
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Automation and Control Engineering

Nonlinear attitude and position control for a
quadrotor UAV

Advisor: Prof. Marco LOVERA
Co-Advisor: Mattia GIURATO, Eng.

Davide INVERNIZZI, Eng.

Thesis by:
Davide Paolo CARELLI Matr. 837861

Academic Year 2016–2017

3

Alla mia Famiglia . . .

Acknowledgments

Ringraziare alla conclusione di un percorso vuol dire per me ringraziare tutti quelli
che ho incontrato lungo la strada e grazie ai quali sono riuscito a raggiungere le
mete che mi ero prefissato superando gli ostacoli lungo il cammino.
Per questo ringrazio in primo luogo i miei genitori, che mi hanno sempre aiutato
e sostenuto durante questo cammino di crescita che è stato la mia carriera univer-
sitaria, da quando sono uscito di casa la prima volta diretto alla prima lezione di
Analisi 1 fino alla discussione di questa tesi. Insieme a loro non posso dimenticare
le mie sorelle, mia zia e i miei nipoti, che durante questo lungo percorso mi hanno
sempre stimolato e aiutato a credere in me stesso.
Un ringraziamento speciale lo devo poi ai miei compagni di avventura, che ho
conosciuto appena salito a bordo e non ho più lasciato fino ad oggi. Un grazie
enorme quindi a Paolo, Fabrizio, Marco, Dario, Jacopo, Emanuele e Daniele, con
i quali ho condiviso le lezioni, le ore di studio, gli esami e moltissimi momenti
felici. E’ anche grazie a voi se oggi sono qui.
Non posso poi dimenticare i miei amici di sempre e alla mia ragazza, che pur non
condividendo le mie stesse esperienze mi sono sempre stati vicino e hanno soppor-
tato i miei discorsi da ingegnere, grazie quindi a Martina, Fabio, Ale e Simone.
Arrivando a questo ultimo anno passato nel laboratorio FLYART, non posso fare
a meno di ringraziare il professor Marco Lovera per l’opportunità che mi ha con-
cesso di sperimentarmi in questa avventura che mi ha appassionato fin dall’inizio.
Un ringraziamento speciale va poi a Mattia e Davide, che mi hanno quotidiana-
mente supportato nello sviluppo di questo lavoro, e a Simone, il maestro dell’H∞.
Ringrazio inoltre Pietro, Aureliano e Matteo per il supporto morale indispensabile
in alcuni momenti.

Abstract

Nowadays, quadrotor UAV platforms have began to spread around and starts to
catch the attention of the industry for their applications in various tasks like the
monitoring of impervious or dangerous areas and the transportations of payloads.
All these missions can require the UAV to cope with external disturbances from
the environment, the wind for example, or to sustain aggressive manoeuvrers with
large variations of attitude angles.
The linear control applied to quadrotor platforms has been deeply explored and
many successful applications have been developed in the recent years. This kind
of control based on standard and well known techniques provides drones that can
work fine in a certain range of angles around the hovering condition but it obtains
poor performances in the case of aggressive flight.
The purpose of this thesis is the development of a nonlinear control architecture for
the quadrotor UAV platform of the FLYART laboratory. During the development
of this work many control strategies have been developed and analysed in order
to obtain a controlled system able to cope with difficult working conditions. The
tuning of these control laws has been handled applying the H∞ tuning technique
to the developed control system. The starting point is the backstepping method,
analysed at the beginning of the third chapter after a brief introduction to the
quadcopters in the first chapter and the presentation of the quadrotor model in
the second one. Then the integral backstepping technique has been implemented
in two different ways in order to gain robustness for the system and compensate
possible disturbances and uncertainties of the real system. After these control
laws, it has been tackled the problem of singularities carried by the attitude angle
parametrization with the proposal of a geometric control architecture that allows
to avoid this inconvenient.
All the control laws are mathematically developed in this thesis work and the
resulting simulations are shown in the last chapter.

Sommario

Al giorno d’oggi i quadricotteri UAV hanno iniziato a diffondersi e ad attirare
anche l’attenzione delle industrie, principalmente per quanto riguarda la loro
applicazione in alcuni contesti specifici quali il monitoraggio di aree impervie
o pericolose oppure per il trasporto di carichi. Questo genere di missioni pos-
sono richiedere che l’UAV riesca a gestire disturbi provenienti dall’ambiente in
cui opera, primo fra tutti il vento, e offra la capacità di manovre complesse che
prevedano anche ampi angoli di inclinazione.
Il controllo lineare applicato a questo tipo di piattaforme è stato studiato in modo
approfondito negli ultimi anni con lo sviluppo di molte applicazioni che hanno
dato risultati più che soddisfacenti. Questo tipo di controlli basati su tecniche
standard e ben note nell’ambito della teoria del controllo soffrono però di pesanti
limitazioni in caso di volo lontano dalla condizione di hovering, che causano un
veloce degrado delle performance.
Questa tesi si pone l’obiettivo di sviluppare dunque un’architettura di controllo
non lineare per il quadricottero UAV del laboratorio FLYART. Durante lo sviluppo
di questo lavoro sono state sviluppate e analizzate varie strategie di controllo in
modo da ottenere un sistema in grado di affrontare condizioni di operatività non
ottimali. Parallelamente alla formulazione di queste leggi di controllo è stata stu-
diata l’applicazione della metodologia di tuning basata sulla minimizzazione della
norma H∞ per la scelta dei parametri del controllore.
Lo sviluppo di queste architetture si basa sul metodo di controllo backstepping, in-
trodotto nel terzo capitolo dopo una breve introduzione ai quadricotteri nel primo
capitolo e la presentazione del modello matematico utilizzato. Successivamente è
stata implementata un’architettura di tipo integral backstepping in due differenti
configurazioni in modo da migliorare la robustezza del controllo e rendere possibile
la compensazione di disturbi costanti presenti nel sistema reale. Dopo queste leggi
i controllo è stato affrontato il problema di come gestire le singolarità intrinseche
della parametrizzazione dell’assetto con angoli di Eulero e come soluzione è stata
implementata una legge di controllo geometrica.
Nel seguente lavoro di tesi sono stati quindi mostrati gli sviluppi matematici dei
controlli e i risultati ottenuti in simulazione vengono presentati nell’ultimo capi-
tolo.

Contents

Acknowledgments 5

Abstract 7

Sommario 9

List of figures 15

List of tables 17

Introduction 19

1 Brief history of quadrotor UAVs 21
1.1 The birth of UAVs . 21
1.2 The development of multicopters 22
1.3 Quadrotor UAVs . 23

2 Dynamic model for the quadrotor 25
2.1 Reference systems . 25

2.1.1 Inertial reference system 25
2.1.2 Body axes . 25

2.2 Attitude representation . 26
2.2.1 Euler angles . 26

2.3 The model . 29
2.3.1 Velocities and accelerations 30
2.3.2 Linear motion . 30
2.3.3 Angular motion . 31
2.3.4 States of the system . 32
2.3.5 External forces and moments 33

2.4 Conclusions . 35

3 Control design and tuning 37
3.1 Lyapunov stability theory . 38

3.1.1 The backstepping method 38

12 CONTENTS

3.2 Backstepping control of a UAV quadrotor 41
3.2.1 Derivation of the attitude control law 41
3.2.2 Derivation of the position control law 43

3.3 Tuning of the backstepping algorithm 45
3.3.1 Shaping functions . 47
3.3.2 Tuning results . 50

3.4 Integral backstepping control . 52
3.4.1 Derivation of the attitude control law 52
3.4.2 Tuning of the integral backstepping control law 55

3.5 Second formulation of integral backstepping 57
3.5.1 Derivation of the attitude control law 57

3.6 Geometric control . 59
3.6.1 Model and definition of the errors 60
3.6.2 Control law . 61

4 Simulation results 65
4.1 UAV simulator . 65

4.1.1 Quadrotor and sensors blocks 65
4.1.2 Actuators model . 67

4.2 Backstepping simulations . 68
4.2.1 Attitude control simulation 68
4.2.2 Position control simulation 69

4.3 Integral backstepping simulations 72
4.3.1 Attitude control law simulation 72
4.3.2 Position control law simulation 75

4.4 Simulations of integral backstepping second formulation 77
4.4.1 Attitude control law simulation 77
4.4.2 Position control law simulation 80

4.5 Geometric control law simulations 80
4.5.1 Simulation results . 81

4.6 Final considerations . 87

Conclusions 89

List of Figures

2.1 Body axes . 26

2.2 Euler angles . 28

2.3 X-configuration of the UAV . 34

3.1 Control block diagram . 37

3.2 Magnitude of the frequency response of inverse of the chosen WS(s)
function . 48

3.3 Magnitude of the frequency response of inverse of the chosen WT (s)
function . 49

3.4 Magnitude of the frequency response of inverse of the chosen WK(s)
function . 49

3.5 Magnitude of the frequency response of the inverse outer loop weight-
ing functions, backstepping . 50

3.6 Comparison between the inverse of the weighting functions and the
obtained results: pitch axis . 51

3.7 Comparison between the inverse of the weighting functions and the
obtained results: yaw axis . 52

3.8 Comparison between the inverse of the weighting functions and the
obtained results: x axis . 53

3.9 Comparison between the inverse of the weighting functions and the
obtained results: z axis . 53

3.10 Magnitude of the frequency response of the inverse shaping func-
tions for integral backstepping control tuning 56

3.11 Results of the H∞ tuning for the integral backstepping controller:
pitch axis . 56

3.12 Results of the H∞ tuning for the integral backstepping controller:
yaw axis . 57

4.1 UAV simulator implemented in Simulink 66

4.2 Simulator of the UAV dynamics 66

4.3 Bode magnitude plot of the frequency response of the actuators
transfer function . 67

4.4 Response of the UAV to a 30° step on the desired pitch, backstepping 68

14 LIST OF FIGURES

4.5 Response of the UAV to a 30° step on the desired yaw, backstepping 69

4.6 Response of the UAV to a 30° sinusoidal variation of the pitch
setpoint at 2 [rad/s], backstepping 70

4.7 Response of the UAV to a 30° sinusoidal variation of the yaw set-
point at 2 [rad/s], backstepping 70

4.8 Pitch and yaw tracking errors, backstepping 71

4.9 Attitude response on a sinusoidal reference on both pitch and yaw,
backstepping . 71

4.10 Attitude error on a sinusoidal reference on both pitch and yaw,
backstepping . 72

4.11 Response of the x, y coordinate to an 8-shape trajectory, backstepping 73

4.12 Response of the z coordinate to an 8-shape trajectory, backstepping 73

4.13 Tracking error of the response to an 8-shape trajectory, backstepping 74

4.14 Response of the UAV to a 30◦ step on the desired pitch, integral
backstepping . 74

4.15 Response of the UAV to a 30° step on the desired yaw, integral
backstepping . 75

4.16 Response of the UAV to a sinusoid of amplitude 30° on the desired
pitch at 2[rad/s], integral backstepping 76

4.17 Response of the UAV to a sinusoid of amplitude 30° on the desired
yaw at 2[rad/s], integral backstepping 76

4.18 Pitch and yaw tracking errors due to a sinusoid of amplitude 30°
at 2[rad/s] respectively on pitch and yaw, integral backstepping . 77

4.19 Position of the UAV quadrotor during an 8-shaped trajectory at
1.35 [rad/s], integral backstepping 78

4.20 Tracking error of the response to an 8-shape trajectory, integral
backstepping . 78

4.21 Response of the UAV to a 30° step on the desired pitch,second
formulation of the integral backstepping 79

4.22 Response of the UAV to a 30° step on the desired yaw, second
formulation of the integral backstepping 79

4.23 Response of the UAV to a 30° amplitude, 2 [rad/s] sinusoidal wave
as desired pitch, second formulation of the integral backstepping . 80

4.24 Response of the UAV to a 30° amplitude, 2 [rad/s] sinusoidal wave
as desired yaw, second formulation of the integral backstepping . . 81

4.25 Pitch and yaw tracking errors due to a sinusoid of amplitude 30° at
2[rad/s] respectively on pitch and yaw, second formulation of the
integral backstepping . 82

4.26 Position of the UAV quadrotor during an 8-shaped trajectory at
1.35 [rad/s], second formulation of the integral backstepping . . . 83

4.27 Tracking error of the response to an 8-shape trajectory, second
formulation of the integral backstepping 83

LIST OF FIGURES 15

4.28 Position of the UAV quadrotor during an 8-shaped trajectory at
0.5 [rad/s], geometric control . 84

4.29 Tracking error of the response to an 8-shape trajectory, geometric
control . 84

4.30 Tracking of a roll setpoint, geometric control 85
4.31 Tracking of a pitch setpoint, geometric control 85
4.32 Tracking of a yaw setpoint, geometric control 86
4.33 Attitude error, geometric control 86

List of Tables

3.1 Outer loop shaping functions parameters, backstepping 50
3.2 Inner loop tuned parameters, backstepping 51
3.3 Outer loop tuned parameters, backstepping 51
3.4 Outer loop shaping functions parameters, integral backstepping . 55
3.5 Outer loop tuned parameters, integral backstepping 55
3.6 Second formulation of integral backstepping, control parameters . 59
3.7 Position control parameters, geometric control law 64
3.8 Attitude control parameters, geometric control law 64

Introduction

A quadrotor UAV is an aerial vehicle whose motion is controlled regulating the
thrust delivered by each propeller.
Their trajectory is controlled modifying the attitude of the quadrotor itself in or-
der to point the thrust to the desired direction. Due to the fast attitude dynamics,
an on-board computer (Flight Control Unit, FCU) is needed to compute the con-
trol action based on the informations provided by an Inertial Measurement Unit
(IMU) and in the case of the FLYART laboratory also provided by an Optitrack
measurement system.
The control action, that is the angular rate of each propeller, has been computed
by means of a linear control law in the quadrotors of the laboratory until now.
This kind of controllers are designed starting from a linearised model of the UAV
system that neglects the gyroscopic effects and the coupling between the atti-
tude angles dynamics. Due to this assumptions on the model the resulting linear
controllers have a limited range of angles, typically around 20°, where they can
properly control the attitude dynamics. In case of larger angles, the performance
worsens rapidly and the system can reach an unstable behaviour.
In the industrial field PID controllers have been preferred to nonlinear architec-
tures because of their intuitive behaviour and the presence of standard tuning
techniques, however it is the industry itself to require more complex control laws
that can be able to cope with difficult flight conditions and aggressive manoeuvr-
ers.
In this frame the analysis of four different nonlinear control approaches has been
studied with the aim of allowing the FLYART UAV platform to undertake com-
plex trajectories and reject disturbances. The first control law to be designed
and implemented in the Simulink simulation environment has been the back-
stepping control law, this kind of controller is based on Lyapunov theory and
guarantees exponential asymptotic stability of the error dynamics. However, the
resulting controller performances are easily downgraded by constant disturbances
and model uncertainties due to the lack of any sort of integral action.
A straightforward solution for this problem is the reformulation of the control law
including an integral action. This control structure, called integral backstepping,
improves the properties ensured by the pure backstepping increasing the distur-
bance rejection capabilities of the controller.

20 Introduction

The third control approach that has been studied is a refinement of the integral
backstepping architecture that takes into account the coupling between the axes
of rotation of the quadrotor. Even if this kind of controller is affected by the pres-
ence of the gimbal lock singularity, this formulation let a design of the controller
more adherent to the actual UAV dynamics.
The last control approach that has been tackled is the geometric control, this kind
of nonlinear control avoids the Euler angle parametrization of the attitude repre-
sentation and thus it manages to handle nearly any configuration of the quadrotor
attitude at the cost of a more complex mathematical development.
One of the main problem in the design and implementation of nonlinear con-
trollers has always been the tuning of the control parameters, since the effect of
the variation of one parameter usually have effects on the behaviour of the system
that are not always easy to identify. Thus in parallel with the development of the
presented control laws, an application of the H∞ tuning technique to nonlinear
system has been studied. The developed approach manages to find working values
for the first two controllers, while it does not manage to handle the nonlinearities
introduced in the last two.
The thesis is structured as the development of the analysis as been carried on and
presented here:

• In the first chapter, a brief introduction to the multirotor UAVs is presented.

• The second chapter presents in detail the model conventions and structure
highlighting the assumptions made.

• The third chapter is the core of the thesis work and presents the mathemati-
cal development of the control laws, the tuning procedures and the achieved
results.

• The fourth and last chapter offers a complete overview on the simulation
results achieved by each controllers and compares the results obtained.

• In the last part some conclusions are derived from the presented analysis
and a proposal for further developments is explained.

Chapter 1

Brief history of quadrotor UAVs

1.1 The birth of UAVs

In 1849 Austria bombarded Venice during the First Independence War (1848-1849)
using balloons equipped with timed mechanisms able to release bombs. This has
been the first usage in history of an Unmanned Aerial Vehicle and actually resolves
in a partial success since the change of the wind makes some balloons bombing
the Austrian lines themselves.
The development of the unmanned flight as it is nowadays known started in the
First World War with the creation of aerial torpedoes by Hewitt-Sperry Auto-
matic Airplane. These flying bombs used the gyroscopic stabilizer that had been
just invented reaching an accuracy of 3 [Km] around its target.
It was during the World War II that many UAVs were developed to provide tar-
gets for military personnel training and also for attack missions.
In the ‘50s the Ryan Firebee was developed, equipped with a jet engine, this is
not the first jet engine drone but one of the most used. From 1959 the U.S gov-
ernment starts developing UAVs in order to avoid the loss of pilots and during the
War of Attrition (1967-1970) the first drones with reconnaissance cameras went on
duty. During the Vietnam War the U.S. airforce extensively use them for various
missions.
Another step towards the present state of the art was done by Israeli government
in 1973 with the development of a UAV endowed with real-time surveillance capa-
bility. Starting from that point on, with the continuous improvement of sensors,
communication technologies and computing capabilities the drones continuously
developed till these days.

22 Brief history of quadrotor UAVs

1.2 The development of multicopters

Four years after the first flight of the Wright brothers (1903), the Frenchman Louis
Breguet, who also co-founded Air France, developed together with his brother
Jacques and the professor Charles Richet (Nobel Prize for Medicine) the Gyro-
plane.
That was the first quadcopter made of a steel-tubes frame and weights half a ton.
The propulsion was ensured by a single 46 [CV] Antoinette internal combustion
engine that provides torque for all the four biplanar rotors with four blades each
by means of a complex system of pulleys and belts. This futuristic aerial vehicle,
like the today’s quadcopters, was designed to compensates the countermoments
generated by the rotations of the propellers making them rotating clockwise the
ones on one diagonal, counter-clockwise the ones on the other.
Although the power provided by the engine was decent for that times, the Gyro-
plane cannot flight at more than 60 [cm] from the ground. Thus this was only a
first attempt in the exploration of the quadcopter field, but succeeded in proving
the possibility of flight of a rotary wing aircraft.
The Gyroplane works as a basis for the development of the Gyroplane 2, endowed
with a 55 [CV] ICE Renault engine, with only two smaller rotors and a fixed
wing. The Gyroplane 2 was thus more a combination between an airplane and
a helicopter, with a vertical stabilizer and elevators. This second prototype was
heavily damaged during a landing and finally wrecked by a storm in 1909.
Since that first attempt, eleven years and the First World War passed before
in 1920 the French engineer Ethienne Oehmichen developed six multicopter pro-
totypes. Among those quadcopters, the second one, the Oehmichen 2 had the
features similar to the Gyroplane, being made of steel-tubes with counterrotating
rotors. Thanks to the improvements on the engines of those years, the Oehmichen
2 did not need a bi-planar rotary wing and only two blades for rotor were needed.
From the control point of view this multirotor was extremely inefficient, in fact
while the Gyroplane was controlled varying the angular rates of the couples of
propellers, the Oehmichen 2 mounted eight engines: two that powers the rotors,
and six connected to other six propellers that moved the vehicle forward, back-
ward, to the left, to the right and made it turn. Due to this extreme inefficiency
the project was aborted even if it proves great stability and reliability: it was the
first helicopter to run 360 [m] in 1923, it completes an entire circular trajectory
and some years later managed to fly for a kilometre.
Another multirotor, the de Bothezat helicopter, challenges the Oehmichen 2 in
1922. It takes its name from the Russian-American scientist De Bothezat and
was renamed by the press as ”The Flying Octopus ”. This was a four engine
with six-bladed variable pitch propellers with collective pitch control, other two
three-bladed propellers were used in order to cool down the 180 [CV] engine. Al-
though the project was highly financed and uses the latest technologies at that
time, it results in an underpowered, imprecise and unreliable vehicles. Due to the

1.3 Quadrotor UAVs 23

impossibility for a pilot to handle the controls manually, since there were no FCU
at that times, the de Bothezat helicopter cannot undertake a complex trajectory
and all its more than one-hundred has been done in hovering.
The Second World War and the invention of helicopters completely stopped the de-
velopment of multirotor platforms untill the ‘50s, when the Convertawings Model
A manages to complete a flight, controlling its attitude varying the rotors angular
rates. After 1958, when the quadrotor Curtiss Wright VZ-7 was developed but
did not met U.S. military specifications, no more quadcopter prototypes had been
created until the new millennium.

1.3 Quadrotor UAVs

The continuous reduction of power consumptions and space of the electronic com-
ponents and the development of open source hardware resources like Arduino in
the early ‘00s years paved the way for a rebirth of the quadrotor concept in the
UAV field.
In fact, inheriting from aircraft modelling the engines, the propellers and reliable
and precise regulators, together with the newly developed open source electronics,
it has been possible to produce at an amateurish level small remotely controlled
quadrotors and multirotors. From this niche field reserved to modelling enthu-
siasts, the integration of a camera that let the user to have an on board view
from the quadcopter on his or her smartphone opens the quadrotor UAV world
to the large consumer market. This diffusion of reliable, small scale quadrotors
promote the development of brand new applications in various fields, both civil
and military.
The possibility of a quadrotor UAV to hover can be exploited for surveillance pur-
poses and in domestic application and in military one, moreover the possibility to
endow medium size quadrotors with almost any kind of sensor make them very
usefull for the so called DDD applications (Dull-Dirty-Dangerous). A UAV quad-
copter can fly over steepy slopes of mountains in order to monitor a landslide, with
the operator controlling it from a safe position. Also in agriculture they can be
used to monitor the cultivations allowing also tailored treatment for each portion
of a cultivated field. In industry there are also some ideas to adopt quadcopter
drones for load handling and in these years great attention has been given to the
choice of Amazon to deliver goods using UAVs.
It is clear that this research area is for all these reasons of great interest both on
a control science point of view and on an industrial one. The industry calls for
more and more performing controls able to cope with every day harder and more
specific tasks, that require more complex control laws than the one developed in
the last years.

Chapter 2

Dynamic model for the quadrotor

In the following chapter the formulation of the dynamic UAV model is described.
The first issue to address is how the position and attitude of the quadrotor have
been represented throughout this work, showing its derivation and highlighting
the possible problems related to the adopted parametrization.
The second part faces with the formulation of the dynamic model used in designing
the controllers, focusing on the considered effects and approximations.

2.1 Reference systems

2.1.1 Inertial reference system

With inertial reference system or Earth axes, it is named a coordinate system of
three fixed axes that works as a fixed base for the representation of the position
of a considered body or moving reference system.
The origin of the system could be set everywhere, the intersection of the equator
with the prime meridian and the mean sea level for example, it is completely
arbitrary but once chosen it cannot vary. The displacement along one or more
set of orthogonal axes attached to the origin describes the position of anything
in this reference system. It is convenient to align the axes of the reference frame
with the compass, one is aligned with the axis labelled North, one with the axis
labelled East and the last with the normal to the surface generated by the pre-
vious two, pointing to the centre of the Earth and labelled Down. These three
axes are mutually perpendicular by construction and when referring to them in
the order N,E,D form a right-handed coordinate system.

2.1.2 Body axes

For the representation of the attitude of the UAV it is convenient to set the origin
of the body frame coinciding with the centre of gravity of the quadrotor. The

26 Dynamic model for the quadrotor

chosen set of axes is a right-handed system (Figure 2.1), the X axis lies in the
plane of symmetry and generally points forward, the Y axis points to the right
normally to the plane of symmetry and the Z axis points down.

Figure 2.1: Body axes

2.2 Attitude representation

One of the main problem in modelling and controlling a 3D system has always
been the correct representation of the attitude of an object with respect to an
inertial frame and a body fixed frame. This is actually a key issue in this work
since the errors and so the control variables are computed based on it and the
singularities of the different representations strongly influence the stability and
robustness properties of the controlled system.

2.2.1 Euler angles

Vectors can be rotated about any axes in any order for any number of times until
the final orientation is achieved. These subsequent rotations can be represented by
means of a rotation matrix from the initial orientation to the final one. Adopting
the to-from notation, a rotation matrix from system E to system D would be
named RD−E. Thus any vector PE in the E reference system can be resolved to
system D, in the corresponding vector PD through the matrix operation:

PD = RD−EPE. (2.1)

2.2 Attitude representation 27

Rotation matrices are written for R3 vectors and may represent the rotation
around one, two or three axes. For sake of a better comprehension it is useful
to analyse the rotation around a single axis and then composing different rota-
tions in order to achieve the final rotation matrix.
A rotation about the X axis does not change the component of the vector directed
along the X axis itself, but changes the Y and Z components. All these consider-
ations can be noticed analysing the matrix associated to this rotation of an angle
Φ:

RX(Φ) =

1 0 0
0 cos Φ sin Φ
0 − sin Φ cos Φ

 (2.2)

same considerations can be done for the rotation matrices representing respectively
rotations of an angle Θ around Y and Ψ around Z axes.
These matrices have the form

RY (Θ) =

cos Θ 0 − sin Θ
0 1 0

sin Θ 0 cos Θ

 (2.3)

RZ(Ψ) =

 cos Ψ sin Ψ 0
− sin Ψ cos Ψ 0

0 0 1

 (2.4)

The positive direction of the angular displacement is the one your fingers curl
when aligning your thumb with the positive direction of the axis. The 0 degrees
position can be assigned arbitrarily but once fixed, it must not vary.
The three presented matrices are orthonormal since each of their columns repre-
sent a vector of unit magnitude and the scalar product of column i with column
j with i 6= j equals zero, that is the definition of orthogonal. Orthonormality
carries also the useful property that the inverse of an orthonormal matrix is its
transpose, thus in order to compute the inverse rotation matrix only a transposi-
tion is needed.
It is possible to build the overall matrix representing subsequent rotations around
different axes multiplying in the same sequence the rotation matrices of each ro-
tation around each axis. Moreover, every cascade of rotations can be reduced to a
rotation about three axes only. One possible way in representing these three sub-
sequent rotations is the Euler angle conventions, whose naming convention follows
NASA standard notation and consists in a first rotation of an angle Ψ around the
Z axis called yaw, then a rotation of an angle Θ around the new intermediate Y
axis, the so called pitch, and finally a rotation of an angle Φ around the newer
X axis and also known as roll. The three angles are shown in Figures 2.2a, 2.2b,
2.2c
This particular set of rotations is performed by the so called Euler rotation matrix
defined as:

TBE(Φ,Θ,Ψ) = RX(Φ)RY (Θ)RZ(Ψ) (2.5)

28 Dynamic model for the quadrotor

(a) Roll angle (b) Pitch angle (c) Yaw angle

Figure 2.2: Euler angles

where subscript B stands for ”body” and E stands for ” Earth”, respectively.
Matrix TBE resolves an Earth-based vector to body reference system. The overall
formulation of the TBE matrix is then:

TBE(Φ,Θ,Ψ) =

 CΘCΨ CΘSΨ −SΘ

SΦSΘCΨ − CΦSΨ SΦSΘSΨ + CΦCΨ SΦCΘ

CΦSΘCΨ + SΦSΨ CΦSΘSΨ − SΦCΨ CΦCΘ

 (2.6)

where the shorthand notation CΦ = cos Φ, SΦ = sin Φ, TΦ = tan Φ has been
adopted.
The Euler angles are used to rotate a velocity or acceleration vector expressed in
body frame to the Earth reference system, that is

Pe =

NE
D

 , Ve =

ṄĖ
Ḋ

 = Ṗe

Vb = TBE(Φ,Θ,Ψ)Ve =

uv
w


(2.7)

where Pe is the position of the UAV centre of gravity in the inertial (Earth) frame
(NED), Ve is its velocity and Vb is the same velocity resolved to body axes.
Starting from these considerations the vector of angular position of the UAV body
axes with respect to the Earth reference system can be defined as

αe =

Φ
Θ
Ψ

 (2.8)

named respectively roll angle, pitch angle and yaw angle.
Of course, the three angles just defined vary with time during a maneuver and so
the Euler rates are function of both the Euler angles and the body-axis angular
rates.

2.3 The model 29

Firstly the Euler rates are defined as:

ωe =

Φ̇

Θ̇

Ψ̇

 = α̇e (2.9)

and the body-axis rates as

ωb =

pq
r

 . (2.10)

To get the relation from Earth-axis rates to body-axis ones each Euler rate has
to be considered individually, resolved to intermediate axes and only at the end
resolved to body axes. Define the Euler rate elemental vectors as:

ωΦ̇ =

Φ̇
0
0

 , ωΘ̇ =

0

Θ̇
0

 , ωΨ̇ =

0
0

Ψ̇

 (2.11)

Rotate ωΨ̇ through the angle Θ about the Y axis, and add the result to the ωΘ̇

vector. Rotate that sum about the X axis through the angle Ψ and add the result
to the ωΦ̇ vector. This last resulting vector is the body-axis angular rates vector.

ωb = ωΦ̇ +RX(Φ)

[
ωΘ̇ +RY (Θ)ωΨ̇

]
(2.12)

Rearranging the terms we get to

ωb = E(Φ,Θ)ωe =

1 0 −SΘ

0 CΦ SΦCΘ

0 −SΦ CΦCΘ

ωe. (2.13)

On the contrary, to get the Earth-axis rate in terms of body-axis rates the inversion
of the transformation matrix E is needed. Unlike the TBE matrix, matrix E is
not orthonormal and in addition its inverse present two singularities in case of a
pitch angle of ±90.

E(Φ,Θ)−1 =

1 SΦTΘ CΦTΘ

0 CΦ −SΦ

0 SΦ/CΘ CΦ/CΘ

 . (2.14)

This singularity is called gimbal lock and is one of the main difficulties when
handling aggressive flight maneuvers with Euler angles parametrization.

2.3 The model

The model is developed under the assumption of the rigid body, that is all the
points belonging to the body move keeping the distances and the angles fixed.

30 Dynamic model for the quadrotor

2.3.1 Velocities and accelerations

When considering the kinematic of a moving frame system following a generic
path, it has to be considered that both the modulus and the direction of the
velocity vector can change. A straightforward consequence of this fact is that,
defining S the position vector of a point expressed in a reference system rotating
with angular rate ωb

S =

xy
z

 , ωb =

pq
r

 (2.15)

and

∂S

∂t
=

ẋẏ
ż

 =

uv
w

 (2.16)

the total velocity and acceleration seen in the Earth frame are:

dS

dt
=
∂S

∂t
+ ωb × S (2.17)

d2S

dt2
=

∂

∂t

(
dS

dt

)
+ωb×

(
dS

dt

)
=
∂2S

∂t2
+2ωb×

∂S

∂t
+
∂ωb
∂t
×S+ωb×(ωb×S). (2.18)

2.3.2 Linear motion

The description of the linear motion of a body can be obtained starting from the
second Newton’s Law. Linear momentum is the product of the mass times the
velocity of an object. A force acting on the object makes the related momentum
change:

F =
d(mVb)

dt
(2.19)

Applying to this expression (2.17) and (2.18) and adopting dot notation for the
sake of readability:

F =
dm

dt
Vb +m

(
∂Vb
∂t

+ ωb × Vb
)

= ṁVb +mV̇b + ωb × (mVb) (2.20)

The obtained expression in (2.20) represents the rate of change of the linear mo-
mentum as a function of the applied forces. In the system under analysis those
forces are gravity, aerodynamics and others that can be lumped into a category
called externally applied loads. In the following the vector Fext represents the
external forces:

Fext =

FXFY
FZ

 . (2.21)

2.3 The model 31

Assuming a constant mass of the UAV the resulting equation of linear motion
takes the form:

mV̇b + ωb × (mVb) = Fext (2.22)

2.3.3 Angular motion

Expanding and rearranging (2.18), the acceleration of a point can be expressed
as: 

ẍ = u̇+ q̇z − ṙy + q(w + py − qx)− r(v + rx− pz),

ÿ = v̇ + ṙx− ṗz + r(u+ qz − ry)− p(w + py − qx),

z̈ = ẇ + ṗy − q̇x+ p(v + rx− pz)− q(u+ qz − ry).

(2.23)

Considering the body mass divided into infinitesimal masses, the inertial force
acting on the j -th differential mass element is:

(dFX)j = dmjẍ

(dFY)j = dmj ÿ

(dFZ)j = dmj z̈.

(2.24)

If the position of the differential mass element is Sj, the mass resists an angular
force (a moment) about all three axes. The differential inertial moments are:

dMj = Sj × dFj, (2.25)
(dMX)j = (dFZ)jyj − (dFY)jzj

(dMY)j = (dFX)jzj − (dFZ)jxj

(dMZ)j = (dFY)jxj − (dFX)jyj

(2.26)

By definition, the origin of the coordinate system is the centre of gravity; therefore

Σ(x)dm = 0,

Σ(y)dm = 0,

Σ(z)dm = 0.

(2.27)

Combining (2.28) , (2.26) , (2.27) the linear motion equation are obtained:
mẍ = m(u̇+ qw − rv),

mÿ = m(v̇ + ru− pw),

mz̈ = m(ẇ + pv − qu).

(2.28)

Introducing the definition of inertia tensor in the form

In =

 Ixx −Ixy −Ixz
Iyx Iyy −Iyz
−Izx −Izy Izz

 (2.29)

32 Dynamic model for the quadrotor

where the various terms can be defined as

∫
(xy)dm = Ixy,

∫
(xz)dm = Ixz,

∫
(yz)dm = Iyz,∫

(y2 + z2)dm = Ixx,

∫
(x2 + z2)dm = Iyy,

∫
(x2 + y2)dm = Izz.

Considering a body frame coincident with the symmetry axes of the aircraft body,
one can assume In to be a diagonal matrix.
From all the previous considerations the expression of the angular motion can be
derived in the form:

L = Ixxṗ+ (Izz − Iyy)qr,
M = Iyy q̇ + (Ixx − Izz)pr,
N = Izz ṙ + (Iyy − Ixx)pq,

(2.30)

where L, M , N are the moments applied on the body-axes X, Y, Z respectively.
Collecting all the applied moments in a vector Mext

Mext =

LM
N

 , (2.31)

and recalling the definition of body-axis angular velocity vector the equation of
angular motion can be reorganized in the form

Inω̇b + ωb × (Inωb) = Mext. (2.32)

The similarity of this formulation with (2.22) are evident and the two together
constitute the generalized equations of motion of a body.

2.3.4 States of the system

The states variables of a system are the variables that can describe the state of
a system in each instant of time. Since the UAV under analysis is a mechanical
system whose position and attitude must be controlled acting on the forces and
moments applied, it is quite natural to choose as states the linear and angular

2.3 The model 33

position and velocities of the centre of mass. The resulting the state vector is x

x =



u̇
v̇
ẇ

Ṅ

Ė

Ḋ
ṗ
q̇
ṙ

Φ̇

Θ̇

Ψ̇



(2.33)

Given (2.22) and (2.32) the resulting dynamical system to be controlled is thus
in the form 

u̇
v̇
ẇ

Ṅ

Ė

Ḋ
ṗ
q̇
ṙ

Φ̇

Θ̇

Ψ̇



=


−ωb × Vb + Fext

m

T TBEVb
I−1
n (−ωb × Inωb +Mext)

E−1ωb

 . (2.34)

2.3.5 External forces and moments

In the study of the UAV dynamics it is necessary to analyse the external forces and
moments introduced in the previous sections in order to get a correct modelling
of the system. The quadrotor studied is set in X-configuration (see Figure 2.3).
Each propeller produces a torque and a thrust proportional to the square of its
rotational speed:

Ti = KTΩ2
i , KT = CTρAR

2,

Qi = KQΩ2
i , KQ = CQρAR

3,
(2.35)

Where CT and CQ are the thrust and torque coefficients, ρ the air density, A and
R the propeller disk and its radius and Ωi is the i-th propeller rotational speed.

34 Dynamic model for the quadrotor

Figure 2.3: X-configuration of the UAV

The overall thrusts and moments generated by the propellers are then

Fprops =

 0
0

−KT (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)


Mprops =

KT
b√
2
(Ω2

1 − Ω2
2 − Ω2

3 + Ω2
4

KT
b√
2
(Ω2

1 + Ω2
2 − Ω2

3 − Ω2
4

KQ(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4

 (2.36)

With b the distance between each propeller and the centre of gravity. Starting
from the expressions of Fprops and Mprops a so called MixerMatrix can be built
for the motors. This matrix relates the desired thrust and moments required by
the control with the rotational speed of each propeller needed to get those values.
This matrix is so of fundamental importance in the control design process since
the actual control inputs of the UAV are the Ωi while it is far easier handling
forces and moments in the dynamic equations.
The mixermatrix is defined as χ

T
L
M
N

 = χ


Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =


KT KT KT KT

KT
b√
2
−KT

b√
2
−KT

b√
2

KT
b√
2

KT
b√
2

KT
b√
2
−KT

b√
2
−KT

b√
2

−KQ KQ −KQ KQ




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 . (2.37)

Another force to be considered acting on the centre of gravity is the gravitational
force. This force acts always pointing to the centre of the Earth, that is Down in
the inertial frame, and so it must be rotated into body frame to get a consistent
representation of its effect on the system:

Fg = TBE(Φ,Θ,Ψ)

 0
0
mg

 =

 −SΘ

SΦCΘ

CΦCΘ

mg (2.38)

2.4 Conclusions 35

The last effect to consider is the aerodynamic damp caused by the rotating pro-
pellers moving through air. Assuming in first approximation the drag caused by
linear translations to be negligible since the structure of the quadrotor is thin, the
moments around each axis are only proportional to the rotational speed around
that axis (decoupled moments). Moreover, if one considers only the aerodynamic
damp proportional to ωb it takes the form

Mdamp =

∂L∂p 0 0

0 ∂M
∂q

0

0 0 ∂N
∂r

pq
r

 . (2.39)

The terms ∂L
∂p

, ∂M
∂q

, ∂N
∂r

are called stability derivatives. Because of the symmetry

of the UAV ∂L
∂p

= ∂M
∂q

, while ∂N
∂r

= 0 since the angular rate about the Z axis is
far lower than the others. The stability derivatives are defined from helicopters
theory as

∂L

∂p
= −4ρAR2Ω2∂CT

∂p

b√
2

(2.40)

∂CT
∂p

=
CLα

8

σ

RΩ

b√
2

(2.41)

σ =
Ab
A

(2.42)

with σ called solidity ratio obtained dividing the blade area Ab over the disk area
A. CLα is defined as the slope of the thrust coefficient curve CL, this parameter
is assumed to be 2π since the actual air-foil is not known and the propeller blade
is thin.
All the values of the aerodynamic and structural parameters of the drone have
been inherited from [4] and [3] where all the unknown values have been identified
using grey-box estimation.
In the end the total forces and moments applied to the centre of mass of the UAV
are described by:

Fext = Fg + Fprops

Mext = Mdamp +Mprops.
(2.43)

2.4 Conclusions

The conventions and the UAV model as been presented in detail in this chapter,
highlighting all the modelling assumptions and the implication they have in the
final result.
The final model to be controlled is then

mV̇b + ωb × (mVb) = Fg + Fprops

Inω̇b + ωb × (Inωb) = Mdamp +Mprops.
(2.44)

36 Dynamic model for the quadrotor

Starting from this model a Simulink simulator for the system has been developed
in [4] and it has been used extensively in the process of control synthesis and
validation. During the development of this thesis some adjustments have been
added improving the coherence with the real behaviour of a quadrotor helicopter.

Chapter 3

Control design and tuning

The model presented in the previous chapter is now used to develop a control law
for the position and attitude control of the UAV platform.
From the model equations (2.34) it is clear that the system under control is highly
nonlinear. Until these days the main control architectures adopted on the UAV
platforms of the FLYART laboratory have been linear, mainly PID controllers de-
veloped under the assumption that the mapping from the angular rates expressed
into body frame to the inertial frame ones is an identity and neglecting the gy-
roscopic effects. In order to improve the results already obtained some nonlinear
control architectures are introduced in this chapter that allow to drop these sim-
plifying assumptions.
The chosen control architecture shown in Figure 3.1 and adopted throughout this
work consists of two nested parts.The outer position loop computes the total
thrust to be generated by the propellers and the roll and pitch angles required to
get this thrust. The inner loop controls the attitude of the quadrotor using the
moments generated by the propellers and the desired yaw and the computed roll
and pitch as set-points instead.

Figure 3.1: Control block diagram

Some basic concepts about nonlinear control are now introduced in order to
lay the foundations for the development of the control architectures that follows.

38 Control design and tuning

3.1 Lyapunov stability theory

In the case a nonlinear system cannot be linearised around an equilibrium or if
this approximation is too strong, one of the most used control methods is the so
called Lyapunov method, from the name of Aleksandr Michajlovič Lyapunov who
theorized it first.
The main idea underlying this approach is that if the total energy of the system
under control is continuously dissipated, at least in the neighbourhood D of an
equilibrium x0, the system tends to move to the equilibrium itself.
In the first place an energy function must be defined. This function V has to be

• positive definite for all x 6= 0 with x ∈ D

• V (x) = 0 if and only if x = 0

If the derivative of V (x) along the trajectories of the system is negative definite, or
at least negative semi-definite and null only in x = 0, the energy is continuously
dissipated by the system or it does not increase and can only be conserved or
dissipated. This fact leads to the Lyapunov theorem for nonlinear systems: given
a system ẋ(t) = φ(x(t)) with φ continuous with its derivative and locally Lipschitz
in a neighbourhood D of a considered equilibrium x0, if there exists a function
V (x), continuous with its derivative, positive definite in x0 and such that V̇ (x) is
semi-definite negative around x0, that is

V̇ (x) =
dV

dx

dx

dt
=
dV

dx
φ(x) ≤ 0 x ∈ D (3.1)

then x0 is a stable equilibrium, see [8] for the complete proof.
Moreover if V̇ (x) < 0 strictly, that is V̇ (x) negative definite, x0 is an asymptoti-
cally stable equilibrium.
Another theorem, the Krasowsky - La Salle Lemma, proves that in addition to
the previous cases if V̇ (x) ≤ 0 but V̇ (x) = 0 only in x = x0 then the equilibrium
is asymptotically stable also in this case.
Based on the results of these theorems, many control strategies for nonlinear sys-
tems have been built.
Once a suitable energy function V (x) has been found, with x the states of the
system to be controlled, a stabilizing control input that forces its derivative to be
negative definite is computed.

3.1.1 The backstepping method

One possible way to compute the control variable is the so called backstepping
method.

3.1 Lyapunov stability theory 39

The general idea behind this technique can be easily explained by means of an
example. Given a system with two states x1, x2 in the form:{

ẋ1 = f(x1) + gx2 x1 ∈ Rn x2 ∈ R
ẋ2 = u

(3.2)

Where f is continuous and differentiable in a set D ⊂ Rn and f(0) = 0 while
g ∈ Rn×1 constant, and u is the control variable of our system. The objective is
to stabilize the system around its equilibrium x1 = 0, x2 = 0.
To do so temporarily assume that x2 is a free design variable and to be able to
stabilize the first equation of the system with the control law:

x2 = Φ(x1), Φ(0) = 0. (3.3)

Adopting this control law the closed loop system is

ẋ1 = f(x1) + gΦ(x1). (3.4)

Assume to know a Lyapunov function V1(x1) such that:

V̇1(x1) =
dV1

dx1

(f(x1) + gΦ(x1)) = −W (x1) (3.5)

where W (x1) > 0 for any x1 ∈ D.
At this point it has to be considered that the state x2 has its own dynamic and
cannot be freely chosen, so it is possible to define the error between the actual
and the desired behaviour of x2, as follows

η = x2 − Φ(x1), Φ(0) = 0. (3.6)

The derivative of η is then

η̇ = ẋ2 − Φ̇(x1)

= u− dΦ(x1)

dx1

ẋ1

= u− dΦ(x1)

dx1

[
f(x1) + g

(
η + Φ(x1)

)]
.

(3.7)

Therefore the initial system can be reformulated as
ẋ1 = f(x1) + g

[
η + Φ(x1)

]
η̇ = u− dΦ(x1)

dx1

[
f(x1) + g

(
η + Φ(x1)

)]
.

(3.8)

It is now possible to define a new input

v = u− Φ̇(x1). (3.9)

40 Control design and tuning

It is quite evident that η̇ = v, and the system can be given the form{
ẋ1 = f(x1) + gΦ(x1) + gη

η̇ = v
(3.10)

where the origin is an asymptotically stable equilibrium for the first subsystem.
Consider the following Lyapunov function for the overall system

V2(x1, η) = V1(x1) +
1

2
η2 (3.11)

and its derivative

V̇2(x1, η) =
dV1

dx1

ẋ1 + ηη̇

=
dV1

dx1

(
f(x1) + gΦ(x1) + gη

)
+ ηv

≤ −W (x1) +
dV1

dx1

gη + ηv

(3.12)

Therefore, by imposing

v = −dV1

dx1

g − kη k > 0 (3.13)

it follows that
V̇2(x1, η) = −W (x1)− kη2 < 0, (3.14)

thus the equilibrium (x1 = 0, η = 0) is an asymptotically stable equilibrium of the
system. Recalling that η = x2−Φ(x1) and Φ(0) = 0 it follows that (x1 = 0, x2 = 0)
is an asymptotically stable equilibrium.
One can compute the expression of the control law for u that stabilizes the origin
as function of the original coordinates as

u = v + Φ̇(x1)

= −dV1

dx1

g − k
(
x2 − Φ(x1)

)
+ Φ̇(x1) +

dΦ(x1)

dx1

(
f(x1) + gx2

) (3.15)

This control law guarantees the asymptotic stability of the origin, with the asso-
ciated Lyapunov function

V2(x1, x2) = V1(x1) +
1

2

(
x2 − Φ(x1)

)2
. (3.16)

Thus it is possible to consider a state as a virtual control variable that stabilizes
the other states, then back-compute the required control law in order to force that
state to stabilize the others.
For the general formulation and a deeper insight on this technique see [8] .

3.2 Backstepping control of a UAV quadrotor 41

3.2 Backstepping control of a UAV quadrotor

In this section the derivation of the backstepping control algorithm for the UAV
platform is carried out.
In first instance the derivation of the attitude control law is explained, all the
computations are carried out considering only one degree of freedom of the sys-
tem and then the final results are extended to the others. Then the derivation of
the position control algorithm is introduced. All the procedure has been faced in
[1].

3.2.1 Derivation of the attitude control law

Starting from (2.44) and (2.34) , one can extract the equations of the attitude
dynamics: 

ṗ
q̇
ṙ

Φ̇

Θ̇

Ψ̇

 =

(
I−1
n (−ωb × Inωb +Mext)

E−1ωb

)
. (3.17)

The resulting equations of the attitude dynamics turn out to be:

ṗ = I−1
xx

[
(Iyy − Izz)qr +

∂L

∂p
p+ L

]
q̇ = I−1

yy

[
(Izz − Ixx)pr +

∂M

∂q
q +M

]
ṙ = I−1

zz

[
(Ixx − Iyy)pq +

∂N

∂r
r +N

]
.

(3.18)

Assuming that the rotation axes are decoupled (E−1 = I) one has that

Φ̇

Θ̇

Ψ̇

 =

ṗq̇
ṙ

 (3.19)

and applying to the dynamics of each Euler angle the 1-degree of freedom
approximation we can directly access the roll, pitch and yaw dynamics starting
from the angular rates dynamics expressed in body reference frame. All these

42 Control design and tuning

assumptions are widely used in the literature and lead to the model

Φ̈ = I−1
xx

[
(Iyy − Izz)Θ̇Ψ̇ +

∂L

∂p
Φ̇ + L

]
Θ̈ = I−1

yy

[
(Izz − Ixx)Φ̇Ψ̇ +

∂M

∂q
Θ̇ +M

]
Ψ̈ = I−1

zz

[
(Ixx − Iyy)Φ̇Θ̇ +

∂N

∂r
Ψ̇ +N

]
.

(3.20)

From equation (3.20) the objective is now to find a way to control the attitude
of the UAV so that it can reach any desired attitude (excluding the singularities
of the representation) in a fast and stable manner.
In order to do so a new system can be built that considers the dynamics of the
attitude errors. If a stabilizing control law for the origin of the states of this
system is achieved, it is possible to set the quadrotor at any desired attitude.
From now on all the computations are developed for one of the three coordinates
and the final results for all coordinates are shown at the end of the section.
The first step is to define the attitude error

eΦ = Φdes − Φ (3.21)

and then compute the dynamics of the chosen Lyapunov function and find an
equation for the control variable that stabilizes the function dynamics.

VΦ =
1

2
e2

Φ

V̇Φ(eΦ) = eΦ(Φ̇des − Φ̇)
(3.22)

In order to get Lyapunov stability for the origin, the derivative along the
trajectories of the Lyapunov function has to be negative definite (or at least
negative semi-definite with the only acceptable root of the function in the origin).
This can be achieved setting

Φ̇ = Φ̇des + α1eΦ

V̇Φ(eΦ) = −α1e
2
Φ

(3.23)

with α1 > 0 free control parameter to be tuned that affects the convergence to
zero of the error dynamics. The convergence of Φ̇ to the desired value that ensures
the control of the roll angle dynamics must now be studied. To do so we extend
the previous Lyapunov function including also the dynamics of the roll rate error
eΦ̇ defined as

eΦ̇ = Φ̇− Φ̇des − α1eΦ (3.24)

The extended Lyapunov function takes the form

VΦ(eΦ, eΦ̇) =
1

2
(e2

Φ + e2
Φ̇

) (3.25)

3.2 Backstepping control of a UAV quadrotor 43

and after the derivation and substituting (3.23) and (3.24)

V̇Φ(eΦ, eΦ̇) = eΦ(Φ̇des − Φ̇) + eΦ̇(Φ̈− Φ̈des − α1(Φ̇des − Φ̇))

= eΦ(Φ̇des − eΦ̇ − Φ̇des − α1eΦ) + eΦ̇[Φ̈− Φ̈des − α1(Φ̇des − eΦ̇ − Φ̇des − α1eΦ)]

= −α1e
2
Φ − eΦ̇[eΦ − Φ̈ + Φ̈des − α1eΦ̇ − α

2
1eΦ]

(3.26)
from (3.20) we get the expression of Φ̈. It is possible to assume Φ̈des = 0 since it
turns out to be only a feed-forward term, simplifying the computations:

V̇Φ(eΦ, eΦ̇) = −α1e
2
Φ − eΦ̇

{
eΦ −

[
Iyy − Izz
Ixx

Θ̇Ψ̇ +
∂L

∂p

Φ̇

Ixx
+

L

Ixx

]
+

− α1eΦ̇ − α
2
1eΦ

}
.

The computed expression of V̇Φ(eΦ, eΦ̇) can be used to back-calculate the ex-
pression of L such that Lyapunov stability is achieved. Imposing

eΦ̇

{
eΦ −

[
Iyy − Izz
Ixx

Θ̇Ψ̇ +
∂L

∂p

Φ̇

Ixx
+

L

Ixx

]
− α1eΦ̇ − α

2
1eΦ

}
> 0 (3.27)

the resulting expression for the moment L is

L = −(Iyy − Izz)Θ̇Ψ̇− ∂L

∂p
Φ̇− Ixx(1− α2

1)eΦ − Ixx(α1 + α2)eΦ̇ (3.28)

where α2 > 0 is a design parameter that affects the convergence to zero of the
roll rate error. Imposing this value of L one can get

V̇Φ(eΦ, eΦ̇) = −α1e
2
Φ − α1e

2
Φ̇

(3.29)

ensuring Lyapunov stability for the zero equilibrium of the error dynamics.
These results can be replicated for all the three degree of freedom dynamics ending
up with the following expressions for the moments

L = −(Iyy − Izz)Θ̇Ψ̇− ∂L

∂p
Φ̇− Ixx(1− α2

1)eΦ − Ixx(α1 + α2)eΦ̇

M = −(Izz − Ixx)Φ̇Ψ̇− ∂M

∂q
Θ̇− Iyy(1− α2

3)eΘ − Iyy(α3 + α4)eΘ̇

N = −(Ixx − Iyy)Φ̇Θ̇− ∂N

∂r
Ψ̇− Izz(1− α2

5)eΨ − Izz(α5 + α6)eΨ̇.

(3.30)

3.2.2 Derivation of the position control law

The derivation of the position control law has been also carried out using the
backstepping approach.

44 Control design and tuning

While the altitude control law derivation follows exactly the same path of the
attitude one, the x, y axes controls are used to compute the desired roll and pitch
angles and thus the derivation is slightly different.
The considered dynamic model can be extracted from (2.44) and (2.34) and takes
the form: 

ẍ =
(
cΦsΘcΨ + sΦsΨ

)(−T
m

)
ÿ =

(
cΦsΘsΨ − sΦcΨ

)(−T
m

)
z̈ = cΦcΘ

(−T
m

)
+ g.

(3.31)

The first step is to compute the total thrust T required to get the desired altitude.
Defining the altitude error ez and the candidate Lyapunov function Vz as

ez = zdes − z

Vz =
1

2
e2
z

(3.32)

the derivative of Vz can be easily computed as

V̇z(ez) = ez(żdes − ż). (3.33)

Following the backstepping logic the state ż can be chosen as virtual control
variable and then its value should be

żv = żdes + α7ez (3.34)

Then the extended Lyapunov function V (ez, eż) is defined as

eż = ż − żdes − α7ez

Vz(ez, eż) =
1

2
(e2
z + e2

ż).
(3.35)

It is now possible to find the total thrust to be applied in order to get the desired
equation following the same procedure used in (3.26) and imposing V̇z ≤ 0.
The resulting total thrust is then:

T =
m

CΦCΘ

[
g + (α7 + α8)eż + (α2

7 − 1)ez

]
. (3.36)

Where α7,8 > 0 are control parameters to be tuned.
Once the expression of T for the altitude control is fixed, the x, y controls aim at
computing the desired values of roll and pitch in order to direct the thrust correctly
considering that the desired yaw is set by the user. The model as presented in
(3.31) is in the form 

ẍ =
(
cΦsΘcΨ + sΦsΨ

)(−T
m

)
ÿ =

(
cΦsΘsΨ − sΦcΨ

)(−T
m

) (3.37)

3.3 Tuning of the backstepping algorithm 45

where it is possible to identify the components of the thrust in the (x, y) plane as{
ux =

(
cΦsΘcΨ + sΦsΨ

)
uy =

(
cΦsΘsΨ − sΦcΨ

) (3.38)

The idea is then to compute ux, uy using the backstepping technique and then
solve the system of two equations in two unknowns (3.38) to get the required
values of Φ and Θ. The setup is the same as before and for this reason only
the final results are presented. The y dynamic since the UAV is assumed to be
perfectly symmetric takes the same form :

ex = xdes − x

Vx =
1

2
e2
x

ẋv = ẋdes + α9ex

eẋ = ẋ− ẋdes − α9ex

Vx,ext(ex, eẋ) =
1

2
(e2
x + e2

ẋ).

(3.39)

The resulting ux, uy direction is then

ux =
m

T

[
(α9 + α10)eẋ + (α2

9 − 1)ex

]
uy =

m

T

[
(α11 + α12)eẏ + (α2

11 − 1)ey

]
.

(3.40)

Solving (3.38) with respect to Φ and Θ the values of SΦ and SΘ are obtained and
can be used to find the related angles:

SΦ =
uxTΨ − uy
SΨTΨ + CΨ

SΘ =
ux − SΦSΨ

CΦCΨ

(3.41)

3.3 Tuning of the backstepping algorithm

In this section the technique adopted to tune the control parameters (αi, i = 1..6)
is analysed. As in the previous section only the tuning of the controller for one
coordinate is presented while for all the remaining degrees of freedom the final
results are presented. Taking into account (3.30) one can split the control variable
equation into two parts: a nonlinear feed-forward action that counteracts the
gyroscopic effects on the UAV and a PD control action based on the position
error.

46 Control design and tuning

In fact we can rearrange the expression of L as

L = −(Iyy − Izz)Θ̇Ψ̇− ∂L

∂p
Φ̇︸ ︷︷ ︸

Nonlinear FF

+ L′︸︷︷︸
PD action

(3.42)

With L′ in the form

L′ = −Ixx(1− α2
1)eΦ︸ ︷︷ ︸

Proportional action

−Ixx(α1 + α2)eΦ̇︸ ︷︷ ︸
Derivative action

(3.43)

Substituting in (3.43) the expressions of eΦ, eΦ̇ in (3.23) and (3.24) we can rear-
range its expression as

L′ = −Ixx[(α2
1 − 1− α1α2 − α2

1)(Φdes − Φ)− (α1 + α2)(Φ̇des − Φ̇)]

= Ixx[(1 + α1α2)eΦ + (α1 + α2)ėΦ]

= KPΦeΦ +KDΦėΦ

KPΦ = Ixx(1 + α1α2)

KDΦ = Ixx(α1 + α2)

(3.44)

From this results it is clear that one can deal with the control tuning problem as
a PD control tuning task assuming the perfect compensation of the feed-forward
terms. The aim of the procedure outlined in the following is to find optimal values
for α1, α2 exploiting the fact that the analytical relation between them and their
equivalent effect in a linear controller is available.
To do so the structured mixed sensitivity H∞ technique has been adopted ap-
plying it to the system linearised around each rotation axes. The controller is
thus parametrised as function of α1, α2 leaving the solution of the nonlinear rela-
tion between α1, α2 and KPΦ, KDΦ to the optimization algorithm. The linearised
system takes the form 

Φ̈ = I−1
xx L

Θ̈ = I−1
yy M

Ψ̈ = I−1
zz N

(3.45)

which can be rewritten as 

φ = I−1
xx

[
1

s2

]
L

θ = I−1
yy

[
1

s2

]
M

ψ = I−1
zz

[
1

s2

]
N .

(3.46)

3.3 Tuning of the backstepping algorithm 47

The starting point is then a double integrator since the stability derivatives
are assumed to be perfectly compensated by the feedforward. In order to get a
more consistent model and a more robust tuning (3.46) has been cascaded with
the model of the actuators identified in [4] and analysed in 4.1.2 and a delay
of 0.02[s] representing the sensors and the attitude determination system. The
resulting closed-loop system, the control law, the sensors and actuators, the lin-
earised quadrotor has been fed to the Systune function provided by the Matlab
environment.

3.3.1 Shaping functions

One of the key aspects of the structured H∞ tuning technique is the choice of the
shaping functions to be fed to the optimization algorithm in order to achieve the
tuning of the control parameters.
The objective of mixed-sensitivity synthesis is to keep the the H∞-norm of the
product between the sensitivity, complementary sensitivity and control sensitivity
functions of the system with the shaping functions as close as possible to 1, that
is

||WS(s)S(s)||∞ ≤ 1

||WT (s)T (s)||∞ ≤ 1

||WK(s)K(s)||∞ ≤ 1.

(3.47)

Thus each weight has a specific meaning and has to be chosen following some
guidelines that have been derived from [10] .

• WS(s) weights the sensitivity of the system to external disturbances on the
output. Namely it is the transfer function from disturbance on the output
to the output itself. It has to be chosen high at low frequency in order to
get a strong attenuation of the disturbances in the bandwidth of interest
(below the frequency ωB) and around 0dB at high frequency. The optimal
value of 0dB at high frequency usually is not a good choice since there is
quite often a resonance peak around ωB, thus choosing WS(ωB) = 0 makes
the algorithm try to push the resonance down and so it strongly limits the
overall performances of the resulting control, however the high frequency
value must be kept low in order to damp the dominant pole of the system.
The theory, see [8], suggests that the overall crossover frequency ωc of the
controlled system is higher that ωB. The inverse of the chosen function is
shown in Figure 3.2 and guarantees ωc ≥ 3 [rad/s].

• WT (s) weights the complementary sensitivity function, that affects the ro-
bustness properties of the system. Since the uncertainties on the model
parameters are low due to various identification campaigns (see [4] and [3])
this function has been used in order to enforce a consistent upper bound to

48 Control design and tuning

Figure 3.2: Magnitude of the frequency response of inverse of the chosen WS(s)
function

the ωc since ωB ≤ ωc ≤ ωBT with ωBT the crossover frequency of WT (s) .
Since the complementary sensitivity function is 1 − S(s) the magnitude of
WT (jω) will be around 0dB at low frequency, decreases for higher frequen-
cies and has a cutting frequency ωBT = 7 [rad/s]as one can deduce from
Figure 3.3 in which the magnitude of the frequency response of the inverse
of WT (s) is shown.

• WK(s) weights the control sensitivity function K(s). The K(s) function can
be seen as the transfer function

– from reference signal to control action;

– from disturbance on the output to control action;

– from measurement noise to control action.

In all these cases, it is desirable to keep the magnitude of the control sensi-
tivity frequency response as small as possible outside the bandwidth of the
system.
WK(s) have also to keep into account physical restrictions of the system,
that is the bandwidth of the actuators and the maximum deliverable mo-
ments. For all these reasons the selected weighting function has a cutting
frequency of ωBK = 18.09[rad/s] and a shape that can be deduced from the
magnitude of the frequency response of its inverse shown in Figure 3.4 .

3.3 Tuning of the backstepping algorithm 49

Figure 3.3: Magnitude of the frequency response of inverse of the chosen WT (s)
function

Figure 3.4: Magnitude of the frequency response of inverse of the chosen WK(s)
function

50 Control design and tuning

Table 3.1: Outer loop shaping functions parameters, backstepping

ωB[rad/s] ωBT [rad/s] ωBK [rad/s]

0.1 0.2 18.09

Once established all these requirements, the shaping functions have been built
up using first order functions and have been used for the tuning of each of the
attitude controllers.
The same approach has been adopted for the tuning of the position control loop,
following exactly the same steps and considering the inner loop to be a unitary
gain since quite faster then the outer one. The inverses of the chosen weighting
functions are shown in Figure 3.5 with the characteristics in Table 3.1

Figure 3.5: Magnitude of the frequency response of the inverse outer loop weight-
ing functions, backstepping

3.3.2 Tuning results

The resulting tuning of the parameters for the inner and outer loops is shown in
Tables 3.2, 3.3 respectively.
Figures 3.6, 3.7 show the results of the H∞ tuning procedure for the pitch and
yaw dynamics comparing the shaping functions presented before with the obtained
S(s), T (s), K(s) of the tuned systems. It is easy to see that the tuning procedure
has led to good tuning results, at least with the linearised system. In principle it is

3.3 Tuning of the backstepping algorithm 51

Table 3.2: Inner loop tuned parameters, backstepping

α1 6.271
α2 6.271
α3 6.271
α4 6.271
α5 5.716
α6 5.716

Table 3.3: Outer loop tuned parameters, backstepping

α7 6.983
α8 0.010
α9 0.014
α10 7.88
α11 0.014
α12 7.88

also possible to get a more aggressive control but in order to get some more phase
margin since the system itself has quite strong approximations on the dynamics,
a smoother control action has been preferred.

Figure 3.6: Comparison between the inverse of the weighting functions and the
obtained results: pitch axis

52 Control design and tuning

Figure 3.7: Comparison between the inverse of the weighting functions and the
obtained results: yaw axis

The same consideration can be made also for the results obtained on the
position dynamics whose results are presented in Figures 3.8, 3.9 respectively.

3.4 Integral backstepping control

The backstepping procedure guarantees the stability of the system but does not
guarantee zero steady state error, thus in order to get a more robust and precise
control the classic backstepping control is now extended with an integral action
on the attitude loop. This control architecture is called Integral Backstepping and
its formulation is derived quite easily from the backstepping one (See [1]).

3.4.1 Derivation of the attitude control law

Starting from (3.20) as in the pure backstepping case the error dynamics are
considered. As in the previous case all the computations are developed for one
coordinate only and then the final results for each degree of freedom are shown.
In addition to the backstepping, in the integral backstepping case the candidate
Lyapunov function contains a term that weights the integral of the error, defining

3.4 Integral backstepping control 53

Figure 3.8: Comparison between the inverse of the weighting functions and the
obtained results: x axis

Figure 3.9: Comparison between the inverse of the weighting functions and the
obtained results: z axis

54 Control design and tuning

the attitude error eΦ and its integral EΦ it takes the form

eΦ = Φdes − Φ

EΦ =

∫
eΦ

VΦ =
1

2
(e2

Φ + λΦE
2
Φ)

(3.48)

with λΦ parameter to be tuned.
The virtual control Φ̇V is then computed in order to keep the derivative of V̇Φ < 0

V̇Φ(eΦ, EΦ) = eΦ(Φ̇des − Φ̇ + λΦEΦ)

Φ̇V = Φ̇des + λΦEΦ + α1eΦ.
(3.49)

The next step is to extend the Lyapunov function in order to consider that our
control variable is not the virtual control one, leading to an error that must
converge to zero:

VΦ(eΦ, eΦ̇, EΦ) =
1

2
(e2

Φ + e2
Φ̇

+ λΦE
2
Φ)

eΦ̇ = Φ̇V − Φ̇ = Φ̇des + λΦEΦ + α1eΦ − Φ̇

Φ̇ = Φ̇des + λΦEΦ + α1eΦ − eΦ̇.

(3.50)

The derivative of this extended Lyapunov function is then

V̇Φ(eΦ, eΦ̇, EΦ) = eΦėΦ + λΦEΦeΦ + eΦ̇ėΦ̇

ėΦ = Φ̇des − Φ̇ = eΦ̇ − λΦEΦ − α1eΦ

ėΦ̇ = α1(eΦ̇ − λΦEΦ − α1eΦ) + λΦeΦ + Φ̈des − Φ̈.

(3.51)

Substituting all the terms it is possible to get:

V̇Φ(eΦ, eΦ̇, EΦ) = eΦ(eΦ̇ − λΦEΦ − α1eΦ) + λΦEΦeΦ

+ eΦ̇[α1(eΦ̇ − λΦEΦ − α1eΦ) + λΦeΦ + Φ̈des − Φ̈].
(3.52)

Imposing V̇Φ = −α1e
2
Φ−α2e

2
Φ̇

one can extract the required value of the acceleration
that is:

Φ̈ = (1 + λΦ − α2
1)eΦ + (α1 + α2)eΦ̇ − λΦα1EΦ + Φ̈des. (3.53)

Then substituting the expression of the angular acceleration from (3.20) and as-
suming Φ̈des = Θ̈des = Ψ̈des = 0 the control moments are obtained:

L = −(Iyy − Izz)Θ̇Ψ̇− ∂L

∂p
Φ̇ + Ixx[(1 + λΦ − α2

1)eΦ + (α1 + α2)eΦ̇ − λΦα1EΦ]

M = −(Izz − Ixx)Φ̇Ψ̇− ∂M

∂q
Θ̇ + Iyy[(1 + λΘ − α2

3)eΘ + (α3 + α4)eΘ̇ − λΘα3EΘ]

N = −(Ixx − Iyy)Φ̇Θ̇− ∂N

∂r
Ψ̇ + Izz[(1 + λΨ − α2

5)eΨ + (α5 + α6)eΨ̇ − λΨα5EΨ].

(3.54)

3.4 Integral backstepping control 55

Table 3.4: Outer loop shaping functions parameters, integral backstepping

ωB[rad/s] ωBT [rad/s] ωBK [rad/s]

4.5 6.5 18.09

Table 3.5: Outer loop tuned parameters, integral backstepping

α1 7.3033
α2 7.3007
λΦ 0.010
α3 7.3033
α4 7.3007
λΘ 0.010
α5 2.0960
α6 6.3184
λΦ 20.613

3.4.2 Tuning of the integral backstepping control law

Like the previous case the control expression can be divided into two parts: a
nonlinear feedforward that compensates the gyroscopic effects and the stability
derivatives, and a control action that depends on the errors and the control pa-
rameters to be tuned.
Expanding eΦ̇ as in the previous case the expression turns out to be a PID con-
troller:

L = −(Iyy−Izz)Θ̇Ψ̇− ∂L
∂p

Φ̇+Ixx[λΦα2EΦ+(1+λΦ−α1α2)eΦ+(α1+α2)ėΦ] (3.55)

So, as in the classical backstepping architecture we can consider the control action
as a PID with gains that depend on the Lyapunov parameters:

KI = IxxλΦα2

KP = Ixx(1 + λΦ − α1α2)

KD = Ixx(α1 + α2)

(3.56)

The so obtained control law has been tuned using the H∞ technique described in
section 3.3 using the shaping functions whose parameters are described in Table
3.4 and depicted in Figure 3.10. Also in this case the Systune routine has been
adopted and leads to a satisfactory tuning as can be seen in Figure 3.11 regarding
the pitch dynamics and in Figure 3.12 for the yaw one.

The resulting Lyapunov parameters that have been found in this way are
summarized in Table 3.5. It is quite evident that with respect to the pure back-
stepping, in this case ωB has been set to 4.5 [rad/s], that is quite faster, and as a

56 Control design and tuning

Figure 3.10: Magnitude of the frequency response of the inverse shaping functions
for integral backstepping control tuning

Figure 3.11: Results of the H∞ tuning for the integral backstepping controller:
pitch axis

3.5 Second formulation of integral backstepping 57

Figure 3.12: Results of the H∞ tuning for the integral backstepping controller:
yaw axis

result the value of the gains increases.

3.5 Second formulation of integral backstepping

At the beginning of the chapter the assumption E ≈ I has been introduced, that
allows to consider the effect of the body angular rate affecting only one coordinate
in NED reference frame.
This strong assumption limits the effectiveness of the control to certain range of
angles and can lead to unstable behaviours of linear controllers in the case of very
aggressive manoeuvres. In order to get a better control action, the previous as-
sumption has been dropped and a new controller based the integral backstepping
technique has been developed.

3.5.1 Derivation of the attitude control law

The idea behind this modification of the integral backstepping is quite simple, the
small angle approximation that lead to E ≈ I is dropped, and so while controlling
the attitude error dynamics the control action is considered on the body angular
rate ωb and not directly on the attitude angles rates.

58 Control design and tuning

The first steps and the derivation is analogous to the integral backstepping one
shown in equations (3.48) and (3.49), from those expressions the virtual control
ΦV is computed

Φ̇V = Φ̇des + λΦEΦ + α1eΦ. (3.57)

Now the convergence of the extended Lyapunov function has to be studied. As in
equation (3.50) the error on the angular rate has to be defined:

eΦ̇ = Φ̇V − Φ̇ = Φ̇des + λΦEΦ + α1eΦ − Φ̇

VΦ(eΦ, eΦ̇, EΦ) =
1

2
(e2

Φ + e2
Φ̇

+ λΦE
2
Φ)

V̇Φ(eΦ, eΦ̇, EΦ) = eΦėΦ + λΦEΦeΦ + eΦ̇ėΦ̇

(3.58)

and after some computation the expression of V̇Φ can be obtained in the form

V̇Φ = −α1e
2
Φ + eΦ̇

(
eΦ + λΦeΦ − λΦα1EΦ − α2

1eΦ + α1eΦ̇ − Φ̈

)
. (3.59)

The expression of Φ̈ can be substituted taking into account thatΦ̇

Θ̇

Ψ̇

 = E−1

pq
r


Φ̈

Θ̈

Ψ̈

 = Ė−1

pq
r

+ E−1

ṗq̇
ṙ


(3.60)

and imposing V̇Φ = −α1e
2
Φ−α2e

2
Φ̇

it is possible to work out the following equation
in three unknowns

eΦ + λΦeΦ − λΦα1EΦ − α2
1eΦ + α1eΦ̇ + α2eΦ̇ = Ė−1

(1,:)

pq
r

+ E−1
(1,:)

ṗq̇
ṙ

 , (3.61)

where Ė−1
(1,:), E

−1
(1,:) are the first rows of the two matrices. It is quite clear that

in this case the control action can be computed only taking into account all the
three coordinates, intuitively because this algorithm takes into account also the
coupling between the axes. For all the other coordinates the computation until
this point are the same and the resulting system can take the form

E−1

ṗq̇
ṙ

 = K1

EΦ

EΘ

EΨ

+K2

eΦ

eΘ

eΨ

+K3

ėΦ

ėΘ

ėΨ

− Ė−1

pq
r


K1 = diag(λΦα1, λΘα3, λΨα5);

K2 = diag((1 + λΦ − α2
1), (1 + λΘ − α2

3), (1 + λΨ − α2
5));

K1 = diag((α1 + α2), (α3 + α4), (α5 + α6));

(3.62)

3.6 Geometric control 59

Table 3.6: Second formulation of integral backstepping, control parameters

α1 7
α2 12
λΦ 8
α3 7
α4 12
λΘ 8
α5 10
α6 13
λΦ 5

If the dynamics of p, q, r from (3.18) are substituted in (3.62) the moments can
be extracted and the resulting control takes the form:LM

N

 = E

[
K1Eα +K2eα +K3eα̇

]
−
[
EĖ−1 +Dstab

]pq
r

−G (3.63)

With

Dstab =

∂L∂p 0 0

0 ∂M
∂q

0

0 0 ∂N
∂r

G =

I−1
xx

[
(Iyy − Izz)qr

I−1
yy

[
(Izz − Ixx)pr

I−1
zz

[
(Ixx − Iyy)pq

 . (3.64)

It can be noticed that the structure of the control variable is consistent with what
can be expected from a control law that takes into account the rotation between
body and inertial frame: the control action computed in inertial reference frame
is mapped in body frame while the gyroscopic effects and the stability derivatives
are directly compensated.
The H∞ tuning technique has not been adopted for the tuning of this control since
the high nonlinearities introduced makes it ineffective. In this case the parameter
have been chosen via subsequent refinements trying to get the best result. The
chosen values are shown in Table 3.6.
This kind of control, even if it is mathematically more adherent to the nonlinear

quadrotor model, nevertheless is subject to the limitations imposed by the Euler
angles parametrization, thus it is infeasible when Θ = ±90◦. In order to avoid the
singularities intrinsic in the angle parametrization a geometric control architecture
has been studied, both for the position and the attitude control.

3.6 Geometric control

In the previous developments the Euler angle parametrization of the special or-
thogonal group has been extensively adopted. This parametrization allows a

60 Control design and tuning

more intuitive design of the controller, but is prone to singularity: every mini-
mal parametrization is never further away than 90◦ from a singular configuration.
In order to avoid this singularities and synthesize a controller that can manage any
orientation, the parametrization of the attitude can be dropped and the design
can be carried out working in the Special Orthogonal Group SO(3) with the rota-
tion matrix R. At the price of a quite mathematically intensive development, the
resulting control law has a simple expression and it is computationally tractable
while offering a large operating region..
This kind of control has been previously developed in [7], [6] and [5]. The control
law has been derived from [5] by assuming that the thrust vectoring capability is
locked, in which case the co-planar UAVs configuration is recovered.

3.6.1 Model and definition of the errors

The starting point of the control design is an enlarged system with respect to
the one presented in (2.44) that include also the dynamic of the rotation matrix
R. The resulting system represented in inertial frame with the centre of mass
coincident with the origin of the body frame is then

ẋ = v

Ṙ = Rω̂

mv̇ = −mge3 +RFprops

Inω̇ = −ω × (Inω) +Mprops.

(3.65)

Where
v = RVb ∈ R3 (3.66)

represents the inertial velocity. In this way the translational model evolves in
the inertial frame, whereas the rotational motion in the body frame. This choice
breaks the Special Euclidean group SE(3) structure but it allows to obtain a
simpler expression of the final controller.
If a smooth tracking command Gd(t) =

(
xd(t), Rd(t)

)
∈ SE(3) is assigned as

a function of time, the corresponding desired velocity command is computed as
ξd(t) =

(
vd, ωd

)
with ωd = (RT

d Ṙd)
∨. Where [.]∨ is the mapping from SO(3) to R3

while vd and ωd are the desired linear and angular velocities namely. From this
set-points and the (3.65) it is possible to define the linear position and velocity
error in the inertial frame as:

ex = x− xd
ev = v − vd

(3.67)

The attitude error is defined as the left error, that allows to get a simpler control
expression

Re = RRT
d ∈ SO(3) (3.68)

3.6 Geometric control 61

This expression of the left attitude error represents the transport map τl that is
used to compare the desired tangent vector Ṙd in the tangent space of the current
orientation, that is:

Ṙ− τl
(
Ṙd

)
= Ṙ−ReṘd = R(ω̂ − ω̂d) (3.69)

and the expression of the left velocity error is straightforwardly derived as

eω = ω − ωd (3.70)

Since the desired angular velocity ωd in the non-tilting quadrotor case is directly
computed by the controller and not imposed by the user, from now on it will be
referred as ωc, keeping the notation used in [5] . For the same reason, also Rd is
denoted as Rc from now on , since only the yaw angle can be set. Finally, the
navigation error function Ψ has been defined as

Ψ =
1

2

(
KR(I −Re)

)
KR = diag(kR1, kR2, kR3)

(3.71)

And the left trivialised derivative of Ψ can be expressed as

T ∗I LRe(dReΨ) = skew(KRRe)
∨ = eR. (3.72)

Once the attitude tracking errors are defined, it is possible to set up a control
architecture for the position and attitude dynamics.

3.6.2 Control law

The position control law computes the forces along each axis in order to reach
the desired position. Of course in the non-titling UAV case, the force can be
only directed in the opposite direction of the z body axis e3. The main idea is
to exploit the fully actuated rotational motion in order to orient the thrust axis
direction along the direction of the force required to track the position trajectory.
This is the only feasible approach due to the inherent underactuation of co-planar
platforms [9]. Therefore, it is not possible to follow a decoupled attitude and
position motion but only the rotation around the third body axis can be freely
assigned, as shown next. In formulas

fc = c(Ψ)||fdc ||e3

fdc = −Kxex −Kvev −mge3 +mv̇d

c(Ψ) =
ΨMax −Ψ

ΨMax

(3.73)

Where Kx, Kv are diagonal matrices to be tuned and a feed-forward compensation
of the weight and inertial forces can be noticed. c(Ψ) is a weighting function for

62 Control design and tuning

the required control action, it is equal to one when the quardotor is correctly
oriented and thus the thrust generated by the propellers pushes the UAV in the
correct direction, while when the orientation is different from the desired one, the
attitude control is preferred and so the thrust is scaled in order to increase the
position error pushing the quadrotor along a wrong direction.
Once defined the desired force, it can also be computed a desired attitude in order
to have the thrust directed in the right direction: the z body axis has to be in the
same direction of the desired force, while the x and y ones should be consistently
oriented in order to get the desired yaw angle ψd. The Rc matrix is then built up
assembling all the column vectors created from these requirements:

bd =

cosψd
sinψd

0

 (3.74)

Rc =
[
bc1 bc2 bc3

]
(3.75)

bc3 =
fdc
||fdc ||

(3.76)

bc2 =
bc3 × bd
||bc3 × bd||

(3.77)

bc1 = bc2 × bc3 (3.78)

The desired orientation of the UAV can be fed to an attitude controller in
order to compute the required control torques.
It is possible to consider the attitude control law as a PD controller plus some
feed-forward terms, since the proportional action is included in the computation
of eR [2]

τc = −RT
c eR −Kωeω + Inω̇c + ωc × (Inω). (3.79)

In this case the feed-forward terms have a not-negligible weight and have to be
computed in real time by the controller since the matrix Rc is computed on board.
As stated before

ωc = (RT
c Ṙc)

∨

ω̇c = (RT
c R̈c − ω̂c)∨

(3.80)

so the first and second derivative of the computed desired attitude have to be
worked out

Ṙc =
[
ḃc1 ḃc2 ḃc3

]
. (3.81)

The three columns are the derivatives of the previously defined vectors and so an
analytical expression for each of them can be obtained by derivation. The first
term to be computed is the third column as before, where the effect of the control

3.6 Geometric control 63

action affects the value of the derived vector

ḃc3 =
ḟdc
||fdc ||

− (fd,Tc × ḟdc)
fdc
||fdc ||3

ḟdc =
KxKv

m
ex +

(
K2
v

m
−Kx

)
ev −

Kv

m
Df +mv̈d

Df = Rfc − fdc

(3.82)

From the third vector the second column can be computed recalling (3.77)

ḃc2 =
ċ

||c||
− (cT × ċ) c

||c||3

c = bc3 × bd
ċ = ḃc3 × bd + bc3 × ḃd

ḃd =

−ψ̇d sinψd
ψ̇d cosψd

0


(3.83)

and as last step deriving (3.78)

ḃc1 = ḃc2 × bc3 + bc2 × ḃc3. (3.84)

The second derivative of the rotation matrix is used for the computation of the
inertial effects compensation and its the mathematical development follows the
same step just shown

R̈c =
[
b̈c1 b̈c2 b̈c3

]
(3.85)

b̈c3 =
f̈dc
||fdc ||

− 2(fd,Tc ḟdc)
ḟdc
||fdc ||3

− (||ḟdc ||2 + (fd,Tc f̈dc))
fdc
||fdc ||3

+ 3(fd,Tc f̈dc)2 fdc
||fdc ||5

(3.86)

b̈c2 =
c̈

||c||
− 2(cT ċ)

ċ

||c||3
+ 3(cT c̈)2 c

||c||5
(3.87)

b̈c1 = b̈c2 × bc3 + 2(ḃc2 × ḃc3) + bc2 × b̈c3. (3.88)

Where

f̈dc =
KxKv

m
ev +

(
K2
v

m
−Kx

)(
− Kx

m
ex −

Kv

m
ev +

Df

m

)
− Kv

m
Ḋf (3.89)

Ḋf = c(Ψ)Re(eω)∧fdc + c(Ψ)Re(Rceω)∧fdc − eRRc
eω

ΨMax

Ref
d
c + c(Ψ)Reḟ

d
c − ḟdc

(3.90)

c̈ = b̈c3 × bd + 2(ḃc3 × ḃd) + bc3 × b̈d (3.91)

(3.92)

64 Control design and tuning

Table 3.7: Position control parameters, geometric control law

Kx Ky Kz Kv,x Kv,y Kv,z

3 3 3 2 2 2

Table 3.8: Attitude control parameters, geometric control law

KR1 KR2 KR3 Kw1 Kw2 Kw3

1 1 1 0.1 0.1 0.1

Using this control approach it is also possible to compute and an estimate for the
region of attraction of the equilibrium (ex, ev, Re, eω) = (0, 0, I, 0), see [5].
The tuning of this control law has been tackled manually by a trial and error
procedure because it has been impossible to set an optimization problem like the
ones seen before. For the sake of simplicity, the diagonal terms of each control
parameters matrix have been assumed to be equal and the resulting control tuning
is shown in Tables 3.7, 3.8 setting the maximum value of Ψmax = 20.

Chapter 4

Simulation results

In this chapter the simulated results obtained using the previously developed non-
linear control laws are presented.
A first introduction to the Simulink simulator built in the FLYART laboratory is
provided at the beginning. Then all the presented control laws are tested.
Each simulation campaign consists in a test on the attitude loop only and then
in the cascade of the attitude control with the position control. A comparison
between the results of the different architectures is proposed that highlights the
results achieved by each control law.
Since it is not possible to define a cutting frequency for a nonlinear system, the
attitude control tracking capabilities have been tested on a step response in first
issue and then on a sinusoidal setpoint.
In a similar way, the position tracking has been validated using an 8-shape tra-
jectory.

4.1 UAV simulator

The simulator adopted is the one described in [4] with some minor modifications
and implemented using the Simulink environment as shown in Figure 4.1.

4.1.1 Quadrotor and sensors blocks

The main block of the simulator is of course the quadrotor model. It is based on
the equations of (2.44) plus some additions that can be seen in Figure 4.2 . In
fact it has been modified in order to consider the fact that in the real world there
is a lower limit, the Earth surface, that prevents the UAV to fall at time zero,
when the actuators are not delivering enough thrust in order to keep it in flight.

The green blocks in Figure 4.1 are the sensors models. Since there is no infor-
mation on the sensors dynamics and noises, they are modelled as simple delays of
0.01[s] in the transmission of the state signals from the quadrotor to the control

66 Simulation results

Figure 4.1: UAV simulator implemented in Simulink

Figure 4.2: Simulator of the UAV dynamics

4.1 UAV simulator 67

system.
The measured signals are sent to the controllers that computes the required thrust
and moments in order to follow the desired trajectory. These control signals are
sent to the Mixer that inverting the relation derived in (2.37) computes the de-
sired angular rates for the actuators.

4.1.2 Actuators model

The brushless DC motors dynamics has been identified in [4].
It forces a limit on the performance of the control system and have to be considered
both in tuning and in validation phases. The identified model is a first order low
pass filter that relates the throttle computed by the FCU using the mixer and the
obtained rotational speed. The transfer function is then

G(s) =
Ω(s)

Th(s)
=

5.2

1 + s(92× 10−3)
. (4.1)

In Figure 4.3 it is possible to see that the actuators bandwidth is approximately
equal to 55.5[rad/s].

Figure 4.3: Bode magnitude plot of the frequency response of the actuators trans-
fer function

68 Simulation results

4.2 Backstepping simulations

4.2.1 Attitude control simulation

The simulations for the attitude control law have been carried out closing the
attitude loop only. In order to do this a constant thrust of magnitude equal to
the UAV weight has been imposed to the actuators and the controller has been
in charge of the required moments computation.
The result of the first simulation in shown in Figure 4.4 , a step of 30◦ on the
pitch angle has been required while roll and yaw desired values are set to zero. It
is possible to see that the system reaches 90% of the desired value in about 0.5[s]
and then to the final value in about 1[s]. This result is consistent with the tuning
since the required bandwidth for the system was in the range (0.48-1.1)Hz.
The same simulation settings can be used to test the yaw control law. The related
results are proposed in Figure 4.5 and the resulting dynamic is slower than the
pitch one since the inertia around the Z axis is bigger than the other two.

Figure 4.4: Response of the UAV to a 30° step on the desired pitch, backstepping

A second simulation campaign has been carried out applying a sinusoidal in-
put with 30◦ amplitude at 2[rad/s] frequency.
In Figures 4.6 and 4.7 it is possible to see the response of the system. It is clear
that there is a delay of about 0.2[sec] that strongly affects the performance of the
system due to the delay in sensors and the dynamics of the actuators.

4.2 Backstepping simulations 69

Figure 4.5: Response of the UAV to a 30° step on the desired yaw, backstepping

In Figure 4.8 the errors in yaw and pitch tracking related to the presented simu-
lations are shown. Since the frequency of the sine wave is at 2[rad/s] the result is
consistent with the model because the linearised system has been tuned for a cut
off frequency of about 3[rad/s] thus the attenuation of the signal in the actual
system starts a bit before.

Last simulation in figure 4.9 shows that the system has quite good rejection
of the disturbances caused by the effects of the coupling between axes, excited
requiring a 2[rad/s], 10° sinusoid on both yaw and pitch. In fact both the dynamics
stays stable and the error (Figure 4.10) is limited, thus it has been possible to
close the outer position loop and the overall results are presented in the following.
In any case the performance of the system can be improved and for this reason
the implementation of an integral backstepping architecture has been studied.

4.2.2 Position control simulation

In this paragraph the results obtained cascading the attitude control law with the
position backstepping control law are shown.
In order to test effectively the control laws it has been decided to feed the system
with an 8-shape trajectory, this kind of path has the characteristic to excite all
the degree of freedom of the quadrotor while maintaining continuous derivatives.

70 Simulation results

Figure 4.6: Response of the UAV to a 30° sinusoidal variation of the pitch setpoint
at 2 [rad/s], backstepping

Figure 4.7: Response of the UAV to a 30° sinusoidal variation of the yaw setpoint
at 2 [rad/s], backstepping

4.2 Backstepping simulations 71

Figure 4.8: Pitch and yaw tracking errors, backstepping

Figure 4.9: Attitude response on a sinusoidal reference on both pitch and yaw,
backstepping

72 Simulation results

Figure 4.10: Attitude error on a sinusoidal reference on both pitch and yaw,
backstepping

In figure 4.11 it is possible to see the response on the x, y axes with a frequency
of the 8-shape equal to 1.35 [rad/s] . On those axes the results are clearly satis-
factory, with small overshoots and an almost perfect tracking.

Some different considerations can be done regarding the behaviour of the z
axis dynamics in Figure 4.12.

It can be noticed that the response is quite noisy, this fact is due to the fact
that the required rate of the 8-trajectory push the quadrotor to its limits.
Nonetheless the control works fine as it can be seen from the plot of tracking
errors in Figure 4.13.

4.3 Integral backstepping simulations

4.3.1 Attitude control law simulation

The integral backstepping control law has been developed in order to gain the
robustness properties given by the integral action and to bring the steady state
error to zero.
From Figure 4.14 the improvement on the step response performances of about
one tenth of second can be noticed.

On the other hand the gain in robustness and the zero steady state error makes

4.3 Integral backstepping simulations 73

Figure 4.11: Response of the x, y coordinate to an 8-shape trajectory, backstep-
ping

Figure 4.12: Response of the z coordinate to an 8-shape trajectory, backstepping

74 Simulation results

Figure 4.13: Tracking error of the response to an 8-shape trajectory, backstepping

Figure 4.14: Response of the UAV to a 30◦ step on the desired pitch, integral
backstepping

4.3 Integral backstepping simulations 75

the yaw control more aggressive once tuned with the H∞ causing an overshoot on
the step response as can be seen in Figure 4.15 This sensibility of the system to
step inputs suggests the choice of feeding the system with smooth setpoints.
The overshoot shown is anyway fully acceptable for the system under control since
a 30◦ step on any coordinate is to consider aggressive and unlikely to happen.

Figure 4.15: Response of the UAV to a 30° step on the desired yaw, integral
backstepping

The responses to sinusoidal inputs of 30° amplitude at 2[rad/s] on the pitch
and yaw setpoints are shown in Figure 4.16, 4.17. Consistently with the adopted
tuning, the bandwidth of the linearised system is around 5 [rad/s] and thus the
resulting response is slightly damped. As for the step response, the yaw control law
results to be quite aggressive. However, as said before, it is completely acceptable.

Analysing the behaviour of the error due to the sinusoidal input in Figure 4.18,
it can be seen that the improved speed of the response and the gained robustness
have as counterpart a significant increment of the error.

4.3.2 Position control law simulation

An 8-shape at 1.35 [rad/s] has been fed to the system as setpoint in order to
get a some comparable results between the pure backstepping control law and

76 Simulation results

Figure 4.16: Response of the UAV to a sinusoid of amplitude 30° on the desired
pitch at 2[rad/s], integral backstepping

Figure 4.17: Response of the UAV to a sinusoid of amplitude 30° on the desired
yaw at 2[rad/s], integral backstepping

4.4 Simulations of integral backstepping second formulation 77

Figure 4.18: Pitch and yaw tracking errors due to a sinusoid of amplitude 30° at
2[rad/s] respectively on pitch and yaw, integral backstepping

the integral backstepping one. Figure 4.19 shows the obtained results and it is
possible to see comparing the errors shown in Figure 4.20 with the one in 4.13 that
the altitude error has been reduced. This is possible because the disturbance on
the attitude can be ascribed to the effect of the coupling between the yaw and the
other attitude coordinates, thus a better control action on the attitude improves
also the performances of the position control loop.

4.4 Simulations of integral backstepping second

formulation

4.4.1 Attitude control law simulation

The response to a step on pitch and yaw setpoints is quite satisfactory as one can
see in Figure 4.21, 4.22. The system has a slower response than the other seen
but it has been considered acceptable since the improvement got on the position
control.

The response to a sinusoidal reference shown in Figures 4.23, 4.24 is on the
contrary way better than the one obtained with the integral backstepping, with a
reduction of the attitude error up to 40% as it can be noticed from Figure 4.25.
This fact is a clear example of the possibilities of this control law to improve the

78 Simulation results

Figure 4.19: Position of the UAV quadrotor during an 8-shaped trajectory at
1.35 [rad/s], integral backstepping

Figure 4.20: Tracking error of the response to an 8-shape trajectory, integral
backstepping

4.4 Simulations of integral backstepping second formulation 79

Figure 4.21: Response of the UAV to a 30° step on the desired pitch,second
formulation of the integral backstepping

Figure 4.22: Response of the UAV to a 30° step on the desired yaw, second
formulation of the integral backstepping

80 Simulation results

behaviour of the overall system.

Figure 4.23: Response of the UAV to a 30° amplitude, 2 [rad/s] sinusoidal wave
as desired pitch, second formulation of the integral backstepping

4.4.2 Position control law simulation

The better performances of the attitude control affects also the position tracking
performances. In Figure 4.26 the results of the simulation of an 8-shaped tra-
jectory. While the overshoots are present like in all other simulations results, in
this case the overall performances are better than in the previous controllers as
it can be expected from this more complex control law. This is clear looking at
the tracking errors plotted in Figure 4.27 where a better tracking on both y and
z axes can be noticed.

4.5 Geometric control law simulations

For the geometric control law simulations it has been decided not to split the
position and attitude control laws but to handle them as a whole system.
This choice is mainly caused by the formulation of the control law that does not
allows a clear distinction between an inner attitude control loop and an outer
position loop. For this reason the presented results refer to a simulation of the

4.5 Geometric control law simulations 81

Figure 4.24: Response of the UAV to a 30° amplitude, 2 [rad/s] sinusoidal wave
as desired yaw, second formulation of the integral backstepping

quadrotor following an 8-shaped path with both the position and attitude controls
active.

4.5.1 Simulation results

The geometric control turns out to be the a very reliable control, with small errors
and good tracking capabilities even if there is no integral action implemented on
it. On the other hand, the overall bandwidth is smaller than the backstepping
based controllers presented before, since the control law manage to follow trajec-
tories only up to a frequency of the 8-shape of 0.5 [rad/s].

The trajectory tracking is presented in Figure 4.28. In can be seen that the
altitude control works perfectly fine and the overall errors are far smaller than the
ones observed in the other controllers as it is possible to see in Figure 4.29.

On the attitude control loop side, the performances are really satisfactory,
with a small error even in the case of a quite nervous setpoint as shown in Figures
4.30, 4.31, 4.32. In this case as one can see from the plots of the attitude errors
in Figure 4.33, compared with the ones shown before in 4.25 and 4.18 that are
related to more regular setpoints, that the overall disturbance rejection is very
effective.

82 Simulation results

Figure 4.25: Pitch and yaw tracking errors due to a sinusoid of amplitude 30°
at 2[rad/s] respectively on pitch and yaw, second formulation of the integral
backstepping

4.5 Geometric control law simulations 83

Figure 4.26: Position of the UAV quadrotor during an 8-shaped trajectory at
1.35 [rad/s], second formulation of the integral backstepping

Figure 4.27: Tracking error of the response to an 8-shape trajectory, second for-
mulation of the integral backstepping

84 Simulation results

Figure 4.28: Position of the UAV quadrotor during an 8-shaped trajectory at
0.5 [rad/s], geometric control

Figure 4.29: Tracking error of the response to an 8-shape trajectory, geometric
control

4.5 Geometric control law simulations 85

Figure 4.30: Tracking of a roll setpoint, geometric control

Figure 4.31: Tracking of a pitch setpoint, geometric control

86 Simulation results

Figure 4.32: Tracking of a yaw setpoint, geometric control

Figure 4.33: Attitude error, geometric control

4.6 Final considerations 87

4.6 Final considerations

In this chapter the results obtained simulating each control law has been presented
and analysed.
From this results it is clear that there are still margins for the development of a
better tuning procedure that can achieve better performances in tracking capa-
bilities both for the position and the attitude control laws.
It turns out that the H∞ tuning technique in this case give consistent results in
terms of the setted bandwidth for the closed loop system, while it is clear that
the overall tracking performances can be improved.
Eventually the Lyapunov based controllers turns out to have good performances
even if they are limited by the assumptions presented in the previous chapters,
while the geometric control has the potential to get better results but has the
problem not to have a standard tuning procedure in order to choose the values of
the parameters, resulting in a slower control.

Conclusions

In the presented work of thesis the design, implementation and simulation of four
different nonlinear control laws for a quadcopter UAV has been presented. The
controllers synthesised have been tested in different simulations and the results
have been compared in the last chapter.
In detail, the mathematical development of the control laws has been extensively
analysed in order to give a complete overview of the adopted techniques.
For the first two control laws the tuning method adopted has been particularly
emphasised in order to give a complete example of how the minimization of the
H∞ norm of the sensitivity can be adopted also for particular nonlinear systems.
Eventually, the obtained results have been analysed and compared in order to
stress the capabilities and limits of each controller.
The goal to obtain a control law that can manage complex trajectories has been
reached, with a controlled system that can afford to undertake quite fast manoeu-
vrers.
Moreover, one of the main difficulties faced in nonlinear control design has always
been the choice of the tunable parameters values, since their effects on the sys-
tem performance are not always clear. Thus the adoption of a standard tuning
technique in this field results is a remarkable improvement in the possibilities to
obtain a better choice of the control parameters.
Due to hardware problems, it has not been possible to test properly the developed
control on the real UAV platform to provide meaningful data to be analysed. The
implementation on the quadrotor of this control laws is thus the main develop-
ment that will be undertaken in the near future. This work is actually already in
progress and have highlighted some limitations of the simulator developed in the
laboratory in modelling the noises and disturbances that acts on the real system.
Another field of development for this work is a refinement of the H∞ tuning
procedure, adopted in order to better cope with the nonlinearities of the tuning
problem. As can be noticed from the simulation results, it works satisfactorily
but results sometimes in too aggressive control actions. This is mainly due to the
nonlinear correlation shown in Chapter 2 between the Lyapunov parameters and
the related gains of the linearised controller.
One last possible development would be the reformulation of the geometric control
in order to get an integral action both on the position and the attitude control.

90 Conclusions

This because the lack of this terms strongly affects the performances on the real
system due to unavoidable constant disturbances like bias on the propellers thrust.

Bibliography

[1] Samir Bouabdallah and Roland Siegwart. Backstepping and sliding-mode
techniques applied to an indoor micro quadrotor. In Robotics and Automa-
tion, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Confer-
ence on, pages 2247–2252. IEEE, 2005.

[2] Francesco Bullo and Richard M Murray. Tracking for fully actuated mechan-
ical systems: a geometric framework. Automatica, 35(1):17–34, 1999.

[3] Matteo Ferronato. Identificazione e controllo della dinamica verticale di un
elicottero quadrirotore. 2016.

[4] Mattia Giurato. Design, integration and control of a multirotor uav platform.
2015.

[5] Davide Invernizzi and Marco Lovera. Geometric tracking control of thrust
vectoring uavs. arXiv preprint arXiv:1703.06443, 2017.

[6] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Nonlinear robust
tracking control of a quadrotor uav on se (3). Asian Journal of Control,
15(2):391–408, 2013.

[7] Taeyoung Lee, Melvin Leoky, and N Harris McClamroch. Geometric tracking
control of a quadrotor uav on se (3). In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 5420–5425. IEEE, 2010.

[8] Lalo Magni and Riccardo Scattolini. ADVANCED and MULTIVARIABLE
CONTROL. Pitagora Editrice Bologna, 2014.

[9] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial vehicles.
IEEE Robotics and Automation magazine, 20(32), 2012.

[10] Simone Panza. Hinfguide. https://flyart.gitlab.io/hinfguide/, 2017.

https://flyart.gitlab.io/hinfguide/

	Acknowledgments
	Abstract
	Sommario
	List of figures
	List of tables
	Introduction
	Brief history of quadrotor UAVs
	The birth of UAVs
	The development of multicopters
	Quadrotor UAVs

	Dynamic model for the quadrotor
	Reference systems
	Inertial reference system
	Body axes

	Attitude representation
	Euler angles

	The model
	Velocities and accelerations
	Linear motion
	Angular motion
	States of the system
	External forces and moments

	Conclusions

	Control design and tuning
	Lyapunov stability theory
	The backstepping method

	Backstepping control of a UAV quadrotor
	Derivation of the attitude control law
	Derivation of the position control law

	Tuning of the backstepping algorithm
	Shaping functions
	Tuning results

	Integral backstepping control
	Derivation of the attitude control law
	Tuning of the integral backstepping control law

	Second formulation of integral backstepping
	Derivation of the attitude control law

	Geometric control
	Model and definition of the errors
	Control law

	Simulation results
	UAV simulator
	Quadrotor and sensors blocks
	Actuators model

	Backstepping simulations
	Attitude control simulation
	Position control simulation

	Integral backstepping simulations
	Attitude control law simulation
	Position control law simulation

	Simulations of integral backstepping second formulation
	Attitude control law simulation
	Position control law simulation

	Geometric control law simulations
	Simulation results

	Final considerations

	Conclusions

