problems and they have a defined set of input and output parameters, which can be
used to connect them to form complete applications [58].

In the IEC 61499 context an application, also called FB network, is a collection of
interconnected function blocks [63]: they are connected by event and data flows and
can be distributed over multiple resources and devices. The single function block
consists of head and body, where the head is connected to the event flow, and the
body to the data flow. Its functionality is provided by means of algorithms [64]. An
algorithm is a finite set of ordered statements that operate over the ECC variables.
Typically, an algorithm consists of loops, branching and update statements, which

32



CHAPTER 3. BACKGROUND

Figure 3.3: Schematic representation of a FB. The Head block wraps the inner ECC (an example
is found in Figure 3.4), and collects input and output events. The Body contains the Control
Algorithms and stores input and output parameter values.

Figure 3.4: Moore-type FSM regulating the inner behavior of a FB. The initial state (START)
is featured as a double-line border purple block, whereas all other blocks represent states the
FB can be in. Green flags represent output events which are issued when such state is entered.
Purple arrows represent transitions among states, labeled with the triggering condition: usually it
corresponds to the reception of an input event, e.g., T_DONE between states TASK_EXECUTION
and TASK_DONE.

are used to consume inputs and generate outputs. The IEC 61499 standard allows
algorithms to be specified in a variety of implementation-dependent languages, such
as Structured Text (ST), Java and C [65]. Function blocks of IEC 61499 are event-
driven, i.e., they remain idle unless an event is sent to one of their event inputs. The
main motivation behind this choice was the desire to make the code independent
from the sequence of FB invocations in the PLC scan loop [61].

Different types of FBs are used for modelling tasks and applications [14], the most
important of which is the Basic function block (BFB). The behavior of a BFB is ex-
pressed as a Moore-type state machine, known as Execution Control Chart (ECC),
an example of which is shown in Figure 3.4. The reaction to an event is determined
by the evaluation of this ECC together with the possible invocation of algorithms
[66]. The execution of an ECC starts from its initial state and progresses by taking
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transitions, which are guarded by an input event and an optional Boolean expression
over input and/or internal variables. Upon evaluation, a transition is considered to
be enabled if the respective guard condition evaluates true. The ECC will then tran-
sit to the next state by taking the enabled transition from the source state to the
corresponding target state [65]. It turns out that ECC states can be of two types:
those where the ECC can stop and wait for incoming input events (let us call them
sensitive) and transitional, which are just passed during an execution. Besides, the
standard does not provide sufficient information on how to treat event-input vari-
ables. However, this ostensible lack of attention is precisely explained by the concept
of event-driven invocation of FBs: there is no need to consider event-input variables
as real variables since they are used only once [66].

Another relevant category is constituted by the service interface function blocks
(SIFB), in which the source code is hidden and the functionality is only described
by service sequences. They are useful especially for specific operations that can-
not be accomplished by BFBs (e.g., communication). In addition, a third group
gathers the composite function blocks (CFB), whose functionality is defined by a
function block network. The standard allows it to encapsulate a network of FBs
so as to achieve more complex behavior and functionalities by combining multiple
components. Finally, adapter interfaces manage several events and data connec-
tions within one connection. Thus, they allow the creation of sockets/plugs in CFB
interface, simplifying and reducing the number of drawn connections.

3.2.2 Robot Operating System (ROS)

ROS2 is a meta-operating system providing common functionalities such as hard-
ware abstraction and low-level control [67]. It can be viewed as a collection of software
frameworks for robot-oriented software development, similarly to other projects like
OROCOS, YARP and Microsoft Robotics Studio. Unlike most robotics software
platforms, ROS is not a real-time OS but a distributed framework of processes.
More specifically, these are called Nodes, representing executables individually de-
signed and eventually coupled at run-time, which can be grouped into Packages or
Stacks and shared. Through this policy, ROS highly promotes code reuse in robotics
research and development. ROS runs on Unix-based platforms and can be imple-
mented in Python, C++ and Common Lisp with additional libraries currently under
development.

ROS has three levels of concepts (Filesystem, Computation Graph and Commu-
nity) and two types of names: Package Resource and Graph Resource Names. The

2Documentation at http://wiki.ros.org
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Figure 3.5: Scheme represeting ROS architecture. The two nodes can interact with the ROS
Master for registration purposes. In order to exchange messages they can directly communicate
with each other. The publish/subscribe mechanism works as a message streaming over a shared
bus, defined as topic. Services, instead, must be directly requested and lead to the emission of a
message reply.

Filesystem Level mainly includes ways to arrange related files on disk. The most rel-
evant one are Packages, which is the atomic building unit of ROS containing Nodes,
libraries, datasets and configuration files, and type-describing files. The latter can be
referred to messages (.msg), i.e., data structures of messages exchanged in ROS, and
service (.srv) files which describe request and response structures of services. The
Community level includes resources which enable software and knowledge exchange,
such as repositories and distributions.

The Computation Graph level represents the peer-to-peer network of ROS coop-
erating processes. The main concept in this case is that of ROS Node. Each Node
represents an active process and is connected to other units in order to constitute a
larger-scale system [67]: for instance, in a single control system, there may be mul-
tiple nodes representing localization, path planning and graphical visualization. All
nodes have a graph resource name that uniquely identifies them and a node type, that
is to say a package resource name that simplifies the act of referring to a specific node
in the system. The use of this structure provides several benefits especially in terms
of fault tolerance, since crashes affect single nodes and not the entire system, and
code complexity reduction. Nodes interact with each other through topics, services
and the Parameter Server. The latter handles data storage by key and is part of
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the Master, i.e., the entity in charge of name registration and graph scouting. Top-
ics are identifiable buses over which nodes exchange messages through anonymous
publish/subscribe semantics. A node that generated data can publish a message to
a topic, whereas a node interested in collecting data can subscribe to such topic,
usually unaware of each other’s existence [67]. On the other hand, nodes requiring
remote procedure calls, i.e., receiving response to a request, rather than a unidirec-
tional communication streaming, should use services instead. A service is defined by
a request/reply pair of messages, and is mostly used in distributed systems [67]. A
service structure is defined by a .srv file, a message one by .msg files, and both can
include standard primitive types such as strings, boolean and floats.

The ROS Master, as already mentioned, works as a nameservice and stores infor-
mation about topics and services registration. A node can interact with the Master
to report registration information and make inquiries about other nodes in order
to create connections. The Master can also perform a callback if such information
changes. On the other hand, nodes directly interact with each other, e.g., nodes
willing to subscribe to a topic will request connections to the publisher and estab-
lish communication over an agreed upon protocol. This architecture, summed up by
Figure 3.5 allows for operation decoupling, so that nodes can be started, killed and
restarted without affecting the system’s integrity. Names play a major role when
building a system, whose complexity can be smoothly increased through dynamic
remapping.

3.2.3 IEC 61499-ROS Hybrid Architecture

The illustrated traits of IEC 61499 applications perfectly fit current robotics
demands. As a matter of fact, adaptability requires the representation of flow al-
ternatives which is highly eased by the implementation of re-usable logic units, i.e.,
FBs. Iannacci et al. have proposed in [14] a joint IEC 61499-ROS architecture
specifically aimed at modeling and deploying collaborative robotic applications. The
approach exploits usability and readability of standard FB interfaces, which are
handily customizable and provides a comprehensible visual workflow representation
of the application that is going to be deployed.

The core of the proposal is the layered architecture structure which is composed
by levels, as shown in Figure 3.6, with different purposes:

• Planning level, which collects factory-level requirements

• Scheduling level, aimed at choosing the proper flow alternative based on the
current plant state
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Figure 3.6: Layered control architecture as pictured in [14]: the scheduler launches all the appli-
cations which share resources controlled at low-level; operators (left) are able to act on scheduling
and build applications by combining FBs; programmer (right) is in charge of preparing the building
blocks for later assembly.

Figure 3.7: Internal structure of the CFB Task-FB, as presented in [14]. The Task FSM FB
(whose ECC can be found in Figure 3.4) receives the three input events. The two Subtask FBs are
in charge of preparation and execution phases. Finally, the SIFB deals with communication with
system resources.

• Application level, which contains the instantiated clusters of FBs

• Low level, dealing with machine-level behavior, hence closed-loop control, re-
alized through ROS nodes

The designed basic unit is the Task-FB, which corresponds to an elementary
action in common workflow-specific terms. Task-FBs are combined to each other
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Figure 3.8: [14] furnishes an example of application branch: resource allocation and de-allocation
processes are handled by the HEAD and TAIL FBs. The actual action blocks are arranged as to
realize more complex structures, such as parallel execution (left) and flow bifurcation (right).

also implementing conditional blocks acting like join and fork nodes to constitute
the alternative sequences, hence visually resembling activity diagrams: an example
of this kind of network can be found in Figure 3.8. More specifically, it is a CFB
encompassing a set of homogeneous actions large enough to be self-consistent but
not to the point where it compromises modularity and re-usability [14]. It is sub-
divided into two separate phases: preparation, which deals with control strategy
and settings, and execution. Its internal structure, pictured in Figure 3.7, features
various components in charge of fulfilling the stated objectives. Firstly, the Task-
FSM FB models the internal task finite state behavior, adhering to the notation
illustrated in Section 3.2.1, and handles the execution flow. It also contains two sub-
tasks in charge of setting parameter values for the two aforementioned phases and a
SIFB that implements the communication between task and resource abstractions.
More specifically, the Task-FB is in charge of establishing an allocation link with the
resources, whereas the resource can initiate an allocation/deallocation link from a
Task-FB. The activation of a scheduled Task-FB is achieved through the propagation
of an attach command, modeled as an input event, whereas the actual execution is
triggered by the TASK-DO event.

According to [68], a fully comprehensive control application must encompass the
following sets of components:

• control and automation components

• machine and process interface components

• communication interface components

which are all mapped to different elements of the joint architecture.

The top level is produced by combining the scheduler block, applications and
resource abstractions, as in Figure 3.9. The latter consist of blocks capturing the
state evolution of resources present in the system. This is needed by the scheduler
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Figure 3.9: Example of complete application, featuring multiple branches managed by the Sched-
uler FB (S).

in order to avoid conflicts and allocate a task only when all resources are actually
available. The scheduler itself works as a bridge between the task and the external
cell, collecting inputs coming from the environment in order to take planning deci-
sions. Finally, the overall application must also contain HEAD and TAIL FBs. The
first is in charge of collecting and transmitting information on resource availability,
whereas the second ensures that the allocation has been properly performed.

The lower level is entirely entrusted to ROS nodes, two for each device: one
manages the physical control and one the communication with IEC 61499. These
nodes are purely reactive: they remain in idle-state unless an instruction is received.
Finally, communication is equally split between IEC 61499 and ROS and realized
through instances of publishing/subscribing mechanisms. The framework is exploited
by Resource FBs to receive messages from the net of tasks and ROS nodes during
the allocation process, and by ROS bridge nodes to collect and transmit data to
lower level controllers.

3.2.4 Software Tools: 4DIAC-IDE and FORTE

The spread of the standard has inspired the creation of different supporting tools.
The usual implementation toolset includes a workbench for editing function block
designs and translating them into executable form, plus a runtime environment that
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Figure 3.10: 4DIAC-RTE Interface Screenshot. The middle window shows the application cur-
rently under construction. The windows on the right and on the left act as model explorer, hence
allowing the navigation among developed applications and the choice of FBs out of their libraries.
The bottom box displays properties for the selected item.

supports the execution of the executable code. As far as it concerns the present
case study, the designated IEC 61499 standard compliant framework to manage the
software tools is 4DIAC3, an open-source infrastructure for distributed industrial
process measurement and control systems developed by Eclipse [61].

4DIAC-IDE is the dedicated research-oriented workbench that provides an ex-
tensible engineering environment for modeling distributed control application, as
pictured in Figure 3.10. A hardware capability definition allows the modeling of
control hardware and its interconnections through networks [60]. Moreover, in [69]
it is established that the tool supports the specification of function block types as
well as the development of system configurations including the application model and
the device configurations, as well as deployment of the application to distributed de-
vices. It also supports the debugging and testing of distributed control applications
via online display, setting and forcing of remote data.

In the same framework, the runtime environment is 4DIAC-RTE, also called
FORTE. As illustrated in [60], it is a small portable C++ implementation targeting
small embedded control devices (i.e., controllers with 16/32 Bit architecture) that

3The IDE suite can be downloaded from https://eclipse.org/4diac/
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manages the execution of function-blocks: as a matter of fact, the modeled FB appli-
cations can be downloaded to and uploaded from FORTE powered control devices.
The execution mechanisms in FORTE allow the real-time constrained execution of
IEC 61499 control configurations triggered by external events, where different parts
of the configuration can fulfill different real-time constraints and the execution of low
priority processes does not disturb the execution of higher priority processes. One
of the main advantages is the platform-independency [69], so that is straightforward
to target different hardware and operating system platforms.
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HRC-TEAM Profile

This chapter introduces the HRC-TEAM Profile in detail, highlighting innovative
aspects and how it fits the needs of the specific domain. First, the selected extension
mechanism is illustrated in Section 4.1, pointing out the motivations behind this
choice. Each implemented type of diagram is individually presented in Sections 4.2,
4.3 and 4.4, providing the steps required to create abstract models. For each case a
great care is given to how the provided semantics differs from the UML standard and
how it fits concepts relevant to collaborative task modeling. Finally, real case studies
are provided in Section 4.5 to show how the profile performs when tested against a
complete application.

4.1 UML Profile Definition

The core of any modeling language is based on three fundamental concepts [70]:

• abstract syntax;

• concrete syntax;

• semantics.

In this context, the expression abstract syntax is equivalent to meta-model. The
latter, as the name suggests, is a higher-level representation of the current model,
or better of its core infrastructure. Which elements the model under development
should contain and their mutual associations are all information described by the
meta-model. Concrete syntax refers to the graphical representation of the language,
how diagrams should be drawn and what they should look like. Finally, semantics
encompasses the meaning of each of these elements. More precisely, it indicates
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how each featured item and its connections should be interpreted when translating
a model into a different language.

UML was initially created as a potential family of languages with an application
domain spanning the whole software engineering area [71]. As such it offered a series
of extension mechanisms, which were later enhanced in 2005 when its 2.0 version
was officially released. These techniques demonstrate their relevance when extend-
ing or changing UML vocabulary is brought to the table. This tends to be the case
while developing a Domain-Specific Modeling Language, which generally calls for a
customization of semantics otherwise overly generic [70].

There are four standard applicable extension mechanisms [71]: specifications,
common divisions, adornments and extensibility mechanisms. Only the latter actu-
ally involve the modification of the semantics, and will thus be more thouroughly
analyzed. The term specifications in UML approximately matches its equivalent in
natural language. Specifying an element means enriching it so that its meaning and
behavior are clearer to its user, e.g., a class can be specified by adding a full set
of attributes and operations. Common divisions are mainly split into two sets to
distinguish items that might otherwise be easily mistaken for each other: abstraction
vs. manifestation (corresponding to the dichotomy between class and object) and
interface vs. implementation, that is to say a contract and a concrete realization
of such agreement. Adornments are graphical or textual attributes which can be
attached to an element to provide more details about its nature, e.g., the multiplic-
ity of an association or generic notes, which -again- have no impact on semantics.
Extensibility mechanisms actually involve the creation of new blocks and properties
with custom semantics that bend the language to tailor it to the required domain of
application. The standard includes three extensibility mechanisms [25][71]:

• tagged values;

• constraints;

• stereotypes.

The concept of tagged values is fairly similar to that of attributes but with a fun-
damental difference: the latter refer to properties and associated values belonging
to instances, whereas tagged values provide a keyword-value pair for model elements
themselves, hence essentially behaving as meta-data. They are particularly useful for
code generation or configuration management processes, for example to specify the
target programming language or the release team of a project [71]. Their graphical
syntax is a string enclosed by curly brackets below the model element name.

Constraints, as the term clearly suggests, represent conditions that must hold true
for all the involved elements. The chosen language for these expressions is Object
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Contraint Language (OCL), a formal language specifically intended for queries and
constraints implementing a notation that does not necessarily require a strong scien-
tific background [72]. OCL can be used to declare invariants for classes or stereotypes,
pre- and post-conditions for operations and methods, constraints, guard-conditions
and derivation rules. Such expressions are constituted by four main elements: con-
text, namely the application framework of the condition, property, as the attribute
involved in the constraint, an operation manipulating the property and keywords,
such as if, and, or, and so forth. This mechanism is helpful when refining the model
with additional rules, e.g., concerning budgets or deadlines.

Finally, the word stereotype originates from Ancient Greek terms στερεoς (fixed,
rigid) and τυπoς (class, type), and is usually intended as the impulsive classification
of an object, a person, or a situation based on common knowledge rather than a
circumstantial thorough assessment. Nonetheless, as a UML extension mechanism,
it virtually has the opposite effect, as it extends the semantics of an object instead
of oversimplifying it. Stereotyping an element implies modifications of its behavior,
meaning and appearance, and allows it to turn into the depiction of a concept native
to the specific modeling domain, which does not necessarily match the original UML
standards. More formally, in UML 2.0 stereotypes are comparable to special meta-
classes that allow the creation of new constructs, coherently with the hierarchical
meta-modeling architecture established as part of the Meta Object Facility specifi-
cation (MOF) [70].

For the purposes of this thesis, the implementation of stereotypes was crucial to
incorporate concepts inherited from HRC tasks verification- and deployment-oriented
descriptions into the UML diagrams infrastructure, whose level of refinement was a
convenience to take advantage of, using a well-established and formal technique re-
lying as little as possible on natural language. Furthermore, another valuable asset
was the possibility to endow stereotyped elements with custom properties, and set
their values while specifying instances, which comes in very handy when dealing with
components sporting a broad set of parameters and attributes. Ultimately, such la-
beling system is also essential when converting the task model into its logic formulae
equivalent or the executable application since it works as a decision variable when
picking the appropriate target form.

As argued also in [25], it is possible to collect these conceived stereotypes and
standard non-stereotyped elements in a custom UML profile. A profile can be de-
fined as a specialized viewpoint that can be dynamically applied and un-applied to a
model to cast it under a specific perspective. The procedure to define a well-formed
profile requires two fundamental steps: the definition of the domain meta-model
and its mapping to to the UML framework. The content of the former, in terms of
constructs, relationships, syntax and semantics has already been illustrated. As for
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the latter, it is necessary to go through the defined set of concepts and find suitable
matches in the UML standard. This operation needs to be carried out paying a sig-
nificant amount of attention to contradictions and conflicts that may arise between
one’s custom concepts and standard attributes of the selected counterparts. The ob-
servance of these requirements leads to a proper and precise notation for the domain
of choice. In this specific case, it has led to the creation of the HRC-TEAM (Human-
Robot Collaborative Task Execution- and safety Assessment-oriented Model) profile,
which will be introduced in detail in the following sections.

4.2 Class Diagram

The primary requirement for a robotic application modeling environment, as al-
ready mentioned in Section 2.2, is the possibility to render the scenario where the
task will be executed, intended as the static snapshot of the operational environment.
Such perspective needs to include elements which are functional to the industrial do-
main, covering the area as extensively as possible without stretching to a level of
abstraction that is out-of-scope. On the other hand the granularity of such charac-
terization must be maintained sufficiently coarse so that it is still practical for users
without a strong engineering background. This implies that lower-level and more
technical concepts, such as controllers, trajectory planners, sensors and so forth, are
not featured by this work, but are covered by other well-established proposals exist-
ing in literature (see section 2). The included elements will be individually examined
in the following sections.

The main goals of this viewpoint are to serve as reference when drafting tasks
and as benchmark for consistency checks. As a matter of fact, having an overview
of the resources that are currently available, their skills, their requirements and of
the space where they will be working provides valuable support to plan tasks more
realistically and more efficiently. Symmetrically, these models can be automatically
scanned and compared to the static depiction to detect trivial modeling mistakes,
such as typos, or more severe ones, such as agent-skill mismatches. When formal
safety assessment and hazard detection play a major role in the toolchain and are
among the fundamental goals, having a stronger foundation and additional verifica-
tion measures also make for more trustworthy and accurate results.

Having described the subject in abstract terms, it is necessary to select the dia-
gram that best responds to these demands. UML diagrams can be classified in two
main categories [71]: structure and behavior diagrams. In this specific case, the first
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Figure 4.1: Simplified illustration of the notation-specific Class Diagram. It features the two
main super-classes Resource and Layout, and the corresponding specifications. The figure also
contains the associations connecting such classes.

ones are clearly the best-suited candidates for representing the static structure of
a system [73]. The standard type of diagram that serves this purpose is the Class
Diagram. The approach features a single Class Diagram representing the layout and
the resources that can populate it, which fulfills the objectives previously illustrated.
A simplified template of this representation is portrayed in Figure 4.1. The user in-
tervention on this diagram should be limited to the creation of instance specifications
corresponding to what is actually available in real life, setting specific values for their
properties and optionally establishing associations. Further modifications to actual
classes may be conceivable but not accessible to users lacking a good programming
background, since they would require code writing to be supported by transforma-
tion tools and only after an accurate quest for potential conflicts between existing
features and the ones that one is willing to include.

4.2.1 Resources

As hinted above, the two main super-classes featured in the model represent re-
sources and layouts, connected by a "populate" association, as shown by Figure 4.1.
The layout is the selected space representation method, which will be more deeply
described in its related section. Resources are intended as components functional to
the task goal attainment, further categorized based on their modality of participa-
tion. More specifically, they are divided into objects, devices and agents, as in Figure
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Figure 4.2: Fragment of the Class Diagram capturing the Operator and ArmBand classes.
The Operator class includes attributes concerning his/her mental and physical state, and methods
corresponding to the available skills. Methods owned by the ArmBand class correspond to the types
of signal that it is able to send or receive. The figure also features the aggregation relationship
between Operator and BodyPart.

4.1. The latter term is used as a synonym of actor, as in something or someone who
plays an active role in the pursuit of the objectives. As such it is possible to further
discern into human Operators and robotic agents (Mobile Devices), as also pictured
in Figure 4.1, which will be individually analyzed in detail in the following sections.

Human agents

According to the current trends in manufacturing industry, the role of operators
in collaborative applications should be centered around activities requiring creativ-
ity, imagination, or a high level of meticulousness , e.g., very precise movements
involving small objects, which would require a notable investment of resources if
assigned to a robot, whereas the latter should handle strength or speed demanding
operations [74]. The exact scenario the research is aiming for is that of teamwork-like
collaboration between humans and machines, where robots are in charge of easing
the operators’ workloads [74]. Using the term collaborative in a broader sense, the
operator can also be appointed to a supervisory role, which includes tasks such as
planning, instructing, monitoring and eventually intervening. The two cases may
bring up different characteristics of the human agent that need to be captured and
taken into account. In their current state these are modeled as discretized attributes
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of the class Operator, captured by Figure 4.2, which is clearly a basic approximation,
but may be enhanced as a future development through the addition of SysML para-
metric diagrams [35] implementing -where possible- analytical models established by
engineering psychology researchers.

The first factor to take into consideration for collaborative tasks is the operator’s
expertise, which mainly depends on his/her years of experience, learning rate and
skill mastery level. These traits affect the quality standard of the final product, which
mostly has economic implications, and the time required to bring an operation to
completion, which may instead compromise the synchronization with parallel robot’s
actions and give rise to hazards. Another critical feature is the fatigue assessment
[75], which has similar implications related to the operator’s responsiveness, but is
influenced by shorter-term issues. These include physical and mental fatigue, which
are, in turn, affected by workload, duty time, periodic rest duration and eventual
shifts impact on sleep quality [75], as well as reduced motivation. The latter is linked
to the previously discussed matter of reducing the operator’s strain which must not
go as far as making the task un-challenging to a degree that undermines workers’
motives [76].

As for supervisory tasks, one of the main issues is the level of trust in automa-
tion [76]. In natural language the term indicates reliance on someone or something,
whereas in automation a slightly more precise connotation would be that of cali-
bration of the intervention threshold. In fact, the human should take action only
when his/her decisions have a higher chance of producing a positive effect than the
machine’s ones. On the other hand this strictly depends on how accurate the mutual
mental models of each other and the environment are [76][77], i.e., if the operator sees
the robot as a team member rather than a standalone machine he/she is more likely
to properly calibrate the value of his/her own decisions with respect to automated
solutions [76]. As a final remark, another point considered crucial by engineering
psychology experts [76][77] is that of situation awareness, especially in human-in-
the-loop situations involving multiple simultaneous tasks and goals. According to
Endsley [78], situation awareness involves perception of data and environmental el-
ements, comprehension of the current situation and projection of future events, and
is a key factor to an efficient and accident-free task execution. Furthermore it may
also be affected by the change blindness phenomenon, as in the inability to perceive
variations in one’s surroundings, i.e., when task switching occurs without adequate
warning cues.

Having presented the selected attributes for the class Operator, it is equally in-
despensable to discuss its methods, or operations, which represent the range of skills
that can be taken into account when planning an application. Clearly the staple set
of operations has been put together with the purpose of covering as many different
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situations as possible, since, as already discussed, extending such set should not be
within the grasp of standard users. The whole set can also be viewed in Figure 4.2.
The featured skill stereotypes are:

• << move >>, capturing the displacement of the agent in space;

• << pick >>, intended as the combination of -assumably- small arm and hands
movements required to grasp an object, whereas the displacement to the target
section is covered by << move >> actions;

• << place >>, which has the same connotation as << pick >>;

• << prepareJig >>, standing for the setup of a station which will be required
by a subsequent operation;

• << tighten >>, appropriate when the operator is holding a screwdriver tool
and is required to take action with it;

• << hold >>, which can either refer to the act of keeping something still or
waiting for a specific occurrence, i.e., in supervisory tasks.

Note that the notation for some of this cases has been chosen to fit better with
the specific case studies which will be later examined, i.e., for prepareJig and tighten.
Nevertheless, these could be used under a wider interpretation as setup and useTool,
intended as a generic action performed through some gear.

Finally, Figure 4.2 also displays an aggregation between the class Operator and
its BodyParts. This is a standard feature of the corresponding O module in the
formal model, which manages the positioning of eleven body parts in space. As
a future development, support could be added to be able to customize this aspect
through the Class Diagram, hence modifying the multiplicity of the aggregation and
creating as many BodyPart instances as desired. This could be useful to adapt the
granularity of this trait to the specific case study requirements, since it may be useful
to refine the subdivision or make it more simplistic and otherwise invest the available
computational power.

Robotic agents

It is equally essential for the Class Diagram to capture robots’ attributes and
skills coherently with the approach taken with human behavior. In this case, though,
a further remark is necessary about the criterion for distinction between two agent
classes. In fact, the logic that has been selected is to define a separate class for each
component powered by a different type of controller and actuation system. Following
this rationale it is necessary to further differentiate into Mobile Devices, for instance
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the robotic manipulator, and End Effectors, as in the functional devices mounted on
the terminal area of the arm [79], as shown in Figure 4.3.

In more detail, mobile devices are mainly in charge of displacements, the specifics
of which are determined by their architecture. The latter is declared as an attribute
which can take a value out of a list of possible configurations, defined as an enu-
meration, visible in Figure 4.4 and featured as type attribute in Figure 4.3. The list
contains the most common structure types for industrial applications, such as an-
thropomorphic, SCARA, cartesian and dual arm. The structure can be more deeply
detailed by means of the DoF (Degree of Freedom) attribute, useful for cases in which
it is necessary to declare a standard architecture with a tweaked number of joints,
e.g., a conveyor can be instantiated as a cartesian with only one degree of freedom.
Furthermore the class Mobile Device is also featured as an aggregation of joints (see
Figure 4.3), whose type is also defined as an enumeration attribute (see Figure 4.4),
including prismatic, rotational and spheric. Thanks to the last property it is pos-
sible to instantiate a completely customized architecture (see Section 4.3 for details).

The class MD is also endowed with other properties which strengthen the char-
acterization of such devices [80], all displayed as attributes in Figure 4.3. First, it
is possible to set the rated payload value, as in the maximum weight the device can
carry, considering both the object and the end-effector. Violating such constraint
gives rise to performance decay and most importantly to security issues, since it

Figure 4.3: Fragment of the Class Diagram capturing the Robot and EndEffector classes. At-
tributes concerning the architecture are also depicted, as well as the aggregation relationship with
the Joint class.
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may endanger the integrity of the equipment, of the object under concern and also
the human operators working in the same layout due to possible impacts. Finally,
modeling the device operational workspace coherently with the layout representation
is also essential to accurately simulate the robot’s movements. This is achieved by
means of two attributes: the base section and the maximum reach, expressed in me-
ters, which should be compared to the average section size to determine how many
of them the robot can cover at most.

The skills defined for such devices are:

• << movePTP >>, intended as relocation to a precise destination point in the
workspace;

• << moveREL >>, which consists of a displacement of a fixed distance along
a certain direction;

• << hook >> (and conversely << unhook >>), necessary for tool-changing
sequences;

• << hold >>, comparably to the operator’s case, corresponding to the act of
keeping something in place.

Similarly also end-effectors can be of different types, e.g., grippers and screw-
drivers. For this specific case, though, creating an enumeration was not the most
efficient solution, since this property does not only involve the structure of the com-
ponent but it also affects the operations that it can or cannot perform. Hence these
were modeled as standalone specification classes, shown in Figure 4.5, each with their
own set of methods. As for the attributes of the super-class, they involve the weight,
whose relevance has already been illustrated, and an estimation of its harmfulness
level, which impacts the severity of collisions with an operator’s body part, i.e., a
pointy end-effector may cause more damage than others. The included operations
are:

Figure 4.4: Fragment of the Class Diagram capturing the Mobile Device (MDTypes) and Joint
(JointTypes) types enumerations: these are selectable when picking the corresponding attributes
values for instance specifications.
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Figure 4.5: Fragment of the Class Diagram capturing the End Effector and its specification
classes. Each available types is featured as a standalone class, in this case Gripper and Screwdriver,
rather than as part of an enumeration in order to better capture the skill set differentiation.

• << open >> and << close >>, which are specific to gripper -type end-
effectors;

• << tighten >>, which can be performed by a screwdriver-like tool.

As a final remark, the Class Diagram also features an EEattachment association
among Mobile Device and End-Effector and a self-association labeled DevAttachment
on the former, both visible in Figure 4.3, the realizations of which will be discussed
in detail in section 4.3.

Signal-emitting devices

A different specialization for the class Resource is that of devices specifically
aimed at processing signals. Unlike proper agents, these play a semi-active role in
the pursue of the task goal, meaning that they do provide additional functionalities
but only implementable when associated with an existing agent. This is modeled as
an association-like relationship, also captured in Figure 4.1 and in Figure 4.2 between
Operator and ArmBand. Essentially they constitute an augmentation of agents’ ca-
pabilities, which allows the achievement of several goals. They mainly serve as a
communication channel between operator and robot at run-time, since verbal or vi-
sual command processing is still hardly supported by industrial plants. This works
in both directions, as in when the operator needs to issue state-based commands,
whose details are explained in section 4.4, and when he/she requires feedback no-
tifications from the environment, e.g., about the completion of an operation or the
occurrence of an hazardous event which demands intervention. The kinds of devices
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that may play this role are standard signal-processing items, such as buttons and
knobs, and wearable devices, e.g., arm bands which are able to map and interpret a
human gesture or push notifications, whose corresponding class is captured by Figure
4.2. These are all featured in the Class Diagram as specifications of the super-class
SignalEmitter, visible in Figure 4.1, they do not possess any attribute in the current
version and provide a method for every type of signal that they are able to handle.
For instance, the list of signal-related stereotypes possessed by the ArmBand class,
as in Figure 4.2, is now reported:

• << waveIn >>;

• << waveOut >>;

• << vibrate >>;

• << f ist >>;

• << f ingerSpread >>.

Cameras in a way represent an exception to this rule, since they may be an
extension to an agent, e.g., in eye-in-hand vision control systems, but may also work
as standalone components. In the latter case, a possible workaround is to consider
the environment as a fictitious agent the camera is enhancing, also specifying the
section in which it is mounted. Note that the current model only features a generic
activate method and does not contain any further detail about the specific content
of the script that is executed as a result of the activation, since it is not necessarily
crucial to the formal verification procedure and -as far as deployment goes- the
support extent is strongly limited by which blocks have been developed in advance.
As a result this issue may be only partially manageable by an automated tool and,
when necessary, the user is recommended to thouroughly check the level of coverage.

Objects

Following the same rationale as for the previous Resource specifications, Objects
are intended as passive entities which are manipulated by agents to bring the task
to completion. Such modifications can consist of displacements, assembly sequences,
e.g., in the case of fixtures, or manufacturing processes, such as workpieces destined
to CNC operations. Due to its nature, this class, shown Figure 4.1 does not possess
any method but it owns properties regarding its physical characteristics, such as
weight and width. These are necessary for payload management, as previously ex-
plained, and as parameters for certain operations. For instance, the gripper’s closure
in some cases might require additional details like, indeed, the size of the object that
is going to be grasped.
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Figure 4.6: Fragment of the Class Diagram capturing the Layout and Section classes. These are
connected by an aggregation relationship. The snapshot also captures a portion of the association
between Layout and Resource, which is fully visible in Figure 4.1.

4.2.2 Layout

Concerning industrial applications, a crucial matter is that of layout organiza-
tion. This comprehensively affects robot’s performance while bringing a task to
completion, since a good setup allows the optimization of key productivity factors
such as cycle-time, speed and overall traveled distance [81][82]. Furthermore it also
influences the plant safety conditions, concerning operator’s security as well as ma-
chinery integrity, which might be jeopardized by unforeseen collisions. There are
numerous available formal methods to optimize space arrangement [81][83], which
must take into account various factors regarding working stations, robots and human
workers. In fact, it is imperative to heed machine shapes, where their access and de-
livery points are located so that they are handily accessible, and consequently space
allowance so that no operation is obstructed. Likewise planning must also factor
in how many robots will be working on the same layout, their envelope and base
mobility degree, as already discussed in their related section, plus their trajectory
planning, which may or may not be linear and hence easily computable, and the
nature of the application, e.g., a spraying operation requires more free space than
an assembly sequence [81]. Finally, when the scenario opens up to collaborative
applications, it brings into play aspects also concerning the operator, such as the
preservation of his security, how comfortably he can access his workstation and the
maximum degree of visual blockage when performing supervistory tasks.

As for the purposes of this thesis, the focus is not on the definition of the op-
timal layout but on the selection of a proper modeling strategy, that is simultane-
ously exhaustive but not overly demanding. A survey on existing methods has been
conducted by Sadeghpour and Andayesh in [84], and the retrieved techniques were
further classified into three main categories. Firstly, the predetermined locations set,
featuring a fixed array of areas, with fixed sizes, where objects can be positioned. A
slightly more complicated, but not as rigid, method is that of dividing the space into
grid elements, so that objects can be assigned to a specific grid cell. The entry-level
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version introduces equally scaled cells, but the method can be extended to support
different shapes and sizes [85]. Finally, the most advanced choice is that of modeling
the space as a continuous set of points, which is clearly the most accurate pick but
requires very high computational power. The natural choice for this project was the
grid system, which is the most reasonable compromise in the first place and is also
the method chosen for the L module in SAFER-HRC. Therefore, the Class Diagram
features the super-class Layout which is an aggregation of Sections (see Figure 4.1),
corresponding to the aforementioned grid cells. The granularity of these units is up
to the user’s decision based on the available computational power and so is their
shape, e.g., the layout can be divided into radial or rectangular sections, or a mix-
ture of the two, based on the circumstantial needs. The class clearly does not own
any method, even though the environment can be treated as a fictitious agent, as
already discussed, but it features a set of attributes, visible in Figure 4.6 including
the chosen ID and the discretized obstruction level.

4.3 Component Diagram

As discussed in section 4.2, instance specifications defined by the user are able
to capture the existence of a resource and its relevant properties, but they do not
provide the possibility to specify anything about their internal structure, which, in
some cases, might equally be a priority to model the system in its entirety. The
most suitable type of diagram to accomplish this instance deepening is the Compo-
nent Diagram, whose specific purpose is to display structural relationships between
components of a system [71]. In this specific implementation component diagrams
are mostly aimed at providing realizations of inter-resource associations featured
only at an abstract level by the Class Diagram, which would lead to unfeasible or
inaccurate behaviors throughout the simulations. Sample cases of implementation
of this diagram authorized by the notation will be analyzed in detail in the following
sections.

4.3.1 Agents

As stated in section 4.2.1, devices are meant to extend operator’s functionalities
when they are associated with each other. A concrete representation of this asso-
ciation can be achieved through the creation of a dedicated component diagram,
displayed in Figure 4.7, following the notation introduced in Section 4.3. The super-
component, in this case, models the enhanced version of the operator’s skill set. Con-
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Figure 4.7: Component Diagram representing the enhanced agent structure: both the operator
and the device are featured as sub-components.

Figure 4.8: Snapshot of the Robotic System architecture for Case A. Note that both arms and
end effectors are simultaneously represented, together with the correlated network of connectors.

sequently its internal structure features a sub-component that mirrors the standard
operator instance specification and one (or multiple ones) for the selected device(s),
corresponding to Bill and Myo in Figure 4.7. The construct that transposes the class
diagram association includes a property held by the operator sub-system, whose type
corresponds to the association’s name, a port on the device component and a con-
nector joining the two: respectively Device: is wearing, Port1 and the connector in
Figure 4.7. This implies that the standard semantics previously illustrated has been
fairly bent to better fulfill the specific domain purposes. As a matter of fact, the
connector-port pair is exploited to jointly capture the concepts of skill-augmentation
and kinematic constraint.

The latter holds more significance when dealing with the robotic system. The
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Figure 4.9: Component Diagram representing the Robotic System architecture for Case B. In
this case an additional kinematic constraint is defined between the conveyor belt and the robotic
arm.

term refers to the overall entity resulting from the attachment of multiple devices
or end-effectors, which must all be featured by the related component diagram. Ex-
amples can be found in Figures 4.8 and 4.9. In this case the kinematic constraint
connotation implies that the mobility of the subsystem endowed with the port is
partially subordinated to the dominant component’s displacement. For instance the
association between an end-effector and a robotic arm (see, for example, gripper and
kuka in Figure 4.8) usually entails that a position change of the latter causes the for-
mer to move as well, whereas such implication does not hold the other way around.
As a final remark, an arguable limitation of this perspective is that it lacks support
of the temporal dimension, as in the capability to also model the architectural evo-
lution over a task execution, e.g., in cases where a tool change is envisaged. In this
regard the currently adopted solution is to implement the component diagram as an
overlap of all the configurations that are going to be enabled amidst the application,
shifting the responsibility of accounting for physical constraints to class diagram as-
sociations’ multiplicities. Consequently a cross-verification of the two views is due
to perform a consistency check. For instance, in Figure 4.9, both end-effectors (grip-
per and screwdriver) are simultaneously connected to kuka, which would be actually
unfeasible as shown by the attached to association’s multiplicity 0...1 in Figure 4.3.

4.3.2 Layout

The same component perspective can be applied to model the layout grid subdivi-
sion. Therefore, following the same rationale as the previous examples, implementing
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the aggregation association present in the class diagram (see Figure 4.1 and 4.6). In
this case the chosen convention aims at achieving a good coverage of the model-
ing objectives without making the diagram creation procedure overly cumbersome.
Therefore, the previously introduced notation has been simplified so as to include
a property instead of a component-property pair for each section, linked to each
other by a connector -type edge. Figures 4.17 and 4.19 provide related examples.
Therefore, also in this case, standard semantics has been altered so that this specific
type of connection is interpreted as an adjacency constraint, which is fundamental
for the formal verification process to return execution traces which are not realis-
tic or an unreasonable unsatisfiability notice due to erroneous layout representation.
As already stated, in order to keep this specific type of component diagram suffi-
ciently lightweight, further information, e.g., regarding spatial limitations on agents’
movements, will be otherwise introduced into the model.

4.4 Activity Diagram

The last part of the HRC-TEAM notation provides a workflow description for the
desired task, enriching the model with a dynamic perspective that embodies all the
aspects that have not been considered yet. As a matter of fact, the previous sections
covered the static analysis of agents and layout to design what they can do and how
they are set up, but no hints were given about the effective strategy to achieve the
prefixed objective of the task. Since the project deals with industrial human-robot
collaborative activities, the final goal is always the realization of a certain sequence
of actions, which is representable through Activity Diagrams. Indeed, the purpose
of an Activity Diagram is to model the procedural flow of actions that are part of a
larger activity and the specific use in projects in which use cases are present [71]. It
focuses on the order of operation execution and the conditions that trigger or guard
them. A legitimate critique to this approach is expressed in [39] and is addressed to
the insufficient understanding of requirements and constraints that forces the con-
crete application of Activity Diagrams as an UML tool to remain limited with not
many workflow-modeling works. As for this project, the customization of the Activ-
ity Diagram and the integration with other UML tools succeed in providing a valid
and robust implementation.

The UML standard [71] introduces an Activity node as core for every project
done with Activity Diagrams. In the HRC-TEAM notation, it is exploited as a con-
tainer for everything that refers to the workflow of the task being represented. The
contained elements can be split into two categories to distinguish the ones directly
modeling the actions and the ones building the framework to provide a meaningful
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Figure 4.10: Schematic stereotyped OpaqueAction example. The top compartment features the
stereotype name in guillemets and the informal action’s name. The bottom contains the list of
stereotype’s properties with the chosen values.

interpretation to the former: both will be explained in the following sections. What
is promptly illustrated is -instead- the connection that the Activity has with Class
and Component Diagrams. Besides the informal name that could be assigned to
the Activity, other properties can be added in terms of Activity Parameter Nodes
(see left-most small blocks in Figure 4.21 and 4.23). Indeed these elements declare
which agents and which layout will be involved in the modeled task: each Activity
Parameter Node needs to report the name of one of the instances present in the
Class Diagram.

4.4.1 Actions

In any flowchart there is an atomic unit to represent operations: in the Activity
Diagram this duty is assigned to OpaqueActions, an example of which can be found
in Figure 4.10. Its core is represented by the finite state machine visible in Figure
3.2, whose structure of states and transitions is fixed and identical for each action,
hence not needing a UML counterpart.

In order to ensure a complete description of the desired task, it is mandatory
to apply one and only one stereotype to each OpaqueAction. As a matter of fact,
by default these nodes offer only a name cell, visible in Figure 4.10, that has to be
filled with an informal phrase with no other utility than guaranteeing a more read-
able diagram to the user, whereas stereotypes are exploited to ensure the complete
description of each action. Indeed, for each operation executable by an agent, there
is a precise stereotype with a list of properties: e.g., for the action move some of the
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requirements are the agent, the starting point and the destination, as in the example
in Figure 4.10. The stereotypes are grouped in different sets depending on the agent
that can perform the related operation:

• robAction includes the ability of the robotic arm to move, to hold its position
and to hook and release the end effector;

• opAction provides a catalogue of actions in order to model the behavior of the
operator in the most accurate way possible;

• EEActions includes the operation executable by the end effector mounted on
top of the robotic arm, such as open and close in case of a gripper or tighten
for a screwdriver;

• devAction includes all the methods by which the signal emitters can commu-
nicate with the controller, both automatically (activating a camera) and in a
human-driven way (the different signals generated by an armband).

4.4.2 Workflow Elements

Although atomic actions are fully described by the stereotyped OpaqueAction
nodes, it would still be impossible to generate a complete model without other ele-
ments of the Activity Diagram. Indeed, they are exploited to provide a meaningful
translation towards the UML language for all the workflow properties that identify
the desired task: for example connections, their directions and their logic structures.
Every workflow element will be described in its proper section, but among them it is
reasonable to immediately deal with the two nodes delegated to delimit the Activity :
the InitialNode and the FinalNode.

As the name suggest, the InitialNode shows the starting point of the diagram.
Obviously, it cannot have an incoming arrow and it has one and only one outgoing
arrow connecting it to the first element of the task sequence. Similarly, the FinalN-
ode is the conventional ending of the model, having only one entering arrow and
no departing connections. However, for the HRC-TEAM notation a change in the
convention is needed. As a matter of fact, it is fundamental that the very last unit
in the Activity is an OpaqueAction. The reason for this variation is the demand of
a fictitious pre-condition for the conclusion of the task, as if the act of declaring
concluded the task was itself an action: this will be further explained in Chapter 5.
However, this node will remain the only OpaqueAction with no stereotypes and, to
facilitate its retrieval, with the informal name of ActivityFinal.
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Arrows

In addition to the atomic actions, the connections between them are also indis-
pensable to define an understandable and effective workflow. Inside the Activity
Diagram semantics, it is straightforward to apply a ControlFlow whenever a transi-
tion should occur: indeed, its arrow-like graphical representation indicates also the
direction from the element that originates the transition to the one that receives
it. In order to properly use connections in this approach, some rules have been set.
Constraints on the incoming and outgoing arrows of InitialNode and ActivityFinal
have already been explained. Further mandatory requirements are based on the con-
figuration of the finite state machine presented in section 3.1.3 for every basic action.
Firstly, the maximum number of arrows coming in and out of an action depends on
its possible internal states. This is due to the fact that transitions are triggered when
the source action is in a particular state: i.e., for each state the action can be in,
there may be an outgoing arrow. Moreover, for each command that an action can
receive to change its internal state, there may be an incoming arrow.

The essential consequence of multiple ControlFlows attached to a single Opaque-
Action is uncertainty in giving the appropriate meaning to each transition line. The
worked-out solution gets rid of the ambiguity by using stereotypes. In this case, they
are applied directly to the arrows, as shown in Figure 4.11, with two key rules:

• Each outgoing arrow must have a state-describing stereotype, in order to iden-
tify which state of the source will trigger the transition: done, executing, hold

• Each incoming arrow must have a command-describing stereotype, in order
to identify which command will be delivered to the target: start, stop, pause,
resume.

Since the majority of the transitions between actions are built on the standard
pattern of “when source action is done, target action starts”, it may be possible not
to apply any stereotype to arrows representing this kind of link: the default values
are done as state and start as command. Lastly, a further specification related to
command stereotypes should be introduced. As a matter of fact, two different cases
have been treated in modeling the command an action can receive: one implies a
full synchronization, that is an immediate trigger and execution of the command as
soon as the source action has entered the interested state; the other one constitutes
a softer constraint by stating that the target command must be executed some time
after the source state has been reached. The former case is referred to as strong
command and the latter as soft command: the aforementioned command stereo-
types refer to synchronous commands, whereas SOFTstart, SOFTstop, SOFTpause
and SOFTresume refer to the asynchronous counterparts. For instance, the arrows in
Figure 4.11 imply that waveIn must start when hold is executing, and that movePTP
must start once waveIn is done: the latter could have also been omitted, as already
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Figure 4.11: Portion of an Extended Activity Diagram. All Opaque Actions carry a stereotype
to be precisely characterized and its correlated list of properties. They also feature an informal
name to guarantee the user a better comprehension of their meaning. The figure also captures some
arrow stereotypes that establish the state-based conditions guarding actions execution.

explained.

Logic connectors

Even in simpler tasks, the demand of non-trivial connections is very common.
One may consider, for example, the end of an action that has to trigger the start
of two others: despite its simplicity, this condition would be impossible to design
strictly following the rules above. As a matter of fact, just one arrow for each state
can be drawn from an Opaque Action, whereas two arrows (with the same done
stereotype) are required to concretize the example. The solution for these semantic
obstacles involves standard Activity Diagram elements plus a light customization.
The problem concerns the realization of complex connections, usually between more
than two actions, and it is actually related to the precise representation of logic
expressions, e.g., “action A being done implies that action B AND action C must
start” (formally expressed in 4.1). The implications are modeled by means of the
direction of the arrows, while the logic operators by nodes of the UML language that
are here identified as logic connectors. A complete overview will now be presented,
and is additionally summarized in Table 4.1.

aA,sts = dn ⇒ Futr (aB,sts = exe∧ aC,sts = exe, 1) (4.1)

In the first place, the ForkNode represents the correct instrument to model for-
mula 4.1. It stands for any AND condition that regards the outgoing arrows, since
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it manages just one incoming arrow but multiple arrows can depart from it: with
just one arrow with a unique state stereotype coming from an OpaqueAction (so as
to satisfy the semantic requirements) the ForkNode can trigger as many elements
as required. Secondly, a similar connector but with a reversed approach is the
JoinNode. The shared feature is that it still regards an AND condition, but the
distinction resides in the handling of different incoming arrows and just one outgo-
ing: to launch the command towards the goal action it is necessary that a trigger
has arrived from each input action. Considering once more the incoming arrows,
the MergeNode is in charge of the realization of the OR condition. Therefore, the
structure of this element is identical to the one of the JoinNode, but to trigger the
output action is enough to receive a signal from one of the incoming arrows. The last
logic connector is the DecisionNode, basically a XOR condition useful to represent a
mutually-exclusive choice. In other words, the trigger coming from the unique input
is propagated through only one output connection. There are different kinds of deci-
sion: purely non-deterministic, autonomously solvable by retrieving data during the
actual execution of the task (e.g., for the question "is the end effector attached?" the
answer depends on the configuration of the robot at that time instant), or human
input-dependent. In principle any question can be modeled with a DecisionNode
and a proper customization, even if the model checker Zot will simply manage it
by non-deterministically choosing one of the available paths and then verifying that
particular case (see Chapter 5 for further clarifications).

Table 4.1: Supported logic connectors

Structure

Element Name Fork Node Decision Node Join Node Merge Node

Logic Condition and xor and or

Affected arrows outgoing outgoing incoming incoming

As a conclusion, it is appropriate to mention that the just presented logic con-
nectors can be combined in complex networks to achieve the modeling of any kind
of logic condition. As far as connections are concerned, if an arrow starts from a
connector and ends into another connector, no stereotypes must be applied to it
because the State and Command values are retrieved from arrows having as source
and/or target an OpaqueAction.
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Loops

When dealing with industrial robots it is very frequent that a set of operations
has to be executed several times before the task is completed and this holds true
also for collaborative applications. While handling repetitive actions, the main issue
is the quest for a compact and rapid way to model them avoiding redundancy and
duplicates. According to the UML standard, this is achieved through the LoopNode
which consists of a container ideal to distinguish the set of OpaqueActions to be
iterated. For this reason, it has been exploited in the HRC-TEAM notation as a so-
lution for the loops present in the task models. However, to achieve a comprehensive
modeling of the desired task, it is necessary to customize the LoopNode with some
conventions. Firstly, one needs to set how many iterations the loop should have and
that is why, also to grant an easy retrieval of the value, the name of the LoopNode
must correspond to the number of iterations. Then, concerning the external con-
nections, just one arrow is allowed to enter the container and at the same time only
one arrow can trespass the contour of the LoopNode from the inside to an external
element.

4.5 Case Study

4.5.1 Setting Description

The developed notation has been applied to a real case study in order to test
its usability and efficiency. The chosen scenario is the assembly and disassembly
procedure of a machine tool pallet to be employed in CNC operations. The pallet
is manipulable on both sides, Face 1 and Face 2. The former features twelve slots
that can fit two rectangular workpieces each, and a fixturing structure with a central
bolt that can hold both pieces in place once it has been tightened. The second side
is only able to hold two similarly shaped but larger workpieces. In both cases, the
pallet design takes into consideration its target application, hence allowing enough
space between two adjacent slots so that the machining tool is able to perform all
necessary operations in a precise fashion.

For the purposes of this thesis, the analysis will focus only on the setup of Face 1,
in order to keep the investigation all-encompassing but free from minor redundancies.
In this respect, two processes are conceivable: assembling in preparation to machin-
ing and disassembling at the end of the sequence. Two slightly different setups have
been devised for the two alternatives in order to test the approach against a wider
set of conditions, which, from now on, will be respectively referred to as Case A and
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Figure 4.12: Set of resources for Case A.

Figure 4.13: Set of resources for Case B.
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Case B.

The main steps for the two cases, expressed in generic terms, are now summarized,
firstly for Case A:

1. fetching workpieces from a load station;

2. producing the necessary screwdriver tool;

3. holding the workpieces in place;

4. tightening the fixture bolt;

and secondly for Case B:

1. producing the necessary screwdriver tool;

2. holding the workpieces in place;

3. un-tightening the fixture bolt;

4. placing the workpieces on the unload station.

The skills are listed without any explicit reference to the specific agent that will
perform them, since different alternatives are conceivable and will be examined in
later sections. In any case, even prior to such allocation process, it is possible to
define the sets of resources and equipment which are required to bring these two
tasks to completion. For Case A the required furnishings include, of course, the
pallet, the workpiece load station (also referred to as bin), a tool-changing station
and a generic storage accessible to the operator. For Case B the set is similar but
with a symmetrical unload station and no storage is actually needed. Note that this
kind of equipment does not have to be explicitly modeled by the notation, unless
the user desires to do so for the sake of completeness. The presence of these items is
more efficiently reflected by the layout model in terms of obstruction level, as will be
further explained in Section 4.5.3. On the other hand, resources do require precise
characterization: the respective sets, which will now be described in detail, are pic-
tured in Figures 4.12 and 4.13. In both cases the employment of a human operator
is indispensable. In order to broaden the available set of skills, a gesture-detecting
armband (officially branded as Myo1) is also included in the picture. As for the
robotic systems, two different configurations are used in order to test the flexibility
of the notation. For Case A a 7 D.o.F. Kuka LBR iiwa2 with a fixed base has been
selected, endowed with both a gripper and a screwdriver end-effector, exchangeable

1https://www.myo.com
2https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/

lbr-iiwa

67

https://www.myo.com
https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa


CHAPTER 4. HRC-TEAM PROFILE

Figure 4.14: Set of instance specifications for Case A.

Figure 4.15: Set of instance specifications for Case B.

through the aforementioned tool-changing station. Alternatively, it is possible to
replace the robotic arm with the dual-arm Yumi3 manufactured by ABB depending
on the chosen alternative (see Section 4.5.4). For Case B the robotic system fea-
tures the aforementioned Kuka arm equipped with the same tools but mounted on a
conveyor belt which is instrumental in enlarging the operational workspace. Finally,
in both cases workpieces are featured as manipulable objects, whereas in Case B
an intermediary container has also been included to store workpieces once they are
placed in the buffer.

68



CHAPTER 4. HRC-TEAM PROFILE

4.5.2 Class Diagram Instances

The same sets must be captured by the Class Diagram in accordance with the
illustrated modalities. Therefore, an instance has been created for each resource,
with corresponding proper attributes, all collected in Figures 4.14 and 4.15. Note
that it is possible to have both sets of instances in the same Class Diagram without
any conflict, eventually customizing their appearance in order to have a clear visual
indication of their usage. As planned, the Case A package includes instances of the
Operator and ArmBand classes (Bill and Myo in Figure 4.14) with arbitrary values
for the mental state-related attributes, shared with Case B as can be seen in Figure
4.15. The robotic arms (Kuka and Yumi for Case A, Figure 4.14, only Kuka for Case
B, Figure 4.15) and the conveyor belt (Figure 4.15) are featured as MobileDevice
instance specifications. Attributes are specified accordingly: for instance, as shown
in Figure 4.14 Kuka’s type is set to anthropomorphic whereas Yumi’s is dual-arm
(both values are chosen out of the enumeration shown in Figure 4.4). End-effectors
are defined as instances of the related EndEffector specification class, i.e., Gripper
and Screwdriver featured in Figure 4.5. Finally, the workpiece and, only for Case B,
the container are also featured as instances of the Object class (see Figure 4.1). As
a final remark, Figure 4.14 and Figure 4.15 also include instances for the operational
environments (envA and envB) which are, more specifically, realizations of the class
Layout in Figure 4.6: these will be presented in further detail in Section 4.5.3.

4.5.3 Component Diagrams

The sets of resources introduced in Figures 4.12 and 4.13 require the creation
of dedicated Component Diagrams that provide a more detailed picture of their in-
ner architecture. First, the enhanced operator’s component, visible in Figure 4.7,
contains both references to Bill’s and Myo armband instances, connected by a port-
connector pair. By doing so, when a gesture recognition action is allocated to Bill,
it will not raise any inconsistency warning, since the functionality augmentation is
stated by the Component Diagram. Note that this specific diagram can be used for
both case studies without any adjustment.

On the other hand it is necessary to create multiple diagrams for the two im-
plemented robotic systems since they incorporate different resources. The results
are shown in Figures 4.8 and 4.9. As already explained, these diagrams work as a
collective view of the system’s configurations along the whole task timeline, hence
the two End Effectors are simultaneously included for both case studies. The two
firstly differ due to the fact that Case B features a conveyor belt component (see

3http://new.abb.com/products/robotics/industrial-robots/yumi
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Figure 4.16: Informal representation of the layout for Case A. Colors mirror the section obstruc-
tion level: occluded (red), clear (orange), free (yellow). The grid features the robot’s base L0, the
pallet in L13, bin in L42 and storage in L73. Note also the blind clove in L51 compliant with the
actual robot’s envelope.

Figure 4.17: Corresponding Component Diagram for Case A layout. The appearance has been
adjusted to better match the informal representation, but it does not hold any functional significance
and is thus completely optional.
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Figure 4.18: Informal representation for Case B cell layout. In this case the conveyor spans over
sections L22, L0 and L42. Other criticalities concern the pallet P in L21, the tool changer TC in L33,
unload station (or buffer) US in L12 and bin B in L52.

Figure 4.19: Corresponding Component Diagram for Case B layout.
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conveyor belt in Figure 4.9), connected to the robotic arm to state the kinematic
constraint. Furthermore the Component Diagram for Case A requires both robotic
arms, the anthropomorphic and the dual-arm (Kuka and Yumi in Figure 4.8): these
are not connected to each other since they work alternatively rather than jointly.

At this point of the procedure, it is necessary to define in detail the layout grid
structure. Concerning Case A, since the planned robotic system has an anthropo-
morphic configuration and a fixed base, it is reasonable to devise a layout with a
radial setting, as in Figure 4.16. The critical sections are the ones occupied by
the pallet, the robot’s base and tool-changer and the bin (or load station). On the
other hand the storage, which is only required by the operator, has been placed in
a section out of the robot’s reach to avoid unnecessary collisions. As for Case B,
due to the different architecture the linear subdivision in Figure 4.18 is comparably
approriate. In this case the conveyor fully occupies three of the available sections,
and further limitations are related to the presence of the buffer, the bin, and -of
course, pallet and tool-changer. A surrounding un-occluded path has been planned
to allow the operator to navigate the cell without risking an impact at any time
instant. The manually sketched blueprints in Figures 4.16 and 4.18 are followed
by their equivalent Component Diagrams, respectively Figures 4.17 and 4.19. Note
that this type of diagram does not capture anything about section sizes or position
in space, hence the level refinement of their appearance is up to the user and mainly
affects the diagram’s readability. The main purpose and requirement is to model
adjacency connectors, as shown in the resulting diagrams in Figures 4.17 and 4.19.
The implemented concept is similar to the one for simplified topological maps used
to represent metro lines, which forsake geographical accuracy to focus exclusively on
stations’ sequences.

4.5.4 Activity Diagrams

The operational steps for the two case studies have been illustrated in general
terms in Section 4.5.2. In order to precisely model the related workflow, though, it
is necessary to define a far more detailed set of actions and settle the skill allocation
problem. As for Case A, a great deal of care has been given to its workflow devel-
opment, to the point that different alternatives have been envisaged. The variedly
allocated sub-tasks are:

ST.0 Go to tool-changer (TC); change the tool (T);
ST.1 Go to the bin (B), grasp a workpiece (wp), move wp to the pallet (P), hold wp

in position, . . ., release the wp;
ST.2 Move T to the pallet position. Note that ST.2 requires that a suitable T is

available, otherwise move to TC and fetch a T before proceeding;
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Robot

ST1

ST0ST2 ST1

[V.2]

[tool not available]

[V.1]

select task

[change task]

ST4

[V.3] [V.2] V [V.3][V.1]

Operator

ST0

ST3

ST2

ST3 [V.2]

[tool not available]

[V.3]

Figure 4.20: Informal representation of the task workflow for Case A. All three versions are
depicted implementing decision points with properly labeled outgoing arrows. Note that sub-tasks
blocks are used rather than elementary actions in order to keep the scheme as readable as possible.

Figure 4.21: HRC-TEAM compliant Activity Diagram for Case A, V1. Note the application of
stereotypes to all OpaqueActions and the implementation of arrow stereotypes to delineate complex
state-based conditions.
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ST.3 Iteratively (on the number of jigs) use T to fix (e.g., tighten a bolt with
T=screwdriver) the wp on the pallet, while wp is held in position;

ST.4 Go to storage (S) for inspection or any other purpose.

The different variants of the task, depending on how the operator decides (on-
the-fly) to assign the execution of sub-tasks between himself and the robot, are:

[V.1] ST.1 is done by the operator and ST.0, ST.2 and ST.3 by the robot;
[V.2] ST.1 is done by the robot and ST.0, ST.2 and ST.3 by the operator;
[V.3] ST.1, ST.2 and ST.3 are done by the robot, ST.0 and ST.4 by the operator.

Figure 4.20 presents an informal representation of the illustrated workflow, fea-
turing all three alternatives properly labeled. The definition of multiple possibilities
meets very well the flexibility and reconfigurability requirements. As a matter of fact,
it may be necessary to adapt to environmental or operational variations, and having
the possibility to do so without suspending all productive activities constitutes a
very valuable asset. Consequently the same approach has been kept for the HRC-
TEAM compliant Activity Diagram, whose full version can be found in Appendix
I, whereas Figure 4.21 shows only the portion related to V1 for the sake of concise-
ness. The Activity is endowed with Activity Parameter Nodes, i.e., the boxes on the
border in Figure 4.21 which link this perspective to the resource representation one.
Therefore, in this case, the required agents are Robotic System A and Bill, which
have already been examined in Sections 4.5.2 and 4.5.3, and the selected layout rep-
resentation is envA, which is depicted in Figure 4.16 and 4.17. The Activity clearly
contains a LoopNode, also visible in Figure 4.21, since its operations are supposed
to be iterated for as many pallet fixture slots as requested. The gateway to the loop
node is represented by a DecisionNode which captures the flow alternative selection.
Similarly V1 and V2 branches also feature an internal DecisionNode addressing the
presence of the required tool, whether it concerns the operator for V2 or the robot
for V1 (corresponding to toolAttached in Figure 4.21). As for this specific case, the
decision making process should not be arbitrary but based on data coming from sen-
sors, but, at the current stage, this is still not a supported feature. Further matters
demanding investigation regard the rendition of segments in which collaboration is
preponderant: i.e., when agents are directly operating on the pallet. In these cases,
arrow stereotypes are mostly exploited and prove their effectiveness. For instance, as
Figure 4.21 shows, when the operator starts holding the workpiece in place, he/she
is also allowed to send an activation signal to the robot («executing, start» arrow
between hold and wavein). This enables the robot to approach the pallet, if it is
already in the required section (JoinNode between the pair movePTP -wavein and
moveREL) and tighten the fixture bolt, only after this is complete the operator is
allowed to remove his/her hand from the pallet («done, SOFTstop» arrow between
tighten and hold). Similar constructs have been envisaged for the other versions and
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are visible in the Appendix A.

The same approach can be applied to the illustration of Case B workflow. Figure
4.22 summarizes the delineated sub-tasks, whose meaning will now be clarified:

ST.0 Go to tool-changer (TC); change the tool (T);
ST.1 Approach the pallet (P), hold wp in position, place top wp in buffer (US), . . .,

place bottom wp in buffer (US);
ST.2 Move T to the pallet position. Note that ST.2 assumes the robot starts with

a suitable T attached;
ST.3 Iteratively (on the number of jigs) use T to dismantle (e.g., untighten a bolt

with T=screwdriver) the wp on the pallet, while wp is held in position;
ST.4 Approach the bin (B) to empty it or for inspection. Note that the area the bin

content is destined to is left unspecified since it lacks relevance with respect to
this analysis;

ST.5 Iteratively (on the number of containers) approach the buffer (US), pick a con-
tainer, move to the bin (B), release it;

Also in this case different skill allocation strategies could be explored, but a single
version will be taken into consideration to keep the analysis complexity level within
a reasonable threshold. More specifically, as shown in Figure 4.23, initially the robot
is in charge of untightening the bolt (ST.3) while the operator holds one workpiece
in place and subsenquently unloads both of them in the dedicated buffer (ST.1).
After the first cycle, the robot changes its tool (ST.0) to be able to perform the it-
erative pick-and-place sequence (ST.5) from the buffer (US) to the bin (B), whereas
the operator can choose whether to empty the bin (ST.4) or supervise until the end
of the task. Collaboration is mostly predominant in the initial sequence, whereas
towards the end contacts can take place only if the operator chooses to execute ST.4
or mistakenly gets close to the robot while it is performing ST.5. The example still
holds significance since it tests the performance of the notation against the presence
of multiple loop nodes.

A portion of the corresponding HRC-TEAM Activity Diagram, focusing on the
initial untightening sequence, can be seen in Figure 4.23, whereas the full diagram
can be found in Appendix A. Also in this case the Activity is endowed with Parameter
Nodes invoking the required agents, hence Operator and RoboticSystemB, and the
employed layout envB, in accordance with the outline in Section 4.5.2 and Figure
4.13. As for the actual workflow, similarly to Case A, two LoopNodes have been
included: the first one shown in Figure 4.23, whereas both are visible in the Appendix
A. Also in this case, arrow stereotypes have been widely exploited to precisely identify
collaboration mechanisms.
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Figure 4.22: Informal representation of the task workflow for Case B. Both cycles are featured,
using arbitrary variables f ix and c to respectively indicate the number of untightened fixtures and
stored containers.

Figure 4.23: Portion of the HRC-TEAM compliant Activity Diagram for Case B, capturing the
first loop sequence. Note the application of stereotypes to all OpaqueActions and the implementa-
tion of arrow stereotypes to delineate complex state-based conditions.
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Formal Verification-oriented
Model Transformation

In order to perform formal task verification, it is necessary to translate the di-
agrams realized with the HRC-TEAM profile into sets of logical formulae. In par-
ticular, SAFER-HRC models must be produced from the information written in the
project with respect to the UML standard. This Chapter focuses on the translation
procedure, from the retrieval of data to the production of formulae, introduced in Sec-
tion 5.1. The preparation of single models is more thoroughly discussed in Sections
5.1.1 and 5.1.2.

5.1 Generation of SAFER-HRC Models

In order to generate SAFER-HRC models and subsequently subject the modeled
task to formal verification, the ConverTEAM tool scans and processes the produced
HRC-TEAM diagrams. The procedure is centered around the selected Activity Di-
agram and the items it is associated with through the ActivityParameterNodes, i.e.,
Component Diagrams and instances in the Class Diagram. Once the necessary UML
models have been retrieved, the main goal of the tool is to manipulate the collected
data and produce formal models. This operation requires textual templates con-
taining models portions, which need to be replicated without any alteration, and
keywords which conversely need to be replaced with custom generated sets of for-
mulae. The customization degree varies from model to model. The ones regarding
standard operations such as risk estimation are plainly replicated since, at current
state, no modification is envisaged. The same stands for models concerning the ac-
tivation of a risk reduction measure based on current hazards and the description of
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how these measures affect the system behavior. The module describing the possible
hazards and the conditions required to determine their existence is modified only in
relation to the maximum index that their parameter concerning the affected section
can have. This is derived from the section list size, namely how many Properties the
Layout Component Diagram contains.

5.1.1 Operator, Robot and Layout Models

Models representing resources require a broad set of adjustments. The operator
model O comprises the subdivision into eleven body parts whose way of distributing
into space must be at least approximately constrained so that the resulting execu-
tion trace does not feature any unnatural position. The chosen strategy is to allow
the head to be in any of the layout sections, as in Formula (5.1) and force all other
parts to be in the same position, see Formula (5.2). The only exceptions are bp11reg
and bp7reg, i.e., lower arm and hand, which can also be in an adjacent section, see
Formula (5.3). As a matter of fact, it is reasonable to assume that the operator is
standing in one section with his arm stretched out to perform an operation, such
as picking or holding something. Moreover, this also allows the operator to take a
safer position. This means that, if he/she is performing an operation in cooperation
with the robot, uninvolved parts, like the head, cannot get in the way. Therefore, in
this case, the tool looks for the number of sections present in the specified Layout
Component Diagram, in order to retrieve the value of Lmax in Formula (5.1). Fur-
thermore, as explained in Section 4.2.2, there may be additional spacial contraints
due to excessive obstruction level, e.g., when a section is fully occupied by a piece of
equipment. With regards to the operator, this is handled as an additional constraint
on the head’s possible position, see Formula (5.4), whereas it is considered reasonable
for the hand or the lower arm to hover over these sections.

bp1reg ≥ L0 ∧ bp1reg ≤ Lmax (5.1)

∧
bpi∈O,i 6=7,11

bpireg = bp1reg ∧ bp7reg = bp11reg (5.2)

bp11reg = bp1reg ∨ bp11reg = adj
(

bp1reg

)
(5.3)

Li,obst = occluded⇒ bp1reg 6= Li (5.4)

At current state, SAFER-HRC only supports 2 D.o.F. robotic arms. Therefore,
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the R module, representing the Robot, features the definition of two links, Link1
and Link2, and of the End-Effector. Constraints regarding their positions are linked
to where the robot base is placed and how the workspace is shaped. The procedure
retrieves the ID for Lhome in Formula (5.5) from the respective Class Diagram in-
stance, more specifically base attribute value of the MobileDevice class (see Figure
4.3). For rotational joints it is assumed that the first link can either be in the same
section as the base or in an adjacent one, and the same constraint is propagated
to the End Effector, as in Formulae (5.5), (5.6) and (5.7). Note that this heavily
depends on how sections are scaled with respect to link sizes: adding adaptability
to different sizes could constitute a useful future refinement. Furthermore, robot
envelopes usually deviate from a full circle because of a blind circular clove, which
must be taken into account to maintain feasibility by means of constraints as the one
in Formula (5.8). Finally, also for the robot, there may be occluded sections which
cannot be reached: such constraints are formalized by Formula (5.9).

R1reg = Lhome ∨ R1reg = adj(Lhome) (5.5)

R2reg = R1reg ∨ R2reg = adj
(
R1reg

)
(5.6)

EEreg = R2reg ∨ EEreg = adj
(
R2reg

)
(5.7)

R1reg 6= LblindClove ∧ R2reg 6= LblindClove ∧ EEreg 6= LblindClove (5.8)

Li,obst = occluded⇒ R1reg 6= Li ∧ R2reg 6= Li ∧ EEreg 6= Li (5.9)

To conclude the resource models analysis, also the Layout model, corresponding
to the L module, is generated. The Layout Component Diagram is firstly inspected
to store sections IDs, i.e., the Properties names. Secondly adjacency constraints are
generated by looking for all the outcoming connectors of a Property (see for instance
Figures 4.17 and 4.19) and storing their destination element ID.

5.1.2 Task Model

The file requiring the most adjustments is the one modeling aspects of the work-
flow and the task in general, mainly actions and decision points. As for the latter,
DecisionNodes featured by the selected Activity Diagram, e.g., toolAttached in Fig-
ure 4.21, are transposed into logic terms, by defining a variable for each of them and
a set of constraints as in Formula (5.10). These constraints refer to the feasible range
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Figure 5.1: Example of how an OpaqueAction is translated into logic terms. Its behavior is fixed
by the previously introduced Finite-State-Machine on the right, whose corresponding logic formulae
are fixed for all actions. The action’s stereotype and properties affect the conditions needed by preC
and posC to become true and trigger transitions.

of values, which depends on the number of outgoing arrows: e.g., two in the example
reported by Formula (5.10). Moreover, once the model-checker assigns a variable
value at t0, it must remain fixed during the whole simulation, which is also captured
by Formula (5.10). This is due to the fact that a different instance of the variable
is generated for each envisaged iteration, if it is contained in a loop. Therefore, al-
lowing its value to change when the iteration is already being executed may lead to
unreasonable results featuring different flow alternatives explored at the same time.
Furthermore, it is possible to bypass the non-deterministic nature of these decisions
by manually forcing the value, which could be useful for testing purposes when the
user needs to examine a specific version.

(decNodeName = 1∨ decNodeName = 2) ∧ (5.10)
AlwF (decNodeName = Past (decNodeName, 1))

Moving on to action characterization, firstly logic formulae defining the internal
finite-state machine, displayed in Figure 3.2, are listed. This portion does not require
any changing since it is a standardized feature, as explained in Sections 3.1.3 and
4.4.1 and shown in Figure 5.1. The tool’s main goal in this regard is to generate
the set of formulae governing actions state evolution based on the OpaqueAction
properties. This implies the retrieval of every OpaqueAction owned by the Activity.
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Figure 5.2: Scheme representing the action list generation starting from the Activity Diagram.
Each OpaqueAction contained in a LoopNode (n.2 and n.4 in this case) is replicated as many times
as the specified number of iterations (e.g., 2 in this case).

Moreover, the ones inside a LoopNode are duplicated as many times as the number
of loop iterations, as shown in Figure 5.2. Firstly, the tool looks for the stereotype
properties concerning the agent ID and collects their value to determine each action’s
subject. More specifically, OpaqueActions representing operations from the opAction
set are allocated to an instance of the O module; similarly for robAction and the
R instance. At current state the model only supports single instances of both the
operator and the robot. Plus, as for the latter, it does not require the distinction
between arm and end-effector, which are both merged into the robot subject, but
it does not fully support prismatic joints (e.g., cartesian robots or conveyor belts),
hence approximations are to be expected. Similarly actions falling into the devAction
category are assigned to the agent associated with the device in question.

At this stage, TRIO formulations of pre-, post- and inter-conditions are gener-
ated. How the system state changes with respect to the first two has already been
explained in section 3.1.3. The latter contain expressions that must hold true as
long as an action is executing (with or without a risk reduction measure applied),
either for safety or functional purposes. For instance, if an operator’s hold action
is being executed, his hand must remain in the specified section until the operation
is completed. This option must be clearly disabled if one wants to encompass in
his analysis also possible human mistakes and misuses, which is one of the most
advanced features of HRC tasks verification.

All of the three types of guard conditions contain constraints related to the stereo-
type, i.e., the intrinsic nature of the action, and to the task workflow, hence extrinsic
factors describing connections to other elements of the Activity. The former are deter-
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Figure 5.3: Scheme representing how stereotype-related guard-conditions are generated starting
from OpaqueActions. In this case two << pick >> actions from different agents are subject to
the procedure. In both cases the DESTSEC property value is necessary for the spacial constraints
concerning either the operator’s hand or the end-effector. In both cases there is also a standard
predicate about the state of the object before and after the action’s execution (partPresent and
partTaken). On the other hand, note the additional safety constraint concerning operator’s body
parts when the action is performed by the robot.

mined by the stereotype’s category (robAction, opAction, EEAction and devAction),
and the condition type (pre, post or inter). These factors determine the right set
of conditions, which is accessed and adapted, if necessary, based on the properties
values. Examples of constraints covered by this case are reported in Formulae (5.11)
and (5.12) and Figure 5.3. A robot’s hold action, for instance, can start if it has
previously grabbed an object and the End Effector is in the required section, as in
(5.11). Similarly an operator’s move can be considered complete when all his/her-
body parts have reached the destination, as expressed in (5.12).

preCi ⇔ partTaken ∧ EndE f f ectorreg = L14 (5.11)

posCi ⇔
∧

bp∈O

bpreg = L13 (5.12)

As for the workflow-related conditions, the set of incoming arrows is examined
for each OpaqueAction. Each connection corresponds to a guard condition type: this
is determined either by getting the applied Command stereotype or considering its
absence as an indication for the default value start. The edge’s source defines a
Predecessor. A Predecessor collects informal name, ID and state of the action that
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triggers the event brought by the condition. However, if the source is not an Opaque-
Action but a Logic connector, the function enters a recursive procedure to navigate
the flow backwards, as visible in Figure 5.4. The procedure stops only when every
navigation path encounters an OpaqueAction. Therefore, the use of connectors as
intermediate Predecessors allows complex structures to propagate signals among ac-
tions. Apart from this distinction among OpaqueActions and connectors, three cases
are considered depending on the position of the action with respect to a loop. The
basic case regards the most common situation in which both the original element and
its Predecessor are inside the same loop or outside any of them: identical iterations
(arbitrarily equal to 1 in absence of loops) are used for both the two items. Then,
if the element is immediately after a LoopNode (and so its predecessor is inside the
loop), it is necessary to consider the maximum iteration of that loop to attach the
right node/s to the tree of Predecessors. The last case concerns the item at the
beginning of a loop, with its direct Predecessor outside, and presents two sub-cases:

1. the action that is the root of the tree represents the first iteration of an Opaque-
Action, so it has to be connected to the element/s outside of the loop;

2. the action stands for the n (n > 1) iteration of that OpaqueAction and so the
Predecessor must be retrieved from the end of the loop considering the n− 1
iteration;

The recursive diagram examination leads to the production of two different items
depending on the nature of the predecessor: if it is a logic operator it is converted
in the corresponding TRIO operator, as shown in Table 5.1, if it is an OpaqueAction
it produces a logic formula in the form described by (5.13) (with the value of state
depending on the arrow stereotype). This step is recursively reiterated until all

Figure 5.4: Scheme representing Pre-Condition generation starting from a portion of the Activity
Diagram in Figure 4.23. The procedure for action 1 starts from the immediate Predecessor, a
JoinNode, it stores the related logic condition, and proceeds recursively to the following level
containing two branches, i.e., actions n.2 and n.3 with related stereotypes concerning the state.
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upstream OpaqueActions have been reached and returns the complete condition,
that is a set of logic expressions as the ones on the right side of Figure 5.4.

Table 5.1: Connectors logic operator counterparts

Structure

Element Name Fork Node Decision Node Join Node Merge Node

TRIO Operator bypassed decNodeName = i ∧ ∨

For instance, if actioni is preceded by a JoinNode collecting two arrows, one blank
and the other stereotyped as << executing, start >>, the generated line of code
reflects the condition in 5.14.

aID,sts = state (5.13)

preCi ⇒ aj,sts = dn∧ ak,sts = exe (5.14)

Formulae (5.15) and (5.16) reflect the difference between hard and soft com-
mands illustrated in Section 4.4.2. They are respectively generated as a result of
arrows stereotyped as << done, stop >> and << done, SOFTstop >>. In natural
language, they can be expressed as "actionj must stop if actioni has been completed"
and "actionj is allowed to stop only after actioni has been completed".

Past (ai,sts = exe∨ ai,sts = sfex, 1) ∧ ai,sts = dn⇒ Futr
(
aj,sts = dn, 1

)
(5.15)

Past (ai,sts = exe∨ ai,sts = sfex, 1) ∧ ai,sts = dn⇒ SomF
(
aj,sts = dn

)
(5.16)

The final concept requiring specification is the task completion condition. Indeed,
a fictitious ActivityFinal OpaqueAction is added to the diagram in order to store its
pre-condition, which is obtained with the same aforementioned recursive procedure.
Alternatively it is possible to select a single action as termination the portion of task
that is going to be formally verified. The two alternatives are respectively represented
by Formulae (5.17) and (5.18).

SomF
(
(ai,sts = dn∧ aj,sts = dn) ∨ ak,sts = dn

)
(5.17)

SomF (ai,sts = dn) (5.18)

The so-produced models are ready to be checked by Zot.
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Deployment-oriented
Model Transformation

A second translation is available for the HRC-TEAM profile to obtain a task
deployable either on a real system or on a simulator. The process, introduced in
Section 6.1, involves the generation of configuration files, discussed in Section 6.1.1,
based on the UML diagrams which are then fed to a FB network in charge of creating
the actual IEC 61499-compliant application, as explained by Section 6.1.2.

6.1 Translation Procedure

This translation procedure aims at processing diagrams developed with the HRC-
TEAM notation in order to produce a version actually deployable to real resources.
Under these premises, the IEC 61499 - ROS hybrid architecture introduced in Section
3.2.3 is resorted to as target infrastructure. Due to higher level of complexity of
the matter and wider range of tools required by the deployment procedure, a less
direct translation procedure has been envisaged. Data contained by the diagrams
are reformulated using a custom notation into configuration files. The latter are
subsequently fed to a Function Block network in charge of actually creating the
application equivalent to the original Activity Diagram modeling the task. The
process is summed up by Figure 6.1.
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Figure 6.1: Scheme representing the procedure to translate HRC-TEAM diagrams into deploy-
able FB applications. Firstly, custom configuration files are generated based on the diagrams
content, and later fed to a FB network in charge of generating the actual application. At this
point, both deployment on real resources and simulation are conceivable.

Figure 6.2: Example of how an OpaqueAction is transformed into a FB. The target FB class is
GLOBAL_T (see Section 3.2.3), with a name arbitrarily set equal to the Action’s informal one. The
FB input parameters values are obtained from the block’s stereotype for the EXECUTION_CMD
(in this case movePTP corresponds to PTPJ_TRAJ) and from its list of properties. For instance,
CONTROL_TYPE corresponds to PREPARATION_CMD, and the move parameters (destination
and speed, i.e., OVERRIDE) provide values to STRING_EXE and REAL_PREP.

6.1.1 Configuration Files Generation

Similarly to the procedure described in Chapter 5, the information gathered by
means of the interface is used to search the project for the desired Class, Compo-
nent and Activity Diagrams. The objective is to create three files that will then be
examined to generate the FB Application. This set of files uses a custom text-based
language to describe HRC-TEAM diagrams elements which are instrumental to the
generation of the Function Block network.
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The first file collects data regarding the set of Actions and the task in general
terms. Firstly, it mentions how many resources are involved, the names of all the
agents and the name of the Activity (see the HowManyRes portion in Listing 6.3).
This information is necessary to correctly generate the Header FB and set its param-
eters concerning resources and application name. As for Actions, each OpaqueAction
will be matched by an equivalent Task-FB, as shown by Figure 6.2, carrying the
same ID, agent, and parameters derived from the applied stereotype and its prop-
erties. A detail that must be considered is the management of actions inside loops:
for each iteration of the same OpaqueAction there is a different Action but obviously
they have the same ID. This is not admissible since the arrow must start from the
precise action of the correct iteration, that is why a modification was added to the
fulfillment of the address: an integer, representing the iteration at which the Action
is associated, is affixed after the ID.

Besides FBs representing actions, also logic connectors featured by the Activity
Diagram must be converted so that logic conditions governing actions state evolu-
tions are properly preserved. To this aim, a set of existing blocks working as logic
operators is exploited as conversion target, as illustrated by Table 6.1. The second
file, a segment of which is presented in Listing 6.2, enlists nodes IDs, properly mod-
ified as previously explained in case they belong to a LoopNode.

Once all blocks have been properly handled, it is necessary to store information
about the connections that involve them. In this case, every Edge contained by the
Activity Diagram will correspond to an arrow in the FB network. Consequently, the
last file contains the list of Edges with correlated properties, as can be seen in Listing
6.1: the IDs, the source and target types, plus –only in case they are OpaqueActions–
the state related to the source and the command for the target.

Table 6.1: Connectors Function Block counterparts
ForkNode DecisionNode JoinNode MergeNode

Logic Connector

ParallelFB ForkFB JoinFB JoinForkFB

Function Block
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Listing 6.1: ArrowFile
1 Arrows
2

3 SourceID:
4 _JgyoYBXkEeentfMxR4DUhw1
5 SourceType:
6 OpaqueAction
7 TargetID:
8 _JgvlEBXkEeentfMxR4DUhw1
9 TargetType:

10 OpaqueAction
11 SourceState:
12 done
13 TargetCommand:
14 SOFTstop
15 END

16
...

Listing 6.2: LogicFile
1 Connectors
2

3 JoinNodes
4

5 ID:
6 _G68yEBXlEeentfMxR4DUhw1
7 END

8
...

9 DecisionNodes
10

11 ID:
12 _H0ySQBUjEeetr_qzEYxFVQ1
13 Name:
14 selectTask
15 END

16
...

Listing 6.3: OpActFile
1 HowManyRes
2 4
3 kuka
4 gripper
5 screwdriver
6 yumi
7

8 TaskName
9 caseA

10
...

11 OpaqueActions
12

13 ID:
14 _Jgu-ABXkEeentfMxR4DUhw1
15 Agent:
16 bill
17 Stereotype name:
18 move
19 END

20
...

6.1.2 Application Generation Mechanism

The strategy that has been adopted to bridge between the UML model and IEC
61499 application mostly revolves around reconfiguration features [86]. In order to
limit the amount of manual input needed from the user to the sole diagrams, the
Function Block application modeling the task is automatically generated based on
the configuration files content. This is achieved by feeding the files paths to a fixed
function block network that holds full responsibility for the generation process. By
doing so, the user is only required to set the aforementioned parameters and trigger
the sequence activation.

The network’s main components are a custom-built Task-Generating FB and a
set of standard blocks from the reconfiguration library, provided by the IDE, as
shown in Figure 6.3. In general terms, the TaskGen-FB is in charge of producing
events in a suitable order, whereas the web acts a dispatcher so that each emission
produces the appropriate result.

Blocks belonging to the aforementioned library are Service Interface Function
Blocks, each in charge of a distinctive operation pertaining reconfiguration. A fun-
damental remark about these SIFB is that their employment does not have any
graphical repercussion, meaning that they can produce elements which are fully
functional from FORTE’s point of view but not their graphical counterparts. It
follows that deployment of an application which is partially invisible may be a dis-
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advantage for the user who cannot directly intervene to make modifications or have
a clear visual feedback of the system’s evolution. Nevertheless, in this regard it is
necessary to remark that this purpose is already served by UML diagrams, which
the FB application is supposed to replicate exactly. The available functions are:

• creation of a new Function Block: the required parameters concern the
class of the FB to be instantiated and the informal name that will be assigned
to it;

• activation of a new Function Block: each newly created FB must be started
in order to work;

• setting a parameter: in this case, it is necessary to input the involved FB’s
name, the parameter’s name and the desired value. Particular attention must
be paid to the parameter’s type so that the adopted syntax complies with the
standard notation, otherwise the operation will not have a successful outcome;

• creation of a new connection: when constructing a FB network, creating
proper connections is usually an essential step. Therefore, this block requires
as input the names of the two involved FBs and of the output and input events
(or parameters) which will be connected;

• event trigger: having this option is indispensable since performing it manu-
ally may not be feasible.

Further options are available but are not implemented in the current version of
the tool. These are basically the mirrored versions of the functions that have been
listed but in charge of cancelling/deactivating instead of creating, e.g., deleting a
connection or killing a Function Block.

It is equally important to analyze in detail the pivotal element of the application,
i.e., the TaskGen-FB SIFB, displayed in Figure 6.4. The required input parame-
ters concern the conventional activation boolean variable, QI(), and three strings
corresponding to the configuration files paths, as already mentioned. The output
parameters are a union of the data required by the previously described SIFBs to
perform their operations, and are thus accordingly connected. It possesses four input
events:

• INIT: block activation event, manually triggered;

• START: initiates the file-reading phase;

• STOP: interrupts the file-reading;

• REQ: elaborates the currently required command and issues the appropriate
output event.
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Figure 6.3: Screenshot of the FB-App Generating Network. TaskGen-FB is in charge of issu-
ing commands (CREATE, SET and CONNECT) and updating parameters at proper times. Such
events are then fed to the network and appropriately dispatched to the related branches. In partic-
ular FB-creating and -starting Reconfiguration Blocks (ST_CREATE_FB and EC_START_FB)
are triggered by the CREATE event. ST_SET_PRM, which sets a parameter value, is activated
by SET, whereas the block in charge of creating connections (ST_CREATE_CONN) is activated
by CONNECT. The two EC_SET_EVT blocks are necessary to initiate all blocks and trigger the
actual task execution (Header’s ATTACH event).

and five output events:

• INITO: signals the correct activation of the TaskGen-FB block, optionally
connected to the input START if the user does not wish to separate activation
from reading phase;

• CNF: issued once a command is ready to be processed, hence connected in
retroaction to REQ;

• CREATE: the first of the three feasible commands, related to the creation
of a new FB. The subsequent initialization is automatically handled by the
reconfiguration network;

• SET: commissions the setting of a parameter;
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Figure 6.4: TaskGen-FB block structure. It receives as input events INIT (the only one which
needs to be triggered by the user), START and STOP (referred to the reading phase), and REQ,
which processes an internal command request. The output events are INITO, which is connected
in retroaction to START so that a second manual trigger is not needed, CNF, also connected to
REQ, and CREATE, SET and CONNECT which are the three generation commands. The event-
parameters connections are also shown: for instance, the CREATE command requires a FB_NAME
and a FB_TYPE (its class). The required input parameters are the standard activation boolean
QI(), the procedure PACE(), and the three configuration files paths.

• CONNECT: similarly leads to the creation of a connection.

The block is endowed with an additional output parameter carrying information
about the state of the block, useful to monitor whether the process is correctly un-
raveling or an error has occurred.

In order to work out a methodology as efficient as possible, the possibility to
implement multithreading has been exploited. According to [87], a thread is an inde-
pendent flow of control in charge of a sequence of execution commands. Interaction
among different threads is allowed and encouraged since it may reduce the complexity
of the program and improve performances. Even on non-multiprocessor machines,
parallel execution may boost response time and throughput thanks to execution
overlaps and communication. Nevertheless, multithreading poses some challenges
in terms of expertise with creation and termination of threads, synchronization and
deadlock detection. The order in which operations are executed is a key factor, as
well as the management of access to shared data, hence several mechanisms have
been devised to tackle these issues. Inter-thread communication may also give rise
to problems [88] since interruption may unpredictably occur while a shared variable
is being updated, hence causing other threads requiring the access to the same data
set to work with out-of-date values and to thus be prone to erroneous behavior. In
any case, multithreading in C++ must be managed through dedicated libraries: for
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this project, Boost.Thread1 has been selected among the available ones.

The way multithreading is implemented in this translation is by breaking read-
ing and issuing commands into two different control flows. If the two operations
were performed by the same thread, after each output command it would have been
necessary to store the last examined line, resume reading the file and restart issu-
ing commands only after having gone through the portion of the file that has been
previously processed. This approach, although functional, is clearly not the most
efficient. Having a parallel thread allows the two processes to be decoupled, so that
the emission of a command does not force the file processing to undergo drastic
breaks. The parallel thread is initiated once TaskGen-FB receives the START event.

The internal thread commissions the issueing of an output event –among CRE-
ATE, SET and CONNECT– at proper times whereas the main thread is in charge of
actually putting it into practice. By choosing this path, the main thread processes
the command as soon as it is requested without causing any error or misbehavior.
Alternatively assigning this task to the internal thread causes the creation of an event
queue which is disposed of only when the internal thread is terminated. On the other
hand, parameters updates have an immediate effect under any circumstances, hence
the command emission takes place only taking account the set of values present at
thread termination, producing an unacceptable behavior.

With the chosen approach the internal thread is not subject to termination but
it does require a micro interruption, applying a monitoring mechanism similar to
a simplified version of a semaphore [88]. As a matter of fact, as already explained,
parameter updates are instantaneously effective, whereas the command emission pro-
cess does take some time in the order of microseconds. The parameter PACE() (see
Figure 6.4) sets the pause duration in µs, allowing a correct functioning without
altering the perception of the process or causing a perceivable slowdown. This can
be modified by the user in case he/she is interested in slowing the procedure down
(hence increasing the parameter value) for testing purposes.

In order to analyze the generation process more in detail, the logical mandatory
steps to follow are:

GS.1 generation and activation of action FBs
GS.2 parameter setting
GS.3 generation and activation of conditional FBs
GS.4 creation of connections

1Documentation available at http://www.boost.org/doc/libs/1_64_0/doc/html/thread.
html
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Figure 6.5: Pseudo-Sequence Diagram representing how the multithreading framework functions.
The user (left-most lifeline) is only required to trigger TaskGen-FB INIT event. This initiates the
main FB thread, hence self-triggering the START event if the feedback connection is present.
At this point the parent thread creates a parallel one (Internal Thread) with the boost :: bind
method which starts scanning the configuration files (scanFile()method). Once a scanning sequence
is complete, it instructs the main thread (startNewEventChain() method) to issue the proper
command (CREATE, SET or CONNECT) which is handled by the Generating Network. This
sequence is iterated until the configuration files have been fully scanned, after that the main thread
terminates the parallel one (join()) and itself, finalizing the generation process.

Changing this order may cause inconsistencies, in particular post-poning GS.1
and GS.3 with respect to GS.2 and GS.4: the application clearly does not allow
customization or connection of blocks which do not exist yet.

The actual processing strategy consists of acquiring the content of the configura-
tion files with pre-determined interpretation keys. For instance, when the key-phrase
Stereotype name (see Listing 6.3) is acquired, the content of the following line is
stored as value of the PRM_VALUE parameter, whereas PRM_NAME is set to
EXECUTION_CMD by default, all in order to gather the type of the action FB
that is under definition. In particular, GS.1 and GS.2 are performed based on the
content of Actions_file, GS.3 with Logic_file and GS.4 with Arrows_file.
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Chapter 7

Tools and Experimental Validations

This Chapter presents the implementation of the previously introduced procedures
dedicated to design, verification and deployment of a collaborative robotic task. Sec-
tion 7.1 presents the Papyrus tool, by which the user manages the UML diagrams,
and the interface of ConverTEAM that allows him/her to automatically obtain in-
puts for Zot and the FB application. Finally, the translation mechanism is applied
to the case study to prove its efficiency: in Section 7.2, the procedure to create the
TRIO logic expressions and to retrieve the formal verification results is presented,
whereas the generation of the configuration files and their usage for the deployment
of the task is validated in Section 7.3.

7.1 Software Tools

7.1.1 Modeling Tool

Papyrus1 is an Open Source Model-based tool, developed on the Eclipse platform
and licensed under the EPL (Eclipse Public License). It can either be used as
a standalone tool or as an Eclipse plugin and provides support for UML profiles,
Domain Specific Languages and SysML, being a graphical editor for UML2 as defined
by the Object Management Group (OMG). Since every part of Papyrus is designed
to be customizable, it has been possible to adapt the environment and introduce
elements that came in use for the scope of the project: e.g., the button to launch
ConverTEAM, the custom palette to easily choose the stereotyped OpaqueActions
for the Activity Diagram, as shown in Figure 7.1, or the definition of how to show

1Complete documentation can be found at https://wiki.eclipse.org/Papyrus.
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Figure 7.1: Papyrus interface screenshot capturing the customized palette. The top two compart-
ments, Nodes and Edges, are present by default, whereas the ones corresponding to notation-specific
sets have been operatively plugged in.

Figure 7.2: Papyrus interface screenshot capturing the profile refinement options. The box in
the middle displays the applied stereotype with correlated properties list, and the one on the right
allows the user to type in the value for the selected parameter. Stereotypes can be added or removed
using the above buttons featuring plus and minus signs.
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stereotypes properties and items in the different diagrams (see both Figures 7.1 and
7.2). Furthermore, after having added a new action in the Activity Diagram, its
attributes can be filled out by means of the Property window visible in Figure 7.2.

7.1.2 Transformation Tool

The beginning of a ConverTEAM procedure involves the request of some details
to the user and the most fitting tool to deal with this kind of communication is a
visual interface. ConverTEAM can be directly launched from the Papyrus interface
or, equivalently, as an external executable file. In any case, it is always indispens-
able to determine which of the four possible toolchains is interested by the current
execution. Therefore, the first phase of every toolchain is always represented by a
main window with four buttons, visible on the left-hand side of Figure 7.3. Each
button leads to a secondary window in which it is possible to fill out all the missing
information.

The first button, ZOT Files Generation, leads to the Model generation window,
which is extensively displayed in Figure 7.3. It collects all the specific aspects related
to SAFER-HRC models generation which cannot be retrieved from the HRC-TEAM
diagrams. In particular, the user has to select the paths to recover the UML model
and to set the location of the printed files; then he/she chooses, from a list of avail-
able Activity names, the one that has to be verified. It is also possible to specify
the time bound of the simulation and the completion condition that will be used
to evaluate the correct execution of the experiment. Finally, he/she can open the
Layout subordinate window dedicated to the establishment of the forbidden sections
for each agent. Once every request is satisfied, the generation of the files can be
launched and, if no error occurs, a pop-up message will comunicate the correct ter-
mination of the procedure. The generated files are now ready to be fed to Zot.

Then, when the results of the formal verification are returned to the user, the sec-
ond and the third buttons of the main window can be pressed by the user to obtain
a better readability for the Zot output. Basically, the two buttons provide the user
with a way to re-parse the information contained by Zot outcome. Textual Parsing
opens a framework in which, again, the UML project location and the desired Activ-
ity name are specified, but it is additionally requires to locate the Output file and to
indicate a location for the new file, an example of which is visible in Listing B.3. A
more sophisticated output is linked to the Graphical Parsing button, whose window
does not require any details about the UML diagrams, but only the location of the
Python script and the position for the folder that will contain the generated images.

Finally, as far as the generation of the configuration files is concerned, the con-
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Figure 7.3: The main window, visible as soon as ConverTEAM is launched, is visible on the
left-hand side. The first button is related to Formal Model generation. On the right the secondary
interface can be seen, featuring the information required by user for the automatic procedure.
Moreover, the Layout button can be pressed to specify the forbidden sections for each agent and
the Print Actions on a file can be ticked in case a further debugging file is needed.

tribution required to the user is fulfilled by means of a different secondary window,
linked to the App Config. Files Generation button of the GUI, shown in Figure 7.4.
In particular, he/she is asked to indicate the path of the UML project, the path
to the folder in which the Configuration Files will be created and the name of the
Activity whose workflow and parameter must be utilized in the generation. Once
the prerequisites are all filled in, they are retrieved and managed to perform the
automatic procedure.

Figure 7.4: The main ConverTEAM window is visible on the left-hand side. The button on
the bottom leads to Configuration Files generation. The secondary interface on the right contains
information the user has to fill out before proceeding with the automatic procedure: the location
of the UML project on his device, the name of the interested Activity and the folder location for
the new Configuration files.
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7.2 Validation of the Formal Verification Process

The transformation procedure has been applied to the case studies introduced
in Section 4.5 to test its proper functioning. Subsequently, a series of experiments
has been run using the model-checker ZOT to highlight eventual critical situations
raised by the modeled tasks. Firstly, the user inputs the .XMI files paths to the
GUI and selects the activity names he/she wishes to verify: in this case, caseA and
caseB. Afterwards, it is possible to set the specific experimental parameters: the
values picked for the experiments that will be relayed in the following paragraphs
will now be listed for the sake of repeatability. Case A has been verified with a time
bound equal to 60, and an exit condition requiring the execution of the whole task,
as in Formula (7.1). As for spacial constraints, the operator’s body is banned from
entering sections L0, L12, L13 and L42 (see Figure 4.16 for reference). Similarly, the
robot cannot reach section L51 due to workspace limitations. In order to keep the
experiment duration under a manageable time threshold, only two loop iterations
have been simulated. The setting was also chosen to allow for a comparison of
the formal model generated with the new Papyrus-based tool with the manually-
generated one. Moreover, DecisionNodes ’ values have indeed been manually forced
in order to simulate the worst cases, i.e., the ones more likely to give rise to hazardous
situations. For this reason, the two selected versions are V1 and V2 (selectTask1 =
1 and selectTask2 = 2), whereas V3 is left unverified since it does not directly
involve any collaboration, hence hazards could only emerge due to operator’s reckless
decisions.

SomF ((a18,sts = dn∧ a6,sts = dn) ∨ (a60,sts = dn∧ a50,sts = dn) ∨ a38,sts = dn)
(7.1)

The experiment involving Case B has been run with a time bound of 90 units,
and –again– the complete exit condition in Formula (7.2). In this case, the robot
cannot enter the pathway created to let the operator roam freely, i.e., sections
L61, L62, L63, L64 and L65. The operator’s body cannot occupy occluded sections,
that is to say US = L12, P = L21, TC = L33 and B = L52. The loop iterations have
also been reduced to 2 each, despite the unreasonableness of these values, to avoid
overly time-consuming and redundant simulations. Also in this case the decision
point’s variable has been manually forced to its "true" value, in order to simulate
the worst case in which the operator decides to empty the bin (emptyBin0 = 1).

SomF (a51,sts = dn∧ a55,sts = dn) (7.2)

As for the generated models, some segments can be found in Section B.2. For
instance, Listings B.7 and B.9 provide examples of decision variable generation (the
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first iteration of selectTask in Case A) and action block definition (action n.8 in Case
B). The latter shows examples of workflow-related (the action has a single Opaque-
Action predecessor) and stereotype-related guard conditions, which adhere to the
rules illustrated in Section 5.1.

Both experiments were run on a Linux desktop machine with a 3.4 GHz Intel R©
CoreTM i7-4770 CPU and 16 GB RAM. The experiments had an approximate time
duration of 15min for Case A and 50min for Case B, for a total of 68 and 58
actions respectively. Both models were found satisfiable hence a simulation trace
was returned.

ZOT Output Parsers

Before analyzing the actual simulation results, it is worth mentioning that ZOT
produces a textual output organized as to collect all predicates and all variable val-
ues for each time instant. The result though has very poor readability which utterly
compromises the user’s capability to interpret the content of the simulation. For this
purpose, and also in support of testing phases, two parsing tools have been developed
to allow a comprehensive but much easier understanding of the experimental results.

The first one has been developed in Eclipse with a dedicated custom Java class
Hist_Reader. Its execution produces a textual file containing time units re-arranged
as shown, for example, in Figure 7.5. Firstly, it lists actions in a relevant state,
hence it skips the ones which have not started yet. Secondly it indicates the sections
occupied by the operator and by the single robot components (Link1, Link2, EE).
Finally, it lists highlighted hazards and the involved actions (see warning messages
in Figure 7.5), and the active risk reduction measures, if any.

The second option has been developed as a Python2 script, and aims at reinter-
preting data in a graphical way. As a matter of fact, each time unit content is plotted
and overlaid on the schematic layout representations in Figures 4.16 and 4.18. More
specifically, it approximates the operator’s head as a blue dot (see, for example,
Figure 7.8) and draws a line to the hand’s location if it is in an adjacent section.
As for the robot, the base is represented by a large red circle and the End Effector
by a smaller one, whereas links are drawn as straight lines connecting the occupied
sections (again, see the red lines in Figure 7.8). Moreover, further information is
provided in terms of plot labels. More specifically the highlighted hazards are listed
as label on the x-axis, the time instant on the y-axis and the executing actions as
title on top of the graph. The result is clearly a stylized representation, but it still

2The implemented version is 3.5.2, whose documentation can be found at https://www.python.
org/doc/.
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allows the user to notice unrealistic or imprecise configurations which are not easily
detectable with the textual output.

Safety Assessment Outcome

The simulation has highlighted a series of hazardous situations for both cases:
the most relevant examples will now be described. As one might expect, for Case A
the most critical contingency is represented by the moment in which both agents are
working in close proximity to each other while tightening the pallet fixtures. One of

(a)

(b)

Figure 7.5: Detected Hazard n.1 (Case A): the operator is hit by the robot while reaching the
storage S = L73. Note that the model-checker has indeed activated a risk-reduction measure (force
limitation).
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Figure 7.6: Detected Hazard n.2 (Case A): both agents are working on the pallet in close
proximity to each other, hence a collision is highly probable.

Figure 7.7: Detected Hazard n.3 (Case A): the operator is hit by the robot while reaching for a
workpiece in the bin (B = L42).
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Figure 7.8: Detected Hazard n.1 (Case B): operator and robot are both working on the pallet
close to each other, hence collisions are very likely to take place. Note that the seemingly unnatural
configuration of the robot is due to the formal model’s partial support of prismatic joints (the
conveyor belt in this case). Nevertheless, this does not impact the safety assessment result (the
hazard would have still been detected with the base properly placed in L22).

Figure 7.9: Detected Hazard n.2 (Case B): the operator is picking a workpiece from the opposite
side and gets hit by the robot which is withdrawing to hold position after the untightening sequence.
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Figure 7.10: Detected Hazard n.3 (Case B): the operator is placing the bin after emptying it
while the robot is approaching the same area to deposit a container, causing a collision.

the detected hazards in this context is pictured in Figure 7.6: the robot is holding the
fixture in place, and the operator is approaching the pallet hence causing a collision
with Link2. In this case a bulletproof risk reduction measure is hardly conceivable,
since close proximity is indispensable to reach the task goal. It is reasonable to con-
clude that, since this hazard will always be possible, the only approach to minimize
its severity is to limit the robot’s speed and force and instruct the operator to act
with as much alertness as possible.

Other significant detected situations are pictured in Figures 7.5 and 7.7. The first
one concerns a time unit in which the robot is reaching the bin to grasp a workpiece
and the operator is moving to fetch the screwdriver from the storage, and their tra-
jectories intersect in between Sections L0 and L31. In this case, as Figure 7.5 shows,
the model-checker has already activated a risk reduction measure to limit the robot’s
force, but an additional degree of safety might be added by instructing the operator
to take the other way around to reach the storage (i.e., passing through Section L81
or L82) since the bottom sector is needed by the robot to execute its operations.
The last given example captures the opposite situation, i.e., the operator is reaching
for a workpiece in the bin whereas the robot is approaching the pallet to tighten
the fixture. Therefore, as Figure 7.7 shows, the operator is hit by Link2 and the
End-Effector. Similarly to the previous case, instructing the operator to get close
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the bin from the other side (i.e., Section L51) might solve the issue. Alternatively
it may also be possible to re-plan the robot’s trajectories so that they do not cross
such critical sections, but the pros and cons of this option must be weighted on a
case by case basis.

As already mentioned, it is possible to compare these results to the ones ob-
tained from experiments run with manually-generated model. More precisely, such
conclusions can be stated only after several iterations of the formal verification pro-
cedure are performed on both models, since the simulation of the task is stochastic
and may provide different results even re-using the exact same files. Under these
assumptions, the comparison shows that the new tool keeps the same level of accu-
racy in the detection of hazards, while making the design process easier for safety
experts and less time-consuming. Among the produced execution traces of the two
models, the detected hazardous situations were the same and every reported warning
is meaningful and related to impacts and entanglements between operator and robot.

On the contrary, as far as Case B is concerned, the UML diagrams are created
ex-novo so that it is possible to test HRC-TEAM and, consequently, the translation
toolchain from a different point of view. As a matter of fact, since a manually-
created formal model is not available for this case study, the point, in this case,
is to understand whether the Abstract Model and ConverTEAM are able to lead
to the detection of new meaningful and consistent hazards. Results show that the
interval in which operator and robot are both working on the pallet in Section L21
raises criticalities. As pictured in Figure 7.8, while the operator is keeping the top
workpiece still his lower arm is hit by the robot which is approaching the pallet. The
same conclusions as for Case A about this contingency can be drawn also for this
second case. In addition, Figure 7.9 captures a further critical situation due to the
robot’s moving to return to holding position and the operator choosing to pick the
top workpiece standing in Section L31. In this case multiple solutions are conceivable:
firstly instructing the operator to avoid crossing such section unless strictly necessary.
In case this excessively impacts on efficiency (i.e., if they are working on a fixture
slot which is closer to the pallet’s right side, this might result overly uncomfortable),
the robot’s trajectory could be redesigned. Ultimately, an additional interrupt might
be added to the model to increase the operator’s control on the robot’s movements:
for instance, a second gesture recognition routine could be programmed so that the
operator can trigger the robot’s withdrawal only after he/she is done with removing
workpieces. Finally, the third captured hazard, depicted in Figure 7.10, is caused
by the operator choosing to empty the bin and bring it back to position while the
robot is approaching the area to deposit one of the containers. This clearly causes
a collision between the End-Effector and the operator’s lower arm area. In this
case, a further possible solution is the implementation of a vision control system to
detect whether the operator is hindering the path to the bin and issue a command to
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prevent the robot from moving and causing any harm. In any case, the advantages
and eventual disadvantages brought by these fixes need to be evaluated by the user
as he/she revisits the model.

7.3 Validation of the Deployment Process

The effectiveness and soundness of the application generation process has been
tested against the Case A, V2 task model (the related Activity Diagram can be seen
in Figure A.7). In the absence of material resources, a simulation environment has
been envisaged in order to prove the procedure’s correctness. Prior to the introduc-
tion of the simulator, it is necessary to discuss how the preceding steps, as pictured
in Figure 6.1, apply to the specific case study.

In order to avoid unnecessary redundancies, the number of loop iterations has
been reduced to 2 through the modeling tool. ConverTEAM has been thus launched,
as explained in Section 7.1.2, to generate the related configuration files. Due to the
presence of multiple iterations, all elements required by the files are duplicated, with
the IDs properly adjusted as explained in Section 6.1.1. Since only one version of
Case A is taken into account, the selectTask DecisionNode is not involved in the
translation, whereas toolHeld is still required. Therefore, all four logic connectors
are featured by the example. Furthermore, the example allows state-based command
stereotype management to be tested also in the deployment-oriented environment,
since two stereotyped arrows (one with << executing, start >> and the other with
<< done, SOFTstop >>) are featured by the chosen Activity Diagram.

The so-generated files are fed to the fixed application-generating FB network,
pictured in Figure 6.3, and the generation process is initiated by manually triggering
TaskGen-FB INIT event. This operation is performed through the 4DIAC-IDE 1.81

Figure 7.11: Segment of ROS nodes feedback message during task simulation. The resource (bill
and kuka in this close-up) sends a notification message when an action is done and when it starts
executing. In the latter case, the node also communicates the action’s stereotype (e.g., hold and
tighten).
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interface, with FORTE 1.8 M1 running on a Linux virtual machine. With parameter
PACE() set to 500µs, the generation process is perceived as almost instantaneous
by the user. Through feedback messages printed in FORTE’s shell, it is possible to
verify that no error occurred during creation and connection phases. Therefore, the
application is ready to be either deployed or, as in this case, simulated.

In a first step, virtual ROS nodes, representing resources required by this ex-
ample (i.e., named kuka, gripper, and bill) are created and launched. Such nodes
subscribe to the correlated topics where TaskFBs belonging to the generated appli-
cation publish their control messages. Feedback notes are consequently generated in
their respective shell which allow the user to check whether actions are being exe-
cuted as requested by the UML model. In order to trigger task execution, firstly ROS
nodes must be manually initialized, and then the Header’s ATTACH event must be
manually triggered as well.

In the specified experimental setting, nodes’ responses, a segment of which is
shown in Figure 7.11, whereas a complete iteration is shown by Listing C.5, show
that the operator approaches the pallet while the robot approaches the bin, picks
a workpiece and moves towards the pallet. While the robot’s holding action is still
executing, the operator tightens the fixture bolt and releases the robot only after
completion. The sequence is repeated for the second iteration. Therefore, despite
the clear limitations of this simulation technique (for instance, the necessary ROS
nodes have to be specified by the user, which may not possess the necessary skills,
and the information received as feedback is minimal), it still allows us to conclude
that the generated application contains the correct actions and properly replicates
the logic connections among them featured by the original Activity Diagram.
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Chapter 8

Conclusion and Future Developments

8.1 Achievements

In this work we have introduced a tool-supported model-driven approach dedi-
cated to modeling HRC applications. The HRC-TEAM profile handles UML dia-
grams enriched with suitable stereotypes that link all of them to each other: a Class
Diagram and different Component Diagrams to describe the domain of the desired
task, Activity Diagrams to define its workflow. Moreover, the ConverTEAM tool
grants two parallel transformation toolchains, summed up by Figure 8.1, in order to
generate a formal logic model based on the SAFER-HRC methodology and a set of
files to configure a function block application compliant with the IEC 61499 stan-
dard. The first translation is used in the context of safety analysis to formally verify
the safety conditions of the designed task, whereas the second translation grants
direct deployment of the application on specific resources in a real environment.

Due to the graphical nature of the approach, the user is allowed to precisely
design HRC applications in an easier, faster and more automated way. The UML
notation lets users quickly modify existing designs and easily build new task models
as variations of previous ones. Besides, even if they do not have an extensive back-
ground in formal modeling approaches, it is possible for them to instantaneously
generate formal models to perform a formal verification of the task: the results can
be used, together with internal consistency checks, to iteratively improve the design
until a proper level of correctness and estimated risk is reached. Similarly, the user is
not required to replay the modeling phase in order to create a deployable application,
but the shift to the real environment can be automatically performed with minimum
manual input and significant time savings.
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Figure 8.1: Final toolchain scheme. Each fragment represents a step of the procedure, starting
from the HRC-TEAM models that are necessary to represent the collaborative task. Then, they
are either transformed into the configuration files or the formal logic models, respectively re-parsed
to generate the FB application or verified through the model-checker ZOT. Finally, the user can re-
trieve and parse the results of the verification to modify the Abstract Model, iterating the procedure
until deemed necessary, and deploy the FB application on the real system or on the simulator.

8.2 Future Work

Besides the illustrated achievements and advantages brought by this work, there
still is room for future improvements to enhance the aforementioned characteristics.

First of all, communication through the GUI should be developed in order to
refine the management of preferred settings, for example by saving the selected sec-
tions forbidden to the agents or the different paths chosen to apply the procedure.
Moreover, interaction with the user could be extended in order to further customize
simulation settings, for example a-priori selecting the outcome of Decision Points.

Some features could also be added to the profile itself. For instance, recon-
figuration and risk reduction measures are an important concept both for formal
verification and IEC 61499 applications. Therefore, the profile could be extended
in order to capture these alternative flowlines and the criterion behind respective
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activations and dismissals. This could, for example, be achieved by deepening Deci-
sionNodes characterization in order to endow them with significant conditions rather
than their current non-deterministic connotation. However, the main improvement
will regard the overall portability of the tool: HRC-TEAM should be turned into a
rigorous UML profile. As a matter of fact, the user should be able to dynamically
apply and un-apply the desired perspective to each of his/her models, rather than
consistently having to replicate the Class Diagram in accordance with the template.
Furthermore, the notation could also benefit from stronger inter-diagram connec-
tions. In fact, at current state, while it is necessary to have a dedicated stereotype
for each of the Class Diagram Agents’ operations if one is willing to employ them
in the Activity Diagram, its actual application to the specific method does not have
any practical effect. This implies that efforts could be put in the future into solving
this issue.

As for the formal verification-oriented translation, improvements can be made
about more complex robot architectures support. In the current version, the conver-
sion tool is not able to handle systems composed by an arbitrary number of links or
not classified as antropomorphic arm. As a matter of fact, SAFER-HRC only sup-
ports models containing two rotational links and one end-effector. Another enhance-
ment could be the extension to more than two agent instances, since at this moment
the model is able to manage only one Operator and one Robotic arm. Furthermore,
although models obtained manually and through the automated ConverTEAM tool
are currently comparable, they are not identical. To be more precise, an absolute
100% match will hardly ever be conceivable, but some work can be done towards
closing this gap. A major step forward could be made by implementing contextual
variations in relation to the generation of stereotype-related guard-conditions. In
fact, right now the tool performs this operation by adamantly following fixed pat-
terns (each stereotype corresponds to a fixed set of conditions). This feature could
be improved by having it dynamically take into consideration contextual factors
(e.g., which actions could be simultaneously executing and which agents could hap-
pen to be nearby), similarly to what a human programmer is naturally driven to
do while manually drafting the models. Finally, also indicators about physical and
mental state of the operator, i.e., fatigue and awareness, which are already featured
by HRC-TEAM models, could by transposed into logical terms and exploited by
the formal verification. This improvement would add a further layer of realism and
accuracy to the safety assessment results.

As for the evualuation of the approach in its entirety, bringing it to the attention
of actual practitioners could provide a meaningful unbiased assessment of its overall
utility. First of all, the efficiency of the model-to-deployment branch should be tested
on material resources, in order to determine whether the shift to a real environment
entails an excessive model complexity increase hurting performances. Furthermore,
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the formal verification process should be subject to evaluation by a safety expert.
As a matter of fact, the time and effort required by an external auditor to acquire
expertise on the notation and develop diagrams from scratch could be compared
to the effort required by directly drafting the formal models or the FB application.
As a further step forward, the very decision to adopt a formal verification method
based on model-checking versus a standard manual risk assessment technique could
be called into question to objectively appraise advantages and drawbacks.
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Appendix A HRC-TEAM Models

A.1 Class Diagram
Fig. A.1 displays the complete developed Class Diagram. Classes are displayed

in light blue, whereas InstanceSpecifications are portrayed in different colors based
on their nature which are then inherited by following diagram for a better visual
understanding of the elements meaning. The two main superclasses Resource and
Layout are connected by an association, whereas the other Classes are featured as
specifications of either of the two. A complete description of all the featured elements,
their attributes and their methods can be found in Section 4.2.1.

A.2 Component Diagrams
Figures A.2, A.3, A.4, A.5 and A.6 carry complete examples of Component Di-

agrams developed for Case A and Case B. As for the Operator (Figure A.2), this
is exploited to state an association with the ArmBand. For the Robotic Systems
(Figure A.3 and Figure A.4), the inter-component connectors are implemented to
declare a kinematic constraint among single items (e.g., between the conveyor and
the robotic arm). Finally, in the layouts cases (Figure A.5 and Figure A.6), single
sections are instantiated and connected to each other to create adjacency constraints.

A.3 Activity Diagrams
Figures A.7 and A.8 feature the complete Activity Diagrams for the two case

studies, A and B. Note that all OpaqueActions are endowed with a stereotype, and so
are some of the arrows carrying state-based commands different from the default one
(see Section 4.4 for the complete analysis). Also note that for Case A(Figure A.7) the
three different versions are handled by the DecisionNode selectTask, whereas Figure
A.8 features both LoopNodes necessary for Case B and the DecisionNode emptyBin
referring to possible operator’s choices (explained in detail in Section 4.5.4).
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Figure A.1: Complete Class Diagram for Case A and Case B.
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Figure A.2: Operator Component Diagram for Case A and Case B.

Figure A.3: Robotic System Component Diagram for Case A.

Figure A.4: Robotic System Component Diagram for Case B.
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Figure A.5: Layout Component Diagram for Case A.

Figure A.6: Layout Component Diagram for Case B.
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Figure A.7: Complete Activity Diagram for Case A.
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Figure A.8: Complete Activity Diagram for Case B.
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B.1 Java Code

Listing B.1: Portion of Total Action List (TAL) creating function
1 public void getActionsTAL(Activity act){
2 List <Action > TAL = new ArrayList <Action >();
3 int id = 1;
4 for(ActivityNode n: act.getNodes ()){
5 // Action is out of any loop
6 if (n instanceof OpaqueAction){
7 OpaqueAction op = (OpaqueAction) n;
8 Action ac = new Action(op);
9 ac.oldID = id;

10 ac.iter = 0;
11 ac.ID = id++;
12 if(n.getAppliedStereotypes ().size() == 0){ // only the ActivityFinal

OpaqueAction has no applied stereotype!
13 ac.ID = -1;
14 }
15 TAL.add(ac);
16 }
17 // Action is inside a loop
18 if (n instanceof StructuredActivityNode){
19 StructuredActivityNode san = (StructuredActivityNode) n;
20 int loopIter = Integer.parseInt(san.getName ());
21 for (ActivityNode n2: san.getContainedNodes ()){
22 if(n2 instanceof OpaqueAction){
23 int idfix = id;
24 for(int i=0;i<loopIter;i++){
25 OpaqueAction op2 = (OpaqueAction) n2;
26 Action ac = new Action(op2);
27 ac.oldID = idfix;
28 ac.iter = i+1;
29 ac.ID = id++;
30 TAL.add(ac);
31 }
32 }
33 }
34 }
35 }
36 this.aList = TAL;
37 this.getPreCondTAL(TAL);
38 this.getDecNodes(act);
39 }
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Listing B.2: Portion of Pre-Conditions list creating function
1 public void getPreCondTAL(List <Action > TAL , List <ActivityEdge > ee){
2 for(Action a: TAL){
3 int iter = a.iter;
4 for(ActivityEdge e: a.op.getIncomings ()){
5 ActivityNode source = e.getSource ();
6 PreCondition pc = new PreCondition ();
7 Predecessor p = new Predecessor ();
8

9 // Set pre -condition command
10 for(Stereotype st: e.getAppliedStereotypes ()){
11 if (st.getProfile ().getName ().equals("tempOperatorCommand")){
12 pc.command = st.getName ();
13 }
14 }
15

16 // Set pre -condition p
17 if(a.op.getInStructuredNode () != source.getInStructuredNode ()){
18 // First element of a loop , with iteration > 1

19
...

20 if(source instanceof OpaqueAction){ // OpaqueAction case
21 for(Action a2: TAL){
22 if(a2.op == source && a2.iter == iter -1){
23 p.name = a2.op.getName ();
24 for(Stereotype st: e.getAppliedStereotypes ()){
25 if (st.getProfile ().getName ().equals("

tempOperatorState")){
26 p.what = st.getName ();
27 }
28 }
29 p.ID = a2.ID;
30 }
31 }
32 }
33 else{ // Connector case , recursive call
34 if(source instanceof InitialNode){
35 p.what = "InitialNode"; }
36 else{
37 p = this.getPreCondTALconn(e, p, TAL , iter -1, ee); }
38 }
39 }
40 // First element of a loop , with iteration = 1
41 else if(a.op.getInStructuredNode () != null){
42 if(source instanceof OpaqueAction){ // OpaqueAction case

43
...

44 else if(a2.op.getInStructuredNode () != null){ // but the precond
is inside another loop

45
...

46 }
47 }
48 else{ // Connector case , recursive call

49
...

50 }
51 }
52 // Action a is outside any loop , whereas Precond is inside a loop
53 else{
54 int totalIter = Integer.parseInt(source.getInStructuredNode ().

getName ());
55 if(source instanceof OpaqueAction){ // OpaqueAction case
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56
...

57 }
58 else{ // Connector case , recursive call

59
...

60 }
61 }
62 }
63 // Action a and Precond are inside the same loop or both outside
64 else{
65 if(source instanceof OpaqueAction){ // OpaqueAction case

66
...

67 }
68 else{ // Connector case , recursive call

69
...

70 }
71 pc.p = p;
72 a.precond.add(pc);
73 }
74 }
75 }

B.2 ZOT Input

Listing B.3: Generated operator body constraints for Case A/O.lisp
1 (defconstant *Operator_Body*
2 (alwf
3 (&&
4 (<->
5 (-P- OperatorStill)
6 (-A- i body_indexes ([=](- V- Body_Part_pos i) (yesterday (-V-

Body_Part_pos i))))
7 )
8

9 ([ >=](-V- Body_Part_pos 1) L_0)
10 ([ <=](-V- Body_Part_pos 1) L_4_2)
11

12 (!!([=] (-V- Body_Part_pos 1) L_0))
13 (!!([=] (-V- Body_Part_pos 1) L_1_2))
14 (!!([=] (-V- Body_Part_pos 1) L_1_3))
15 (!!([=] (-V- Body_Part_pos 1) L_4_2))
16

17 (||
18 ([=] (-V- Body_Part_pos 1) (yesterday (-V- Body_Part_pos 1)))
19 (Adj (-V- Body_Part_pos 1) (yesterday (-V- Body_Part_pos 1)))
20 )
21

22 ([=] (-V- Body_Part_pos 1) (-V- Body_Part_pos 2))

23
...

24 ([=] (-V- Body_Part_pos 11) (-V- Body_Part_pos 7))

25
...

26 (|| ([=] (-V- Body_Part_pos 1) (-V- Body_Part_pos 11))
27 (Adj (-V- Body_Part_pos 1) (-V- Body_Part_pos 11))
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28 )
29 ) ) )

Listing B.4: Generated robot structure constraints for Case B/R.lisp
1 (defconstant *Robot_Structure*
2 (alwf
3 (&&
4 ([=](- V- End_Eff_F_Position) (-V- End_Eff_B_Position))
5

6 (||
7 (Adj (-V- LINK1_Position) L_0)
8 ([=] (-V- LINK1_Position) L_0)
9 )

10

11 (||
12 (Adj (-V- LINK1_Position) (-V- LINK2_Position))
13 ([=] (-V- LINK1_Position) (-V- LINK2_Position))
14 )
15

16 (||
17 (Adj (-V- End_Eff_B_Position) (-V- LINK2_Position))
18 ([=] (-V- End_Eff_B_Position) (-V- LINK2_Position))
19 )
20

21 (!!([=] (-V- LINK1_Position) L_6_2))
22 (!!([=] (-V- LINK2_Position) L_6_2))
23 (!!([=] (-V- End_Eff_B_Position) L_6_2))

24
...

25

26 (->
27 (-P- Robot_Idle)
28 (&&
29 (!! (-P- LINK1_Moving)) (!! (-P- LINK2_Moving)) (!! (-P-

End_Eff_Moving))
30 )
31 )
32

33 (<->
34 (-P- Robot_Homing)
35 (&&
36 ([=](- V- End_Eff_B_Position) L_0) ([=](- V- LINK2_Position) L_0)

([=](- V- LINK1_Position) L_0)
37 (!! (-P- LINK1_Moving)) (!! (-P- LINK2_Moving)) (!! (-P-

End_Eff_Moving))
38 )
39 )
40 ) ) )

Listing B.5: Generated layout structure for Case A/L.lisp
1 ; Layout
2

3 (defvar L_0 0)
4 (defvar L_7_1 1)
5 (defvar L_4_1 2)
6 (defvar L_3_2 3)
7 (defvar L_2_2 4)

8
...

9 (defvar L_8_2 17)
10 (defvar L_7_2 18)

122



APPENDIX B. SAFER-HRC MODELS

11 (defvar L_6_2 19)
12 (defvar L_4_2 20)

Listing B.6: Generated layout adjacency constraints for Case B/L.lisp
1 (defun Adj (i j)
2 (||
3 (&&([=] i L_1_2)(|| ([=] j L_2_2)([=] j L_1_1)([=] j L_1_3)([=] j L_6_1)))
4 (&&([=] i L_2_1)(|| ([=] j L_1_1)([=] j L_2_2)([=] j L_3_1)([=] j L_6_2)))
5 (&&([=] i L_2_2)(|| ([=] j L_1_2)([=] j L_2_1)([=] j L_2_3)([=] j L_0)))
6 (&&([=] i L_2_3)(|| ([=] j L_1_3)([=] j L_2_2)([=] j L_3_3)([=] j L_6_3)))

7
...

8 (&&([=] i L_6_3)(|| ([=] j L_6_1)([=] j L_6_5)([=] j L_1_3)([=] j L_2_3)([=]
j L_3_3)))

9 (&&([=] i L_6_1)(|| ([=] j L_6_2)([=] j L_1_1)([=] j L_1_2)([=] j L_1_3)([=]
j L_6_3)))

10 (&&([=] i L_6_4)(|| ([=] j L_6_2)([=] j L_4_1)([=] j L_5_1)))
11 (&&([=] i L_6_5)(|| ([=] j L_6_3)([=] j L_4_3)([=] j L_5_3)))
12 ) )

Listing B.7: Generated decision variable constraints for Case A/T.lisp
1 (define-tvar selectTask1 *int*)
2 (defconstant *selectTask1config*
3 (alw
4 (&&([ >=](- V- selectTask1) 1)
5 ([ <=](-V- selectTask1) 3)
6 ([=](- V- selectTask1)(yesterday (-V- selectTask1)))
7 )
8 )
9 )

Listing B.8: Examples of action block configuration constants in Case A/T1.lisp
1 ; Moves to tombstone
2

3 (defconstant *Action22T1*
4 (alwf (&&
5 ; Pre-Condition
6 (->
7 ([=] (-V- Action_Pre 22 T1) 1)
8 (&&
9 (||

10 (&& ([=] (-V- toolAttached2) 2)
11 (&& ([=] (-V- selectTask2) 1)
12 (||
13 (&&
14 ([=] (-V- actions 17 1 T1) done)
15 ([=] (-V- actions 5 1 T1) done)
16 )
17 (&&
18 ([=] (-V- actions 59 1 T1) done)
19 ([=] (-V- actions 49 1 T1) done)
20 )
21 ([=] (-V- actions 37 1 T1) done)
22 )
23 )
24 )
25 ([=] (-V- actions 10 1 T1) done)
26 )
27 ([=] (-V- End_Eff_B_Position) L_0)
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28 ) )
29 ; Post-Condition
30 (->
31 ([=] (-V- Action_Post 22 T1) 1)
32 (&&
33 ([=] (-V- End_Eff_B_Position) L_1_3)
34 ) )) ) )

Listing B.9: Examples of action block configuration constants in Case B/T1.lisp
1 ; Op. places wp in the buffer
2

3 (defconstant *Action8T1*
4 (alwf (&&
5 ; Pre-Condition
6 (->
7 ([=] (-V- Action_Pre 8 T1) 1)
8 (&&
9 ; Workflow-related

10 ([=] (-V- actions 2 1 T1) done)
11 ; Stereotype-related
12 (-P- partTaken)
13 ([=] (-V- Body_Part_pos hand) L_1_2)
14 )
15 )
16 ; Post-Condition
17 (->
18 ([=] (-V- Action_Post 8 T1) 1)
19 (&&
20 (!! (-P- partTaken))
21 (-P- partPresent)
22 ([=] (-V- Body_Part_pos hand) L_1_2)
23 )
24 )
25 ; Inter-Condition
26 (->
27 (||
28 ([=] (-V- actions 8 1 T1) executing)
29 ([=] (-V- actions 8 1 T1) exrm)
30 )
31 (&&
32 ([=] (-V- Body_Part_pos hand) L_1_2)
33 )
34 ) )) )

B.3 Parsed ZOT Output

Listing B.10: Sample of parsed ZOT output for Case A experiment
1 ---------------------------------- time 0 ----------------------------------
2

3 Operator in L_2_2 L_2_3
4 Robot in L_4_2 (EE) - L_3_1 (Link1) - L_3_2 (Link2) -
5

6 RRM *force decrease* active
7

8
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9 ---------------------------------- time 1 ----------------------------------
10 Action 23 waiting -Op. to TC 1-
11

12 Operator in L_2_3
13 Robot in L_4_2 (EE) - L_3_1 (Link1) - L_3_2 (Link2) -
14

15

16 ---------------------------------- time 2 ----------------------------------
17 Action 23 executing -Op. to TC 1-
18

19 Operator in L_2_1 L_2_2
20 Robot in L_4_2 (EE) - L_3_1 (Link1) - L_3_2 (Link2) -
21

22 RRM *force decrease* active
23

24

25 ---------------------------------- time 3 ----------------------------------
26 Action 23 executing -Op. to TC 1-
27 Action 39 executing -Robot moves to bin 1-
28

29 Operator in L_3_1 L_3_2
30 Robot in L_0 (EE) - L_3_1 (Link1) - L_3_1 (Link2) -
31

32

33 ---------------------------------- time 4 ----------------------------------
34 Action 23 executing -Op. to TC 1-
35 Action 39 executing -Robot moves to bin 1-
36

37 Operator in L_0 L_3_1
38 Robot in L_4_1 (EE) - L_3_1 (Link1) - L_3_1 (Link2) -
39

40 RRM *force decrease* active
41

42 -------------------->WARNING: upper body ent with L2 in L_3_1
43 -------------------->WARNING: waist area ent with L2 in L_3_1
44 -------------------->WARNING: lower body ent with L2 in L_0
45

46 ---------------------------------- time 5 ----------------------------------
47 Action 23 executing -Op. to TC 1-
48 Action 39 executing -Robot moves to bin 1-
49

50 Operator in L_3_1 L_4_1
51 Robot in L_4_1 (EE) - L_7_1 (Link1) - L_0 (Link2) -
52

53 RRM *vel decrease* active
54

55

56 ---------------------------------- time 6 ----------------------------------
57 Action 23 executing -Op. to TC 1-
58 Action 39 done -Robot moves to bin 1-
59 Action 41 executing -Robot approaches bin 1-
60

61 Operator in L_4_2 L_5_1
62 Robot in L_4_2 (EE) - L_3_1 (Link1) - L_3_2 (Link2) -
63

64

65 ---------------------------------- time 7 ----------------------------------
66 Action 23 executing -Op. to TC 1-
67 Action 39 done -Robot moves to bin 1-
68 Action 41 done -Robot approaches bin 1-
69 Action 45 executing -Robot picks workpiece 1-
70

71 Operator in L_6_2
72 Robot in L_4_2 (EE) - L_3_1 (Link1) - L_4_1 (Link2) -
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Appendix C IEC 61499 Application

C.1 Java Code

Listing C.1: Portion of Total Edge List (TEL) creating function
1 public void getEdgesTEL(Activity act){
2 for(ActivityEdge e: act.getEdges ()){
3 int mIter = 1;
4 ActivityNode tempSource = e.getSource ();
5 ActivityNode tempTarget = e.getTarget ();
6 Edge temp = new Edge();
7

8 // Assigning the correct value to mIter
9 if(tempSource.getInStructuredNode () != null

10 && tempSource.getInStructuredNode () == tempTarget.
getInStructuredNode ()){

11 mIter = Integer.parseInt(e.getSource ().getInStructuredNode ().getName ());
12 }
13

14 // Get stereotypes related to Source state and command for Target
15 for(Stereotype st: e.getAppliedStereotypes ()){
16 if(st.getProfile ().getName ().equals("tempOperatorState")){
17 temp.sourceState = st.getName ();
18 }
19 else if(st.getProfile ().getName ().equals("tempOperatorCommand")){
20 temp.targetCommand = st.getName ();
21 }
22 }
23

24 // Target of the Arrow
25 temp.edgeTarget = tempTarget;
26 if(tempTarget instanceof JoinNode){

27
...

28 }
29 else if(tempTarget instanceof MergeNode){

30
...

31 }
32

33 // Source of the Arrow
34 temp.edgeSource = tempSource;
35 if(tempSource instanceof ForkNode){

36
...

37 }
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38 else if(tempSource instanceof DecisionNode){

39
...

40 }
41

42 // Copying the Arrow in case of loops
43 for(int i=0;i<mIter;i++){
44 Edge temp2 = new Edge(temp);
45 temp2.iter = i+1;
46 TEL.add(temp2);
47 }
48 }
49

50 // Creating arrows for SpecialReturn (from the end of the loop to a new
iteration of it)

51 for(ActivityEdge e: act.getEdges ()){
52 if(e.getSource ().getInStructuredNode () != e.getTarget ().getInStructuredNode

()
53 && e.getTarget ().getInStructuredNode () != null){
54 for(ActivityEdge e2: act.getEdges ()){
55 if(e != e2 && e2.getSource ().getInStructuredNode () != e2.getTarget ()

.getInStructuredNode ()){
56 if(e.getTarget ().getInStructuredNode () == e2.getSource ().

getInStructuredNode ()){
57

58 // Target of the Arrow
59 temp.edgeTarget = e.getTarget ();
60 if(tempTarget instanceof JoinNode){

61
...

62 }
63 else if(tempTarget instanceof MergeNode){

64
...

65 }
66

67 // Source of the Arrow
68 temp.edgeSource = e2.getSource ();
69 if(tempSource instanceof ForkNode){

70
...

71 }
72 else if(tempSource instanceof DecisionNode){

73
...

74 }
75

76 // Copying the Arrow in case of loops
77 int mIter = Integer.parseInt(e.getTarget ().

getInStructuredNode ().getName ());
78 for(int i=0; i<mIter -1; i++){
79 Edge temp2 = new Edge(temp);
80 temp2.iter = -(i+1);
81 TEL.add(temp2);
82 }
83 }
84 }
85 }
86 }
87 }
88 this.eList = TEL;
89 }
90 }

128



APPENDIX C. IEC 61499 APPLICATION

C.2 TaskGen-FB Root C++ Code

Listing C.2: Function run by the internal thread to scan configuration files
1 vo i d FORTE_TaskGenFB : : th readFcn ( )
2 {
3 i n t i n t e r v a l D u r = PACE( ) ;
4 CTimerHandler : : sm_poFORTETimer−>reg i s t e rT imedFB(&m_stTimeListEntry , DT) ;
5 u s l e e p ( i n t e r v a l D u r ) ;
6 wh i l e ( ! e x i t ) {
7 STATE( ) = " r e ad i n g " ;
8 sw i t ch ( c u r r F i l e ) {
9 ca se 1 :

10 s t d : : g e t l i n e ( a c t i o n F i l e , l i n e ) ;
11 i f ( l i n e=="HowManyRes" ) {
12 howManyRes = s td : : a t o i (getPRM( c u r r F i l e ) . ge tVa lue ( ) ) ;
13 FB_NAME( ) = "Header " ;
14 s t d : : s t r i n g s t r e am s s ; ss<<howManyRes ;
15 s t d : : s t r i n g s ; s = "H" ; s . append ( s s . s t r ( ) ) ; // s . append ("RES") ;
16 FB_TYPE( ) . f r omSt r i n g ( s . c_st r ( ) ) ;
17 processComm (1) ;
18 // I n f r a s t r u c t u r e C r e a t i o n

19
...

20 }
21 // C r ea t e s GLOBAL_T b l o c k s and s e t s t h e i r pa ramete r s
22 i f ( l i n e=="ID : " ) {
23 FB_NAME( ) = getPRM( c u r r F i l e ) ; FB_TYPE( ) = "GLOBAL_T" ;
24 processComm (1) ; }
25 i f ( l i n e=="Agent : " ) {
26 PRM_NAME( ) = "RESOURCE_NAME" ; PRM_VALUE( ) = getPRM( c u r r F i l e ) ;
27 processComm (2) ; }
28 i f ( l i n e==" S t e r e o t y p e name : " ) {
29 PRM_NAME( ) = "EXECUTION_CMD" ; PRM_VALUE( ) = getEX_COMM() ;
30 processComm (2) ; }
31 i f ( l i n e=="DESTPOS: " | | l i n e=="CONTROL TYPE: " | | l i n e=="OVERRIDE : " ) {
32 PRM_NAME( ) = getPRM_NAME( ) ; PRM_VALUE( ) = getPRM( c u r r F i l e ) ;
33 processComm (2) ; }
34 i f ( a c t i o n F i l e . e o f ( ) ) {
35 a c t i o n F i l e . c l o s e ( ) ; c u r r F i l e ++; }
36 break ;
37 ca se 2 :
38 s t d : : g e t l i n e ( l o g i c F i l e , l i n e ) ;
39 i f ( l i n e==" JoinNodes " ) {
40 FB_TYPE( ) = "JoinFB" ; }

41
...

42 break ;
43 ca se 3 :
44 s t d : : g e t l i n e ( a r r owF i l e , l i n e ) ;
45 i f ( l i n e=="Source ID : " ) {
46 FB_NAME( ) = getPRM( c u r r F i l e ) ; handle_conn ( ) ; }

47
...

48 break ;
49 }
50 }
51 STATE( ) = " i d l e " ;
52 }
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Listing C.3: Function run by the internal thread to process commands
1 vo i d FORTE_TaskGenFB : : processComm ( i n t comm)
2 {
3 sw i t c h (comm){
4 ca se 1 :
5 s endCrea t e = t r u e ;
6 s t d : : cout << "−−−−−−−−−−−−−−−−−−−−−−> Crea t i n g b l o ck " << FB_NAME( ) .

ge tVa lue ( ) << " ( " << FB_TYPE( ) . ge tVa lue ( ) << " ) " << std : : e nd l ;
7 break ;
8 ca se 2 :
9 sendSet = t r u e ;

10 // Debug message
11 break ;
12 ca se 3 :
13 sendConnect = t r u e ;
14 // Debug message
15 break ;
16 }
17 // T r i g g e r s the e x e c u t i o n o f cg_nExterna lEvent ID case
18 CTimerHandler : : g e tDev i c eExe cu t i o n ( )−>star tNewEventCha in ( m_stTimeListEntry .

m_poTimedFB) ;
19 u s l e e p (PACE( ) ) ;
20 }

Listing C.4: Main TaskGen-FB switch case managing response to input events
1 vo i d FORTE_TaskGenFB : : e xecu t eEven t ( i n t pa_nEIID ) {
2 sw i t ch ( pa_nEIID ) {
3 ca se scm_nEventINITID :
4 // Send Output Event INITO
5 break ;
6 ca se scm_nEventSTARTID :

7
...

8 a c t i o n F i l e . open ( Ac t i on s_F i l e ( ) . ge tVa lue ( ) ) ;
9 a r r owF i l e . open ( Arrows_Fi l e ( ) . ge tVa lue ( ) ) ;

10 l o g i c F i l e . open ( Log i c_F i l e ( ) . ge tVa lue ( ) ) ;
11

12 c u r r F i l e = 1 ;
13 // C r ea t e s p a r a l l e l t h r e ad
14 i n t e r n a l_ t h r e a d = new boos t : : t h r e ad ( boos t : : b ind (&FORTE_TaskGenFB : : threadFcn ,

t h i s ) ) ;
15 break ;
16 ca se scm_nEventSTOPID :
17 e x i t = t r u e ;
18 break ;
19 ca se scm_nEventREQID :
20 // Sends output command based on the c u r r e n t l y t r u e boo l ean
21 i f ( s endCrea t e ) {
22 sendOutputEvent ( scm_nEventCREATEID) ; s endCrea t e = f a l s e ;
23 }
24 i f ( s endSet ) {
25 sendOutputEvent ( scm_nEventSETID ) ; sendSet = f a l s e ;
26 }
27 i f ( sendConnect ) {
28 sendOutputEvent ( scm_nEventCONNECTID) ; sendConnect = f a l s e ;
29 }
30 break ;
31 ca se cg_nExterna lEvent ID :
32 sendOutputEvent ( scm_nEventCNFID ) ;
33 break ;
34 }
35 }

130



APPENDIX C. IEC 61499 APPLICATION

C.3 Simulation Log

Listing C.5: ROS resource nodes feedback during task simulation
1 [ INFO ] [ 1498568136 .917132863 ] : e x e c u t i n g : ( Robot ) movePTP to : bin_pos
2 [ INFO ] [ 1498568136 .917462592 ] : e x e c u t i n g : ( Operato r ) move
3 [ INFO ] [ 1498568137 .046908940 ] : b i l l : done
4 [ INFO ] [ 1498568137 .047201555 ] : kuka : done
5 [ INFO ] [ 1498568137 .067645132 ] : e x e c u t i n g : ( Robot ) moveREL
6 [ INFO ] [ 1498568137 .196951915 ] : kuka : done
7 [ INFO ] [ 1498568137 .218149398 ] : e x e c u t i n g : ( EndEff ) c l o s e
8 [ INFO ] [ 1498568137 .347011208 ] : g r i p p e r : done
9 [ INFO ] [ 1498568137 .357044553 ] : e x e c u t i n g : ( Robot ) moveREL

10 [ INFO ] [ 1498568137 .486967870 ] : kuka : done
11 [ INFO ] [ 1498568137 .507099052 ] : e x e c u t i n g : ( Robot ) movePTP to : p r e_pa l l e t
12 [ INFO ] [ 1498568137 .636930878 ] : kuka : done
13 [ INFO ] [ 1498568137 .658462346 ] : e x e c u t i n g : ( Robot ) moveREL
14 [ INFO ] [ 1498568137 .786860931 ] : kuka : done
15 [ INFO ] [ 1498568137 .806988480 ] : e x e c u t i n g : ( Robot ) ho ld
16 [ INFO ] [ 1498568137 .809497625 ] : e x e c u t i n g : ( Operato r ) t i g h t e n
17 [ INFO ] [ 1498568137 .936903809 ] : b i l l : done
18 [ INFO ] [ 1498568137 .937037630 ] : e x e c u t i n g : ( Operato r ) g e s t u r e r e c o g n i t i o n
19 [ INFO ] [ 1498568137 .956979645 ] : b i l l : done
20 [ INFO ] [ 1498568138 .087103466 ] : kuka : done
21 [ INFO ] [ 1498568138 .108564136 ] : e x e c u t i n g : ( Robot ) moveREL
22 [ INFO ] [ 1498568138 .236881384 ] : kuka : done
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