
POLITECNICO DI MILANO

School of Information and Industrial Engineering
Electronic, Information and Bioengineering Department
Master of Science in Telecommunications Engineering

Diffusive MIMO Molecular
Communication Systems

Author: Seyed Mohammadreza Rouzegar ID: 840698

Supervisor: Prof. Umberto Spagnolini

July 2017





Dedication

I dedicate this thesis to my family: Mansour, Azita, Maryam and Arya. You
have always supported me with your unending love. I love you so much.

I specifically thank Prof. Spagnolini for supporting me during this thesis.
His consultancy was a precious to me and I declare that without him this thesis
would not exist.

I thank all my colleagues at Vodafone specially Alessandro, Giovanni, An-
drea and etc. Alessandro it was really amazing working with you.

I thank all my friends who supported me during this thesis. Andrea and
Lorenzo, we had an amazing time at EuCNC conference at Oulu. Shahin,
Saeed, Milad, Reza, Amjad, Maryam and etc. I thank all of you and other
friends who have been with me this year.

And finally, I thank my uncle Jafar, who has always supported me. Your
friendship is valuable to me and I have learned many things from you.

II





Contents

1 Introduction 1
1.1 MC Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Micro-scale MC Transmitters . . . . . . . . . . . . . . . 2
1.1.2 Macro-Scale MC Transmitters . . . . . . . . . . . . . . . 3

1.2 MC Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Micro-scale MC Receivers . . . . . . . . . . . . . . . . . 4
1.2.2 Macro-scale MC Receiver . . . . . . . . . . . . . . . . . . 5

1.3 MC Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline: . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review and Contributions 7
2.1 History of Molecular Communications . . . . . . . . . . . . . . . 7
2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Challenges and Contributions . . . . . . . . . . . . . . . . . . . 16

3 Diffusion Fundamentals 18
3.1 Pulse Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Pulse Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Molecular vs Electromagnetic channel . . . . . . . . . . . . . . . 23

4 System Model 25
4.1 Single-Input Single-Output (SISO) . . . . . . . . . . . . . . . . 25
4.2 Multiple-Input Multiple-Output (MIMO) . . . . . . . . . . . . . 26

5 D-MIMO Channel Estimation 32
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Cramér-Rao Bound . . . . . . . . . . . . . . . . . . . . . . . . . 33

IV



CONTENTS

5.3 Maximum Likelihood CIR estimator . . . . . . . . . . . . . . . 34
5.4 Least Squares CIR Estimator . . . . . . . . . . . . . . . . . . . 35
5.5 Training Sequence Design . . . . . . . . . . . . . . . . . . . . . 36
5.6 Channel Estimation Performance Analysis . . . . . . . . . . . . 36

6 D-MIMO Receiver Design 40
6.1 Maximum Likelihood Detection . . . . . . . . . . . . . . . . . . 40

6.1.1 Blind Equalizer (BE) . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Decision Feedback Equalizer (DFE) . . . . . . . . . . . . 42

6.2 Least-Squares Detection based on DFE (LSD-DFE) . . . . . . . 42
6.3 Performance Analysis with full knowledge of CSI . . . . . . . . 44

7 MIMO Time Interleaving Modulation Technique 48
7.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Block-Type Communication for Molecular Systems 54
8.1 CIR Estimation Effect on System Performance . . . . . . . . . . 57
8.2 Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . . 59

9 Conclusions and Future Works 63
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.2.1 Channel Estimation . . . . . . . . . . . . . . . . . . . . . 64
9.2.2 Modulation Technique . . . . . . . . . . . . . . . . . . . 65
9.2.3 Equalization and Detection . . . . . . . . . . . . . . . . 66

V



List of Figures

1.1 Transmitter of a 2 × 2 D-MIMO system. The encoder controls
the gates opening time and aperture size. In case of ON-OFF
key signaling, for signaling the bit one, the encoder open the
gate, and for signaling the bit zero, keeps it closed. Molecules
flow out due to the concentration difference inside and outside
of the storage. The gate aperture size and opening time controls
the number of released molecules in each bit interval time. . . . 4

2.1 Molecular communication through gap junction channels [40] . 8
2.2 The transmitter architecture of a tabletop Molecular Commu-

nication system [44] . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The mobile bio-nanosensor network [45] . . . . . . . . . . . . . 10
2.4 Schematic illustration of ion pump modulator [56] . . . . . . . 12

3.1 Topological model for a D-SISO MC system. The transmit an-
tenna Tx release the same type of molecules (diamond shape),
and molecules with yellow colors denoting to the interference
molecules due to the previous transmissions . . . . . . . . . . . 20

3.2 CIR vs. time for a D-SISO MC system with system parameters
summarized in Table 3.1. Important channel parameters such
as maximum amplitude c̄max, pulse delay τmax and pulse width
W are shown in the figure. . . . . . . . . . . . . . . . . . . . . . 21

4.1 Topological model for M ×M D-MIMO system. The M trans-
mit antennas (Tx1, ..., TxM) release the same type of molecules
(diamond shape), and molecules here have different colors ac-
cording to the corresponding transmitter to visualize the inter-
ference phenomena . . . . . . . . . . . . . . . . . . . . . . . . . 27

VI



LIST OF FIGURES

4.2 Impulse response, c̄ij(t), of a 2× 2 D-MIMO system at Rx1 vs
time, for 3 emissions of molecules with time spacing 0.2ms: ILI
and ISI are black dots. . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Topological model for a 2×2 MC-MIMO system. Both transmit-
ter use the same information molecule (pentagon). Molecules
colors correspond to their transmitter color. . . . . . . . . . . . 37

5.2 Channel estimators: ML, LS and CRB vs. the training sequence
length K for a 2× 2 D-MIMO system and L = 3. . . . . . . . . 39

5.3 Comparison of ML and LS estimators to CRB in terms of MSE
in dB vs. the training sequence length K with L = 3. . . . . . . 39

6.1 ML-DFE receiver architecture of a D-MIMO system with M
receive antennas. Equalizers generate the threshold values at
each bit interval time using estimated CIR and the feedback of
previously decoded bits. . . . . . . . . . . . . . . . . . . . . . . 43

6.2 BER vs. d transmitter-receiver distance for 2 × 2 D-MIMO
system where Tint = 0.2ms, N = 105 and h = 400nm. . . . . . 45

6.3 BER vs. h antennas inter-distance for 2 × 2 D-MIMO system
where Tint = 0.2ms, N = 105 and d = 400nm . . . . . . . . . . 45

6.4 BER vs. N number of released molecules for 2 × 2 D-MIMO
system where Tint = 0.2ms, h = 400nm and d = 400nm . . . . 46

6.5 BER vs. Ts bit interval time for 2 × 2 D-MIMO system where
N = 105, h = 400nm and d = 400nm . . . . . . . . . . . . . . . 47

7.1 Channel impulse response of a 2 × 2 D-MIMO system at Rx1

when d = 400nm, Tint = 0.1ms and (a) h = 100nm, (b)
h = 400nm. For figure (c) h = 100nm and Tx2 transmit with
an offset time equal to Toff = Tint/2 respect to the Tx1. Solid
lines refer to the CIR of the corresponding transmitter Tx1 and
dashed line refer to the CIR of Tx2 which is considered as ILI. 49

VII



LIST OF FIGURES

7.2 (a) Maximum expected interference for a 2×2 D-MIMO system,∑LM+1
i=1,i 6=j C̄j(i), vs. h when d = 400nm and N = 105. Mode 1

refers to the case when both antennas transmit simultaneously
at the beginning of each bit interval time and mode 2 refers to
the case when Tx2 transmit with an offset time equal to Toff =
Tint/2 respect to the Tx1. (b) maximum expected interference
for a 4 × 4 D-MIMO system,

∑LM+1
i=1,i 6=j C̄j(i), vs. h when d =

400nm and N = 105. Mode 1 refers to the case when all 4
antennas are transmitting simultaneously, mode 2 refers to the
case when Tx2 and Tx2 transmit simultaneously with an offset
time equal to Toff = Tint/2 respect to the Tx2 and Tx3, and
mode 3 refers to the case when each antenna transmits with an
offset time equal to Toff = Tint/4 respect to others. . . . . . . . 50

7.3 Comparing LSD-DFE and ML-DFE detector performance in
terms of BER vs. transmitter-receiver distance d with/without
using TIL modulation technique at transmitter. A 2 × 2 D-
MIMO system with h = 100nm, Tint = 0.2ms and N = 105 is
considered here. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.4 Comparing LSD-DFE and ML-DFE detector performance in
terms of BER vs. antennas inter-distance h with/without using
TIL modulation technique at transmitter. A 2×2 D-MIMO sys-
tem with d = 400nm, Tint = 0.2ms and N = 105 is considered
here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1 Geometrical configuration of a 2× 2 and 4× 4 D-MIMO system
with system parameters summarized in Table 8.1. . . . . . . . 55

8.2 Performance comparison of a 2 × 2 D-MIMO system with d =
400nm, h = 100nm, Tint = 0.2ms and N = 105 In case of full
channel knowledge and estimated CIR when training sequence
length isK = 64 for each transmit antenna and a total ofKtot =
2× 64 = 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.3 Performance of a 2× 2 D-MIMO system in block-type commu-
nication with block length 1000. (a) BER vs. training sequence
length K. (b) Throughput vs. Training sequence length K . . . 58

8.4 Performance of a 2 × 2 D-MIMO system in terms of BER vs.
training sequence length K in block-type communication with
block length 1000. Throughput vs. Training sequence length K 58

VIII



LIST OF FIGURES

8.5 Throughput vs. bit interval time Tint of a 2 × 2 D-MIMO sys-
tem with system parameter summarized in Table 8.1 and the
configuration is shown in Fig. 8.1. . . . . . . . . . . . . . . . . 60

8.6 Bit error rate vs. bit interval time Tint of a 2 × 2 D-MIMO
system with system parameter summarized in Table 8.1 and
the configuration is shown in Fig. 8.1. . . . . . . . . . . . . . . 60

8.7 Throughput vs. bit interval time Tint of a 2 × 2 D-MIMO sys-
tem with system parameter summarized in Table 8.1 and the
configuration is shown in Fig. 8.1. . . . . . . . . . . . . . . . . 61

8.8 Bit error rate vs. bit interval time Tint of a 4 × 4 D-MIMO
system with system parameter summarized in Table 8.1 and
the configuration is shown in Fig. 8.1. . . . . . . . . . . . . . . 61

8.9 Comparison of throughput vs. bit interval time Tint of a D-
MIMO system with LSD-DFE detector. System parameter sum-
marized in Table 8.1 and the configuration is shown in Fig. 8.1. 62

IX



List of Tables

3.1 D-SISO system parameters used for CIR calculation . . . . . . . 21
3.2 Diffusive channel vs. Electromagnetic channel . . . . . . . . . . 24

8.1 Diffusive MIMO system parameters for the configurations of
Fig. 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

X



List of Abbreviations

BER Bit Error Rate

BL Blind Equalization

CIR Channel Impulse Response

CRB Cramér-Rao Bound

CSI Channel State Information

CSK Concentration Shift Keying

D-MIMO Diffusive MIMO

DFE Decision Feedback Equalizer

ILI Inter-Link Interference

ISI Inter-Symbol Interference

LSD Least Squares Detector

LS Least Squares

MC Molecular Communication

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

XI



LIST OF TABLES

MSE Mean Squared Error

PDF Probability Density Function

SISO Single-Input Single-Output

TIL Time Interleaving

XII





Abstract

In diffusion-based communication, as for molecular systems, the achievable
data rate is very low due to the slow nature of diffusion and the existence of
severe inter-symbol-interference (ISI). Multiple-input multiple-output (MIMO)
technique can be used to improve the data rate. MIMO technique cause inter-
link interference (ILI) in addition to the the ISI. MIMO time interleaving
(TIL) modulation technique is introduced at the transmitter to mitigate the
ILI. Knowledge of channel impulse response (CIR) is essential for equalization
and detection in MIMO systems. This thesis presents a training-based CIR
estimation for diffusive MIMO (D-MIMO) channels. Maximum likelihood and
least-squares estimators are derived, and the training sequences are designed
to minimize the corresponding Cramér-Rao bound. Sub-optimal CIR estima-
tors are compared to the Cramér-Rao bound to validate their performance.
Also, several equalization and detection schemes are proposed to investigate
the performance of the D-MIMO MC system. We have studied the effect of the
D-MIMO system parameters in terms of bit error rate (BER) and throughput
when channel state information (CSI) is available at the receiver. Finally,
block-type communication is assumed and designed training sequences are
transmitted at the beginning of each block for CIR estimation. Then, esti-
mated CIR is used during the rest of the block to equalize the received signals
for detection. The effect of training sequence length on BER and through-
put is studied and it is shown that for short training sequence length, system
performance reach to the ideal case when CSI is available at the receiver.
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Abstract (Italiano)

Nei sistemi di comunicazione basati su canali di tipo diffusivo, come nel caso
di sistemi molecolari, il massimo ritmo di trasmissione raggiungibile è limitato
dalla lenta natura della diffusione e dall’esistenza di una severa interferenza
intersimbolica (ISI). Sistemi di comunicazione che utilizzano una schiera di
antenne sia al trasmittitore che al ricevitore (MIMO) posso essere utilizzati
per migliorare il ritmo di trasmissione. Tuttavia, i sistemi MIMO, oltre all’ISI,
introducono ulteriore interferenza tra i vari canali spaziali (ILI). Quest’ultima
può essere mitigata utilizzando tecnica di interleaving nel tempo. La conoscenza
della risposta all’impulso del canale (CIR) è fondamentale per l’equalizzazione
e la rivelazione nei sistemi MIMO. Questa tesi presenta una tecniche di stima
della CIR per canali MIMO diffusivi (D-MIMO) basata su sequenze di training.
Stimatori a massima verosimiglianza (ML) e ai minimi quadrati (LS) sono stati
derivati per la stima delle CIR e le sequenza di training sono state ottimizzate
per minimizzare il corrispondente limite di Cramer-Rao. Le prestazioni di sti-
matori delle CIR sub-ottimi sono stati confrontati con il limite di Cramer-Rao
per validarne l’efficacia. In più, varie tecniche di equalizzazione e rivelazione
sono state proposte per analizzare le prestazioni dei sistemi D-MIMO moleco-
lari. I parametri che caratterizzano i sistemi D-MIMO sono stati studiati in
termini di probabilità d’errore sul bit (BER) a ritmo di trasmission nel caso
in cui si assume completa conoscenza del canale (CSI) al ricevitore. Infine,
la comunicazione a blocchi è stata enorcare con le sequenze di training che
trasmesse all’inizio di ogni blocco per la stima delle CIR. Tali CIR stimate
sono poi utilizzate per equalizzare e rivelare i segnali ricevuti per la rima-
nente durata del blocco. L’impatto della lunghezza delle sequenze di training
sulla probabilità di errore sul simbolo e sul ritmo di trasmissione è stata stu-
diata, dimostrando che anche per sequenza di lunghezza relativamente corta,
le prestazioni del sistema approcciano il caso ideale in cui il ricevitore dispone
di una perfetta conoscenza delle infromazioni di canale.
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Chapter 1

Introduction

Molecular communication (MC) is a bio-inspired solution of communication
at nano-scale [1, 2, 3, 4, 5, 6]. Conventional communication systems transfer
information using electromagnetic waves. At nano-scale, antennas suffer the
constraint of being at comparable scale of electromagnetic wavelength. Ad-
ditionally, using electromagnetic wave for nanomachines can be detrimental
in some environments, such as inside a body where electromagnetic radiation
can be harmful for health. Hence, MC can be a preferred solution for com-
munication among nanomachines to build a nanonetwork, so they can perform
complex tasks which could not be possible individually [7, 8, 9].

There are many potential applications considered for MC at micro-scales,
such as medical application and communication between nanorobots. The
continuous advances in nanotechnology, e.g. nanomachines and nanorobots,
let us think about devices at nano-scale that are capable of communication
and computation [10]. Indeed, one of the main interesting application of MC
in medicine is artificial immune system [11], where many minuscule devices are
injected to the body. Each tiny device is engineered for a specific task with a
limited functionalities. However, They can build a big nano-network to carry
out complex tasks such as targeted drug delivery [12] and cancer treatment
[13].

In nature, MC is employed over short-range (nm scale), mid-range (µm
to cm scale), or long-range (cm to m scale) communication. For example,
neurotransmitters use passive transport (free diffusion) to communicate over
shortrange; inside cells, motor proteins are used to actively transport cargoes
over the mid-range; and hormones are transported over the long-range using
flow (e.g., blood flow from the heart). In this thesis we refer to the short-
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CHAPTER 1. INTRODUCTION

and mid-range as microscale MC, and the long-range as macroscale MC. The
physical properties of matter change from macroscales to microscales, hence
we consider each of them separately.

In MC, bio-nanomachines communicate through exchanging molecules through
an aquas environment. In fact, the simplest system needs a transmitter to send
the information molecules, and a receiver to collect them. In the following, we
briefly introduce each part of the MC system.

1.1 MC Transmitters
Transmitters in MC systems release information molecules into the aquas or
gaseous environment. According to the considered range of communication,
transmitter architectures would be different.

1.1.1 Micro-scale MC Transmitters

The transmitter is a bio-nanomachine which can be generated by genetically
modified cells [14], artificial cells [15] or also can be a nanorobot. Any transmit-
ter at least needs a unit for storage of information molecules and a processing
unit to encode the data by controlling the gates. The processing unit can be
synthesized by logic gates and memory into cells as shown in [16, 17]. The
information particles can be generated by modifying a metabolic pathway of a
biological cell, which then synthesizes and releases specific signaling molecules
[17]. Transfection, transfer via viral vectors, direct injection to germ line, and
transfer via embryonic stem cells are the methods for gene transfer for mod-
ifying a metabolic pathway [18, 19]. Among these methods, viral vectors are
a commonly used tool by molecular biologists to deliver genetic material into
cells. This process is used for manipulating a living cell to engineer regulatory
networks that can be used for communication. Viruses efficiently transport
their genomes inside the cells they infect for desired function. Main types
of viral vectors are retroviruses, lentiviruses, adenoviruses, adeno-associated
viruses, and nanoengineered substances [20].

To control the release timing, a synthetic oscillator can be introduced into
a cell [21, 22], which with the help of the central processing unit acts as the
release control module. Therefore, it is possible to have all the components of
a transmitter synthesized into cells.

2



CHAPTER 1. INTRODUCTION

1.1.2 Macro-Scale MC Transmitters

At macroscales, the transmitter requires the same units as the micro-scale
transmitters but their realization are different. For the transmitter, a storage
container is required for holding the information particles. It is also possible
to generate the information particles using different processes. A mechanism
must be set in place for controlled release of molecules. For example, sprays
could be used for controlling the release of information particles. In [23, 24], a
technique for releasing complex blends of compounds in specific ratios, which
mimics insect pheromones, is developed.

The processing unit at macroscales can be a computer or a microcontroller,
depending on the application. The power source could be electrical, solar, or
any other source. At macroscales, different power sources and processing unit
have already been well studied and developed.

In this paper we have assumed a storage full of information molecules. Ac-
cording to the information to be transmitted, we keep the gates closed or open
them shortly at the beginning of bit interval time. Molecules flow out when
the gate is open due to the concentration difference inside and outside of the
storage . By controlling the gates opening time and their size, we can encode
the input signal to the different properties of molecules, such as their concen-
tration [25], number [26], type [27], and time of release [28, 29]. Information
molecules can be any type of molecules according to the application and also
it can be synthesized for drug delivery applications.

In this thesis, we have assumed that information is encoded in the number
of molecules. We have also assumed ON-OFF key signaling, means that for
signaling the bit one, we open the gate and for signaling the bit zero, we
keep the gate closed. Fig. (1.1) shows the simplified diagram of the MC
transmitter for a 2 × 2 D-MIMO system. There are two independent gates
where it is assumed we have full control of their size and timing, so we can
control the number of released molecules at each bit interval time at each gate.
Gates resemble antennas in conventional communications, so for the rest of the
paper we refer them as antennas for simplicity.

1.2 MC Receivers
MC receivers should have at least a detection unit to sense the information
molecules and a processing unit to decode the data. According to the range of
communication, the configuration of the receivers are different. In the following

3



CHAPTER 1. INTRODUCTION

Encoder
Data 𝒙[𝑘]

h

𝑥1[𝑘]

𝑥2[𝑘]

Figure 1.1: Transmitter of a 2× 2 D-MIMO system. The encoder controls the
gates opening time and aperture size. In case of ON-OFF key signaling, for
signaling the bit one, the encoder open the gate, and for signaling the bit zero,
keeps it closed. Molecules flow out due to the concentration difference inside
and outside of the storage. The gate aperture size and opening time controls
the number of released molecules in each bit interval time.

we explain MC receiver at micro- and macro-scale.

1.2.1 Micro-scale MC Receivers

In nature, signals are received via protein structures called receptors. There-
fore, these protein structures can be seen as receiving antennas. Receptors
are the special protein structures that can bind to specific ligand structures.
The binding occurs by intermolecular forces, such as ionic bonds, hydrogen
bonds and van der Waals forces. Ligand binding to a receptor alters the recep-
tor’s chemical conformation and the tendency of binding is called affinity. The
conformational state of a receptor determines its functional state [30]. Most
receptors remove the information molecules from the environment through
binding, absorbing, or chemical reactions. Therefore, in most cases almost all
the molecules contribute to the signal at most once [30].

Cells can also be created artificially by using liposome vesicles as the mem-
brane encapsulating different functional proteins that together carry the task of
the central processing unit, the particle generation and storage unit, receptors,
and the particle release control unit for the transmitter and the receiver.

4
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1.2.2 Macro-scale MC Receiver

For detection at macro scale, chemical sensors can be used to detect the in-
formation particles. For example, metaloxide gas sensors [31] are typically
inexpensive sensors, that are capable of detecting the concentration of vari-
ous types of volatile chemicals and gases. It is also possible to create more
sophisticated sensors for detecting mixture of chemicals as shown in [32].

1.3 MC Channel
The channel is the environment in which the transmitted signal propagates
from the source to the receiver. In a traditional communication system, a
channel is typically a wire or free space where the transmitted signals are
the electrical currents or electromagnetic waves, respectively. In MC, small
particles called information particles act as chemical signals conveying the
information. Information particles are typically a few nanometers to a few
micrometers in size. Information particles could be biological compounds, such
as proteins, or synthetic compounds, such as gold nano particles. The channel
in MC is an aqueous or a gaseous environment where the tiny information
particles can freely propagate.

Information molecules can be transported by different propagation mecha-
nism such as diffusion [33, 34, 35], flow assisted diffusion [26], active transport
using molecular motors and bacterial assisted propagation [36, 37, 38]. In this
thesis, diffusion-based communication is assumed where information molecules
diffuse toward the receiver using Brownian motion resulting from their colli-
sion with the molecules in the fluid. Diffusion does not need any external
energy and it uses the existing thermal energy that is already present in the
environment, so it is very energy efficient.

1.4 Thesis Outline:
The outline of the thesis are as follows.

In chapter 2, we briefly talk about the history of molecular communications
then we explain the current challenges at MC jargon. Then we mention the
related published works and finally we remark the contribution of this thesis.

Chapter 3 describe the fundamentals of the diffusion phenomena and it in-
vestigates important diffusion parameters and discusses the diffusion behavior.

5



CHAPTER 1. INTRODUCTION

In Chapter 4, we present the system model for a single-input and single-
output MC system. Then, MIMO system model is introduced and the algebraic
notation is presented.

Chapter 5 presents the CIR estimation for Poisson channel of a M ×M
D-MIMO MC systems. Maximum likelihood (ML) and least squares (LS)
CIR estimators are proposed and their performances are compared with the
Cramér-Rao bound (CRB).

Chapter 6 presents equalization and detection techniques for the proposed
D-MIMO systems. Maximum likelihood detection is developed with blind and
decision feedback equalizers. Finally least squares detector (LSD) based on
decision feedback equalizer is introduced.

In Chapter 7, a MIMO time interleaving modulation technique has been
developed and it reduces the ILI and improves the performance.

In chapter 8, we present block-type D-MIMO molecular communication
and we investigate the D-MIMO performance as throughput of the system for
different equalizers and detectors proposed in this thesis.

1.5 Publications
• S. Mohammadreza Rouzegar, Umberto Spagnolini. "Channel Estimation for
Diffusive MIMO Molecular Communication" Networks and Communications
(EuCNC), 2017 European Conference on. IEEE, 2017 , Oulu, Finland.

• S. Mohammadreza Rouzegar, Umberto Spagnolini. "Practical Diffusive
MIMO Molecular Communication" To be submitted
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Chapter 2

Literature Review and
Contributions

In this chapter we will focus on the history and evolution of molecular com-
munications and its recent advancement. Then we focus on each part of the
MC system including channel, receiver and transmitter. We investigate deeply
each part of the system of the related works in the literature. Then we explain
some existing challenges in the MC system and elaborate how MIMO tech-
nique can address the challenges. Finally, we will point out the contributions
of this thesis to the molecular communication world.

2.1 History of Molecular Communications
In 2005 T. Suda et al. published the paper [39] "Molecular Communication"
and they introduced the MC as an interdisciplinary research area that spans
nano-technology, bio-technology and communication technology. They pro-
posed that MC can be used to communicate between nanomachines. MC is
inspired by observing that biological systems communicate through molecules.
For example, biological systems perform intra-cellular communication through
vesicle transport, inter-cellular communication through neurotransmitters and
inter-organ communications through hormones. They pictured the molecu-
lar communication as mechanism between nanomachines to communicate over
short distances (nanometers to micrometers) by means of molecules propaga-
tion. In the same year they published two other works [1, 2] investigating
the challenges and possible applications on MC jargon. They described that
nanomachines are small devices or components that are capable of performing
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Figure 2.1: Molecular communication through gap junction channels [40]

only very simple tasks of computation, sensing, or actuation (e.g., detection
of molecules, generation of motion, or performing chemical reactions) because
of their limited size and limited complexity. Some examples of nanomachines
in biological systems include molecular motors that produce motion or a re-
ceptor that reacts to specific molecules. Examples of artificial nanomachines
include nanomachines synthesized using NEMS (Nanoelectro- mechanical Sys-
tems) technology from organic and/or artificial components at the submicron
dimension. They introduced two MC design system using molecular motors
and calcium signaling. One year later in 2006, they published two paper de-
scribing in details the two MC design system mentioned above.

In [41], authors described a molecular motor communication system. They
proposed that by advancement of nanotechnology, nanomachines can com-
municate through MC and they build a nanonetwroks so they can performs
complex tasks. They described molecular motors (e.g. kinesin, dynein) as a
transport materials (e.g. vesicle, mRNA) in eukaryotic cells along filaments
called rail molecules (e.g. microtubules). They proposed to develop a MC
system where molecular motors are used for controlled nanomachine commu-
nication. In their proposed system, rail molecules (microtubules) are deployed
between nanomachines, and molecular motors (kinesin) carry vesicles contain-
ing information molecules along the rail molecules from sender nanomachines
to receiver nanomachines. The destination may be specified by a protein tag
that binds to specific receptors on receiver nanomachines.

In 2007, the authors of [40] explored the design of a biological cell-based
molecular communication system inspired by cell-cell communications through
gap junction channels. Nanomachines in this scheme are engineered organisms
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Figure 2.2: The transmitter architecture of a tabletop Molecular Communica-
tion system [44]

or biological devices whose behavior is programmed to achieve application spe-
cific goals, and chemically communicate over a cell-cell communication medium
as depicted in Fig. 2.1.

In 2007 Andrew W.Eckford published a paper with different approach fo-
cusing on the communication and engineering aspect of the MC systems [42].
He proposed a model where information is encoded in the time and number
of released molecules by transmitter. He assumed molecules have a random
Brownian motion and he used information theory to calculate the capacity
bound of the system according to his model. In [43] Dr. Eckford estimated
the achievable information rates for a molecular communication system when
information is encoded using a set of distinct molecules and they propagate
across the medium via Brownian motion. His results indicated large gains in
information rate over the case where the released molecules are indistinguish-
able from each other.

In [44] authors introduced the first modular, and programmable platform
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Figure 2.3: The mobile bio-nanosensor network [45]

capable of transmitting a text message using molecular communication. They
implemented a macroscopic molecular communication system for transmitting
a brief text message using chemical signals. Their proposed inexpensive and
compact system requiring no supporting hardware or surrounding laboratory
infrastructure.

Authors of [45] demonstrated an application of MC to an inbody mobile
bionanosensor network as shown in Fig. 2.3. They explained that in the inbody
mobile bionanosensor network, bio-nanomachines migrate in the environment
while they release adhesive molecules that bind to a surface in the environ-
ment. The concentration gradient of adhesive molecules is thus formed over
the surface, and bio-nanomachines migrate based on the gradient to coordi-
nate their behavior. In the nondiffusion-based molecular communication, the
formation of concentration gradient of adhesive molecules relies on the mo-
bility of bio-nanomachines and thus the effective communication range may
be limited. However, the non-diffusion-based molecular communication can
maintain a high and stable concentration of molecules in the environment,
allowing bio-nanomachines to detect the concentration to coordinate their be-
havior. Authors showed that non-diffusion-based molecular communication
may apply to induce coordinated behavior among mobile bio-nanomachines in
the inbody environment.

There are many papers focused on the biological aspects and possible ap-
plication of the MC systems [12, 13, 11]. Also, there are other papers focusing
on the communication and engineering aspects of MC such as [35, 46, 47, 26,
48, 49, 50, 51, 52, 53]. This thesis is focused on the engineering aspects of
communication between nanomachines using diffusive channels. In the follow-

10



CHAPTER 2. LITERATURE REVIEW AND CONTRIBUTIONS

ing we will discuss about the diffusive channel, designing MC transmitters and
receivers and we mention most relevant works in the literature.

2.2 Related Works
In this section we will investigate the communication engineering aspect of
molecular communication. We can not mention all the related works due to
the space constraints, but we will study the most relevant works to this thesis.

In [54], authors developed a communication system focusing on the release
of either one or two molecules into a fluid medium with drift. They analyze the
mutual information between transmitter and the receiver when information is
encoded in the time of release of the molecule. They made some simplifying
assumptions in order to calculate the mutual information. They calculated the
upper bounds on the true mutual information. In their model they assumed
the transmitter encodes the message in the time of release and possibly the
number of molecules. Based on the number and the time of absorption of the
molecules, the receiver decodes the transmitted information. They developed
the mutual information between the transmitter and receiver for two cases:
with a single transmitted molecule and two molecules whose release times can
be chosen independently. For a given information transmission strategy at the
transmitter (called the input distribution in the information theoretic litera-
ture), the mutual information is also the maximum rate at which information
may be conveyed using that strategy. (Mutual information is related to but
distinct from the capacity, which is the maximum mutual information over all
possible input distributions.) In [55], authors compared and analyzed both
propagation schemes by deriving a set of analytical and mathematical tools to
measure the achievable information rates of the on-chip molecular communi-
cation systems employing passive to active transport.

Authors of [34] proposed a new molecular modulation scheme for nanonet-
works. They assumed a Poisson diffusive channel to evaluate their modulation
method with concentration and molecular shift keying. In concentration shift
keying (CSK) symbols are encoded in the number of molecules released in
each time slot and it is inspired by the Amplitude Shift Keying (ASK) used
in the classical communication. Molecular Shift Keying (MOSK) scheme re-
sembles the Frequency Shift Keying (FSK) in the classical communications.
To transmit b bits per time slot, 2b different molecule types are utilized. The
transmitter releases a specified number of molecules of the type corresponding
to the current input symbol. To decode the transmitted signal at a certain
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Figure 2.4: Schematic illustration of ion pump modulator [56]

time slot, the receiver looks for a unique molecule type whose concentration
exceeds a certain threshold τ . An error occurs if the concentration of none of
the molecule types or more than one molecule type exceeds τ . Interference due
to the previous transmission in MOSK is less than that in the CSK. Authors
proposed Molecular-Concentration Shift Keying (MCSK) inspired by previous
modulation schemes where two types of molecules A1 and A2 are used; The
transmitter uses type A1 in odd time slots, and type A2 in even time slots. To
convey information in each time slot, different diffusion rates are used (similar
to CSK). Thus, to match each symbol to b bits, 2b different propagation rates
are utilized in each time slot. As the molecule types are different in two subse-
quent time slots, (i) the previous symbol interference is drastically reduced (ii)
the decision threshold of the current symbol is independent of the last decoded
symbol. Since the data is not encoded in the molecule types (but in the con-
centrations), the number of molecule types (and as a result the complexity),
does not increase with b.

In [56] authors proposed a modulator based on ion pumps for diffusive MC
where release rate of the molecules is controlled by modulating a light intensity
signal (Fig. 2.4). The pumping process of the ion pump is modeled by a
Markov model based on which the stochastic nature of the modulated signal,
i.e., the release rate of the ions from the transmitter is analyzed. A simple
on-off keying modulation scheme is realized based on the proposed modulator.
They showed that a realistic transmitter can not release ions instantaneously
nor deterministically.

In [57], authors propose a symbol interval optimization algorithm in molec-
ular communication with drift. Proper symbol intervals are important in prac-
tical communication systems since information needs to be sent as fast as possi-
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ble with low error rates. There is a trade-off, however, between symbol intervals
and inter-symbol interference (ISI) from Brownian motion. They investigated
an isomer-based molecule shift keying (IMoSK) modulation and calculated the
achievable data transmission rates. They compared the normalized achievable
rates for the one-symbol ISI and no ISI systems.

Authors of [58] presented the foundation of a multi-scale stochastic simu-
lator from the perspective of molecular communication, for both mesoscopic
and hybrid models. The multi-scale models use subvolumes of different sizes,
between which diffusion event transition rate are derived. They showed the ac-
curacy and efficiency of their approach outperforms the traditional approaches
with that of a regular hybrid method.

In [33] authors added one new term to Fick’s law related to relaxation of
particles inspired by the statistical mechanics of electrons in heat diffusion.
Therefore, they obtained the Telegraph equation for the diffusion of particles
which is analytically equivalent to the wave equation in a lossy medium and
the solution is well known. The green function of the telegraph equation is the
analytical solution for the concentration evolution in space and time.

In [59], authors considered a multi-hop molecular communication network
consisting of one nanotransmitter, one nanoreceiver, and multiple nanotransceivers
acting as relays. They considered three different relaying schemes to improve
the range of diffusion-based molecular communication. In the first scheme,
different types of messenger molecules are utilized in each hop of the multi-
hop network. In the second and third scheme, they assumed that two types of
molecules and one type of molecule are utilized in the network, respectively.
Authors considered two relaying modes analogous to those used in wireless
communication systems, namely full-duplex and half-duplex relaying. They
proposed the adaptation of the decision threshold as an effective mechanism
to mitigate self-interference and backward-ISI at the relay for full-duplex and
half-duplex transmission. They derived the closed-form expression for the ex-
pected end-to-end error probability of the network for the three considered
relaying schemes. They also provided the closed-form expression for the op-
timal number of molecules released by the nanotransmitter and the optimal
detection threshold of the nanoreceiver for minimization of the expected error
probability of each hop.

In [60], authors reminded the importance of channel state information (CSI)
to analyze the diffusive molecular communication systems. They studied the
local estimation of channel parameters for diffusive molecular communication
when a transmitter releases molecules that are observed by a receiver. They de-
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rived the Fisher information matrix of the joint parameter estimation problem
to calculate the Cramér-Rao bound on the variance of locally unbiased esti-
mators. They reduced the joint estimation problem to the estimation of any
subset of the channel parameters. They showed therein Maximum likelihood
estimation leads to closed-form solutions for some single-parameter estima-
tion problems and can be determined numerically. Peak-based estimators are
proposed for low-complexity estimation of a single unknown parameter.

Farsad et al. developed a tabletop molecular communication platform for
transmitting short text messages across a room in [61]. The end-to-end sys-
tem CIR for this platform does not follow analytical published works because
of imperfect receiver, transmitter, and turbulent flows. They introduced an
end-to-end system impulse response based on the observed data from experi-
mentation. Using the corrected impulse response models, they formulated the
nonlinearity of the system as noise and showed that it can be represented as
Gaussian noise.

Ian F. Akyildiz et al. studied and modeled the noise sources in ligand-
binding reception for MC in Nanonetworks in [62]. They modeled the re-
ception noise through the ligand-receptor kinetics and through the stochastic
chemical kinetics. The ligand-receptor kinetics allows to simulate the random
perturbations in the chemical processes of the reception, while the stochastic
chemical kinetics provides the tools to derive a closed-form solution to the mod-
eling of the reception noise. They expressed the ligand-receptor kinetics model
through a block scheme, while the stochastic chemical kinetics results in the
characterization of the reception noise using stochastic differential equations.

R. Schober et al. presented a training-based CIR estimators in [35] for
single-transmitter single-receiver diffusive MC systems that estimate the CIR
based on the observed number of molecules at the receiver due to emission of a
sequence of known numbers of molecules by the transmitter. They considered
two scenarios depending on whether or not statistical channel knowledge is
available. In particular, they derived maximum likelihood (ML) and least sum
of square errors (LSSE) estimators which do not require any knowledge of the
channel statistics. For the case, when statistical channel knowledge is available,
they proposed maximum a posteriori (MAP) and linear minimum mean square
error (LMMSE) estimators. They derived the classical Cramér-Rao bound.
Finally, they proposed an optimal and suboptimal training sequence design
for the considered MC system.

U. Mitra et al. proposed in [48] a simple memory-limited decoder and
showed therein that its performance reaches the best possible imaginable de-
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coder (without any restrictions on the computational complexity or its func-
tional form), using Genie-aided upper bounds. they showed that a four-bits
memory achieves nearly the same performance as infinite memory. They
considered a threshold decoders and demonstrated that system performance
reaches the optimal decoder for high SNR values in a Poisson channel with
memory. They proposed a multi-read system and showed therein that it can
significantly improve the system performance. The associated decision rule for
this system is shown to be a weighted sum of the samples during each symbol
interval.

In [26] authors investigated receiver design for the SISO diffusive MC sys-
tem. They considered diffusion with flow in any direction and using enzymes
in the propagation environment to mitigate inter-symbol interference. They
characterized the mutual information between receiver observations to inves-
tigate the observations independence. They derived the maximum likelihood
sequence detector to provide a lower bound on the bit error probability and
they used Viterbi algorithm to reduce the computational complexity of the
optimal joint detection . They also proposed weighted sum detectors and de-
rived their expected bit error probability. They showed the performance of the
optimal weighted sum detector is equivalent to a matched filter.

B. Akan et al. investigated the receiver design in MC systems in [50].
They highlighted the effect of inter-symbol interference (ISI) on the perfor-
mance of the system. They proposed four methods for a receiver in the MC to
recover the transmitted information distorted by both ISI and noise. They in-
troduced sequence detection methods based on maximum a posteriori (MAP)
and maximum likelihood (ML) criterions, a linear equalizer based on minimum
mean-square error (MMSE) criterion, and a decision-feedback equalizer (DFE)
which is a nonlinear equalizer. They presented a channel estimator to estimate
time varying MC channel at the receiver. They evaluated the performances
of the proposed methods on the bit error rates. They showed therein that
sequence detection has the best performance at the expense of computational
complexity. However, the MMSE equalizer has the lowest performance with
the lowest computational complexity.

Authors of [51] proposed three detector architecture for SISO MC system.
They presented a low-complexity one-shot optimal detector to maximize the
mutual information and a near Maximum Likelihood (ML) sequence detec-
tor. They showed that the one-shot detector achieves near-optimal throughput
without the need of a priori information which suggests an ML sequence de-
tector with high complexity is not necessary. They proposed a receiver design
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which operates without failure even in the case of infinite channel memory.
In [52] authors remarked the importance of ISI mitigation for secure data

transmission. They proposed a low-complexity and non-coherent signal de-
tector, which exploits essentially the local convexity of the diffusive channel
response. They presented a threshold estimator that detects signals blindly,
which can also adapt to channel variations. They presented an algorithm that
is capable of operating at high data rates and suppressing ISI from a large num-
ber of previous symbols. They showed that their proposed detector suppresses
ISI and keep the detector architecture simple enough to be implemented on
nanomachines.

In [49] authors studied a non-coherent multiple-symbol detection schemes
which do not require knowledge of the CSI. In particular, they derived the
optimal maximum likelihood (ML) multiple-symbol (MLMS) detector. They
proposed an approximated detection metric and a suboptimal detector to cope
with the high complexity of the optimal MLMS detector. Authors showed their
proposed optimal and suboptimal detection schemes is so effective compare to
the case where CSI is available, particularly when the number of observations
used for detection is sufficiently large.

Authors of [63] designed codes which facilitate maximum likelihood se-
quence detection at the receiver without instantaneous or statistical CSI knowl-
edge so they can prevent large overheads for CSI estimation. In particular,
they demonstrated that strongly constant weight (SCW) codes, enables opti-
mal CSI-free sequence detection at the cost of decreasing the data rate. They
showed that their proposed CSI-free detector for SCW codes outperforms the
baseline coherent and non-coherent detectors for uncoded transmission.

2.3 Challenges and Contributions
One of the main challenges of MC is to deal with the long tail of diffusive
propagation that causes severe and peculiar inter-symbol-interference (ISI).
One can increase the bit interval time to mitigate the ISI effect, but higher data
rate justifies the optimization of the bit interval time to have few channel taps
due to the ISI [57]. Even if one optimizes the bit interval time, the slow nature
of diffusion makes the data rate still low. Using multiple-input multiple-output
(MIMO) technique is a widely investigated solution to address this problem
and can be adopted for MC [46, 47].

The main goal of this thesis is to propose a generalized and practical ap-
proach to design a Diffusive MIMO (D-MIMO) MC system based on block-type
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communication where CIR is estimated at the beginning of each block and then
it is used for equalization and detection for the rest of the block. D-MIMO
molecular communication is an emerging area where recently has attracted
some attentions. In [47], authors investigated various diversity techniques in
D-MIMO communication assuming full knowledge of channel state information
(CSI). The authors of [46], modeled the 2 × 2 D-MIMO channel by fitting a
curve to the simulated data and proposed several detectors according the sim-
ulated channel response. Obtaining analytical solution of diffusive channel can
be challenging. Even if we assume that solution is available, but the diffusion
coefficient and transmitter-receiver distance is not known a priori and they are
varying in time. Therefore, we need to estimate the CIR according to channel
variation. We believe that knowledge of IR is so important for equalization
and detection at the receiver.

This thesis introduce a matrix notation to model M ×M D-MIMO sys-
tems and proposes a training-based MIMO channel estimation for M × M
MC systems. In details, we extended the steps of R. Schober et. al. [35]
to D-MIMO channel estimation by accounting for the inter-link diffusive-type
interference. Furthermore, we propose a D-MIMO specific method for design-
ing the training sequence that minimize the Cramér-Rao bound (CRB) at all
receivers simultaneously.

In this thesis we adopt one-shot detectors for their low complexity. The
proposed D-MIMO vector notation, let us introduce simple and efficient equal-
ization and detection techniques. We have presented a threshold-based max-
imum likelihood detector. We have used blind equalizer (BE) and decision
feedback equalizer (DFE) to mitigate the interference effect.BE is so simple
but it is useful when interference is not severe. DFE is more complex and it
has a good performance in the severe interference environment. Least Squares
Detector (LSD) based on DFE is proposed which minimized the error prob-
ability. Generally, performance of the D-MIMO system is restricted by the
inter-link interference (ILI). Therefore, MIMO time interleaving (TIL) modu-
lation technique is introduced at transmitter site. It improves the performance
of the system when transmit antennas are close to each other and ILI is severe.
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Chapter 3

Diffusion Fundamentals

Diffusion is a well-known phenomena that exists in nature. There are many
examples regarding diffusion such as change in the temperature of a room
due to a sudden cold or hot source. The heat distributes according to the
diffusion laws and the temperature reaches to equilibrium after required time.
Likewise, cancer growth, angiogenesis and consequent invasion of the human
body are diffusion processes too: tumoral cells are hungry of nutrients and
oxygen and enter the competition with healthy tissue for space and energy
[64, 65]. Additionally, in semiconductors the motion of electrons and relative
holes follows diffusive process. At macroscopic level, the chaotic movement of
charges generates an electron flux which moves in a continuous diffusive action,
creating the diffusion current in electronic devices.

Diffusion process can be investigated through Fick’s laws of diffusion. Ac-
cording to the Fick’s first law, diffusive flux goes from region of high con-
centration, i.e., the transmitter, to the regions of low concentration, i.e., the
receiver, with magnitude proportional to the concentration gradient. Fick’s
second law describes the motion of molecules with average molecules concen-
tration ρ̄(x, y, z, t):

∂ρ̄(x, y, z, t)

∂t
= D∇2ρ̄(x, y, z, t) (3.1)

where diffusion coefficient D is given by Einstein relation [66]

D =
KBT

6πηRA

(3.2)

where kB is the Boltzman constant (kB = 1.38× 10−23), T is the temperature
in kelvin, η is the viscosity of the medium in which the molecules are diffusing
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and RA is the molecule radius. Average molecules concentration ρ̄(x, y, z, t)
is a function of space and time. After a specific long time we will reach to a
steady state condition where the concentration all over the space is equal and
the time derivative of the average concentration will be zero. This phenomena
happens when you put some ink in a glass of water and the ink starts to diffuse
till the ink concentration becomes equal in all the glass and we reach to the
steady state situation.

Generally, deriving the close form solution of (3.1) is challenging. How-
ever, by considering some simplifying assumptions, such as, unbounded envi-
ronment, point source, impulsive molecule release and transparent receivers
[67, 68], we have:

ρ̄(d, t) =
N

(4πD t)3/2
exp

(
− d2

4D t

)
(3.3)

where ρ̄(d, t) is the average local concentration molecule type A at receiver
at time t after release of N molecules at t = 0 from transmitter, and d is
the transmitter-receiver distance. We remark that Eqn.(3.3) gives the average
local concentration of molecules of an ideal point source with an impulsive
molecule release in an unbounded environment. In real settings, e.g. blood
vessels, we confront a bounded environment where transmitter is not a point
source that impulsively release molecules. Transmitter-receiver distance is not
known a-priori and diffusion coefficient can not be simply calculated from (3.2).
Situation would be much more complex when we consider all physical and
chemical phenomenas that affect the channel between transmitter and receiver.
We conclude the relation (3.3) is not valid in real settings and needs more
careful treatment. However, it is useful to study the ideal case of diffusion as
discussed above to gain insight about the diffusive channels. Studying diffusion
channels help us understand the rules of the game and its comparison with EM
channel help us to design more efficiently a diffusive MC system.

We define the channel impulse response (CIR) as the expected number
of molecules at the receiver domain and at the time t denoted as c̄(t) after
instantaneous release of molecules at t = 0 [35], and it is given by the relation:

c̄(d, t) =

∫∫∫
V

ρ̄(d, t) dxdydz (3.4)

We remark that c̄(t) is the expected number of molecules at receiver with
volume V at time t due to the release of N molecules at t = 0 from transmitter.
As shown in Fig. 3.1 the receiver is assumed to be a sphere with radius ro.
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𝑅𝑥

𝑇𝑥

Figure 3.1: Topological model for a D-SISO MC system. The transmit an-
tenna Tx release the same type of molecules (diamond shape), and molecules
with yellow colors denoting to the interference molecules due to the previous
transmissions

Average concentration of molecules can be approximated to be constant in the
sphere if its size is small enough. Therefore, the Eqn. 3.3 and 3.4 can be
written as

c̄(d, t) =
N × V
(4πD t)

exp
(
− d2

4D t

)3/2

(3.5)

where V is the volume of the sphere with radius ro, N is the number of
molecules released impulsively, d is the distance between transmitter and the
receiver.

Fig. 3.1 shows the topological model of a D-SISO MC system where the
system parameters are summarized in table 3.1. Fig.3.2 shows the CIR vs. time
for the MC system with system parameters in Table 3.1. We highlight that
the CIR is calculated according to Eqn. 3.5 for the ideal case of unbounded
environment assuming a point source that impulsively release molecules. It
can be observed that CIR is a pulse with one global maximum cmax, pulse
delay τmax and pulse width W which is shown in Fig. 3.2.

Diffusion is a stochastic phenomena and the number of observed molecules
is a random value and is different with its mean value. Here, we assume
the number of molecules at the receiver follows the Poisson distribution as
introduced in [35, 34, 48] and the CIR is their mean number of molecules.

We remind that the CIR shown in Fig. 3.2 is obtained for an ideal en-
vironment. As explained before, for a bounded environment we can not use
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Table 3.1: D-SISO system parameters used for CIR calculation

Parameter Symbol Value

N of molecules per emission N 105

Symbol interval time Tint 0.2ms

Diffusion coefficient D 10−9 m2

s

Transmitter-receiver dis-
tance

d 400 nm

Receiver radius ro 50 nm

𝑅𝑥

𝑇𝑥

𝑑 = 400 nm

𝑟𝑜 = 50 nm

ҧ𝑐𝑚𝑎𝑥

𝜏𝑚𝑎𝑥

W
Pulse Width

Figure 3.2: CIR vs. time for a D-SISO MC system with system parameters
summarized in Table 3.1. Important channel parameters such as maximum
amplitude c̄max, pulse delay τmax and pulse width W are shown in the figure.
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the above equations and it needs more careful treatment as we will discuss
in details channel estimation in chapter 4. However, it is very important to
understand the diffusion phenomena before we proceed to the channel estima-
tion. In the following we discuss the most important channel parameters which
help us to understand the diffusion phenomena and designing a diffusive MC
system.

3.1 Pulse Delay
Propagation delay is defined as the elapsed time between the transmission and
reception of the signal. We define the pulse delay τmax as the time instant
correspondent to the maximum received amplitude after instantaneous release
of molecules. We have to find the time instant where CIR gets its global
maximum st the receiver position. Since the c̄(t) is continuous we can find the
global maximum by putting its derivative to zero.

∂ c̄(d, t)

∂t
=

∂

∂t
(
N × V

(4πD t)3/2
exp

(
− d2

4D t

)
) = 0 (3.6)

We find the propagation delay τmax

τmax =
d2

6D
(3.7)

where d is the transmitter-receiver distance. It can be seen that the propaga-
tion delay is proportional to the square of distance and inverse of the diffusion
coefficient as expected.

3.2 Pulse Amplitude
Pulse amplitude is defined as the maximum value of the received signal in time,
at receiver position. Pulse amplitude is the amplitude of the c̄(t) at the time
of the pulse delay:

c̄max = c̄ (d, t)
∣∣∣
t=τmax

= (
3

2πe
)3/2 N V

d3
(3.8)

The pulse amplitude is an important parameter that indicate the expected
number of molecules at the receiver domain after τmax of releasing molecules.
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We remind that the number of observed molecules at τmax is a Poisson ran-
dom variable with parameter c̄max. We note that the pulse amplitude is in-
dependent of diffusion coefficient D. It means that even if you change the
medium with different diffusivity, still the pulse amplitude does not change
when transmitter-receiver distance d does not change. Diffusivity only change
the speed of diffusion and τmax but not the amplitude. The pulse amplitude
inversely is proportional to the cube of transmitter-receiver distance d.

3.3 Pulse Width
As it is usually done in electromagnetic communications, we compute the pulse
width at the 50% level, i.e., the time interval at which the pulse has an ampli-
tude greater than half of its maximum value:

c̄(d, t) =
c̄max

2
=

1

2
(

3

2πe
)3/2 N V

d3
(3.9)

This equation has two solutions, corresponding to the two time instants at
which the pulse amplitude is equal to half of its maximum value. These instants
are given by [69]:

t1 =
0.0728

D
d2 t2 =

0.5229

D
d2 (3.10)

Finally, we can obtain the expression of the pulse width W by subtracting
these two instants:

W = t2 − t1 =
0.4501

D
d2 (3.11)

It can be observed that the pulse width W is inversely proportional to the
diffusion coefficient and it is proportional to the square of transmitter-receiver
distance d. Therefore, a medium with high diffusivity will leads to a narrower
pulse width that decreases the interference.

3.4 Molecular vs Electromagnetic channel
Diffusive channel exhibits unique features which makes it different from con-
ventional electromagnetic channel. Therefore, an in-depth study is needed to
gain insight of diffusive channel over the well-known EM channel to understand
their difference and performances.

In diffusive channel pulse delay is proportional to the square of transmission
distance τmax ∝ d2 while in EM channel it increases linearly with propagation
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Table 3.2: Diffusive channel vs. Electromagnetic channel

Feature EM Channel Diffusive Channel

Channel Type Definitive Stochastic

Propagation Speed c = 3× 108 m/s ∝ 1
d

Propagation Range 103 − 105 m 10−8 − 10−5 m

Pulse Delay ∝ d ∝ d2

Pathloss ∝ 1
d

∝ 1
d3

Pulse Width ∝ 1 ∝ d2

distance. Pulse amplitude in diffusive channel is proportional to c̄max ∝ 1
d3

while in EM channel in free space, the pathloss is proportional to ∝ 1
d
. So, the

range of communication in diffusive channels is so small and it is limited to few
micrometers. Pulse widthW which is an indication of distortion is proportional
with ∝ d2 in diffusive channel while in free space EM propagation, distortion
is negligible. Finally, we remind that the diffusive channel is stochastic while
EM channel is definitive. It means that even if we assume CIR is known
and there is no noise and interference, the observed number of molecules is a
random variable that approximately it follows the Poisson distribution with
the parameter CIR. Therefore, we can say there is an intrinsic noise, e.g. like
the shot noise in photon counting process, which the variance of the noise
is proportional to the ∝ c̄. Table 3.2 summarizes all the above discussion
concisely.
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System Model

4.1 Single-Input Single-Output (SISO)
We consider a single-transmitter single-receiver diffusive MC system as shown
in Fig. 3.1. We assume ON-OFF key signaling means that at the beginning
of each bit interval time, the transmitter release N information molecules.
Receiver is assumed to be synchronized with the transmitter such that it counts
the molecules at the time where number of observed molecules expected to be
maximum.

Diffusive channel has a long memory such that the receiver counts molecules
from previous bit interval times and it is known as inter-symbol interference
(ISI). One can mitigate the effect of the ISI by making the bit interval time so
long. Considering the ISI, we can obtain the observed number of molecules at
k − th time interval y[k] with the following equation

y[k] =
L−1∑
`=0

c[`, k]x[k − `] + v[k] (4.1)

where c[`, k] is a random variable and denotes to the observed number of
molecules detected at time k−` when the transmitter release x[k]×N molecules
at the beginning of that time interval and x is the binary information. L is the
number of channel memory taps and it depends on system configuration and
bit interval time. c[`, k] is a random variable and it follows Poisson distribution
with the mean c̄[`]: c[`, k] ∼ Poiss (c̄[`]). v[k] is the number of noise molecules
which is a random variable and it similarly follows Poisson distribution: v[k] ∼
Poiss (v̄) [34, 35]. Therefore, the expected number of molecules to be detected
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at k − th time interval is [35, 48].

ȳ[k] = E {y[k]} =
L−1∑
`=0

c̄[`]xi[k − `] + v̄. (4.2)

We can write the Eqn. (4.2) compactly as follows:

ȳ[k] = xT [k] c̄ (4.3)

where c̄ = [c̄[0], c̄[1], ..., c̄[L − 1], v̄]T is a (L + 1) × 1 vector containing the
CIR vector in terms of mean of the Poisson distribution and noise, x[k] =
[x[k], x[k− 1], ..., x[k− `+ 1], 1]T is a (L+ 1)× 1 vector denoting current time
and L− 1 previous transmitted bits and the last entry is always 1 due to the
existence of noise.

4.2 Multiple-Input Multiple-Output (MIMO)
We consider a M ×M D-MIMO system for MC as shown in Fig. 4.1. The
system consists of M pair of transmitters denoted as Txi, and receivers Rxj,
where i, j ∈ {1, 2, 3...M}. We assume that all transmitters emit the same type
of molecules. Each transmitter emits a known number of molecules N at the
beginning of each symbol intervals. The molecules diffuse in the environment
and some of them reach the M receivers. Transmitters and receivers are not
fixed in their position and could slightly move on fluid where molecules diffuse,
so the CIR changes over time.

Transmitters modulate the molecules density using concentration shift key-
ing (CSK) and the receivers count the number of molecules at the time of sam-
pling. As customary, we set the sampling time so that the number of molecules
at receivers for the corresponding transmitters is maximized. As shown in Fig.
4.2, the channel has memory and due to the inter-symbol-interference (ISI),
the receiver counts the molecules from previous samples of the corresponding
transmitter. Similarly, the molecules from the current and previous samples of
the non-corresponding transmitters are known as inter-link-interference (ILI).
L is the number of channel taps for each link that is related to the system
geometry, configuration and bit interval time. Specifically, we can eliminate
the ISI and ILI by making the bit interval time large enough and putting each
pair of transceivers far enough from the other pairs. However, this case is not
considered due to the demands for high data rate per unit of space. Hence,
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Transmitter Receiver Channel 

Figure 4.1: Topological model for M ×M D-MIMO system. The M transmit
antennas (Tx1, ..., TxM) release the same type of molecules (diamond shape),
and molecules here have different colors according to the corresponding trans-
mitter to visualize the interference phenomena

27



CHAPTER 4. SYSTEM MODEL

Figure 4.2: Impulse response, c̄ij(t), of a 2 × 2 D-MIMO system at Rx1 vs
time, for 3 emissions of molecules with time spacing 0.2ms: ILI and ISI are
black dots.

we have to face the ISI and ILI in the MC system and try to mitigate their
effects. The observed number of molecules at sampling time k and receiver j
is

yj[k] =
M∑
i=1

L−1∑
`=0

cij[`, k]xi[k − `] + vj[k] (4.4)

where cij[`, k] is a random variable that denotes to the number of molecules
observed at time k by the receive antenna Rxj from transmit antenna Txi due
to the release of N molecules at the time [k − `]. Case i = j refers to the
paired transmitter-receiver, otherwise it refers to the inter-link interference.
xi[k] ∈ {0, 1} is the transmitted symbol at the time interval k from trans-
mit antenna Txi. The number of molecules cij[`, k] can be approximated as
a Poisson random variable with a mean value c̄ij[`]: cij[`, k] ∼ Poiss (c̄ij[`]).
Additionally, vj[k] is the number of external noise molecules detected at the
receiver j at time interval k. Noise molecules could originate from the re-
maining channel taps from all transmitters not considered in model, and any
external source. Hence, we can consider the noise as a Poisson with a mean
v̄j: vj[k] ∼ Poiss (v̄j) [34, 35].

Assume that x[k] = [x1[k], x2[k], ..., xM [k]]T is a binary data at time interval
k at all M transmitters. To avoid edge effect due to the ISI, we employ yj[k]

28



CHAPTER 4. SYSTEM MODEL

for k ≥ L. The expected number of molecules at k−th time interval and j−th
receiver is:

ȳj[k] = E {yj[k]} =
M∑
i=1

L−1∑
`=0

c̄ij[`]xi[k − `] + v̄j (4.5)

where L ≤ k ≤ K. Eqn. (4.5) can be written compactly as:

ȳj[k] = XT [k]C̄j (4.6)

where the following notations are used:

X[k] = [xT [k],xT [k − 1], ....,xT [k − L+ 1], 1]T

c̄j[`] = [c̄1j[`], c̄2j[`], ..., c̄Mj[`]]
T

C̄j = [c̄Tj [0], c̄Tj [1], ..., c̄Tj [L− 1], v̄j]
T

here, c̄j[`] is a vector with dimension M × 1 containing the information of the
expected number molecules at receiver j form the ` − th previous molecule
release of all transmit antennas, and x[k − `] is its corresponding transmitted
vector. Additionally, C̄j is a (ML+1)×1 vector collecting all channel memory
taps of receiver j from all transmit antennas and noise v̄j. X[k] with dimension
(ML+ 1)× 1 collects training sequence vectors of current and `− th previous
time intervals.

The expected number of molecules at receiver j during the time intervals
L ≤ k ≤ K is defined as ȳj = [ȳj[L], ȳj[L + 1]..., ȳj[K]]T , and the D-MIMO
relation for receiver j is written

ȳj
(K−L+1)×1

= XT

(K−L+1)×(ML+1)
C̄j

(ML+1)×1

(4.7)



ȳj[L]

ȳj[L+ 1]

...

ȳj[K]


=



x[L] x[L+ 1] . . . x[K]

x[L− 1] x[L] . . . x[K − 1]

...
... . . . ...

x[1] x[2] . . . x[K − L+ 1]

1 1 . . . 1



T 

c̄j[0]

c̄j[1]

...

c̄j[L− 1]

v̄j


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whereX is a (ML+1)× (K−L+1) convolution matrix of training sequences
including memory of previous samples due to the channel taps, and it is defined
as

X = [X[L],X[L+ 1], ...,X[K]] (4.8)

Finally, we define Ȳ = [ȳ1, ȳ2..., ȳM ] and we compactly write the global
D-MIMO relation into

Ȳ
(K−L+1)×(M)

= XT

(K−L+1)×(ML+1)
C̄

(ML+1)×M
(4.9)



ȳ1[L] ȳ2[L] . . . ȳM [L]

ȳ1[L+ 1] ȳ2[L+ 1] . . . ȳM [L+ 1]

...
... . . . ...

ȳ1[K] ȳ2[K] . . . ȳM [K]


=



x[L] x[L+ 1] . . . x[K]

x[L− 1] x[L] . . . x[K − 1]

...
... . . . ...

x[1] x[2] . . . x[K − L+ 1]

1 1 . . . 1



T 

c̄1[0] c̄2[0] . . . c̄M [0]

c̄1[1] c̄2[1] . . . c̄M [1]

...
... . . . ...

c̄1[L− 1] c̄2[L− 1] . . . c̄M [L− 1]

v̄1 v̄2 . . . v̄M


where C̄ is the (ML+ 1)×M global channel matrix, and it is defined as

The matrix of all the observed number of molecules at the M receivers
contain the Poisson random variables with mean equal to Ȳ :

Y = Poiss (Ȳ ) (4.10)

which means each entry of the observed matrix Y , is Poisson random variable
with mean equal to the corresponding entry of Ȳ .

To better understand the D-MIMO model, assume a 2×2 D-MIMO system
configuration in Fig. 4.2 with L = 3 channel taps and time interval 0 < k ≤ K
where K = 6. Then we have
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

ȳ1[3] ȳ2[3]

ȳ1[4] ȳ2[4]

ȳ1[5] ȳ2[5]

ȳ1[6] ȳ2[6]


=



x1[3] x1[4] x1[5] x1[6]

x2[3] x2[4] x2[5] x2[6]

x1[2] x1[3] x1[4] x1[5]

x2[2] x2[3] x2[4] x2[5]

x1[1] x1[2] x1[3] x1[4]

x2[1] x2[2] x2[3] x2[4]

1 1 1 1



T 

c̄11[0] c̄12[0]

c̄21[0] c̄22[0]

c̄11[1] c̄12[1]

c̄21[1] c̄22[1]

c̄11[2] c̄12[2]

c̄21[2] c̄22[2]

v̄1 v̄2


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D-MIMO Channel Estimation

Diffusive channel is highly complex. Previously we have shown the solution
of diffusion equation (3.1) in an ideal environment. The solution is valid only
for an unbounded environment with an impulsive molecule release and static
diffusive channel. It is assumed that we know a-priori the transmitter-receiver
distance, diffusion coefficient and other system parameters. However, we are
dealing with real environments where it is bounded and we do not know sys-
tem parameters a-priori. Additionally, transmitter is not able to impulsively
release molecules. Moreover, diffusive channel is not static and channel varies
during the time. CIR is highly dependent on transmitter-receiver distance. In
environments where there is flows, e.g. blood vessels, CIR changes rapidly.
There are other physical and chemical phenomenas that makes the diffusion
channel more complex such as molecules degradation, recombination, enzymes
and etc.

We believe that CIR can not be accurately calculated off-line according to
the diffusion laws because of the highly complex diffusion environment. Chan-
nel estimation is the only way that relieve us from considering all physical and
chemical phenomenas. We assume that channel remains unchanged during the
channel coherence time Tc. Channel coherence time depends on the environ-
ment and system configuration; for example in blood vessels where there is a
constant flow channel coherence time is small. We assume block-type commu-
nication and the block length B depends on the channel coherence time Tc and
bit interval time Tint. According to the potential application and working envi-
ronment, we can estimate channel coherence time and choose the optimal block
length. At the beginning of each block, transmitter sends a designed training
sequence and receiver estimate the CIR by knowing what is transmitted and
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what it is detected. The estimated CIR then can be used for equalization and
detection for the rest of that block.

5.1 Problem Definition
Assume that si = [si[1], si[2], ..., si[K]]T is a binary training sequence with
length K for transmitter i. To avoid edge effect due to the ISI, in CIR esti-
mation we employ yj[k] for k ≥ L. Therefore, the K −L+ 1 samples are used
for CIR estimation of the j-th receiver. As previously explained we use the
following notations for the training sequence:

s[k] = [s1[k], s2[k], ..., sM [k]]T

S[k] = [sT [k], sT [k − 1], ...., sT [k − L+ 1], 1]T

The probability density function (PDF) of all observations at all receivers
are the product of the Poisson distribution of each observation at each receiver

fY (Y |C̄,S) =
K∏
k=L

M∏
j=1

(
ST [k]C̄j)

yj [k] exp(−ST [k]C̄j)

yj[k] !
(5.1)

According to (4.7), we can analyze the performance of each receiver in-
dependently to make sure that all M receivers are simultaneously working
optimally. Therefore, the PDF of the observations of j-th receiver is

fyj
(yj|C̄j,S) =

K∏
k=L

(
ST [k]C̄j)

yj [k] exp(−ST [k]C̄j)

yj[k] !
, (5.2)

The goal is to estimate the CIR by knowing the training sequence considering
the likelihood function above.

5.2 Cramér-Rao Bound
The Cramér-Rao bound (CRB) sets the lower bound on the covariance of any
unbiased estimator of a deterministic parameters. Let ˆ̄Cj be the unbiased
estimator of C̄j, the CRB sets the bound of the covariance

cov( ˆ̄Cj) � I−1(C̄j) (5.3)
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where I(C̄j) is the Fisher information matrix of C̄j and is given by

I(C̄j) = Eyj
{−

∂ Lyj
(yj|C̄j,S)

∂C̄j∂C̄j

}, (5.4)

Therefore, the CRB of the receiver j is given by

CRBj = tr{I−1(C̄j)} = tr


 K∑
k=L

S[k]ST [k]

ST [k]C̄j

−1. (5.5)

and this sets the reference bound at each receive antenna.

5.3 Maximum Likelihood CIR estimator
Maximum likelihood (ML) D-MIMO CIR estimator finds the positive values
of C̄j which maximize the likelihood of the observation vector yj

ˆ̄CML
j = argmax

C̄j≥0

fyj
(yj|C̄j,S)

= argmax
C̄j≥0

Lyj
(yj|C̄j,S)

(5.6)

where the log likelihood function is

Lyj
(yj|C̄j,S) =

K∑
k=L

[
− ST [k]C̄j + yj[k] ln(ST [k]C̄j)

]
(5.7)

Maximizing the log likelihood function is a convex optimization problem. ln(.)
is a strictly concave function and (ST [k]C̄j) is affine. So, ln(ST [k]C̄j) is strictly
concave. Therefore, the L is weighted sum of concave terms and the maximum
of a concave function is given by setting its derivative respect to the C̄j to zero
[35].

The ML estimate of the CIR for the D-MIMO channel at receiver j is
obtained by solving a system of non-linear equations given below [35]:

K∑
k=L

[
yj[k]S[k]

ST [k]C̄j

− S[k]

]
= 0 (5.8)
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We note entries of C̄j are positive semidefinite. However, ML estimator could
estimate a negative value for some elements of the C̄j. Sub-optimal solution
is to set to zero all the negative entries of the estimated CIR. This heuristic
approach was adopted for single link MC [35], and showed therein a negligible
loss of performances compared to the optimal ML. Therefore, sub-optimal
solution of (5.8) is highly preferred in D-MIMO channels due to its simplicity.

5.4 Least Squares CIR Estimator
The Least-Squares (LS) method chooses C̄ which minimizes the sum of the
square errors at all receiver from the observation vector Y ,

ˆ̄CLS = argmin
C̄≥0

‖ε‖2. (5.9)

where ε = Y − E{Y } = Y − ST C̄. The square norm of the error is given as

‖ε‖2 = tr{εεT} = tr{(Y − ST C̄)(Y − ST C̄)T}

= tr{SST C̄C̄T} − 2tr{Y TST C̄}+ tr{Y Y T} (5.10)

The square norm of the error matrix, ‖ε‖2 is a convex function because it
is a quadratic form in C̄ and S ST ≥ 0. Hence, to minimize the function we
put its first derivative respect to C to the zero.

∂‖ε‖2

∂C̄
= 2S STC − 2SY = 0. (5.11)

Finally, the LS estimate of the CIR for D-MIMO channel is

ˆ̄CLS =

[
(S ST )−1 S Y

]
. (5.12)

Minimization of (5.9) is a constrained optimization problem with C ≥ 0
for entries. In case there exist a stationary point, this is the global optimum
solution. In case the stationary point does not exist, sub-optimal solution is to
set all negative elements of C to zero. Optimal solution for (5.9) is introduced
in [35], and the authors showed that for K large, there exist a stationary point,
and for small lengths, the performance loss is very negligible. Again, we prefer
the sub-optimal solution for D-MIMO system due to its simplicity.
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5.5 Training Sequence Design
In this section, we present a method for designing the training sequences for
estimating the CIR of a D-MIMO channel. As shown in (5.5), the CRB for
a given system is a function of training sequences. Therefore, we can find a
set of training sequences that minimize the CRB of all receivers. In other
words, the CRB of a specific receiver depends on the training sequence of all
transmitters which have interference with it. In general, for a M × M D-
MIMO system, we have to design M different training sequences to minimize
the CRB of all receivers simultaneously. However, in practice we do not need to
design M training sequences, because ILI for far transmitters is negligible and
thus we neglect their interference channels but consider them as an augmented
noise source in vj. In order to find a suitable set of training sequences that
simultaneously minimize all CRBs, we consider following constraints: 1) the
training sequences should be molecularly efficient by minimizing the fraction
of molecules used for channel estimation, and 2) transmitters can not be silent
for many consequent intervals. In detail, for a training sequence of length
K, we consider sequences with maximum K/2 ones, consequently transmitting
maximumNK/2 molecules, and the maximum consequent zeros are considered
4 time intervals. S is the sets of all possible training sequences that meet the
above criteria.

[s1, s2, ..., sM ] = argmin
si∈S

{CRB1, . . . CRBM} (5.13)

Accuracy of CIR estimation depends on the training sequence length, hence
K should chosen carefully. For large K, it is difficult to search among all
suitable sets to find the optimum ones. Therefore, we look for an optimum
training sequence with smaller length K1 << K, that is concatenated to build
a longer training sequence of length K. provided that K1 is wisely selected,
concatenating would not impair the performances.

5.6 Channel Estimation Performance Analysis
In this section, we present a 2 × 2 D-MIMO configuration and we compare
the performances of the channel estimators introduced in this chapter for ON-
OFF keying signaling. We have generated the CIR according to the analytical
models proposed in [26, 54] for MC systems. However, there is no constraint in
the value of CIR to be estimated. Diffusion coefficient value is 10−9m2/s and
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Figure 5.1: Topological model for a 2×2 MC-MIMO system. Both transmitter
use the same information molecule (pentagon). Molecules colors correspond
to their transmitter color. .

it is compatible to the normal values of diffusion of most of molecules in water
at room temperature. Choosing bit interval time is a trade-off between bit rate
and total number LM of ISI and ILI of the channel memory to be estimated.
Bit interval time is Tint = 0.2ms, all transmitters release N = 105 molecules
and the receivers counts once the number of molecules per each symbol at time
which CIR of the pair transmitter is expected to be maximum. For simplicity,
the mean of noise is chosen as v̄j = 0.3 c̄jj(0). The number of channel taps for
both ISI and ILI link are considered L = 3, so c̄ij[L] ≤ 0.05 c̄jj[0].

The 2 × 2 D-MIMO system is shown in Fig. (5.1). We have assumed
that the distance between transmitter and receiver is d = 400nm and the
inter-distance is h = 200nm. Spherical receiver with radius 20nm is assumed.
Positions of the mentioned entities are fluctuating: PTx1 = (0+δx1, 0+δy1, 0+
δz1), PTx2 = (0+ δx2, h+ δy2, 0+ δz2), PRx1 = (d+ δx3, 0+ δy3, 0+ δz3), PRx2 =
(d + δx4, h + δy4, 0 + δz4), with δx,y,z ∼ N (0, σ2), and σ2 = 50nm. Since the
Tx and Rx are not fixed in the position, the channel is varying in time. While
the entities are fixed, the CIR at the receivers are:

C̄1 = [60.21, 41.58, 9.11, 8.71, 3.83, 3.74, 18.06]T
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C̄2 = [41.58, 60.21, 8.71, 9.11, 3.74, 3.83, 18.06]T .

We note that in each realization the CIR is different, C̄1 6= C̄2, because the
position of transmitters and receivers are changing with normal distribution
with σ2 = 20nm. The training sequences are designed according to (5.13)
with the length K1 = 16 and they are

s1 = [1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1]T

s2 = [1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1]T .

Longer training sequences are constructed by concatenating these training se-
quences as detailed in subsection 3.5.

In this problem, each receiver has to estimate LM + 1 = 7 variables, for
a total of 14 variables. The results in Fig. 5.2, are Monte Carlo simulations
with 1000 random CIR realizations.

Fig. 5.2 shows the performance of the system in terms of mean square error
(MSE), E

{
||ˆ̄cj− c̄j|| 2

}
in dB vs. the training sequence length (K) for the ML

and LS estimators. The MSE decreases with increasing the training sequence
length as we expected. We can notice that training sequences are designed such
that both receivers have optimum performances for both estimators as they
attain the corresponding CRB. Fig. 5.3, shows the Normalized MSE which is
defined by

MSEN
j =

E

{
||ˆ̄cj − c̄j|| 2

}
||E{c̄j}|| 2

. (5.14)

The value of the normalized MSE is much lower, around 38dB, than the
MSE. As we can see in Fig. 5.3, the performance of the ML estimator out-
performs the LS estimator by approximately 1 dB. However, the LS estimator
is preferred due to its simplicity respect to the ML estimator, because our
bio-based receivers have limited computational capabilities. In applications
where receivers send the data to the external computers, the ML estimator is
preferred because it reaches to the CRB bound.
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Figure 5.2: Channel estimators: ML, LS and CRB vs. the training sequence
length K for a 2× 2 D-MIMO system and L = 3.

Figure 5.3: Comparison of ML and LS estimators to CRB in terms of MSE in
dB vs. the training sequence length K with L = 3.
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Chapter 6

D-MIMO Receiver Design

The stochastic nature of diffusion and the severe interference makes D-MIMO
equalization important for low error detection. All the proposed equaliza-
tion and detection techniques in this thesis are simple enough to be able to
implemented on bio-nano-machines. We consider one-shot detection schemes
to reduce the receiver complexity. All the proposed detectors need the full
knowledge of CSI or the estimated CIR as discussed in the previous section.
Generally, the expected number of molecules at k− th time interval and j− th
receive antenna ȳj[k] consists of two components:

ȳj[k] = xj[k]c̄jj[0] + Īj[k] (6.1)

where the first component xj[k]c̄jj[0] is the information component and Īj[k]
is the sum of all interference and noise molecules. In D-MIMO systems due to
the severe ISIs and ILIs, interference component Īj[k] is comparable and even
greater than the information component. Considering Eqn. (6.1) we can write

Īj[k] = ȳj[k]− xj[k]c̄jj[0] (6.2)

Our goal is to propose receivers which mitigate the interference effect and has a
low error probability. In this section we propose three different simple receiver
architectures as follow:

6.1 Maximum Likelihood Detection
ML detector is the optimal detection scheme when CSI is available. We perform
symbol-by-symbol data detection and it is given by:

x̂ML
j [k] = argmax

xj [k]∈{0,1}
fyj [k] (yj|C̄j,X[k]) (6.3)
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= argmax
xj [k]∈{0,1}

(c̄jj[0]xj[k] + Īj[k])yj [k] exp(−c̄jj[0]xj[k]− Īj[k])

yj[k]!

where fyj [k] (yj|C̄j,X[k]) is the Poisson distribution function and Īj[k] is the
sum of the expected number of interference and noise molecules at receiver
j and time interval k. The ML detector can be written in the form of a
threshold-based detector [49, 48]:

x̂ML
j [k] =

1, if yj[k] ≥ ξj[k]

0, Otherwise
(6.4)

where
ξj[k] =

c̄jj[0]

ln(1 +
c̄jj [0]

Īj [k]
)
. (6.5)

We note that Īj[k] is time variant and it depends on the previous symbols due
to ISIs and ILIs. In SISO systems, one can increase the bit interval time to
make the interferences negligible. In this case, threshold ξj is fixed [49], and
the receiver is simple. However, in D-MIMO systems, even if we increase bit
interval time to reduce the ISI, performance of the system is affected by the
ILI of the current time interval from non-corresponding transmitters. Īj[k] is
time variant, so we need to develop adaptive equalizers to cancel the effect of
the time variant interferences and still keep the receiver architecture simple
enough to be implemented on nano-bio-machines.

6.1.1 Blind Equalizer (BE)

Here, we propose a simple blind equalizer (BE) that leads to a comparator with
a fixed threshold at each receiver branch during each block of data. Īj[k] is the
expected interference but it varies over time as mentioned before. BE make an
average of Īj[k] over the time so it becomes independent from the transmitted
bits and it only depends on the CSI. According to 6.2 we can write

ĪBE
j = E

[
Īj[k]

]
= E

[
ȳj[k]− xj[k]c̄jj[0]

]
= E

[
X[k] C̄j

]
− E

[
xj[k]c̄jj[0]

]
= E

[
X[k]

]
C̄j − E

[
xj[k]

]
c̄jj[0]

= pT C̄j − p × c̄jj[0]

(6.6)
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where p = Pr{xi[k] = 1} and p is a (LM+1)×1 vector where all of its entries
are p. Generally, we set the p = 0.5, means that transmitted bits xi can be
0 or 1 with equal probabilities. Even if blind equalizer is very simple but the
error probability is high.

6.1.2 Decision Feedback Equalizer (DFE)

Decision feedback equalizer is a nonlinear equalizer that exploits the a pri-
ori information of the previously decoded bits and it can greatly improves
the detection of the current time interval. In principle, we use the history to
approximate the interference and we remove it from the current values. There-
fore, we are mitigating the impact of channel memory on detection. Fig. 6.1
shows the block diagram of a ML-DFE receiver with M receive antennas. Ac-
cording to Eqn. 6.2, Īj[k] is time variant and it depends on previous symbols.
Hence, the threshold ξj[k] should adapt itself at each bit interval time such
that the overall bit error rate decreases. We define feedback vector at time k
as

X̃[k] = [x̂T [k − 1], ..., x̂T [k − L+ 1], 1]T (6.7)

where x̂[k − `] is the decoded sequence at time k − `. Therefore, we have

ˆ̄IDFE
j [k] = [x̄Tj , X̃

T
[k]] C̄j (6.8)

where x̄j = [p, p, ..., 0, ..., p] is a M ×1 vector that all of its entries are p except
the j − th entry which is 0 to prevent including c̄jj[0] as interference while its
is the desired information. Blind equalization is used for the ILI of the current
time interval, because we do not have any information or feedback regarding
what is sent at the current time. DFE is more sophisticated equalizer compare
to BE, but it is still simple enough to be implemented on nano-machines and
it improves the performance compare to the BE.

6.2 Least-Squares Detection based on DFE (LSD-
DFE)

Least-Squares Detector (LSD) finds the vector x̂[k] = [x̂1[k], ..., x̂M [k]]T , x̂i[k] ∈
{0, 1}, that minimizes the sum of square errors based on the observed number
of molecules and their expectation values.

x̂LS[k] = argmin
x[k]

‖ε‖2. (6.9)
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𝑅𝑥1 
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Figure 6.1: ML-DFE receiver architecture of a D-MIMO system withM receive
antennas. Equalizers generate the threshold values at each bit interval time
using estimated CIR and the feedback of previously decoded bits.
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where ε = y[k] −
[
xT [k], X̃

T
[k]
]
C̄. Here, X̃[k] is the feedback vector (Eqn.

6.7) and it is known. The LSD detector finds the vector x[k] which mini-
mizes the error probability. LSD-DFE has the best performance compares
to the other methods, because DFE mitigates the ISIs and ILIs from previ-
ous transmissions, and LSD mitigates the ILI for the current transmission from
non-corresponding transmit antennas. The complexity of the receiver increases
with the number of receive antennas M . However, in real cases, M is not a
big number and the receiver configuration remains simple.

6.3 Performance Analysis with full knowledge of
CSI

In this section we provide the numerical results for different equalization and
detection techniques proposed in previous sections. In this section we have
assumed CSI is available. The impact of system parameters on the performance
of the system is analyzed. Fig. 5.1 shows the system configuration which is
used in this section. All results are obtained via Monte-Carlo simulation with
high number of trials.

Fig. 6.2 compares the performance of the D-MIMO system with Tint =
0.2ms, N = 105 and h = 400nm in terms of BER vs. transmitter-receiver
distance d. It can be seen that BER increases when distance increases, because
fewer molecules reach the receive antennas. The more molecules reach the
receiver, the lower BER is obtained. Among the proposed detectors, ML-BE
has the highest BER and the performance is not acceptable for great distances
but in small distances it is favorable as it has low complexity. LSD-DFE has
the lowest BER in expense of more complex architecture. We highlight that all
three detectors are so sensitive to the number of received molecules. It means
that when enough molecules do not reach the receivers, system performance
degrades drastically.

Fig. 6.3 shows the performance of the D-MIMO system with Tint = 0.2ms,
d = 400nm and N = 105, in terms of BER vs. antennas inter-distance h. ILI
becomes negligible when h increases, so the BER decreases.

Fig. 6.4 compares the performance of the D-MIMO system with Tint =
0.2ms, d = 400nm and h = 400nm in terms of BER vs. number of released
molecules N . When more molecules are transmitted, more molecules reach the
receiver and consequently BER decreases. It can be seen that ML-DFE and
LSD-DFE are so sensitive to the number of released molecules and the BER
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Figure 6.2: BER vs. d transmitter-receiver distance for 2×2 D-MIMO system
where Tint = 0.2ms, N = 105 and h = 400nm.

Figure 6.3: BER vs. h antennas inter-distance for 2×2 D-MIMO system where
Tint = 0.2ms, N = 105 and d = 400nm
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Figure 6.4: BER vs. N number of released molecules for 2×2 D-MIMO system
where Tint = 0.2ms, h = 400nm and d = 400nm

decreases rapidly when higher number of molecules reach the receivers.
Fig. 6.5 compares the performance of the D-MIMO system with d =

400nm, h = 400nm and N = 105 in terms of BER vs. bit interval time
Tint. Increasing the bit interval time does not affect the expected number of
received molecules c̄jj[0], but it decreases the interference and consequently
the BER decreases. Equalizers mitigate the ISI impact for bit interval time
greater than 0.2ms and the BER becomes flat. The existing error probability
is due to the noise and the stochastic nature of diffusion. Again, LSD-DFE
has the best performance and ML-BE has the worst.
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Figure 6.5: BER vs. Ts bit interval time for 2 × 2 D-MIMO system where
N = 105, h = 400nm and d = 400nm
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Chapter 7

MIMO Time Interleaving
Modulation Technique

MC systems suffer from severe interferences. In D-SISO MC system, one can
increase the bit interval time to mitigate the interference, but it leads to a
low bit rate system. Therefore, MIMO technique is proposed to address the
slow nature of diffusion. However, D-MIMO MC systems suffer severely from
the ILI in addition to the ISI. The overall performance of the system, as bit
error rate, is related to the sum of interferences and noise in the receiver.
To reduce the ILI, one can put transmit antennas far from each other. But,
it is not realistic to do so, because the transmitter size would be large and
comparable with the transmitter-receiver distance. In conventional MIMO
communication systems, the electromagnetic wavelength in microwave regime
is very small compare to the transmitter-receiver distance. Therefore, even
if we consider antennas inter-distance in the range of several wavelength, but
the overall transmitter size is much smaller than transmitter-receiver distance.
In D-MIMO MC systems, to mitigate the interlink interference and attain an
acceptable bit error rate, antennas inter-distance should be in the range of
transmitter-receiver distance which is considered the weakness of using MIMO
technique.

We propose to address the problem by using time interleaving (TIL) mod-
ulation technique to reduce the ILI. Normally, all transmit antennas release
molecules simultaneously at the beginning of each bit interval time, so the ILI
is severe at the receive antennas. However, one can configure the system such
that each antenna transmits at different time sequences during the bit interval
time and each receive antenna is synchronized with its corresponding transmit
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(a)

(b)

(c)

Figure 7.1: Channel impulse response of a 2×2 D-MIMO system at Rx1 when
d = 400nm, Tint = 0.1ms and (a) h = 100nm, (b) h = 400nm. For figure (c)
h = 100nm and Tx2 transmit with an offset time equal to Toff = Tint/2 respect
to the Tx1. Solid lines refer to the CIR of the corresponding transmitter Tx1

and dashed line refer to the CIR of Tx2 which is considered as ILI.

49



CHAPTER 7. MIMO TIME INTERLEAVING MODULATION
TECHNIQUE

𝑅𝑥1

𝑅𝑥4
𝑅𝑥3

𝑅𝑥2

𝑇𝑥3

𝑇𝑥4

𝑇𝑥2

𝑇𝑥1

d

h

(a) (b)

Figure 7.2: (a) Maximum expected interference for a 2 × 2 D-MIMO system,∑LM+1
i=1,i 6=j C̄j(i), vs. h when d = 400nm and N = 105. Mode 1 refers to the

case when both antennas transmit simultaneously at the beginning of each
bit interval time and mode 2 refers to the case when Tx2 transmit with an
offset time equal to Toff = Tint/2 respect to the Tx1. (b) maximum expected
interference for a 4 × 4 D-MIMO system,

∑LM+1
i=1,i 6=j C̄j(i), vs. h when d =

400nm and N = 105. Mode 1 refers to the case when all 4 antennas are
transmitting simultaneously, mode 2 refers to the case when Tx2 and Tx2

transmit simultaneously with an offset time equal to Toff = Tint/2 respect to
the Tx2 and Tx3, and mode 3 refers to the case when each antenna transmits
with an offset time equal to Toff = Tint/4 respect to others.
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antenna. In this proposed scheme, bit interval time and bit rate are the same
as before, but the ILI and bit error rate reduce effectively and it allows us
to keep the transmitter size small. CIR estimation for the proposed modula-
tion technique is same as before, because in section (III), we did not put any
constraint on the CIR to be estimated. TIL modulation technique just puts
an offset time in releasing molecules at transmit antennas, so all the previous
relations are valid here.

Fig. 7.1 shows the CIR for a 2 × 2 D-MIMO system with d = 400nm,
Tint = 0.1ms and N = 105. Fig. 7.1 (a) refers to the case when antennas
inter-distance is h = 100nm. It can be seen that ILI is so severe and it will
degrades system performance. As described before, we can reduce the ILI by
putting the transmit antennas far from each other. Fig. 7.1 (b) refers to the
case when h = 400nm. In this case, ILI is reduced but the distance between
transmit antennas is equal to the transmitter-receiver distance and this is not
favorable. Fig. 7.1 (c) refers to the case when h = 100nm and Tx2 transmit
with an offset time equal to Toff = Tint/2 respect to the Tx1. It can be seen
that the ILI is reduced considerably.

Fig. 7.2 shows a 2× 2 and a 4× 4 D-MIMO system with d = 400nm and
Tint = 0.2ms. Fig. 7.2 (a) shows the maximum expected interference vs. h
for 2× 2 D-MIMO system. Mode 1 refers to the case when both antennas are
releasing molecules simultaneously at the beginning of each bit interval time
and mode 2 refers to the case when Tx2 is transmitting with an offset time
equal to Toff = Tint/2 respect to the Tx1. We note that we have assumed that
receive antennas are synchronized with their corresponding transmit antennas,
means they count the number of molecules when CIR of the corresponding an-
tenna is expected to be maximum. Fig. 7.2 (b) shows the maximum expected
interference vs. h for a 4 × 4 D-MIMO system. Mode 1 refers to the case
when all 4 antennas are transmitting simultaneously, mode 2 refers to the case
when Tx1 and Tx4 transmit simultaneously at the beginning of bit interval
time and Tx2 and Tx3 transmit simultaneously with an offset time equal to
Toff = Tint/2, and mode 3 refers to the case when Tx1 transmit at the begin-
ning of the bit interval time and each antenna transmits with an offset time
equal to Toff = Tint/4 with each other. It can be seen that the proposed TIL
technique reduces the interference greatly for both 2 × 2 and 4 × 4 D-MIMO
systems. We remark that TIL is effective when antennas are close to each
other. There is an inherent delay in ILI component which becomes notable
when transmit antennas are far. Fig. 7.1 (b) shows that the ILI component
has a delay compare to the desired component, so the ILI is reduced because
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Figure 7.3: Comparing LSD-DFE and ML-DFE detector performance in terms
of BER vs. transmitter-receiver distance d with/without using TIL modulation
technique at transmitter. A 2 × 2 D-MIMO system with h = 100nm, Tint =
0.2ms and N = 105 is considered here.

of the inherent delay of molecules to reach the non-corresponding receiver. In
this case, TIL puts an additional offset time where adversely affect the inher-
ent delay and increases the ILI. Fig. 7.2 shows that Mode 1 overcomes the
other modes when h is greater than 400nm. Therefore, it is suggested to use
the TIL modulation technique when antennas inter-distance are small.

7.1 Performance Analysis
MIMO TIL modulation technique reduces the ILI and it let us reduce the an-
tennas inter-distances and keep the transmitter size rationally small. It can be
seen in Fig. 7.3 that for small antennas inter-distance like h = 100nm, perfor-
mance of the system without using TIL modulation technique is unbearable,
while TIL cancel the ILI and it improves the BER. Fig. 7.4 shows the numer-
ical results for a 2 × 2 D-MIMO system with d = 400nm, Tint = 0.2ms and
N = 105. As we can see, the BER for ML-DFE and LSD-DFE is much lower
when TIL is used at the transmitter. In this case, as h increases, the BER
reduces very smoothly, because TIL reduce the ILI but it does not reduce the
ISI. Therefore, the BER is due to the existence of ISI and also the stochastic
nature of diffusion. When h increases to 400nm, TIL won’t improve the BER,
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Figure 7.4: Comparing LSD-DFE and ML-DFE detector performance in terms
of BER vs. antennas inter-distance h with/without using TIL modulation
technique at transmitter. A 2 × 2 D-MIMO system with d = 400nm, Tint =
0.2ms and N = 105 is considered here.

because in this case ILI impact is so negligible. When h = 50nm, the BER
for normal transmitter is unacceptably high, but TIL let us to put antennas
close together and keep the transmitter size small.
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Chapter 8

Block-Type Communication for
Molecular Systems

In this chapter we develop a block-type communication where the transmit-
ter sends a block of data at each block time interval inspired by conventional
communication systems. This chapter incorporate all previous chapters simul-
taneously.

CIR is estimated at the beginning of each block and then it is used dur-
ing the rest of the block for equalization. Transmit antennas send the de-
signed training sequences through the diffusion channel and the receive an-
tennas counts the number of molecules. CIR estimator block, estimates the
channel by knowing the training sequence and the number of molecules each
antenna has counted. Then the equalizer block use the estimated CIR for
equalization in the rest of the block. The accuracy of the estimated CIR is
related to the training sequence length. It is expected that BER is higher com-
pare to the ideal case when CSI is available at the receiver. The performance
of the system would reach to the ideal case where CSI is available if accuracy
of the estimated CIR is good enough.

In this section we analyze the performance of a 2 × 2 and a 4 × 4 D-
MIMO system. Block-type communication is assumed where block length is
B = 10000 bits. All results shown in this section are obtained by analyzing
the 1000 block of data which transmitted over the system. Optimized training
sequence with length Ktot = M × K is transmitted at the beginning of each
block. In this section the training sequence length at each transmit antenna
K = 64 is considered. In detail, training sequence with length K1 = 16 is
designed and then it is concatenated 4 times to build the training sequence
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Figure 8.1: Geometrical configuration of a 2 × 2 and 4 × 4 D-MIMO system
with system parameters summarized in Table 8.1.
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Table 8.1: Diffusive MIMO system parameters for the configurations of Fig.
8.1

Parameter Symbol Value

Transmitter-receiver dis-
tance

d 400 nm

Antennas inter-distance h 50 nm

Diffusion coefficient D 10−9 m2

s

Receiver radius robs 50 nm

# of released molecules N 105 molecules

Block length B 10000 bits

Channel coherence time Tc 1 s

Training sequence length Ktot = K ×M 64×M

with length K = 64. All the system parameters are summarized in Table 8.1.
Channel coherence time is assumed Tc = 1 s, where it is rational time for most
MC environments. In all simulations below, the time which is used to transmit
the block of data is lower than channel coherence time

B × Tint
M

≤ Tc (8.1)

where B is the block length and Tint is the bit time interval.
Fig. 8.1 shows the geometrical configuration of a 2× 2 and 4× 4 D-MIMO

system with system parameters summarized in Table 8.1. In this section the
effect of bit interval time Tint on throughput is studied. Both systems use TIL
modulation technique to decrease the ILI and to put transmit antennas close
together. The 2 × 2 D-MIMO system uses Mode 1 where Toff = Tint/2, it
means that Tx1 transmit at the beginning of the bit interval time and Tx2

transmit with an offset time Toff after the Tx1. The 4 × 4 D-MIMO system
uses TIL modulation technique Mode 2 where Toff = Tint/4 and it means
that each transmit antenna release molecule with an offset time Toff after the
previous antenna.
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Figure 8.2: Performance comparison of a 2 × 2 D-MIMO system with d =
400nm, h = 100nm, Tint = 0.2ms and N = 105 In case of full channel
knowledge and estimated CIR when training sequence length is K = 64 for
each transmit antenna and a total of Ktot = 2× 64 = 128

8.1 CIR Estimation Effect on System Perfor-
mance

In this section we investigate the system performance considering the estimated
CIR. Fig. 8.2 shows the numerical simulation for a 2×2 D-MIMO system with
Tint = 0.2ms, h = 100nm and N = 105. The performance of the system is
evaluated in terms of BER vs. the transmitter-receiver distance d. We have
assumed K = 64, so the total number of Ktot = 64 × 2 = 128 bit are used
for CIR estimation at each block. The accuracy of the estimated CIR is good
enough that BER reaches to the BER of the ideal case when CSI is available
at the receiver. The price that is paid to reach the ideal case is wasting 1.28%
of the block information for CIR estimation.

Fig. 8.3 shows the performance of the system in terms of BER vs. training
sequence length K. It can be seen that as K increases, the BER decreases.
The good news is that the system is not highly sensitive to the K. In detail,
after K = 32, the BER decreases very smoothly. According to the system
requirements,we do not need to invest a long training sequence to reach to
an acceptable BER. Fig. 8.4 shows the throughput of the system vs. the
training sequence length. The throughput decreases as K increase, because
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Figure 8.3: Performance of a 2 × 2 D-MIMO system in block-type communi-
cation with block length 1000. (a) BER vs. training sequence length K. (b)
Throughput vs. Training sequence length K

Figure 8.4: Performance of a 2 × 2 D-MIMO system in terms of BER vs.
training sequence length K in block-type communication with block length
1000. Throughput vs. Training sequence length K
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as K increase, the BER improvement is negligible, but number of information
bits decrease, means that we are wasting more molecules for CIR estimation.

8.2 Throughput Analysis
In this section we analyze the throughput of the system in respect to the bit
interval time for a 2 × 2 and 4 × 4 D-MIMO system as shown in Fig. 8.1.
The throughput is defined as the number of information bits where receiver
decoded correctly in unit of time. The throughput is lower than the data rate
since training sequence are sent for CIR estimation.

Fig. 8.5 shows the throughput of a 2× 2 D-MIMO system vs. bit interval
time. Bit rate is defined as 1

Tint
. We can see that the system throughput for

2 different detectors are lower than the bit rate as expected. As we have seen
before, LSD-DFE detector outperforms the ML-DFE detector at the expense
of higher complexity. When bit interval time is low , e.g. Tint = 0.08 ms ,
the interference is so severe and as shown in Fig. 8.6, the BER is so high.
Therefore, as expected we lose more than 1 Kbps throughout compare to bit
rate. When bit interval time is high, e.g. Tint = 0.2 ms, the ISI is low and as
shown in Fig. 8.6, the BER is low. Therefore, the throughput of the system
gets close to the bit rate. Throughput never reaches the bit rate, because 128
bits of 10000 bits are used for channel estimation. However, the system does
not need so many bits for channel estimation and the efficiency of the system
is high enough and throughput gets really close to the bit rate.

Fig. 8.7 shows the throughput of a 4× 4 D-MIMO system vs. bit interval
time. It can be seen that for a 4×4 D-MIMO system data rate is 2 times of the
2×2 system. It can be seen that LSD-DFE outperforms the ML-DFE detector
and its throughput is higher at the expense of a more complex architecture. We
can see that throughput never reaches the bit rate, becauseKtot = 4×64 = 256
bits out of 10000 bits are used for channel estimation. When bit interval time
is low Tint = 0.1 ms, the interference is so severe and as it is shown in Fig.
8.8, the BER is so high and unacceptable and we lose at least 5 Kbps compare
to the bit rate. For big values of bit interval time, e.g. Tint = 0.3 ms, the
interference decreases and BER is low. Therefore, the throughput gets close
to the bit rate but it never reaches to the bit rate because we have used 256
bits for channel estimation.

Fig. 8.9 compares the throughput of a 2 × 2 and 4 × 4 D-MIMO system
when LSD-DFE detector is used at the receiver. System parameters for both
architecture are the same and it is summarized in Table 8.1 and configurations
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Figure 8.5: Throughput vs. bit interval time Tint of a 2× 2 D-MIMO system
with system parameter summarized in Table 8.1 and the configuration is shown
in Fig. 8.1.

Figure 8.6: Bit error rate vs. bit interval time Tint of a 2× 2 D-MIMO system
with system parameter summarized in Table 8.1 and the configuration is shown
in Fig. 8.1.
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Figure 8.7: Throughput vs. bit interval time Tint of a 2× 2 D-MIMO system
with system parameter summarized in Table 8.1 and the configuration is shown
in Fig. 8.1.

Figure 8.8: Bit error rate vs. bit interval time Tint of a 4× 4 D-MIMO system
with system parameter summarized in Table 8.1 and the configuration is shown
in Fig. 8.1.
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Figure 8.9: Comparison of throughput vs. bit interval time Tint of a D-MIMO
system with LSD-DFE detector. System parameter summarized in Table 8.1
and the configuration is shown in Fig. 8.1.

are shown in Fig. 8.1. We can see that when bit interval time is low Tint = 0.1
ms, the throughput of the 4× 4 system is 1.75 times of the 2× 2 system while
for larger bit interval time as Tint = 0.2 ms, the throughput of the 4× 4 is 1.9
times higher than the throughput of the 2 × 2 system. It can be concluded
that 4 × 4 D-MIMO system is more prone to the interference than the 2 × 2
system.
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Chapter 9

Conclusions and Future Works

9.1 Conclusions
In this thesis a pragmatic approach to design a D-MIMO MC system is pro-
posed. Slow nature of diffusion and the thirst for higher data rate makes us to
incorporate MIMO technique. Diffusion channel is so complex and we can not
provide a close-form solution to obtain the CIR. This thesis introduce the chan-
nel estimation for D-MIMO molecular communication channels. Maximum
Likelihood and Least Squares channel estimators are presented. Cramér-Rao
bound is derived and we showed that the performance of the ML estimator
reach to the CR bound with an optimized training sequence at the expense of
high receiver complexity. The least squares channel estimator is preferred due
to its low complexity with the expense of around 1 db performance degrada-
tion.

This thesis presents different detection and equalization techniques. Maxi-
mum likelihood detection is proposed and it leads to s simple threshold detec-
tor. Generally the threshold is not constant and it varies at every bit interval
time. Blind equalizer is proposed where it makes the average of the thresh-
old over time and gives a fixed threshold to be used for all time slots. Blind
equalizer is very simple to implement but it has a high error probability when
the interference is severe. Decision feedback equalizer is introduced to miti-
gate the effect of inter-symbol interference. DFE improves the performance
of the receiver, but when the inter-link interference is too high, we experience
a performance degradation. Finally, least square detector based on DFE is
proposed to mitigate the ISI and ILI simultaneously. LSD-DFE has the best
performance among the others and it has a low complexity. The complexity
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increases with the number of transmit and received antennas.
MIMO time interleaving modulation technique has been proposed to re-

duce the ILI and it gives us the opportunity to decreases the antennas inter-
distance at transmitter. Actually, we make an offset time between the release
of molecules in MIMO setting instead of the normal case where all transmit
antennas release molecules simultaneously.

Finally, we investigated the block-type communication where transmitter
sends a block of data during each block interval time. At the beginning of each
block, a designed training sequence is transmitted and the receiver counts the
molecules and estimate the channel. The estimated CIR then is used for the
rest of the block for equalization and detection. Results show that even with
small length of training sequence we can reach to a good performance.

9.2 Future Works
This thesis was so inspiring for me and there were many ideas that I would like
to follow and include them in this thesis. However, due to the time and space
constraint, I will explain them below for the reference of future works. I divide
my ideas into three categories of channel estimation, modulation technique and
equalization and detection. In the following, I will discuss each part separately.

9.2.1 Channel Estimation

In thesis we have investigated the channel estimation for diffusive MIMO
molecular communications. We have assumed that statistical knowledge of
the diffusive channel is not available. Therefore, the proposed ML and LS
channel estimators, estimate the CIR for every block assuming there is no in-
formation available from the channel. However, there are three ideas where we
can investigate further and it is described below.

Adaptive Channel Estimator

We can use the information of the estimated CIR of the previous block. In
details, we can assume the channel would not change dramatically in two
consecutive block of data. Therefore we can write

C̄j[p] = C̄j[p− 1] + δj[p] (9.1)
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where C̄j[p] is the CIR for the j-th receiver during the p-th block of data
and δj[p] is the variation of the channel for the current block. The channel
variation can be estimated according to the observed number of molecules durin
training sequence design transmission. The idea is to propose an adaptive
channel estimation where it estimates the variation of the channel instead of
estimating the full channel. In this proposed scheme, we can use the RLS
algorithm to calculate the channel variations. We have done some simulations
and it is observed that the performance of the system would depend on the
step size.

Channel Estimation with Statistical knowledge of the Channel

We can use the history and previous estimated CIRs in order to provide a
statistical channel knowledge to be used for current block CIR estimation.
When there is full statistical channel knowledge available, we can derive the
maximum a-posteriori (MAP) estimator for CIR estimation. When full channel
statistical knowledge is not available and only first and second order statistic
is at hand, we can derive the linear minimum mean square errors (LMMSE)
estimator. In both case, we will increase the accuracy of the channel estimation
by incorporating some useful information from past.

Feedback Chanel Estimation

In this subsection, we introduce a new method that incorporates the feedback
of decoded data at previous block to estimate the channel at the current block
interval. The idea is to prohibit transmitting a large overhead. As it is ex-
pected, all decoded bits are not correct. However, we have seen that CIR
estimation problem is not so much sensitive. For example, when BER is equal
10−2, we can say in average we have 1 bit error in decoding 100 bits. It is
observed that we can reach to a good CIR estimation accuracy in this case.
This method is so efficient in environments where MC channel is not varying
so fast.

9.2.2 Modulation Technique

In this thesis, information is encoded in the number of molecules. However,
There are several works in the literature which has encoded the molecules
in the time of release. The performance of the diffusive MC system is highly
related to the number of received molecules. Pulse position modulation (PPM)
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is highly investigated in the literature at optical communication Jargon. The
same approach can be adopted for MC systems. It means that we can encode
the information both in time and concentration of molecules. PPM modulation
technique also can be used at D-MIMO transmitter. PPM modulation does
not transmit at all time slots, and this feature makes it suitable for D-MIMO
systems to mitigate the interference. Therefore, PPM modulation decreases
the interference and increases the throughput of the D-MIMO MC system
simultaneously.

9.2.3 Equalization and Detection

This thesis investigates one-shot detection for its simple architecture. There
are many published works in the literature regarding sequence detection. How-
ever, most of them has high complexity and it is not suitable for MC systems
where nanomachines have limited capabilities. D-MIMO sequence detection
with simple architecture needs to be more investigated.

Moreover, all the proposed detectors are so much sensitive to the number of
received molecules and they need high number of molecules to be transmitted
at each bit interval. However, the number of molecules at transmitter storage
is limited. Therefore, we have to propose new detectors and modulation tech-
niques where they are more molecularly efficient compared to the current ones
and has a good performance.
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