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Infine il ringraziamento piú sentito va a tutta la mia famiglia, zii, cugini e soprat-
tutto ai miei genitori Arcangelo e Daniela e a mio fratello Alberto per il sostegno
continuo e per avermi messo nelle condizioni migliori per portare a termine questo
lungo e prezioso lavoro e percorso di studi. Semplicemente e profondamente gra-
zie.





Abstract

Nowadays, the Unmanned Aerial Vehicles (UAVs) are more and more popular
thanks to the broad class of applications in which they can be employed. When
referring to an UAV, generally called drone, usually one can refer to a category of
multi-rotor Vertical Take-Off and Landing (VTOL) vehicles provided with four,
six, or eight motors, of small/medium size and remote controlled. Everyday these
aircrafts are used in new fields of applications, from the entertainment to the pro-
fessional purposes, up to the military missions.
The increasing interest in the UAVs and, in particular, in their capabilities, is
pushing the commercial and research communities towards new challenges. The
development of new configurations for multi-rotor UAVs is essential to improve
the maneuverability and the operational range of the well-established co-planar
platforms, in which the thrust can be produced along a single direction.
The work conducted within this thesis is focused on a particular class of UAVs:
the quad-copters with tilt-arm capabilities, called tilt-rotors. This kind of quadro-
tors, unlike a standard quad-copter, have an over-actuated structure that allows
ideally to independently control the six Degrees Of Freedom (DOFs) of a rigid-
body in space. This is possible thanks to the use of eight actuators: four motors at
which the propellers are fixed and four servo-actuators that can change the thrust
direction of four propellers by tilting the four arms around their longitudinal axes.
This makes the platform capable to perform complex maneuvers, impossible for
a fixed-arm quadrotor and potentially useful in some special operations.
Starting from these premises, the purpose of this thesis is to analyze, to implement
and to simulate nonlinear control strategies for an existing tilt-rotor prototype,
designed and realized during a previous thesis developed at Aerospace Science and
Technologies Department in Politecnico di Milano.
Initially, such prototype under exam is described, its mathematical model is pre-
sented and all the formalisms adopted in the following chapters are defined. A
simplified nonlinear model is proposed to address the trajectory tracking con-
trol problem. Two control strategies are explored: feedback linearization and
Lyapunov-based geometric control.
The first family of controllers taken into account is the feedback linearization
controllers, of which two different control laws and their respective control pa-
rameters tuning are presented. Moreover, two control laws are presented in the
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framework of geometric control theory, which is particularly suitable to tackle the
control problem for the tilt-rotor UAV. In particular, the first geometric control
law solves the control problem in the case that full-actuation is assumed. It con-
stitutes a base case from which the second control law is derived. Restricting the
maximum tilt-angle of the servo-actuators, the first control law is properly mod-
ified in order to guarantee position over orientation tracking and be compatible
with an approximated form of the constraints. Numerical simulations are per-
formed to assess the performance of the different control laws.
Finally, a robustness analysis for the implemented controllers is presented in order
to evaluate the possibility of implementing them on the real prototype.



Sommario

Al giorno d’oggi, gli aeromobili a pilotaggio remoto (APR) sono sempre piú dif-
fusi grazie alle notevoli applicazioni in cui possono essere impiegati. Quando ci
si riferisce ad un APR, comunemente chiamato drone, si fa riferimento ad una
categoria di velivoli multi-rotore a decollo ed atterraggio verticale generalmente
dotati di quattro, sei oppure otto rotori, di piccole/medie dimensioni e pilotati da
remoto. L’utilizzo di questa categoria di velivoli trova di giorno in giorno nuovi
campi di applicazione che spaziano dall’intrattenimento a scopi professionali, fino
a missioni di tipo militare.
Il crescente interesse per gli APR ed in particolare per le loro capacitá di mis-
sione, guida la ricerca scientifica ed ingegneristica verso nuove sfide ed orizzonti.
Lo sviluppo di nuove piattaforme multi-rotore a pilotaggio remoto é essenziale per
migliorare la manovrabilitá e le capacitá di impiego degli ormai affermati droni
quadri-rotore, in grado di generare spinta solamente lungo il loro asse verticale.
Questo lavoro di tesi si concentra su una particolare tipologia di APR: i quadri-
cotteri dotati di braccia inclinabili, detti tilt-rotor. Questa tipologia di droni
quadri-rotore, al contrario di un quadricottero standard, possiede una struttura
sovra-attuata che gli permette di controllare completamente i sei gradi di libertá
di un corpo rigido nello spazio. Questo é possibile grazie all’utilizzo di otto attua-
tori: quattro motori a cui sono fissate le eliche e quattro servo-motori in grado di
modificare la direzione della spinta prodotta grazie all’inclinazione delle quattro
braccia, che rendono il tilt-rotor un drone in grado di eseguire manovre complesse
potenzialmente utili in alcune operazioni speciali.
Da queste premesse, il presente lavoro di tesi propone l’analisi, l’implementazione
e la simulazione di strategie di controllo non lineari per un prototipo esistente di
tilt-rotor, progettato e realizzato in un precedente lavoro di tesi presso il Diparti-
mento di Scienze e Tecnologie Aerospaziali del Politecnico di Milano.
Inizialmente viene descritto il prototipo in questione, é presentato il suo modello
matematico e vengono definiti tutti i formalismi utilizzati nei capitoli successivi.
Viene proposto, inoltre, un modello non lineare semplificato del tilt-rotor, utiliz-
zato per risolvere il problema di inseguimento di traiettoria. Vengono analizzate
due strategie di controllo: il controllo in feedback linearization e il controllo ge-
ometrico basato sulla teoria di Lyapunov. La prima famiglia di controllori presa
in esame é quella dei controllori in feedback linearization, di cui sono presentate
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due differenti leggi di controllo e i relativi metodi di taratura. Successivamente,
sono presentate due leggi di controllo del mondo dei controllori geometrici, che si
presta bene per affrontare il problema di controllo del tilt-rotor. In particolare,
le prima legge di controllo geometrico risolve il problema di controllo assumendo
che il tilt-rotor sia in grado di produrre forze arbitrarie nello spazio senza vincoli.
Essa costituisce un caso base dalla quale la seconda legge di controllo geometrico é
sviluppata. Limitando gli angoli di inclinazione massimi dei servomotori, la prima
legge di controllo viene modificata in modo da rendere prioritario l’inseguimento
di posizione rispetto all’inseguimento di assetto ed essere compatibile con una
forma approssimata dei vincoli di attuazione. Sono eseguite diverse simulazioni
numeriche per verificare le performance delle differenti leggi di controllo.
Infine, é presentata un’analisi di robustezza dei controllori mostrati in modo di
poter valutare la possibilitá di implementarli sul prototipo esistente.
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Introduction

An Unmanned Aerial Vehicle (UAV) is an aircraft without a pilot aboard, which
is able to fly autonomously or could be driven by remote. Usually called drones,
in recent years this type of vehicles has met with great interest both in civil and
military fields thanks to their wide range of applications, including precision agri-
culture, photography, policing and surveillance, search and rescue, entertainment,
product delivery, aerial inspection and many others. For example, a Non Gover-
native Organization (NGO) in Malta, the Migrant Aid Offshore, uses drones to
locate and rescue migrants in the Mediterranean Sea, some towns in Italy find
illegal buildings or measure the quality of the air through those vehicles, that are
equipped with appropriate sensors (Botta [2015]).
In this thesis the focus will be on a particular class of UAVs: the multi-rotors, in
particular the four-rotors configuration, named quadrotors or quad-copters. The
simplest kind of quadrotor is composed by a central body, that comprehends the
Flight Control Unit (FCU) with all sensors, the battery pack, the radio receiver
and the Electronic Speed Controllers (ESCs) to supply the motors, and four fixed
arms at the end of which the motor plus propeller groups are placed. Controlling
the thrust generated by each rotor, the drone is able to reach arbitrary positions
and yaw configuration in space by varying its roll and pitch angles. The standard
quadrotor is in fact intrinsically under-actuated, i.e., it isn’t able to follow a tra-
jectory with decoupled attitude and position setpoint.
The tilt-rotor is another kind of quadrotor that has an over-actuated structure,
in particular it has tilting rotor capabilities. Thanks to four servo-motors, each
arm with motor plus propeller group can be tilted in order to produce not only
a vertical force, but also translational forces. This capability lets the tilt-rotor to
reach a full position/attitude decoupling: for example, it is able to hover keeping
non-null roll/pitch angles. This kind of platform paves the way for more complex
maneuvers and more operational scenarios, but also to more sophisticated control
strategies able to exploit the eight actuators to fully control the six degrees of
freedom of a rigid body in space.
A tilt-rotor prototype has been designed and realized in Micheli [2016]. In that
work, linear controllers have been implemented in order to control the platform.
Dealing with the analysis, the implementation and the numerical simulation of
nonlinear control strategies for such tilt-rotor prototype, this thesis represents a
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further progress in solving the control problem. The present thesis begins by
describing the tilt-rotor prototype and presenting its mathematical model along
with all the formalisms necessary to avoid any ambiguity. The core of this thesis
relies on the implementation on Matlab Simulink environment of four different
control laws, that span into two control strategy families: feedback linearization
control and Lyapunov-based geometric control.
Two feedback linearization control laws are implemented. The first one, presented
in Ryll et al. [2015], resorts to the system dynamic extension in order to perform
the dynamic inversion, while the second control law works at a lower differential
level. Numerical simulations are performed in order to assess the feedback lin-
earization controllers performance and some considerations are exposed. Then,
the control problem is addressed in the geometric control framework, implement-
ing two control laws, which has been presented in Invernizzi and Lovera [2017a]
and Invernizzi and Lovera [2017b]. Also for the geometric control laws, numerical
simulations are performed in order to evaluate the controllers performance and
limitations. The last part of the thesis deals with a qualitative robustness analysis
of the implemented controllers.
The arguments treated in this thesis are presented in this order:

• Tilt-rotor description: prototype, model and formalisms

• Feedback linearization control and relative simulations

• Geometric control and relative simulations

• Qualitative robustness analysis



Chapter 1

Modeling of the tilt-rotor
quad-copter

This first chapter introduces the tilt-rotor quad-copter, object of this thesis. Start-
ing from the description of the existing prototype designed and built in Micheli
[2016], a mathematic model is then presented. Initially, all the mathematical for-
malisms adopted are explained in order to avoid ambiguities, then the dynamic
model is obtained studying the tilt-rotor kinematics and equations of motion.
Moreover, the Simulink implementation of the model is presented and a simpli-
fied model for control purposes is shown. Finally, the computation of the nonlinear
mixer matrix is exposed.
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1.1 The prototype

1.1.1 Prototype description

The tilt-rotor prototype is shown in Figure 1.1 and is composed by a central body
to which four arms are connected. On the central body are mounted the Flight

Figure 1.1: Tilt-rotor prototype

Control Unit (FCU), the servo-motors, the battery and the Electronic Speed Con-
trollers (ESCs) to supply the motors. The four arms are connected to the central
body through the servo-motors, thanks to which they can tilt around their longi-
tudinal axis. At the end of each arm the motors with the corresponding propellers
are mounted. For the sake of simplicity, from now on the set composed by a motor
and its propeller is called “propeller group”.
The FCU has the important role to control and stabilize the tilt-rotor and is
in turn composed by Rapid Robot Prototyping (R2P) boards. R2P is a frame-
work that allows to implement real time architectures for robotic systems using
the composition of different basic modules. Each module provides some specific
functions: the modules can communicate with each other through a middleware
that integrates a publish/subscribe communication protocol and allow to set up
distributed control loops in a flexible way. In order to communicate wireless with
the ground station, a Raspberry board is mounted over the FCU and connected
through a USB cable to R2P.
Specifically, four R2P modules are used:

• USB module: provides serial communication with a computer or other de-
vices and has an SD slot to expand the memory
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• RC module: receives radio messages from the radio-controller and allows
the PWM communication with the motors controllers

• IMU module: provides attitude and position estimation

• Proximity module: altitude estimation and position/attitude control.

Unlike Micheli [2016], the control computation has been moved from the IMU
module to the proximity module in order to have a better distribution of the com-
putation load.

1.1.2 Actuators

Figures 1.2 and 1.3 show the actuators mounted on the tilt-rotor: respectively the
motors and the servo-motors.
The motors are DC Brushless type, model HP2814 from RCTimer High Perfor-
mance Series. The main parameter that describes their behavior is Kv, that
represents the number of revolutions per minute (rpm) for each Volt applied to
the motor without any load. In this case 710Kv means that, having a 3 cells LiPo
battery with 11.1 rated Volts, the maximum achievable speed is 7881 rpm. These

Figure 1.2: The motor RCTimer HP2814

motors require a three-phase modulated power supplier: the four ESCs receive as
input a PWM signal from the controller and produce the AC three-phase signals.
Thanks to the identification campaigns performed in Micheli [2016], the static
relation between throttle (%) and rotational speed Ω is expressed as

Ω = m̂ Th% + q̂ (1.1)

where m̂ = 6.031 and q̂ = 80.49.
The dynamic model of the motors is expressed by a first order transfer function

G(s) =
Ω(s)

Th%(s)
=

µ̂

1 + sτ̂
(1.2)
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where µ̂ = 5.2 and τ̂ = 55 · 10−3. The servo-motor model is the HS-485HB,

Figure 1.3: Servomotor

provided with an internal control loop that lets them to track an external set-
point. In order to characterize their behavior, in Micheli [2016] an identification
campaign has been performed and the identified model is given by:

F (s) =
φ(s)

φref (s)
=

b0

b1s3 + b2s2 + b3s+ b4

(1.3)

where the estimated parameters values are shown in Table 1.1:

Parameter Value
b0 4670.2519
b1 1
b2 28.355992
b3 598.45913
b4 4650.2325

Table 1.1: Servo-motors identified parameters

The actuators bandwidth is around 20 rad/s for both motors and servomotors.
However, the servo-motors transfer function is a third order: it causes a significant
phase displacement that limits their available bandwidth. In order to complete
the actuators characterization and to evaluate the available bandwidth, the Bode
diagrams of the actuators are shown in Figure 1.4.
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1.2 Formalisms

1.2.1 Reference frames and axes

The motion of a body in space is described thanks to reference systems, that
need to be properly chosen. Many conventions are known in the literature, but,
since this work is the continuation of Micheli [2016], the chosen reference systems
follows in the same way the NED standard.
The Earth fixed frame, called inertial frame, is defined as FE = {OE, N,E,D},
where OE is a point on the Earth surface. The N-axis and the E-axis are chosen
to point respectively North and East and the D-axis completes the right-hand rule
pointing downward.
The second frame to be defined is the body frame FB = {OB, XB, YB, ZB}, where
OB corresponds to the body center of mass. The X-body axis points forward
in the direction of the propeller group labelled with number 1, the Y-body axis
points right, in direction of the second propeller group. Finally the Z-body axis
points downward to satisfy the right-hand rule.
It is necessary also to define other four propeller frames, FPi

= {OPi
, XPi

, YPi
, ZPi
}

(i = 1, 2, 3, 4), each attached to a propeller group. In the same way, each X-
propeller axis points outward, lying on the same direction of the arm sustaining
the propeller group. Each Z-propeller axis points downward and each Y-propeller
axis completes the right-hand rule. Figure 1.5 shows the chosen reference frames
and axes.

Figure 1.5: Reference frames and axes
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1.2.2 Rotation matrices and Euler angles

A rotation matrix is a matrix ∈ SO(3), the group of orthogonal matrices un-
der matrix multiplication with determinant equal to 1. A rotation matrix could
expresses three different meanings:

• the orientation of a frame with respect to another frame

• the transformation that relates the coordinates of a point in two different
frames

• the rotation of a vector in a coordinate frame.

A frame or a vector could be rotated around different axes many times: in order
to perform this operation, it is useful to define the elementary rotations around a
coordinate axis, in particular:

Rx(α) =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 (1.4)

Ry(β) =

cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)

 (1.5)

Rz(γ) =

 cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1

 . (1.6)

The rotation direction is positive counterclockwise, following the right-hand rule.
Since a rotation matrices is orthonormal, the inverse rotation is obtained by trans-
posing it. In fact:

R−1
x = RT

x (1.7)

R−1
y = RT

y (1.8)

R−1
z = RT

z . (1.9)

Many consecutive rotations could be performed multiplying the rotation matri-
ces, noting that rotations performed in different order produce different results
(Rx(α)Ry(β) 6= Ry(β)Rx(α)). When a vector or a frame is rotated an arbitrary
number of times, the final attitude vector could be represented by a minimal rep-
resentation, that consists in performing just three consecutive rotations around
Rz, Ry, Rx.
A minimal representation is a parameterization of the attitude with respect to
three parameters, called Euler angles Φ = [φ θ ψ]T . They represents the three
angles of the rotations performed around Rx, Ry, Rz, also called roll, pitch, yaw.
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Figure 1.6: Euler angles

The rotation from the world frame to the body frame, e.g., could be expressed in
this form

BRW (φ, θ, ψ) = Rx(φ)Ry(θ)Rz(ψ) (1.10)

where B and W stands for ”body” and ”world” respectively and BRW (φ, θ, ψ) is
the matrix that describes the rotation. For the sake of completeness,

BRW (φ, θ, ψ) =

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 , (1.11)

where to simplify the notation, sφ = sin(φ) and cφ = cos(φ).
To obtain WRB(φ, θ, ψ), the rotation matrix from the body frame to the world
frame, it is sufficient to transpose BRW (φ, θ, ψ). In fact:

WRB = BRT
W . (1.12)

Thanks to rotation matrices and Euler angles, it is possible to express the vectors
of kinematic quantities with respect to the body frame or the inertial frame:

uW = WRBuB (1.13)

uB = BRWuW (1.14)

where u is a generic vector expressed in the inertial frame (uW ) and in the body
frame (uB).

1.2.3 Algebra for matrices

Some useful notions about matrix algebra are reported here.
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Skew-symmetric matrix

A matrix A ∈ R3×3 is skew symmetric (or anti-symmetric) if it satisfies the con-
dition:

AT = −A. (1.15)

The ˆ operator represents the map transforming a vector a ∈ R3 into the associ-
ated skew-symmetric matrix â ∈ so(3):

â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (1.16)

Cross product

The transformation of a vector in its corresponding skew-symmetric matrix is
useful also to compute the cross product. In fact, given two vectors a, b ∈ R3:

a× b = â b =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

b1

b2

b3

 . (1.17)

Matrix derivative

The derivative of a rotation matrix is defined as:

Ṙ = R ω̂ (1.18)

where R ∈ SO(3) is a standard rotation matrix that expresses the transformation
from a reference frame to another and ω is the vector of angular rates resolved to
the first frame.

Moore-Penrose pseudoinverse

Given a matrix A ∈ Rn×m, the Moore-Penrose pseudo-inverse of matrix A is
defined as a matrix A† ∈ Rm×n that always exists and satisfies the following
properties:

• AA†A = A

• A†AA† = A†

• (AA†)T = AA†

• (A†A)T = A†A
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If A is full rank, its pseudo-inverse can be computed as:

A† = AT (AAT )−1. (1.19)

If A is not full rank, the pseudo-inverse can be computed numerically using the
Singular Value Decomposition (SVD). An important property is that, for linear
systems Ax = b with non-unique solution, the pseudo-inverse can be used to find
the minimum Euclidean norm solution.
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1.3 Mathematical model

A good mathematical model of the tilt-rotor is essential to perform valid simu-
lations. As in Micheli [2016] and Ryll et al. [2015], the tilt-rotor model is de-
rived thanks to a proper kinematic description and then the use of Newton-Euler
method by considering:

• forces/moments generated by the propellers

• cross coupling due to gyroscopic and inertial effects

• aerodynamic damping and forces.

In derivating the model, the following assumptions have been considered:

• neglected the arms inertiæ

• simplified thrust and torque generation of rotary propellers

1.3.1 Kinematics

The tilt-rotor model is considered composed by five rigid bodies: the central body
and the four propeller groups Pi.

Central body kinematics

The tilt-rotor center of mass is described by:

p =

ne
d

 (1.20)

v = ṗ =

ṅė
ḋ

 (1.21)

vb = BRWv =

uv
w

 (1.22)

where p and v are the position and velocity vectors of the center of mass OB

expressed in inertial frame, vb is the linear velocity vector resolved to body axes.
The attitude of the tilt-rotor could be expressed in many ways thanks to different
parameterizations. One could be the rotation matrix WRB(φ, θ, ψ), another could
be using a quaternion, otherwise it is possible to use the attitude vector whose
elements are the Euler angles:

Φ =

φθ
ψ

 . (1.23)
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It is possible to define the Euler rates as

ωe =

φ̇θ̇
ψ̇

 (1.24)

and the body angular velocity as

ωb =

pq
r

 . (1.25)

The transformation between ωe and ωb is sophisticated, in fact it depends not only
on the Euler rates, but also on the Euler angles (see Giurato [2015]):

ωb =

φ̇0
0

+Rx(φ)

0

θ̇
0

+Ry(θ)

0
0

ψ̇

 =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

ωe = G(φ, θ)ωe.

(1.26)
The inverse relation cannot be obtained by simply transposing the G(φ, θ) matrix
(since it is not orthonormal) but it is necessary to invert it:

G−1(φ, θ) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 , (1.27)

obtaining:
ωe = G−1(φ, θ)ωb. (1.28)

When the angle θ reaches ±π
2
, matrix G−1 becomes singular: this particular case

is called gimbal lock and can be avoided using other attitude parameterizations.
Many frames have been defined in order to describe the motion of the tilt-rotor
in space: the inertial frame FW , the body frame FB and propeller groups frames
FPi

for i = 1, 2, 3, 4.
When dealing with rotating frames, in order to have a correct kinematic and
dynamic description, it is necessary to use the Coriolis equations (see Giurato
[2015]).
Consider p (1.20) the inertial position vector of a body in space that is rotating
with angular body rate ωb (1.25). The velocity vector in the inertial frame is

ṗ =

ṅė
ḋ

 = vb + ωb × p. (1.29)

Differentiating again with respect to time and after some expansions, the acceler-
ation is:

p̈ = v̇b + 2 ωb × vb + ω̇b × p+ ωb × (ωb × p). (1.30)
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The obtained equation expresses the total linear acceleration acting on a body in
space with respect to the inertial fixed frame FW .

Propeller groups kinematics

The position vectors of the propeller groups with respect to body center of mass
are defined:

BOPi
= RT

z

(
(i− 1)

π

2

)b0
0

 , i = 1, 2, 3, 4 (1.31)

where b is the arm length, i.e., the distance between the body center of mass and
a propeller group.
Each propeller group is able to tilt by an angle αi around the XPi

axis. In order
to express the tilting action, other rotation matrices are adopted:

PiRB = Rx(αi) Rz

(
(i− 1)

π

2

)
(1.32)

BRPi
= PiRT

B (1.33)

where BRPi
are the matrices that express the rotation of the frames FPi

with
respect to the body frame FB.
The angular velocities of the propeller groups are given by:

ωPi
= PiRBωb +

α̇i0
Ωi

 (1.34)

where α̇i is the tilting velocity around the XPi
axis and Ωi is the spinning velocity

about ZPi
.

After a time derivation, the angular acceleration is obtained

ω̇Pi
= PiRBω̇b + PiṘBωb +

α̈i0
Ω̇i

 , (1.35)

where

PiṘB = PiRBω̂α (1.36)

ωα =

α̇0
0

 . (1.37)

Table 1.2 recaps the kinematic quantities of the tilt-rotor.
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Symbol Description Unit
n inertial north position of the tilt-rotor m
e inertial east position if the tilt-rotor m
d altitude of the aircraft m
u velocity in body frame around local N m/s
v velocity in body frame around local E m/s
w velocity in body frame around local D m/s
φ roll angle rad
θ pitch angle rad
ψ yaw angle rad
p roll rate in body frame rad/s
q pitch rate in body frame rad/s
r yaw rate in body frame rad/s

Table 1.2: Kinematic quantities

1.3.2 Equations of motion

Translational motion

The translational motion is referred to the body frame FB. Let vb the velocity
vector of the origin of FB in the body frame, applying the Newton’s law:

mv̇b + ωb × (mvb) = Fprop + Fext (1.38)

Fprop =

FxFy
Fz

 (1.39)

Fext = Fg + Faero (1.40)

Fg = m BRW

0
0
g

 (1.41)

where m is the mass of the tilt-rotor, g is the gravity acceleration, Fg is the gravity
vector rotated from inertial to body frame and Fprop includes the forces generated
by the propellers. The vector Faero includes the aerodynamic forces related to the
motion of the tilt-rotor in the space. Since the drone is supposed to fly at low
speed and indoor, these forces are considered negligible.
The Fprop vector is defined as:

Fprop =

FxFy
Fz

 =
4∑
i=1

BRPi
TPi

(1.42)

where TPi
is the thrust vector and is described in the following paragraphs. It
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is important to note that unlike a standard quadrotor, the tilt-rotor is able to
produce forces not only along the Zb axis but also along Xb and Yb axes thanks
to its rotors tilting capabilities.
Rewriting equation (1.38) with respect to the inertial frame, it results:

mp̈ = m

0
0
g

+ WRBFprop. (1.43)

Rotational motion

The rotational equation of motion of the propeller group is obtained applying the
Euler’s rotation equation:

τPi
= IPi

ω̇Pi
+ ωPi

× IPi
ωPi
− τpropi (1.44)

where τPi
is the vector of total torque acting on the propeller group, IPi

is the
inertia matrix of the propeller group and τpropi is the counter rotating torque of
the ith propeller acting along ZPi

axis.
Applying Newton’s second law, the rotational dynamic equilibrium is:

Ibω̇b + ωb × Ibωb =
4∑
i=1

(
BOPi

× BRPi
TPi
− BRPi

τPi

)
(1.45)

where Ib is the body inertia tensor and TPi
are the thrust vectors. Due to the sym-

metry of the tilt-rotor structure the inertia tensor could be considered a diagonal
matrix:

Ib =

Ixx 0 0
0 Iyy 0
0 0 Izz

 . (1.46)

The total moments generated by the actuators are given by

Mprops =

LM
N

 =
4∑
i=1

(
BOPi

× BRPi
TPi
− BRPi

τPi

)
. (1.47)

Taking into account also the aerodynamic damping Mdamp, that can be assumed
proportional to the angular body rates ωb, equation (1.47) becomes:

Mprops +Mdamp =

LM
N

 =
4∑
i=1

(
BOPi

× BRPi
TPi
− BRPi

τPi

)
(1.48)

where Mdamp can be expressed as

Mdamp =

dLdp 0 0

0 dM
dq

0

0 0 dN
dq

pq
r

 . (1.49)
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In equation (1.49) the derivatives dL
dp

, dM
dq

, dN
dr

are called stability derivatives. It is
possible to derive their analytical form, but since it is not of interest in this thesis,
the reader can refer to Micheli [2016].

Forces and moments generation

As explained in Mahony et al. [2012], the effects of a rotary propeller can be
approximated as:

• a vertical force along the ZPi
axis

• a counter-rotating torque around the ZPi
axis.

The vector of forces produced by the propeller in the local frame can be approxi-
mated as:

TPi
=

 0
0

−KtΩ
2
i

 (1.50)

where Kt is called thrust coefficient. It can be experimentally identified and is
specific for each kind of propeller. The counter-rotating torque has always a sign
that is opposite to the rotation direction of the propeller and can be approximated
as:

τpropi =

 0
0

−KqΩi|Ωi|

 . (1.51)

Figure 1.7 shows the propeller frame and the direction of the thrust generated by
the propeller according to the tilting action.
Table 1.3 summarizes the physical quantities of the tilt-rotor prototype.

Figure 1.7: Propeller frame and thrust generated according to tilting angle
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Description Symbol Quantity Unit
Total mass of tilt-rotor m 1.9 kg

Arm length b 0.275 m
Inertia around Xb axis Ixx 0.0074 kg ·m2

Inertia around Yb axis Iyy 0.0074 kg ·m2

Inertia around Zb axis Izz 0.05 kg ·m2

Stability derivative of vehicle roll dL/dp −0.046271 N ·m · s
Stability derivative of vehicle pitch dM/dq −0.046271 N ·m · s
Stability derivative of vehicle yaw dN/dr −0.0185 N ·m · s

Thrust coefficient Kt 2.4619 · 10−5 kg ·m
Torque coefficient Kq 2.8893 · 10−7 kg ·m2

Table 1.3: Physical quantities of the tilt-rotor prototype
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1.4 Model implementation in Simulink

Starting from the dynamic model described in the previous sections, the Simulink
implementation for simulation purposes of the tilt-rotor model is presented. This
model is an update of the one presented in Micheli [2016] and, in particular, it has
been modified in order to have a structure similar to the quadrotor model designed
in Giurato [2015]: in this way, the implementations of two different multi-copters
share the same kernel.

Figure 1.8: Simulink model

Figure 1.8 shows the main blocks that compose the model:

• Tiltrotor: this block contains all the dynamic equations presented in section
1.3. It receives as input the thrusts requested to the four motors in %, Th%i,
and the tilting angles of the four arms αi for i = 1, 2, 3, 4. The outputs of
this block are the position, velocity, attitude and angular rates vectors.

• Controller: it is the key block of this thesis. Many nonlinear control strate-
gies have been implemented, all receive as inputs the measurements and
produce as outputs the eight control variables Th%i, αi for i = 1, 2, 3, 4.

• Measurements: this block reads the output of the tilt-rotor block and trans-
forms the signals by discretizing them. This is a way to take into account
the sampling time of an hypothetical hardware on which the control system
should be implemented. The considered working frequency is 100Hz.

• Setpoint: this block generates the trajectory that the tilt-rotor is supposed
to follow. Due to the complexity of the adopted nonlinear controllers, the
set-point specifies not only the required position and the attitude in function
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of time, but also velocity, acceleration, jerk, angular rates, angular acceler-
ations and angular jerks are generated. Fortunately, not all the control
strategies require acceleration, jerk, angular accelerations and angular jerks.

Figure 1.9: Tilt-rotor Simulink dynamic model

Figure 1.9 shows the implementation in Matlab Simulink of the dynamic model
described in Section 1.3. The actuators block contains the dynamic equations of
motors and servo-motors whose parameters have been identified in Micheli [2016].
The left rectangle contains forces and moments acting on the system in body
frame: gravity force, propellers forces, propellers moments and aerodynamic damp-
ing. The central section contains the linear and angular equations counting for
the inertial and gyroscopic effects. In the right upper rectangle the frames trans-
formations are executed and finally, in the right lower rectangle, the output of the
model simulation are produced.
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1.5 Model for control

The model described in Section 1.3 is a mathematical approximation of the tilt-
rotor prototype. It is useful to perform simulations before executing tests on the
real system since it captures the main effects of the tilt-rotor motion in the space.
Each model has uncertainties that can be present in different magnitude depend-
ing on the assumptions and the simplifications made. For example, our model
considers the tilt-rotor composed by only five rigid bodies, in reality they are a lot
more and they are of course non ideally rigid. The practice is to create a model
making the less simplifications, letting it to be as close as possible to the reality:
this way the simulations should have a“realistic” meaning.
The simplification of a model could be useful for control purposes: since in Section
1.3 the model is complex, the design of a controller for the complete model could
be hard to be done because of the high number of effects to take into account.
In order to make the design of a controller for the tilt-rotor model feasible, some
simplifications are assumed. Therefore, a controller is designed specifically for
the simplified model: this control should be robust enough to compensate for the
model complexity reduction even when it is acting on the complete model. The
simplifications made are:

• neglect motors and servomotors dynamics

• neglect aerodynamic damping and forces.

The simplified model for control purposes is:
p̈ =

0

0

g

+ 1
m
WRBFprops

ω̇b = I−1
b Mprops − I−1

b (ωb × Ib ωb)
WṘB = WRBω̂b.

(1.52)
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1.6 Mixer matrix

In this section the relation between control variables, i.e., Th%i and αi, and
forces/moments acting on the tilt-rotor is treated.
The control law needs as inputs the set-points of position, velocity, attitude and
angular rates of the quad-copter and produces as outputs forces and moments
requested to actuators. These quantities can be expressed as function of the
propellers spinning speeds Ωi and the tilt angles αi (i = 1, 2, 3, 4):

Fx = −Kt sin(α2)ω2
2 +Kt sin(α4)ω2

4 (1.53)

Fy = Kt sin(α1)ω2
1 −Kt sin(α3)ω2

3 (1.54)

Fz = −Kt cos(α1)ω2
1 −Kt cos(α2)ω2

2 −Kt cos(α3)ω2
3 −Kt cos(α4)ω2

4 (1.55)

L = Kq sin(α2)ω2
2 −Kq sin(α4)ω2

4 −Ktb cos(α2)ω2
2 +Ktb cos(α4)ω2

4 (1.56)

M = Kq sin(α1)ω2
1 −Kq sin(α3)ω2

3 +Ktb cos(α1)ω2
1 −Ktb cos(α3)ω2

3 (1.57)

N = −Kq cos(α1)ω2
1 +Kq cos(α2)ω2

2 −Kq cos(α3)ω2
3 +Kq cos(α4)ω2

4 (1.58)

+Ktb sin(α1)ω2
1 +Ktb sin(α2)ω2

2 +Ktb sin(α3)ω2
3 +Ktb sin(α4)ω2

4

where b is the arm length, Kt the thrust coefficient and Kq the torque coefficient.
What is needed at this point is a matrix form of the previous equations in order
to obtain this kind of relation:[

Forces
Moments

]
6×1

= MM6×8 u8×1 (1.59)

and then to obtain the input vector u

u8×1 = MM †
8×6

[
Forces
Moments

]
6×1

(1.60)

where MM is the so called mixer matrix, that relates the control variables vector
to forces and moments generated by the actuators (vectors and matrices dimen-
sions are shown for the sake of clarity). MM † is the Moore-Penrose pseudo-inverse
of matrix MM , treated in Section 1.2.3.
Since it is impossible to rewrite equations from (1.53) to (1.58) in matrix form
pointing out both Ω2

i and angles αi (i = 1, 2, 3, 4), what is needed in order to
obtain an 8× 1 input vector are some mathematical transformations.
The equations from (1.53) to (1.58) are rewritten this way:


Fx
Fy
Fz
L
M
N

 =


0 0 0 0 0 −1 0 1
0 0 0 0 1 0 −1 0
−1 −1 −1 −1 0 0 0 0
0 −b 0 b 0 σ 0 −σ
b 0 −b 0 σ 0 −σ 0
−σ σ −σ σ b b b b





fp1 cos(α1)
fp2 cos(α2)
fp3 cos(α3)
fp4 cos(α4)
fp1 sin(α1)
fp2 sin(α2)
fp3 sin(α3)
fp4 sin(α4)


(1.61)
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where

σ =
Kq

Kt

(1.62)

fpi = KtΩ
2
i . (1.63)

Equation (1.61) in compact form becomes[
Forces
Moments

]
6×1

= W6×8 fu 8×1 (1.64)

where W is the new mixer matrix and fu is a new vector whose first four elements
correspond to the horizontal components of the thrust generated by propellers
and the last four to the vertical components.
As in equation (1.60), the vector fu is computed as

fu = W †
[

Forces
Mmoments

]
(1.65)



fp1 cos(α1)
fp2 cos(α2)
fp3 cos(α3)
fp4 cos(α4)
fp1 sin(α1)
fp2 sin(α2)
fp3 sin(α3)
fp4 sin(α4)


=



0 − σ
2b
−1

4
0 1

2b
− σ

4(b2+σ2)

− σ
2b

0 −1
4
− 1

2b
0 σ

4(b2+σ2)

0 σ
2b
−1

4
0 − 1

2b
− σ

4(b2+σ2)
σ
2b

0 −1
4

1
2b

0 σ
4(b2+σ2)

0 1
2

0 0 0 b
4(b2+σ2)

−1
2

0 0 0 0 b
4(b2+σ2)

0 −1
2

0 0 0 b
4(b2+σ2)

1
2

0 0 0 0 b
4(b2+σ2)




Fx
Fy
Fz
L
M
N

 . (1.66)

In order to explicit Ω2
i and αi (i = 1, 2, 3, 4), some transformations are performed:

fpi =
√
f 2
u(i) + f 2

u(i+ 4) (1.67)

Ω2
i =

fpi
Kt

(1.68)

αi = arctan2(fu(i+ 4), fu(i)). (1.69)

In this way, thanks to some mathematical transformations, the exact (nonlinear)
mixer matrix of the tilt-rotor is derived. It is important to note that the mixer
matrix W is constant and depends only from physical quantities and coefficients
of the tilt-rotor: thanks to this property, its pseudo-inverse needs to be computed
just once and can be stored on-board as part of the controller implementation.



Chapter 2

Feedback linearization control

The tilt-rotor quad-copter is an over-actuated system, in fact it has eight control
inputs to control the six degrees of freedom of a body in space. It is capable to
track both desired position and orientation and has also two degrees of actuation
available to perform additional tasks. These tasks can be achieved by exploiting
the internal motions of system, without affecting the tracking capabilities.
The first control strategy adopted to fully control the tilt-rotor quad-copter motion
in this thesis is feedback linearization. It is a common control approach used
for nonlinear systems: it consists in transforming the nonlinear system to an
equivalent linear one through a change of variables and a suitable feedback control
law.
Consider the input-affine nonlinear system

ẋ = f(x) + g(x)u (2.1)

where x ∈ Rn is the state vector, u ∈ Rp is the vector of inputs. f(x), g(x) are
nonlinear functions.
In order to feedback linearize, a change of variables z = T (x), defined for all
x ∈ D ⊂ Rn, transforms the system into the controller form

ż = Az +B[α(x) + β(x)u] (2.2)

where (A,B) is controllable and β(x) is non singular for all x ∈ D.
Selecting the control law as

u = β−1(x)[−α(x) + v], (2.3)

the equivalent linear system results

ż = Az +Bv (2.4)

where v is the new input vector, which can be used to implement the control law

v = −Kz. (2.5)
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In order to have an asymptotically stable closed-loop system, the closed-loop
eigenvalues are assigned by defining the gain K such that (A− BK) is Hurwitz.
For insights about feedback linearization theory, the reader could refer to Seifried
[2013].
This chapter deals with the description of two different feedback-linearization
controllers designed for the tilt-rotor model presented in Section 1.3. The first
one has been developed in Ryll et al. [2015] and is based on the extension of the
system dynamics. The second controller presented is similar to the first one but
has a simpler structure thanks to the use of the nonlinear mixer matrix shown in
Section 1.6.
After the implementation of these controllers on the Simulink platform, some
simulations are performed in order to evaluate their performance.
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2.1 Feedback linearization with dynamic exten-

sion

The paper Ryll et al. [2015] is one of the first nonlinear control applications for
a tilt-rotor quad-copter. Since the presented solution is a working and already
tested control system, in this section it is analyzed and implemented in order to
understand its functioning and highlight its pros and cons. It is the starting point
from which other control strategies will be developed in the thesis.

2.1.1 Equations of motion

In order to show the development of the controller designed in Ryll et al. [2015],
the mathematical model equations are written in accordance with the cited paper.
The equations of motion are the same presented in Section 1.3: equations (1.38)
and (1.47) are translational and rotational equations of motion.
The reduced model for control purposes makes the same simplifications shown in
Section 1.5 but, in addition, it neglects also the inertial and gyroscopic effects.
Equations (1.52) are written as

p̈ =

0

0

g

+ 1
m
WRBF (α)ω

ω̇b = I−1
b τ(α)ω

WṘB = WRBω̂b

(2.6)

where F (α) and τ(α) are the coupling matrices that relate the vector ω of pro-
pellers spinning signed and squared velocities Ω2

i (for i = 1, 2, 3, 4) to the thrusts
and torques. These matrices have a dependency on the tilting angles, in fact

F (α) =

 0 Kts2 0 −Kts4

Kts1 0 −Kts3 0
−Ktc1 Ktc2 −Ktc3 Ktc4

 (2.7)

τ(α) =

 0 Ktbc2 −Kqs2 0 −Ktbc4 +Kqs4

Ktbc1 +Kqs1 0 −Ktbc3 −Kqs3 0
Ktbs1 −Kqc1 −Ktbs2 −Kqc2 Ktbs3 −Kqc3 −Ktbs4 −Kqc4


(2.8)

where s1 and c1 stand for sin(α1) and cos(α1).
Recalling the notation of Section 1.6:

Forces = F (α)ω (2.9)

Moments = τ(α)ω. (2.10)
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The first two equations in (2.6) can be also written as

[
p̈
ω̇b

]
=


0

0
g


03×1

+

[
1
m
WRB 03×3

03×3 I−1
b

] [
F (α) 03×4

τ(α) 03×4

] [
ω
α̇

]
(2.11)

= f + JR
[
J̄α(α) 06×4

] [ω
α̇

]
= f + JRJα(α)

[
ω
α̇

]
= f + J(α)

[
ω
α̇

]
.

It is important to note that in (2.11), the angular tilting velocities α̇ are used
instead of the tilting angles. Matrix Jα has four null columns, that means

rank(Jα) ≤ 4. (2.12)

Since

rank(J) = rank(JRJα) (2.13)

and JR is a non-singular full rank matrix (rank(JR) = 4), that means

rank(J) = rank(Jα) = rank(J̄α) ≤ 4 < 6. (2.14)

Matrix J is singular and since this feedback linearization scheme is based on
dynamic inversion, it is not possible to invert the equations of motion expressed
in (2.11). The presence of the four null columns in matrix Jα is due to the fact
that inputs α̇ affect the output dynamics at a higher differential level compared
to inputs ω (Ryll et al. [2015]).

2.1.2 Dynamic extension

In this Section the dynamic extension approach will be employed in order to make
the input-output map invertible. In particular, it will be shown that the input-
output map can be inverted at a higher differential level where inputs α̇ explicitly
appear.
This is possible expanding the term

J̄α(α)ω =
4∑
i=1

j̄i(α)Ω2
i . (2.15)
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The dynamic extension is obtained by differentiation of equation (2.11) with re-
spect to time:[...

p

ω̈b

]
= JRJ̄α(α)ω̇ + JR

4∑
i=1

∂j̄i(α)

∂α
α̇Ω2

i + J̇RJ̄α(α)ω (2.16)

= JR

[
J̄α(α)

∑4
i=1

∂j̄i(α)
∂α

Ω2
i

] [ω̇
α̇

]
+

[
1
m
WṘBF (α)ω

03×1

]
= JRJ

′
α(α, ω)

[
ω̇
α̇

]
+ d(α, ω, ωb)

= A(α, ω)

[
ω̇
α̇

]
+ d(α, ω, ωb).

Matrix A(α, ω) is the new input-output mixer matrix and has rank(A) = 6 as
long as Ωi 6= 0 for i = 1, 2, 3, 4 as shown in Ryll et al. [2015]. Matrix A can be
assured to be full rank by preventing the propellers from stopping.

2.1.3 Control law

Since rank(A) = 6, equation (2.16) can be inverted obtaining[
ω̇
α̇

]
= A†

([...p r
ω̈r

]
− d
)

+ (I8 − A†A)z (2.17)

where A† is the Moore-Penrose pseudo-inverse of matrix A,
...
p r and ω̈r are virtual

inputs and the last term (I8 − A†A)z corresponds to the null space projection of
matrix A. The presence of a 2-dimensional null space for matrix A is a consequence
of the system over-actuation, that has eight control inputs and six controlled
degrees of freedom.
In order to achieve the full input-output linearization it is required that[...

p

ω̈b

]
=

[...
p r
ω̈r

]
. (2.18)

The control inputs are obtained integrating the vector computed in (2.17):

Ωi =

∫
Ω̇i (2.19)

αi =

∫
α̇i (2.20)

for i = 1, 2, 3, 4.
Once the system is feedback linearized, the dynamics of the closed-loop system
can be assigned by selecting

...
p r =

...
p d +Kp1(p̈d − p̈) +Kp2(ṗd − ṗ) +Kp3(pd − p) (2.21)

ω̈r = ω̈d +Kω1(ω̇d − ω̇b) +Kω2(ωd − ωb) +Kω3eR (2.22)
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where pd and ωd are the desired position and attitude, ωd is the desired body
angular velocity and eR is the orientation error. It is defined as

eR =
1

2
[WRT

BRd −RT
d
WRB]∨ (2.23)

where [.]∨ is the map from SO(3) to R3 and Rd is the desired orientation matrix,
defined as the desired rotation between the body frame and the world frame.
Kp1 , Kp2 , Kp3 and Kω1 , Kω2 , Kω3 are positive definite gain matrices that define
Hurwitz polynomials.

2.1.4 Optimization of the control law

As already stated, the tilt-rotor is an over-actuated system and the two redundant
degrees of actuation can be exploited to perform additional tasks. The vector z is
projected onto the null space of matrix A and does not produce actions interfering
with the output tracking objectives.
In this case, the control law is optimized in order to minimize the energy consump-
tion, i.e., to minimize the norm of the vector of the squared and signed spinning
velocities ω. This is achieved by minimizing the cost function

H(ω) =
4∑
i=1

h(Ω2
i ) (2.24)

where

h(Ω2
i ) =

{
kh1 tan2(γ1|Ω2

i |+ γ2) if Ω2
min < |Ω2

i | ≤ Ω2
hover

kh2(|Ω2
i | − Ω2

hover)
2 if |Ω2

i | > Ω2
hover

(2.25)

γ1 =
π

2(Ω2
hover − Ω2

min)
(2.26)

γ2 = −γ1Ω2
hover (2.27)

and kh1 > 0, kh2 > 0 suitable scalar gains. The parameter Ωmin is defined as the
minimum value for the propeller spinning speed and Ωhover is the spinning speed
required to each propeller in order to let the drone to hover, computed as:

Ωhover =

√
mg

4Kt

. (2.28)

The minimization of H(ω) is obtained by setting

z = −kH
[
∇ωH(ω)

0

]
(2.29)

where kH > 0 is a suitable gain. It is important to note that with this minimiza-
tion function, no optimizations are made on the alpha angles αi (i = 1, 2, 3, 4).
A second cost function Hα(α) could be implemented in order to have a full opti-
mization action. Figure 2.1 shows the function hi(Ω

2
i ) and Table 2.1 recaps the

parameters to characterize this function.
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Figure 2.1: hi(Ω
2
i ) function

Parameter Value
Ωmin 120 rad/s
kh1 1010

kh2 4.5
kH 0.0001

Table 2.1: Parameters to characterize H(ω)
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2.1.5 Tuning of control parameters

Since the feedback linearization scheme makes the system linear, the control pa-
rameters Kp1 , Kp2 , Kp3 and Kω1 , Kω2 , Kω3 have the important role to assign the
closed-loop dynamics of the overall system. These gains are computed with an
eigenvalues assignment strategy.
Rewriting equations (2.21) and (2.22)

(
...
p d −

...
p r) +Kp1(p̈d − p̈) +Kp2(ṗd − ṗ) +Kp3(pd − p) = 0 (2.30)

(ω̈d − ω̈r) +Kω1(ω̇d − ω̇b) +Kω2(ωd − ωb) +Kω3eR = 0 (2.31)

and having (pd−p) = ep, equation (2.30) is written in state space form considering
ep = x1: 

ẋ1 = x2 = ėp

ẋ2 = x3 = ëp

ẋ3 = −Kp3x1 −Kp2x2 −Kp1x3.

(2.32)

The dynamic matrix is

A =

 0 1 0
0 0 1
−Kp3 −Kp2 −Kp1

 (2.33)

whose characteristic polynomial is

λ3 +Kp1λ
2 +Kp2λ+Kp3 = 0. (2.34)

It is possible to assign the three eigenvalues of the system p1, p2, p3 by choosing

(λ+ p1)(λ+ p2)(λ+ p3) = 0 (2.35)

λ3 + (p1 + p2 + p3)λ2 + (p1p2 + p2p3 + p3p1)λ+ p1p2p3 = 0. (2.36)

The diagonal gain matrices are obtained from the assigned eigenvalues by
Kp1 = (p1 + p2 + p3)I3

Kp2 = (p1p2 + p2p3 + p3p1)I3

Kp3 = (p1p2p3)I3.

(2.37)

The same is done for the rotational dynamics, obtaining Kω1 , Kω2 , Kω3 .
The eigenvalues of translational and rotational dynamics are placed in

p1 = −0.5

p2 = −1

p3 = −1.2

(2.38)


r1 = −0.5

r2 = −3

r3 = −5.

(2.39)
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All eigenvalues are expressed in rad/s. These assignments are made considering
the bandwidth of the actuators. Since no standard procedures are defined to
tune a nonlinear controller, the eigenvalues are assigned in order to keep the
translational and rotational dynamics at least one decade below the actuators
bandwidth. Figure 2.2 shows the Bode diagrams of actuators and of the assigned
translational and rotational dynamics.
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Figure 2.2: Bode diagram of the assigned translational and rotational dynamics
compared to actuators bandwidth

2.1.6 Simulation results

The controller based on dynamic extension has been implemented in the Simulink
environment in order to perform simulations.
The complete model of the tilt-rotor is tested along with the controller to per-
form a tracking problem. Two smooth set-points (xd, vd, ad, jd, Rd, ωd, ω̇d, ω̈d) are
assigned as a function of time. The first one describes an eight-shape trajectory
whereas the second one is composed by fifth order polynomials and describes a
hovering condition with a non-null roll angle. Thanks to the use of fifth order
polynomials, the overall desired position and attitude could be defined combining
several trajectories, specifying for each one its initial and final positions, veloci-
ties, accelerations and attitudes, angular speeds and angular accelerations. This
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leads to a set-point with continuous accelerations and angular accelerations. The
jerk and the angular jerk have discontinuities that do not affect the overall per-
formance: the trajectory definition is made in order to keep them small.

Polynomial trajectory

This first set-point shows the capability of the tilt-rotor to track position and
attitude separately, thanks to its over-actuated structure.
The simulation starts with the drone in hover with attitude Φ = [0◦ 0◦ 0◦]T . At
time t = 25s the first attitude variation is requested: +90◦ yaw in three seconds.
The adjustment time after this rotation is quite short and after that, at time
t = 38s, the second attitude variation: +15◦ roll in five seconds, keeping the same
position. From this point until the end of the simulation the drone keeps this
attitude with non null roll angle remaining in the same position.
Figures 2.3, 2.4, 2.5 show position, position error, attitude, attitude error and the
actuators commands of the tilt-rotor during the simulation where the polynomial
trajectory is tested. The velocity and angular speed plots are not shown since they
are not necessary to understand the behavior of the system with this set-point
trajectory.
Looking at the simulation results it is appreciable that the controlled system is
able to track position and attitude set-points keeping the errors small. In fact, the
position error shows a peak of around 0.04 m during the pitch variation and the
maximum attitude error is around 3◦, letting to consider this behavior satisfiable.

Eight-shape trajectory

The eight-shape trajectory adopted is the Lemniscate of Bernoulli. It is defined
as

pd =


sin(2ωt)

3−cos(2ωt)

2 cos(ωt)
3−cos(2ωt)

height

 (2.40)

where t is the simulation time, ω is the linear speed and height is the altitude
at which the eight-shape trajectory is performed. The velocity, acceleration and
jerk set-points vd, ad, jd are obtained differentiating with respect to time equation
(2.40). Besides the position set-point, the drone is required also to keep the roll
and pitch angles equal to zero and to follow the direction of the trajectory with
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Figure 2.3: Dynamic extension: position and position error in polynomial trajec-
tory simulation
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Figure 2.4: Dynamic extension: attitude and attitude error in polynomial tra-
jectory simulation
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Figure 2.5: Dynamic extension: throttle percentages and tilting angles in poly-
nomial trajectory simulation

the yaw angle. This is achieved by imposing

ψ = arctan2(vd(2), vd(1)) (2.41)

ψ̇ =
ad(2)vd(1)− ad(1)vd(2)

vd(1)2 + vd(2)2
. (2.42)

Figures 2.6, 2.7, 2.8, 2.9, 2.10 show position and position error, velocity and ve-
locity error, attitude and attitude error, angular speed and angular speed error
and the actuators commands of the tilt-rotor during the simulation where the
eight-shape trajectory is tested.
Looking at the simulation results, the errors are kept very small except for the
yaw angle that has peaks of around 10◦. The yaw angle error is maximum when
the yaw rate reaches its maximum (or minimum) value: it is considered acceptable
since the trajectory is tracked and the yaw angle error has a stable behavior.
In Figures 2.5 and 2.10 the action of the energy optimization function is visible.
In hover the best configuration achievable by the tilt-rotor is the one with the
tilt angles close to zero and the spinning speed close to the hovering speed. The
controller instead computes a solution that is one of the infinite possible solutions
(pseudo-inverting a 6 × 8 matrix is equal to solve an under-determined system
with infinite solutions) and then the optimization function acts in order to reduce
the spinning speeds, as explained in Subsection 2.1.4, working on the null space of
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Figure 2.6: Dynamic extension: position and position error in eight-shape tra-
jectory simulation
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Figure 2.7: Dynamic extension: velocity and velocity error in eight-shape trajec-
tory simulation
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Figure 2.8: Dynamic extension: attitude and attitude error in eight-shape tra-
jectory simulation
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Figure 2.9: Dynamic extension: angular speed and error in eight-shape trajectory
simulation
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Figure 2.10: Dynamic extension: throttle percentages and tilting angles in eight-
shape trajectory simulation

matrix A. The propeller spinning speeds are reduced by a very small percentage
during the simulation (around 0.5% in 60 seconds). This is necessary because,
after several simulations, it has been noticed that an aggressive action of the op-
timization strategy would lead to destabilize the system.

2.1.7 Considerations

The control solution described in this section presents several issues that limit its
capabilities. In fact:

• The control law requires the first, second and third derivative of the set-point
trajectory. This requires a complex analytic set-point generation.

• The control law needs also acceleration and angular acceleration measure-
ments. Usually the acceleration feedback is given by the accelerometer but
the angular acceleration is given by an observer.

• The pseudo-inversion of the mixer matrix A needs to be computed at every
control cycle, causing a really heavy computational load. In fact, due to the
dynamic extension shown in Section 2.16 the mixer matrix A and its Moore-
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Penrose pseudo-inverse are time-dependent since A(ω, α) and ω(t), α(t).
This operation is the critical point of the overall control system.

• The controller is sensitive to initial conditions and set-points, that needs to
be continuous and well defined.

• The energy optimization action must be kept very small in order to keep
the system stable.
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2.2 Feedback linearization

The second control strategy developed in this thesis is similar to the one pre-
sented in the previous Section 2.1: it is a feedback linearization control with the
assignment of the closed-loop dynamics, but it introduces several improvements.
The dynamic extension of the system requires an awkward operation that is the
differentiation with respect to time of the equations of motion. This step is hereby
avoided through the use of the invertible mixer matrix presented in Section 1.6.

2.2.1 Control law

Recalling the equations of motion of the reduced model (1.52) and the mixer
matrix formulation (1.64) and (1.61), the system can be written as

[
p̈
ω̇b

]
=


0

0
g


0

+

[
1
m
WRB 0
0 I−1

b

]
Wfu (2.43)

[
p̈
ω̇b

]
= f + JRWfu. (2.44)

In order to feedback linearize it, the control law is computed as

fu = W †J−1
R

([
p̈r
ω̇r

]
− f

)
. (2.45)

The control inputs Ωi and αi (i = 1, 2, 3, 4) are computed thanks to the relations
(1.67), (1.68), (1.69).
In order to achieve the full input-output linearization, it is required that[

p̈
ω̇b

]
=

[
p̈r
ω̇r

]
. (2.46)

The closed-loop dynamics can be assigned by selecting

p̈r = p̈d +Kp1(ṗd − ṗ) +Kp2(pd − p) +Kp3

∫
(pd − p) (2.47)

ω̇r = ω̇d +Kω1(ωd − ωb) +Kω2eR +Kω3

∫
eR (2.48)

where pd and ωd are the desired position and attitude, ωd is the desired body
angular velocity and eR is the orientation error. Kp1 , Kp2 , Kp3 and Kω1 , Kω2 , Kω3

are positive definite gain matrices that define Hurwitz polynomials.
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2.2.2 Tuning of control parameters

The procedure to tune the control parameters is the same as in Subsection 2.1.5,
but computed at a lower differential level. In fact, the control parametersKp1 , Kp2 , Kp3

and Kω1 , Kω2 , Kω3 are computed with the same eigenvalues assignment strategy.
Equations (2.47) and (2.48) are written as

(p̈d − p̈r) +Kp1(ṗd − ṗ) +Kp2(pd − p) +Kp3

∫
(pd − p) = 0 (2.49)

(ω̇d − ω̇r) +Kω1(ωd − ωb) +Kω2eR +Kω3

∫
eR = 0 (2.50)

and having (pd−p) = ep, equation (2.49) is written in state space form considering∫
ep = x1: 

ẋ1 = x2 = ep

ẋ2 = x3 = ėp

ẋ3 = −Kp3x1 −Kp2x2 −Kp1x3.

(2.51)

The dynamic matrix is:

A =

 0 1 0
0 0 1
−Kp3 −Kp2 −Kp1

 (2.52)

whose characteristic polynomial is

λ3 +Kp1λ
2 +Kp2λ+Kp3 = 0. (2.53)

It is possible to assign the three eigenvalues of the system p1, p2, p3 by

(λ+ p1)(λ+ p2)(λ+ p3) = 0 (2.54)

λ3 + (p1 + p2 + p3)λ2 + (p1p2 + p2p3 + p3p1)λ+ p1p2p3 = 0. (2.55)

The control diagonal matrices are obtained from the assigned eigenvalues by
Kp1 = (p1 + p2 + p3)I3

Kp2 = (p1p2 + p2p3 + p3p1)I3

Kp3 = (p1p2p3)I3.

(2.56)

The same is done for the rotational dynamics, obtaining Kω1 , Kω2 , Kω3 .
The eigenvalues of translational and rotational dynamics are placed in

p1 = −0.3

p2 = −0.5

p3 = −1.5

(2.57)


r1 = −0.1

r2 = −3

r3 = −7.

(2.58)
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All eigenvalues are expressed in rad/s. These assignments are made through
the same bandwidth considerations made in Subsection 2.1.5. Figure 2.11 shows
the Bode diagrams of actuators and of the assigned translational and rotational
dynamics. Comparing Figure 2.11 with the Bode diagram of Figure 2.2, it is easy
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Figure 2.11: Bode diagram of the assigned translational and rotational dynamics
compared to actuators bandwidth with feedback linearization controller

to see that the assigned dynamics are similar and the respective bandwidths are
almost the same.

2.2.3 Simulation results

The developed controller is much simpler than the one presented in Section 2.1
and provides better performance if tested with the same trajectories of Subsection
2.1.6. This is the reason why, from this point until the end of the work, much
complex trajectories are tested in order to push to the limits the controlled sys-
tem. In particular, the following set-points describe the full motion of a flight
simulation: starting from the ground, the drone takes off, performs a trajectory
and then lands.
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Polynomial trajectory

Initially the trajectory describes the take off maneuver from the ground, moving
the tilt-rotor from a generic point on the ground with non null yaw angle to the
hovering point in p = [0 0 − 2.5]T with attitude Φ = [0◦ 0◦ 0◦]T . Then, at time
t = 20s the first attitude change is requested: +90◦ of yaw angle in five seconds; at
time t = 25s the second attitude change: +25◦ of pitch angle in ten seconds and,
after that, the set-point remains constant for other ten seconds. At time t = 45s
a very challenging attitude variation: the rotation of −180◦ around the Zb axis is
performed, taking the drone to the final pose with Φ = [0◦ −25◦ −90◦]T . From this
position and attitude, the drone lands in the origin with attitude Φ = [0◦ 0◦ 0◦]T .
Figures 2.12, 2.13, 2.14 show position, position error, attitude, attitude error
and the actuators commands of the tilt-rotor during the simulation where the
polynomial trajectory is tested. The velocity and angular speed plots are not
shown for this simulation since they are not necessary to understand the behavior
of the system with this set-point trajectory.
Looking at the simulation results, all the errors are kept small enough to be
considered satisfiable. It is important to note that the maneuver of rotating
around the Zb axis when the pitch angle is not 0◦ is really complicated and a
maximum position error of 0.1 m is considered acceptable.
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Figure 2.12: Feedback linearization: position and position error in polynomial
trajectory simulation
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Figure 2.13: Feedback linearization: attitude and attitude error in polynomial
trajectory simulation
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Figure 2.14: Feedback linearization: throttle percentages and tilting angles in
polynomial trajectory simulation
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Eight shape trajectory

Besides the take-off maneuver, that is the same of the polynomial trajectory, the
set-point describes an eight-shape trajectory as in Subsection 2.1.6. In addition,
the yaw angle follows the direction of the velocity angle and a superimposed
sinusoidal roll movement is requested, with an amplitude of ±15◦. Finally the
drone is requested to land in the origin with attitude Φ = [0◦ 0◦ 0◦]T .
Summarizing, the requested trajectory is composed by:

• Take-off from a generic point (p = [0.5 1 0]T ) with non null yaw angle on
the ground (ψ = +70◦)

• Hover in p = [0 0 − 2.5]T with attitude Φ = [0◦ 0◦ 0◦]T

• Perform the eight-shape trajectory and:

– the direction of the first arm follows the velocity vector direction, i.e.,
the direction of the eight, acting on the yaw angle

– a sinusoidal roll movement of ±15◦ is superimposed to the motion

• Land in the origin p = [0 0 0]T with attitude Φ = [0◦ 0◦ 0◦]T .

Figures 2.15, 2.16, 2.17, 2.18, 2.19 show position and position error, velocity and
velocity error, attitude and attitude error, angular speed and angular speed error
and the actuators commands of the tilt-rotor during the simulation where the
eight-shape trajectory is tested.
Also for the eight-shape trajectory the overall behavior of the controlled system
is considered satisfiable. The errors are, in fact, kept small even if the tested
trajectory is complicated, in particular due to the sinusoidal roll movement su-
perimposed.

2.2.4 Considerations

The presented control strategy is much simpler than the one in Ryll et al. [2015],
analyzed in Section 2.1 because of several reasons.
Firstly, the adopted mixer matrix is a constant matrix: this means that it is no
more necessary to compute it at any iteration but it is computed once. The com-
putational load becomes lighter.
Secondly, no dynamic extension is needed and the optimization strategy for en-
ergy saving shown in Subsection 2.1.4 is no more necessary. In fact, when the
pseudo-inverse of the mixer matrix W is computed, the solution found is the one
that minimizes the norm of the control input vector. This lead to a vector with
minimized propeller spinning speeds and tilting angles. This property was not
valid for the controller shown in Section 2.1 because the pseudo-inversion was
executed at a higher differential level, where the vector minimized is the one with
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Figure 2.15: Feedback linearization: position and position error in eight-shape
trajectory simulation
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Figure 2.16: Feedback linearization: velocity and velocity error in eight-shape
trajectory simulation
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Figure 2.17: Feedback linearization: attitude and attitude error in eight-shape
trajectory simulation
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Figure 2.18: Feedback linearization: angular speed and error in eight-shape tra-
jectory simulation
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Figure 2.19: Feedback linearization: throttle percentages and tilting angles in
eight-shape trajectory simulation

propeller spinning accelerations and tilting rates: the minimization of these quan-
tities have no energy saving effects.
The null space projection of the mixer matrix W can be exploited to perform
additional tasks, e.g., a recovery action in case of failure of one or more actua-
tors. This topic will not be investigated further in the following , but it is a valid
improvement for future developments.





Chapter 3

Geometric control

The motion of the tilt-rotor quad-copter evolves in the nonlinear manifold of rigid-
body displacement SE(3). In order to address the tilt-rotor control problem to
its natural framework, the geometric control theory is adopted. This choice lets
to exploit a full attitude representation in SO(3) without resorting to attitude
parameterizations, that introduce singularities or ambiguities like the Euler an-
gles or the quaternions, and to overcome to topological obstructions, that can be
taken into account by design.
In this chapter two Lyapunov-based geometric controllers for the tilt-rotor quad-
copter are shown and implemented: their design and all the mathematical demon-
strations are presented and proved in Invernizzi and Lovera [2017a] and Invernizzi
and Lovera [2017b].
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3.1 Geometric control law for the fully actuated

case

The first controller presented in this section is a basic kind of geometric controller,
useful to test the stability and the capabilities of this kind of control strategy. In
the following, the geometric control law is presented and tested through simula-
tions. It is hereby assumed that the tilt-rotor quadcopter is capable to produce
forces and moments in the whole space, since no constraints for the maximum
tilting angles are introduced. This control law represents the theoretical starting
point from which, in the next Section, an improved geometric control law is de-
veloped: it is able to take into account for maximum tilting limitations and, as a
consequence, it constrains the generated control force within a cone region.

3.1.1 Tracking errors

In order to perform the computation of the geometric control law, the tracking
errors need to be defined. Considering the simplified model for control purposes
shown in equations (1.52), the position and velocity error resolved to the inertial
frame are expressed as

ep = p− pd (3.1)

ev = v − vd. (3.2)

Since in this control architecture the attitude is given directly in SO(3), the atti-
tude error in SO(3) is obtained according to the left error representation, that is
defined as

Re = WRBR
T
d (3.3)

where Rd ∈ SO(3) is the desired orientation matrix

Rd =
[
bd1 bd2 bd3

]
. (3.4)

The use of the left error instead of the right error leads to a simplified controller
(see Bullo and Murray [1999]).
The left angular velocity error is computed comparing the current orientation
tangent vector with the desired tangent vector in the tangent space. Since the left
error representation represents the map τl between SO(3) and its tangent space,

WṘB − τl(Ṙd) = WṘB −ReṘd = WRB(ω̂b − ω̂d) (3.5)

from which the left angular velocity error is

eω = ωb − ωd. (3.6)
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Another quantity that is used in the following is the error navigation function,
defined as

Ψ =
1

2
tr(KR(I −Re)) (3.7)

where I is the 3× 3 identity matrix and KR is a positive definite gain matrix:

KR =

kR1 0 0
0 kR2 0
0 0 kR3

 . (3.8)

Recalling Invernizzi and Lovera [2017a], the main properties of the error naviga-
tion function are:

1. Ψ is locally positive definite about Re = I3×3

2. the left trivialized derivative of Ψ, i.e., the gradient, is

T ∗I LRe(dReΨ) = skew(KRRe)
∨ = eR (3.9)

3. the four critical points of Ψ, for distinct kR1 , kR2 , kR3 and for which eR = 0,
are {R ∈ SO(3) : WRB = Rd

⋃
WRB = exp(πêi)Rd}

4. for Ψ < η < c1 is locally quadratic

h1||eR||2 ≤ Ψ ≤ h2||eR||2 (3.10)

where
h1 =

c1

c2 + c2
3

, h2 =
c3

c1(c1 − η)
(3.11)

c1 = min{kR1 + kR2 , kR2 + kR3 , kR3 + kR1} (3.12)

c2 = max{(kR1 − kR2)2, (kR2 − kR3)2, (kR3 − kR1)2} (3.13)

c3 = max{kR1 + kR2 , kR2 + kR3 , kR3 + kR1} (3.14)

and the only critical point is

Re = I3. (3.15)

3.1.2 Control law

Recalling the position, velocity, attitude and angular speed errors from equations
(3.1), (3.2), (3.9), (3.6), the adopted geometric control law is

fc = WRT
Bf

d
c (3.16)

τc = −RT
d eR −Kωeω + Ibω̇d + ωd × Ibωb (3.17)
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where the ideal control action expressed in the inertial frame is defined as

fdc = −Kpep −Kvev +m(v̇d − ge3). (3.18)

The control torque computed in (3.17) is Almost Globally Exponentially Stable
(AGAS). In fact, recalling Invernizzi and Lovera [2017a], considering the attitude
kinematics and dynamics given by equations (1.52) and the torque control law
defined in (3.17), for any positive definite matrix Kω and KR, and a constant
0 < η < c1, if the initial conditions satisfy

1

2
eTω(0)Ibe

T
ω + Ψ(Re(0)) < η, (3.19)

the zero equilibrium of the closed-loop tracking errors (eR, eω) is exponentially
stable. Therefore, the attitude error converges to zero, that implies

bi → bdi
WRB → Rd.

This also implies that the translational equation of motion shown in (1.52) be-
comes

p̈ =

0
0
g

+
1

m
RdR

T
d f

d
c =

0
0
g

+
1

m
fdc (3.20)

=

0
0
g

+
1

m
(−Kpep −Kvev) + v̇d −

0
0
g

 (3.21)

=
1

m
(−Kpep −Kvev) + v̇d. (3.22)

Selecting ėv = p̈− v̇d, it becomes

mėv = −Kpep −Kvev (3.23)

that is Globally Asymptotically Stable (GAS) in the origin (ep = 0, ev = 0).

3.1.3 Simulation results

As in Chapter 2, the presented control strategy has been implemented in the
Simulink environment to be tested along with the model of the tilt-rotor. The
set-point trajectories for the simulations are the same shown in Subsection 2.2.3:

• a polynomial trajectory involving attitude changes

• an eight-shape trajectory with a superimposed sinusoidal roll movement.

The control parameters adopted in the numerical simulations are summarized in
Table 3.1.
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Parameter Value
Kp 12 I3

Kv 8 I3

KR 0.4 I3

Kω 0.15 I3

Table 3.1: Geometric controller parameters

Polynomial trajectory

The polynomial trajectory describes the take off and landing maneuvers at the
beginning and at the end of the simulation, and the following attitude changes:

• at time t = 20s, +90◦ of yaw angle in five seconds

• at time t = 25s, +25◦ of pitch angle in ten seconds

• at time t = 45s, −180◦ around the Zb axis, taking the tilt-rotor to the final
attitude Φ = [0◦ − 25◦ − 90◦]T

• at time t = 75s, the tilt-rotor returns to the initial attitude Φ = [0◦ 0◦ 0◦]T

in ten seconds.

The set-point tracking can be appreciated in Figures 3.1, 3.2, 3.3.
Looking at the simulation results, the polynomial trajectory is well tracked. Both
position and attitude errors have peaks during the rotation around the Zb axis
that are smaller if compared to the peaks given by the feedback linearization
controller. Also, the tilting action of the servo-motors is a bit smaller, leading to
a faster and more precise response of the controlled system.

Eight-shape trajectory

The eight-shape trajectory, as in Subsection 2.2.3, starts describing the take-off
maneuver, then the the eight-shape defined thanks to the Lemniscate of Bernoulli,
and finally the landing maneuver. A sinusoidal roll movement of ±15◦ is super-
imposed during the eight-shape part of the trajectory. Figures 3.4, 3.5, 3.6, 3.7,
3.8 show the simulation of the tilt-rotor model tested along with the geometric
controller.
Comparing the simulation results with those obtained using the feedback lin-
earization controller, the overall tracking errors are two/three times smaller when
the same trajectory is performed. It is possible to state that the exponentially
convergent control law of the geometric controller presented in this section has
better results than the feedback linearization control law of Section 2.2 in terms
of set-point tracking.
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Figure 3.1: Geometric control: position and position error in polynomial trajec-
tory simulation
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Figure 3.2: Geometric control: attitude and attitude error in polynomial trajec-
tory simulation
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Figure 3.3: Geometric control: throttle percentages and tilting angles in polyno-
mial trajectory simulation
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Figure 3.4: Geometric control: position and position error in eight-shape trajec-
tory simulation
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Figure 3.5: Geometric control: velocity and velocity error in eight-shape trajec-
tory simulation
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Figure 3.6: Geometric control: attitude and attitude error in eight-shape trajec-
tory simulation
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Figure 3.7: Geometric control: angular speed and error in eight-shape trajectory
simulation
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Figure 3.8: Geometric control: throttle percentages and tilting angles in eight-
shape trajectory simulation
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3.1.4 Considerations

Given a smooth set-point trajectory (pd, ṗd, p̈d,Φd, ωd, ω̇d), the controlled system
is able to track both position and attitude set-points. Since no constraints are
defined for the force control law, in order to obtain a stable behavior of the system,
the position and orientation set-points must be feasible, i.e., they must not require
control actions that the actuators are not able to fulfill. In order to overcome this,
in the next section a dynamic geometric control law is proposed, capable to take
into account for actuation limitations by constraining the desired control force
within an admissible cone region.
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3.2 Geometric tracking control with dynamic ref-

erence attitude

The second geometric controller presented has been designed in Invernizzi and
Lovera [2017b], to which the reader could refer for further investigations. As
for the controller presented in Section 3.1, it resorts to geometric control theory,
setting the tilt-rotor tracking control problem on the group of rigid displacement
SE(3) in order to overcome parameterization issues and to take into account by
design for topological obstructions.
This control law has been designed to guarantee position tracking even in case the
control force cannot span the 3D space. This is obtained by properly modifying
the attitude set-point, which can be exactly tracked only if compatible with the
position tracking requirements.

3.2.1 Actuation constraints

Considering that the servo-motors have tilting limitations, it is reasonable to
state that the control force fc computed by the controller lies approximately in a
spherical sector defined around the third body axis b3, as Figure 3.9 shows.
The spherical sector is defined as

Figure 3.9: Spherical sector definition

0 < cos(θM ≤
fTc e3

||fc||
) = cos(θ) (3.24)

||fc|| < fM (3.25)

where
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• θM is the maximum tilting angle of the servo-motors

• θ is the angle between the delivered force and the vertical body axis b3

• fM is the maximum deliverable control force.

In order to comply with the constraints shown in (3.24) and (3.25), the control
force computed in (3.16) is modified as follows:

fc = c(Ψ)RT
d f

d
c (3.26)

where the scaling function c(Ψ) is

c(Ψ) =
ΨM −Ψ

ΨM

,ΨM > η . (3.27)

The control force vector computed in equation (3.26) has the same components
of the desired control force vector of the equation (3.18) resolved to the desired
body frame and scaled by a term dependent on the navigation function Ψ.
The scaling function satisfies the conditions:

lim
Ψ→0

c(Ψ) = 1 (3.28)

0 < c(Ψ) ≤ 1 (3.29)

and thanks to this function, the delivered control force fc is kept within a cone
region, defined in (3.24) and shown in Figure 3.10, as long as the desired force fdc
is kept inside the cone defined around the desired third axis bd3 . Additionally, it
holds true that

||fc|| = c(Ψ)||RT
d f

d
c || ≤ ||fdc ||, (3.30)

that means that the constraint in (3.25) is satisfied as long as

||fdc || ≤ fM . (3.31)

The expression of the control force suggests a possible strategy to take into account
the cone region constraint. Indeed, by expecting equation (3.26), the desired
control force fdc is rotated by RT

d . Hence, by relaxing the requirement on the
attitude tracking, it is always possible to select Rd such that the corresponding
control force is compatible with the constraint.
The Local Exponential Stability (LES) of the geometric control law is proven in
Invernizzi and Lovera [2017a] in two steps: after showing the exponential stability
of the torque control law, the convergence of the force control law is derived. The
control torque computed in (3.17) has, in fact, the Almost Global Asymptotic
Stability (AGAS) property. In fact, if the conditions in equation (3.19) hold, the
zero equilibrium of the closed-loop tracking errors (eR, eω) is asymptotically stable,
given the attitude kinematics and dynamics in equations (1.52), the torque control
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Figure 3.10: Cone region constraint

law defined in (3.17), any positive definite matrix Kω and KR and a constant
0 < η < c1.
To show the rationale behind the proposed control law, let’s assume that the
attitude error converges to zero, namely bi → bdi , then:

Re → I3×3

c(Ψ)→ 1

and the control force tends to the desired force

WRBfc = c(Ψ)WRBRdf
d
c = c(Ψ)Ref

d
c = fdc , (3.32)

necessary to track the desired position.

3.2.2 Tracking errors

The next step to define the geometric controller shown in Invernizzi and Lovera
[2017b], is to compute the modified attitude reference that let to take into account
for the tilting limitation of the actuators. In order to do so and to compute
the control law, the tracking errors need to be defined. In particular, since the
modified attitude reference is computed dynamically by the controller, all the
quantities that have a dependency from the desired attitude or the desired angular
speed need to be redefined and are called with the adjective “modified”.
The desired attitude matrix Rd is changed with the modified desired attitude
matrix Rdc (shown in the next subsection) and, as a consequence, the left attitude
error in SO(3) shown in equation (3.3) becomes the modified attitude error in



64 Geometric control

SO(3)
Rdc
e = RdcR

T
d . (3.33)

Recalling the equation (3.9), the attitude error in R3 is defined as

eR = skew(KRRe)
∨ (3.34)

and the modified attitude error in R3 is

edcR = skew(Kdc
R R

dc
e )∨ (3.35)

where Kdc
R a suitable diagonal gain matrix. The modified angular velocity error

is
edcω = ωb − ωdc (3.36)

where ωdc is the modified desired angular speed expressed in the body frame. The
error navigation function shown in (3.7) becomes the modified error navigation
function:

Ψdc =
1

2
tr(Kdc

R (I −Rdc
e )). (3.37)

On the contrary, position and velocity errors resolved to the inertial frame are the
same shown in equations (3.1) and (3.2).

3.2.3 Reference attitude computation

The control system receives as input the desired orientation matrix Rd ∈ SO(3)
defined in equation (3.4). Since the desired orientation may be not compatible
with the position tracking, the modified reference orientation Rdc ∈ SO(3) is
computed in order to be feasible and as close as possible to the desired attitude.
In particular, the matrix of the modified desired attitude Rdc is computed thanks
to the composition of two rotation matrices:

Rdc = RcRr (3.38)

where Rc is the rotation matrix required to track the trajectory in the under-
actuated (co-planar) case, hence Rr is a relative rotation matrix. In particular,

Rc =
[
bc1 bc2 bc3

]
(3.39)

and is selected among the set of rotations around the axis

bc3 = − fdc
||fdc ||

(3.40)

where

fdc = −Kxex −Kvev +m

p̈d −
0

0
g

 . (3.41)
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Then bc2 and bc1 are computed as

bc2 =
bc3 × bd1

||bc3 × bd1||
(3.42)

bc1 = bc2 × bc3 . (3.43)

In order to compute the modified desired angular speed and accelerations, the
first and second derivative of matrix Rc need to be computed. Therefore,

Ṙc =
[
ḃc1 ḃc2 ḃc3

]
(3.44)

R̈c =
[
b̈c1 b̈c2 b̈c3

]
(3.45)

where ḃc1 , ḃc2 , ḃc3 , b̈c1 , b̈c2 , b̈c3 computations are shown in Appendix A.
The kinematic evolution of the modified reference trajectory is computed from
equation (3.38):

Ṙdc = Rdcω̂dc (3.46)

ωdc = RT
r (ωc + ωr) (3.47)

ω̇dc = −RT
r ω̂r(ωc + ωr) +RT

r (ω̇c + ω̇r) (3.48)

where

ωc = (RT
c Ṙc)

∨ (3.49)

ω̇c = (RT
c R̈c − ((ωc)

∧)
2
)∨. (3.50)

The matrix

Rr =
[
br1 br2 br3

]
(3.51)

is derived from the kinematics of the relative attitude motion

Ṙr = ω̂rRr (3.52)

where

ωr = br3 × ḃr3 + (bTr3ω
d
r )br3 (3.53)

ωdr = Rrωd − ωc −RrR
T
d e

dc
R . (3.54)

The third axis br3 of the differential equation (3.52) is modified as follows:

ḃpr3 = Proj(bpr3 , ḃ
pd
r3

) (3.55)

ḃ(3)
r3

=
(b

(1)
r3 )T ḃ

(1)
r3 + (b

(2)
r3 )T ḃ

(2)
r3√

1− (b
(1)
r3 )2 − (b

(2)
r3 )2

(3.56)
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where

bpr3 =

[
b

(1)
r3

b
(2)
r3

]
(3.57)

is the projection of the vector br3 in the plane spanned by {bc1 , bc2}. The parameter
δ = sin(θM) defines the maximum value of ||bpr3|| in order to keep br3 inside the
cone region and θM corresponds to the angle of the cone defined around the axis
bc3 .
The differential equation that describes the relative desired third body axis is

ḃdr3 = ωdr × br3 (3.58)

whose first two elements are grouped in the vector

ḃpdr3 =

[
ḃ
d(1)
r3

ḃ
d(2)
r3

]
. (3.59)

The projection operator adopted in equation (3.55) is defined as the function that
smoothly removes the radial components of ḃpr3 , keeping the modulus of bpr3 within
the maximum admissible value according to the cone region constraint.
In particular (see Lavretsky and Wise [2013]),

Proj(bpr3 , ḃ
pd
r3
, f) =ḃpdr3 − f(bpr3)

Γ∇f(bpr3
)∇f(bpr3

)T

||∇f(bpr3
)||2Γ

ḃpdr3 iff(bpr3) > 0 ∧
(
ḃpdr3

)T
∇f(bpr3) > 0

ḃpdr3 otherwise
(3.60)

where f(bpr3) is a convex continuously differentiable function and ∇ : R → R2 is
the gradient operator. Since the projection operator defined in equation (3.60)
is continuos but not differentiable, the relative angular acceleration ω̇r cannot be
defined and used in the feedforward term of equation (3.48). The function f(bpr3)
is defined as

f(bpr3) =
(1 + ε)||bpr3||

2 − δ2

εδ2
(3.61)

with ε ∈ (0, 1) the constant that defines the smoothness of the projection operator.
It can be proven that, when

||bpr3|| ∈
[

δ√
1 + ε

, δ

]
, (3.62)

the projection operator starts to work enabling a smooth transition towards the
bound δ. Hence, the br3 axis is kept inside the cone defined by the angle θM
around bc3 assuring that

cos(θ) ≥ cos(θM). (3.63)
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Finally, when

||bpr3 || <
δ√

1 + ε
, (3.64)

it follows that
ḃr3 = ωdr × br3 = ḃdr3 , (3.65)

which in turn implies that
ωr = ωdr (3.66)

matching exactly the desired angular velocity and, as a consequence, the desired
orientation.

3.2.4 Control law

Considering the control law shown in equations (3.26), (3.17), (3.18), the control
law for the geometric controller with modified reference attitude is:

fc = c(Ψdc)R
T
dcf

d
c (3.67)

τc = −RT
dceR −Kωe

dc
ω + Iω̇dc + ωdc × Iωb (3.68)

where the ideal control action expressed in the inertial frame is defined as

fdc = −Kpep −Kvev +m(v̇d − ge3) (3.69)

and the function c(Ψdc) is

c(Ψdc) =
ΨM −Ψdc

ΨM

. (3.70)

As in Subsection 3.2.1, the scaling function c(Ψdc) scales the control force com-
puted in equation (3.67) by a term that depends by the modified error navigation
function Ψdc in order to keep the delivered control force fc inside the cone region
defined around the axis b3. In practice, when the attitude error becomes high, i.e.,
when the modified error navigation function Ψdc is close to its maximum value
ΨM , the value of the scaling function becomes c(Ψdc) � 1 and the computed
control force is scaled, letting the platform to follow the position tracking prior to
the attitude tracking. This leads to reduce the position overshoot.

3.2.5 Simulation results

In order to test the capabilities of the presented geometric controller with modified
reference attitude, numerical simulations are performed. In particular, the same
trajectories of the previous Subsections 2.2.3, 3.1.3 are tested: the polynomial
and the eight shape trajectory. Additionally, in order to appreciate the action of
the projection operator that limits the tilting actuation, an eight shape trajectory
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Parameter Value
Kp 16 I3

Kv 4 I3

KR 0.75 I3

Kω 0.1875 I3

ΨM 40
Kdc
R 2KR

ε 0.1
θM 30◦

Γ 10 I2

Table 3.2: Control parameters of the geometric controller with modified reference
attitude

with a superimposed roll sinusoidal movement of ±30◦ and θM limited to 15◦ is
tested. The control parameters adopted in these simulations are shown in Table
3.2.

Polynomial trajectory

Figures 3.11, 3.12, 3.13 show the behavior of the system, controlled thanks to the
geometric controller.

Eight-shape trajectory

Figures 3.14, 3.15, 3.16, 3.17, 3.18 show the simulation of the tilt-rotor performing
an eight-shape trajectory. The simulations highlight that the behavior of the
controlled system is really close to the one shown in Subsection 3.1.3. This means
that when the trajectory to be tracked is smooth and feasible, the two geometric
controllers presented in this thesis behaves in a similar way.

Eight-shape trajectory with limited θM

The parameter θM limits the region in which the thrust vector can lie, but im-
posing the angle θM is not equivalent to limit the maximum servo-motors tilting
angles. In fact, the angle θM is used to define the angle of the cone region, in
which the vector fc lies, defined around the third body axis b3. The thrust vec-
tor fc is close to the vertical inertial axis when the platform is near to hovering
conditions, but if the translational tracking requires great forces in order to be
performed, the thrust vector can assume great angles with respect to the vertical
inertial axis.
In the simulation hereby described, the controlled system is asked to track an
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Figure 3.11: Geometric control with modified reference attitude: position and
position error in polynomial trajectory simulation
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Figure 3.12: Geometric control with modified reference attitude: attitude and
attitude error in polynomial trajectory simulation
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Figure 3.13: Geometric control with modified reference attitude: throttle per-
centages and tilting angles in polynomial trajectory simulation
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Figure 3.14: Geometric control with modified reference attitude: position and
position error in eight-shape trajectory simulation
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Figure 3.15: Geometric control with modified reference attitude: velocity and
velocity error in eight-shape trajectory simulation
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Figure 3.16: Geometric control with modified reference attitude: attitude and
attitude error in eight-shape trajectory simulation
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Figure 3.17: Geometric control with modified reference attitude: angular speed
and error in eight-shape trajectory simulation
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Figure 3.18: Geometric control with modified reference attitude: throttle per-
centages and tilting angles in eight-shape trajectory simulation
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eight-shape trajectory with a superimposed sinusoidal roll movement of ±30◦,
while limiting θM = 15◦. Since the trajectory is performed at low speeds, the
required translational forces are small and impose this limitation is almost equiv-
alent to ask to the control system not to tilt the platform over the angle θM .
Looking to Figures 3.21, 3.22 and 3.23, it is clearly visible the action of the pro-
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Figure 3.19: Geometric control with modified reference attitude: position and
position error in eight-shape trajectory simulation with limited θM = 15◦

jection operator: when the desired roll angle is greater than θM = 15◦, it keeps
the vector bpr3 inside the cone region, constraining the modified desired attitude.
It also visible that the servo-motors tilting angles reaches their maximum values
of around 30◦, that is greater than θM . This, as already introduced, is due to the
fact that there is not a direct relation between the servo-motors maximum tilting
angles and the cone dimension since the angle θM only defines the cone angle. It
is noticed that, in the performed simulations, imposing θM = 15◦ implies that the
servo-motors tilting angles remain in the limit of around ±30◦.
Looking to Figures 3.19 and 3.20, the position and velocity simulation results are
similar to the non limited case, where the projection operator do not act, and
there are no great differences between the desired attitude Rd and the modified
desired attitude Rdc computed by the controller.
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Figure 3.20: Geometric control with modified reference attitude: velocity and
velocity error in eight-shape trajectory simulation with limited θM = 15◦
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Figure 3.21: Geometric control with modified reference attitude: attitude and
attitude error in eight-shape trajectory simulation with limited θM = 15◦
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Figure 3.22: Geometric control with modified reference attitude: angular speed
and error in eight-shape trajectory simulation with limited θM = 15◦
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Figure 3.23: Geometric control with modified reference attitude: throttle percent-
ages and tilting angles in eight-shape trajectory simulation with limited θM = 15◦
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3.2.6 Considerations

When the desired trajectories are smooth and feasible, the platform behaves very
similarly with both the geometric controllers presented in this chapter. This means
that the computation of the modified reference attitude do not affect the overall
system until the required thrust vector reaches the limit of the predefined cone
region.
In Chapter 1 the body frame is defined according to NED standard but, for the
sake of simplicity and clarity, in this section all the pictures and the rationales
are shown adopting the vertical body axis pointing upward. This is due to better
understanding of the physical meaning of the presented control laws, that would
otherwise be difficult to visualize. All the computations are in NED frame.



Chapter 4

Robustness analysis

In Chapter 1 the dynamic model of the tilt-rotor quad-copter is shown underly-
ing the assumptions and the approximations made. The physical quantities of the
tilt-rotor used to characterize this model are inherited from Micheli [2016]. Shown
in Table 1.3, these quantities are in some cases directly measured, e.g., the mass
and the arm length, in other cases are estimated thanks to some identification
campaigns. Their values, in particular for the estimated ones, are intrinsically
uncertain and the control system must be able to work properly even with these
uncertainties.
The robustness is the property of a controller, designed for a particular set of
parameters, to work well even if under a different set of parameters or in pres-
ence of disturbances. In this thesis, the tilt-rotor body inertia tensor is the main
parameter that is considered uncertain, of which a variation may cause impor-
tant effects on the overall controlled system. In the following, the robustness of
the controllers presented in Sections 2.2, 3.1 and 3.2 is evaluated simulating the
controlled system with a perturbed inertia tensor. Additionally, the controllers
capability to reject measurement disturbances by adding estimated white noises
to the simulation feedbacks is analyzed. Finally, the controllers capability to re-
ject external constant disturbances is evaluated.
The first controller presented in Section 2.1 is not analyzed in this chapter. This
choice arises from the fact that, as already discussed in Subsection 2.1.7, this
controller presents several numerical issues.
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4.1 Simulations with measurement noise

The implementation on Simulink platform of the overall controlled system has
been presented in Section 1.4. Hereby, in order to perform simulations that are as
close as possible to the reality, measurement noise is added to the feedback. This
way the feedback signals are not only discretized through a Zero Order Hold (ZOH)
at 100Hz, but have also noisy components, in order to simulate the non-idealities
of the Inertial Measurement Unit (IMU). Table 4.1 shows the estimated standard
deviation of the measurement noise, modeled as a white noise disturbance.
In order to assess the effects of the measurement noise on the controlled system,

Quantity measured Standard deviation Unit
n 0.0011 m
e 0.0009 m
d 0.0013 m
ṅ 0.001 m/s
ė 0.001 m/s

ḋ 0.01 m/s
φ 0.0076 rad
θ 0.0118 rad
ψ 0.0115 rad
p 0.1 rad/s
q 0.1 rad/s
r 0.1 rad/s

Table 4.1: Estimated standard variation of measurement noise

the eight-shape trajectory presented in Subsection 2.2.3 is tested along with the
controllers. For the sake of clarity, the position error, velocity error, attitude error,
angular speed error and the control input signals are plotted in order to compare
them with the results obtained in Chapters 2 and 3. The plots of position, velocity,
attitude and angular speed are not shown since the effects of the measurement
noise is not appreciable in those plots with big scale factors.

Feedback linearization

The feedback linearization controller presented in Section 2.2 is capable to perform
the tracking of the eight-shape trajectory. The behavior of the controlled system
subject to measurement noise is shown in Figures 4.1, 4.2, 4.3, 4.4, 4.5, where it
is visible that the controller do not completely rejects the measurement noise. In
particular, in velocity error and angular speed error plots (Figures 4.2 and 4.4)
are noticed the presence of undesirable oscillations, that in Figures 2.16 and 2.18,
i.e., without measurements noise, are present but with a significantly smaller
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magnitude. This effect can be explained recalling the fact that the feedback
linearization controller is not a really robust control strategy. Figure 4.5 shows
the control input signals: due to the effect of measurement noise and the signal
discretization, the throttle percentages commands of the motors become more
oscillatory, without destabilizing the system.
In this thesis, this controller is the one on which the measurement noise has the
worst impact.
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Figure 4.1: Feedback linearization: position error in eight-shape trajectory sim-
ulation with measurement noise

Geometric control for the fully actuated case

The geometric controller, presented in Section 3.1, is capable to reject the mea-
surement noise. The behavior of the system is shown in Figures 4.6, 4.7, 4.8, 4.9,
4.10. In particular, the position and orientation tracking are performed as well,
while it is noticeable small and acceptable oscillations in velocity and angular
speed plots. As for the feedback linearization controller, the throttle percentages
commands of the motors have a fast oscillatory behavior, caused by the measure-
ment noise and the feedback signal discretization.
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Figure 4.2: Feedback linearization: velocity error in eight-shape trajectory sim-
ulation with measurement noise
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Figure 4.3: Feedback linearization: attitude error in eight-shape trajectory sim-
ulation with measurement noise
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Figure 4.4: Feedback linearization: Angular speed error in eight-shape trajectory
simulation with measurement noise
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Figure 4.5: Feedback linearization: throttle percentages and tilting angles in
eight-shape trajectory simulation with measurement noise
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Figure 4.6: Geometric control: position error in eight-shape trajectory simulation
with measurement noise
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Figure 4.7: Geometric control: velocity error in eight-shape trajectory simulation
with measurement noise
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Figure 4.8: Geometric control: attitude error in eight-shape trajectory simulation
with measurement noise
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Figure 4.9: Geometric control: Angular speed error in eight-shape trajectory
simulation with measurement noise
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Figure 4.10: Geometric control: throttle percentages and tilting angles in eight-
shape trajectory simulation with measurement noise

Geometric control with dynamic reference attitude

The geometric controller with dynamic reference attitude has almost the same
behavior of the standard geometric controller. It is visible in Figures 4.11, 4.12,
4.13, 4.14, 4.15, and the same considerations can be done.
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Figure 4.11: Geometric control with modified attitude reference: position error
in eight-shape trajectory simulation with measurement noise
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Figure 4.12: Geometric control with modified attitude reference: velocity error
in eight-shape trajectory simulation with measurement noise
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Figure 4.13: Geometric control with modified attitude reference: attitude error
in eight-shape trajectory simulation with measurement noise
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Figure 4.14: Geometric control with modified attitude reference: Angular speed
error in eight-shape trajectory simulation with measurement noise
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Figure 4.15: Geometric control with modified attitude reference: throttle per-
centages and tilting angles in eight-shape trajectory simulation with measurement
noise
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4.2 Parametric uncertainty

As already introduced, the sensitivity analysis of the controllers presented in Sec-
tions 2.2, 3.1, 3.2 with respect to the body inertia tensor is evaluated. The body
inertia tensor, defined in equation 1.46 as

Ib =

Ixx 0 0
0 Iyy 0
0 0 Izz

 ,
is perturbed in order to verify the effects of its variation on the controlled system.
Thanks to the intrinsic symmetry of the tilt-rotor structure, the body inertia
tensor is considered as a diagonal matrix and the only parameters that are subject
of this sensitivity study are those on the diagonal.
In order to define a unique test case useful for all the studied controllers, three
arrays (P10, P15, P20), each containing twenty perturbed body inertia tensors,
have been created: the parameters Ixx, Iyy and Izz are perturbed around their
nominal values (that are shown in Table 1.3), adopting a uniform probability
density function, of

• ±10% in P10

• ±15% in P15

• ±20% in P20.

Finally, each controller is tested performing sixty simulations, twenty per each
perturbation array of the body inertia tensor. All the perturbations used for the
simulations are shown in Appendix B.
In the following are not shown all the plots of the simulations since it would lead
to show an excessive number of figures, but only the most significant plots per
each controller are presented.

Feedback linearization

The feedback linearization controller proposed in Section 2.2 is sensitive to body
inertia tensor variations. Important oscillations are present when the body inertia
tensor Ib is perturbed of ±15% around its nominal value. Figures 4.16, 4.17,
4.18, 4.19, 4.20 show the behavior of the controlled system under twenty different
body inertia tensors that span in the set of ±15% around its nominal value.
The response is unsatisfactory, since big and fast oscillations are present with a
significant amplitude.
The simulations performed with a body inertia tensor that varies of ±20% around
its nominal values lead to a strongly oscillating and unacceptable response of the
controlled system. For the sake of brevity, those plots are not shown since they
do not represent meaningful results besides the instability of the system.
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Figure 4.16: Feedback linearization control: position and position error in eight-
shape trajectory simulation with ±15% variation of Ib
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Figure 4.17: Feedback linearization control: velocity and velocity error in eight-
shape trajectory simulation with ±15% variation of Ib
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Figure 4.18: Feedback linearization control: attitude and attitude error in eight-
shape trajectory simulation with ±15% variation of Ib
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Figure 4.19: Feedback linearization control: Angular speed and error in eight-
shape trajectory simulation with ±15% variation of Ib
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Figure 4.20: Feedback linearization control: throttle percentages and tilting an-
gles in eight-shape trajectory simulation with ±15% variation of Ib

Geometric control for the fully actuated case

Figures 4.21, 4.22, 4.23, 4.24, 4.25 show the response of the system controlled by
the first developed geometric controller (in Section 3.1). It is easy to see that,
even if the variation of ±20% of Ib is considerable, the controlled system responds
very well in all the plotted results. The geometric controller results to be, in fact,
really robust with respect to parametric uncertainty of the body inertia tensor.

Geometric control with dynamic reference attitude

Similarly to the simplest geometric controller, the geometric controller with dy-
namic reference attitude responds very to well to parametric variation of ±20% of
the body inertia tensor. Figures 4.26, 4.27, 4.28, 4.29, 4.30 show the behavior of
the controlled system, that is really satisfactory and confirm that the geometric
controllers developed in Chapter 3 are really robust with respect to parametric
uncertainty of Ib.
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Figure 4.21: Geometric control: position and position error in eight-shape tra-
jectory simulation with ±20% variation of Ib

0 10 20 30 40 50 60 70 80 90 100

[s]

-0.5

0

0.5

[m
/s

]

Velocity

0 10 20 30 40 50 60 70 80 90 100

[s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

[m
/s

]

Velocity error

Figure 4.22: Geometric control: velocity and velocity error in eight-shape trajec-
tory simulation with ±20% variation of Ib
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Figure 4.23: Geometric control: attitude and attitude error in eight-shape tra-
jectory simulation with ±20% variation of Ib
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Figure 4.24: Geometric control: Angular speed and error in eight-shape trajectory
simulation with ±20% variation of Ib
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Figure 4.25: Geometric control: throttle percentages and tilting angles in eight-
shape trajectory simulation with ±20% variation of Ib
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Figure 4.26: Geometric control with modified attitude reference: position and
position error in eight-shape trajectory simulation with ±20% variation of Ib
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Figure 4.27: Geometric control with modified attitude reference: velocity and
velocity error in eight-shape trajectory simulation with ±20% variation of Ib
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Figure 4.28: Geometric control with modified attitude reference: attitude and
attitude error in eight-shape trajectory simulation with ±20% variation of Ib
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Figure 4.29: Geometric control with modified attitude reference: Angular speed
and error in eight-shape trajectory simulation with ±20% variation of Ib
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Figure 4.30: Geometric control with modified attitude reference: throttle percent-
ages and tilting angles in eight-shape trajectory simulation with ±20% variation
of Ib
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4.3 Constant disturbances rejection

In Section 4.1, the controllers capability to reject the measurement noise is eval-
uated by adding to the feedback signals white noises, that have zero mean value.
In order to evaluate the effects of constant disturbances and to simulate the pres-
ence of whatever external force/torque that can act on the system, a simulation
for each controller is performed. In particular, the platform is asked to hover in
pd = [0.5 1 − 1]T with attitude Φ = [0◦ 0◦ 0◦]T and

• at time t = 30s, a constant force disturbance Fdist =

1
1
0

 is injected

• at time t = 60s, a constant torque disturbance τdist =

 0
0.1
0

 is injected.

Feedback linearization

The feedback linearization controller presented in Section 2.2 is able to reject
constant forces and torques disturbances. Figures 4.31 and 4.32 show that even
in presence of constant disturbances the steady state position and attitude errors
converges to zero thanks to the integral action of the controller.

Geometric control for the fully actuated case

Figures 4.33 and 4.34 show the behavior of the controlled system adopting the
geometric controller presented in Section 3.1 when constant disturbances are in-
jected in the system. Looking at the results, the constant force disturbance along
the N and E axes causes a constant error in the position tracking, while the con-
stant torque disturbance around the Yb axis causes constant position and attitude
errors. The errors do not converge to zero, since the geometric controller do not
have integral action on the errors.
The fact that this controller works very well in the simulations performed in Sec-
tion 3.1, where the steady state errors are zero, is due to the fact that the simulated
model is almost perfect, in the sense that no external unbalanced forces of any
nature is present.

Geometric control with dynamic reference attitude

Figures 4.35 and 4.36 show the simulation results when the system, controlled by
the geometric control presented in Section 3.2, is subject to constant disturbances.
As in the previous case, this geometric controller do not let to reach the zero steady
state error due to the lack of the controller integral action. In this case, the
constant force disturbance injected at time t = 30s implies not only the presence
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Figure 4.31: Feedback linearization control: position and position error with
constant force and torque disturbances
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Figure 4.32: Feedback linearization control: attitude and attitude error with
constant force and torque disturbances
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Figure 4.33: Geometric control: position and position error with constant force
and torque disturbances
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Figure 4.34: Geometric control: attitude and attitude error with constant force
and torque disturbances



100 Robustness analysis

of a constant position error, but also a constant attitude error. This is due the fact
that, thanks to the Rc orientation matrix computation shown in equation (3.39),
the desired vertical axis has the same direction of the desired control force, shown
in equation (3.41), that is pointing towards the desired position pd = [0.5 1 −1]T .
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Figure 4.35: Geometric control with modified attitude reference: position and
position error with constant force and torque disturbances
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Figure 4.36: Geometric control with modified attitude reference: attitude and
attitude error with constant force and torque disturbances
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4.4 Considerations

The geometric control laws presented in Chapter 3, as shown in the previous Sec-
tion 4.1, are really robust with respect to measurement noise on the feedback
signals. Considering that a variation of ±20% around the nominal value is a sig-
nificant one, these controllers are also robust with respect to body inertia tensor
uncertainty (Section 4.2). The lack of an integral action makes them difficult to be
implemented in the non-ideal real world, where unconsidered external forces and
moments act on the system. The rationale behind the development of these geo-
metric controllers, as explained in Invernizzi and Lovera [2017b], is the capability
to take into account for intrinsic tilting limitations of the actuators, and in the
future the insertion of the integral action will be certainly studied and performed.
The feedback linearization controller presented in Section 2.2 is able to reject the
measurements noise but, on the contrary, it is not really robust with respect to
Ib variations. A variation of ±15% around its nominal value is enough to obtain
a non satisfactory, strongly oscillating behavior. However, the presence of the
integral action in the feedback linearization controller makes it suitable for a real
application, assuming that the system parameter uncertainty is small enough to
guarantee the stability.



Conclusions

The purposes of this thesis was the analysis, the implementation and the numer-
ical simulation of nonlinear control laws for the tilt-rotor quad-copter designed
and realized in Micheli [2016].
The conducted activities start with an introductory first chapter, in which, after
the prototype description, the tilt-rotor mathematical model is shown along with
all the mathematical and geometrical formalisms to avoid any ambiguities. Given
that the complete mathematical model of the tilt-rotor is a complex model, a re-
duced model for control purposes is also presented. The first introductory chapter
ends with the description of the nonlinear mixer matrix that maps the output of
the controller with the input of the tilt-rotor model.
In the second chapter, the control problem of the tilt-rotor platform is addressed
through two feedback linearization controllers. The first control law resorts to the
dynamic extension of the system in order to perform the dynamic inversion, nec-
essary for the feedback linearization control law. Since this controller requires to
perform the dynamic inversion at every control cycle, leading to a computationally
heavy control law, the second feedback linearization control law solves this issue
through the use of the nonlinear matrix presented in the first chapter. In order
to assess the stability and the capabilities of the presented feedback linearization
controllers, numerical simulations have been performed and commented.
The third chapter let to exploit the natural framework of the tilt-rotor control
problem by addressing it in the geometric control framework. Two geometric
Lyapunov-based control laws are presented, showing the numerical simulations
performed. The first geometric control law has been designed assuming a fully
actuated system, i.e., considering the tilt-rotor capable to direct the generated
thrust in every direction, while the second geometric control law consists in an
evolution of the first one. It is in fact capable to take into consideration tilting
limitation of the servo-actuators.
The final chapter deals with a qualitative robustness analysis of the four presented
control laws. In particular, the effects due to the body inertia tensor variations
are evaluated by performing a simulation campaign. Furthermore, the capability
of the control laws to reject the measurement noise and constant disturbances are
also evaluated through other simulations. Finally some considerations about the
control laws implementability on the real prototype are exposed.
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Concluding, some indications of future developments and improvements for the
present thesis work are left:

• Add the integral action in the geometric control laws

• Evaluate the effects of performing the weighted pseudo-inversion of the mixer
matrix

• Evaluate the possibility to exploit the two redundant degrees of actuation
in order to perform additional tasks



Bibliography
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Appendix A

Computation of Ṙc and R̈c

The matrices Ṙc and R̈c are defined as

Ṙc =
[
ḃc1 ḃc2 ḃc3

]
(A.1)

R̈c =
[
b̈c1 b̈c2 b̈c3

]
(A.2)

where

ḃc3 =
ȧ

||a||
− (aT ȧ)

a

||a||3
(A.3)

ḃc2 =
ċ

||c||
− (cT ċ)

c

||c||3
(A.4)

ḃc1 = ḃc2 × bc3 + bc2 × ḃc3 (A.5)

b̈c3 =
ä

||a||
− 2(aT ȧ)

ȧ

||a||3
− (||ȧ||2 + (aT ä))

a

||a||3
+ 3(aT ȧ)2 a

||a||5
(A.6)

b̈c2 =
c̈

||c||
− 2(cT ċ)

ċ

||c||3
− (||ċ||2 + (cT c̈))

c

||c||3
+ 3(cT ċ)2 c

||c||5
(A.7)

b̈c1 = b̈c2 × bc3 + 2ḃc2 × ḃc3 + bc2 × b̈c3 (A.8)
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and

a = −fdc = −

−Kxex −Kvev +m(p̈d −

0
0
g

 (A.9)

ȧ = −
(
KxKv

m
ex +

(
K2
v

m
−Kx

)
ev −

Kv

m
Df +m

...
p d

)
(A.10)

ä = −
(
KxKv

m
ev +

(
K2
v

m
−Kx

)(
−Kx

m
ex −

Kv

m
ev
Df

m

)
− Kv

m
Ḋf +m

....
p d

)
(A.11)

c = bc3 × bd1 (A.12)

ċ = ḃc3 × bd1 + bc3 × ḃd1 (A.13)

c̈ = b̈c3 × bd1 + 2ḃc3 × ḃd1 + bc3 × b̈d1 (A.14)

Df = WRBf
dc
c − a (A.15)

Ḋf = bRdc
e (Rde

dc
ω )∧a− edcR

T
Rdc

edcω
ΨM

Rdc
e a+ bRdc

e ȧ− ȧ (A.16)

b =
ΨM −Ψdc

ΨM

. (A.17)

The operator ∧ is the map from R3 to so(3).



Appendix B

Perturbed inertia tensors values

The body inertia tensor is defined as

Ib =

Ixx 0 0
0 Iyy 0
0 0 Izz


and its nominal values (in kg ·m2) are

Ixx = 0.0074

Iyy = 0.0074

Izz = 0.05.

(B.1)

As explained in Section 4.2, the vector P10 contains twenty sets of perturbed values
of Ib of ±10% about its nominal values, P15 of ±15% and P20 of ±20%. Tables
B.1, B.2, B.3 show the perturbed values of the inertia tensors used in Section 4.2.
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Parameter Ib 1 Ib 2 Ib 3 Ib 4 Ib 5 Ib 6 Ib 7
Ixx 0.0079 0.0080 0.0071 0.0081 0.0081 0.0069 0.0078
Iyy 0.0080 0.0076 0.0075 0.0069 0.0074 0.0073 0.0081
Izz 0.0463 0.0460 0.0546 0.0547 0.0530 0.0542 0.0516

Ib 8 Ib 9 Ib 10 Ib 11 Ib 12 Ib 13 Ib 14
Ixx 0.0067 0.0077 0.0072 0.0077 0.0067 0.0077 0.0067
Iyy 0.0079 0.0078 0.0076 0.0067 0.0068 0.0071 0.0073
Izz 0.0543 0.0524 0.0467 0.0478 0.0532 0.0545 0.0488

Ib 15 Ib 16 Ib 17 Ib 18 Ib 19 Ib 20
Ixx 0.0078 0.0074 0.0077 0.0077 0.0068 0.0072
Iyy 0.0078 0.0073 0.0078 0.0076 0.0074 0.0075
Izz 0.0469 0.0515 0.0478 0.0466 0.0546 0.0472

Table B.1: Perturbations of ±10% of body inertia tensor

Parameter Ib 1 Ib 2 Ib 3 Ib 4 Ib 5 Ib 6 Ib 7
Ixx 0.0075 0.0067 0.0071 0.0065 0.0074 0.0070 0.0081
Iyy 0.0069 0.0078 0.0077 0.0084 0.0073 0.0074 0.0081
Izz 0.0537 0.0453 0.0542 0.0541 0.0492 0.0502 0.0522

Ib 8 Ib 9 Ib 10 Ib 11 Ib 12 Ib 13 Ib 14
Ixx 0.0071 0.0071 0.0075 0.0068 0.0068 0.0068 0.0073
Iyy 0.0081 0.0084 0.0077 0.0070 0.0082 0.0067 0.0070
Izz 0.0505 0.0556 0.0513 0.0496 0.0454 0.0459 0.0564

Ib 15 Ib 16 Ib 17 Ib 18 Ib 19 Ib 20
Ixx 0.0072 0.0085 0.0069 0.0069 0.0068 0.0070
Iyy 0.0067 0.0073 0.0072 0.0076 0.0066 0.0072
Izz 0.0561 0.0442 0.0514 0.0532 0.0470 0.0501

Table B.2: Perturbations of ±15% of body inertia tensor
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Parameter Ib 1 Ib 2 Ib 3 Ib 4 Ib 5 Ib 6 Ib 7
Ixx 0.0083 0.0086 0.0067 0.0088 0.0088 0.0063 0.0083
Iyy 0.0086 0.0078 0.0075 0.0064 0.0074 0.0072 0.0088
Izz 0.0425 0.0420 0.0592 0.0594 0.0560 0.0583 0.0531

Ib 8 Ib 9 Ib 10 Ib 11 Ib 12 Ib 13 Ib 14
Ixx 0.0060 0.0079 0.0071 0.0080 0.0061 0.0080 0.0060
Iyy 0.0084 0.0082 0.0079 0.0060 0.0062 0.0069 0.0072
Izz 0.0587 0.0549 0.0434 0.0455 0.0565 0.0590 0.0476

Ib 15 Ib 16 Ib 17 Ib 18 Ib 19 Ib 20
Ixx 0.0082 0.0074 0.0080 0.0079 0.0063 0.0069
Iyy 0.0083 0.0072 0.0082 0.0079 0.0074 0.0077
Izz 0.0437 0.0529 0.0455 0.0433 0.0592 0.0445

Table B.3: Perturbations of ±20% of body inertia tensor
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