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Sommario

In questo lavoro studiamo per la prima volta un Leadership Game, nel quale

un agente, agendo da Leader, affronta un altro agente, che agisce da Follower,

il cui comportamento non è conosciuto a priori dal leader, ma fa parte di un

insieme di possibili profili comportamentali. La motivazione principale è che

nelle applicazioni reali l’assunzione comunemente fatta in Teoria dei Giochi,

ovvero che l’avversario sia completamente razionale, si verifica raramente ed

ogni assunzione specifica, se sbagliata, può portare a una perdita significa-

tiva per il leader. La domanda che ci poniamo è se e come il leader possa

apprendere il profilo comportamentale di un follower nei Leadership Games.

Questo è per sua natura un problema di online identification: infatti il leader

cerca di identificare il profilo comportamentale del follower per sfruttare al

meglio la potenziale non-razionalità dell’avversario, minimizzando al con-

tempo il regret dovuto all’iniziale mancanza di informazione. Proponiamo

due algoritmi basati su due approcci differenti e forniamo una analisi del

regret. Inoltre, valutiamo sperimentalmente lo pseudo-regret degli algoritmi

in Leadership Game concreti, ispirati da contesti di sicurezza, mostrando

che i nostri algoritmi superano drasticamente gli algoritmi disponibili nello

stato dell’arte.
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Abstract

We study for the first time, to the best of our knowledge, a Leadership Game

in which one agent, acting as leader, faces another agent, acting as follower,

whose behaviour is not known a priori by the leader, being one among a set

of possible behavioural profiles. The main motivation is that in real-world

applications the common game-theoretical assumption of perfect rationality

is rarely met, and any specific assumption on bounded rationality models, if

wrong, could lead to a significant loss for the leader. The question we pose

is whether and how the leader can learn the behavioural profile of a follower

in Leadership Games. This is a “natural” online identification problem: in

fact, the leader aims at identifying the follower’s behavioural profile to ex-

ploit at best the potential non-rationality of the opponent, while minimizing

the regret due to the initial lack of information. We propose two algorithms

based on different approaches and we provide a regret analysis. Further-

more, we experimentally evaluate the pseudo-regret of the algorithms in

concrete Leadership Games inspired by security domains, showing that our

algorithms dramatically outperform the online learning algorithms available

in the state of the art.

V



VI



Contents

Sommario IV

Abstract VI

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Original Contributions . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 5

2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Leadership Games . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Security Games . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Prediction with Expert Advice . . . . . . . . . . . . . 10

2.2.2 Multi-Armed Bandit (MAB) . . . . . . . . . . . . . . 12

2.3 Uncertainty in Security Games . . . . . . . . . . . . . . . . . 16

2.3.1 Bounded Rationality . . . . . . . . . . . . . . . . . . . 16

2.3.2 Unknown Payoffs . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Features of Security Game Models . . . . . . . . . . . 18

3 Problem Formulation 21

3.1 Profiles Set Restriction Motivation . . . . . . . . . . . . . . . 23

3.2 Analysed Attacker Profiles . . . . . . . . . . . . . . . . . . . . 24

VII



3.2.1 Stochastic Attacker . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Strategy Aware Attackers . . . . . . . . . . . . . . . . 25

3.3 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Proposed Solutions 29

4.1 Online Learning techniques . . . . . . . . . . . . . . . . . . . 29

4.1.1 Follow the Perturbed Leader . . . . . . . . . . . . . . 30

4.1.2 Multi-Armed Bandit Algorithms . . . . . . . . . . . . 33

4.1.3 Considerations . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Belief-Based Algorithms . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Follow the Belief . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Follow the Regret . . . . . . . . . . . . . . . . . . . . 41

4.2.3 Computational Complexity . . . . . . . . . . . . . . . 43

5 Experiments 45

5.1 Studying Attacker’s Behavior . . . . . . . . . . . . . . . . . . 46

5.1.1 Regret Analysis . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2 Time Performance . . . . . . . . . . . . . . . . . . . . 51

5.2 Analysis of the Impact of Prior Information . . . . . . . . . . 52

5.3 Introducing Unknown Attacker’s Profiles . . . . . . . . . . . . 54

6 Conclusions and Future Work 57

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A McDiarmid Inequality 59

Bibliography 61

VIII



List of Figures

3.1 Leader-follower interaction . . . . . . . . . . . . . . . . . . . . 22

5.1 Expected pseudo-regret for the different configurations. . . . 49

5.2 Expected pseudo-regret for the different configurations. . . . 50

5.3 Expected pseudo-regret for the different configurations. . . . 55

IX



X



List of Tables

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Sets of attacker’s profilesA used for the experiments and total

number of attackersK. We report also the number of different

stochastic, SUQR, and unknown stochastic behavioural pro-

files for each configuration. The configurations are ordered

from the ones with smallest number of behavioural profiles

(K = 2) to the largest one (K = 11). . . . . . . . . . . . . . . 46

5.2 Expected pseudo-regret RN (U) over 1000 rounds with confi-

dence intervals for configurations C1, C2, C3. . . . . . . . . . . 47

5.3 Expected pseudo-regret RN (U) over 1000 rounds with confi-

dence intervals for configurations C4, C5, C6. . . . . . . . . . . 48

5.4 Computational time in seconds needed by FB and FR to solve

an instance over N = 1000 rounds. . . . . . . . . . . . . . . . 51

5.5 Configurations are grouped by the chosen real attacker type. 52

5.6 Expected pseudo-regret RN (U) over 1000 rounds with confi-

dence intervals for configurations Di, where the attacker is

SUQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 Sets of attacker profiles A used for the experiments and total

number of attacker K. . . . . . . . . . . . . . . . . . . . . . . 54

XI



XII



Chapter 1

Introduction

1.1 Context

The study of scenarios in which multiple strategic agents interact is a chal-

lenging problem that is central in Artificial Intelligence from many years.

The modelling of these scenarios can be elegantly achieved by means of

non-cooperative game theory tools [8], while the task of solving a game is

in many cases an open problem, in which the most suitable techniques to

adopt strictly depend on information available to the agents. Two extreme

situations can be distinguished: when all the information about the game is

common to the players (e.g., utility functions and rationality—either perfect

or bounded), the problem is basically an optimization problem, solvable by

means of techniques from operations research [25], conversely, when players

have no information about the opponents, the problem is a multi-learning

problem, and learning techniques are commonly employed [27]. Some at-

tempts were also done to pair these two approaches, allowing agents to play

at the equilibrium if the opponent is rational and to play off the equilibrium

learning to exploit her at best otherwise [6].

Recently, there is an increasing interest in leadership games, where an

agent—called leader—publicly commits to a strategy and subsequently an-

other agent—called follower—observes the commitment and then takes her

decision. Such paradigm has been successfully employed in a number of

applications in the security domain [20, 26, 2], where a defender (acting

as leader) must protect some targets in an environment from an attacker

(acting as follower), who aims at compromising such targets without being
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detected. The success of leadership games in real-world applications is due

to a number of reasons: committing to a strategy is the best the leader can

do, the equilibrium finding problem is conceptually simple since the follower

can merely play her best response to the commitment of the leader without

any strategic reasoning about the leader’s behaviour, and the solution is

unique except degeneracy. The crucial issue is that in real-world applica-

tions the follower may be not perfectly rational, not necessarily playing her

best response to the leader’s commitment. For instance, a terrorist could

decide either to attack a target that is not patrolled, since she is sure to not

be caught, or a target not so valuable itself, but that would cause a huge

panic reaction in the population (e.g., this is what happened in November

2015 in Paris attacks at the Bataclan theatre). The same challenge may be

faced by a company that aims at planning the production of a product and

has to decide when and how it is convenient to enter the market when an-

other company is already the leader in such market—this is the well-known

Stackelberg duopoly [29]. Whenever the assumption of perfect rationality is

not met, each agent may in principle exploit her opponent’s strategy.

1.2 Problem

In our work we imagine a leader-follower scenario in which we are uncer-

tain about the rationality of the attacker, but we are able to make some

hyphothesis on it and consequently to reduce the possible attacker profiles

to a finite set. As the game develops, we can observe how the attacker re-

sponds to our declared strategies in an expert way, i.e. we have complete

information on her moves (but not on her strategies). Given the presence

of uncertainties it is not possible to apply the conventional Game Theory

solution concepts, instead our objective will be trying to minimize the regret,

that means minimizing what we lose at each round for having chosen the

wrong strategy. In a Security Game context we can imagine a situation in

which we are trying to fight the crime in a city in which suddendly appears

a new gang. We know the possible behavioural profiles of gangs but we do

not know which one we are facing, and therefore we are not able to use our

police resources properly. Generally speaking the described problem arises

when, in a leader-follower scenario, there are not enough historical data, or

expert knowledge to classify with certainty the attacker behavioral profile,
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but we need a solution that exploits all the collected data in the best possible

way.

The Security Game area has been the subject of increasing interest in

these years, representing the most remarkable application of leaderdship

games. Furthermore our group has experience in this area, which makes us

able to make reasonable hypothesis on the profiles. Thus, this work, whose

results are valid for every kind of leadership game anyhow, has a particular

focus on this context. This choice also enables us to make more complex

experiments and then interpret the results in a sensible way. In particular

we will refer to the gangs setting each time we want to make a practical

example of a theoretical concept. We define this problem as Follower’s

Behaviour Identification in Security Games (FBI-SG).

1.3 Original Contributions

Having defined a new problem, no dedicated solutions exist in literature,

however general learning algorithms can be directly applied to it. Such tech-

niques, that are based on the observed loss, result to be unable to correctly

exploit the received feedback, because they do not take into account the de-

fender commitment to a strategy. Thus, we introduce two novel approaches

to deal with our problem, bridging together game-theoretical techniques and

online learning tools. In the first approach, the leader has a belief about

the follower and updates it during the game. We name the algorithm Follow

the Belief (FB) and we provide a finite-time analysis showing that the regret

of the algorithm is constant in the length of the time horizon. In the sec-

ond approach, namely Follow the Regret (FR), the learning policy is driven

directly by the estimated expected regret and is based on a backward in-

duction procedure. Finally, we provide a thorough experimental evaluation

in concrete leadership settings inspired to security domains, comparing our

algorithms with the main algorithms available in the state of the art of the

online learning field and showing that our approaches provide a remarkable

improvement in terms of expected pseudo-regret minimization.
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1.4 Structure

This work is organized as follows:

• Chapter 2 introduces the main works on machine learning applied in

security games, and the main concepts and algorithms of prediction

with expert advice;

• Chapter 3 exposes the faced problem in all its details, showing the

main difficulties and challenges that issues;

• Chapter 4 explain the main issues in applying directly state-of-the-art

online learning algorithms to the problem, and present our solutions

to it.

• Chapter 5 illustrates and analyses the experimental phase of our work

to evaluate our algorithms, pointing out the enhancements achieved

respect to the state-of-the-art algorithms;

• Chapter 6 summarises the main challenges and results of this work,

proposing possible extensions to the problem and to the solutions

shown.



Chapter 2

Literature Review

In this chapter we explain the main concepts and tools that we use in the rest

of the work. We introduce the concept of Leadership Game and the main

techniques to which we confront, namely Follow the Perturbet Leader, UCB1

and Thompson Sampling. Then, we shall also illustrate the main works in

literature that are related to ours, highlighting differences and similarities.

2.1 Game Theory

Game Theory is the name given to the methodology of using mathemat-

ical tools to model and analyse situations of interactive decision making.

These situations involve several decision makers, called players, with dif-

ferent goals, in which the decision of each affects the outcome for all the

decision makers [14]. In principle, games can exhibit complex dynamics

involving players who move in a certain order and can observe previous

players’ moves, or including random events that can alter the outcome of

a certain strategy profile. However if the players move simultaeously and

there are no random events, then, it is possible to represent a game in the

so called normal-form:

Definition 1 (Normal-Form Game). A game in normal-form (or in strategic-

form) is an ordered triple G = (N, (Si)i∈N , (ui)i∈N ) in where:

• N = {1, 2, . . . , n} is a finite set of players.
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• Si is the set of strategies of player i, for every player i ∈ N .

We denote the set of all vectors strategies by S = S1 × S2 × . . .× Sn.

• ui : S → R is a function, called utility, associating each vector of

strategies s = (si)i∈N with the payoff ui(s) to player i, for every player

i ∈ N .

Games can model many different situations, where players’ goals might

be related to each other in a positive way, i.e., the players are cooperating,

but also in a negative one, e.g., one player gets a utility opposite w.r.t. the

one gained by her opponent. This latter case is modeled with zero-sum

games.

Definition 2 (Zero-Sum Game). A two-player game is a zero-sum game if

for each pair of strategies (s1, s2) one has:

u1(s1, s2) + u2(s1, s2) = 0 (2.1)

where s1, s2 are, respectively, the strategy of the first and second player.

Many times the modeled situation involves more than one interaction be-

tween players.

Definition 3 (Repeated Game). A game is a repeated game if it consists

in the repetition of another game, called its base game.

We can have repeated games, where:

• the game lasts an infinite number of stages, and each player wants to

maximize the time-discounted sum of her payoffs;

• the game lasts a finite number of stages T , and every player wants to

maximize her average payoff;

• the game lasts an infinite number of stages, and every player wants to

maximize the upper limit of her average payoffs.

2.1.1 Leadership Games

Leadership Games make their first appearence in a model described in Mar-

ket Structure and Equilibrium by the German economist Heinrich Freiherr

von Stackelberg [29]. The model presented in such work was a strategic game
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in economics modeling a market situation in which the leader firm moved

first while the follower observes the leader’s choice and acts subsequently.

This happens, for example, when a company aims at planning the produc-

tion of a product and has to decide when and how it is convenient to enter

the market when another company is already the leader in such market. In

general a Leadership Game is now defined as a situation in which:

• the leader can commit to a strategy ;

• the follower observes the leader’s commitment and responds with an-

other strategy, based on its rationality level.

If we assume that both players are perfectly rational, then we can solve this

game adopting the Leader-Follower equilibrium.

Definition 4 (Leader-Follower Equilibrium). The strategy profile (sl, s
∗
f ) is

a Leader-Follower equilibrium, if sl and s∗f are solutions of the following

problem:

arg max
sl,s
∗
f

ul(sl,s
∗
f ) s.t.

sl ∈ ∆l

s∗f ∈ arg max
sf

uf (sf , sl) s.t

sf ∈ ∆f

where ∆l,∆f are respectively the simplex where leader and follower

strategies are defined, and uf is the follower’s utility function. In other

words, the leader commits to the strategy that maximizes its own utility

when the follower best-responds to it.

2.1.2 Security Games

The Leader-Follower model has been largely applied to tackle problems that

arise when physical security of environments or infrastructures must be guar-

anteed. In this context the goal is to protect ports, airports, buses and

trains, transportation or other infrastructure often with limited security re-

sources to accomplish this goal. Due to the vastness of the environment,

we cannot protect each area. Moreover, we can only deploy a scarce num-

ber of resources, being these expensive. Thus, we should carefully select
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how to place them. Unfortunately, opponents can monitor our defenses and

exploit any pattern in these selective deployments. A possible solution to

this problem is a weighted randomization of the resources, assigning guards

to targets based on targets’ value. This prevents attackers to easily pre-

dict which targets are uncovered, however they are still able to conduct

surveillance, learn the weights on the targets and act consequently. This

scenario perfectly matches the Leader-Follower model, where the defender

can commit to a strategy (the surveillance schedule) and the attacker must

act according to it, as a follower. Solutions of this kind have been applied

succefully to real-world problems, e.g., in [20] game theoretic techniques have

been applied to ensure the security of the Los Angeles International Airport

(LAX), in [26] the authors exploit the Stackelberg paradigm to study how

to schedule undercover federal air marshals on domestic U.S. flights, while

in [21] such paradigm is employed to allocate the Transportation Security

Administration (TSA) scarce resources to provide protection within several

U.S. airports. A higher degree of interaction among the agents is captured

in [2], where an alarm system to detect potential attacks is introduced.

2.1.3 Issues

Even if Leader-Follower Equilibrium is perfectly suitable to solve this kind

of problems, this solution needs to have all the parameters of the problem.

In particular it is necessary to determine:

• the payoffs of the targets;

• the attacker’s resources;

• the attacker’s rationality degree.

Security Games represent adversarial interactions between players. How-

ever, in general, security games need not to be zero-sum. Some reasons could

be that the opponent evaluates some targets as particularly important for

her audience for their symbolic value, whereas they may not be of equal

importance to the police. Or an opponent may not view even a failed attack

as a negative outcome because of the publicity and fear it generates. Or

the adversary may need to incur a significant cost in mounting a particular

attack that may not be particularly important to the police. This problem
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is sometimes faced with the Bayesian Stackelberg Games formalism. In this

model, it is assumed that different types of attackers (which means different

payoffs matrixes) appear to the defender according to a certain distribution.

Determining the values of the targets is a job for domain experts, which is

not easy and subject to errors.

Attacker’s rationality is another issue: in the previous sections, we always

assumed perfectly rational attackers, but in reality attackers are humans who

do not usually reason in a rational fashion. Many human rationality mod-

els have been applied by psychologists to describe human behaviour about

choices, though often these models are parametric or simply not suitable to

describe all possible kinds of attackers.

In general, when the Security Game model is not completely specified, we

have to overcome that uncertainties, developing new solutions that involve

learning or robust optimization techniques. These and other issues that have

been faced in literature, will be illustrated later in this chapter. However

first we have to introduce the Online Learning framework that stands at the

base of many of the proposed solutions and, as we shall see, has a strong

connection to Game Theory itself.

2.2 Online Learning

A sequential decision making problem consists in taking a choice based on a

past history of observations, having as a goal the maximizazion of a reward

function (or the minization of a loss function, which is the convention we are

going to maintain all over this work). Depending on which is the structure of

the problem and our knowledge of it, we may solve the problem in an exact

way (e.g. with the Bellman Equation). Unfortunately, in many cases we are

not able to solve it exactly and we have to resort to find an approximated

solution by means of some Online Learning technique. In this section we

shall introduce two frameworks: Predictions with Expert Advice (for which

it is used the notation of [4]) and Multi-Armed Bandit. These represent

situations in which we are not able to specify the states of the system,

and therefore we cannot use Reinforcement Learning tools. In practice, we

implicitly assume that the system has only one state, and, as it happens in

repeated games, we are asked, at each round, to choose among the same set

of actions, based on what happened in the past.
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2.2.1 Prediction with Expert Advice

Prediction with Expert Advice is based on the following protocol for sequen-

tial decisions: the decision maker is a forecaster whose goal is to predict an

unknown sequence y1, y2, . . . of elements of an outcome space Y. The fore-

caster’s predictions p̂1, p̂2, . . . belong to a decision space D that we assume

to be a convex subset of a vector space. In some special cases we take D = Y,

but in general D may be different from Y. The forecaster computes his pre-

dictions in a sequential fashion, and his predictive performance is compared

to that of a set of reference forecasters that we call experts. More precisely

at each time t:

• the forecaster has access to the set {fE,t : E ∈ E} of expert predictions

fE,t ∈ D, where E is a fixed set of indices for the experts;

• on the basis of the experts’ predictions, the forecaster computes his

own guess p̂t for the next outcome yt;

• after p̂t is computed, the true outcome yt is revealed.

The predictions of forecaster and experts are scored using a non-negative

loss function l : D × Y → R. This prediction protocol can be naturally

viewed as a repeated game between forecaster that makes guesses p̂t , and

environment, who chooses the expert advice {fE,t : E ∈ E} and sets the true

outcomes yt, determining a certain loss for the first player.

The forecaster’s goal is to keep as small as possible the cumulative regret

with respect to each expert:

Definition 5 (Cumulative Regret). The cumulative regret (or simply re-

gret) for expert E is equal to:

RE,n =
n∑
t=1

(l(p̂t, yt)− l(fE,t, yt)) = L̂n − LE,n (2.2)

where L̂n =
∑n

nt=1 l(p̂t, yt) denotes the forecaster’s cumulative loss while

LE,n =
∑

t=1 l(fE,t, yt) represents the cumulative loss of expert E. Hence,

RE,n is the difference between the forecaster’s total loss and that of expert

E after n prediction rounds. We also define the instantaneous regret with

respect to expert E at time t as follows:

rE,t = l(p̂t, yt)− l(fE,t, yt). (2.3)
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Thus, RE,n =
∑n

t=1 rE,t . One may think of rE,t as the regret the forecaster

feels of not having listened to the advice of expert E right after the tth

outcome yt has been revealed. Throughout the rest of this work, we can

assume that the number of experts is finite, E = 1, 2, . . . , N , and therefore

use the index i = 1, . . . , N to refer to an expert.

The goal of the forecaster is make predictions in order to minimize the

regret for the all sequences of outcomes. For example, the forecaster may

want to have a vanishing per-round regret, or a sub-linear regret, that is, to

achieve

max
i=1...N

Ri,n = o(n) or, equivalently,
1

n
(L̂n − min

i=1,...,N
Li,n)

n→∞−−−→ 0 (2.4)

where the convergence is uniform over the choice of the outcome sequence

and the choice of the expert advice. Conversely, if the regret has the same

order of n (i.e it is a linear regret) the instantaneous regret is not reducing

with time and the solution is not reaching the global minimum of the loss

function.

Follow the Leader

The simplest forecasting strategy, namely fictitious play, consists in choos-

ing, at time t, an expert that minimizes the cumulative loss over the past

t−1 time instances. In other words, the forecaster always follows the expert

that has had the smallest cumulative loss up to that time.

Algorithm 1 FOLLOW THE LEADER

1: for all t ∈ {1, . . . , n} do

2: Compute E = arg minEk∈E
∑t−1

i=1 l(fEk,i, yi)

3: Play expert p̂kt = fE,t
4: Observe yt

Under some conditions (e.g. square loss function or convex losses with

constant experts, see [4]), the regret of this algorithm grows as slowly as

O(ln(n)). However, in general, it can suffer in some case from linear regret.

For example, consider N = 2 actions such that the sequence of losses l(1, yt)

of the first is (1
2 , 0, 1, 0, 1, . . .) while the values of l(2, yt) are (1

2 , 1, 0, 1, 0 . . .).

Then Li,n is about n
2 for both, but Follow the Leader suffers a loss of O(n).
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Follow the Perturbed Leader

As pointed out in [9], with a simple modification we can overcome the pre-

vious problem. In fact we can add a small random perturbation to the

cumulative losses, and follow the perturbed leader. Formally, let Z1, Z2 . . .

be independent, identically distributed random N -vectors with components

Zi,t = (i = 1, . . . ,K), where K = |E|. For simplicity, assume that Zt has

a uniform distribution. At time t, the follow-the-perturbed-leader forecaster

selects an action:

It = arg min
i=1,...,n

(Li,t−1 + Zi,t). (2.5)

Algorithm 2 FOLLOW THE PERTURBED LEADER

1: for all t ∈ {1, . . . , n} do

2: for all Ek ∈ E do

3: Sample Zk,t ∼ U(0,
√
nK)

4: Compute E = arg minEk∈E
∑t−1

i=1[l(fEk,i, yi)] + Zk,t
5: Play expert p̂kt = fE,t
6: Observe yt

If Zi,t is uniformly distributed on [0,
√
nK] then the actual regret, with

probability at least 1− δ, satisfies [4]:

Rn ≤ 2
√
nK +

√
n

2
ln(

1

δ
). (2.6)

2.2.2 Multi-Armed Bandit (MAB)

The singular name of this problem derives from one of the examples used

to describe it in an informal way, after the first formalization in [24]: a

gambler has to play with some slot machines (which were once also called

one-armed-bandit) and wants to minimize her cumulative loss (or maximize

her cumulative reward). Therefore, based on the losses she observed play-

ing different “arms”, she has to decide which arm he will play next. More

formally, in the multi-armed bandit setting we define a finite set of possible

choices, D, where the possible choices are called arms. At each turn, the

player selects arm p̂t from D and observes the associated loss lt. The objec-

tive is to minimize the sum of the collected losses over the horizon H, i.e.
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the number of rounds that have to be played after the beginning. The regret

R after n rounds is defined as the expected difference between the sum of

the collected losses and the loss sum associated with an optimal strategy :

R =
n∑
t=1

lt − nl∗ (2.7)

where l∗ is the minimal loss mean and lt is the loss at time t. This problem

can be also seen as a one-state Markov Decision Process or as a modified

version of the Prediction with Expert Advice Problem, where the latter

differs from the MAB on the received feedback. In fact, in the expert context,

we are always informed of which expert (arm) is the best choice, while in

the MAB setting we receive a loss, but we have no means of knowing what

would have been the best arm to select at that round. In other words, we

can call the expert feedback a complete feedback and the MAB one a partial

feedback, because it gives us information only on the pulled arm, but not

on the others. Unfortunately, all MAB algorithms are subjected to a lower

bound[13]:

Theorem 2.2.1 (MAB Lower Bound). Given a MAB stochastic problem

any algorithm satisfies:

lim
t→∞

Lt ≥ log t
∑
i|∆i

∆i

KL(Ri,R∗)
(2.8)

where Ri represents the distribution of the rewards of arm i, ∆i = E[R∗]−
E[Ri], and KL(Ri,R∗) is the Kullback–Leibler divergence between the two

distributions Ri and R∗.

Upper Confidence Bound - UCB1

While in the expert setting we have no need of exploration, having a com-

plete feedback, in MAB’s one we can not resort to algorithm like Follow

the Leader, because we are compelled to explore also the other choices. A

way to do it is considering a lower bound LBk,t over the expected loss Lk,t
such that, with high probability LBk,t = L̂k,t + Bk,t ≤ Lk,t, where Bk,t is a

bound that depends on how much information we have on an arm, which is

embodied by the number of times we have pulled arm k so far. Specifically,

we want to have a large bound if we have chosen the arm a few times, and
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Algorithm 3 UCB1

1: for all t ∈ {1, . . . , n} do

2: for all pk ∈ D do

3: Compute L̂t =
∑t

i=1 lk,iI[pk = pki ]

4: Compute Bk,t

5: Play arm p̂kt = arg minpk∈D LBk,t

a tight bound if the arm has been largely pulled. In order to set this bound

we resort to a concentration inequality called Hoeffding Bound:

Definition 6 (Hoeffding Inequality Bound). Let X1, . . . , Xt be i.i.d random

variables with support in [0, 1] and identical mean E[Xi] = X and let X =∑t
i=1Xi be the sample mean. Then:

P(X < X + u) ≤ e(−2tu2).

This inequality can be applied to each arm:

P(Lk,t < L̂k,t +Bk,t) ≤ e(−2tB2
k,t). (2.9)

Picking a probability p that the real value exceeds the bound e(−2tu2) = p we

can solve this equation to find Bk,t = −
√

log(p)
Nt,k

, where Nk,t is the number

of times we pulled arms k. UCB1 algorithm employs a typical frequentist

approach to the problem, in fact it does not assume any underlying dis-

tribution for some arms’ parameters. This algorithm has an upper bound:

Theorem 2.2.2 (UCB1 Upper Bound). At time T , the expected total regret

of UCB1 algorithm applied to a stochastic MAB problem is:

LT ≤ 8 log T
∑
i|∆i>0

1

∆i
+

(
1 +

π2

3

) ∑
i|∆i>0

∆i. (2.10)

Thompson Sampling

The other option w.r.t. a frequentist approach is a Bayesian one, adopted

by Thompson Sampling. The algorithm assumes that rewards are Bernoulli

variables and each arm has a different Beta distribution on the Bernoulli
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Algorithm 4 THOMPSON SAMPLING

1: for all pk ∈ D do

2: Initialize αk = 1, βk = 1

3: for all t ∈ {1, . . . , n} do

4: for all pk ∈ D do

5: Sample l̂k,t = −r̂k,t ∼ Beta(αk, βk)

6: Play arm p̂kt = arg minpk∈D l̂k,t
7: Observe lt
8: Sample s ∼ Bernoulli(p = 1− lt)
9: if s = 1 then

10: αkt = αkt + 1

11: else

12: βkt = βkt + 1

parameter. Every time we pull an arm, we observe the loss lt, and, in

case of success (lt = 0) we update the α parameter of its Beta prior with

αk,t+1 = αk,t + 1, while in case of failure (lt = 1) we update the parameter

β with βk,t+1 = βk,t + 1. Then, at each turn, we sample from each Beta

prior, and choose the arm which has the maximum sampled probability of

success. In principle, this algorithm should be used only with Bernoulli

rewards (losses), but here we present an adjustment [1] that makes it work

with every loss domain. We take the normalized observed loss lt and then

we interpret 1 − l1 as the probability of success of a Bernoulli and after

we have established this value we sampled from it, in order to classify the

observation as a success or a failure. There exists an upper bound for this

algorithm:

Theorem 2.2.3 (Thompson Sampling Upper Bound). At time T, the ex-

pected regret of Thompson Sampling applied to a stochastic MAB problem

is:

LT ≤ O

 ∑
i|∆i>0

∆i

KL(Ri,R∗)
(log T + log log T )

 . (2.11)
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2.3 Uncertainty in Security Games

Uncertainties can arise from multiple sources in Security Games. In this

section we describe the main works in literature on this topic, comparing

them to our work.

2.3.1 Bounded Rationality

First works in Security Games assumed a completely rational (sometimes

called also “game-theorist”) opponent. However, even if it can be supposed

to be true for particularly critic situations, in most of the security games,

the attackers will take decisions in a different way, a human way indeed,

using essentially their feelings and intuitions to choose amongst the possible

targets. Quantal choice [16] is one of the classical models used to explain

the bounded rational behaviour. It has also been applied in games [17],

bringing to the definition of a new kind of equilibrium, the Quantal Choice

Equilibrium. This model has been used in security games in many ways,

particularly in the poaching context. First it has been applied using the

traditional utility function [32], with only one parameter λ used to measure

the rationality. However, later works showed that human behaviour is bet-

ter described by the use of a Subjective Utility function [18] that weights

in a subjective way the coverage probability and the target values (SUQR).

Successive refinements of the model took in consideration non-linear sub-

jective function [11], taking inspiration from the Prospect Theory [28], and

also adding other parameters to the SU, as animal density and distance.

Another article on green security games also considered SUQR attackers

that re-weighted the defender commitment using a linear combination of

past commitments, with a bounded memory. In a paper on protecting natu-

ral resources by illegal extractors [22] attackers were modelled as Fictitious

Quantal Response (FQR) agent, that means that these attackers assume the

defender empirical distribution to be its strategy in the next round. Also

attackers with a stocastic strategy, stationary or non-stationary, which are

unaware of the defender commitment are taken into account in a work in

the context of border patrolling [12] and in another one considering gen-

eral solution to partial feedback Security Games [30]. The same works also

consider fictitious player attackers: as for FQR, these attackers assume the

defender to draw its move from a stochastic fixed distribution, which they



2.3. Uncertainty in Security Games 17

estimate with their observations. They respond to it by playing the pure

strategy that maximizes their utility function.

2.3.2 Unknown Payoffs

Determining the exact values for the payoff matrix is a challenging task:

estimates are usually obtained from risk analysis experts and historical data,

but the degree of uncertainty is typically high. Consequently, researchers

have introduced Bayesian frameworks [20] that capture uncertainty using

a probability distribution over possible games. This framework assumes

an underlying distribution of attackers with different payoff values for the

targets. However, such a hypothesis may compromise the deployed solution

if the supposed distribution is far from the real one. This issue could be

solved by learning the distribution, which is, unfortunately, most of the time

an impossible task. Another approach consists in bounding the payoffs into

fixed intervals, and then using a robust optimization or a minimax regret

algorithm [19]. Conversely, other works did not make any assumption on

they payoffs, employing online learning techniques to determine them while

playing. In [3] membership-queries to find the best response against an

attacker without knowing the exact payoffs, leveraging on the presence of

a membership oracle for the optimization region, which is represented by

the response of the attacker to the commitment. In another article [30]

a modified version of FPL algorithm is used to minimize the regret in a

MAB way. Things can get also more complicated as we extend the domain

of the security game: in a work on fighting illegal extraction of natural

resources [22] the defender is supposed to be unaware of the values of a

target until it has been attacked. This happens because the area that has

to be monitored is so large, and forbidden to any exploitation, that only

attackers can discover the value of its resources.

2.3.3 Feedback

Everytime it is necessary to resort to online learning in order to overcome

uncertainties, learning performance strongly depends on the type of feedback

received. In a security game context, a complete feedback (Section 2.2.2) for

the defender consists in observing at each turn where the opponent attacked

even if the defender was to able to catch it. This is the hypothesis made
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in most of the papers in literature ([31], [11], [3], [19], [22],[7]), though in

some cases it is necessary to assume the opposite, namely a partial feedback.

For example poachers can catch their prey without leaving any track [23]

or people can pass illegally the border without being noticed [12]. Most of

the time attackers are modeled as strategy-aware. This means that they can

see the defender’s commitment to a strategy. However in some papers they

only have a complete feedback ([22], [7]), which is usually used to estimate

defender’s next strategy (Fictitious Player, FQR).

2.3.4 Features of Security Game Models

Here it has been made the attempt to list some of the main features of

security game models in literature, based on the possible uncertainties and

other characteristics not mentioned before:

• Attacker Rationality: attacker can be completely rational (Stackel-

berg hypothesys), boundedly rational (SUQR, FQR, Fictitious Player)

or she can have a stochastic behavior;

• Payoff Knowledge: attacker payoffs can be known, vary amongst the

various type of attacker (Bayesian Security Games), or be completly

unknwnow to the defender;

• Feedback: the defender is not always aware of all what happened in

the last round, she can have a partial or a complete feedback. The

attacker can be strategy-aware or have a complete feedback. No works

in the literature consider attackers with a partial feedback;

• Topology: the game can have a topological structure, such that not

all the actions are available to each position of players, or it can have

no such a structure;

• Coordination: attackers are coordinated if they act as a unique entity

(for example never attacking the same target at the same time). They

have a common knowledge if they share collected information. When

there are multiple defending resources, usually they have both these

features, but in principle they could be, for example, not coordinated

or temporary unable to share information;
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• States: the system can be modeled with a single state or with multiple

states.

Problem Classification

The problem considered in this work has known payoffs, complete feedback

and a complete coordination. No topology is considered, and a single state is

present. However, differently from the previous literature this work allows

to mantain unspecified the attacker rationality. In fact our main goal is to

discover if it is possible to learn the opponent’s behavior from her moves, in

connection to the defender’s commitments, while minimizing the regret.
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Chapter 3

Problem Formulation

Although our work can be employed in principle for any leadership scenario,

here, for the sake of clarity, we focus on security domains, thus referring to

the leader as defender and to the follower as attacker.

Let us consider a 2-player normal-form repeated game GN defined over

a finite number of rounds N ∈ N, where a defender D and an attacker A

play against each other in some environment with some valuable targets

M = {1, . . . ,M}, characterized by values v = (v1, . . . , vM )T , vm ∈ (0, 1].

The goal of the defender D is to protect such targets while the attacker A

aims at compromising them. The space of actions of D and A is given by

the set of targets such that D chooses the target to protect, while A chooses

the target to attack. The course of the game is represented in Figure 3.1.

Specifically, at each round n ∈ {1, . . . , N}, the defender D announces the

strategy σD,n ∈ ∆M , with ∆M denoting the M -dimensional simplex, she

commits to, while A observes such commitment. Then, they concurrently

play their action over the target space. In particular, the defender plays

actions iD,n ∈ M according to σD,n while A, the follower, plays iA,n ∈ M
according to some attacker model σA(σD,n) ∈ ∆M . The game is zero-sum:

if D and A choose the same target during some round, they both get a

utility equal to 0, conversely if A attacks the i-th target while D decides to

protect the j-th one, A gets vi and D gets −vi due to the loss of the target.

More concisely, the defender incurs in the loss:

ln := viA,n1{iA,n 6= iD,n}, (3.1)
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for each n ∈ {1, . . . , N}
1. D publicly commits to a strategy σD,n
2. A observes the strategy D committed to

3. D and A play iD,n and iA,n, respectively

4. D incurs in loss ln according to 3.1

Figure 3.1: Leader-follower interaction

not suffering from any loss if both players select the same target.1 Hereafter,

we assume that the defender is able to compute the best response strategy

σ∗D(A) ∈ ∆M if she is given the attacker model she is playing against.

Similarly, we denote with σ∗A(σD) ∈ ∆M the best response A plays against

strategy σD of D. According to such assumption, we can compute the

expected loss of D against a generic attacker A as:

L(A) :=
∑
m∈M

σA(σ∗D(A))m vm (1− σ∗D(A)m), (3.2)

where σ·(·)m is the probability associated with target m by the strategy.

The problem we study in this work is defined as follows:

Definition 7. The Follower’s Behaviour Identification in Security Games

(FBI-SG) problem is a tuple (GN ,A, Ak∗), where GN is a 2-player normal-

form repeated game as described above and A = {A1, . . . , AK} is a set of

possible attacker behavioural profiles, with Ak∗ ∈ A denoting the actual pro-

file of the attacker in GN , unknown to the defender D.

In this work, we cast the FBI-SG as a sequential decision learning prob-

lem, where, at each round n, the defender aims at selecting her best response

to the attacker in order to identify the actual attacker profile Ak∗ ∈ A while

minimizing the loss suffered during the learning process.

Definition 8. A policy U is an algorithm able to provide at each round n

a strategy profile σD,n for the defender D. Formally:

U(hn) := σD,n,

1Hereafter, we denote with 1{E} the indicator function of a generic event E.
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where hn is the history collected so far, i.e., all the strategies declared by the

defender {σD,1, . . . ,σD,n−1}, the actions played by the two players

{iD,1, iA,1, . . . , iD,n−1, iA,n−1} in the past rounds and the corresponding losses

{l1, . . . , ln−1}.

We evaluate the performance of a given policy U over a finite-time horizon

of N rounds by means of the expected cumulative pseudo-regret, defined as:

RN (U) = E

[
N∑
n=1

ln

]
− L∗N,

where L∗ := L(Ak∗) is the expected loss incurred by the defender if she

plays the best response to the actual attacker Ak∗ , ln is the loss incurred by

using the policy U at round n and the expectation E[·] is taken w.r.t. the

stochasticity of the attacker strategy, the defender policy and the policy

U. The goal of a generic policy U is to minimize the pseudo-regret RN (U)

incurred while learning the true attacker’s profile.

3.1 Profiles Set Restriction Motivation

In the next section will follow the list and the description of the analysed at-

tacker profiles. The necessity of restict the setA arises from the impossibility

of obtaining a sublinear expected pseudo-regret without any assumption on

the attacker, as we can easily see in the following counterexample.

Let’s consider the most general attacker behaviour function:

f : ∆M,D → ∆M,A (3.3)

that given a defender strategy vector returns the attacker strategy vector,

and define the expected loss function of f as:

lf (σD) :=
∑
m∈M

f(σD)m vm (1− σD,m). (3.4)

We are in general interested in having at least a sublinear cumulative regret

(see Section 2.2.1) which means that we are asimptotically reaching the

minimum of the expected loss function.
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Let’s now consider an FBI-SG problem in which all targets have the

same value v and the attacker function is:

f̂(σD) =

{
î∗ σD = σ∗D(

1
M . . . 1

M

)
otherwise

, (3.5)

where σ∗D 6=
(

1
M . . . 1

M

)
is a random strategy in ∆M,D, and î∗ is the unit

M-dimension vector whose only not null component is i∗ = maxi∈M σ∗D,i .

If we now try to compute lf we obtain:

lf̂ (σD) =

{
v(1− σ∗D,i∗) σD = σ∗D
v
M otherwise

. (3.6)

By construction v(1 − σD,i∗) < v
M and therefore the function has only one

global minimum in σ∗D. The only way to find the minimum of this needle-in-

the-haystack function is to find σ∗D randomly sampling the simplex. Since

it is a point in an infinite set, the probability to find it is equal to zero and

therefore we will have a linear regret.

3.2 Analysed Attacker Profiles

Since it is impossible to obtain general solutions to this problem, in order

to face it we have to reduce the set of the considered profiles. In particular

we can restrict it to:

• a finite set of profiles;

• a subfamily of profiles.

In this section, we describe the different attacker profiles we study in this

work and formalize the definition of the attacker strategy σAk∗ (·) for two

sets of attackers, grouped depending on their ability to change their be-

havior w.r.t. the strategy D commits to. Specifically, on one side, we take

into account stochastic attackers, which disregard the strategy of D, on the

other, we focus on strategy-aware attackers, able to modify their strategies

depending on the defender announced strategy σD,n. In particular we will

also indicate what is the best response that the defender can give to each

one of these profiles.
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3.2.1 Stochastic Attacker

The first class of attackers is the Stochastic (Sto) one, where the attacking

player does not take into account the strategy σD,n announced by the de-

fender D and thus has a fixed Known probability over time to attack the

targets. This class of attackers models opponents focused on specific targets

and whose preferences are not influenced by the defender behaviour. We can

identify this attacker as the one with the least rationality, because it does

not take into account neither the defender commitment neither the targets

value. At round n, a stochastic attacker Sto plays according to the strategy:

σSto(σ) = p(Sto) ∀σ ∈ ∆M ,

where p(Sto) ∈ ∆M is a probability distribution over the targets, which is

known to D. In this case, the defender best response σ∗D(σSto) is defined

as:

σ∗D(Sto)m =

1 if m = arg max
i∈M
{vi p(Sto)i}

0 otherwise
.

Unknown Stochastic Attacker

Another possible profile family is a stochastic attacker with a probabiliy

distribution that is unknown to the defender at the beginning of the game.

In this case we can not have a closed-form best response as before, but we

can learn the attacker empirical distribution as we play. During the learning

process the best we can do is to use the Follow-the-Leader algorithm (Section

2.2.1) which selects the target that has the least expected loss based on the

empirical distribution. What we are doing in practice is best responding

to a model of attacker that uses empirical frequencies as estimators of the

oppponent’s strategy. These estimators are consistent and unbiased.

3.2.2 Strategy Aware Attackers

The second class of attackers we examine in this work consists of strat-

egy aware attackers, corresponding to profiles able to modify their strategy

depending on strategy of the defender D. In particular, we study:

• Stackelberg (Sta) attackers: they represents the attacker with the high-

est level (sometimes called game-theorist level) of rationality. This
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kind of attacker plays the best possible move according to the declared

defender strategy (see Section 2.1.1).

• Subjective Utility Quantal Response (SUQR) attackers: this attacker

profile models a bounded rationality attacker which brings it to over-

weight (or underweight) the coverage probabilies and the targets val-

ues. This kind of model has shown to be effective for describing human

behaviour (see Section 2.3.1).

Stackelberg Attacker

Given a strategy profile declaration σD,n, a Stackelberg attacker Sta re-

sponds according to:

σSta(σ) = arg max
σ′∈∆M

∑
m∈M

σ′m vm (1− σm)

and defender best-responds to a Stackelberg attacker by committing to:

σ∗D(Sta) = arg min
σ′∈∆M

max
σ∈∆M

∑
m∈M

σ′m vm (1− σm),

as reported in [5], where it is proved that, for 2-player zero-sum games,

the optimal mixed strategy for the leader to commit to is equivalent to

computing the minmax strategy, i.e., to minimize the maximum expected

utility that the opponent can obtain.

SUQR Attacker

The SUQR attacker responds to the commitment σD,n as:

σSUQR(σ)m =
exp{−ασm + βvm}∑M
h=1 exp{−ασh + βvh}

,

where α ∈ R+, β ∈ R are parameters known to the defender, characterizing

the attacker and depending on the underlying application. In this case, we

do not have a closed form for the best response, but we can compute the

minmax solution to the problem following the steps taken in [32]. We will

refer to σ∗D(SUQR) as the best response to an attacker with a SUQR profile.
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Unknown SUQR Attacker

As we have done for the Stochastic attacker, we will consider the profiles

family of SUQR attackers with unknown parameters. In this case we have

to use a different estimator, since we do not observe them directly that is

the Maximum Likelihood Estimator (MLE). This estimator is consistent,

but not always unbiased. The complexity of MLE grows linearly with the

number of rounds, however we can also use an approximate minimization

method (we minimize the negative log-likekihood, which is the same as max-

imizing the likelihood) as Stochastic Gradient Descent (SGD), which has a

constant complexity instead. It can be shown that this likelihood function

is a concave function, since the Hessian matrix is negative semi-definite,

therefore the SGD converges to the optimum.

The best response to this kind of attacker is, as for the Stochastic one,

the same of the known case, but using the estimated parameters.

3.3 An Example

Here it is introduced a real-life-inspired example scenario, which can be

modeled using FBI-SG problem. We shall use this scenario in the following

chapter’s examples in order to better understand the analysed algorithms.

Example 1 (Example). In a small district, in the suburbs of a city, a gang

started robbing local shops takings. Here are listed the four targeted shops

with their average daily takings2:

• flower shop : 300 e

• drugstore: 1500 e

• cafè: 500e

• grocery: 800e

There is only one patrol guarding the area, but the band plans carefully each

attack, therefore if they see policemen guarding the chosen target, the attack

is blocked, and they will not attack anymore until the next day.

2Targets’ values have been inspired by data from Agenzia delle Entrate
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Chapter 4

Proposed Solutions

Since the described problem is new, there are no dedicated solutions in

literature. However we tried first to face the problem using general online

learning techniques. As we shall see, traditional solutions fail in providing

low regret, mainly because they can not take into account the commitment

of the defender to a strategy, being loss-based. Our proposed techniques

instead are able to exploit in an effective way all the possible information

and are not deceived by the commitment.

4.1 Online Learning techniques

In order to properly apply these techniques we need first to specify what we

will define as arms (or experts) and feedback. As we have seen in Section 3.2

for each profile we are able, at every round, to compute a best response

strategy for the defender. Therefore we will take as arms the current best

responses to each profile. For what it concerns the feedback, in our problem

the defender knows at the end of each round which target has been attacked.

This means that, based on what she played, the agent is able to compute

the incurred loss. Furthermore she can also speculate about what she would

have been the loss having played another arm, computing the expected loss

for each profile’s best response, given the attacker’s move. Thus we define:

• partial feedback : the real loss received at t;

• complete feedback : the vector of the expected loss for each arm.
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4.1.1 Follow the Perturbed Leader

Using the previous definitions, FPL algorithm (section 2.2.1) can be applied

to the FBI-SG problem. This can be seen with our example setting:

Example 2 (FPL vs Stochastic attacker). Here we suppose to have observed

the game defined in Example 1 for 3 time-steps and describe how to obtain

the FPL strategy at τ4. We are supposing a profile set A = {Sto1, Sto2},
where the attackers have the following distributions:

• σSto1: (0.3, 0.2, 0.1, 0.4)

• σSto2: (0.5, 0.1, 0.3, 0.1)

and the real attacker is Sto1. Having the distributions, then, it is possible

to compute the best-responses:

• σ∗D(Sto1) = (0, 0, 0, 1)

• σ∗D(Sto2) = (1, 0, 0, 0)

Table 4.1

i j fESto1 fESto2
τ1 t4 t1 t4 t1

τ2 t1 t4 t4 t1

τ3 t4 t4 t4 t1

Using the experts’ predictions it is possible to compute l(fE,t, yt) for each

time step:

Table 4.2

l(fESto1 , yτ ) l(fESto2 ,yτ ) lτ

τ1 300 0 300

τ2 0 800 800

τ3 0 800 0
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Therefore cumulative losses can be computed:

• L1 =
∑3

i=1 lSto1,i = 300 + 0 + 0 = 300

• L2 =
∑3

i=1 lSto2,i = 0 + 800 + 800 = 1600

A random perturbation sampled from [0,
√

6] is added to each L:

L1 = 300 + 2.4, L2 = 1600 + 1.6

Thus the leader is Sto1 and the next defender strategies would be (0, 0, 0, 1).

However the previous example was not considering strategy-aware at-

tackers, in the next example it is illustrated how the FPL algorithm can

become problematic in this case:

Example 3 (FPL vs Stackelberg attacker). We now suppose a profile set

A = {Sta, Sto}, where σSto = (0.3, 0.2, 0.1, 0.4), and the real attacker is

Sta. The best-responses are:

• σ∗D(Sta) = (0, 0.65, 0, 0.35)

• σ∗D(Sto) = (0, 0, 0, 1)

If at a certain time τ the defender plays σ∗D(Sta), attacker will respond with:

σsta(σ
∗
D(Sta)) = (0, 0, 0, 1)

With probability 0.65 then:

Table 4.3

i j fESta fESto l(fESta , yτ ) l(fESto2 ,yτ ) lτ

τ t2 t4 t2 t4 800 0 800

according to the algorithm, playing the right best response will cause to

the Stackelberg expert a greater loss than playing the stochastic expert.

What we are missing is that we are not considering the defender’s com-

mitment to her strategy. Indeed, it is not possible for the defender to play

a move without committing to a certain strategy, and this commitment will

influence the attacker’s move. We can express what we have understood

with the intuition in a more formal way with the following theorem:
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Theorem 1 (Expert Pseudo-regret upper bound). Let us consider an in-

stance of the FBI-SG problem and apply the FPL algorithm, where each

possible profile Ak is an expert and receives, at round n, an expert reward

equal to minus the loss she would have incurred observing iAk∗ ,n by playing

the best response to the attacker Ak. Then, there always exists an attacker

set A s.t. the defender incurs in an expected pseudo-regret of:

RN (U) ∝ ∆LkN.

Proof. Let us analyse the FBI-SG problem in which the attacker profile set

is A = {Sta, Sto}, the true attacker Ak∗ = Sta and we use the Follow

the Leader algorithm [4]. Assume that the best response σ∗D(Sto) to the

stochastic attacker Sto corresponds to the pure strategy played by the Stack-

elberg attacker at the equilibrium, i.e, σ∗Sta(σ
∗
D(Sta)) = σ∗D(Sto). Assume

the chosen target by the two strategies has value vm̂ in target m̂, maximum

value vm̄ in target m̄ and that the stochastic attacker has strategy p s.t.:

pm =


α if m = m̂

1− α if m = m̄

0 otherwise

,

where α = vm̄−L(Sta)
vm̄

and αvm̄ > (1−α)vm̄. In this case, the defender might

commit to two different strategies:

• if the defender D declares its best response to the Stackerlberg attacker

σ∗D(Sta) for the turn, it would provide zero loss as feedback for the

stochastic attacker expert and loss equal to−L(Sta) to the Stackelberg

one

• if the defender D selects the best response to the stochastic attacker

σ∗D(Sto), the defender would gain loss equal to −(1−α)vm̄ = −L(Sta)

for the stochastic attacker expert and −L(Sta) for the Stackelberg one.

Thus, in this case the two types would receive the same feedback.

Summarizing, we have that the Stackelberg attacker expert always incurs

in a loss greater or equal to the one of the stochastic one, even if the real

attacker is Stackelberg. Thus, with a probability grater than 0.5 we are

incurring in a loss of ∆Lk for the entire horizon, with a total regret propor-

tional to ∆LkN . Even by resorting to randomization, thus even adopting
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the FPL we would have a probability of at least 0.5− ε (being ε the proba-

bility with which the FPL chooses a suboptimal option) to select the wrong

option, thus also the FPL algorithm would incur in a linear regret over the

time horizon.

4.1.2 Multi-Armed Bandit Algorithms

As we have seen, expert algorithms have a disadvantage in complete feed-

back, because they use this information in the wrong way. Therefore we

need to compare also with MAB algorithms, that use only the information

of the played arm, which cannot be source of errors. The feedback of MAB

algorithms is partial, therefore they do not risk to make the mistake of ex-

pert algorithms, i.e. assigning wrong loss to non-played arms. There are

many MAB algorithms, but we will focus particularly on:

• UCB1

• Thompson Sampling

These are two of the most known algorithms in the field, and in particular

they represent solutions for the MAB setting belonging to the Frequentist

and Bayesian frameworks, respectively. We recall that for both the algo-

rithms there exist upper bounds to the pseudo regret:

Theorem 2 (UCB1 Pseudo-regret upper bound). Let us consider an in-

stance of the FBI-SG problem and apply the UCB1 algorithm, where each

possible behavioural profile Ak ∈ A is an arm which receives reward −ln if

played. Then, we incur in the following pseudo-regret:

RN (U) ≤ 8
∑
k 6=k∗

lnN

(∆Lk)
+

(
1 +

π2

3

) ∑
k 6=k∗

∆Lk,

where ∆Lk =
∑M

m=1 σAk∗ (σ
∗
D(Ak))m vm (1− σ∗D(Ak)m)−L∗ is the expected

regret of playing the best response to attacker Ak when the real attacker

profile is Ak∗.
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Theorem 4.1.1 (Thompson Sampling Upper Bound). At time T, the ex-

pected regret of Thompson Sampling applied to a stochastic MAB problem

is:

LT ≤ O

∑
k 6=k∗

∆Lk
KL(Rk,R∗)

(log T + log log T )

 . (4.1)

Unfortunately, as seen in Section 2.2.2, when using MAB algorithms, we

are subject to a lower bound :

Theorem 4.1.2 (MAB Lower Bound). Given a MAB stochastic problem

any algorithm satisfies:

lim
t→∞

Lt ≥ log t
∑
k 6=k∗

∆Lk
KL(Rk,R∗)

. (4.2)

4.1.3 Considerations

By adopting these online learning techniques we get theoretical results that

might be loose w.r.t. the problem lower bound. In particular, using expert

techniques we sistematically learn in the wrong way against strategy-aware

attackers, while, using MAB techniques, we protect ourselves from these

kind of mistakes, but we suffer the partial use of information through a loose

lower bound. The main problem with these approaches seems to be the fact

that they take into account only the received loss and not the observations

themselves, which results in losing a valuable part of the information. In

the next section we will introduce two algorithms that will try to exploit as

much as possible the received feedback to enhance the belief of the defender

on a particular profile.

4.2 Belief-Based Algorithms

The concept of belief arises many times in the Artificial Intelligence context

as a way to overcome uncertainty. In our case the belief will be the key to

face the identification problem. The following algorithms will keep a belief

vector for the attacker profiles, representing how much we are confident, at

a specific round of the game, that one of the profile is the true one.

Recalling Section 3.1, at each interaction the defender commits to a strat-

egy σD, to which an attacker of profile Ak would respond with σAk(σD).



4.2. Belief-Based Algorithms 35

Denoting the move of the attacker with i, then we define the likelihood of

target i with defender commitment to σD as:

Bk(i,σD) := σAk(σD)i. (4.3)

This is the likelihood of the current action if Ak was the true profile. Since we

know the models of the possible profiles, if we have a sequence of interactions,

defining i as the observations and s as the defender’s strategies sequence

played over time, then for each profile Ak, the likelihood of the sequence is:

Λk(i, s) :=

|i|∏
j=1

Bk(ij , sj). (4.4)

When we are simply considering the real sequence of interactions until

the n-th round made of i(n) = {iAk∗ ,1 . . . iAk∗ ,n} and s(n) = {σD,1 . . .σD,n}
we will use the shortened notation Λ

(n)
k := Λk(i

(n), s(n)). Of course, for

the unknown profiles we do not have the exact likelihood of their profile,

but an estimate instead. Providing that the estimator is consistent then the

likelihood is guaranteed to converge to the real one in the limit of the number

of samples. Since at each round we compute new estimates for unknown

profiles parameters, then we have also to recompute the likelihoods of all

the previous actions to obtain the exact likelihood of the sequence, while

for the known profiles it suffices to multiply the last likelihood in order to

update the likelihood of the sequence. In the following pages, when we talk

about belief of an attacker profile, we will always refer to Λk (or to some

variations, as its logarithm, or a normalized version of it).

However the identification process alone, does not guarantee to accom-

plish our regret minimization goal. Indeed a series of strategies that speeds

up the identification process can also cause a greater regret than a series

of greedy strategies. This issue perfectly embodies the classic exploration-

exploitation tradeoff problem of online learning seen in Section 2.2, which

we have tried to tackle with the algorithms presented in the following pages.

4.2.1 Follow the Belief

The FB algorithm represents a greedy employment of the information con-

tained in the belief vector. The idea is to take the profile that has the

largest belief and best respond to it. Despite its semplicity, we can prove
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Algorithm 5 FB

1: P = A
2: for all A′ ∈ P do

3: Initialize Λ
(1)
k = 1

4: for all n ∈ {1, . . . , N} do

5: Select Akn = arg max
Ak∈P

Λ
(n)
k

6: Play σ∗D(Akn)

7: Observe attacker action iAk∗ ,n
8: for all Ak ∈ P do

9: if σAk(σ∗D(Akn))iAk∗ ,n = 0 then

10: P ← P \Ak
11: else

12: Update Λ
(n+1)
k with (4.4)

a strong theoretical bound for it that makes it overperform the traditional

online learning algorithms. Moreover, it can be easily extended to support

new attacker profiles, without much effort, as long as we are provided with

a belief for each target given the commitment. Algorithm 5 presents the

pseudocode of the FB algorithm. At the beginning, FB initializes a set of

active attackers P = A and a belief Λ
(1)
k = 1 for all the attacker profiles

Ak ∈ P. At each round n, the algorithm selects the attacker Akn for which

the belief is the largest one (Line 5, where ties are broken randomly), best

responds with the strategy σ∗D(Akn) and observes the action actually played

by the attacker iAk∗ ,n. After that, the belief is updated as in (4.4) at round

n (Line 12) and if the realization iAk∗ ,n is not consistent for attacker Ak
(zero likelihood), the profile Ak is removed from P (Line 10).

We can upper bound the regret of FB algorithm as stated by the following

theorem:

Theorem 3 (FB pseudo-regret upper bound). Given an instance of the FBI-

SG problem s.t. ∆bk > 0, with all known profiles in A, for each Ak ∈ A
and applying FB, the defender incurs in a pseudo-regret of:

RN (U) ≤
K∑
k=1

2(λ2
k + λ2

k∗)∆Lk
(∆bk)2

,
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where

λk := max
m∈M

max
σ∈S

ln(σAk(σ)m)− min
m∈M

min
σ∈S

ln(σAk(σ)m)I {σAk(σ)m 6= 0}
(4.5)

is the range where the logarithm of the beliefs realizations lies (excluding

realizations equal to zero, which end the exploration of a profile) and

S := ∪kσ∗D(Ak) (4.6)

is the set of the available best responses to the attacker’s profile.

Proof. Let us analyse the regret of the FB algorithm. We get some regret

if the algorithm selects a strategy profile corresponding to a type different

from the real one. Thus, the regret is upper bounded by :

RN (U) = E

[
N∑
n=1

ln

]
− L∗N

= E

[
N∑
n=1

ln

]
− L∗N

= E

[
N∑
n=1

ln − L∗
]

=

K∑
k=1

∆LkE[Tk(N)],

where we recall that:

• Tk(N) =
∑N

n=1 I{Akn = Ak} is the number of times we played the

best response σ∗D(Ak) to attacker Ak;

• ∆Lk =
∑M

m=1 σA(σ∗D(Ak))mvm(1−σ∗D(Ak)m) −L∗ is the expected re-

gret of playing the best response to attacker Ak when the real attacker

is A.

Each round in which the algorithm selects a profile s.t. the best response

is not equal to the one of Ak∗ we are getting some regret.

Let us define variables Bk,n and Bk∗,n denoting the belief we have for the

possible attacker Ak and of the real attacker A, respectively, of the action

played by the real attacker A at turn n. Moreover, let bkj,t := Eσ∗D(Aj)[Bk,t]

be the expected value of the belief we get for attacker Ak when we are best

responding to Aj and the true type is Ak∗ 6= Ak at round t. Note that

bkj,t < bk∗j,t, ∀j, since ∆bk is positive.
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For each profile Ak 6= Ak∗ , we have:

E[Tk(N)] ≤
N∑
n=1

E

[
I

{
n∏
t=1

Bk,t ≥
n∏
t=1

Bk∗,t

}]
(4.7)

≤
N∑
n=1

E

[
I

{
n∑
t=1

ln(Bk,t) ≥
n∑
t=1

ln(Bk∗,t)

}]
(4.8)

=
N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n

t=1 ln(Bk∗,t)

n

)
(4.9)

=

N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
−
∑n

t=1 ln(bkjt,t)

n
−
∑n

t=1 ln(Bk∗,t)

n
+

+

∑n
t=1 ln(bk∗jt,t)

n
≥
(∑n

t=1 ln(bk∗jt,t)

n
−
∑n

t=1 ln(bkjt,t)

n

)
︸ ︷︷ ︸

≥∆bk


(4.10)

≤
N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
−
∑n

t=1 ln(bkjt,t)

n
− ∆bk

2
−
∑n

t=1 ln(Bk∗,t)

n
+

+

∑n
t=1 ln(bk∗jt,t)

n
− ∆bk

2
≥ 0

)
(4.11)

≤
N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n

t=1 ln(bkjt,t)

n
+

∆bk
2

)
︸ ︷︷ ︸

R1

+

+
N∑
n=1

P
(∑n

t=1 ln(Bk∗,t)

n
≤
∑n

t=1 ln(bk∗jt,t)

n
− ∆bk

2

)
︸ ︷︷ ︸

R2

, (4.12)

where jt is the index of the attacker Ajt we selected at round t and we

defined ∆bk := minj|Aj∈A ln(bk∗j,t) − ln(bkj,t), i.e., the minimum w.r.t. the

best response for the available attackers of the difference between the ex-

pected value of the loglikelihood of attacker Ak∗ and Ak if the true profile is

Ak∗ . Equation (4.9) has been obtained from Equation (4.8) since E [I {·}] =

P (·) while Equation (4.10) has been computed from Equation (4.9) adding(∑n
t=1 ln(bk∗jt,t)

n −
∑n
t=1 ln(bkjt,t)

n

)
to both l.h.s. and r.h.s. of the inequality. We
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would like to point out that ∆bk does not depend on t since the distribution

of Bk,t and Bk∗,t is the same over rounds.

Let us focus on R1. We use the McDiarmid inequality (see Appendix A)

to bound the probability that the empirical estimate of the loglikelihood

expected value is higher than a certain upper bound as follows:

R1 =

N∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n

t=1 ln(bkjt,t)

n
+

∆bk
2

)

≤
∞∑
n=1

P
(∑n

t=1 ln(Bk,t)

n
≥
∑n

t=1 ln(bkjt,t)

n
+

∆bk
2

)

≤
∞∑
n=1

exp

{
−(∆bk)

2n

2λ2
k

}
≤

2λ2
k

(∆bk)2
,

where we exploited
∑∞

x=1 e
−κx ≤ 1

κ and we used the fact that E[Bk,t] =

bk∀k, t.
A similar reasoning can be applied to R2 getting an upper bound of the

following form:

R2 ≤
2λ2

k∗

(∆bk)2
.

The regret becomes:

RN (U) =
K∑
i=1

∆LkE[Tk(N)] ≤
K∑
i=1

∆Lk

(
2λ2

k

(∆bk)2
+

2λ2
k∗

(∆bk)2

)

≤
K∑
i=1

2(λ2
k + λ2

k∗)∆Lk
(∆bk)2

,

which concludes the proof.

In practice, this algorithm relies on the fact that the attacker’s sequence

of moves will always maximizes, in expectation, the likelihood Λk∗ of the

true profile. In order to better understand the behaviour of FB algorithm,

we apply it to the same situation described in Example 3:

Example 4 (FB vs Stackelberg attacker). As before we suppose a profile

set M = {Sta, Sto}, where σSto = (0.3, 0.2, 0.1, 0.4), and the real attacker

is Sta. The best-responses are:
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• σ∗D(Sta) = (0, 0.65, 0, 0.35)

• σ∗D(Sto) = (0, 0, 0, 1)

If at a certain time τ the defender plays σ∗D(Sta), attacker will respond with:

σsta(σ
∗
D(Sta)) = (0, 0, 0, 1)

For each of the profiles, the defender has a belief on the current action, based

on her commitment:

• BSta(t4, σ∗D(Sta)) = 1

• BSto(t4, σ∗D(Sta)) = 1

Therefore the defender updates the beliefs of the profiles:

• Λ
(τ+1)
Sta = Λ

(τ)
Sta · 1

• Λ
(τ+1)
Sto = Λ

(τ)
Sto · 1

In practice, if at a certain round the two beliefs are the same, then, while the

defender plays this strategy, she can not gain information to help her choos-

ing between the two profiles. However FB algorithm randomizes strategies

when they have the same belief. Thus if the algorithm, at a certain round

τ ′, randomly chooses instead σ∗D(Sto), then the attacker will respond with:

σSta(σ
∗
D(Sto)) = (0, 1, 0, 0)

In other words, being a rational attacker, knowing that the defender guards

only target t4 (the grocery in our example), she will attack t2 (the drugstore).

Current action beliefs then become:

• BSta(t2, σ∗D(Sto)) = 1

• BSto(t2, σ∗D(Sto)) = 0.2

then, the defender updates the beliefs of the profiles:

• Λ
(τ ′+1)
Sta = Λ

(τ ′)
Sta · 1

• Λ
(τ ′+1)
Sto = Λ

(τ ′)
Sto · 0.2

Therefore, in this example, if the defender plays the wrong strategy once,

then she will not play it anymore. In fact we are also able to compute the

maximum attainable regret:

Rmax = ∆Sto = 1500− 521 = 979e
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4.2.2 Follow the Regret

FB adopts the belief as discriminant factor to select the strategy profile to

play in the next round. Conversely, in what follows, we provide an algo-

rithm, FR, driven by a value iteration procedure that directly minimizes the

expected regret over the remaining rounds {n+ 1, . . . , N}. In principle, one

should perform the procedure until the last round N , but, for computational

purposes, an approximate solution can be obtained by setting a maximum

level of recursion hmax and carry on the optimization only on the rounds

{n+ 1, . . . ,min{n+ hmax, N}}.

Algorithm 6 FR(hmax)

1: for all Ak ∈ A do

2: Initialize Λ
(1)
k = 1

3: for all n ∈ {1, . . . , N} do

4: R̂ = RE(1,Λ(n), (), (),min(hmax, N − n))

5: Select Akn s.t. kn = arg mint R̂t
6: Play σ∗D(Akn)

7: Observe attacker action iAk∗ ,n
8: for all Ak ∈ A do

9: Update Λ
(n+1)
k according to 4.4

The pseudo-code of the FR algorithm is presented in 6, which recursively

exploits the subroutine 7. We define Λ as the normalized version of the

belief vector Λ, in order to use it as a probability in expectation formulas

we define Λ(n) as:

Λ
(n)
k =

Λ
(n)
k∑

i∈A Λ
(n)
i

. (4.13)

We have omitted the normalization steps in the pseudocode in order to leave

the notation uncluttered. At first, the FR algorithm requires to initialize vec-

tors Λ(1) and Λ(1). At each round n, the algorithm computes the estimated

expected regret vector R̂ suffered by D if she plays the best response σ∗D(Ak)

to Ak for each attacker profile Ak ∈ A (Line 4, Alg. 6), by recursively calling

the Regret Estimator (RE) algorithm. This algorithm returns the vector R̂

of the estimated total regrets of choosing a specific attacker Ak for the next
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turn, computed from the point of view of a player who is this situation:

• has observed a sequence (j(n), j′) of attacker’s actions;

• has committed to the sequence (s(n), s′) of strategies;

• has sampled the sequence (i(n), i′) of actions.

Algorithm 7 RE(h,Λ, i′, j′, s′, hmax)

1: for all Ak ∈ A do

2: s′′ ← (s′,σ∗D(Ak))

3: for all (i, j) ∈M2 do

4: i′′ ← (i′, i)

5: j′′ ← (j′, j)

6: for all At ∈ A do

7: Λ̂t ← Λt((i
(n), i′′), (s(n), s′′)) according to 4.4

8: if h < hmax then

9: R̃ = RE(h+ 1, Λ̂, i′′, j′′, s′′, hmax)

10: rij,k ← mink R̃k
11: else

12: Compute rij,k according to 4.14

13: Compute R̂k according to 4.15

14: Return R̂

For every possible attacker Ak ∈ A and for every pair of possible actions

of the defender and the attacker (i, j) ∈ M2, we create a new belief vector

Λ̂ and update it according to the information the attacker played action

j (Line 7, Alg. 7). After that, if the maximum recursion level has been

reached, we compute rij,k, as follows:

rij,k =

hmax∑
τ=0

vj′τ1{i
′
τ 6= j′τ} − hmax ·

∑
t∈{1,...,K}

Λ̂ t L(At). (4.14)

In practice, if h = hmax, rij,k represents the expected pseudo-regret of the

sequences i′ and j′ over the possible attacker’s profiles. Otherwise we run

another step of RE and we assign to rij,k the minimum value among the ones
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returned by this step. Then in order to obtain R̂ we compute (Line 13,

Alg. 7):

R̂k :=
M∑
i=1

M∑
j=1

rij,k σ
∗
D(Ak)i︸ ︷︷ ︸
pi

·
∑
Ak′∈A

Λ k′ σAk′ (σ
∗
D(Ak))j︸ ︷︷ ︸

pj

, (4.15)

where the regret rij,k is weighted with the probabilities that action i is

selected by D and action j is selected by A.

The defender D plays, for the current round n, the best response to

the attacker Akn , providing the minimum estimated expected regret R̂kn
(Line 6, Alg. 6) and observing action iAk∗ ,n undertaken by the attacker Ak∗ .

Finally, the algorithm updates the beliefs (Line 9, Alg. 6) as usual.

4.2.3 Computational Complexity

We now analyse our algorithms from a computational perspective, provid-

ing the computational cost required for being executed. FB has complexity

O(KN), since it only performs an update of the belief for each of the K

attacker profiles, repeating this operation for each one of the N rounds.

Thus, it results being linear both in the number of profiles and the rounds

the game is played. Conversely, FR requires much more computational time.

In fact, for each attacker profile K, we consider M actions for both play-

ers and then update the expected regret over the K profiles current beliefs.

This leads to a cost of O(M2K2) for a single round of the game and an

overall computational cost of O(M2K2N) over the problem horizon N , in

the case we set h = 1. If we want to employ the strategy that considers the

regret from the current round n to the end of the horizon (i.e., h = N − n)

to compute the estimated expected regret R̂n(Ak) by means of a forward

procedure, the computational cost required by FR is O(M2(N−n)K2(N−n))

for a single round. Thus, the final computational cost required by FR is∑N
n=1O(M2(N−n)K2(N−n)) = O

(
(MK)2N−1
(MK)2−1

)
≈ O(M2NK2N ), which is ex-

ponential.
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Chapter 5

Experiments

In this chapter we compare the proposed algorithms, FB and FR, with the

state-of-the-art online learning approaches from the MAB (Section 2.2.2)

and expert (Section 2.2.1) fields. In particular, we evaluate UCB1 and

Thompson Sampling (both described in Section 2.2.2), from the MAB lit-

erature, and Follow the Perturbed Leader (FPL) algorithm (Section 2.2.1),

from the expert literature. In particular, we want to verify how the algo-

rithms behave in these situations:

• the attacker is randomly chosen from a give profile set A of known

attackers;

• the attacker is fixed and we vary the profile set A;

• the attacker is randomly chosen from a family of profiles (unknown

profiles or stackelberg).

We use a time horizon of N = 1000 rounds, with a different amount of

targets M ∈ {5, 10} and we evaluate the performance in terms of expected

pseudo-regret:

Rn(U) = E

[
n∑
h=1

lh

]
− L∗n,

with n ∈ {1, . . . , N}, and computational time spent by the algorithms

to execute a single run (N = 1000 rounds). We selected the parameters of

the stochastic and SUQR attackers by following the same procedure in the

various settings:
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• The strategies of the stochastic behavioural profiles Sto are drawn

from a Dirichlet distribution with θ = 1M (uniform distribution over

∆M ) and the target values v are uniformly sampled in [0, 1]M ;

• The parameters for the SUQR behavioural profiles are drawn from a

uniform probability distribution over the intervals α ∈ [5, 15] and β ∈
[0, 1], whose choice is motivated by the experimental results obtained

by [18];

Each experiment has been run on a Intel(R) Xeon(R) CPU E5-4610

processor running at 2.30GHz. The code has been developed in Python

with a broad use of the SciPy library [10].

5.1 Studying Attacker’s Behavior

Table 5.1: Sets of attacker’s profiles A used for the experiments and total number

of attackers K. We report also the number of different stochastic, SUQR, and

unknown stochastic behavioural profiles for each configuration. The configurations

are ordered from the ones with smallest number of behavioural profiles (K = 2) to

the largest one (K = 11).

Sta Sto SUQR K

C1 1 1 - 2

C2 1 - 1 2

C3 1 1 1 3

C4 1 5 - 6

C5 1 - 5 6

C6 1 5 5 11

The experimental setting is as follows:

• we use different profile configurations Ci, listed in 5.1;

• for each combination of behavioural profiles and targets size, 10 ran-

dom configurations (i.e., target values v and attacker profile sets A)

are generated and the actual behavioural profile Ak∗ is drawn from a

uniform probability distribution over the given profiles set A;
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• for each configuration we run 100 independent experiments and we

compute the average regret.

5.1.1 Regret Analysis

We report in Tables 5.2 and 5.3 the empiric pseudo-regret obtained in the

experimental results. It can be observed that the algorithms we propose

dramatically outperform the baselines provided by the state of the art. Fur-

thermore, there is no strong statistical evidence that one algorithm between

FB or FR outperforms the other. We recall that FR is more computationally

demanding than FB, thus one might prefer FB for problems with many at-

tacker behavioural profiles, since it has comparable performance w.r.t. FR

and is computationally more efficient.

Table 5.2: Expected pseudo-regret RN (U) over 1000 rounds with confidence intervals

for configurations C1, C2, C3.

C1 C2 C3

M
=

5

UCB1 14.12± 1.88 8.62± 3.73 23.92± 5.23

FPL 18.71± 35.02 11.16± 5.98 38.5± 27.18

FB 0.19 ± 0.13 0.2 ± 0.18 0.5 ± 0.24

FR 0.1 ± 0.06 0.27 ± 0.36 0.42 ± 0.3

M
=

10

UCB1 16.77± 1.2 5.24± 2.79 21.2± 3.76

FPL 1.08± 0.2 5.97± 3.5 12.06± 4.31

FB 0.13 ± 0.03 0.1 ± 0.02 0.33 ± 0.16

FR 0.06 ± 0.05 0.12 ± 0.21 0.21 ± 0.12

In Figure 5.1 we show how the pseudo-regret Rn(U) evolves during the

time horizon in C1, C2 and C3. The plots are in a semilogarithmic scale

for a better comprehension. In all the presented configurations there is sta-

tistical significance that the FB and FR algorithms outperform the baselines

on average since the confidence intervals do not overlap after the first ≈ 50

rounds. As expected, configurations with more profiles are more difficult for

all the algorithms, except for configuration C5. It can be speculated that

in a configuration with only strategy-aware profiles it is easier to identify

the real attacker, due to the fact that defender’s different commitments in-

duce greater differences in strategy-aware likelihoods. Conversely, a larger
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number of targets does not seem to impact on the performance of the algo-

rithms: this means that the algorithms can be scaled on real-world many

targets context without obtaining degrading performances. Notably, the

FPL algorithm generally improves its performance when tested over larger

target space M = 10. We think this could be induced by the experimental

setting itself: indeed specific configurations in which the FPL gets linear

regret (i.e., the ones considered in 1) are less likely to occur when we have

a larger amount of targets.

Table 5.3: Expected pseudo-regret RN (U) over 1000 rounds with confidence intervals

for configurations C4, C5, C6.

C4 C5 C6

M
=

5

UCB1 45.75± 11.68 1.76± 0.41 75.82± 19.94

FPL 49.8± 62.33 0.77± 0.12 68.88± 64.13

FB 0.48 ± 0.2 0.09 ± 0.03 0.67 ± 0.2

FR 0.62 ± 0.24 0.07 ± 0.04 1.07 ± 1.1

M
=

10

UCB1 60.58± 8.89 4.24± 5.02 61.52± 22.48

FPL 2.63± 0.99 3.24± 3.96 17.69± 16.03

FB 0.57 ± 0.17 0.05 ± 0.01 0.58 ± 0.14

FR 0.43 ± 0.19 0.02 ± 0.02 0.6 ± 0.43
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(f) Configuration C3, M = 10.

Figure 5.1: Expected pseudo-regret for the different configurations.
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(c) Configuration C5, M = 5.
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(e) Configuration C6, M = 5.
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(f) Configuration C6, M = 10.

Figure 5.2: Expected pseudo-regret for the different configurations.
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5.1.2 Time Performance

We analyse the computational effort required by our algorithms to solve

instances over N = 1000 rounds. The computational times for the UCB1

and FPL algorithm are omitted since they are in line with the one of FB. The

average computational times are reported in Table 5.4, where we group the

results on the basis of the number of targets M . There are three observations

we can make. First, as it can be immediately noticed, we could not report

the values for M ∈ {20, 40} for FR since the required computational cost is

too high (≥ 3600 seconds). However, in real context, we may be asked to

compute only one round of FR every day or week, depending on the context,

therefore, in principle, we can use it also for more than 10 targets. We

noticed that, as explained in Section 4.2.3, time needed to run even a single

round increases exponentially with the number of targets, and therefore

this algorithm presents limits in its applicability. Second, both FB and FR

present the same trend w.r.t. the configurations: in fact, when the behavioral

profile of the opponent can only be either Sta or Sto, both algorithms are

twice more efficient than in cases in which SUQR adversaries are introduced.

This is due to the fact that both Sta and SUQR models exploit the strategy

the defender commits to, making more difficult to distinguish among them.

Finally, as expected, we notice that FB is always faster than FR: in fact,

while they are both polynomial in the actions available to the players, i.e.,

C1 C2 C3 C4 C5 C6

M
=

5 FB 5.9± 1.7 11.1± 2.2 11.7± 2.9 3.5± 1.0 23.7± 2.4 14.9± 4.3

FR 77.0± 2.1 121.1± 3.2 170.4± 4.1 146.2± 4.7 651.7± 36.6 1029.2± 64.7

M
=

1
0 FB 10.3± 2.6 21.9± 13.2 23.0± 17.9 7.1± 2.3 63.0± 7.4 47.22± 14.05

FR 356.1± 14.3 678.5± 15.9 887.0± 11.1 960.4± 13.0 4402.5± 14.2 7526.5± 189.9

M
=

2
0 FB 33.5± 3.0 222.2± 126.9 137.8± 77.6 33.7± 1.2 484.5± 107.7 226.8± 45.3

FR − − − − − −

M
=

4
0 FB 104.5± 7.1 2061.5± 837.2 1412.0± 812.1 128.9± 16.5 2347.9± 1223.2 1634.2± 487.6

FR − − − − − −

Table 5.4: Computational time in seconds needed by FB and FR to solve an instance

over N = 1000 rounds.
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the number of targets, the former is linear while the latter quadratic (since

we set hmax = 1).

5.2 Analysis of the Impact of Prior Information

Table 5.5: Configurations are grouped by the chosen real attacker type.

D Sta Sto SUQR USto USUQR

S
to

D1 1 2 1 - -

D2 1 - - 1 1

D3 1 1 - - -

D4 1 - - 1 -

S
U
Q
R

D5 1 1 2 - -

D6 1 - - 1 1

D7 1 - 1 - -

D8 1 - - - 1

The experimental setting is as follows:

• we use different profile configurations Di, listed in, with M = 5 targets;

• for each combination of behavioural profiles and targets size, 10 ran-

dom configurations (i.e., target values v and attacker profile sets A)

are generated and the actual behavioural profile of the type in the first

column is randomly drawn;

• for each configuration we run 10 independent experiments and we com-

pute the average regret.

where we make 10 repetitions of the same experiment instead of 100, since

computing the likelihood of the sequence for unknown profiles is more com-

putationally demanding, as explained in Section 4.2. The main motivation

of this setting is to verify how the hypothesis made for the profiles setting

influences the performance of the algorithms. In particular what we want to

do is to confront these configurations pairwise (namely (D1, D2), (D3, D4),

(D5, D6), (D7, D8)). For each of these pairs, in the first configuration the
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true attacker profile is among the known profiles, while in the second she

is among the unknown ones. For what it concerns the baselines, from Ta-

ble 5.6, FPL, as expected, obtains a low regret in the configurations in which

the attacker is a stochastic one. This happens because this kind of profile

is not strategy-aware and therefore the algorithm does not suffer from the

problem explained in Theorem 1. In fact when it has to face a strategy-

aware attacker as SUQR, it could incurrs in a tremendous regret (D6). In

general we can notice that the second configuration obtains always a larger

regret. In particular, for our solution there is statistical evidence of this

trend. This means that in a real context using the external information

we have on the attacker profile (e.g, from domain experts or from histor-

ical data) may significatively improve the results in terms of regret. The

configurations with the least regret values result to be the ones in which

the choice is between Stackelberg and a single other profile. In practice it

seems that when the choice is only between a completely rational attacker

and a boundedly rational attacker, then the problem becomes easier for our

algorithms.

Table 5.6: Expected pseudo-regret RN (U) over 1000 rounds with confidence intervals

for configurations Di, where the attacker is SUQR.

D1 D2 D3 D4

M
=

5

UCB1 34.65± 9.76 29.08± 4.60 14.92± 2.63 17.32± 2.78

TS 14.68± 3.59 16.69± 6.35 8.35± 3.21 9.99± 2.76

FPL 0.99± 0.28 3.10± 1.65 0.75± 0.20 2.43± 0.82

FB 0.74± 0.48 2.23± 1.02 0.22± 0.14 1.63± 0.44

FR 0.61± 0.18 2.56± 1.59 0.11± 0.09 2.63± 1.21

D5 D6 D7 D8

M
=

5

UCB1 16.62± 3.08 20.26± 4.06 7.22± 4.01 7.3± 4.01

TS 10.28± 3.05 12.82± 5.04 6.23± 3.59 8.07± 4.93

FPL 2.75± 2.02 92.39± 42.69 0.19± 0.02 0.34± 0.09

FB 0.16± 0.06 2.63± 0.84 0.03± 0.02 0.12± 0.08

FR 0.18± 0.11 3.51± 1.32 0.06± 0.06 0.11± 0.08
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5.3 Introducing Unknown Attacker’s Profiles

Table 5.7: Sets of attacker profiles A used for the experiments and total number of

attacker K.

Sta Sto SUQR USto SUSUQR K

E1 1 0 0 1 1 3

E2 1 5 5 1 1 13

The experimental setting is as follows:

• we use different profile configurations Ei, listed in 5.7;

• for each combination of behavioural profiles and targets size, 10 ran-

dom configurations (i.e., target values v and attacker profile sets A)

are generated and the actual behavioural profile Ak∗ is drawn from a

uniform probability distribution over the given profile set A;

• for each configuration we run 10 independent experiments and we com-

pute the average regret.

Configuration E1 simulates a context in which the defender has no prior

information about the attacker, so she may add to the profiles set only

the unknown profiles and the Stackelberg one (for which no parameters are

needed). Conversely configuration E2 represents a situation in which the

defender has some hypothesis on the nature of the attacker, but she can not

exclude other behavioral profiles yet. Both these situations, which are likely

to happen in real context, are not covered by our theoretical results (see

Theorem3), hence need to be experimentally tested.

As we can se from Table 5.3, in both configurations our algorithms out-

perform the baselines. Configuration E2 appears to be slightly more difficult,

also for the two MAB algorithms. This induces us to think that including

in the profile set a long list of known profiles, may damage the effectiveness

of the algorithms, instead of improving it.

If we compare configurations from these setting to configurations of Sec-

tion 5.1, we can see that the performance are in general worse. This is
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Figure 5.3: Expected pseudo-regret for the different configurations.

clearly due to the fact that we do not known the exact best responses to

the unknown profiles, but we have to learn them as the game develops. In

practice we are learning at two levels: we are learning the parameters of the

profiles and we are learning to identify the true attacker profiles.
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Chapter 6

Conclusions and Future

Work

6.1 Conclusions

In this work, we study for the first time, a novel leadership game in which the

leader plays against a follower whose behaviour is unknown, but it belongs

to a set of known profiles. We tried to apply to it general online-learning

algorithms, but they did not obtain satisfactory results. In fact, we proved

that we incurrs in linear regret if we use the complete feedback with ex-

pert algorithms, while, using MAB algorithms we suffer the partial use of

information through a loose lower bound, which forces at least a logarithmic

regret. Such techniques, indeed, are based only on the observed loss and

do not take into account the defender commitment to a strategy. Thus, we

resort to a new approach that leverages on our knowledge of the possible

attacker models (partial or complete). This consists in estimating the like-

lihoods of observed attacker actions in order to maintain a belief on each of

the possible attacker profiles. We developed two algorithms based on this

technique that exploit the aforementioned identification process in two dif-

ferent ways, in order to minimize the regret. They represent, in practice, two

possible approaches to face the exploration-exploitation dilemma that arises

in this problem. In the first one, named Follow the Belief (FB), the defender

makes a greedy choice in terms of the belief, selecting the best response to

the profile that maximizes it. We provide a finite-time analysis showing that
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the regret of the algorithm is constant in the length of the time horizon, if

all the profiles in the profile set are known. In the second approach, namely

Follow the Regret (FR), the learning policy is driven directly by the estimated

expected regret and is based on a backward induction procedure. Finally,

we experimentally evaluate the performance of our algorithms in leadership

settings inspired by concrete security domains, showing that our approaches

provide a remarkable improvement in terms of empirical pseudo-regret min-

imization w.r.t. the main algorithms available in the state of the art of the

online learning field.

6.2 Future work

There are many possible directions in which this first work on FBI-SG can be

extended. First, we can try to extend the theoretical results of FB also for the

unknown profiles or for other kinds of attacker not considered in this work

as learner or adversarial ones. Another extension consists in generalizing

the FR algorithm, using a policy-gradient algorithm to sample and evaluate

random policies on the MDP generated by the game tree.

Another direction along which we can extend our work might be consider-

ing partial feedback instead of complete feedback: our algorithms are easily

adaptable to this modification, but they need a proper theoretical analysis.

We could also generalize the FBI-SG problem, allowing more resources for

both players. In this case, we should adapt the current algorithms, compar-

ing their performances w.r.t. the attackers’/defenders’ resources, but also

w.r.t. the level of coordination allowed for such resources.



Appendix A

McDiarmid Inequality

A Doob martingale is a generic construction that is always a martingale.

Specifically, consider any set of random variables ~X = X1, X2, ..., Xn taking

values in a set A for which we are interested in the function f : An → R and

define:

Bi = EXi+1,Xi+2,...,Xn [f( ~X)|X1, X2, ...Xi]

where the above expectation is itself a random quantity since the expecta-

tion is only taken over Xi+1, Xi+2, . . . , Xn and X1, X2, ...Xi are treated as

random variables. It is possible to show that Bi is always a martingale re-

gardless of the properties of Xi and the sequence Bi is the Doob martingale

for f .

Suppose X1, . . . , XN are independent and assume that f satisfies for

1 ≤ i ≤ n:

sup
x1,x2,...,xn,x̂i

|f(x1, x2, . . . , xn)− f(x1, x2, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ ci

In other words, replacing xi by some other value changes the value of

f by at most ci. It follows that |Bi+1 − Bi| ≤ ci and therefore Azuma’s

inequality yields the following McDiarmid inequalities [15]: ∀ε > 0

• Pr(f(X1, X2, . . . , Xn)− E[f(X1, X2, . . . , Xn)] ≥ ε) ≤ exp[− 2ε2∑n
i=1 c

2
i
]

• Pr(E[f(X1, X2, . . . , Xn)]− f(X1, X2, . . . , Xn) ≥ ε) ≤ exp[− 2ε2∑n
i=1 c

2
i
]

59
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