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tutto ciò che ha fatto per me. Non si è rivelato solamente un supervisore, ma ha

saputo essere un punto saldo a cui sorreggersi nei momenti difficili. Lo ringrazio

di cuore per il suo altruismo disinteressato e non dimenticherò mai quello che ha
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Abstract

This thesis is about the synchronized flight of a formation of multirotors which

execute a mission. The mission is characterized by a trajectory for each drone

which composes the formation. The formation must be able to deal with un-

foreseen events, which can compromise the outcome of the mission. In order to

do that, the drones must exchange information with each others and a support

network is therefore needed.

The purpose of this thesis is to present the algorithm for synchronized forma-

tion flight called consensus algorithm and implement it in a simulated environment

and in a real system with heterogeneous drones. We want to verify that the theo-

retical results can be applied in a real distributed system, with not ideal network

performances.

In the first part, we explain the algorithm used during the experimental work,

while in the following chapter the software and hardware used are presented. In

the last chapters, we show in detail the structure of the software and the experi-

ment conducted. In particular, many simulations will be presented to confirm the

quality of the consensus algorithm. Finally, a comparison between the simulated

results and the ones obtained in the real environment is proposed.





Sommario

La tesi tratta di volo sincronizzato di una formazione di multirotori che eseguono

una missione, caratterizzata da una traiettoria per ogni drone che compone la

formazione. La formazione deve essere in grado di reagire a eventi inaspettati,

che possono compromettere l’esito della missione stessa. Per raggiungere tale

scopo, i droni devono scambiare informazioni, attraverso una rete di supporto.

L’obbiettivo della tesi è di presentare l’algoritmo utilizzato per il volo sin-

cronizzato, chiamato algoritmo di consenso e implementarlo sia in un ambiente

simulato, che in un sistema reale, composto da macchine eterogenee. Si vuole veri-

ficare che i risultati teorici possano essere applicati in un sistema reale distribuito,

dotato di una rete di comunicazione dalle prestazioni non ideali.

Nella prima parte della tesi, verrà esposto l’algoritmo usato durante il la-

voro sperimentale, mentre nel capitolo seguente saranno presentati l’hardware e

il software. Negli ultimi capitoli saranno evidenziati nel dettaglio la struttura

del software e gli esperimenti condotti. In particolare, saranno mostrate alcune

simulazioni, in modo da confermare la bontà dell’algoritmo di consenso. Infine,

nell’ultimo capitolo, sarà proposta una comparazione tra i risultati delle simu-

lazioni e quelli ottenuti mediante l’implementazione in un sistema reale.





Contents

Ringraziamenti 5

Abstract 7

Sommario 9

List of figures 17

Introduction 19

1 Consensus theory 25

1.1 Parametrized trajectory . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Virtual time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Consensus law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



12 CONTENTS

1.5 Convergence property . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 System architecture 39

2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Pixfalcon . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.2 Intel Edison . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.3 RaspberryPi Zero . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.4 Motive Optitrack . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.1 Ground station . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.2 Raspberry Pi Zero . . . . . . . . . . . . . . . . . . . . . . 47

2.2.3 Intel Edison . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.4 Both companions . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.5 Pixfalcon . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2.7 Additional software . . . . . . . . . . . . . . . . . . . . . . 49

3 Consensus node 51

3.1 Start and stop services . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS 13

3.2 Consensus variable callback . . . . . . . . . . . . . . . . . . . . . 56

3.3 Local position callback . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Simulation results 63

4.1 Trajectory following . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 First disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Second disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Experimental results 75

5.1 Trajectory following . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 First disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Second disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Conclusions 83





List of Figures

2.1 Pixfalcon board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Edison board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 RaspberryPi Zero board . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Motive Optitrack screenshot . . . . . . . . . . . . . . . . . . . . . 44

2.5 Optitrack marker . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6 ANT-1 drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Hexa drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Input and output of the node . . . . . . . . . . . . . . . . . . . . 53

3.2 Custom service structure . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Custom message structure . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Consensus variable class . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Class used to manage the position and velocity of the drones . . . 59



16 LIST OF FIGURES

3.6 Class used to manage a generic trajectory . . . . . . . . . . . . . 61

4.1 Iris model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Evolution of the trajectory in time of the first drone . . . . . . . . 66

4.4 Target following drone 1 . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Target following drone 2 . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Positions of the two drones in time . . . . . . . . . . . . . . . . . 67

4.7 Disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Target following drone 1 . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Target following drone 2 . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Positions of the two drones in time . . . . . . . . . . . . . . . . . 70

4.11 Disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.12 Target following drone 1 . . . . . . . . . . . . . . . . . . . . . . . 71

4.13 Target following drone 2 . . . . . . . . . . . . . . . . . . . . . . . 72

4.14 Positions of the two drones in time . . . . . . . . . . . . . . . . . 72

5.1 Target following drone 1 . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Target following drone 2 . . . . . . . . . . . . . . . . . . . . . . . 77



LIST OF FIGURES 17

5.3 Positions of the two drones in time . . . . . . . . . . . . . . . . . 77

5.4 Target following drone 1 . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Target following drone 2 . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Positions of the two drones in time . . . . . . . . . . . . . . . . . 79

5.7 Target following drone 1 . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Target following drone 2 . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Positions of the two drones in time . . . . . . . . . . . . . . . . . 81





Introduction

In recent years, the field of robotics had developed rapidly. The growing applica-

tions of mobile robots and drones in many fields has brought an important increase

in the number of robotic vehicles. Many commercial solutions are available, but,

in many cases, they offer a product which needs an expert pilot. For this reason

and due to the high prices, the diffusion of mobile robots is limited. In the latest

years, these problems were mitigated and we now find lower prices and easier-to-

use products. This will boost the diffusion of non-professional robotic vehicles in

our houses and in our daily activities. Applications of UAVs are the ones are the

ones related to exploration and data collection. Indeed, drones are fundamental

in inspection of unknown areas, such as forests or unreachable terrains. Moreover,

the monitoring of industrial artifacts constitutes a valuable application of UAVs,

such as for instance, solar panels, wind turbines, high-voltage cables or tubes can

be supervised using aerial vehicles. The multimedia production is the field in

which the drones are most present. Indeed, most of the machines are equipped

with high-definition cameras in order to provide professional videos.

The power consumptions of the machines has been significantly reduced in the

recent years and we are now able to build smaller and lighter vehicles. In partic-
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ular, in the aerial field there are commercial products which weight about 200g

with a flight time of 20 minutes. These improvements allow us to develop more

advanced features, such as trajectory planning, obstacles avoidance, formation

flight. The development of autonomous UAVs is fundamental for humanitarian

response around the world. When a natural calamity happens, the UAVs can play

a crucial role by delivering essential goods or finding missing people. Moreover,

the operations can be done without risking the safety or the life of the rescuers,

because they can act remotely or plan an autonomous mission.

The trajectory planning is essential for the development of autonomous vehi-

cles, because the generation of a feasible trajectory for a mission is required, oth-

erwise no mission can be done. The trajectory generation is a difficult problem,

because of its computational complexity. Indeed, many suboptimal algorithms

have been developed in order to reduce this complexity. There are different classes

of planning algorithm and they can be summarized as follows:

• Artificial Potential Field: these algorithms assign a value of the potential

for every point in the map. The goal has the lowest (highest) value and the

obstacles have high (low) values. Then, the robot tries to descend (climb)

the potential, in order to reach the goal.

• Sampling Based Planning: random samples are used to find a path from

the starting point to the goal. Advanced random samples techniques can be

used in order to reduce the complexity of the algorithm.

• Grid Based Planning: this kind of algorithm overlays a grid on the map, so

every configuration corresponds with a grid pixel. The robot can move from
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one grid pixel to any adjacent grid pixels as long as that grid pixel does not

contain an obstacle.

• Reward-Based Planning: the robot can apply different actions in every state

of the world. The outcome of an action can be not deterministic and after

every action, the robot gains a reward. The objective of the robot is to

maximize the sum of the rewards.

Another important aspect is the obstacle avoidance. The trajectory is usually

planned offline, when the mission is not started yet. So, the trajectory does not

take into account the fact that an unplanned obstacle might interfere with the

mission. In this case another algorithm is implemented to run online. This kind

of algorithms are called obstacle avoidance algorithms and they plan again locally

the trajectory, in order to get rid of unforeseen events. These algorithms need the

drone to be equipped with proximity sensors, which provide information about

the surrounding environment. Different methodologies have been developed for

obstacles avoidance. The main ones are summarized below without details.

• Artificial Potential Field: as before, the idea of this approach is that obsta-

cles exert a virtual repulsive force, given by the potential field, to push away

the robot from them while the goal position generates a virtual attractive

force to guide the robot to it.

• Virtual Force Field method (VFF): is the combination of the Artificial Po-

tential Field with the concept of Probabilistic Occupancy Grid maps.

• Fuzzy Controller for Obstacle Avoidance: as the name says, a fuzzy con-

troller is used to derive the variables for the vehicle’s orientation and accel-
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eration control, depending on the current perception of the robot’s sensors

• Vector Field Histogram method (VFH): improved version of the VFF method.

• VFH+, VFH∗ method: improved versions of the VFH method, but more

computational costly. The most recent one is the VFH method, which uses

an A∗ search.

• Traversability Field Histogram (TFH): The local path planner bases on

the VFH concept, but is extended by the information provided within the

Traversability Map.

• Dynamic Window Approach: the algorithm takes into account the dynamic

and kinematic constraints of the robot and it is similar to the VFH+ algo-

rithm. The method is called dynamic window approach and considers only

admissible velocities which can be reached within the next time interval and

which allow the robot to stop safely.

• Curvature Velocity Space method: This method chooses a point in the

linear-angular velocity space which satisfies some constraints and maximizes

an objective function. This objective function tries to move the robot close

to the commanded direction at the highest feasible speed, while travelling

the trajectory with the largest clearance from obstacles.

• Beam Curvature method: improvement for the curvature velocity space

method.

• Nearness diagram Navigation: it is similar to the VFH method, but uses a

polar histogram to derive actions to be taken for the robot.
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When multiple machines have to fly in a formation, a synchronization mecha-

nism is needed. For example, if one of the drones has to deviate from the planned

trajectory (for instance, because of an unplanned obstacle), the formation must

be preserved. To reach the synchronization, vehicles must communicate with each

other and exchange information. Notions from graph theory are needed to analyze

the behaviour of the system and demonstrate the convergence properties.

This work is focused on the presentation of a distributed synchronization algo-

rithm, which we call consensus algorithm. Every drone must exchange its mission

progression with its neighbors and must adjust its mission progression based on

the information received from the other vehicles. The algorithm is a distributed

algorithm and it is executed on every vehicle.

In the first chapter, we will see the theoretical aspects of the consensus al-

gorithm and then, in the second chapter, we will provide a general overview of

the hardware and software used to deploy the algorithm. In the third chapter we

will take a look at the software implementation of the main part of the system,

providing classes and snippets of code. Finally, we will explain the simulated and

experimental results of our work in chapters four and five. We will apply the

algorithm to a real system and we will present our results and its performances.





Chapter 1

Consensus theory

The literature about consensus has grown significantly in the last few years be-

cause of the increasing presence of autonomous vehicles. This, in accordance with

the new improvements in robotics, has brought to a growing interest in consensus

between multiple agents which have to accomplish a mission in cooperative or

adversarial scenarios.

Consensus theory has its roots in graph theory and control theory and it can

be used to coordinate a mission in order to achieve synchronization between the

vehicles even during unforeseen events which force one or more components of

the mission to change the planned trajectory or task. In this case, the other

components identify this variation and they act to preserve the synchronization.

A consensus algorithm is a distributed algorithm which can sometimes be sim-

ulated in a centralized fashion because of the reduced computational power of the

machines involved in the mission, which are equipped with low power hardware to



26 Consensus theory

account for the crucial issue of power consumption. In this scenario, a centralized

server simulates the algorithm and communicates with all the machines.

The most common consensus application is a spatial and timing consensus: in

this implementation, each vehicle of the formation has to travel along a specified

trajectory and the completion of the mission occurs when all the agents reach

the final positions of their spatial paths. The algorithm has to guarantee that

the difference between the ending time at which all the vehicles finish their tasks

is minimized and asymptotically goes to zero, when the execution time goes to

infinity and no other unforeseen event happens. We consider formations of Un-

manned Aerial Vehicles (UAVs), but the key concepts can be freely applied to

other categories of robots when they are able to follow a trajectory. This study

is focused on this kind of application, and further simulation results and experi-

mental achievements are presented in Chapters 4 and 5.

In the next sections we refer to the main work of Cichella er al.[5] in the field

of UAV consensus, in order to provide an homogeneous state of the art about

consensus. The paper considers all the details needed to build a consensus system.

The main components of this kind of system are listed and explained below:

• Parametrized trajectory

• Virtual time

• Consensus law

• Network topology.
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1.1 Parametrized trajectory

The trajectory is a spatial path with an associated timing law and it is used to

identify the position of the center of mass of our agents at a given time. First of all,

the trajectory used during our experiments are polynomials curves. In particular,

we use Bézier curves, because of the existence of many computationally efficient

algorithms designed for this kind of curves, such as algorithms to efficiently com-

pute the minimum distance between two Bezier curves and the existence of a

closed-form solution for the arc lengths of the paths.

First of all, let I = {N,E,D} denote a right-handed inertial frame with N ,

E and D unit vectors along north, east and down respectively. The vector p =

(x, y, z) ∈ I denotes the position of the center of mass of the vehicle. Let B =

{XB, YB, ZB} be right-handed body fixed frame centered in the center of mass of

the vehicle. The orientation of the rigid body is given by rotation matrix R(φ, θ, ψ)

where φ, θ and ψ are the roll, pitch and yaw Euler angles respectively. We can

state the following definition of a generic trajectory pd,i(td) for N vehicles:

pd,i : [0, tfd,i]→ R4, i = 1, 2, . . . , N (1.1)

where td ∈ [0, Td], with Td := max{tfd,1, . . . , t
f
d,N}, is the time variable of the

trajectory, while tfd,i ∈ R+ are the individual final mission times of the vehicles

obtained during the planning phase. Usually all these final times are equal and

therefore tfd,1 = · · · = tfd,N = Td, but we introduced the notation for the sake of
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generality. Obviously, the trajectories need to be collision-free and must comply

with spatial and temporal constraints due to the dimensions of the vehicles and

their maximum velocities and accelerations. The range of the function is R4

because, in the case of UAVs, we want to control x, y, z, ψ. The trajectory can

account also for roll and pitch, and therefore, the function might take images in

Rm, where m is the number of dimensions considered. In the following sections,

we will refer only to the position and ψ, but a more general theory can also be

developed.

We now parametrize the trajectory using a dimensionless variable ζi ∈ [0, 1],

related to the time td. In this way we can specify a function θ(·), which represents

the timing law associated with the spatial path pd,i(ζi). We can specify this timing

law using the dynamic relation:

θ(td) =
dζi
dtd

(1.2)

where θ(td) is a smooth and positive (the parameter increases when the time

increases) function.

As it allows a one-to-one correspondence between the time variable td and the

parameter ζi, an analytical expression for the function ζi(td) is desirable. Using



1.1 Parametrized trajectory 29

the timing law defined in (1.2), the map ζi(td) is given by the integral:

ζ(td) =

∫ td

0

θi(τ)dτ (1.3)

Usually, all these functions are defined as polynomials in order to make the

evaluation process quicker and easier, since multiplication and addition are the

basic operations in a digital processor. However, it is not mandatory to use them

and a generic shape for the functions can be designed.

For the spatial path we use quintic Bezier curves for the x, y and z coordinates,

while we use a third degree polynomial for the ψ of the drone since we need less

elaborate shapes. Since we are using drones with a decoupled control of x, y, z

and ψ, the polynomials are completely independent.

The timing law associated to these curves is a Bezier third order polynomial.

So, in our case, we have five polynomials which have to be evaluated in real time in

order to provide the set points. The frequency at which we evaluate the trajectory

is 5Hz.

The trajectory which describes the mission of a single drone is given by:
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

xi(ζi) =
∑5

j=0 x̄i,jb
5
j(ζi)

yi(ζi) =
∑5

j=0 ȳi,jb
5
j(ζi)

zi(ζi) =
∑5

j=0 z̄i,jb
5
j(ζi)

ψi(ζi) =
∑3

j=0 ψ̄i,jb
3
j(ζi)

ζi(td) =
∑3

j=0 ζ̄i,jb
3
j(td)

where x̄i,j, ȳi,j, z̄i,j, ψ̄i,j and ζ̄ ∈ R are the desired control points of the spatial

path and bmn are the (up to degree m) Bernstein basis polynomials. We do not

enter in details about the Bezier curves and Bernstein basis polynomials, because

it is not the objective of this work.

We have defined all the elements of a trajectory and we do not go into de-

tail about the trajectory generation phase. Further information about boundary

conditions and flyable trajectory, which satisfy the dynamic constraints of the

vehicles, can be found in [5] and is extensively analyzed in [4], [24], [26].

1.2 Virtual time

Given N collision free trajectories, we want each vehicle to follow a virtual target,

moving along the path computed offline by the trajectory generation algorithm.

The objective can be achieved introducing a virtual time, γi, which is used to

evaluate the trajectory and can be adjusted online to reach the synchronization
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even when external disturbances occur. Thus, the position of the ith virtual target

is denoted by pd,i(γi(t)) and the ith vehicle tries to follow it, by reducing to zero

a suitably defined error vector using control inputs.

Considering the trajectory pd,i(td) produced by the trajectory generation al-

gorithm, we consider the virtual time γi as a function of time t, which relates the

actual time t to mission planning time td.

γi : R+ → [0, Td], for all i = 1, 2, . . . , N. (1.4)

We can now define the virtual target’s position, velocity and acceleration,

which have to be followed by the ith vehicle at time t

pc,i(t) = pd,i(γi(t))

vc,i(t) = ṗd,i(γi(t), γ̇i(t))

ac,i(t) = p̈d,i(γi(t), γ̇i(t), γ̈i(t)).

(1.5)

With the above formulation, if γ̇ = 1, then the speed profile of the virtual

target is equal to the desired speed profile computed at trajectory generation

level. Indeed, if γ̇ = 1, for all t ∈ [0, Td], with γi(0) = 0, it implies that γi(t) = td

for all t and thus:
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pc,i(t) = pd,i(γi(t)) = pd,i(t) = pd,i(td).

In this particular case, the desired and commanded trajectories coincide in

every time instant and also the velocity profiles coincide with the ones chosen at

the trajectory generation time. If instead γ̇i > 1, it implies a faster execution of

the mission; on the other hand, γ̇i < 1 implies a slower one.

We can now normalize γi in order to have a range which is [0, 1]. We simply

need to divide all by Td. In this way, we could use Bezier curves in order to

represent the spatial path. This kind of curves offer interesting properties for

computing minimum distances between two of them and allow the computation

of smooth trajectories.

The second order derivative of γi, γ̈i, is a free parameter used to achieve the

consensus. In the next section we will introduce the control law which commands

its evolution during time and we will explain how it is possible to implement a

distributed algorithm.

1.3 Consensus law

Now, we formally state the path following problem. We define as pi(t) ∈ R4 the

position of the center of mass of the ith agent and its ψ and since pc,i(t) describes

the commanded pose to be followed by the agent at time t, the errors are defined
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as:

ep,i(t) = pc,i(t)− pi(t) ∈ R4

ev,i(t) = vc,i(t)− ṗi(t) ∈ R4.

(1.6)

Then, the objective reduces to that of regulating the error defined in (1.6) to a

neighbourhood of zero. This task is solved with an autopilot capable of following

the set points computed from the desired trajectory at specified instances of time.

The virtual time is the parameter used to reach consensus between multiple

vehicles. In fact, since the the trajectories are parametrized by γi, the agents are

synchronized at time t when:

γi(t)− γj(t) = 0 for all i, j ∈ {1, . . . , N}, i 6= j. (1.7)

We can also control the rate of progression of the mission using a parameter

γ̇d ∈ R, which represents the velocity of the virtual time with respect to the real

time. All the agents share this variable and they proceed at the same rate of
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progression if:

γ̇i(t)− γ̇d(t) = 0 for all i ∈ {1, . . . , N}. (1.8)

Adjusting γ̇d, we can decide the speed of the mission: for instance, if we set

γ̇d = 1 and (1.7) and (1.8) are satisfied for all the vehicles, then the mission is

executed at the speed originally planned in the trajectory generation phase. If

instead we use γ̇d > 1 or γ̇d < 1 we carry out the mission faster or slower. This

term can be changed in real time in order to avoid moving objects or unplanned

obstacles, which make it necessary to change the path of one of the agents. For

the purpose of consensus, the parameter is only a reference command, rather than

a control input.

Now, we introduce the coordination control law which regulates the evolution

of γ̈i(t) during the time and determines γi(t):

γ̈i(t) = γ̈d(t)− b(γ̇i(t)− γ̇d(t))− a
∑
j∈ℵi

(γi(t)− γj(t))− αi(ep,i(t))

γ̇i(0) = γ̇d(0) = 1

γi(0) = γd(0) = 0

(1.9)

where a and b are positive coordination control gains, while αi(ep,i(t)) is defined
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as:

αi(ep,i(t)) =
vT
c,i(t)ep,i(t)

||vc,i(t)||+ ε
(1.10)

with ε being a positive design parameter, ep,i the position error vector defined

in (1.6) and ℵi the set of the neighbors which can communicate with the ith

vehicle (we will see details later). In equation (1.9) we have four terms. The

feedforward term, γ̈d, allows the virtual target to follow the acceleration profile of

γd. The second term, −b(γ̇i(t)− γ̇d(t)), reduces the error between the speed profile

imposed by γ̇d(t) and γ̇i(t), which corresponds to the control objective given in

(1.8). In particular, if γ̇d(t) is equal to one, then the virtual target converges to

the desired speed profile chosen in the trajectory generation phase. The third

term, −a
∑

j∈ℵi(γi(t) − γj(t)), ensures that all the vehicles are coordinated with

their neighbors as specified in (1.7). Finally, the fourth term, −αi(ep,i(t)), is a

correction term used to take into account for the path following errors of the

agent. Indeed, if the vehicle is behind its target, the term is non-zero and the

target slows down in order to wait for the real vehicle.

With this control law, we want our vehicles to be synchronized and to proceed

at a desired rate of progression, in order to accomplish the mission even when

some unforeseen disturbances occur during the execution phase.
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1.4 Network topology

To achieve the time-coordination objective, agents must exchange information

over a supporting communication network. To analyze the information flow, we

need to consider some tools from algebraic graph theory, whose key concepts can

be found in [2].

We assume that a vehicle i exchanges information with only a subset of all

vehicles, denoted as ℵi(t). We assume that arcs of the network are bidirectional

and that there are no network delays. The information exchanged is composed

by the virtual time of the agents, γi(t).

The topology of the graph, Γ(t), that represents the communication network,

must comply with the following constraint in order to guarantee the convergence

of the consensus algorithm:

1

NT

∫ t+T

t

QL(τ)QTdτ ≥ µIN−1, for all t ≥ 0 (1.11)

where L(t) ∈ RN×N is the Laplacian of the graph Γ(t) and Q ∈ R(N−1)×N is a

matrix such that Q1N = 0 and QQT = IN−1, with 1N being a vector in RN whose

components are all 1s. In (1.11), the parameters T > 0 and µ ∈ (0, 1] represent a

measure of the level of connectivity of the communication graph. This condition

requires the graph Γ(t) to be connected only in an integral sense, not pointwise in

time. Therefore, even if the graph were disconnected during the mission at some
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interval of time, the convergence of the consensus algorithm would still be possible.

With this condition, we can capture also packets dropouts, loss of communication

and switching topologies, which can all occur during the mission, but these events

do not necessary break the convergence property.

1.5 Convergence property

The control law given by (1.9) guarantees that the error of the consensus algorithm

converges to zero exponentially. It can be shown that the maximum convergence

rate is given by the sum of the convergence rate of the path following error and

the term

a

b

Nµ

T (1 + (a/b)NT )2
(1.12)

which depends on the control gains a and b, the number of vehicles N and the

quality of service of the communication network, characterized by the parameters

T and µ. If we fix the gains and the number of the vehicles, the convergence rate

depends only on the amount of information which the agents exchange each other

over time.





Chapter 2

System architecture

In this chapter, we will describe the hardware and software architecture of the

system. Most of the software is completely decoupled from the hardware part and

can be run on different machines, allowing portability and reusability. On the

contrary, the code is developed only for the specific hardware; mostly the code

which is more related to the specific functionalities of the hardware itself. We will

have an overview of the hardware used and then we will show a general software

architecture and its deployment on the machines involved.

2.1 Hardware

The hardware used to run the system is heterogeneous and we will show in detail

the machines involved in the project.

A desktop pc, whose characteristics are listed below, will be our ground station:
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• Processor: Intel Core(TM) i5-6500 CPU @ 3.20GHz

• Memory: 16 GB

• Network: Intel Gigabit CT Network Adapter

• Storage: 230 GB

On this machine, we will run a virtual machine which has the following speci-

fications:

• Processor: 1 Core

• Memory: 4 GB

• Storage 25 GB

• Network: Virtual adapter

The flying vehicles involved in the mission are of two kinds, but both adopt

the same general configuration, even if with different hardware. Indeed, they

are equipped with a flight control unit connected to a companion microcomputer

by the serial port. The microcomputer communicates with the ground station

through the Wi-Fi connection.

2.1.1 Pixfalcon

The flight control unit adopted is the Pixfalcon, (Figure 2.1) which belongs to the

family of the Pixhawk [18].

Its specifications are the following:
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Figure 2.1: Pixfalcon board

• Main System-on-Chip: STM32F427

– CPU: 180 MHz ARM Cortex M4 with single-precision FPU

– RAM: 256 KB SRAM (L1)

• Failsafe System-on-Chip: STM32F100

– CPU: 24 MHz ARM Cortex M3

– RAM: 8 KB SRAM

• Wifi: ESP8266 external

• GPS: U-Blox 7/8 (Hobbyking) / U-Blox 6 (3D Robotics)

• Connectivity:

– 1x I2C

– 1x CAN (2x optional)

– 1x ADC

– 4x UART (2x with flow control)

– 1x Console

– 8x PWM with manual override
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Figure 2.2: Edison board

– 6x PWM / GPIO / PWM input

– S.BUS / PPM / Spektrum input

– S.BUS output

2.1.2 Intel Edison

The companion computers are of two types. The first kind is the Intel Edison [14]

(Figure 2.2) which is a general purpose computer with the following specifications:

• Atom 2-Core (Silvermont) x86 @ 500 MHz

• Memory: LPDDR3 1 GB

• Storage: 4 GB EMMC

2.1.3 RaspberryPi Zero

The second kind of companion is the RaspberryPi Zero [10] (Figure 2.3), with the

following specifications.
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Figure 2.3: RaspberryPi Zero board

• Processor:

– Broadcom BCM2835

– contains an ARM1176JZFS (ARM11 using an ARMv6-architecture

core)

• Memory: 512MB LPDDR2 SDRAM

• USB On-The-Go port

• Mini HDMI

• 40pin GPIO header

• CSI camera connector

2.1.4 Motive Optitrack

The motion capture system is Motive Optitrack [20], we use eight Optitrack Prime

13 cameras [21], arranged on a square as show in Figure 2.4. The cameras define

a volume, which is a cube of 5 meters per side, and the drones can fly without

obstacles inside it.
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Figure 2.4: Motive Optitrack screenshot

The cameras are connected to a Netgear Prosafe 28PT GE POE [22] switch

through Gigabit Ethernet cables.

In order to be seen by the Optitrack system, every drone must be equipped

with markers (Figure 2.5) with different configurations, which differentiate the

drones from each other.

The two models of drones which we will use are presented in Figures 2.6 and

2.7. The first one is the ANT-1 model, a 200g drone, which is equipped with the

Raspberry Pi Zero and the Pixfalcon. The second one is the Hexa model. It is

provided with the Intel Edison board and the Pixfalcon board. It is larger and

its diameters is approximately 40cm. As we can see from the figures, the ANT-1

model has four propellers, while the Hexa has six.
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Figure 2.5: Optitrack marker

Figure 2.6: ANT-1 drone

2.2 Software

We now list the software adopted to execute the algorithm in a real environment

and in the simulated one.

The principal software used to manage the distributed architecture is ROS

Kinetic Kame [7]. ROS is a robotic middleware with a structure which is mainly

publisher-subscriber which can manage more machines in a distributed environ-
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Figure 2.7: Hexa drone

ment. The central part of the ROS architecture is a node called ROS core, which

manages the topics of the system and the subscriptions. The ROS core offers also

other functionalities, such as the Parameter Server or the possibility to advertise

services. The Parameter Server is a central infrastructure, which is responsible

for storing configuration parameters loaded by the nodes of the system. These

parameters can be retrieved by other nodes and used if necessary. Instead, a ROS

service is a sort of remote function call. One node can advertise the service, which

can be called by any other node. The call is synchronous, so the caller is blocked

until the callee has executed its callback function. The ROS architecture is based

on queues, threads and callback functions, but most of the provided tools hide

part of the implementations of the distributed environment.

2.2.1 Ground station

The ground station runs Windows 10 Pro [19] and the software used to virtualize

a Desktop machine is VMware [25]. On the virtual machine is installed Ubuntu

16.04 LTS [3] in order to run software needed and available only for Unix systems.
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On Windows operating system we launch the Motive Optitrack software [20],

which allows to calibrate and control the cameras for position tracking. It then

provides the streaming of the positions of the markers identified by the cameras

and sends it to the Ubuntu operating system using a multicast IP address. Here,

the information is converted by a ROS node and sent through the ROS topics,

which are read by the drones. In this way, each drone knows exactly its position.

This conversion node is an open source node called Mocap which can be found on

GitHub [13]. On Ubuntu side, we launch the ROS core, which manages all the

ROS nodes and topics.

2.2.2 Raspberry Pi Zero

The Raspberry Pi Zero executes a dedicated version of Debian operating system,

which is Raspbian. The version used is Raspbian Jessie 4.4 [9].

2.2.3 Intel Edison

The Intel Edison runs a version of Debian called Jubilinux, at version 0.1.1 [6].

2.2.4 Both companions

Both companions, the Raspberry and the Edison, are provided with ROS Kinetic

and both have to execute some ROS nodes in order to communicate with the

other drones.
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Both of them run Mavros nodes [16]. which can be downloaded from GitHub

and manage the conversion of the information taken from the ROS topics to the

serial port and vice versa. Indeed, the ROS messages are converted into Mavlink

messages and sent through the serial port to the Pixfalcon autopilot. The same is

done for the Mavlink messages from the autopilot, which are published on ROS

topics.

The second kind of ROS node run by the companions is a custom consensus

node, which loads the desired trajectory and sends the next set point to the

Mavros node. This node will be analyzed in detail in Chapter 3.

2.2.5 Pixfalcon

The Pixfalcon FCU is flashed with PX4 Pro Autopilot [17], an open source

firmware downloadable from GitHub. The release used is the v1.5.5.

2.2.6 Simulation

The simulation part is developed with the utilities provided by the PX4 firmware.

In particular, the physical engine used is Gazebo [8], which is an Open Source

project.
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2.2.7 Additional software

We use Matlab R2016 B [15] to process the data, to plot the graphs and to validate

some theoretical results.

This document is written in LATEX [23] and the code IDE used is Atom [1],

while the versioning control platform used are GitHub [11] and GitLab [12].





Chapter 3

Consensus node

In this chapter, we will examine the structure of the consensus node. We will see

its main components and we will show some snippets of code in order to make

clearer which parts are involved.

As shown in the general architecture (chapter 2), the consensus node is de-

veloped as a ROS node, which subscribes and publishes messages to different

topics. Moreover, the node offers some ROS services used to start and to stop the

trajectory following algorithm or the consensus algorithm.

The structure of the node takes into account the main architectural patterns

used in the software development field and it was designed to allow the maximum

degree of usability and customization. However, since it has to be executed on

machines with limited amount of resources, one of the most important metric

taken into account is the efficiency of the code.

The node functionalities are enclosed into a C++ class which initializes all the
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ROS elements and prepares the node to receive the start and stop commands. The

initialization is done by the class constructor when the object is created. First, in

order to apply the consensus dynamic equation, we need the current position of

the UAV. The Px4 board already publishes the estimated local position on a topic.

Therefore, all we need to do is subscribe to that topic to retrieve the messages

with the required information. Second, we want to publish the consensus variable

of the drone in the topic used by all the other UAVs, because, having obtained

the others’ consensus variables from the same topic, we are able to compute the

proportional consensus error. Third, since we want to compute the position error

and weight it for the target velocity, we need the next set point and the next

desired velocity profile. Finally, we compute the acceleration of the consensus

parameter using the consensus equation (1.9) and we publish the next set point.

We will see the details through the code. All these elements can be summarized

and shown in Figure 3.1.

The subscription of a ROS topic works through a callback function, which

accepts as parameter the pointer to the new message. Since in our case we have

multiple subscriptions and we must advertise the start and stop services, we need

to implement a multithreading architecture which takes care of the concurrent

accesses to the state of our object. Three threads have been used and their

functions are listed below:

• Start and stop services

• Consensus variable callback

• Local position callback
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Figure 3.1: Input and output of the node

3.1 Start and stop services

The node can work in two different modes:

• trajectory-only

• consensus

On the one hand, in the trajectory-only mode, the node computes the next set

point and sends it to the UAV, without considering the possible existence of others

UAVs in the mission. Its only objective is to follow the trajectory and reach its

final position trying to respect the time constraints imposed by the trajectory. On

the other hand, in the consensus mode, the node does the same computation as

before, but it also publishes its consensus variable and reads all the other ones. It
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then considers this information and adjusts its consensus variable. The consensus

mode includes the trajectory-only, and can be started even if the trajectory-only

has already been launched, while the opposite is not true. When the consensus

mode is stopped, the trajectory-only is stopped as well. Once the mission has been

accomplished, the current active mode stops automatically. This means that one

of the two modes can be restarted freely without having to stop the previous one.

The services are implemented by using the ROS Service class, which manages

the whole infrastructure needed for calling the service. The call of a service is

synchronous and the caller is blocked until the service function is terminated.

In this case, we offer two services: one for starting and stopping the trajectory-

only mode and the other for the consensus mode. It is possible to customize

the service call in order to pass different numbers and types of arguments to the

service function and to define the response. For the two services, we have defined

the same parameters that are shown in the Figure 3.2.

The message is composed by two parts: the request and the response. In

the request we need a boolean field in order to know if we want to start or stop

the algorithm. The response consists in a boolean variable, which represents the

success of the operation, and an exit code, which identifies the eventual problems

occurred. The constants for the exit codes are directly specified in the definition

of the service.

On the one hand, the trajectory-only service starts or stops the thread which,

taken a local position, computes the next setpoint. On the other hand, the con-

sensus one starts or stops the same thread as before and the one which retrieves

the consensus variables from the other quadrotors.
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# Command f o r enab l ing or d i s a b l i n g

# t r a j e c t o r y and consensus ta sk s

#####################

## Request f i e l d s

bool cmd

−−−

#########################

### ex i t code cons tant s

# everyth ing ok

uint8 SUCCESS = 0

# t r a j e c t o r y f o l l ow i ng a l r eady

# ac t i v e and consensus a c t i va t ed

uint8 ESCALATION = 1

# nothing to do

uint8 ALREADYDONE = 2

# other e r r o r s

u int8 FAILURE = 3

######################

# Response f i e l d s

bool su c c e s s

u int8 ex i t c od e

Figure 3.2: Custom service structure
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Header header

s t r i n g owner

f l o a t 6 4 gamma

Figure 3.3: Custom message structure

3.2 Consensus variable callback

The thread responsible for collecting the consensus variables of all the other UAVs,

is managed by ROS and it executes a callback function when a new message is

published on a specific topic. This topic is used by all the drones to publish

their consensus variable, γi, and it accepts a custom message which contains only

a string with the name of the owner of the variable and the value itself. The

message has also a header, which contains general information such as timestamp

or message ID. The structure of the message can be seen in the Figure 3.3.

The callback function receives the information from the topic and updates

a local view of the variables of the neighbors. This information has a timeout

validity, because we do not want to consider values which are too old. Indeed,

if we considered too old values and a problem in the network caused a loss of

packets, our drone might think that the other drones have significantly different

values of the consensus variables and might therefore wait for them. This is why,

it is better to discard these values and remove the neighbors after a timeout.

In order to store this information, we use a thread safe support class, which

provides a procedure to check if the variable is expired or not. The signatures of

the methods of the class are presented in the Figure 3.4. We use a container to
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store the values of the neighbors and we always check if the value has expired or

not before using it.

These variables are used in the consensus law (1.9) as γj of the neighbors

and are used to compute the proportional error. We can see that the expiration

interval of the values can model the fact that the network topology can change.

Indeed, if a link between two drones vanished because, for instance, they were too

far from each other, after a timeout (which it is equal to the expiration time), the

neighbor would be removed from the container and the drone would not take into

account the old neighbor. The timeout can even ignore a failure of a drone: if a

machine had a critical problem and did not send its consensus variable, the other

drones would remove it from their neighbors and continue their mission without

problems.

3.3 Local position callback

In the position callback function we apply the consensus law. First of all, we store

the actual position of the drone in an object of a custom class, whose signature

is presented in Figure 3.5. In this class, we also include, besides x, y and z, the

yaw of our vehicle. All the operations defined over the class consider also the

orientation.

Then, we compute the synchronization term which corresponds to the sum of

the difference between the current γi and all the γj of the neighbors. In order to

do this, we iterate over a container, which stores the values, and we incrementally

form the synchronization term.
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class GammaParameter {

private :

s td : : s t r i n g owner ;

double gamma;

double a c qu i s i t i o n t ime ; // In seconds

std : : mutex mtx ;

stat ic double e x p i r a t i o n i n t e r v a l ; // In seconds

public :

GammaParameter ( ) ;

GammaParameter ( const GammaParameter& gp ) ;

GammaParameter ( std : : s t r i n g owner ,

double gamma,

double a c qu i s i t i o n t ime ) ;

˜GammaParameter ( ) ;

stat ic void s e tExp i r a t i o n I n t e r v a l (double e x p i r a t i o n i n t e r v a l ) ;

stat ic double g e tExp i r a t i on In t e r va l ( ) ;

GammaParameter& setOwner ( std : : s t r i n g owner ) ;

GammaParameter& setGamma(double gamma, double a c qu i s i t i o n t ime ) ;

GammaParameter& setData ( std : : s t r i n g owner ,

double gamma,

double a c qu i s i t i o n t ime ) ;

std : : s t r i n g getOwner ( ) ;

double getGamma ( ) ;

bool i sExp i r ed ( ) ;

GammaParameter& getData ( std : : s t r i n g ∗owner ptr ,

double ∗ gamma ptr ,

bool ∗ exp ptr ) ;

GammaParameter& operator= ( const GammaParameter &gp ) ;

} ;

Figure 3.4: Consensus variable class
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class DronePose {

private :

double x , y , z , yaw ;

public :

DronePose ( ) ;

DronePose (double x , double y , double z , double yaw ) ;

DronePose ( const DronePose &dp ) ;

˜DronePose ( ) ;

double getX ( ) const ;

double getY ( ) const ;

double getZ ( ) const ;

double getYaw ( ) const ;

void setX (double x ) ;

void setY (double y ) ;

void setZ (double z ) ;

void setYaw (double yaw ) ;

double module ( ) const ;

DronePose& operator= ( const DronePose &dp ) ; //Assignment

DronePose operator+ ( const DronePose &dp) const ; //Sum

DronePose& operator+= ( const DronePose &dp ) ;

DronePose operator− ( const DronePose &dp) const ; // Di f f e r ence

DronePose& operator−= ( const DronePose &dp ) ;

DronePose operator− ( ) const ; //Unary minus

double operator∗ ( const DronePose &dp) const ; // Sca lar product

DronePose operator∗ (double s c a l ) const ; //Product wi th cons tant

DronePose& operator∗= (double s c a l ) ;

DronePose operator/ (double s c a l ) const ; //Ratio wi th cons tant

DronePose& operator/= (double s c a l ) ;

} ;

Figure 3.5: Class used to manage the position and velocity of the drones
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The next step is to form the αi term. Firstly, we need the next set point,

which must be obtained evaluating the trajectory with the actual value of γi.

Our trajectory is represented by a class, and its signature is shown in the Figure

3.6. We then simply compute the position error as set point− position. We also

need the desired velocity, which can be obtained using the suitable function of

the trajectory class. At this point, we have all the terms needed to compute αi

as defined in 1.10.

Since we have all the elements, we can apply the consensus law and find γ̈i.

We simply need to have the coefficients a and b and the references γ̈d and γ̇d.

One of the last steps that we need to do is updating γ̇i using γ̈i and γi using

γ̇i. We compute the interval of time, dt, between the last update and the current

update and we do the math as:

dgamma += ddgamma ∗ dt ;

gamma += dgamma ∗ dt ;

Finally, if we are operating in consensus mode, we need to publish the value

of γi to the right topic, otherwise we simply ignore it. An operation which is

always necessary is the publication of the setpoint message for the autopilot of

the UAV, in order to allow the drone to follow the trajectory and reach its final

destination.
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class Tra jec tory {

private :

s td : : vector<TrajectorySegment ∗> segments ;

s td : : s t r i n g drone id ;

double f i l terAndConvertTime (double t ) const ;

TrajectorySegment ∗ getRightSegment (double t ) const ;

public :

double min time , max time ;

bool loadXML( std : : s t r i n g dorne ns , char ∗ document ) ;

void c l e anA l l ( ) ;

DronePose evaluateNED (double t ) const ;

DronePose evaluateENU (double t ) const ;

DronePose operator [ ] (double t ) const ; // De fau l t re turn ENU

DronePose evaluateVelNED (double t ) const ;

DronePose evaluateVelENU (double t ) const ;

} ;

Figure 3.6: Class used to manage a generic trajectory
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Simulation results

In this chapter we will show the simulations conducted to evaluate the consensus

algorithm.

As said in the Chapter 2, the software used is Gazebo. We ran SITL (Software

in the loop) simulations, through the utilities provided by the PX4 firmware. It

provides models of the main topologies of aerial vehicles, such as plane, VTOL,

Tailsitter VTOL and quadrotor. We will use the quadrotor model called Iris,

which is shown in the picture 4.1.

The PX4 firmware is run on a simulated hardware and all the ROS nodes are

executed on the same computer. The physics is simulated by Gazebo and all the

components are interfaced through Gazebo plugins. In this way, the model can

interact with all the external simulated components.

The Gazebo model is specified, using SDF language, in a Gazebo model file

and the dynamic parameters are listed in it and the geometry is included as well.
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Figure 4.1: Iris model

The simulations that we will show are of three kinds. Firstly, we will present

only the trajectory following problem of a formation of two drones. Secondly, we

will send a disturbance to one of the drones and we will stop it in its position.

Thirdly, we will introduce a disturbance which will make one of the drones go

back following its trajectory backward. We see how the consensus algorithm

reacts to these disturbances and forces the other drone to preserve the formation.

Although only two drones have been used because of the computational load of

the simulation, but the concept can be extended freely to an arbitrary number of

drones.

4.1 Trajectory following

In the simulation two drones have been used. The trajectory of the mission is

shown in 4.2.
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Figure 4.2: Trajectory

Both drones start in the upper point of their circle and then they move along

the trajectory in opposite directions. The mission terminates when both drones

reach their starting point. The evolution of the trajectory in time of the first

drone can be seen in the Figure 4.3.

How the two drones follow their trajectory is shown in the Figures 4.4 and 4.5.

There are some delays due to the fact that the autopilot needs time to follow

the target, but the drones can follow if successfully. In fact, they arrive at their

final position at the same time.

If we also consider the Figure 4.6, we can see that both drones are synchronized

during the execution of the mission. In the next cases, we will add disturbances

in order to make the effects of the algorithm more evident.
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Figure 4.3: Evolution of the trajectory in time of the first drone
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Figure 4.4: Target following drone 1
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Figure 4.5: Target following drone 2

0 5 10 15 20 25

Time [s]

-2

-1

0

1

2

N
o
rt

h
 [
m

]

Positions of the drones

UAV 1

UAV 2

0 5 10 15 20 25

Time [s]

0

1

2

3

4

U
p
 [
m

]

UAV 1

UAV 2

Figure 4.6: Positions of the two drones in time
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Figure 4.7: Disturbance

4.2 First disturbance

In this scenario, we use the same trajectory as before (Figure 4.2), but in this case

we stop one of the two drones and the other will follow it. The Figure 4.7 shows

the disturbance applied to the first drone at time 11s.

We can now see how the two drones execute the mission. The second drone

tries to go on when the first is interrupted, but then the consensus stops it. The

plots are shown in the Figures 4.8 and 4.9.

Finally, the Figure 4.10 is a graph representing the overlapped positions of the

two drones.
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Figure 4.9: Target following drone 2
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Figure 4.10: Positions of the two drones in time

4.3 Second disturbance

The trajectory used is always the same (Figure 4.2), but this time the disturbance

is different. Now we force one drone to go back through the trajectory which has

travelled so far. After the disturbance, the drone can resume the trajectory and

complete the mission. We can see the effect of the disturbance on the trajectory

in the Figure 4.11.

At time 11s the disturbance starts and the drone begins to go back. At time

26s, the drone has returned to the position where the disturbance is started.

In this situation, the other drone recognizes that the other machine is going

backward for an unknown reason and starts to follow it. We can see how the

mission is done by the two drones in the Figures 4.12 and 4.13.
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Figure 4.12: Target following drone 1
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Figure 4.13: Target following drone 2
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Figure 4.14: Positions of the two drones in time
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Finally, the Figure 4.14, is a graph representing the overlapped positions of

the two drones.





Chapter 5

Experimental results

In this chapter we present the results obtained applying the simulations presented

in the previous chapter to a real system.

We want to highlight that the algorithm works even in the real system and

the results obtained are compatible with the simulated ones. In this scenario, we

need to take into account that the network is not ideal and the data may suffer

delays and inaccuracy due to the complex clock synchronization of the machines

involved in the experiment.

As in chapter 4, we will run the experiment three times. Firstly, the formation

has to follow the trajectory without disturbances. Secondly, we run the algorithm

and then we stop one of the drones, while the other one will try to go on, but

then stop. Thirdly, we will introduce a disturbance which will make one of the

drones go back following its trajectory backward. The consensus algorithm reacts

to these disturbances and forces the other drone to preserve the formation.
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Figure 5.1: Target following drone 1

The trajectory used is the same as the simulated one (4.2), and the drones start

on the top points of their trajectory, following the circle in opposite directions.

They must be symmetric and finish the mission at the same time.

The three cases will now be presented in detail.

5.1 Trajectory following

The two drones will follow the trajectory, as shown in the Figures 5.1 and 5.2.

In this case as well, there are some delays due to the fact that the autopilot

needs time to follow the target, but the drones can follow if successfully. In

fact, they arrive at their final position at the same time. The two drones remain

synchronized during the whole mission as we can see in the Figure 5.3.
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Figure 5.2: Target following drone 2
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Figure 5.3: Positions of the two drones in time
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Figure 5.4: Target following drone 1

5.2 First disturbance

When we add a disturbance to one of the drones, the algorithm rejects it and

preserves the formation. In this experiment we introduce the disturbance a time

6s and it terminates 10s later. The mission can be seen in the Figures 5.4 and

5.5.

The disturbance causes the other drone to stop and wait until the disturbance

is over. We can see the synchronization in the Figure 5.6.
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Figure 5.5: Target following drone 2
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Figure 5.6: Positions of the two drones in time
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Figure 5.7: Target following drone 1

5.3 Second disturbance

The last disturbance is the one which forces a drone to go back along the trajectory.

We can see how the setpoints change when the disturbance is active and how the

drones follow them. The Figures 5.7 and 5.8 present the experiment.

The disturbance causes the other drone to stop and go back, following the

other, until the disturbance is over. The synchronization is shown in the Figure

5.9.

The experimental results are less accurate than the simulated ones, but the

overall behaviour is preserved. Indeed, if we compare the results, we can see that

the formation is maintained in both cases. The plots are very similar even if the

simulated model of the drones does not reflect the real drones and even if the
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Figure 5.8: Target following drone 2
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Figure 5.9: Positions of the two drones in time



82 Experimental results

drones used are heterogeneous.



Conclusions

The results obtained in our experiments can be applied in many fields in which a

formation of UAVs is operating. In this thesis, we have shown how the consensus

algorithm is deployed on a real system and what performances can be achieved.

The implementation of the consensus algorithm allows us to plan and fulfil

a cooperative mission in which the synchronization is one of the most important

aspects. The system is robust to network delays, loss of packets and to unexpected

failures of the vehicles involved. Moreover, if equipped with an obstacle avoidance

algorithm, the formation overcomes the presence of unexpected obstacles during

the execution of the mission.

Further studies can be carried out in order to integrate recovery procedures

in case of network failures or loss of a machine. It is possible to develop obstacle

avoidance algorithms or any kind of online procedures acting directly on the free

parameters of the algorithm presented. In particular, it is possible to change the

values of γ̈d and γ̇d, in order to modify the velocity of the execution of the mission.

These two values can be also used to build more complex functionalities on top

of the consensus algorithm.
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