
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

A Networked Modular Robot

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Supervisor:

prof. andrea bonarini

Master Graduation Thesis by:

hamidreza hanafi

Student Id n. 841408

Academic Year 2016-2017

A C K N O W L E D G M E N T S

I would like to thank my supervisor, Professor Andrea Bonarini, for
his help and guidance throughout my project, who make this project
possible. Professor Bonarini gave me this opportunity to develop my
own solutions and helped with his valuable feedback. Second, I want
to thank my lab mates and faculty members who make this project a
great and unforgettable experience.

ii

C O N T E N T S

Abstract viii
1 introduction 1

1.1 Problem statement 1

1.2 Assumptions 2

1.3 Outline 2

2 background knowledge 4

2.1 Embedded Networks 4

2.1.1 RS-232 5

2.1.2 RS-422 6

2.1.3 RS-485 6

2.1.4 I2C 7

2.1.5 CAN 8

2.1.6 Ethernet 9

2.2 Sensors 9

2.3 Multimedia 10

2.3.1 Recording Audio 10

2.3.2 Audio Playback 10

2.3.3 TMRpcm Library 10

2.3.4 VS1053 11

2.3.5 Amplifier 12

2.4 Olimex STM32 13

2.4.1 STM32F103RBT6 microcontroller 13

2.4.2 Connectivity 14

2.4.3 Power 14

2.4.4 Storage 14

2.4.5 Working temperature 14

2.4.6 Dimensions 14

2.4.7 Other Information 14

2.5 Arduino 15

2.6 STM32duino 15

2.7 Cocox OS (RTOS) 15

3 hardware setup 18

3.1 Robot platform 18

3.1.1 2-by-2 powered wheels for tank-like movement 19

3.2 Choosing network 20

iii

3.2.1 Network Topology of RS485 21

3.2.2 RS485 functionality 21

3.2.3 Network Topology of CAN 22

3.2.4 CAN functionality 22

3.2.5 Winner Network - CAN 22

3.3 Choosing board 22

3.4 Choosing media board 23

3.5 Mechanical connectors 24

4 components software implementation 26

4.1 Sensors 26

4.2 CAN Network Setup 27

4.2.1 Basic Message Format 27

4.2.2 ID allocation 28

4.2.3 Setup 28

4.3 Hardware Connection Detection 29

4.3.1 Module Connection 29

4.3.2 Components Connection 30

4.4 Media 33

4.4.1 MP3 Playback 34

4.4.2 Recording Audio 35

4.4.3 Sound Localization 37

4.4.4 Cross Correlation Algorithm 37

4.4.5 Generalized Cross Correlation 38

4.4.6 Microphone Setup 39

5 module design and implementation 40

5.1 System Configuration 41

5.2 Module Description 41

5.2.1 Module Architecture 42

5.2.2 Module Responsibilities 42

5.3 Module Operating System - CoOS 43

5.3.1 Task Architecture 43

5.3.2 Mutex 45

5.3.3 Critical Section 46

5.3.4 Flags 47

5.4 Module Library 49

5.4.1 Inner Task Communication 50

5.4.2 Shared Tasks 50

5.4.3 Decision Making 53

5.4.4 Games 53

6 conclusion 55

iv

6.1 Conclusion 55

6.2 Future work 56

bibliography 57

a appendix a : mp3 playback source code 59

b appendix b : ogg recording source code 61

c appendix c : sound localization algorithm imple-
mentation 64

d appendix d : module library source code 66

e appendix e : motor library source code 90

v

L I S T O F F I G U R E S

Figure 2.1 Olimex STM32 Board 13

Figure 3.1 Sample of 4 wheel robot platform 19

Figure 3.2 4 Wheel 4 Drive 20

Figure 3.3 Network topology of RS485 21

Figure 3.4 CAN network topology 22

Figure 3.5 VS1053 board 24

Figure 3.6 3.5mm Panel Mount 25

Figure 3.7 3.5mm Male Jack 25

Figure 3.8 Connector in robot 25

Figure 4.1 CAN message format 27

Figure 4.2 Pull-up resistor 31

Figure 4.3 Connections of VS1053 to microcontroller 33

Figure 4.4 Generalized cross correlation method. 38

Figure 4.5 Generalized cross correlation method. 39

Figure 5.1 System Configuration 40

Figure 5.2 Module’s hardware components. From top to
bottom: Infrared Sensors, Microphones, LEDs,
Servo Motor and Speaker. 41

Figure 5.3 Modules connected to System Bus 42

Figure 5.4 Module and System Architecture 44

L I S T O F TA B L E S

Table 2.1 CoOS minimum and maximum timings 17

L I S T O F A L G O R I T H M S

vi

Algorithm 1 Life Beacon send algorithm 29

Algorithm 2 Life Beacon receive algorithm 30

Algorithm 3 Beacon check algorithm 30

Algorithm 4 Check status of LED component 32

L I S T I N G S

4.1 Send a CAN message . 28

4.2 Receive a CAN message 28

A.1 Play MP3 file function 59

B.1 Record Ogg Sound function 61

C.1 Sound Localization Algorithm Implementation 64

D.1 Module Library Header 66

D.2 Module Library Source code 69

E.1 Motor Library Header 90

E.2 Motor Library Source code 90

vii

A B S T R A C T

There are an estimated 150 million children worldwide living with a
disability. Children affected by physical and cognitive disabilities may
have difficulty participating in play activities. The use of robots can
promote and facilitate playing for them.

This project is aimed to the development of a Networked Modular
Robot which is able to play with disabled or normally developed
children. The hardware components and modules of this robot are
removable and the children are able to attach or de-attach these com-
ponents in order to see what games the robot is still able to play. This
makes it possible to adapt the robot to the specific child abilities and
needs.

To achieve this goal and design the modules, different embedded
networks have been analyzed and the processor with the desired net-
work capabilities has been selected. A set of hardware components has
been developed in order to interact with the modules. The distributed
system is able to detect the presence of the removable modules or
components and to reconfigure dynamically to use them. This robot
can perform various games based on different configurations.

Keywords: Embedded Network, Robotic Modules, Microphones,
Networked Modular Robot, Sound angle detection

viii

S O M M A R I O

Ci sono circa di 150 milioni di bambini in tutto il mondo che vivono
con disabilità. Normalmente I bambini affetti da disabilità fisiche e
cognitive fisiche hanno difficoltà a partecipare alle attività di gioco per
vedere quali giochi il robot è ancora in grado di riprodurre. L’uso di
robot può promuovere e facilitare il gioco per loro.

Questo progetto è rivolto a sviluppare di un "modular robot net-
work" che è in grado di giocare con i bambini disabili o i bambini con
una crescita normale. I componenti hardware e i moduli di questo
robot sono rimovibili e i bambini sono in grado di collegare o disin-
stallare questi componenti. Ciò consente di adattare il robot alle abilità
e alle esigenze specifiche dei bambini.

Per raggiungere questo obiettivo e progettare i moduli, sono state
analizzate diversi reti inserito e il processore con le funzionalità di
rete desiderate è stato selezionato. Un set di componenti hardware
sviluppati per interagire con i moduli. Il sistema distribuito è in grado
di rilevare la presenza dei moduli o dei componenti rimovibili e di
riconfigurare dinamicamente per utilizzarli. Questo robot può eseguire
vari giochi basati su diverse configurazioni.

Keywords: Rete Embedded, moduli robotici, microfoni, robot mod-
ulare in rete, rilevamento angolo sonoro

ix

1
I N T R O D U C T I O N

Artificial intelligence is growing up fast, as are robots whose facial
expressions can elicit empathy and make your mirror neurons quiver.

— Diane Ackerman

Robotics today is changing and growing rapidly. As more robots are
doing people’s job, the interaction between human and robots comes
to the center of attention. Social robotics and human-robot interaction
are growing research fields concerned with the questions how humans
and robots can better live, work, and interact together [1].

There are an estimated 150 million children worldwide living with
a disability. Children affected by physical and cognitive disabilities
may have difficulty participating in play activities. The use of robots
can promote and facilitate playing for them. Robot play could give
insight to the developmental level of play of children with disabilities
who are difficult to assess with standardized tests. Moreover, Robots
can facilitate discovery and enhance opportunities for play, learning
and cognitive development in children who have motor disabilities.
[2].

The robot in this project is aiming to play with children with or
without disabilities who, possibly supported by companions or care-
givers, should be able to add or remove the hardware components to
or from the robot in order to see what games the robot is still able
to play. This makes it possible to adapt the robot to the specific child
abilities and needs.

1.1 Problem statement

This thesis dealt with developing a low-cost modular robot which can
perform different behaviors based on the connection of different mod-
ule’s combination. The aim of the robot is to play with kids especially
ones with disabilities. The robot should decide autonomously what to
do and what game to play.
The modules should perform a single task. The implemented modules

1

1.2 assumptions 2

and components are: microphone, distance detector, speaker, hand-
arm and LED lights.
The modules should be easy to plug or unplug as a kid will be able to
decide what game to play. The following games would be interesting:

Game 1: Propose a rhythm through beeper, become happy if detected
sounds (such as clap) have a similar rhythm, sad and encourag-
ing otherwise. Modules: loudspeaker, microphone, either arm or
movement (for being happy)

Game 2: Same as the game one, but with LEDs. Modules: LEDs,
microphone, either arm or movement (for being happy, but this
may be done also only with LEDs or beeper)

Game 3: Positioning the distance sensors appropriately, one can throw
a ball and the arm can send it back. Modules: arm, distance
sensors, (possibly LEDs and beeper)

Game 4: Robot moves randomly avoiding obstacles, a player can
put obstacles or manage to move a stick to make it reaching
a target. Modules: distance sensors, mobility (optional: LEDs
and/or loudspeaker for reactions)

Moreover, It should be easy to program the robot and implement new
games or modules.

1.2 Assumptions

The robot only works in the following conditions:

• The robot will only move on a planar ground.

• The robot will only work on an indoor environment where the
noises are not high.

• The robot will only detect sound angle if all four microphones
are connected.

1.3 Outline

This thesis consists of six chapters.

• In chapter 2, we well describe the related background knowl-
edge.

1.3 outline 3

• In chapter 3, we explain the reasons for choosing each hardware
components.

• Throughout chapter 4, we introduce the various features and
software implementations in the robot modules.

• In chapter 5, we describe the module architecture and the way
they communicate, synchronize and decide together.

• Finally, we provide the conclusion and possible future works in
chapter 6.

2
B A C K G R O U N D K N O W L E D G E

In this chapter, we are going to review some related fundamental
background knowledge.

• First, we have a brief description about embedded networks and
its famous standards as a set of alternatives for the module’s
network in order to have a better comparison.

• Then, we describe the Multimedia in embedded systems and its
hardware/software requirements.

• Moreover, we review technical details of the board which is used
in this project.

• Finally, we describe the tools and libraries which are important
for this project.

2.1 Embedded Networks

As embedded systems are becoming more and more complex, the
knowledge about various disciplines like data processing, electron-
ics, telecommunications, and networks becomes mandatory for all.
Nowadays, “Network” plays a prominent role in embedded systems.
A proper understanding of networks is also equally important.

The embedded system was originally designed to work on a single
device. However, in the current scenario, implementation of differ-
ent networking options has increased the overall performance of the
embedded system in terms of economy as well as technical considera-
tions.
The most efficient types of networks used in the embedded system
are Bus network and Ethernet network.

A Bus is used to connect different network devices and to transfer a
huge range of data, for example, serial bus, I2C1 bus, CAN2 bus, etc.
The Ethernet type network works with the TCP/IP protocol [3].

1 Inter-Integrated Circuit
2 Controller Area Network

4

2.1 embedded networks 5

Serial Communication is the process of sending data one bit at a
time, sequentially, over a communication channel or computer bus.
This is in contrast to parallel communication, where several bits are
sent as a whole, on a link with several parallel channels.
Examples of serial embedded networking include CAN, I2C, Compo-
nent, RS232, and RS485 bus networking.

2.1.1 RS-232

RS-232 is a standard for serial communication transmission of data. It
is commonly used in computer serial ports. The standard defines the
electrical characteristics and timing of signals, the meaning of signals,
and the physical size and pin-out of connectors.

RS-232 can support data rates of up to 920 kbps (normally 9600

and 115.2K are the maximum rates) and is commonly found in 9 or
25 pin configurations, however, only three pins are required. Most
applications drop many of the less commonly used pins, though
some configurations such as a data modem connect every pin for full
handshaking capabilities. An RS-232 is a point to point connection
made between a Data Terminal Equipment (DTE) device and a Data
Communications Equipment (DCE) device. RS-232 has a maximum
cable length of 50 Ft at 9600 baud. [4].

Advantages of RS-232:

• Simple wiring and connectors

• Widely available

• Low cost

• Most embedded processors include this interface

• Software to implement a serial port is easy

Disadvantages of RS-232:

• Only point to point

• Incompatibilities in wiring and configuration between devices

• Short cable lengths

2.1 embedded networks 6

• Subject to noise interference

• Low data rates

• Many different software protocols

2.1.2 RS-422

RS422 is a high speed and/or long distance data transmission. Each
signal is carried by a pair of wires and is thus a differential data
transmission system.

RS-422 offers one of the fastest serial data rates at 10M bps RS-422 is
a multi-drop configuration, allowing for up to 10 unit loads. Its use of
voltage differences makes it ideal for noisy environments. RS-422 can
support cable lengths of up to 4000 feet, however, its data rate lessens
as distance increases [5].

Advantages of RS-422:

• High data rates

• Less subject to noise

• Longer cable lengths

Disadvantages of RS-422:

• Only point to point

• Not as commonly used

• Unidirectional

• For most applications, only one transmitter is used

2.1.3 RS-485

RS-485, also known as TIA-485(-A), EIA-485, is a standard defining
the electrical characteristics of drivers and receivers for use in serial
communications systems. Electrical signaling is balanced, and multi-
point systems are supported.

RS-485 provides similar speed advantages as RS-422(2.1.2), allow-
ing for data rates up to 10M bps It differs in that it is a multi-point

2.1 embedded networks 7

configuration, allowing for support of multiple drivers and multiple re-
ceivers. RS-485 can support up to 32 unit loads due to its bi-directional
interface [6].

Advantages of RS-485:

• Low cost

• Immune to noise

• Multipoint applications

• Operates on a single pair of wires

Disadvantages of RS-485:

• Not as commonly used

• Less standardized connectors and terminology

• Half-duplex master-slave operation

2.1.4 I2C

I²C (Inter-Integrated Circuit), pronounced I-squared-C or I-two-C,
is a multi-master, multi-slave, packet switched, single-ended, serial
computer bus invented by Philips Semiconductor (now NXP Semicon-
ductors) [7].

Advantages of I2C:

• Maintains low pin/signal count even with numerous devices on
the bus

• Adapts to the needs of different slave devices

• Readily supports multiple masters

• Incorporates ACK/NACK functionality for improved error han-
dling

Disadvantages of I2C:

• Increases the complexity of firmware or low-level hardware

2.1 embedded networks 8

• Imposes protocol overhead that reduces throughput

• requires pull-up resistors, which

– Limits clock speed

– Consumes valuable PCB real estate in extremely space-
constrained systems

– Increases power dissipation

2.1.5 CAN

A Controller Area Network (CAN-bus) is a robust vehicle bus standard
designed to allow microcontrollers and devices to communicate with
each other in applications without a host computer. It is a message-
based protocol, designed originally for multiplex electrical wiring
within automobiles, but is also used in many other contexts [8].

Advantages of CAN:

• It supports multi-master and multi-cast features.

• The CAN bus has the maximum length of 40 meters.

• The CAN provides the ability to work in a different electrical
environment.

• The controller area network (CAN) reduces wiring since it is
a distributed control and this ensures enhancing the system
performance.

• It has single serial bidirectional line to achieve half duplex com-
munication.

• It has a standard bus in distributed network.

• It costs low and it is a lightweight network.

• It has automatic retransmission for the message that lost attribu-
tion.

Disadvantages of CAN:

• It has high software expenditure.

• Undesirable interaction is more probable.

2.2 sensors 9

2.1.6 Ethernet

Ethernet is a network protocol that controls how data is transmitted
over a LAN. Technically it is referred to as the IEEE 802.3 protocol.
The protocol has evolved and improved over time and can now deliver
at the speed of a G-bit per second.

In recent years usage of Ethernet in embedded applications have
been increased but the heavy TCP/IP protocol is really hard to be
implemented for microcontrollers with low SRAM3 and flash memory.

Advantages of Ethernet:

• It supports multi-points.

• Low cost without consideration of processor.

• Easy to use in high-level programming languages.

• Fault tolerant.

Disadvantages of Ethernet:

• Heavy TCP/IP protocol for microcontrollers.

• Hard to use with low-level programming languages.

• Ethernet cable has more wires.

• It needs a hub for multi-point.

2.2 Sensors

infrared sensor An Infrared sensor is an electronic device, that emits
infrared radiation in order to sense some aspects of the surroundings.
An IR sensor can measure the heat of an object as well as detects the
motion.These types of sensors measure only infrared radiation, rather
than emitting it that is called as a passive IR sensor.

microphone A microphone, colloquially nicknamed mic or mike is
a transducer that converts sound into an electrical signal.

3 Static random-access memory

2.3 multimedia 10

2.3 Multimedia

2.3.1 Recording Audio

If you want to record an external audio from a musical instrument or
simple voice in an embedded project, you need to have a microphone
connected to one of the Analog to Digital converter (ADC) ports of
your microcontroller.

In above case, you will be able to record and save the audio in WAV
format but you should create correct WAV file header.

2.3.2 Audio Playback

Sometimes you have an embedded project that needs to play audio.
Maybe you just need to make a beep, in which case a simple speaker
and a square wave will work, but other times you’ll need to play actual
audio, like voice or music. In that case, you need to use a Digital to
Analog Converter (DAC) to generate the stored waveforms.

If the Audio source is not encoded like WAV files, we can use a
library in Arduino which is called TMRpcm. On the other hand, if
your Audio source is encoded with a format like MP3, we should first
decode the file and then we will be able to play it.

In order to use MP3 audio format, we should use an external de-
coder which is specially designed to do the job like VS1053 from VLSI
company. In the following, we will see some of the libraries and boards
for this purpose.

2.3.3 TMRpcm Library

Arduino library for asynchronous playback of PCM/WAV files directly
from SD card. This library can be found at https://github.com/
TMRh20/TMRpcm.

Features

• PCM/WAV playback direct from SD card

• Main formats: WAV files, 8-bit, 8-32khz Sample Rate, mono. See
the wiki for other options.

https://github.com/TMRh20/TMRpcm
https://github.com/TMRh20/TMRpcm

2.3 multimedia 11

• Asynchronous Playback: Allows code in the main loop to run
while audio playback occurs.

• Single timer operation: TIMER1 (Uno,Mega) or TIMER3,4 or 5

(Mega)

• Complimentary output or dual speakers

• 2x Oversampling

2.3.4 VS1053

VS1053 is a versatile "MP3 decoder chip" belonging to VLSI Solution’s
extensive slave audio processor family. In addition to being able to
decode all the most common audio formats - including the advanced
features of newer AAC files - functionality of this IC can be greatly
expanded just by loading a bit of extra software to its RAM memory.
In addition to being able to decode all major audio formats, VS1053

is capable of recording in three different audio formats, from lossless
16-bit PCM to highly compressed, yet high-quality Ogg Vorbis files.
For the best headphone listening experience, the VS1053 includes
EarSpeaker spatial processing which accurately simulates how a room
with stereo loudspeakers would sound. This option can naturally be
turned off when required. All in all, VS1053 is an easy-to-use, powerful
workhorse for audio playback and recording applications [9].

Features

• Decodes multiple formats

– Ogg Vorbis

– MP3 = MPEG 1 & 2 audio layer III (CBR+VBR+ABR)

– MP1 & MP2 = MPEG 1 & 2 audio layers I & II optional

– MPEG4 / 2 AAC-LC(+PNS), HE-AAC v2 (Level 3) (SBR +
PS)

– WMA4.0/4.1/7/8/9 all profiles (5-384 kbps)

– FLAC lossless audio with software plugin (upto 24 bits, 48

kHz)

– WAV (PCM + IMA ADPCM)

– General MIDI 1 / SP-MIDI format 0

2.3 multimedia 12

• Encodes three different formats from mic/line in mono or stereo

– Ogg Vorbis with software plugin

– IMA ADPCM

– 16-bit PCM

• Encodes three different formats from mic/line in mono or stereo

• Ogg Vorbis with software plugin

• IMA ADPCM

• 16-bit PCM

• Streaming support

• EarSpeaker Spatial Processing

• Bass and treble controls

• Operates with a single 12-13 MHz or 24-26 MHz clock

• Internal PLL clock multiplier

• Low-power operation

• High-quality on-chip stereo DAC with no phase error

• between channels

• Zero-cross detection for smooth volume change

• Stereo earphone driver capable of driving a 30- ohm load

• Quiet power-on and power-off

2.3.5 Amplifier

An amplifier, electronic amplifier or (informally) amp is an electronic
device that can increase the power of a signal (a time-varying voltage
or current). An amplifier uses electric power from a power supply
to increase the amplitude of a signal. The amount of amplification
provided by an amplifier is measured by its gain: the ratio of output
to input. An amplifier is a circuit that can give a power gain greater
than one.

2.4 olimex stm32 13

2.4 Olimex STM32

Figure 2.1: Olimex STM32 Board

2.4.1 STM32F103RBT6 microcontroller

• ARM® 32-bit Cortex®-M3 CPU Core

– 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrys-
tone 2.1)

– Performance at 0 wait state memory access

– Single-cycle multiplication and hardware division

• Memories

– 64 or 128 Kbytes of Flash memory

– 20 Kbytes of SRAM division

• Up to 80 fast I/O ports

– 26/37/51/80 I/Os, all mappable on 16 external interrupt
vectors and almost all 5 V-tolerant

2.4 olimex stm32 14

2.4.2 Connectivity

• CAN with driver

• USB

• RS-232

2.4.3 Power

OLIMEXINO-STM32 can be powered from:

• External power supply (9-30) VDC.

• + 5V from USB

• 3.7 V Li-ion battery

• JTAG/SWD programmer/debugger

The programmed board power consumption is about 50 mA with
all peripherals enabled.

2.4.4 Storage

micoSD-card for data logging

2.4.5 Working temperature

Carefully selected, all of the components work reliably in the INDUS-
TRIAL temperature range -25+85C

2.4.6 Dimensions

PCB dimensions: (2.7 x 2.1)" (6.9 x 5.3)cm

2.4.7 Other Information

Further information can be obtained from the product website at:
https://www.olimex.com/Products/Duino/STM32/OLIMEXINO-STM32/

https://www.olimex.com/Products/Duino/STM32/OLIMEXINO-STM32/

2.5 arduino 15

2.5 Arduino

Arduino is an open-source electronics prototyping platform, designed
to make the process of using electronics in multidisciplinary projects
easily accessible. The hardware consists of a simple open hardware
design for the Arduino board with an Atmel AVR processor and on-
board I/O support. The software consists of a standard programming
language and the boot loader that runs on the board.

Arduino hardware is programmed using a Wiring-based language
(syntax + libraries), similar to C++ with some simplifications and
modifications, and a Processing-based Integrated Development En-
vironment (IDE). The project began in Ivrea, Italy in 2005 aiming to
make a device for controlling student-built interaction design projects
less expensively than other prototyping systems available at the time.
As of February 2010 more than 120,000 Arduino boards had been
shipped. Founders Massimo Banzi and David Cuartielles named the
project after a local bar named “Arduino”. The name is an Italian
masculine first name, meaning "strong friend". The English pronuncia-
tion is "Hardwin", a namesake of Arduino of Ivrea. More information
could be found at the creator’s web page http://arduino.cc/ and in
the Arduino Wiki http://en.wikipedia.org/wiki/Arduino

2.6 STM32duino

The STM32 boards are not originally supported by Arduino. In order to
make the Arduino support these board, we should install an extension
which will add all library and support files for STM32 boards.

STM32duino is an Arduino Core for the Maple Mini and other
STM32 F1 and F4 boards, continuing where Leaflabs left off. More
information about the STM32duino can be found at http://wiki.
stm32duino.com/index.php?title=Main_Page

2.7 Cocox OS (RTOS)

Cocox OS and in short term CoOS is a Real-Time Operating System
(RTOS). Like a normal operating system, CoOS works with tasks.
Because this microcontroller has only one core, it can only execute one
task a time but it uses software interrupts to quickly change between
tasks. A software interrupt works on the same principal as a hardware

http://arduino.cc/
http://en.wikipedia.org/wiki/Arduino
http://wiki.stm32duino.com/index.php?title=Main_Page
http://wiki.stm32duino.com/index.php?title=Main_Page

2.7 cocox os (rtos) 16

interrupt, it can jump to another subroutine and run that code first.
This is what an RTOS does, a number of tasks created and executed
and because of the fast switching between tasks the Simplecortex is
basically multitasking and can run multiple tasks at once without the
programmer worrying about it.[10]

With CoOS it is possible to manage which subroutine has to be
executed first. Each task can be given a priority from 0 to 10. The task
with the highest priority will be executed first. It is also possible to
give a task temporarily the highest priority, this is called a Mutex.

Scheduling is needed to start the operating system, scheduling
means that there is a plan which specifies what tasks need to be
executed in what order and how fast. When CoOS is started CoOS
does this automatically.

Flags are used to communicate between tasks. CoOS has a maximum
of 32 flags.

Why use CoOS? Normally a microcontroller will execute a certain
piece of code sentence by sentence. CoOS can stop in the middle
of a subroutine and continue at another subroutine. In this way, for
example it is possible to send data to an LCD and run an Ethernet
webserver at the same time.

Advantages:

• Multitasking

Disadvantages:

• CoOS uses more memory, about 5K flash and 2K RAM.

• It is not possible to use SLEEP mode because the software inter-
rupts will wake up the microcontroller immediately.

Table 2.1 shows the minimum and maximum timings that are needed
to run CoOS.

2.7 cocox os (rtos) 17

Table 2.1: CoOS minimum and maximum timings

Create defined task, no task switch 5.3us / 5.8us

Create defined task, switch task 7.5us / 8.6us

Delete task (ExitTask) 4.8us / 5.2us

Task switch (SwitchContext) 1.5us / 1.5us

Task switch (upon set flag) 7.5us / 8.1us

Task switch (upon sent semaphore) 6.3us / 7.0us

Task switch (upon sent mail) 6.1us / 7.1us

Task switch (upon sent queue) 7.0us / 7.6us

Set Flag (no task switch) 1.3us / 1.3us

Send semaphore (no task switch) 1.6us / 1.6us

Send mail (no task switch) 1.5us / 1.5us

Send queue (no task switch) 1.8us / 1.8us

3
H A R D WA R E S E T U P

In this Chapter, we explain the hardware setup like network, processor,
media board and other hardware components. More importantly, we
would describe the main reasons to choose each of them. The design
of mechanical connectors is at the end of this chapter.

3.1 Robot platform

Wheeled robots are robots that navigate around the ground using
motorized wheels to propel themselves. This design is simpler than
using treads or legs and by using wheels they are easier to design,
build, and program for movement in flat, not-so-rugged terrain. They
are also better controlled than other types of robots. Disadvantages of
wheeled robots are that they can not navigate well over obstacles, such
as rocky terrain, sharp declines, or areas with low friction. Wheeled
robots are most popular among the consumer market, their differential
steering provides low cost and simplicity. Robots can have any number
of wheels, but three wheels are sufficient for static and dynamic
balance. Additional wheels can add to balance; however, additional
mechanisms will be required to keep all the wheels on the ground,
when the terrain is not flat [11].

For this project a 4 wheel robot is considered. The main reason for
this choice is being easy to use and cheap.

18

3.1 robot platform 19

Figure 3.1: Sample of 4 wheel robot platform

3.1.1 2-by-2 powered wheels for tank-like movement

This kind of robot uses 2 pairs of powered wheels. Each pair (con-
nected by a line) turn in the same direction. The tricky part of this
kind of propulsion is getting all the wheels to turn with the same
speed. If the wheels in a pair aren’t running with the same speed, the
slower one will slip (inefficient). If the pairs don’t run at the same
speed the robot won’t be able to drive straight. A good design will
have to incorporate some form of car-like steering [11]. The scheme is
available in fig 3.2

3.2 choosing network 20

Figure 3.2: 4 Wheel 4 Drive

3.2 Choosing network

The main network requirements for the robot are as follows:

• Good speed

• Low cost

• Multi-point configuration

• Less wires

• Easy to use

For these requirements and from the network solutions reviewed in
section 2.1, I found out that two of them can be used:

• RS485 2.1.3

• CAN 2.1.5

3.2 choosing network 21

3.2.1 Network Topology of RS485

Figure 3.3: Network topology of RS485

In Fig 3.3 above, the general network topology of RS485 is shown.
N nodes are connected in a multi-point RS485 network. For higher
speeds and longer lines, the termination resistances are necessary on
both ends of the line to eliminate reflections. Use 100 Ω resistors on
both ends. The RS485 network must be designed as one line with
multiple drops, not as a star [12].

3.2.2 RS485 functionality

Default, all the senders on the RS485 bus are in tri-state with high
impedance. In most higher level protocols, one of the nodes is defined
as a master which sends queries or commands over the RS485 bus.
All other nodes receive these data. Depending on the information in
the sent data, zero or more nodes on the line respond to the master.
In this situation, bandwidth can be used for almost 100%. There are
other implementations of RS485 networks where every node can start
a data session on its own. This is comparable to the way Ethernet
networks function. Because there is a chance of data collision with
this implementation, theory tells us that in this case only 37% of the
bandwidth will be effectively used. With such an implementation of a
RS485 network it is necessary that there is error detection implemented
in the higher level protocol to detect the data corruption and resend
the information at a later time [12].

3.3 choosing board 22

3.2.3 Network Topology of CAN

Figure 3.4: CAN network topology

Same as RS485, in the general CAN network topology, each node
connected by two wire bus name CAN High and CAN Low. Use 120Ω
resistors on both ends. Other topologies like "star" are allowed 3.4.

3.2.4 CAN functionality

Each node is able to send and receive messages, but not simultaneously.
CAN data transmission uses a lossless bitwise arbitration method of
contention resolution. This arbitration method requires all nodes on
the CAN network to be synchronized to sample every bit on the CAN
network at the same time. This is why some call CAN synchronous.
Unfortunately the term synchronous is imprecise since the data is
transmitted without a clock signal in an asynchronous format. [8].

3.2.5 Winner Network - CAN

Since there is no need to have a master node in CAN network and
therefore no implementation of the transmission mechanism is needed
for the functionality, we choose CAN as the network of the modules.

3.3 Choosing board

The main hardware board requirements are as follows:

• High Processing Speed

• Low cost

3.4 choosing media board 23

• CAN bus equipped

• Good SRAM

• Easy to use

• Available support libraries

Because we need higher processing speed since the modules have
real-time requirements, AVR microcontrollers were not good options.
STM32 microcontrollers which have more than 72MHz clock rate
would satisfy the mentioned requirement.

The second factor was the network. As I chose before that CAN
would be the network of the modules, One of the STM32 microcon-
trollers which already support this kind of peripherals should be
selected.

The third factor was the price. Most of the STM32 microcontrollers
have low-price but they have expensive development boards which
were in contradiction with my goal to keep the prices low.

Based on all factors, I chose the OLIMEXINO-STM32 board which
was mentioned in section 2.4. This board uses STM32F103RBT6 micro-
controller which support CAN network. The network driver is already
equipped with the board. Most importantly, the price of the board is
less than 20 Euro which make it suitable for my application.

At last, I should mention that the board is based on maple design
which is fully compatible with Arduino 2.5 and STM32duino 2.6
extension.

3.4 Choosing media board

The main media board requirements are as follows:

• Sound playback(MP3 Preferred)

• Sound recording

• Low cost

• Easy to use

• Available support libraries

3.5 mechanical connectors 24

From the options which were mentioned in section 2.3, I couldn’t
use the TMRpcm Library 2.3.3. The main reason was that the proces-
sor which I selected in the previous section, doesn’t have Digital to
Analog(DAC) support. DAC is the main requirement for this library
since the sound data should be converted to an analog signal and
transmitted to the speakers.

Figure 3.5: VS1053 board

On the other hand, Media board VS1053 2.3.4 from VLSI company
was a good option. It supports MP3 playback, Ogg and Wave recording.
The support libraries are available and finally, the price is as low as 6

Euro per unit which makes it an ideal selection.

3.5 Mechanical connectors

Since we should be able to remove the components from the main
platform, A mechanical connector is needed.

The main requirements for the mechanical connectors are as follows:

• 3 or 4 wires

• Strong connection

• Easy to connect and disconnect

• Low cost

Based on the requirements and various connectors which are avail-
able in the market, I selected the 3.5mm audio jack which is available

3.5 mechanical connectors 25

in male and female format. One would be fixed on the main platform
and the other would be on the module.

Figure 3.6: 3.5mm Panel Mount Figure 3.7: 3.5mm Male Jack

The in work result of the connector shown in the below image.

Figure 3.8: Connector in robot

4
C O M P O N E N T S S O F T WA R E I M P L E M E N TAT I O N

In this chapter, we describe components software implementations
which we used independently in each module. We will describe the
following items in this chapter:

• How to use the sensors.

• How to configure the CAN network and use it.

• The methods and algorithms used to detect the connection of
modules to system or components to modules.

• Implementation of multimedia features.

4.1 Sensors

In this project, Two type of sensors were used. Microphones and
Infrared distance detectors. Both of these sensors produce analog
signals which can be read by Analog to Digital(ADC) converters of
the microcontrollers.

Our microcontrollers has 12-bit ADC which help us to have a great
resolution of the incoming signal.

Sampling rate The analog signal is continuous in time and it is
necessary to convert this to a flow of digital values. It is therefore
required to define the rate at which new digital values are sampled
from the analog signal. The rate of new values is called the sampling
rate or sampling frequency of the converter.

The time required in our current setup to read one sample from
microcontroller ADC is 7 microsecond which is too high and also one
sample is not a value that we can rely on in order to detect the changes.
Therefore, a sampling method was used in order to have a better and
reliable value from each ADC. The following code was used in order
to have a good sample from ADC.

Here is the code of our ADC sampler. It uses a simple averaging
algorithm.

26

4.2 can network setup 27

int16 SampleADC(uint16 *values) {
unsigned long sum = 0;
for (uint16 i = 0; i < ADC_SAMPLE_SIZE; i++) {

sum += values[i];
}
int16 average = sum / ADC_SAMPLE_SIZE;
return average

} �
In the above code, The ADC_SAMPLE_SIZE is 1024. This average
value is considered as one true value for each sensor.

4.2 CAN Network Setup

In order to make the CAN network working, the "HardwareCAN"
support library from Maple was used. This library provides compre-
hensive functions of the CAN network and makes it easy to use.

First let’s summarize the general information about CAN bus: [8]

4.2.1 Basic Message Format

The frame format is as fig 4.1:

Figure 4.1: CAN message format

Identifier(ID) A (unique) identifier which also represents the mes-
sage priority(11 bits)

Data length code (DLC) Number of bytes of data (4bits)

4.2 can network setup 28

Data Field Data to be transmitted (length in bytes dictated by DLC
field) 0–64 bits (0-8 bytes)

4.2.2 ID allocation

Message IDs must be unique on a single CAN bus, otherwise, two
nodes would continue transmission beyond the end of the arbitration
field (ID) causing an error.
In the early 1990s, the choice of IDs for messages was done simply on
the basis of identifying the type of data and the sending node; however,
as the ID is also used as the message priority, this led to poor real-time
performance. In those scenarios, a low CAN bus utilization of circa
30% was commonly required to ensure that all messages would meet
their deadlines. However, if IDs are instead determined based on the
deadline of the message, the lower the numerical ID and hence the
higher the message priority, then bus utilizations of 70 to 80% can
typically be achieved before any message deadlines are missed.

4.2.3 Setup

Setting up the library is quite easy. It is needed to be included in
code and run a few lines to set up pins and etc. For comfortability
reasons two functions for sending and receiving the messages have
been written.

CAN_TX_MBX RobotModule :: CANsend(CanMsg *pmsg)
{

CAN_TX_MBX mbx;

do
mbx = canBus.send(pmsg) ;
while(mbx == CAN_TX_NO_MBX) ;
return mbx ;

} �
Listing 4.1: Send a CAN message

CanMsg * RobotModule :: CANreceive () {
while(! canBus.available ());
Serial1.print(" Got t h e Data ");
CanMsg *r_msg = canBus.recv();
if (r_msg) {

4.3 hardware connection detection 29

return r_msg;
}

} �
Listing 4.2: Receive a CAN message

4.3 Hardware Connection Detection

One of the main goals of this project is to be able to detect that the
modules or hardware components are connected to the system or not.
We divided this task into two main part. First to detect if the module
is in the network and Second for each module to detect their sensors
or actuators are connected or not.

4.3.1 Module Connection

In order to detect, a periodical beacon has been considered. This
beacon which is a 8-byte message contains the Identification number,
type and other necessary information related to each module. Then
every one second each module send this "Life" beacon to notify other
modules of their existence. Following is the procedure of sending life
beacon.

Algorithm 1 Life Beacon send algorithm

1: procedure Sending Life Beacon

2: while true do
3: Message(1) = Module Id
4: Message(2) = Module Type
5: SendCAN(Message)
6: Delay 1 second
7: end while
8: end procedure

The other task is to find other modules in the network based on
their life beacons. In CAN network the messages are broadcast to
every node, so, All modules will receive other’s life beacons.

Provided that, if I receive a life beacon I will add it to the modules
list and if I don’t receive the life beacon of one module for more than
3 periods, I consider it disconnected. Two different Procedures are

4.3 hardware connection detection 30

needed. One for receiving beacons and update the modules list with
the time of the receive and the other for checking the list and see if
there is any disconnected module.

Algorithm 2 Life Beacon receive algorithm

1: procedure Sending Life Beacon

2: while true do
3: while Beacon message not received do
4: end while;
5: Beacon(id) = life beacon
6: Beacon_times(2) = Now
7: end while
8: end procedure

Algorithm 3 Beacon check algorithm

1: procedure Sending Life Beacon

2: while true do
3: for i=0; i<Beacon.size;i++ do;
4: if Beacon_times(i) + 3 * 4 second < Now then
5: Remove beacon from the list
6: end if
7: end for
8: Delay 4 second
9: end while

10: end procedure

4.3.2 Components Connection

In this part various techniques defined in order to detect the connection
of hardware components such as Microphones and Infrared Sensors,
LEDs and etc.

4.3.2.1 Microphones and Infrared Sensors

Microphones and Infrared sensors produce analog signals which can
be read by Analog to Digital(ADC) converters of the microcontroller.
When a sensor connected and we read one sample from the ADC,
The value is one 12-bit representing the current value of the sensor. In
normal situation, the value is between 0 and 4095(maximum value of

4.3 hardware connection detection 31

the ADC). But there is a trick to fix the value to maximum when there
is no sensor connected.

Pull-up resistor In electronic logic circuits, a pull-up resistor is a
resistor connected between a signal conductor and a positive power
supply voltage to ensure that the signal will be a valid logic level if
external devices are disconnected or high-impedance is introduced
[13].

Figure 4.2: Pull-up resistor

When the switch is open the voltage of the gate input is pulled up to the
level of Vin. When the switch is closed, the input voltage at the gate goes to

ground.

The STM32F103RBT6 processor uses default pull-up resistors on I/O
pins. So, It’s pretty straight forward to use them in this application.

In Arduino, keyword INPUT_PULLUP has defined for this reason.

void setPullUp(int pin)
pinMode(pin , INPUT_PULLUP);

} �
Finally, in the ADC sampling algorithm, we check if the average

value of samples is more than 4040, we assume that there is no sensor
connected to that ADC pin.

4.3 hardware connection detection 32

4.3.2.2 LEDs

To detect the connection of LEDs to the pins, a simple logic was used.
One GND and one input for each LED component considered. In
panel mount 3.5mm jack these two pins are not connected together
but in the component it-self, they are soldered together. Also, The
input mode is INPUT_PULLUP. Consequently, if the component is
disconnected, the input is in the HIGH state and if connected it is in
the LOW state.

Provided that, following algorithm used to periodically check the
status of LED connection.

Algorithm 4 Check status of LED component

1: while true do
2: Set the input pin to INPUT_PULLUP mode
3: if input == LOW then
4: LED connected
5: else
6: LED disconnected
7: end if
8: Delay 4 second
9: end while

4.3.2.3 Speakers

The speakers were a different story. The INPUT_PULLUP could not
be used in order to detect the connection since it will interfere the
operation of the speaker.

Since we have four microphones mounted on one of the modules,
we decided to use them to determine the connection of the speakers.
The media player used in the system is stereo and has two channels,
one for left and the other for the right. We put two MP3 sound files
which each of them only has one channel data and when we play
them only one of the speakers will produce the sound. Finally, with
microphones, we detect if there is any sound playing around. If yes
that speaker is connected.

Unfortunately, if there is no microphone connected, we can not
detect the speakers which represent real life!

4.4 media 33

4.4 Media

In this section, we would describe the methods of using VS1053 2.3.4.
All this functionality is implemented in a light-weight SPI interface so
nearly any microcontroller can play audio from an SD card. There’s
also a special MIDI mode that you can boot the chip into that and the
board will read ’classic’ 31250Kbaud MIDI data on a UART pin and
act like a synth/drum machine - there are dozens of built-in drum
and sample effects!

The connections of the board to the microcontroller is like the
scheme in fig 4.3.

Figure 4.3: Connections of VS1053 to microcontroller

In all scenarios, the board needs to interact with SD card which
is already present in the Olimex STM32 board. Since both (SD and
VS1053) using SPI interface and Olimex has two SPIs, we are good to
go. The SD card is connected to the second SPI and fully compatible
with Arduino’s SD library.

4.4 media 34

4.4.1 MP3 Playback

In order to play MP3 files with the board, we perform the following
procedure.
First, we Include the necessary libraries.

#include <SPI.h>
#include <VS1003_STM.h>
#include <SD.h> �

Then, we define the player.

SPIClass spiVS (1);
VS1003 player(9, 6, 7, 8, spiVS); �

We should also Initialize the SD Card.

while (!SD.begin (25)) {
Serial2.println(" Card f a i l e d , or not

p r e s e n t ");// don’t do anything more:
delay (100);

} �
Then, we set the player parameters and change it to MP3 mode.

player.begin();
player.modeSwitch (); // Change mode from MIDI to MP3

decoding (Vassilis Serasidis).
player.setVolume (0x00); �

Finally using "playfile" function, we can play the MP3 sound.

playFile(RobotModule :: CurrentSound); �
The full code of "playfile" function is available in Appendix A at the

end of this document.

4.4 media 35

4.4.2 Recording Audio

Recording audio using VS1053 2.3.4 can be done using two output
formats. One is uncompressed WAV and the Other is Ogg Vorbis.

4.4.2.1 WAV Audio format

Waveform Audio File Format (WAVE, or more commonly known as
WAV due to its filename extension) is a Microsoft and IBM audio file
format standard for storing an audio bitstream on PCs.

Though a WAV file can contain compressed audio, the most com-
mon WAV audio format is uncompressed audio in the linear pulse
code modulation (LPCM) format. LPCM is also the standard audio
coding format for audio CDs, which store two-channel LPCM audio
sampled 44,100 times per second with 16 bits per sample. Since LPCM
is uncompressed and retains all of the samples of an audio track,
professional users or audio experts may use the WAV format with
LPCM audio for maximum audio quality.

4.4.2.2 Ogg Vorbis format

Vorbis is a free and open-source software project headed by the
Xiph.Org Foundation. The project produces an audio coding format
and software reference encoder/decoder (codec) for lossy audio com-
pression. Vorbis is most commonly used in conjunction with the Ogg
container format and it is therefore often referred to as Ogg Vorbis.

Vorbis had been shown to perform significantly better than many
other lossy audio formats in the past in that it produced smaller files at
equivalent or higher quality while retaining computational complexity
comparable to other MDCT formats such as AAC or Windows Media
Audio.

4.4.2.3 Recording Ogg

We choose Ogg Vorbis as audio recording format because of the
size. The Ogg files are much smaller than the wave files due to the
compression.

Provided that, we perform the following procedure for recording
audio in Ogg format.

First, we Include the necessary libraries.

#include <SPI.h>

4.4 media 36

#include <VS1003_STM.h>
#include <SD.h> �

Then, we define the recorder.

SPIClass spiVS (1);
VS1003 recorder(9, 6, 7, 8, spiVS); �
We should also Initialize the SD Card.

while (!SD.begin (25)) {
Serial2.println(" Card f a i l e d , or not p r e s e n t ");

// don’t do anything more:
delay (100);

} �
Then, we set the player parameters and change it to MP3 mode.

recorder.begin();
recorder.setVolume (0x00);
// load plugin from SD card! We’ll use mono 44.1KHz ,

high quality
if (! recorder.prepareRecordOgg(" v44k1q05 . img ")) {

Serial.println(" Couldn ’ t load plugin ! ");
while (1);

} �
Finally using "saveRecordedData" function, we can play the MP3

sound.

saveRecordedData (); �
The full code of "saveRecordedData" function is available in Appendix
B at the end of this document.

4.4 media 37

4.4.3 Sound Localization

Rather than detecting what has been spoken, the work in this disserta-
tion concerns the detection of where the sound originated from. The
use of multiple, spatially distributed microphones allows the local-
ization of sound sources by detecting differences between the signals
received at each microphone. [14]

Time delay estimation is a method used to localize the targets
depending on the sound; this method can be used in active or passive
sound localization systems. The active systems send a sound pulse
and receive the echo to estimate the time delay and localize the targets;
an example for this method is the sonar (sound navigation system).
The passive systems use the source sound itself. In the passive system,
several methods could be used to localize the sound source that differs
in the physical variables which they use to localize the sound; these
methods are divided into three categories [15], which are

• Time difference of arrival, where the systems measure the differ-
ence in time between the signals received by the microphones to
localize the sound source.

• Direction of arrival, where the phase difference between the
signals is used to locate the sound source.

• Energy based sound localization, where the energy of sound
wave decreases when the sound wave propagates in the air. By
measuring the sound energy at different sensor locations, one
may localize the sound source.

Time Delay Estimation Algorithms Several algorithms have been
created to estimate the time delay; they vary in degrees of accuracy
and computational complexity.

4.4.4 Cross Correlation Algorithm

This algorithm is a method to find the degree which the signals are
correlated. The time delay estimation is obtained as the time lag that
maximizes the cross correlation function. Assuming that we have a
microphones array m 1, m 2 ... m i , the signals picked up by these
microphones are

xi = ais(t− τi) +ni(t). (4.1)

4.4 media 38

where i denotes the microphone, s(t) is the sound signal, ni(t) is
the stationary additive noise, τi is the propagation delay difference
between two microphones and ai is the signal attenuation.

The Fourier transform for the previous equation gives

Xi(f) = αiSi(f)exp(−j2πfτi) +Ni(f). (4.2)

The cross power spectrum density function is calculated by the
equation

Rx1x2
= E[x1(t)x2(t− τ)]. (4.3)

where E{.} is the expected value, the value of τ which maximizes this
function is the time delay estimation.

4.4.5 Generalized Cross Correlation

This algorithm is an improved version of cross correlation algorithm.
The main advantages of this algorithm are the high accuracy and
low computational cost. Fig 4.4 shows a diagram for this method. As
can be seen, two filters H 1 , H 2 are added to ensure large sharp
peak in the obtained cross correlation, which improves the accuracy
of time delay estimation and improves SNR. After filtering the signals
x 1 , x 2 , the resultant signals are delayed and then multiplied, then
the resultant signals are integrated for a variety of delays until peak
output is obtained.

Figure 4.4: Generalized cross correlation method.

4.4 media 39

4.4.6 Microphone Setup

Our microphones setup is like Fig 4.5.

Figure 4.5: Generalized cross correlation method.

With the use of Generalized Cross Correlation 4.4.5 running on
M1 and M2 and then on M3 and M4 we got two time delays which
represent two points in 2D plain. By getting the arctan of these two
points we get the angle of sound by the degree which is visible on the
Fig 4.5.

The code for this algorithm is on Appendix C.

5
M O D U L E D E S I G N A N D I M P L E M E N TAT I O N

This chapter is considered one of the main parts of the project. In this
chapter:

• First, we describe the overall system configuration.

• Then, we define the modules architecture and their responsibili-
ties.

• Next, we review the operating system of the modules. Tasks,
Mutex, Flags and etc are part of this section.

• Finally, we describe the module library which is designed spe-
cially for this robot and responsible for defining shared data,
synchronizing the modules and etc.

Figure 5.1: System Configuration

40

5.1 system configuration 41

5.1 System Configuration

The robot we designed, consists of 3 modules in the top, middle and
bottom levels of the platform.
The top module is connected to LEDs and Microphones.
The middle one is connected to Media board and Servo Motor.
Finally, the bottom module is connected to Wheel Motors and Infrared
sensors.

You can see the current system configuration in Fig 5.2.

5.2 Module Description

The main unit of this robot is modules. One module consists of one
main processor with networking capabilities and a set of hardware
components either sensors or actuators.

Figure 5.2: Module’s hardware components. From top to bottom: Infrared
Sensors, Microphones, LEDs, Servo Motor and Speaker.

5.2 module description 42

In our case, the main processor is Olimex STM32 with CAN net-
work equipped 2.4. Each module might have microphones or Infrared
sensors, Multimedia capabilities or actuators like Servo Motor, Wheel
motors or LED based on their design.

5.2.1 Module Architecture

Every module is connected to the system bus. System bus consists
of 4 wires, which two of them are for power (5v and GND) and the
other 2 are for networking (CAN High and CAN Low). If the module
is not connected to the system, other modules will acknowledge by
missing the "life beacon" 4.3.1 from that module. In Figure 5.3 the
general system architecture is displayed.

Figure 5.3: Modules connected to System Bus

5.2.2 Module Responsibilities

One module is responsible for collecting data from its sensors and
managing their actuators. It should send the collected data from its
sensors to other modules in the system and retrieve other modules
collected data and use them in various decision-making scenarios.

The module should also send some "life" data periodically in order
to announce its presence and capabilities to other modules.

Moreover, each module may process some of the collected data. One
may calculate the angle of incoming sound from the environment or
the other may play a sound or record audio.

5.3 module operating system - coos 43

5.3 Module Operating System - CoOS

We choose Cocox OS 2.7 as the operating system for each module
which satisfies our real-time requirement. With the use of this op-
erating system, each module is able to run up to 8 different tasks
simultaneously. We used these tasks to send data to the network, re-
ceive data from the network, perform periodic jobs and etc. Since we
use many functions of the CoOS, we describe the core functions of the
CoOS in this section.

5.3.1 Task Architecture

A task can be in one of the following states in CoOS [16].

Ready State(TASK_READY): Ready tasks are tasks that can be
executed (they are not waiting or dormant). They are not currently
executing because another task of equal or higher priority is already
in the Running state. A task will be in this state after it is created.

Running State(TASK_RUNNING): When a task is executing, the
task is in Running state.

Waiting State(TASK_WAITING): Wait for an event to occur. A
task will be in the waiting state if it is waiting for an event in CoOS.

The Dormant State(TASK_DORMANT): The task has been deleted
and can not be used again. The dormant state is not the same as the
waiting state. Tasks in the waiting state can be reactivated and be avail-
able again for scheduling when its waiting events have been satisfied.
However, tasks in the dormant state can never be reactivated.

The state of a task can be changed in the above four states. Co-
SuspendTask() can be used to convert a task which is in the running
or ready state to the waiting state. With calling CoAwakeTask() it is
possible to convert the state of a task from the waiting state to the
ready state.

The figure 5.4 shows which transitions are possible.

5.3 module operating system - coos 44

Figure 5.4: Module and System Architecture

Example:
This example uses 3 tasks (taskA, taskB, taskC). the main code looks
like this:

int main () {
CoInitOS ();// Initial CooCox CoOS

/*!< Create three tasks */
CoCreateTask (taskA ,0,0,& taskA_stk[

STACK_SIZE_TASKA -1], STACK_SIZE_TASKA);
CoCreateTask (taskB ,0,1,& taskB_stk[

STACK_SIZE_TASKB -1], STACK_SIZE_TASKB);
CoCreateTask (taskC ,0,2,& taskC_stk[

STACK_SIZE_TASKC -1], STACK_SIZE_TASKC);

CoStartOS (); // Start multitask
} �
What happened is the CoOS (Real Time Operating System) is initial-
ized. The next step is to create the all tasks. When that’s done the
CoOS can be started.

These are the 3 tasks:

5.3 module operating system - coos 45

void taskA (void* pdata)
{

// place your code here.
while (1);

}

void taskB (void* pdata)
{

// place your code here.
while (1);

}

void taskC (void* pdata)
{

// place your code here.
while (1);

} �

5.3.2 Mutex

Mutexes can solve the "mutually exclusion" problem in CoOS. Coocox
has solved this issue by the method of priority inheritance. Priority
inversion means that a high-priority task is waiting for the low-priority
task to release resources, at the same time the low-priority task is
waiting for the middle priority tasks. In layman’s terms, the high
priority task can’t function because it needs data from a low resource
task that is waiting for a middle resource task to finish [16]. There are
two classical methods to prevent this from happening:

• The priority inheritance strategy: The task which is possessing
the critical section inherits the highest priority of all the tasks
that request for this critical section. When the task exits from the
critical section, it will restore to its original priority.

• The ceiling priority strategy: Upgrade the priority of the task
which requests a certain resource to the highest priority of all
the tasks that be likely to access this resource (and the highest
priority is called the ceiling priority of this resource).

5.3 module operating system - coos 46

The mutex sections work like this: All tasks have a priority, when a
task has a low priority, but one or a few lines of code that needs to be
in the higher priority (must be executed directly) those lines of code
must be in a mutex. Everything that is in the mutex gets the highest
priority.
Example:

OS_MutexID mutexID; // create a mutex variable

void myTaskA(void* pdata)
{

// create a mutex section
mutexID = CoCreateMutex ();

// enter the mutex section
CoEnterMutexSection(mutexID);

// critical code

// leave the mutex section
CoLeaveMutexSection(mutexID);

} �

5.3.3 Critical Section

CoOS can handle critical code, if you have a piece of code that has
to be executed in one go no matter what, use this method: Different
from other kernels, CoOS does not handle the critical code section by
closing interrupts, but locking the scheduler. Therefore, CoOS has a
shorter latency for interrupt compared with others.

Since the time of enabling the interrupt relates to system respon-
siveness towards the real-time events, it is one of the most important
factors offered by the real-time kernel developers. By locking the
scheduler we can improve system real-time feature to the maximum
comparing to other approaches. Since CoOS manages the critical sec-
tion by forbidding to schedule task, user applications cannot call any
API functions which will suspend the currently running task in critical
sections.
Example:

5.3 module operating system - coos 47

void myTaskA(void* pdata)
{

for (;;) {
CoSchedLock (); // Enter Critical Section
// Critical Code
CoSchedUnlock (); // Exit Critical Section

}
} �

5.3.4 Flags

Flags can be used to communicate between tasks. A task can set or
reset a flag and another task can check the status of a flag or wait with
executing until a flag is set.

There are two ways of using flags: a single flag and multiple flags.
Multiple flags must wait for each other, so the single flag is faster.
CoOS supports up to 32 flags.

Moreover, There are two kinds of flags in CoOS: the ones reset
manually and the ones reset automatically. When a task has waited
for a flag which reset automatically, the system will convert the flag to
not-ready state. If the flag is reset manually, there won’t be any side
effect. Therefore, when a flag which reset manually converts to the
ready state, all the tasks which is waiting for this event will convert
to the ready state until you call CoClearFlag() to reset the flag to the
not-ready state.

When a flag which reset automatically converts to the ready state,
only one task which are waiting for this event will convert to the
ready state. Since the waiting list of the event flags is ordered by the
principle of FIFO, towards the event which reset automatically only
the first task of the waiting list converts to the ready state and others
that are waiting for this flag are still in the waiting state.

Suppose there are three tasks (A, B, C) waiting for the same flag
"I" which resets manually. When "I" is ready, all the tasks will be
converted (A, B, C) to the ready state and then inserted into the ready
list. Suppose "I" is a flag which reset automatically and the tasks (A,
B, C) are listed in sequence in the waiting list. When "I" is ready, it
will inform task A. Then I will be converted to the not-ready state.
Therefore B and C will keep waiting for the next ready state of flag I

5.3 module operating system - coos 48

in the waiting list. You can create a flag by calling CoCreateFlag() in
CooCox CoOS. After being created, you can call CoWaitForSingleFlag()
and CoWaitForMultipleFlags() to wait for a single flag or multiple
flags.
Example:

OS_FlagID flagID; // declare a flag

void taskA(void* pdata) // This is one of the two
tasks that is created in the main loop

{
GPIOSetDir (1, 18, 1); // Set PIO1_18 as output
uint32_t flipflop = 0; // Make a local variable

and give it the value 0
flagID = CoCreateFlag (0, 0);// Create a flag and

set it in manual reset modus
for (;;) { // Make a never ending loop

if(flipflop == 0) // If variable is zero
make variable 1 and clear the flag

{
flipflop = 1;
CoClearFlag(flagID);

}
else // If variable is not zero make

variable 0 and set the flag
{

flipflop = 0;
CoSetFlag(flagID);

}
GPIOSetValue (1, 18, flipflop); // Set

PIO1_18 HIGH or LOW
CoTickDelay (100); // A delay of 100

milliseconds
}

}
void taskB (void* pdata){ // This is one of

the two tasks that is created in the main loop
GPIOSetDir (1, 19, 1); // Set PIO1_19 as output
StatusType result; // Create a status type

variable
for (;;) // Make a never ending loop
{

GPIOSetValue (1, 19, 0); // Make
PIO1_19 LOW

5.4 module library 49

result = CoWaitForSingleFlag(flagID , 500);
// Put the status of the flag in the
variable , if the flag wasn’t recieved in
500mS a timeout occurs

GPIOSetValue (1, 19, 1); // Make
PIO1_19 HIGH

}
} �

5.4 Module Library

For ease of use reasons, we write a complete module library where we
well define all the data, functions and tasks which are shared among
different modules. The complete source code of this library is available
in the Appendix D.

Each module in the system should include the module library,
initialize it and set its own Identifier number. Here is an example:

#include <module.h>

int Id = 1;
RobotModule ::Init(Id); �

More importantly, every module should declare that which of the
hardware components which are available in robot platform such as
motors, microphones, distance sensors and etc, are connected to them.
Consequently, the module is responsible for collecting data for its
sensors or managing the actuators. Data from other modules update
from them through the network. Here is an example of declaring
ownership of the components:

RobotModule :: MicrophoneNorth.mine = true;
RobotModule :: MicrophoneNorth.pin = 15;
...
RobotModule :: LEDNorthEast.mine = true;
RobotModule :: LEDNorthEast.pin = 4;
RobotModule :: LEDNorthEast.pin_support = 5; �

5.4 module library 50

Then, we start the tasks which may be related to the specific module
or shared among the modules. Here is an example:

CoCreateTask (&(RobotModule :: GameOneTask),
(void *) 0,
2,
&RobotModule :: GameOneTaskStk[TASK_STK_SIZE - 1],
TASK_STK_SIZE
);
CoCreateTask(ADCSamplerTask ,
(void *) 0,
2,
&ADCSamplerTaskStk[TASK_STK_SIZE - 1],
TASK_STK_SIZE
); �

5.4.1 Inner Task Communication

We use CoOS flags 5.3.4 to make inner task communications possible.
Examples of needed communications are when we want to ping the
other tasks to send the data to the network or when a task receives
data from the network and should ping another task to run.

5.4.2 Shared Tasks

We write the total of 4 shared tasks which all modules should run in
order to make system working and in sync.

• Network Send Task

• Network Receive Task

• Interval Task

• Game Perform Task

5.4.2.1 Network Send Task

This task is responsible for sending the sensor collected or another
type of data to other modules through the CAN network. Network

5.4 module library 51

Send task is always waiting to be pinged 5.4.1 by other tasks when
their data is ready.

We defined 7 different flags in which we declare which type of new
data is available.

• CAN_Microphone_FlagId : The flag to declare new microphone
sample is recorded.

• CAN_Sound_Angle_FlagId : The flag to declare new incoming
sound angle is calculated.

• CAN_IR_FlagId : The flag to declare new Infrared sample is
recorded.

• CAN_LED_FlagId : The flag to declare that the LED status is
changed.

• CAN_Wheel_Motors_FlagId : The flag to declare that the Motor
status is changed.

• CAN_Servo_Motors_FlagId : The flag to declare that the Servo
Motor status is changed.

• CA_Interval_FlagId : The flag to declare that new data is gener-
ated in Interval task 5.4.2.3.

Then, We know that there is data available to send. We detect the
type of that data and also check if other type of data is also ready to
dispatch in this session.

In order to make the network packet ready, we should pay attention
that the length of each CAN message is 8 byte at maximum. In every
message, we have two static byte which is the same in all messages.
First is the module Identifier number (Id) and the second is Command
Code which is the code which helps the other modules to understand
which type of data is in the message.

Provided that, There are 6 remaining bytes which can be used to
put the data inside. If a single data is more than one byte, We used
the "Union" technique to split it into the bytes and then reconstruct it
in the other module. Here is an example of splitting a uint16 to two
single bytes:

union TwoBytes
{

uint16 u16;

5.4 module library 52

uint8 u8[2];
} twoBytes;

twoBytes.u16 = MicrophoneNorth.value;
t_msg.Data [0] = twoBytes.u8[0];
t_msg.Data [1] = twoBytes.u8[1]; �

We should remember that the flags need to be cleared at the end
of each send session. If we don’t reset the flags, the task is always
running and won’t wait for further flags settings.

5.4.2.2 Network Receive Task

Network receive task is always listening for new data from the net-
work. So, when there is no data the task is waiting and calling can-
Bus.available() to find out if there is new data available from the
network.

Once there is new data available, It will receive the message. Then,
We parse that incoming message. We know that the first byte is the
Identifier number of the module which had sent the message and
second byte is the command code.

Based on the command code, we assign the values to the shared
data variables in the module library. If the data is more than one byte,
We again reconstruct it with "Union" technique which we described
before.

It’s important to mention that when a new message arrives from a
module the last seen time of them is updated.

5.4.2.3 Interval Task

We define an interval task to perform following tasks inside:

• Sending life beacon

• Checking for modules and components hardware connection

• Sending the module data periodically

• Checking for coordinator and choose if necessary

5.4 module library 53

5.4.2.4 Game Perform Task

We consider the Game Perform Task as the main task for playing the
games. In this task, First, we check the currently selected game and
based on that each module understands their duty and behavior.

5.4.3 Decision Making

In this section, We explain the methods for selecting system coordina-
tor and games.

5.4.3.1 Choosing Coordinator

We use highest module identification number as the coordinator. In
the interval task, Each module compares their Id to the highest Id in
the system.

5.4.3.2 Game Selection

The coordinator module will select the game based on two scenarios.

• Event-based: In this mode, the coordinator decides to change the
game based on the external events like incoming sound or the
distances from surroundings.

• Random based: While there are no external events the coordina-
tor may want to change the current game in order to get outside
attention. This change will be random and the coordinator selects
current game between the available games and components.

Then, Each module will retrieve the selected game from the network
and apply it.

5.4.4 Games

5.4.4.1 Game - Relax

This game is running when there is no external event has triggered
for a while. The media player would play a relaxing song while the
LEDs blinking slowly and the sensors are scanning for external events
in order to change the game.

If there is no external event for a while after selection of this game,
The coordinator may decide to randomly change the game.

5.4 module library 54

5.4.4.2 Game - Happy

When coordinator receives clap event, It would switch the current
game to Happy. In this game, the media player would play a happy
song while LEDs blinking fast and the servo motor would go left and
right in order to have a happy impression. The robot may change its
location with a static pattern.

By clapping again we can change the game to another random one.
Also the game will automatically change when it runs for 1 minute.

5.4.4.3 Game - Escape

The coordinator will monitor the changes on Infrared sensors and if
someone passing by the robot, It will get away from its position to
opposite direction. The media player would play Danger song and the
LED of danger zone blink.

5.4.4.4 Game - Give me your hand

When modules are playing this game, the coordinator will monitor
incoming sound angle. Based on this angle the servo motor would
turn left or right while LEDs of that direction blink. The media player
would play a sound in order to inform the direction.

6
C O N C L U S I O N

In this chapter, we describe the final conclusion and suggestions for
possible future work based on this paper.

6.1 Conclusion

In this paper, we have presented the design of a Networked modular
robot which can perform various games. Different modules can com-
municate, synchronize and decide to perform a game together. This
work has answered the following requirements.

• Is it possible to have a modular robot without the core to manage
them?

• Is it possible to detect the existence of a module in the system?

• Is it possible to detect the existence of a hardware component
like microphones, infrared sensors or LEDs in a module?

• Is it possible to implement multimedia capabilities with low-cost
and good quality?

• Is it possible to detect the incoming sound angle or external
events?

We have implemented complete hardware and software setup to
answer above questions. The system consists of different modules
which have specific responsibilities. In our setup, there is no core
and the modules decide that make one among them as coordinator.
The coordinator is responsible for selecting the current game for all
modules and sending them the result. If the coordinator has removed
from the system, others will decide a new one.

We described and implemented different techniques to check the
existence of modules or hardware components. The modules share
their collected data with others and with the help of their sensors and
actuators may calculate incoming sound angle or detecting changes in
the environment. Game selection is based on the existence of different
modules and hardware components.

55

6.2 future work 56

6.2 Future work

• The modules could be combined with hardware components in
a smaller package and the 4 wire mechanical connector could be
implemented in order to mount on the robot platform.

• Beside the above suggestion, each module could come as differ-
ent level in robot platform.

• More modules with a wide range of components like other dis-
tance detectors, temperature sensors and etc could be designed.

• With the current configuration, Many more games could be
implemented. It needs more creativity and research on children
favorite games.

• Game selection methods could be studied based on favorites of
the children.

B I B L I O G R A P H Y

[1] Prof. Kai Arras. “Social Robotics Seminar SS2015.” In: (2015).
url: http://srl.informatik.uni-freiburg.de/teachingdir/
ss15/SemSS15-introduction.pdf (cit. on p. 1).

[2] Lina Becerra Paola Esquivel Kim Adams Adriana Rios. “USING
ROBOTS TO ACCESS PLAY AT DIFFERENT DEVELOPMEN-
TAL LEVELS FOR CHILDREN WITH SEVERE DISABILITIES:
A PILOT STUDY.” In: (2015). url: https://www.resna.org/
sites / default / files / conference / 2015 / robotics / adams .
html (cit. on p. 1).

[3] Tarun Agarwal. “What is a Network in Embedded Systems?
– Different Types of Networks.” In: (). url: https : / / www .
elprocus.com/important-of-network-in-embedded-systems-
for-beginners/ (cit. on p. 4).

[4] Dallas Semiconductor. “Fundamentals of RS–232 Serial Com-
munications.” In: (2017). url: http://ecee.colorado.edu/
~mcclurel/dan83.pdf (cit. on p. 5).

[5] National Instruments. “RS-232, RS-422, RS-485 Serial Communi-
cation General Concepts.” In: (2016). url: http://www.ni.com/
white-paper/11390/en/ (cit. on p. 6).

[6] Texas Instruments. “RS-422 and RS-485 Standards Overview
and System Configurations, Application Report.” In: (2010). url:
http://focus.ti.com/lit/an/slla070d/slla070d.pdf (cit. on
p. 7).

[7] NXP Semiconductors. “I2C-bus specification and user manual.”
In: (2014). url: http://www.nxp.com/documents/user_manual/
UM10204.pdf (cit. on p. 7).

[8] Vector Group. “Controller Area Network (CAN).” In: (2013). url:
https://vector.com/vi_controller_area_network_en.html
(cit. on pp. 8, 22, 27).

[9] VLSI Solutions. “VS1053 - Ogg Vorbis / MP3 / AAC / WMA
/ FLAC / MIDI Audio Codec Chip.” In: (2016). url: http:
//www.vlsi.fi/en/products/vs1053.html (cit. on p. 11).

57

http://srl.informatik.uni-freiburg.de/teachingdir/ss15/SemSS15-introduction.pdf
http://srl.informatik.uni-freiburg.de/teachingdir/ss15/SemSS15-introduction.pdf
https://www.resna.org/sites/default/files/conference/2015/robotics/adams.html
https://www.resna.org/sites/default/files/conference/2015/robotics/adams.html
https://www.resna.org/sites/default/files/conference/2015/robotics/adams.html
https://www.elprocus.com/important-of-network-in-embedded-systems-for-beginners/
https://www.elprocus.com/important-of-network-in-embedded-systems-for-beginners/
https://www.elprocus.com/important-of-network-in-embedded-systems-for-beginners/
http://ecee.colorado.edu/~mcclurel/dan83.pdf
http://ecee.colorado.edu/~mcclurel/dan83.pdf
http://www.ni.com/white-paper/11390/en/
http://www.ni.com/white-paper/11390/en/
http://focus.ti.com/lit/an/slla070d/slla070d.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
https://vector.com/vi_controller_area_network_en.html
http://www.vlsi.fi/en/products/vs1053.html
http://www.vlsi.fi/en/products/vs1053.html

Bibliography 58

[10] Simplecortex by BRC-Electronics. “Introduction to Cocox OS.”
In: (2011). url: http://www.brc-electronics.nl/coos (cit. on
p. 16).

[11] Wikibooks Open Books. “Robotics/Types of Robots/Wheeled.”
In: (2016). url: https://en.wikibooks.org/wiki/Robotics/
Types_of_Robots/Wheeled (cit. on pp. 18, 19).

[12] Lammert Bies. “Introduction to RS485.” In: (2015). url: https:
//www.lammertbies.nl/comm/info/RS-485.html (cit. on p. 21).

[13] Paul Horowitz and Winfield Hill. The Art of Electronics, 2nd
edition. Cambridge University Press, 1989. isbn: 0-521-37095-7
(cit. on p. 31).

[14] Steven George Goodridge. “Multimedia Sensor Fusion for In-
telligent Camera Control and Human-Computer Interaction.”
In: (1997). url: http://www4.ncsu.edu/~kay/msf/sound.htm
(cit. on p. 37).

[15] Hasan Khaddour. “A Comparison of Algorithms of Sound
Source Localization Based on Time Delay Estimation.” In: (2011).
url: http://www.elektrorevue.cz/file.php?id=200000713-
385a639545 (cit. on p. 37).

[16] www.coocox.org. “CooCox CoOS User’s Guide.” In: (2009). url:
http : / / coocox . org / download / downloadfile / CoOS / PDF /
CooCox_CoOS_User_Guide5%C3%94%C3%8229%C2%BA%C3%85%
C2%B1%C2%B8%C2%B7%C3%9D.pdf (cit. on pp. 43, 45).

http://www.brc-electronics.nl/coos
https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled
https://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled
https://www.lammertbies.nl/comm/info/RS-485.html
https://www.lammertbies.nl/comm/info/RS-485.html
http://www4.ncsu.edu/~kay/msf/sound.htm
http://www.elektrorevue.cz/file.php?id=200000713-385a639545
http://www.elektrorevue.cz/file.php?id=200000713-385a639545
http://coocox.org/download/downloadfile/CoOS/PDF/CooCox_CoOS_User_Guide5%C3%94%C3%8229%C2%BA%C3%85%C2%B1%C2%B8%C2%B7%C3%9D.pdf
http://coocox.org/download/downloadfile/CoOS/PDF/CooCox_CoOS_User_Guide5%C3%94%C3%8229%C2%BA%C3%85%C2%B1%C2%B8%C2%B7%C3%9D.pdf
http://coocox.org/download/downloadfile/CoOS/PDF/CooCox_CoOS_User_Guide5%C3%94%C3%8229%C2%BA%C3%85%C2%B1%C2%B8%C2%B7%C3%9D.pdf

A
A P P E N D I X A : M P 3 P L AY B A C K S O U R C E C O D E

Listing A.1: Play MP3 file function

1 #include <VS1003_STM.h>
#include <SPI.h>

3 #include <SD.h>
SPIClass spiVS (1);

5 VS1003 player(9, 6, 7, 8, spiVS);
while (!SD.begin (25)) {

7 Serial1.println(" Card f a i l e d , or not p r e s e n t ");//
don’t do anything more:

delay (100);
9 }
Serial1.println(" card i n i t i a l i z e d . ");

11 player.begin();
player.modeSwitch (); // Change mode from MIDI to MP3

decoding
13 player.setVolume (0x15);

void playFile(char *fileName) {
15 uint8_t buff[BUFF_LEN];

File dataFile;
17 int bytesRead;

int fileSize;
19 int totalBytesRead = 0;

21 dataFile = SD.open(fileName);

23 if (! dataFile) {
Serial1.println(" E r r o r opening f i l e ");

25 return;
}

27

Serial1.print(" P l a y i n g ");
29 Serial1.println(fileName);

fileSize = dataFile.size(); // need to know the
size of the file

31

// loop until end of file
33 while (totalBytesRead != fileSize) {

59

appendix 60

do {
35 bytesRead = dataFile.read(buff , BUFF_LEN)

;// try to read a buffers worth
if (bytesRead == -1) // Oops. SD didnt

manage to read anything
37 {

delay (10);// Workaround for problem
in SD lib.

39 }
} while (bytesRead == -1);// loop around if

last read failed
41

43 player.playChunk(buff , bytesRead);
totalBytesRead += bytesRead;// keep track of

how much of the file we’ve played
45 }

dataFile.close();
47 } �

B
A P P E N D I X B : O G G R E C O R D I N G S O U R C E C O D E

Listing B.1: Record Ogg Sound function

1 #include <VS1003_STM.h>
#include <SPI.h>

3 #include <SD.h>
SPIClass spiVS (1);

5 VS1003 player(9, 6, 7, 8, spiVS);
File recording; // the file we will save our

recording to
7 #define RECBUFFSIZE 512
#define REC_BUTTON 3

9 uint8_t recording_buffer[RECBUFFSIZE];
#ifndef _BV

11 #define _BV(x) (1<<(x))
#endif

13

// see if the card is present and can be initialized:
15 while (!SD.begin (25))

{
17 Serial.println(" Card f a i l e d , or not p r e s e n t ");//

don’t do anything more:
delay (100);

19 }
Serial.println(" card i n i t i a l i z e d . ");

21

player.begin();
23 player.setVolume (0x00);

Serial.println(" Begin o f Loop . ");
25 // load plugin from SD card! We’ll use mono 44.1KHz ,

high quality
if (! player.prepareRecordOgg(" v44k1q05 . img ")) {

27 Serial.println(" Couldn ’ t load plugin ! ");
while (1);

29 }

31 uint16_t saveRecordedData(boolean isrecord) {
uint16_t written = 0;

33

61

appendix 62

// read how many words are waiting for us
35 uint16_t wordswaiting = player.

recordedWordsWaiting ();

37 // try to process 256 words (512 bytes) at a time
, for best speed

while (wordswaiting > 256) {
39 // Serial.print(" Waiting: "); Serial.println(

wordswaiting);
// for example 128 bytes x 4 loops = 512 bytes

41 for (int x=0; x < 512/ RECBUFFSIZE; x++) {
// fill the buffer!

43 for (uint16_t addr =0; addr < RECBUFFSIZE;
addr +=2) {

uint16_t t = player.recordedReadWord ();
45 // Serial.println(t);

recording_buffer[addr] = t >> 8;
47 recording_buffer[addr +1] = t;

}
49 if (! recording.write(recording_buffer ,

RECBUFFSIZE)) {
Serial.print(" Couldn ’ t w r i t e "); Serial.

println(RECBUFFSIZE);
51 while (1);

}
53 }

// flush 512 bytes at a time
55 recording.flush ();

written += 256;
57 wordswaiting -= 256;

}
59

wordswaiting = player.recordedWordsWaiting ();
61 if (! isrecord) {

Serial.print(wordswaiting); Serial.println("
remaining ");

63 // wrapping up the recording!
uint16_t addr = 0;

65 for (int x=0; x < wordswaiting -1; x++,addr +=2)
{

// fill the buffer!
67 uint16_t t = player.recordedReadWord ();

recording_buffer[addr] = t >> 8;
69 recording_buffer[addr +1] = t;

}

appendix 63

71 if (! recording.write(recording_buffer , (
wordswaiting -1)*2)) {
Serial.println(" Couldn ’ t w r i t e ! ");

73 while (1);
}

75 written += wordswaiting -1;
recording.flush ();

77 uint16_t t = player.recordedReadWord ();
recording_buffer [0] = t >> 8;

79 recording_buffer [1] = t;
player.read_register (0xf);

81 if (! (player.read_register (0xf) & _BV (2))) {
recording.write(recording_buffer , 2);

83 written +=2;
} else {

85 recording.write(recording_buffer , 1);
written +=1;

87 }
recording.flush ();

89 }

91 return written;
} �

C
A P P E N D I X C : S O U N D L O C A L I Z AT I O N
A L G O R I T H M I M P L E M E N TAT I O N

Listing C.1: Sound Localization Algorithm Implementation

float getSoundAngle () {
2 int i;

uint16 max_values_1 = 0;
4 uint16 max_values_2 = 0;

uint16 max_values_3 = 0;
6 uint16 max_values_4 = 0;

uint16 max_index_1 = -1;
8 uint16 max_index_2 = -1;

uint16 max_index_3 = -1;
10 uint16 max_index_4 = -1;

uint32 sum_values_1 = 0;
12 uint32 sum_values_2 = 0;

uint32 sum_values_3 = 0;
14 uint32 sum_values_4 = 0;

for (i = 0; i < ADC_SAMPLE_SIZE; i++) {
16 if (adc_values_1[i] > max_values_1) {

max_index_1 = i;
18 max_values_1 = adc_values_1[i];

}
20 if (adc_values_2[i] > max_values_2) {

max_index_2 = i;
22 max_values_2 = adc_values_2[i];

}
24 if (adc_values_3[i] > max_values_3) {

max_index_3 = i;
26 max_values_3 = adc_values_3[i];

}
28 if (adc_values_4[i] > max_values_4) {

max_index_4 = i;
30 max_values_4 = adc_values_4[i];

}
32 sum_values_1 += adc_values_1[i];

sum_values_2 += adc_values_2[i];
34 sum_values_3 += adc_values_3[i];

sum_values_4 += adc_values_4[i];

64

appendix 65

36 }
if (max_values_1 - (sum_values_1 /

ADC_SAMPLE_SIZE) < 20) return NULL;
38 int diff_1 = getDiffIndex(max_index_1 ,

max_index_3 , ADC_SAMPLE_SIZE);
int diff_2 = getDiffIndex(max_index_2 ,

max_index_4 , ADC_SAMPLE_SIZE);
40 for (i = 0; i < ADC_SAMPLE_SIZE; i++) {

Serial1.print(adc_values_1[i]);
42 Serial1.print(" , ");

}
44 Serial1.println ();

for (i = 0; i < ADC_SAMPLE_SIZE; i++) {
46 Serial1.print(adc_values_3[i]);

Serial1.print(" , ");
48 }

return (float) atan2(diff_2 , diff_1) * 180 / PI;
50 }

52 int16 getDiffIndex(uint16 index1 , uint16 index2 ,
uint16 totalReads) {
int16 diff = index2 - index1;

54 if (diff > totalReads / 2) {
diff = totalReads - diff;

56 }
if (diff < -1 * (totalReads / 2)) {

58 diff = -1 * totalReads - diff;
}

60 return diff;
} �

D
A P P E N D I X D : M O D U L E L I B R A RY S O U R C E C O D E

Listing D.1: Module Library Header

1 #ifndef MODULE_LIBRARY_H
#define MODULE_LIBRARY_H

3 #include " motor . h "
#include <HardwareCAN.h>

5 #include <MapleCoOS116.h>

7 template <class T> class Component {
public:

9 Component(T def);
bool mine;

11 volatile T value;
uint8 pin;

13 uint8 pin_support;
};

15 template <class T>
Component <T>:: Component(T def) {

17 mine = false;
value = def;

19 pin = -1;
pin_support = -1;

21 }

23

25 class RobotModule {
public:

27 static const uint8 CAN_MICROPHONE_DATA_1 = 1;
static const uint8 CAN_MICROPHONE_DATA_2 = 2;

29 static const uint8 CAN_SOUND_ANGLE_DATA = 3;
static const uint8 CAN_IR_DATA_1 = 4;

31 static const uint8 CAN_IR_DATA_2 = 5;
static const uint8 CAN_LED_DATA = 6;

33 static const uint8 CAN_WHEEL_MOTORS_DATA = 7;
static const uint8 CAN_SERVO_MOTORS_DATA = 8;

35 static const uint8 CAN_LIFE_DATA = 9;
static const uint8 CAN_GAME_DATA = 10;

66

appendix 67

37

static const uint8 MOTOR_FORWARD = 1;
39 static const uint8 MOTOR_BACKWARD = 2;

static const uint8 MOTOR_STOP = 3;
41

static const uint8 MAX_MODULE_COUNT = 10;
43

static const uint16 IntervalDelay = 1000;
45 static const uint16 GameSelectionDelay = 20000;

47 static const uint8 GAME_RELAX = 0;
static const uint8 GAME_ESCAPE = 1;

49 static const uint8 GAME_HAPPY = 2;

51 static const uint8 TOTAL_GAMES = 3;

53 static uint8 SelectedGame;

55 static HardwareCAN canBus;
static OS_FlagID CAN_Microphone_FlagId;

57 static OS_FlagID CAN_Sound_Angle_FlagId;
static OS_FlagID CAN_IR_FlagId;

59 static OS_FlagID CAN_LED_FlagId;
static OS_FlagID CAN_Wheel_Motors_FlagId;

61 static OS_FlagID CAN_Servo_Motors_FlagId;
static OS_FlagID CAN_Interval_FlagId;

63 static OS_FlagID Player_FlagId;
static OS_FlagID CAN_Game_FlagId;

65

static volatile bool MicrophoneDataAvailable;
67 static volatile bool SoundAngleDataAvailable;

static volatile bool IRDataAvailable;
69 static volatile bool LEDDataAvailable;

static volatile bool WheelMotorsDataAvailable;
71 static volatile bool ServoDataAvailable;

static volatile bool LifeDataAvailable;
73 static volatile bool GameDataAvailable;

75 static volatile bool IsPlayingMP3;

77 static uint8 CAN_ID;
static bool IsCoordinator;

79

// Microphones
81 static Component <int16 > MicrophoneNorth;

appendix 68

static Component <int16 > MicrophoneSouth;
83 static Component <int16 > MicrophoneWest;

static Component <int16 > MicrophoneEast;
85 //IR Sensors

static Component <int16 > IRNorth;
87 static Component <int16 > IRSouth;

static Component <int16 > IRNorthEast;
89 static Component <int16 > IRNorthWest;

static Component <int16 > IRSouthEast;
91 static Component <int16 > IRSouthWest;

//LEDs
93 static Component <int8 > LEDNorthEast;

static Component <int8 > LEDNorthWest;
95 static Component <int8 > LEDSouthEast;

static Component <int8 > LEDSouthWest;
97 // Motors

static Motor MotorLeft;
99 static Motor MotorRight;

//Sound Angle
101 static Component <float > IncomingSoundAngle;

//MP3 Player
103 static Component <bool > Player;

105 static char *CurrentSound;
static bool SpeakerLeftConnected;

107 static bool SpeakerRightConnected;

109 static char *WelcomeSound;
static char *MusicSound;

111 static char *NorthWestDangerSound;
static char *SouthWestDangerSound;

113 static char *NorthEastDangerSound;
static char *SouthEastDangerSound;

115 static char *InfraredRemoved;
static char *InfraredConnected;

117 static char *LEDRemoved;
static char *LEDConnected;

119 static char *MicrophoneRemoved;
static char *MicrophoneConnected;

121 static char *Despacito;

123 static OS_STK NetworkSendTaskStk[TASK_STK_SIZE];
static OS_STK NetworkReceiveTaskStk[TASK_STK_SIZE

];

appendix 69

125 static OS_STK NetworkIntervalDataTaskStk[
TASK_STK_SIZE];

static OS_STK GamePerformTaskStk[TASK_STK_SIZE];
127

static volatile bool ModulesInNetwork[
MAX_MODULE_COUNT];

129 static volatile unsigned long ModulesLastSeen[
MAX_MODULE_COUNT];

131 static void Init(int _can_id);

133 static void NetworkIntervalDataTask(void *pdata);

135 static void NetworkSendTask(void *pdata);

137 static void NetworkReceiveTask(void *pdata);

139 static void GamePerformTask(void *pdata);

141 static CAN_TX_MBX CANsend(CanMsg *pmsg);

143 static void PrintHex(uint8 b);

145 static bool isConnected(int32 oldValue , int32
newValue);

147 static bool isDisconnected(int32 oldValue , int32
newValue);

};
149

#endif �
Listing D.2: Module Library Source code

#include " module . h "
2

#include <stdio.h>
4

HardwareCAN RobotModule :: canBus(CAN1_BASE);
6

8 OS_FlagID RobotModule :: CAN_Microphone_FlagId =
CoCreateFlag (0,0);

OS_FlagID RobotModule :: CAN_Sound_Angle_FlagId =
CoCreateFlag (0,0);

appendix 70

10 OS_FlagID RobotModule :: CAN_IR_FlagId = CoCreateFlag
(0,0);

OS_FlagID RobotModule :: CAN_LED_FlagId = CoCreateFlag
(0,0);

12 OS_FlagID RobotModule :: CAN_Wheel_Motors_FlagId =
CoCreateFlag (0,0);

OS_FlagID RobotModule :: CAN_Servo_Motors_FlagId =
CoCreateFlag (0,0);

14 OS_FlagID RobotModule :: CAN_Interval_FlagId =
CoCreateFlag (0,0);

OS_FlagID RobotModule :: Player_FlagId = CoCreateFlag
(0,0);

16 OS_FlagID RobotModule :: CAN_Game_FlagId = CoCreateFlag
(0,0);

18 uint8 RobotModule :: CAN_ID = 0;
char * RobotModule :: WelcomeSound = " welcome . mp3" ;

20 char * RobotModule :: MusicSound = " music . mp3" ;
char * RobotModule :: NorthWestDangerSound = "nwd . mp3" ;

22 char * RobotModule :: SouthWestDangerSound = " swd . mp3" ;
char * RobotModule :: NorthEastDangerSound = " ned . mp3" ;

24 char * RobotModule :: SouthEastDangerSound = " sed . mp3" ;
char *RobotModule :: InfraredRemoved = " i n f r a r e d r e m . mp3

" ;
26 char *RobotModule :: InfraredConnected = " i n f r a r e d c o n .

mp3" ;
char *RobotModule :: LEDRemoved = " ledrem . mp3" ;

28 char *RobotModule :: LEDConnected = " ledcon . mp3" ;
char *RobotModule :: MicrophoneRemoved = " micrem . mp3" ;

30 char *RobotModule :: MicrophoneConnected = " miccon . mp3"
;

char *RobotModule :: Despacito = " dd . mp3" ;
32 char *RobotModule :: CurrentSound = RobotModule ::

WelcomeSound;
Component <int16 > RobotModule :: MicrophoneNorth (-1);

34 Component <int16 > RobotModule :: MicrophoneSouth (-1);
Component <int16 > RobotModule :: MicrophoneWest (-1);

36 Component <int16 > RobotModule :: MicrophoneEast (-1);
//IR Sensors

38 Component <int16 > RobotModule :: IRNorth (-1);
Component <int16 > RobotModule :: IRSouth (-1);

40 Component <int16 > RobotModule :: IRNorthEast (-1);
Component <int16 > RobotModule :: IRNorthWest (-1);

42 Component <int16 > RobotModule :: IRSouthEast (-1);
Component <int16 > RobotModule :: IRSouthWest (-1);

appendix 71

44 //LEDs
Component <int8 > RobotModule :: LEDNorthEast (-1);

46 Component <int8 > RobotModule :: LEDNorthWest (-1);
Component <int8 > RobotModule :: LEDSouthEast (-1);

48 Component <int8 > RobotModule :: LEDSouthWest (-1);
// Motors

50 Motor RobotModule :: MotorLeft (-1);
Motor RobotModule :: MotorRight (-1);

52 // Player
Component <bool > RobotModule :: Player(false);

54 // Coordination
bool RobotModule :: IsCoordinator = false;

56

uint8 RobotModule :: SelectedGame = -1;
58

volatile bool RobotModule :: MicrophoneDataAvailable =
false;

60 volatile bool RobotModule :: SoundAngleDataAvailable =
false;

volatile bool RobotModule :: IRDataAvailable = false;
62 volatile bool RobotModule :: LEDDataAvailable = false;

volatile bool RobotModule :: WheelMotorsDataAvailable =
false;

64 volatile bool RobotModule :: ServoDataAvailable = false
;

volatile bool RobotModule :: LifeDataAvailable = false;
66 volatile bool RobotModule :: GameDataAvailable = false;

volatile bool RobotModule :: IsPlayingMP3 = false;
68 Component <float > RobotModule :: IncomingSoundAngle (0.0

f);

70 OS_STK RobotModule :: NetworkSendTaskStk[TASK_STK_SIZE]
= {};

OS_STK RobotModule :: NetworkReceiveTaskStk[
TASK_STK_SIZE] = {};

72 OS_STK RobotModule :: NetworkIntervalDataTaskStk[
TASK_STK_SIZE] = {};

OS_STK RobotModule :: GamePerformTaskStk[TASK_STK_SIZE]
= {};

74

volatile bool RobotModule :: ModulesInNetwork[
MAX_MODULE_COUNT] = {};

76 volatile unsigned long RobotModule :: ModulesLastSeen[
MAX_MODULE_COUNT] = {};

appendix 72

78 void RobotModule ::Init(int _can_id) {
RobotModule :: CAN_ID = _can_id;

80 canBus.map(CAN_GPIO_PB8_PB9);
canBus.begin(CAN_SPEED_1000 , CAN_MODE_NORMAL);

82 canBus.filter(0, 0, 0);
canBus.set_irq_mode ();

84 }

86 void RobotModule :: NetworkIntervalDataTask(void *pdata
) {
uint8 i = 0;

88 uint8 th = 15;
int16 MicrophoneNorthOld = -1;

90 int16 MicrophoneSouthOld = -1;
int16 MicrophoneWestOld = -1;

92 int16 MicrophoneEastOld = -1;
int8 LEDNorthWestOld = -1;

94 int8 LEDNorthEastOld = -1;
int8 LEDSouthWestOld = -1;

96 int8 LEDSouthEastOld = -1;
for (;;) {

98 // Check for modules life and Coordinator
for(i=0;i<MAX_MODULE_COUNT;i++) {

100 if(i != CAN_ID && ModulesInNetwork[i]) {
unsigned long now = millis ();

102 if(ModulesLastSeen[i] + 5 *
IntervalDelay < now) {
ModulesInNetwork[i] = false;

104 }
}

106 }
uint8 coordinatorIndex = CAN_ID;

108 for(i=0;i<MAX_MODULE_COUNT;i++) {
if(i != CAN_ID && ModulesInNetwork[i]) {

110 if(i > coordinatorIndex) {
coordinatorIndex = i;

112 }
}

114 }
if(coordinatorIndex == RobotModule :: CAN_ID) {

116 RobotModule :: IsCoordinator = true;
} else {

118 RobotModule :: IsCoordinator = false;
}

120

appendix 73

122 if(IsCoordinator) {
if(th == 20) {

124 SelectedGame = rand() % TOTAL_GAMES;
th = -1;

126 }
GameDataAvailable = true;

128 // CoSetFlag(CAN_Game_FlagId);
}

130 th++;

132 if(MicrophoneNorth.mine &&
MicrophoneSouth.mine &&

134 MicrophoneWest.mine &&
MicrophoneEast.mine) {

136 // SoundAngleDataAvailable = true;
MicrophoneDataAvailable = true;

138 }
if(IRNorth.mine &&

140 IRSouth.mine &&
IRNorthEast.mine &&

142 IRNorthWest.mine &&
IRSouthEast.mine &&

144 IRSouthWest.mine) {
IRDataAvailable = true;

146 }
if(LEDNorthEast.mine &&

148 LEDNorthWest.mine &&
LEDSouthEast.mine &&

150 LEDSouthWest.mine) {

152 int outState = digitalRead(LEDNorthEast.
pin);

uint8 value;
154 if(outState == LOW) {

value = 0;
156 } else {

value = 1;
158 }

int inState = digitalRead(LEDNorthEast.
pin_support);

160 if(inState == HIGH) {
LEDNorthEast.value = -1;

162 } else {
LEDNorthEast.value = value;

appendix 74

164 }

166 outState = digitalRead(LEDNorthWest.pin);
if(outState == LOW) {

168 value = 0;
} else {

170 value = 1;
}

172 inState = digitalRead(LEDNorthWest.
pin_support);

if(inState == HIGH) {
174 LEDNorthWest.value = -1;

} else {
176 LEDNorthWest.value = value;

}
178

outState = digitalRead(LEDSouthEast.pin);
180 if(outState == LOW) {

value = 0;
182 } else {

value = 1;
184 }

inState = digitalRead(LEDSouthEast.
pin_support);

186 if(inState == HIGH) {
LEDSouthEast.value = -1;

188 } else {
LEDSouthEast.value = value;

190 }

192 outState = digitalRead(LEDSouthWest.pin);
if(outState == LOW) {

194 value = 0;
} else {

196 value = 1;
}

198 inState = digitalRead(LEDSouthWest.
pin_support);

if(inState == HIGH) {
200 LEDSouthWest.value = -1;

} else {
202 LEDSouthWest.value = value;

}
204 Serial2.println("LED North E a s t ");

Serial2.println(LEDNorthEast.value);

appendix 75

206 Serial2.println("LED North West ");
Serial2.println(LEDNorthWest.value);

208 Serial2.println("LED South E a s t ");
Serial2.println(LEDSouthEast.value);

210 Serial2.println("LED South West ");
Serial2.println(LEDSouthWest.value);

212 LEDDataAvailable = true;
}

214 if(Player.mine) {
if(isConnected(MicrophoneEastOld ,

MicrophoneEast.value) ||
216 isConnected(MicrophoneNorthOld ,

MicrophoneNorth.value) ||
isConnected(MicrophoneSouthOld ,

MicrophoneSouth.value) ||
218 isConnected(MicrophoneWestOld ,

MicrophoneWest.value)) {
CurrentSound = MicrophoneConnected;

220 CoSetFlag(RobotModule :: Player_FlagId)
;

}
222 if(isDisconnected(MicrophoneEastOld ,

MicrophoneEast.value) ||
isDisconnected(MicrophoneNorthOld ,

MicrophoneNorth.value) ||
224 isDisconnected(MicrophoneSouthOld ,

MicrophoneSouth.value) ||
isDisconnected(MicrophoneWestOld ,

MicrophoneWest.value)) {
226 CurrentSound = MicrophoneRemoved;

CoSetFlag(RobotModule :: Player_FlagId)
;

228 }
MicrophoneEastOld = MicrophoneEast.value;

230 MicrophoneNorthOld = MicrophoneNorth.
value;

MicrophoneSouthOld = MicrophoneSouth.
value;

232 MicrophoneWestOld = MicrophoneWest.value;

234 if(isConnected(LEDNorthEastOld ,
LEDNorthEast.value) ||

isConnected(LEDNorthWestOld ,
LEDNorthWest.value) ||

appendix 76

236 isConnected(LEDSouthEastOld ,
LEDSouthEast.value) ||

isConnected(LEDSouthWestOld ,
LEDSouthWest.value)) {

238 CurrentSound = LEDConnected;
CoSetFlag(RobotModule :: Player_FlagId)

;
240 }

if(isDisconnected(LEDNorthEastOld ,
LEDNorthEast.value) ||

242 isDisconnected(LEDNorthWestOld ,
LEDNorthWest.value) ||

isDisconnected(LEDSouthEastOld ,
LEDSouthEast.value) ||

244 isDisconnected(LEDSouthWestOld ,
LEDSouthWest.value)) {

CurrentSound = LEDRemoved;
246 CoSetFlag(RobotModule :: Player_FlagId)

;
}

248

LEDNorthEastOld = LEDNorthEast.value;
250 LEDNorthWestOld = LEDNorthWest.value;

LEDSouthEastOld = LEDSouthEast.value;
252 LEDSouthWestOld = LEDSouthWest.value;

}
254 ServoDataAvailable = true;

WheelMotorsDataAvailable = true;
256 LifeDataAvailable = true;

CoSetFlag(CAN_Interval_FlagId);
258 // Interval Delay

CoTickDelay(IntervalDelay);
260 }

}
262

bool RobotModule :: isConnected(int32 oldValue , int32
newValue) {

264 return (oldValue == -1 && newValue != -1);
}

266

bool RobotModule :: isDisconnected(int32 oldValue ,
int32 newValue) {

268 return (oldValue != -1 && newValue == -1);
}

270

appendix 77

void RobotModule :: NetworkReceiveTask(void *pdata) {
272 for (;;) {

// Serial2.println ("Setup Receive CAN");
274 while(! canBus.available ());

// Serial2.println ("Got the Data");
276 CanMsg *r_msg = canBus.recv();

if (r_msg && r_msg ->DLC > 1) {
278 uint8 len = r_msg ->DLC;

uint8 command = r_msg ->Data [0];
280 uint8 moduleId = r_msg ->Data [1];

union TwoBytes
282 {

uint16 u16;
284 uint8 u8[2];

} twoBytes;
286 if(command == CAN_MICROPHONE_DATA_1) {

twoBytes.u8[0] = r_msg ->Data [2];
288 twoBytes.u8[1] = r_msg ->Data [3];

MicrophoneNorth.value = twoBytes.u16;
290 twoBytes.u8[0] = r_msg ->Data [4];

twoBytes.u8[1] = r_msg ->Data [5];
292 MicrophoneSouth.value = twoBytes.u16;

} else if(command ==
CAN_MICROPHONE_DATA_2) {

294 twoBytes.u8[0] = r_msg ->Data [2];
twoBytes.u8[1] = r_msg ->Data [3];

296 MicrophoneWest.value = twoBytes.u16;
twoBytes.u8[0] = r_msg ->Data [4];

298 twoBytes.u8[1] = r_msg ->Data [5];
MicrophoneEast.value = twoBytes.u16;

300 } else if(command == CAN_SOUND_ANGLE_DATA
) {
union FloatBytes {

302 float value;
unsigned char bytes[sizeof(float)

];
304 } floatBytes;

for(uint8 i=0;i < sizeof(float);i++)
{

306 floatBytes.bytes[i] = r_msg ->Data
[i+2];

}
308 IncomingSoundAngle.value = floatBytes

.value;
Serial2.println(" Sound Angle ");

appendix 78

310 Serial2.println(IncomingSoundAngle.
value);

} else if(command == CAN_IR_DATA_1) {
312 twoBytes.u8[0] = r_msg ->Data [2];

twoBytes.u8[1] = r_msg ->Data [3];
314 IRNorth.value = twoBytes.u16;

twoBytes.u8[0] = r_msg ->Data [4];
316 twoBytes.u8[1] = r_msg ->Data [5];

IRSouth.value = twoBytes.u16;
318 twoBytes.u8[0] = r_msg ->Data [6];

twoBytes.u8[1] = r_msg ->Data [7];
320 IRNorthEast.value = twoBytes.u16;

} else if(command == CAN_IR_DATA_2) {
322 twoBytes.u8[0] = r_msg ->Data [2];

twoBytes.u8[1] = r_msg ->Data [3];
324 IRNorthWest.value = twoBytes.u16;

twoBytes.u8[0] = r_msg ->Data [4];
326 twoBytes.u8[1] = r_msg ->Data [5];

IRSouthEast.value = twoBytes.u16;
328 twoBytes.u8[0] = r_msg ->Data [6];

twoBytes.u8[1] = r_msg ->Data [7];
330 IRSouthWest.value = twoBytes.u16;

} else if(command == CAN_LED_DATA) {
332 LEDNorthEast.value = r_msg ->Data [2];

LEDNorthWest.value = r_msg ->Data [3];
334 LEDSouthEast.value = r_msg ->Data [4];

LEDSouthWest.value = r_msg ->Data [5];
336 } else if(command ==

CAN_WHEEL_MOTORS_DATA) {

338 } else if(command ==
CAN_SERVO_MOTORS_DATA) {

340 } else if(command == CAN_LIFE_DATA) {
moduleId = r_msg ->Data [1];

342 } else if(command == CAN_GAME_DATA) {
SelectedGame = r_msg ->Data [2];

344 }
ModulesInNetwork[moduleId] = true;

346 ModulesLastSeen[moduleId] = millis ();
canBus.free();

348 }
}

350 }

appendix 79

352 void RobotModule :: NetworkSendTask(void *pdata) {
for (;;) {

354 StatusType err;
OS_FlagID CANFlagId = 1 <<

CAN_Microphone_FlagId | 1 <<
CAN_Sound_Angle_FlagId

356 | 1 << CAN_IR_FlagId | 1
<< CAN_LED_FlagId | 1
<<
CAN_Wheel_Motors_FlagId

| 1 <<
CAN_Servo_Motors_FlagId
| 1 <<

CAN_Interval_FlagId
358 | 1 << CAN_Game_FlagId;

CoWaitForMultipleFlags(CANFlagId ,OPT_WAIT_ANY
,0,&err);

360 CAN_TX_MBX mbx;
CanMsg t_msg;

362 t_msg.IDE = CAN_ID_EXT;
t_msg.RTR = CAN_RTR_DATA;

364 if(GameDataAvailable) {
t_msg.ID = 20;

366 t_msg.DLC = 3;
t_msg.Data [0] = CAN_GAME_DATA;

368 t_msg.Data [1] = CAN_ID;
t_msg.Data [2] = SelectedGame;

370 mbx = CANsend (& t_msg);
CoClearFlag(CAN_Game_FlagId);

372 GameDataAvailable = false;
}

374 if(LifeDataAvailable) {
t_msg.ID = 10;

376 t_msg.DLC = 2;
t_msg.Data [0] = CAN_LIFE_DATA;

378 t_msg.Data [1] = CAN_ID;
mbx = CANsend (& t_msg);

380 LifeDataAvailable = false;
}

382 if(MicrophoneDataAvailable) {
t_msg.ID = 5;

384 t_msg.DLC = 6;
t_msg.Data [0] = CAN_MICROPHONE_DATA_1;

386 t_msg.Data [1] = CAN_ID;

appendix 80

t_msg.Data [2] = MicrophoneNorth.value & 0
xFF;

388 t_msg.Data [3] = (MicrophoneNorth.value >>
8) & 0xFF;

t_msg.Data [4] = MicrophoneSouth.value & 0
xFF;

390 t_msg.Data [5] = (MicrophoneSouth.value >>
8) & 0xFF;

mbx = CANsend (& t_msg);
392 t_msg.Data [0] = CAN_MICROPHONE_DATA_2;

t_msg.Data [1] = CAN_ID;
394 t_msg.Data [2] = MicrophoneWest.value & 0

xFF;
t_msg.Data [3] = (MicrophoneWest.value >>

8) & 0xFF;
396 t_msg.Data [4] = MicrophoneEast.value & 0

xFF;
t_msg.Data [5] = (MicrophoneEast.value >>

8) & 0xFF;
398 mbx = CANsend (& t_msg);

CoClearFlag(CAN_Microphone_FlagId);
400 MicrophoneDataAvailable = false;

// Serial2.println ("Send the Microphone
Data CAN");

402 }
if(IRDataAvailable) {

404 t_msg.DLC = 8;
t_msg.Data [0] = CAN_IR_DATA_1;

406 t_msg.Data [1] = CAN_ID;
t_msg.Data [2] = IRNorth.value & 0xFF;

408 t_msg.Data [3] = (IRNorth.value >> 8) & 0
xFF;

t_msg.Data [4] = IRSouth.value & 0xFF;
410 t_msg.Data [5] = (IRSouth.value >> 8) & 0

xFF;
t_msg.Data [6] = IRNorthEast.value & 0xFF;

412 t_msg.Data [7] = (IRNorthEast.value >> 8)
& 0xFF;

mbx = CANsend (& t_msg);
414 t_msg.Data [0] = CAN_IR_DATA_2;

t_msg.Data [1] = CAN_ID;
416 t_msg.Data [2] = IRNorthWest.value & 0xFF;

t_msg.Data [3] = (IRNorthWest.value >> 8)
& 0xFF;

418 t_msg.Data [4] = IRSouthEast.value & 0xFF;

appendix 81

t_msg.Data [5] = (IRSouthEast.value >> 8)
& 0xFF;

420 t_msg.Data [6] = IRSouthWest.value & 0xFF;
t_msg.Data [7] = (IRSouthWest.value >> 8)

& 0xFF;
422 mbx = CANsend (& t_msg);

CoClearFlag(CAN_IR_FlagId);
424 IRDataAvailable = false;

// Serial2.println ("Send the IR Data CAN")
;

426 }
if(LEDDataAvailable) {

428 t_msg.DLC = 6;
t_msg.Data [0] = CAN_LED_DATA;

430 t_msg.Data [1] = CAN_ID;
t_msg.Data [2] = LEDNorthEast.value;

432 t_msg.Data [3] = LEDNorthWest.value;
t_msg.Data [4] = LEDSouthEast.value;

434 t_msg.Data [5] = LEDSouthWest.value;
CoClearFlag(CAN_LED_FlagId);

436 LEDDataAvailable = false;
mbx = CANsend (& t_msg);

438 // Serial2.println ("Send the LED Data CAN
");

}
440 if(SoundAngleDataAvailable) {

union FloatBytes {
442 float value;

unsigned char bytes[sizeof(float)];
444 } floatBytes;

floatBytes.value = IncomingSoundAngle.
value;

446 t_msg.DLC = sizeof(float) + 2;
t_msg.Data [0] = CAN_SOUND_ANGLE_DATA;

448 t_msg.Data [1] = CAN_ID;
for(uint8 i=0;i < sizeof(float);i++) {

450 t_msg.Data[i+2] = floatBytes.bytes[i
];

}
452 CoClearFlag(CAN_Sound_Angle_FlagId);

SoundAngleDataAvailable = false;
454 mbx = CANsend (& t_msg);

// Serial2.println ("Send the Sound Angle
Data CAN");

456 }

appendix 82

CoClearFlag(CAN_Interval_FlagId);
458 CoTickDelay (50);

}
460 }

462

void RobotModule :: GamePerformTask(void *pdata) {
464 int oldValue_NE = IRNorthEast.value;

int oldValue_SW = IRSouthWest.value;
466 int oldValue_NW = IRSouthEast.value;

int oldValue_SE = IRNorthWest.value;
468 float oldAngle = IncomingSoundAngle.value;

bool clapped = false;
470 while (1) {

// Serial2.println (" Selected Game");
472

if(SelectedGame == GAME_RELAX) {
474 clapped = false;

oldAngle = IncomingSoundAngle.value;
476 if (Player.mine && (! IsPlayingMP3 ||

CurrentSound != MusicSound)) {
IsPlayingMP3 = false;

478 CurrentSound = MusicSound;
CoSetFlag(RobotModule :: Player_FlagId)

;
480 }

if (LEDNorthEast.mine) {
482 digitalWrite(LEDNorthEast.pin , HIGH);

}
484 if (LEDSouthWest.mine) {

digitalWrite(LEDSouthWest.pin , HIGH);
486 }

if (LEDNorthWest.mine) {
488 digitalWrite(LEDNorthWest.pin , LOW);

}
490 if (LEDSouthEast.mine) {

digitalWrite(LEDSouthEast.pin , LOW);
492 }

CoTickDelay (250);
494 if (LEDNorthEast.mine) {

digitalWrite(LEDNorthEast.pin , LOW);
496 }

if (LEDSouthWest.mine) {
498 digitalWrite(LEDSouthWest.pin , LOW);

}

appendix 83

500 if (LEDNorthWest.mine) {
digitalWrite(LEDNorthWest.pin , HIGH);

502 }
if (LEDSouthEast.mine) {

504 digitalWrite(LEDSouthEast.pin , HIGH);
}

506

508 if (abs(RobotModule :: IRNorthEast.value -
oldValue_NE) > 250) {
SelectedGame = GAME_ESCAPE;

510 }
oldValue_NE = RobotModule :: IRNorthEast.

value;
512

if (abs(RobotModule :: IRSouthWest.value -
oldValue_SW) > 250) {

514 SelectedGame = GAME_ESCAPE;
}

516 oldValue_SW = RobotModule :: IRSouthWest.
value;

if (abs(RobotModule :: IRSouthEast.value -
oldValue_SE) > 250) {

518 SelectedGame = GAME_ESCAPE;
}

520 oldValue_SE = RobotModule :: RobotModule ::
IRSouthEast.value;

522 if (abs(RobotModule :: IRNorthWest.value -
oldValue_NW) > 250) {
SelectedGame = GAME_ESCAPE;

524 }
oldValue_NW = RobotModule :: IRNorthWest.

value;
526

} else if(SelectedGame == GAME_HAPPY) {
528 if(! clapped) {

if (Player.mine && IsPlayingMP3) {
530 IsPlayingMP3 = false;

}
532 if (LEDNorthEast.mine) {

digitalWrite(LEDNorthEast.pin ,
LOW);

534 }
if (LEDSouthWest.mine) {

appendix 84

536 digitalWrite(LEDSouthWest.pin ,
LOW);

}
538 if (LEDNorthWest.mine) {

digitalWrite(LEDNorthWest.pin ,
LOW);

540 }
if (LEDSouthEast.mine) {

542 digitalWrite(LEDSouthEast.pin ,
LOW);

}
544 if(oldAngle != IncomingSoundAngle.

value) {
clapped = true;

546 }
} else {

548 if (Player.mine && (! IsPlayingMP3 ||
CurrentSound != Despacito)) {
IsPlayingMP3 = false;

550 CurrentSound = Despacito;
CoSetFlag(RobotModule ::

Player_FlagId);
552 }

if (LEDNorthEast.mine) {
554 digitalWrite(LEDNorthEast.pin ,

HIGH);
}

556 if (LEDSouthWest.mine) {
digitalWrite(LEDSouthWest.pin ,

HIGH);
558 }

if (LEDNorthWest.mine) {
560 digitalWrite(LEDNorthWest.pin ,

HIGH);
}

562 if (LEDSouthEast.mine) {
digitalWrite(LEDSouthEast.pin ,

HIGH);
564 }

CoTickDelay (1000);
566 if (LEDNorthEast.mine) {

digitalWrite(LEDNorthEast.pin ,
LOW);

568 }
if (LEDSouthWest.mine) {

appendix 85

570 digitalWrite(LEDSouthWest.pin ,
LOW);

}
572 if (LEDNorthWest.mine) {

digitalWrite(LEDNorthWest.pin ,
LOW);

574 }
if (LEDSouthEast.mine) {

576 digitalWrite(LEDSouthEast.pin ,
LOW);

}
578 }

580 if (abs(RobotModule :: IRNorthEast.value -
oldValue_NE) > 250) {
SelectedGame = GAME_ESCAPE;

582 }
oldValue_NE = RobotModule :: IRNorthEast.

value;
584

if (abs(RobotModule :: IRSouthWest.value -
oldValue_SW) > 250) {

586 SelectedGame = GAME_ESCAPE;
}

588 oldValue_SW = RobotModule :: IRSouthWest.
value;

if (abs(RobotModule :: IRSouthEast.value -
oldValue_SE) > 250) {

590 SelectedGame = GAME_ESCAPE;
}

592 oldValue_SE = RobotModule :: RobotModule ::
IRSouthEast.value;

594 if (abs(RobotModule :: IRNorthWest.value -
oldValue_NW) > 250) {
SelectedGame = GAME_ESCAPE;

596 }
oldValue_NW = RobotModule :: IRNorthWest.

value;
598 } else if(SelectedGame == GAME_ESCAPE) {

clapped = false;
600 oldAngle = IncomingSoundAngle.value;

if (abs(RobotModule :: IRNorthEast.value -
oldValue_NE) > 250) {

appendix 86

602 if (MotorLeft.mine && MotorRight.mine
) {
MotorLeft.setSpeed (20000);

604 MotorRight.setSpeed (50000);
MotorLeft.setControl(

MOTOR_BACKWARD);
606 MotorRight.setControl(

MOTOR_BACKWARD);
}

608 if (LEDNorthEast.mine) {
digitalWrite(LEDNorthEast.pin ,

HIGH);
610 }

if (Player.mine) {
612 IsPlayingMP3 = false;

CurrentSound =
NorthEastDangerSound;

614 CoSetFlag(RobotModule ::
Player_FlagId);

}
616 CoTickDelay (1000);

if (MotorLeft.mine && MotorRight.mine
) {

618 MotorLeft.setControl(MOTOR_STOP);
MotorRight.setControl(MOTOR_STOP)

;
620 }

if (LEDNorthEast.mine) {
622 digitalWrite(LEDNorthEast.pin ,

LOW);
}

624 }
oldValue_NE = RobotModule :: IRNorthEast.

value;
626

if (abs(RobotModule :: IRSouthWest.value -
oldValue_SW) > 250) {

628 if (MotorLeft.mine && MotorRight.mine
) {
MotorLeft.setSpeed (50000);

630 MotorRight.setSpeed (20000);
MotorLeft.setControl(

MOTOR_FORWARD);
632 MotorRight.setControl(

MOTOR_FORWARD);

appendix 87

}
634 if (LEDSouthWest.mine) {

digitalWrite(LEDSouthWest.pin ,
HIGH);

636 }
if (Player.mine) {

638 IsPlayingMP3 = false;
CurrentSound =

SouthWestDangerSound;
640 CoSetFlag(RobotModule ::

Player_FlagId);
}

642 CoTickDelay (1000);
if (MotorLeft.mine && MotorRight.mine

) {
644 MotorLeft.setControl(MOTOR_STOP);

MotorRight.setControl(MOTOR_STOP)
;

646 }
if (LEDSouthWest.mine) {

648 digitalWrite(LEDSouthWest.pin ,
LOW);

}
650 }

oldValue_SW = RobotModule :: IRSouthWest.
value;

652

if (abs(RobotModule :: IRSouthEast.value -
oldValue_SE) > 250) {

654 if (MotorLeft.mine && MotorRight.mine
) {
MotorLeft.setSpeed (20000);

656 MotorRight.setSpeed (50000);
MotorLeft.setControl(

MOTOR_FORWARD);
658 MotorRight.setControl(

MOTOR_FORWARD);
}

660 if (LEDSouthEast.mine) {
digitalWrite(LEDSouthEast.pin ,

HIGH);
662 }

if (Player.mine) {
664 IsPlayingMP3 = false;

appendix 88

CurrentSound =
SouthEastDangerSound;

666 CoSetFlag(RobotModule ::
Player_FlagId);

}
668 CoTickDelay (1000);

if (MotorLeft.mine && MotorRight.mine
) {

670 MotorLeft.setControl(MOTOR_STOP);
MotorRight.setControl(MOTOR_STOP)

;
672 }

if (LEDSouthEast.mine) {
674 digitalWrite(LEDSouthEast.pin ,

LOW);
}

676 }
oldValue_SE = RobotModule :: RobotModule ::

IRSouthEast.value;
678

if (abs(RobotModule :: IRNorthWest.value -
oldValue_NW) > 250) {

680 if (MotorLeft.mine && MotorRight.mine
) {
MotorLeft.setSpeed (50000);

682 MotorRight.setSpeed (20000);
MotorLeft.setControl(

MOTOR_BACKWARD);
684 MotorRight.setControl(

MOTOR_BACKWARD);
}

686 if (LEDNorthWest.mine) {
digitalWrite(LEDNorthWest.pin ,

HIGH);
688 }

if (Player.mine) {
690 IsPlayingMP3 = false;

CurrentSound =
NorthWestDangerSound;

692 CoSetFlag(RobotModule ::
Player_FlagId);

}
694 CoTickDelay (1000);

if (MotorLeft.mine && MotorRight.mine
) {

appendix 89

696 MotorLeft.setControl(MOTOR_STOP);
MotorRight.setControl(MOTOR_STOP)

;
698 }

if (LEDNorthWest.mine) {
700 digitalWrite(LEDNorthWest.pin ,

LOW);
}

702 }
oldValue_NW = RobotModule :: IRNorthWest.

value;
704 }

CoTickDelay (250);
706 }

}
708

void RobotModule :: PrintHex(uint8 b)
710 {

static char digits [] = " 0123456789ABCDEF" ;
712 Serial2.print(digits[b >> 4]);

Serial2.print(digits[b & 0xf]);
714 }

716 CAN_TX_MBX RobotModule :: CANsend(CanMsg *pmsg)
{

718 CAN_TX_MBX mbx;

720 do
mbx = canBus.send(pmsg) ;

722 while(mbx == CAN_TX_NO_MBX) ;
return mbx ;

724 } �

E
A P P E N D I X E : M O T O R L I B R A RY S O U R C E C O D E

Listing E.1: Motor Library Header

1 #ifndef MOTOR_LIBRARY_H
#define MOTOR_LIBRARY_H
#include <HardwareCAN.h>
#include <MapleCoOS116.h>
class Motor {

6 public:
Motor(uint16 def);
void setSpeed(uint16 speed);
void setControl(uint8 dir);
bool mine;

11 volatile uint16 speed;
volatile uint8 dir;
uint8 pin_pwm;
uint8 pin_in_1;
uint8 pin_in_2;

16 uint8 pin_standby;
};

#endif �
Listing E.2: Motor Library Source code

1 #include " motor . h "
#include " module . h "

Motor:: Motor(uint16 def) {
mine = false;

6 speed = def;
pin_pwm = def;
pin_in_1 = def;
pin_in_2 = def;
pin_standby = def;

11 dir = 0;
};

90

appendix 91

void Motor:: setSpeed(uint16 speed) {
this ->speed = speed;

16 pwmWrite(this ->pin_pwm , speed);
}

void Motor:: setControl(uint8 dir) {
this ->dir = dir;

21 if(dir == RobotModule :: MOTOR_FORWARD) {
digitalWrite(pin_in_1 , HIGH);
digitalWrite(pin_in_2 , LOW);

} else if(dir == RobotModule :: MOTOR_BACKWARD){
digitalWrite(pin_in_1 , LOW);

26 digitalWrite(pin_in_2 , HIGH);
} else {

digitalWrite(pin_in_1 , LOW);
digitalWrite(pin_in_2 , LOW);

}
31 } �

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Algorithms
	Listings
	Abstract
	Abstract
	Sommario

	1 Introduction
	1.1 Problem statement
	1.2 Assumptions
	1.3 Outline

	2 Background Knowledge
	2.1 Embedded Networks
	2.1.1 RS-232
	2.1.2 RS-422
	2.1.3 RS-485
	2.1.4 I2C
	2.1.5 CAN
	2.1.6 Ethernet

	2.2 Sensors
	2.3 Multimedia
	2.3.1 Recording Audio
	2.3.2 Audio Playback
	2.3.3 TMRpcm Library
	2.3.4 VS1053
	2.3.5 Amplifier

	2.4 Olimex STM32
	2.4.1 STM32F103RBT6 microcontroller
	2.4.2 Connectivity
	2.4.3 Power
	2.4.4 Storage
	2.4.5 Working temperature
	2.4.6 Dimensions
	2.4.7 Other Information

	2.5 Arduino
	2.6 STM32duino
	2.7 Cocox OS (RTOS)

	3 Hardware setup
	3.1 Robot platform
	3.1.1 2-by-2 powered wheels for tank-like movement

	3.2 Choosing network
	3.2.1 Network Topology of RS485
	3.2.2 RS485 functionality
	3.2.3 Network Topology of CAN
	3.2.4 CAN functionality
	3.2.5 Winner Network - CAN

	3.3 Choosing board
	3.4 Choosing media board
	3.5 Mechanical connectors

	4 Components Software Implementation
	4.1 Sensors
	4.2 CAN Network Setup
	4.2.1 Basic Message Format
	4.2.2 ID allocation
	4.2.3 Setup

	4.3 Hardware Connection Detection
	4.3.1 Module Connection
	4.3.2 Components Connection

	4.4 Media
	4.4.1 MP3 Playback
	4.4.2 Recording Audio
	4.4.3 Sound Localization
	4.4.4 Cross Correlation Algorithm
	4.4.5 Generalized Cross Correlation
	4.4.6 Microphone Setup

	5 Module Design and Implementation
	5.1 System Configuration
	5.2 Module Description
	5.2.1 Module Architecture
	5.2.2 Module Responsibilities

	5.3 Module Operating System - CoOS
	5.3.1 Task Architecture
	5.3.2 Mutex
	5.3.3 Critical Section
	5.3.4 Flags

	5.4 Module Library
	5.4.1 Inner Task Communication
	5.4.2 Shared Tasks
	5.4.3 Decision Making
	5.4.4 Games

	6 Conclusion
	6.1 Conclusion
	6.2 Future work

	Bibliography
	A Appendix A: MP3 Playback Source code
	B Appendix B: OGG Recording Source code
	C Appendix C: Sound Localization Algorithm Implementation
	D Appendix D: Module Library Source code
	E Appendix E: Motor Library Source code

