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Sintesi 

L’attenzione verso l’efficienza energetica e la riduzione dei consumi nel settore dell’edilizia sta 

acquisendo sempre più importanza [1]. Utilizzare sistemi di generazione dell’energia 

alimentati da fonti rinnovabili unitamente ad un sistema di controllo supervisivo, ottimizzato 

per minimizzare i consumi dell’edificio garantendo allo stesso tempo la domanda elettrica e 

termica, va in questa direzione. 

L’obiettivo generale del lavoro è dimostrare che, attraverso il controllo supervisivo, è possibile 

massimizzare l’efficienza di un sistema edificio-impianto complesso, costituito da edificio 

capacitivo dotato di impianto fotovoltaico, sistema di generazione a pompa di calore 

areotermica e sistema di accumulo dell’energia termica, ottenendo il minimo costo operativo 

e di investimento. 

Questo può essere effettuato mediante l’utilizzo di un algoritmo di controllo che minimizzi il 

consumo energetico dell’edificio garantendo il comfort termico. A questo scopo la toolbox 

TOMLAB [2] per MATLAB è stata utilizzata e comparata con un controllore a regola di 

riferimento.  

 

Parole chiave: Sistema riscaldamento ibrido, Accumulo termico, Modello a resistenze 

termiche per edificio, Ottimizzazione Controllo, Riscaldamento a pavimento, Energia 

rinnovabile. 
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Abstract 

 

 

There has been increasing effort to develop energy efficient and low consumption buildings 

[1].  Combining renewable energies and optimal control theories is a promising approach 

towards achieving this goal. 

The main objective of this work is to demonstrate that, by implementing supervisory control, 

it is possible to maximize the efficiency of a complex building system consisting of a 

photovoltaic power plant, an hybrid heating system and a thermal storage. The control system 

proposed was designed to minimize the operating costs by employing a control algorithm that 

would minimize the energy consumption of the building while also achieving thermal comfort. 

For this objective, TOMLAB [2], a MATLAB software, was used and compared to a simple 

reference rule-based controller. 

 

Keywords: hybrid heating system, Thermal storage, Building model with thermal 

resistances, Optimal control, Floor heating, Renewable energy. 
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1 INTRODUCTION 

 General background 

There has been increasing effort to develop energy efficient and low consumption 

buildings [1], because buildings account for 20-40% of the total energy consumptions [3].  

There are two main ways to decrease building energy consumption, retrofitting and 

modernization of physical properties and the application of advanced control techniques in 

the building automation systems. 

However despite the research efforts in designing advanced control strategies,  a detailed 

review article on this topic is  [4],  the most widely used approach is to use a climatic curve, 

based on the climatic zone, the external temperature and few building parameters. Sometimes 

the HVAC “heating ventilation and air conditioning system” is manually controlled by the user 

or by a simple “RBC” rule based controller, which uses some simple rules and “if-else” 

strategies to maintain the thermal comfort in each room. 

However with this approach some major problems arises, first there is a lack of optimized 

strategy for the whole building control. Secondly during Autumn and Spring, the traditional 

controller may underestimate the gain contribution from the sun as shown in chapter 4, 

overheating the building in the morning and leading to a higher room temperature than 

required. Lastly, in cases such as the considered problem, when a thermal storage is present, 

a traditional controller would not be able to efficiently exploit the decoupling between the 

building energy demand and the production from the heating system. 

Meanwhile an optimized controller can overcome this problems. In this work an MPC “model 

predictive control” strategy was applied,  a review on this topic is offered in [5].  

MPC controllers are linked to the physics of the building, so it is possible to create scalable 

models like in chapter 2 for the optimization problem. 
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 Case study 

The building taken into consideration in this work is the same as in [6]. It is a primary 

school located in Lombardy (North Italy), and it consists of four classroom and a cafeteria  with 

a big hall in the middle.  

There is a floor heating system which in this simulation scenario, is supported by an air source 

heat pump, since in mild climates the air source heat pump has a similar performance with 

respect to a ground source heat pump [7], a boiler in order to have a reference and a thermal 

storage. A photovoltaic system is also included in the analysis, since the optimal controller can 

exploit the decoupling between heat pump and thermal storage, allowing the heat pump to 

work when energy from the PV plant is available. 

In Figure 1.2.1 two views of the considered building are reported, and in Figure 1.2.2 a simple 

infographic on the whole system is reported. 

 

Figure 1.2.1 Building prospects 

 

Figure 1.2.2 Schematic system scheme 
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 System modeling 

       The first step when dealing with optimal control problems, is to define the physical model 

of the system. However there are limitations on the level of accuracy the physical system 

should have. In fact there is a trade off between the number of dynamic states describing the 

behavior of the considered system and the computational time required to find the optimal 

solution for the problem as discussed in [8].  

In this work a reasonable model for all the components of the building was considered to 

represent the general thermal dynamics of the building, while not increasing the number of 

states and controls. The system modelling is discussed in more detail in Chapter 2. 

  

 Optimal control 

 The second step consists on the formulation of the optimal control problem, which can be 

seen as the objective that the optimal controller should accomplish within certain boundaries 

and constraints on states and controls. First a cost function is defined, which accounts for the 

objective, which in this case will be the minimization of the energy consumption of the heating 

system while providing thermal comfort inside the building. The boundaries and constraints 

are related to the physical parameters, the maximum inlet water flow rate into the floor heating 

for example. A detailed explanation of the cost function is given in chapter 3.1. 

Once the model and problem are fully defined, a numerical simulation of the system is 

required.  

The problem considered in this thesis is rather complex, in fact it consists of six dynamic states, 

three control variables, three disturbances on the dynamic system and two additional 

disturbances on the objective function. Furthermore the time horizon, ideally should be the 

whole heating season from October to April, however it would not be possible to simulate such 

a problem in a reasonable amount of time, therefore only five days a month from Thursday to 

Monday were considered. The reason behind this choice is to include the weekend which is a 

critical point since the building tends to cool down, and it is a period long enough, that it can 

be ensured the fact the summation of the results for each month, will be a very good 

approximation of the result obtained by considering the whole heating season. 

Another key parameter is the time step, in other works sometimes an hourly time step is used 

[9],   because of computational issues, however this choice is not realistic, since the controller 

ideally should be able to change the controls every instant, therefore a twenty minute time step 

was used. 
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 Objective of the work 

The final objective of the work is to demonstrate that the optimal controller, by exploiting 

the additional information given by the weather data and the prices, will outperform the rule 

based controller from an economic and thermal comfort point of view. There are few ways to 

do this. First the optimal controller should be able to exploit the thermal storage charging it 

when the cost of energy is the lowest and depending on the considered season use the heat 

pump or the boiler. Secondly the rule based controller may underestimate the gain 

contribution from the sun as shown in 4.3.2, overheating the building in the morning and 

leading to a higher room temperature than required. Furthermore the rule based controller is 

forced to maintain a minimum temperature in the building as shown in paragraph 4.1, 

especially during the weekend in order to ensure thermal comfort on Monday considering that 

the heating system will always start heating up the building at the same hour. The optimal 

controller instead can use the weather data to both prevent overheating and leave the building 

to cool down during the weekend, because it can start the heating system at just the right 

moment to guarantee thermal comfort on Monday morning. 
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2 SYSTEM MODELING 

 

 Thermal configuration 

The plant consists of three main components, a natural gas boiler and an air heat pump 

which are connected to the thermal storage, and a thermal storage which is directly connected 

to the building. A plant scheme is reported in and the nomenclature in Table 2.4.1.1. 

 

Figure 2.1.1 Plant configuration 
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 Table 2.4.1.1 Plant configuration nomenclature 

The reason behind this choice is to decouple the heat pump and boiler from the heating 

demand of the building which is provided by the thermal storage. In this way the boiler and 

heat pump could work most of their operating time at maximum efficiency to charge the 

thermal storage.  

Both heat pump and boiler can operate in modulating mode, i.e. they operate with a given set 

point for the supply temperature so that both heating capacity and the mass flow rate supplied 

to the storage vary according to the value of the return temperature, assuming equal 

temperature at the storage bottom. 

From Figure 2.1.1 can be also noticed a recirculation of the water coming out from the building, 

in this way it is possible to accurately control the building inlet temperature T1 under the 

assumption that the overall mass flow rate m1 will be constant. 

In summary, the independent control variables for the system are ṁ8, ṁ10 and ṁ5, where the 

first one is the inlet mass flow rate from the boiler, the second one is the inlet mass flow rate 

from the heat pump and the third one is the outlet mass flow rate going to the mixer from the 

thermal storage to regulate T1. 

 Building model 

A realistic representation of the building dynamics is critical for the results to be 

meaningful. There are many different approaches with different levels of accuracy [10], mainly 

depending on the number of dynamic states and controls, ranging from dynamic simulations 
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accounting perfectly for the thermal behavior of each room in the building, such as TRSYNS, 

to low order models able to represent just the global behavior of the building, such as lumped 

RC approaches. For this application a three parameter lumped RC thermal model has been 

used [6] and all the parameters have been found using identification method starting from 

measured data, since the main goal was to understand the global thermal behavior of the 

building while minimizing the utilized number of dynamic states. A sketch of the building 

model is reported in Figure 2.2.1. 

 

Figure 2.2.1 Building lumped parameters scheme 

The model has one control variable the input enthalpy Ḣfh,in of water flowing in the floor 

heating system, Ḣfh,out is the enthalpy of water flowing out from the building. Three 

disturbances, the solar global irradiance, ɸr, the heat generation provided by the occupants 

and the internal supplies, ɸo, and the external temperature, Text.  

There are three state variables, named Tr, Tf and Tw, which represent respectively the indoor 

air temperature, the floor temperature and the external walls temperature. Each state variable 

is associated with the corresponding heat capacity, namely Cr, Cf and Cw. 

Each term  Gxy represents the thermal conductance between temperatures Tx and Ty. 

ɸo is the heat gain according to occupancy profile, and is based on a constant heat production 

coefficient per person according to the ISO 7730,  the heat gain is  reported in Figure 2.2.2. 
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Figure 2.2.2 Occupancy profile 

The parameter a is used to scale the solar radiation, taking into account the average 

shadowing and inclination of the sun during the day, while b divides the solar contribution 

between the wall and the room temperature. Ideally this parameter represents the portion of 

radiation passing through the windows heating up the room. The main assumption, which 

supports the last statement, is that the thermal input entering the windows, is completely 

reflected by the floor into the room space. 

The net heat transfer rate flowing in the floor heating can be defined as the difference 

between inlet and outlet enthalpies as in ((2.4.1.1): 

 

 �̇�𝑓ℎ,𝑛𝑒𝑡 = Ḣfh,in − Ḣfh,out = �̇�1 ⋅ 𝑐𝑤 ⋅ (𝑇1 − 𝑇2) (2.4.1.1) 

Where  cw [
kJ

kg⋅K
] is the water specific heat and ṁ1 [

kg

s
] is the total mass rate in the 

building given by the mass balance at the recirculation valve in (2.4.1.2): 

  

�̇�1 = �̇�5 + �̇�3 (2.4.1.2) 

 

It is worth mentioning that ṁ1 = 1.8 [
kg

s
] is a constant value defined by the size of the pipes in 

the floor heating system. T1 can be also found from the energy balance at the recirculation 

valve under the hypothesis of constant water properties due to low operating temperature, 

obtaining the following expression  (2.4.1.3): 

Another important assumption, is the relation between T2 and the other variables. 

𝑇1 =
�̇�5𝑇5 + �̇�3𝑇2

𝑚1
 

(2.4.1.3) 
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Under the assumption that the floor heating is working in a limited range of temperature and 

the flow inside the pipe is fully developed the following expression was derived: 

 

 

As we already mentioned all the lumped parameters have been found using identification 

method [6]. They provide a good representation of the overall behavior of the building, but it 

is impossible to have detailed information about temperatures of single rooms or 

temperature distribution in the wall, in particular the temperatures considered are weighted 

averages of the real temperature distributions present in the building. It is also worth 

noticing that the model reflects the real dynamics of the building only for values of 

disturbances, states and controls similar to the experimental data used to train the 

parameters. Since the data belongs to a January two week period, the model should be valid 

for the heating season, but not for cooling. In Figure 2.2.3 are reported the temperature 

profiles from experimental data and the ones derived by the model for a two weeks period in 

March: 

 

Figure 2.2.3 Building temperature profiles comparison simulation vs measured 

 

After the model validation the dynamic states equations are reported: 

The values of the constant parameters are reported in Table 2.4.1.1: 

T2 = α ∙ T1 + (1 − α) ∙  Tf  0 < α < 1  (2.4.1.4) 

𝐶𝑓
𝑑𝑇𝑓

𝑑𝑡
= −(𝐺𝑓𝑟 + 𝐺𝑓𝑤 + �̇�𝑡𝑜𝑡𝑐𝑤(1 − 𝛼)) 𝑇𝑓 + 𝐺𝑓𝑟𝑇𝑟 + 𝐺𝑓𝑤𝑇𝑤

+ �̇�𝑡𝑜𝑡𝑐𝑤(1 − 𝛼)𝑇1  

(2.4.1.5) 

 

𝐶𝑟
𝑑𝑇𝑟
𝑑𝑡

= −(𝐺𝑟𝑓 + 𝐺𝑟𝑤 + 𝐺𝑟𝑒)𝑇𝑟 + 𝐺𝑟𝑓𝑇𝑓 + 𝐺𝑟𝑤𝑇𝑤 + 𝜙𝑜 + 𝑎𝑏𝜙𝑟

+ 𝐺𝑟𝑒𝑇𝑒𝑥𝑡 

(2.4.1.6) 

𝐶𝑤
𝑑𝑇𝑤
𝑑𝑡

= −(𝐺𝑤𝑓 + 𝐺𝑤𝑓 + 𝐺𝑤𝑒)𝑇𝑤 + 𝐺𝑤𝑓𝑇𝑓 + 𝐺𝑤𝑟𝑇𝑟 + 𝑎(1 − 𝑏)𝜙𝑟

+ 𝐺𝑤𝑒𝑇𝑒𝑥𝑡 

(2.4.1.7) 
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Table 2.4.1.1 Building parameters from identification 

 

Considering the physical meaning of these parameters, it is important to remember that a 

lumped approach was used, so for example the heat capacity associated with the air in room 

can be affected by the mass of the building furniture. Furthermore is really difficult to 

estimate the interface between external wall and air, since composition and the temperature 

profile of the internal wall is unknown, therefore there could be a slight shift in the 

conductance Grw and Gwe. 

 Thermal Storage 

The thermal energy storage allows to decouple the building energy demand from the heat 

pump and boiler. Thanks to this shift the heat pump can work when the COP is higher and 

when the price of electricity is lower to charge the thermal storage.  

The most common way to model a thermal storage is by using a stratified approach [11], in 

Figure 2.3.1 a simple scheme for the stratified thermal storage is shown: 

 

Figure 2.3.1 Stratified thermal storage tank scheme 

Each layer represents a mass of water at constant temperature, increasing the number of 

layers allows to have a more accurate representation of the temperature profile inside the 

Parameters Cr 120761.412 [kJ/K]

Gfr 2.578 [kW/K] Cw 463441.674 [kJ/K]

Gfw 1.663 [kW/K] a 0.727 \

Grw 4.131 [kW/K] b 0.618 \

Gwe 1.241 [kW/K] alpha 0.1759 \

Gre 0.612 [kW/K] Area 500 m^2

Cf 73322.258 [kJ/K] m1 1.8 [kg/s]
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thermal storage. This means increasing the number of dynamic states, for this application a 

trade off between number of states and accuracy of the model lead to a two layers model, in 

which the size of the layers is variable and based on the mass balance of the top and bottom 

portion of the storage.  Since the temperature difference between inlet and outlet of the floor 

heating must be around ∆Tin−out ≈ 10[°𝐶], the ∆T inside the thermal storage will not be high. 

Because of this and because of the low mass flow rate ṁ5 with respect to the total amount of 

water stored, the destratification due to mixing and natural convection between the two 

layers was neglected.  

The heat loss to the surroundings was considered by using a global heat exchange coefficient 

that accounts also for the thermal bridges at inlets and outlets of the thermal storage. A 

schematic representation of the thermal storage is reported in Figure 2.3.2: 

 

 

Figure 2.3.2 Schematic representation of the thermal storage with parameters 

The dynamic states in this model are h7,T7 and T6, which are respectively the height of the hot 

water stored in the tank, the temperature of the hot water in the tank and the temperature of 

the cold water in the tank.  

Ṁ9and ṁ11 are the outlet mass flow rates from the thermal storage to the boiler and the heat 

pump respectively, and they are equal to  ṁ8 and ṁ10 for the mass balance.  

T9 and T11 are the cold outlet temperatures from the thermal storage to the boiler and heat 

pump, and in this case since there are just two layers, they are also equal. From (2.4.1.6) can 

be seen that T9 and T11 are the result of the adiabatic mixing between cold water and hot water 

in the tank depending on the level of h7. The same can be said for T5 being the temperature of 

the hot water at the outlet of the thermal storage. 
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T8 and T10 are the inlet temperature into hot part of the thermal storage. In order to keep the 

mathematical complexity as low as possible, the heat pump and boiler are assumed to operate 

at constant temperature difference  ∆T = 10 [°C], therefore T8 and T10 can be defined as: 

The reason behind this assumption is that in this way the thermal storage will operate with a 

∆T of around 10 [°C] , However there is a limit on the maximum temperature allowed in the 

thermal storage T7max = 45[°C].  

Lastly the expression of Q̇loss is reported in (2.4.1.2). 

Where U [
kW

m
] is the constant heat exchange coefficient, P[m] is the perimeter and htot[m] is the 

total height of the thermal storage and A[m2] is the cross area of the thermal storage. These 

parameters were taken from ZANI SPA datasheet [12]. 

A further step to develop the model is to consider the outlets of the thermal storage in the two 

particular cases when the storage is nearly fully charged and nearly empty. In particular by 

taking a look at the Figure 2.3.3 

 

Figure 2.3.3 Detail of thermal storage outlets 

The heights hd7and ho7  represents respectively the height of dead volume and the height of the 

dead height plus the diameter of the outlet for the hot side. The height ho6and the difference 

between hd6 and htot  represent instead the dead height of cold water in the thermal storage 

and the distance between the top and the cold outlet. These parameters were taken from ZANI 

SPA datasheet [12]. 

T8 = T10 = 𝑇9 + ∆𝑇 (2.4.1.1) 

�̇�𝑙𝑜𝑠𝑠  = 𝑈𝑃ℎ7(𝑇7 − 𝑇𝑎𝑚𝑏) + 𝑈𝑃(ℎ𝑡𝑜𝑡 − ℎ7)(𝑇6 − 𝑇𝑎𝑚𝑏) (2.4.1.2) 
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When h7 is lower than hd7, the storage is empty and therefore the outlet temperature is T6, for 

hd7 < h7 < ho7 instead the outlet temperature is an adiabatic mixing between the mass flow 

rate of hot and cold water: 

The coefficient fh7  is the fraction of hot water with respect to the total mass flow rate ṁ5 flowing 

out through the hot outlet, in order to have smooth variation for the optimal controller, a 

sinusoidal profile described by (2.4.1.4 was chosen: 

In Figure 2.3.4 is shown the trend of fh7   

 

Figure 2.3.4 Trend of the mass flow rate repartition coefficient 

The coefficient fh6  is the fraction of hot water with respect to the total mass flow rate ṁ9 + ṁ11 

flowing out through the cold outlet and is defined in a similar fashion to fh7, leading to the 

following expression: 

The outlet temperatures T9 and T11 are defined according to the (2.4.1.6): 

 

T5  =
fh7m7T7 + (1 − fh7)m6T6

m5
  

(2.4.1.3) 

  

 

fh7 =

{
 
 

 
 

1                                                                              h7 > ho7

 f =
1

2
+
1

2
sin (

π

ho7 − hd7
∗ (h7 − hd7) −

π

2
)  hd7 ≤ h7 ≤ ho7

0                                                                           h7 < hd7

  

 

(2.4.1.4) 

 

fh6 =

{
 
 

 
 

0                                                                               h7 < ho6

 f =
1

2
+
1

2
sin (

π

hd6 − ho6
∗ (h7 − DH1) −

π

2
)         h06 ≤ h7 ≤ hd6

1                                                                             h7 > hd6

 

 

 (2.4.1.5) 

 

T9 = T11 =
fh6(ṁ11 + ṁ9)T7 + (1 − fh6)(ṁ11 + ṁ9)T6 

ṁ7

 
(2.4.1.6) 
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Finally the equations describing the dynamic states are expressed as follows: 

 

 

The derivation of these equations can be found in A.1.1. The last important parameter to the 

define for the model of the thermal storage is the SOC “state of charge” of the thermal storage, 

it is a dimensionless parameter which gives information on the amount of heat available from 

the thermal storage with respect to a reference. However the definition is not as simple as in a 

battery, since heat stored depends on the reference temperature, and heat losses contribute 

lower this value even when the storage is at rest. Given these premises the SOC is defined in 

(2.4.1.10) 

   

Where Tref = 20 [°C] is equal to the minimum comfort temperature in the building [13], and 

Tmax = 45 [°C] is the maximum allowed temperature in the thermal storage. 

 Air source heat pump and Boiler  

2.4.1 Air source heat pump 

The heat pump is a key component of the heating system, and therefore its behavior 

should be modeled as close as possible to reality. In principle, two aspects of the heat pump 

behavior at different operating temperatures shall be considered: full load heating capacity 

and COP. However, to simplify the implementation of the control algorithm, a constant full 

load heating capacity is assumed, based on the consideration that, when a storage is present 

ρwcwAs
dh7
dt

= ṁ10 + ṁ8 − fh7ṁ7 − fh6(ṁ11 + ṁ9) 
(2.4.1.7) 

𝜌𝑤𝑐𝑤𝐴𝑠ℎ7
𝑑𝑇7
𝑑𝑡

= 𝑚8̇ 𝑐𝑤(𝑇8) + �̇�10𝑐𝑤(𝑇10) − 𝑓ℎ7�̇�7𝑐𝑤𝑇7

− 𝑐𝑤(�̇�10 + �̇�8 − 𝑓ℎ7�̇�7 − 𝑓ℎ6(�̇�11 + �̇�9))𝑇7 − 𝑈𝑃ℎ7(𝑇7 − 𝑇𝑎𝑚𝑏)

− 𝑓ℎ6𝑐𝑤(�̇�11 + �̇�9)𝑇7 

 

(2.4.1.8) 

 

𝜌𝑤𝑐𝑤𝐴𝑠(ℎ𝑡𝑜𝑡 − ℎ7)
𝑑𝑇6
𝑑𝑡

= 𝑚7̇ 𝑐𝑤(𝑇2) − ((1 − 𝑓ℎ7)�̇�7𝑇6 − (1 − 𝑓ℎ6)(𝑚11
̇ + �̇�9))𝑐𝑤𝑇6 

                                 −𝑈𝑃(ℎ𝑡𝑜𝑡 − ℎ7)(𝑇6 − 𝑇𝑎𝑚𝑏) + 𝑐𝑤(�̇�10 + �̇�8 − 𝑓ℎ7�̇�7    

− 𝑓ℎ6𝑐_𝑤  (�̇�11 + �̇�9))𝑇6 

(2.4.1.9) 

 

𝑆𝑂𝐶 =
𝑄𝑠𝑡𝑜𝑟𝑒𝑑
𝑄𝑚𝑎𝑥

=
𝜌𝑤𝑐𝑤𝐴𝑠ℎ𝑠𝑡𝑜𝑟𝑒𝑑∆𝑇𝑠𝑡𝑜𝑟𝑒𝑑
𝜌𝑤𝑐𝑤𝐴𝑠ℎ𝑚𝑎𝑥∆𝑇𝑚𝑎𝑥

=

h7(𝑇7 − 𝑇𝑟𝑒𝑓) + (ℎ𝑡𝑜𝑡 − ℎ7)(𝑇6 − 𝑇𝑟𝑒𝑓)
htot

ℎ𝑚𝑎𝑥(𝑇𝑚𝑎𝑥 − 𝑇𝑟𝑒𝑓)
 

(2.4.1.10) 
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in the system, the approximation introduced here does not have an important effect on the 

overall energy performance of the heat pump. 

Therefore the main parameter becomes  the COP of the heat pump, which is mainly a complex 

function of the external temperature  Text  and the feed temperature T10, the latter being a 

function of a state as shown in (2.4.1.1) . With this formulation the cost function used in the 

optimization problem 3.1 will not be convex and more difficult to solve.  

In [14] a comparison was done between simulations employing a COP(Text, T10) and 

COP(Text, T̅feed) where T̅feed is an average value,  and  the results show that the solutions are 

comparable, even if  the solution with COP(Text, T̅feed) tends to overestimate the value of the 

COP in peak power points, so for a high ∆T10−11. That will not be the case in this work, since 

the value of  ∆T10−11 is fixed, leading to the decision of adopting a COP(Text, T̅feed), in order to 

have a convex cost function, with T̅feed = 40 [°C]. 

The expression was derived by extrapolation data from the AERMEC catalogue [15] for a 

40[kW] heat pump, and approximated by a three digits polynomial function : 

In Figure 2.4.1 the measured value of the COP is reported: 

 

Figure 2.4.1 Plot of measured COP vs polynomial interpolation 

 

COP = COP0 + 𝑎1𝑇𝑒𝑥𝑡 + 𝑎2𝑇𝑒𝑥𝑡
2 + 𝑎3𝑇𝑒𝑥𝑡

3  (2.4.1.1) 
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2.4.2 Boiler 

The boiler model is simpler with respect to the heat pump, under the hypothesis of a given 

∆TT8−T9 = 10 [°C] an average value for the efficiency ηb was selected starting from the 

VIESSMAN catalogue  [16] 

 

 

 

 

 Electrical configuration 

In the cost function (2.6.2.2) appears the net electrical consumption of the building accounting 

for the consumption of lights, internal equipment, heat pump and the production of the 

photovoltaic. The electrical configuration in Figure 2.5.1 results trivial considering a steady 

state operation of the electrical components. 

 

Figure 2.5.1 Electrical configuration 

Where PPV is the power generated by the photovoltaic system, ηPV its efficiency, ηInverter and 

ηBOS the efficiencies of the inverter and balance of system, Pgrid is the power absorbed from the 

grid and Pdem is the power demand: 

Where the first contribution is the electrical power absorbed by the heat pump and the second 

due to lights and appliances in the building which is modeled after a case study done on north 

Italian schools [17]. The profiles for a typical working day for different months and a typical 

weekend are shown in the plot below: 

Pdem =
m10cw∆TT10−11

COP
+ Pbuild 

(2.4.2.1) 
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Figure 2.5.2 School lights and appliances load profile 

 

 

The equation for the electrical balance will be: 

It’s worth mentioning that Pgrid can be also negative if the PV power is higher than the demand, 

meaning that energy is sold to the grid. 

 Photovoltaic system 

The main component of the PV model are the photovoltaic modules, in particular the 

Waris WRS250ST60F [18] , with a nominal power of 250[W]. The total nominal power of the 

PV plant is 35 [kW], sized to fit the peak energy demand of the building lights, internal 

equipment and heat pump. Consequently a suitable 35 [kW] inverter from Adavanced Energy 

[19] was chosen. 

2.6.1 Roof orientation and solar radiation 

By taking a look at the school blueprint, only a portion of the roof is south oriented and 

suitable for installing the modules. 

Accounting for environmental factors, the shadowing from landscape obstructions can be 

neglected during the whole year since in front of the roof is present a park and farm fields. The 

value of albedo is strongly affected by the environment nearby the installation site, in this case 

Pgrid = Pdem − ηInverterηBOSPPV (2.4.2.2) 
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the school is located close to the countryside and accordingly with the regulation UNI 8477, 

an average value of 0.15 was chosen. 

In Figure 2.6.1 the average daily irradiation for the heating season is reported, the global 

horizontal radiation was taken from Arpa Lombardia website [20], and all the sun coordinates, 

δ, En, ts, ω, ϑsz, γs, ψs, θs, where calculated with a timespan of 20 minutes. 

 

Figure 2.6.1 Average daily irradiation 

 

 

2.6.2 Modules and Inverter 

As shown in Figure 2.6.1 the average irradiation in Zibido is not very high, this lead to the 

choice of the modules [18] that have an average efficiency but are cheaper. According to the 

measures of the roof, and the nominal power required a total of 140 modules were considered 

couple with the inverter reported in [19]. Once defined the inverter, the matching analysis was 

performed in order to check if all the voltage and current limits were respected. 

Assuming a minimum cell temperature of -10°C and a maximum one of 70°C, according with 

the regulations, the corrected parameters in terms of Voc, open circuit voltage, Isc , short circuit 

current e Vmpp, maximum power point voltage,  have been calculated, through these equations  

𝑉𝑜𝑐 (𝑇𝑐,𝑚𝑖𝑛) = 𝑉𝑜𝑐, 𝑟𝑒𝑓 + [(𝑇𝑐,𝑚𝑖𝑛 − 𝑇𝑐, 𝑟𝑒𝑓) ∙ 𝛽]  

𝑉𝑀𝑃𝑃  (𝑇𝑐,𝑚𝑖𝑛) = 𝑉𝑀𝑃𝑃,𝑟𝑒𝑓 + [(𝑇𝑐,𝑚𝑖𝑛 − 𝑇𝑐, 𝑟𝑒𝑓) ∙ 𝛽] 

𝑉𝑀𝑃𝑃  (𝑇𝑐,𝑚𝑎𝑥) = 𝑉𝑀𝑃𝑃,𝑟𝑒𝑓 + [(𝑇𝑐,𝑚𝑎𝑥 − 𝑇𝑐, 𝑟𝑒𝑓) ∙ 𝛽] 

𝐼𝑠𝑐 (𝑇𝑐,𝑚𝑎𝑥) = 𝐼𝑠𝑐, 𝑟𝑒𝑓 + [(𝑇𝑐,𝑚𝑎𝑥 − 𝑇𝑐, 𝑟𝑒𝑓) ∙ 𝛼] 

(2.6.2.1) 
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Where Xref stands for the reference value  Xmin stands for the minimum value and Xmax stand 

for the maximum value. The parameters β [
A

°C
] and α [

A

°C
] are the coefficients of temperature 

for the voltage and current respectively taken from Waris datasheet [18]. 

The power of the inverter must be in the range of 80%-110% of the PV system, in this case 

the two nominal powers are exactly the same, then the number of strings in parallel and the 

number of modules in series in each string was checked. 

For the maximum number of strings in parallel, the limiting parameters is the maximum 

current acceptable by the MPPT system, because the overall currant is the sum of the currents 

flowing in each string and the test is done considering the maximum current flowing in every 

string, which is the Isc when the temperature is the highest: 

 

For the maximum number of modules in each string, the limiting parameter is the maximum 

voltage acceptable by the inverter, because, for the series disposition, the overall voltage is the 

sum of the voltages of each module and the test is done considering the maximum voltage on 

the module, which is Voc when the temperature is the lowest 

The extreme MPPT values represent the range of useful voltage and current in order to make 

the system able to seek the maximum power operating point, so it is important for the 

maximum power point voltage and current to be in this range: 

In this case 14 modules per string and 10 strings were chosen in order to achieve 35[kW] of 

nominal power.   In the Table 2.6.2.1 are reported the final values for the calculations and 

every checked parameter results in within the appropriate range.  

Table 2.6.2.1 Inverter-photovoltaic matching check 

 

Vmax_string (-10°C) [V] 482.6892 <595 

Vmin_string (70°C) [V] 335.8796 > 295

Vmax_open circuit (-10°C) [V] 590.9092 < 600 

Imax  [A] 92.3635 < 125

𝑀𝑎𝑥 𝑛° 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑀𝑃𝑃𝑇 =  
𝐼𝑚𝑎𝑥, 𝑖𝑛𝑣(𝑀𝑃𝑃𝑇)

𝐼𝑠𝑐 (𝑇𝑐,𝑚𝑎𝑥)
= 14 

 
(2.6.2.2) 

 

𝑀𝑎𝑥 𝑛° 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑖𝑛𝑔 =  
𝑉𝑚𝑎𝑥, 𝑖𝑛𝑣

𝑉𝑜𝑐 (𝑇𝑐,𝑚𝑖𝑛)
= 13 

 
(2.6.2.3) 

 

𝑉𝑂𝐶(𝑇𝑐,𝑚𝑖𝑛)𝑠𝑡𝑟 = 𝑉𝑂𝐶 (𝑇𝑐,𝑚𝑖𝑛) ∙ 𝑛°𝑚𝑜𝑑 𝑥 𝑠𝑡𝑟𝑖𝑛𝑔 ≤ 𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 

𝐼𝑆𝐶(𝑇𝑐,𝑚𝑎𝑥)𝑖𝑛𝑣 = 𝐼𝑆𝐶 (𝑇𝑐,𝑚𝑎𝑥) ∙ 𝑛°𝑠𝑡𝑟𝑖𝑛𝑔𝑠 ≤ 𝐼𝑚𝑎𝑥,𝑖𝑛𝑣 

 

  
(2.6.2.4) 
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3 OPTIMAL CONTROL PROBLEM 

 Optimal control problem formulation 

Optimal control deals with problems in which a time variable control u(t) is chosen for a 

dynamic system x(t) such that a certain optimality criterion is met under certain boundary 

conditions and constraints on dynamic states and controls. The criterion is the cost function J 

associated with the optimal control problem. The general formulation for J can be expressed 

as in  

Where g(x(t), u(t), t) is a function of states and controls and h(x(t), t) is the terminal cost. 

 The objective of the optimal controller in this problem is to minimize the energy consumption 

of the building while ensuring a minimum level of thermal comfort inside the building. In [14] 

is reported a way to put together the energy consumption and the discomfort, by starting from 

that formulation and adapting it to this case we obtain the two cost functions: 

Where the first term represents the maximum between zero and the electrical balance of the 

building multiplied by the cost of the electricity Celec  [
€

kWh
], the second term represents the 

minimum between zero and the electric balance of the building multiplied by the feed-in tariff 

Cfeedin [
€

kWh
] and the last term represents the boiler power multiplied by the cost of natural gas 

Cng. A better explanation for this prices is shown in B.1.1. 

The discomfort cost function instead is defined as: 

𝐽(𝑡) = ℎ(𝑥(𝑡), 𝑡) + ∫ 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡)
𝑡𝑓

𝑡0

𝑑𝑡 

 

(2.6.2.1) 

 

𝐽𝑒𝑛(𝑡) = 𝐶𝑒𝑙𝑒𝑐(𝑡) ⋅ (
�̇�ℎ𝑝 ⋅ 𝑐𝑤 ⋅ (𝛥𝑇)

𝐶𝑂𝑃(𝑇𝑒𝑥𝑡)
+ 𝑃𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 − 𝑃𝑝𝑣)

+

 

              + 𝐶𝑓𝑒𝑒𝑑𝑖𝑛 ⋅ (
�̇�ℎ𝑝⋅𝑐𝑤⋅(𝛥𝑇)

𝐶𝑂𝑃(𝑇𝑒𝑥𝑡)
+ 𝑃𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 − 𝑃𝑝𝑣)

−

+
𝐶𝑛𝑔⋅�̇�𝑏⋅𝑐𝑤⋅(𝛥𝑇)

𝜂𝑡ℎ
 

(2.6.2.2) 
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Where Tr is the room temperature, Tref = 21 [°C] is the room reference temperature, (
ϕo(t)

ϕon
) is 

the ratio between the occupancy heat gain rate and it’s nominal value of 3.8 [kW] and  Wen−dis 

is a constant weight that converts the units of the discomfort [K2h] in price units [€], an 

explanation on the derivation of this parameter can be found in A.1.2. 

 Finally the expression for the total cost function is shown: 

 

k is a parameter which ranges 0 < k < 1  that expresses how much the cost function accounts 

for the energy contribution and the discomfort contribution, for k = 1, the cost function 

minimizes just the energy consumption, while for  k = 0 only the discomfort will be minimized.  

Secondly the boundaries and the constraints on the states and control must be introduced: 

The only boundary condition on this problem is set on the height h7 where the initial value 

should be equal to the final value. The values of the parameters are determined from the 

physical model, in particular  ṁ5 can not be higher than the maximum mass flow rate in the 

building, the maximum mass flow rates of the heat pump ṁhp  and boiler ṁbmax are calculated 

based on the maximum power of the boiler and the heat pump accordingly with the physical 

model and the height has to stay between the dead volumes of the thermal storage. 

 Optimal control problem solving 

Once the dynamic system, the cost function, boundaries and constraints are defined, a 

suitable methodology to solve the optimal control problem in a reasonable amount of time has 

𝐽𝑑𝑖𝑠(𝑡) = 𝑊𝑒𝑛−𝑑𝑖𝑠 (
𝜙𝑜(𝑡)

𝜙𝑜𝑛
) (𝑇𝑟 − 𝑇𝑟𝑒𝑓)

2

 
(2.6.2.3) 

 

𝑚𝑖𝑛 𝐽𝑡𝑜𝑡 (𝑡) = ∫ [𝑘𝐽𝑒𝑛(𝑡) + (1 − 𝑘)𝐽𝑑𝑖𝑠(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0

 
(2.6.2.4) 

 

ℎ7̅̅ ̅(𝑡0) = ℎ7̅̅ ̅(𝑡𝑓) 

0.15 [𝑚] = ℎ7𝑚𝑖𝑛 < ℎ7 < ℎ7𝑚𝑎𝑥 = 2.7 [𝑚] 

0 < 𝑚5 < 𝑚1 = 1.8 [
𝑘𝑔

𝑠
] 

0 < 𝑚ℎ𝑝 < 𝑚ℎ𝑝𝑚𝑎𝑥 = 0.9 [
𝑘𝑔

𝑠
] 

0 < 𝑚𝑏 < 𝑚𝑏𝑚𝑎𝑥 = 0.9 [
𝑘𝑔

𝑠
] 

0 < 𝑇7 < 𝑇7𝑚𝑎𝑥 = 45 [°𝐶] 

0 < 𝑇6 < 𝑇6𝑚𝑎𝑥 = 35 [°𝐶] 

 

 

 

 ( 2.6.2.5) 
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to be applied. Many approaches are possible, for example DP “Dynamic Programming”, PMP 

“Pontryagin’s Minimum Principle” and converting the optimal control problem into a CNLP 

“Constrained  Non Linear Programming” problem. 

Dynamic programming guarantees the global optimum, however is subjected to Bellman’s 

curse of dimensionality, meaning that the computational time increases exponentially with the 

number of states in the dynamic system. 

 PMP converts the optimal control problem from the dynamic system, cost function and 

constraints form into a boundary value problem, with this mathematical formulation is 

possible to express a necessary condition for optimality on the controls allowing a faster speed 

convergence with respect to DP, however is not trivial to apply constraints on the controls 

using this approach, find the guesses for parameters which are not physical and the global 

optimum is not guaranteed.   

The last and chosen method belongs to the so called “direct” methods, there are many ways to 

convert an optimal control problem into a CNLP problem, in TOMLAB PROPT [21] 

environment for MATLAB, Chebyshev [22] pseudo spectral collocation method is employed. 

The general  approach of a pseudo spectral technique consists of converting the time 

continuous optimal control problem into a discrete time problem, a more detailed description 

is given in A.1.3. Once the optimal control problem is converted to a CNLP problem, PROPT 

uses the solver SNOPT  [23] , which uses a SQP “Sequential Quadratic Programming” method 

to solve the CNLP problem, a more detailed explanation is reported in A.1.4. 

Using this approach does not guarantee the global optimum unless the optimizing function is 

quite smooth in the first derivative, in the considered problem it can not be ensured that the 

function is smooth, however the solution found will be reasonably close to the optimal 

solution, furthermore usually to check if the global optimum is reached different initial 

conditions for the same problem should be tested. However in the considered problem, 

changing the initial conditions will change the nature of the problem, starting for example 

from a high SOC “State Of Charge” or a low SOC of the thermal storage will affect the way the 

controller has to operate the heat pump and the boiler in order to achieve the minimum 

thermal discomfort, leading to a different energy performance.  

To keep in check this possibility the solution trends by changing the parameter k were checked 

and see if they respected what was expected. 
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 Rule based controller design 

In order to the have a reference for the solution obtained by the optimal controller a 

simple rule based controller was designed. The main objective of the rule base controller is to 

ensure thermal comfort to the people inside the building. To do so the dynamic model of the 

building, the heating system and the controller were designed in MATLAB environment.  

3.3.1 Measures and set points 

Considering the heating system reported in  and the building scheme in Figure 2.2.1 the 

controller will have to check the temperature of the room Tr and the mean temperature in 

thermal storage Tm which is defined as: 

Which is equivalent to the adiabatic mixing temperature inside the thermal storage.  

The set-point of  Tr is defined as in the following figure: 

 

Figure 3.3.1 Room set point temperature definition 

The set point will be Tref ± ∆Tr where ∆Tr = 1 [°C], in accordance with the regulations [13] and 

[24], furthermore depending on the month considered, when there are no people in the 

building a set point on Trmin ± ∆Tr was introduced, to prevent the room temperature from 

dropping during the night or in the weekends, the values are reported in Table 3.3.3.1 .  

The temperature Tm instead has to stay in between the minimum Tmmin
 and maximum Tmmax

 

allowed temperatures in the storage, which are defined as:  

  

𝑇𝑚 =
𝑇7ℎ7 + 𝑇6(ℎ𝑡𝑜𝑡 − ℎ7)

ℎ𝑡𝑜𝑡
 

(3.3.1.1) 

 

 

𝑇𝑚𝑚𝑖𝑛
= 
𝑇7𝑚𝑖𝑛ℎ7𝑚𝑖𝑛 + 𝑇6𝑚𝑖𝑛(ℎ𝑡𝑜𝑡 − ℎ7𝑚𝑖𝑛)

ℎ𝑡𝑜𝑡
 

𝑇𝑚𝑚𝑎𝑥
= 
𝑇7𝑚𝑎𝑥ℎ7𝑚𝑎𝑥 + 𝑇6𝑚𝑎𝑥(ℎ𝑡𝑜𝑡 − ℎ7𝑚𝑎𝑥)

ℎ𝑡𝑜𝑡
 

  
(3.3.1.2) 
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Where the heights limits h7min  and h7max are the physical limits for the dead 

volumes inside the thermal storage, while T7min = 35[°C] and T7max = 45[°C] 

are the minimum and maximum temperature allowed in the thermal storage, 

T6min = 25[°C]  and T6max  = 35[°C].Tmmax
 was however slightly changed 

depending on the considered month, to avoid excessive recirculation of hot 

water in the thermal storage in the heat pump and boiler. 

3.3.2  Controls and control actions 

Considering the heating system reported in chapter 2, in order to satisfy the set points the 

controller will have to control the inlet temperature in the building T1 for the room 

temperature, the heat pump and boiler mass flow rates ṁ10 and ṁ8 to charge the thermal 

storage tank.  

The control of  T1 defined in (2.4.1.3) is determined by the opening of the three way valve v1 , 

where there is an adiabatic mixing between the hot water ṁ5 at T5 defined in (2.4.1.3) coming 

from thermal storage and the recirculation cold water  ṁ2 at T2 defined in (2.4.1.4) from the 

floor heating outlet. A climatic curve is used to determine the value of T1 depending on the 

value of the external temperature, which is reported in Figure 3.3.2 

 

Figure 3.3.2 Climatic curve rule based controller 

The maximum temperature Tmax was determined by considering no recirculation from the 

building outlet, ṁ5 = ṁ1 and the maximum temperature allowed in thermal storage for the 

coldest day of the year. Tmin corresponds to the value at which the heating system stops 

working, when Text = 20 [°C] equal to the minimum thermal comfort temperature. Tmean was 
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determined by tuning the rule based controller during the heating season, by finding a trade 

off between the discomfort due to the temperatures lower than Trmin in the colder months and 

discomfort due to the temperatures higher than Trmax  in the hotter months. Moreover to 

achieve thermal comfort in the occupied period from 7:30 to 17:30, the heating system has to 

start working earlier, especially on Monday morning after the weekend, depending on the  

month considered the controller was properly tuned, starting earlier in colder months and 

later in hotter ones. 

The control of the heat pump and boiler, acts on the inverter of the respective circulating 

pumps to change the values of ṁ10 and ṁ8, while the temperature T10 and T8 are determined 

as described in 2.4. However since the heating demand from the building is decoupled by the 

thermal storage, the heat pump and boiler will always work at their nominal powers to charge 

the thermal storage. Two control strategies for heat pump and boiler were tested, the first one 

consists of not giving priority to heat pump and boiler, so they will both work at their nominal 

power to fill the thermal storage, in the second operating mode priority is given to the heat 

pump and the boiler is switched on only if Tmean goes below a certain threshold plus a certain 

∆Tmean = 2[°C]. 

3.3.3  Controller tuning and results 

The parameters that needed to be tuned and the relative values are reported in   

Table 3.3.3.1  

Table 3.3.3.1 Tuning parameters rule based controller 

 

 

The first columns of each controller represent how many hours earlier the heating system will 

be started before people will are in the building, the second columns report the same 

anticipation but for Monday. The third columns show the minimum temperature at which the 

building is kept throughout the week to achieve thermal comfort. The fourth column Tmeanboiler 

shows the temperature at which the boiler starts to charge the storage in the case of the 

sequential rule based controller. 

To further check the good operating conditions of the rule based controller from a thermal 

comfort perspective, the scatter plot reported in Figure 3.3.3 for the normal RBC and Figure 

RBC RBCseq

adv-work [h] adv-weekend [h] Tmin [°C] adv-work [h] adv-weekend [h] Tmin [°C] Tmean boiler [°C]

October 3 7 17.5 3 7 17.5 35

November 5 7 18 5 7 18 35

December 5 7 18.5 5 7 18.5 37

January 5 7 18.5 5 7 18.5 37

February 5 7 18 5 7 18.5 37

March 4 7 18 4 7 18 35

April 3 7 17.5 3 7 17.5 35
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3.3.4 for the sequential RBC show the trend of the room temperature depending on external 

temperature Text [°C] and the solar radiation hitting the building G [
kW

m2] throughout the whole 

heating season. Plots for each temperature band are available in appendix C.1.1.  

 

Figure 3.3.3 Rule based control scatter plot 
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Figure 3.3.4 Sequential rule based controller scatter plot 

 

In Table 3.3.3.2 the results for each room temperature level considering all the working hours 
of the heating season are reported  

 

Table 3.3.3.2 Room temperatures levels 

 

 

Room Temperature [°C] [h] RBC % [h] RBCseq %

Tr < 19.5 27 2% 21 2%

19.5 < Tr < 20 56 5% 85 7%

20 < Tr <21 230 19% 429 35%

21 < Tr < 22 622 51% 504 41%

22 < Tr < 22.5 175 14% 120 10%

Tr > 22.5 113 9% 63 5%

Total working hours 1223 100% 1223 100%
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In the Table 3.3.3.2 and the Figure 3.3.3  can be observed that the winter thermal discomfort 

due to low temperature is very limited, in fact only the 7% of the total working hours is under 

20 [°C] and the 2% under 19.5 [°C]. That is not the case for thermal discomfort due to higher 

temperature than the threshold 22 [°C] during the warmer days of the heating season in fact 

up to 23% of the working hours are above the maximum comfort temperature and 9% higher 

than 22.5 [°C] for the normal RBC. Instead the sequential RBC has a slightly worse 

performance in winter, due to the fact the average inlet temperature in the building is lower in 

early morning as shown in Figure 4.1.3, but this grants a slightly better performance in the 

hotter months, preventing the building from overheating.  

However both RBCs have the issue of overheating and the reason is that the rule based 

controller is not able to predict the weather condition for the incoming day, therefore it will 

switch on the heating system in the morning while measuring a room temperature level lower 

than the minimum threshold, and when the external temperature and solar radiation increase 

throughout the day, the building will be heated up above the thermal comfort zone.  

Meanwhile the optimal controller has as input disturbances the weather data, and is able to 

consequently adjust the heat input into the building preventing the room temperature to reach 

the thermal discomfort as shown in 4.3.2. 
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4 RESULTS 

 

 Rule based controller results 

In this paragraph the results on the performance of the rule based controller and 

sequential rule based controller for two sample months April and January are reported 

considering different plots, the other months are available in C.1.3 and C.1.4. 

In the first plot the floor temperature Tfloor , the room temperature Troom and the external wall 

temperature Twall are plotted against the thermal comfort band defined in paragraph 3.3.1, and 

the occupation heat gain defined in paragraph 2.2. In the second plot the hot and cold 

temperatures in the storage T7 and T6 are reported against the SOC “State of charge” of the 

thermal storage, defined in (2.4.1.10), and in the fourth plot Q̇in = Gfr(Tf − Tr) which is the heat 

rate provided by the floor heating system to the room, Q̇hp the heat rate provided by the heat 

pump and Q̇b the heat rate provided boiler along with the occupation heat gain. 
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Figure 4.1.1 January results for RBC, 1) Tfloor, Troom  and Twall vs ɸo 

 2) T7 and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure 4.1.2 April results for RBC 1) Tfloor, Troom,  and Twall vs ɸo  

2) T7 and T6 State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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 Figure 4.1.3 January results for sequential RBC, 1) Tfloor , Troom and Twall vs ɸo  

2) T7 and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure 4.1.4 April results for sequential RBC, 1) Tfloor , Troom and Twall vs ɸo  

2) T7 and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

 

Doing a general discussion valid for the RBC and sequential RBC, by comparing the first plot 
1) for each month, it can be noticed that in spring and autumn the temperature rises above 
the thermal comfort band, because as stated before the RBC is not able to predict the 
radiation throughout the day overestimating the building heating demand. It’s also 
interesting to notice what reported in Table 3.3.3.1  

Table 3.3.3.1, during normal working days the heating system will start some hours before 

people arrive in the building and after the weekend it needs to start even sooner to reach the 

minimum allowed temperature. Furthermore a minimum temperature has to be kept also 

during the weekends, because with a fixed starting hour, if the building is left to cool down 

especially during the colder months, the room temperature will not be able to reach the 

thermal comfort band on time. This brings wasteful consumption of energy that could be 

avoided when implementing an optimal controller, since it is able to check the weather 

prediction and act in accordance. 
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From plot 2) can be seen that the RBCs respect the control imposed on the storage mean 

temperature, however in this way, the RBCs will always try to fill the thermal storage without 

being able to exploit the decoupling between the thermal storage, the heat pump and the boiler. 

Meanwhile in and can be seen that the optimal controller exploits the thermal storage, 

charging it only when it is most economically convenient. 

In the last plot 3) the RBC uses the heat pump and boiler at nominal power to charge the 

thermal storage and the total heat provided is the same for the RBC and priority is given to the 

heat pump in the sequential RBC, leading to a better performance overall with respect to the 

other RBC, but letting the heat pump working in inefficient conditions in winter, while in 

Figure 4.2.1 is shown that optimal controller prioritize the cheaper option to charge the 

thermal storage.  

  Optimal controller results 

In this paragraph the results on the performance of the optimal controller for two sample 

months April and January are reported considering different plots, the other months are 

available in C.1.5, only the results with the best k are reported, where the best value of k was 

chosen based on the average discomfort taking as a reference the sequential rule based 

controller, more details in paragraph 4.3. 

In the first plot the floor temperature Tfloor, the room temperature Troom, and the external wall 

temperature Twall are plotted against the thermal comfort band defined in paragraph 3.3.1, and 

the occupation heat gain defined in paragraph 2.2. In the second plot the hot and cold 

temperatures in the storage T7 and T6 are reported against the SOC “State of charge” of the 

thermal storage, defined in (2.4.1.10) and in the fourth plot Q̇in = Gfr(Tf − Tr) which is the heat 

rate provided by the floor heating system to the room, Q̇hp the heat rate provided by the heat 

pump and Q̇b the heat rate provided boiler along with the occupation heat gain. 
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Figure 4.2.1 January results for optimal controller, 1) Tfloor, Troom  and Twall vs ɸo  

2) T7 and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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From the optimal control monthly plots a few things can be shown, starting with plot 1) the 

average temperature of the floor Tf is lower in spring and autumn, and higher in the colder 

winter months, in this way the optimal controller is able to provide heat to the building without 

overheating in warmer seasons and achieve thermal comfort during colder ones. 

From plot 2) can be noticed that the optimal controller is able to exploit better the thermal 

storage with respect to the RBCs, in fact the ∆SOC is way higher than in the RBCs, furthermore 

during the weekend we have a rapid drop of the thermal storage temperatures T7 and T6, due 

to the fact that the building is let to cool down during the weekend, however by starting before 

the RBCs, the optimal controller is able to guarantee thermal comfort during Monday by 

starting to heat up the building before the RBCs.  

In the last plot 3) is shown how the optimal controller choses to use the heat pump during 

warmer seasons, reducing the consumption of the boiler to zero, while in colder seasons the 

boiler is preferred to heat pump to charge the thermal storage.  

 

Figure 4.2.2 April  results for optimal controller, 1) Tfloor, Troom  and Twall vs ɸo  

2) T7 and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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 Rule based controllers comparison with 

optimal controller  

In the previous paragraphs a view on the behavior of the RBCs and optimal controller was 

shown. In this paragraph the detailed comparison between the three controllers will be shown 

for each five sample days from Thursday to Monday, for the whole heating season.  

First a view on the general performance is shown, comparing the RBCs and the optimal 

controller for the whole heating season at different values of k, by taking a look at the total heat 

provided by the heat pump and boiler Q [kWh], the total Energy cost [€], the total 

Primary energy [kWhf] consumption and Emissions [kgCO2]  as defined in appendix B.1.2 and 

the B.1.2. 

Second the same quantities are shown for the whole heating season considering the two RBCs 

and the optimal controller for the best value of k, defined as the cheaper option with an 

adequate thermal comfort. 

Lastly is shown a more detailed comparison between the sequential RBC and the optimal 

controller is shown analyzing the daily trend of the important variables for two sample months, 

January and April, the plots for the other months can be found in C.1.6.  

 

4.3.1  Lumped parameters comparison RBCs vs optimal 

controller 

In Figure 4.3.1 the trend of the controllers is shown by putting on the x-axis the total heat 

provided by heat pump and boiler to the storage Q [kWh] and on y-axis the error with respect 

to the set point temperature as defined in the cost function in paragraph 3.1 divided by the 

total number of occupied hours during the five days considered, so that it represents the 

average quadratic hourly error with respect to the set point temperature Tset−point = 21 [°C]. 

It is worth mentioning that to do a fair comparison, the difference between initial and final 

SOC  SOCf − SOCin and therefore the difference in energy stored in the thermal storage,  was 

taken into consideration for the calculation of the lumped parameters. 
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Figure 4.3.1 Heat deliveries to storage vs Error Tset−point for each month 

In Figure 4.3.2 the trend of the controllers is shown by putting on the x-axis the total 

Energy cost [€] and on y-axis the error with respect to the set point temperature. 

 

Figure 4.3.2 Energy cost vs Error Tset−point for each month 

In Figure 4.3.3 the trend of the controllers is shown by putting on the x-axis the total 

Primary energy [kWhf] consumption and on y-axis the error with respect to the set point 

temperature. 
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Figure 4.3.3 Primary energy vs Error Tset−point for each month 

In Figure 4.3.4 the trend of the controllers is shown by putting on the x-axis the total 

Emissions [kgCO2]   and on y-axis the error with respect to the set point temperature. 

 

Figure 4.3.4 Emissions vs Error Tset−point for each month 

 

The first thing worth mentioning is the expected trend of the optimal controller results by 

increasing the value of k for all months, as the parameter k increases the heat consumption 

reduces while the error increases, meaning that the solver is behaving according to what 

expected.  

Secondly is clear how the sequential RBC outperforms the other RBC in terms error on the set 

point, heat input and energy cost apart from the coldest months in which the two controllers 

perform in a similar fashion, therefore for the detailed analysis only the sequential RBC is 

considered. 
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The optimal controller has an average lower error on the set point with respect to the RBCs 

and a lower heat consumption apart from April and October in which the heat provided is 

similar, due to a lower demand in general, but taking a look at the energy cost in Figure 4.3.2, 

the energy cost is lower due to the fact that the optimal controller is able to produce heat when 

is cheaper. 

However this causes an increase in Primary energy consumption and CO2 emissions in the 

colder months, because the cheapest way to produce heat is to burn natural gas in the boiler. 

Considering just the results of the optimal controller for the best k and comparing the same 

parameters as before, more conclusions can be derived. 

In Figure 4.3.5 the heat delivered to the storage  Q[kWh] plotted against the months is 

reported, it is worth mentioning than for the mean value, October and April were considered 

by only half in the weighted average, since the heating season starts on the 15th of October and 

ends on the 15th of April. 

 

Figure 4.3.5 Heat input vs Months 

In Figure 4.3.6 the  Energy cost [€] plotted against the months is reported 
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Figure 4.3.6 Energy cost vs Months 

 

From the first plot it is clear that during colder months the optimal controller tends to provide 

less heat with respect to the RBCs while in Autumn and Spring the heat consumption is quite 

similar. However considering the energy cost there are higher savings in Spring and Autumn 

with respect to the colder months. This is due to the lower cost of electricity, higher COP of the 

heat pump and the ability of the optimal controller to exploit the thermal storage, in fact only 

the heat pump is used to produce heat, despite the fact the heat pump nominal power is lower 

than the building energy demand, while in colder months average price of the heat provided 

by the heat pump and boiler is similar Figure 4.3.14, not allowing the optimal controller to 

greatly outperform the RBCs.   

Considering the mean values, the optimal controller is able to save up to the 11% of the heat 

provided by the heat pump and boiler and 10% of the energy cost throughout the whole heating 

season, which is a promising result, considering that it can not be taken for granted that the 

solution of the optimal controller is a global optimum, leaving the possibility to further 

improve these numbers. 

In Figure 4.3.7 the Error on Tset−point  [
K2

hocc
] against the months is reported 
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Figure 4.3.7 Error Tset−point vs Months 

As expected the optimal controller, having the ability to predict the external temperature and 

solar radiation, outperforms the RBCs, especially in Spring and Autumn when the RBCs 

overheat the building because the solar contribution is not negligible.  

In Figure 4.3.8 and Figure 4.3.9 the Primary energy [kWhf] consumption and the 

Emissions [kgCO2] against the months are reported 

 

Figure 4.3.8 Primary Energy vs Months 
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Figure 4.3.9 Emissions vs Months 

As mentioned before, the Primary energy and Emissions savings are not remarkable, because 

even if in Spring and Autumn the optimal controller manages to the reduce the Primary energy 

consumption and the Emissions, in the colder months the optimal controller privileges the 

boiler over the heat pump, because it is cheaper. 

4.3.2  Daily comparison optimal controller vs sequential 

RBC 

In this paragraph is shown the daily comparison between the performance of the optimal 

controller in the case of the best k and the sequential RBC, for the two sample months of 

January and April, the results for the other months are reported in  C.1.6.  

In Figure 4.3.10 and Figure 4.3.11 the trends of the time step and cumulative cost functions 

are reported with respect to the time, on the left y-axis the Time step cost function [€] and on 

the right y-axis the cumulative cost function [€] 
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Figure 4.3.10 January time step cost function and cumulative cost function vs time 

 

Figure 4.3.11 April time step cost function and cumulative cost function vs time 

By comparing the optimal controller with the sequential RBC, how in January the two 

cumulative functions show similar trends for Thursday the 12th  and Friday the 13th , due to the 

fact that the price of producing heat with the heat pump and the boiler are similar, therefore 
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the optimal controller does not have a lot of room for improvement. However the RBC 

cumulative cost has a higher slope during the weekend, January the 14th and January the 15th,  

because it has to maintain a minimum temperature to guarantee thermal comfort on Monday. 

A different conclusion instead is derived by taking a look at April, in fact the optimal controller 

outperforms the RBC during the working days, because it has more freedom in exploiting the 

thermal storage using the heat pump at high efficiencies, but in the weekend the RBC 

cumulative cost can achieve a negative slope, because the photovoltaic system is producing 

more energy than required and selling it to the grid, this is true also for the optimal controller, 

but in a smaller fashion, because it uses the energy produced by the photovoltaic system to 

charge the storage with the heat pump. This is probably due to a suboptimal solution, where a 

local minimum was found by the optimal controller, because by taking a look at Table 4.3.2.1 

where a comparison is made between the price at which the excess energy from the PV system 

is sold, PUN + CUSf and the maximum cost at which the heat pump produces heat, it is clear 

that, if excess energy is produced it should be sold to the grid to have the highest profit.  

Table 4.3.2.1 Comparison PUN+CUSf vs cost of heat production from heat pump 

 

 

In the Figure 4.3.12 and Figure 4.3.13 three plots are reported, in the first one a comparison 

between the room temperatures Tr [°C] and the Occupation heat gain, in the second plot the 

heat transferred from the floor to the room Q̇in = Gfr(Tf − Tr) [kW] and the net power 

difference between the electricity demand due to appliances Pb [kW] and the power produced 

by the PV system Ppv [kW] against the inlet temperature in the floor heating T1. In the third 

plot are reported  the total electricity power demand  and natural gas heat demand against the 

cost at which heat is produced by the heat pump 
Cel

COP
 [

€

kWhth
] . the plots for the other months 

are reported in C.1.6. 

Pun+Cusf [€/kWh] max Cel/COP [€/kWhth]

October 0.079 0.052

November 0.084 0.061

December 0.082 0.070

January 0.097 0.092

February 0.080 0.067

March 0.069 0.048

April 0.068 0.047
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Figure 4.3.12 January OPT vs RBC 1)  Troom vs Occupation heat gain,  

2) Q̇in = Gfr(Tf − Tr), Pb − Pv vs T1 3) Electricity demand, Png vs 
𝐶𝑒𝑙

𝐶𝑂𝑃
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By taking a look at the first plot 1) it is clear how during January the optimal controller let 

the building cool down, while during April the optimal controller tends to exploit the excess 

power from the PV system to charge the storage and heat up the building, leading to an 

higher room temperature with respect to the sequential RBC. It is also interesting to notice 

that the room temperature of the RBC tends to have a parabolic shape during the occupied 

hours having a peak around noon, and this leads to overheating in April, while the optimal 

controller room temperature has a flatter profile close to the set point, preventing 

overheating in April, and overall granting thermal comfort while using less heat. 

From the second plot 2) it can be noticed how the optimal controller manages to have a 

flatter temperature profile, for April because the average inlet temperature T1  is lower in the 

case of the optimal controller, in this way the heat rate Q̇in has a lower value, since if T1 is 

lower Tfloor  will be lower, reducing the average heat rate allows the storage to be charged by 

using just the heat pump in April.  

 

 Figure 4.3.13 April OPT vs RBC 1)  Troom vs Occupation heat gain,  

2) Q̇in = Gfr(Tf − Tr), Pb − Pv vs T1 3) Electricity demand, Png vs 
𝐶𝑒𝑙

𝐶𝑂𝑃
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In January the average inlet temperature is similar, even tough it is lower during the working 

days and higher in the weekend to allow the optimal controller to reach thermal comfort 

during Monday despite the building temperature drop during the weekend for the optimal 

controller, the same can be said for the inlet heat transfer rate even tough in January the 

optimal controller uses both the heat pump and the boiler.  

In fact in plot 3) is shown how, in January the electrical demand of the optimal controller is 

slightly lower than the RBC and the natural gas demand especially before Monday is way 

higher because of the high cost of producing heat with the heat pump, due to higher 

electricity cost and lower COP because of a low external temperature. It is also worth noticing 

how the optimal controller tries to use the excess power from the PV as said before, in fact 

the negative peak of the electrical demand is way lower in the optimal controller case. 

 

 In  Figure 4.3.14 and Figure 4.3.15 is shown a detail on the thermal storage variables and the 

system controls for January and April. In the first plot the thermal storage SOC [%] against 

the temperatures T7 [°C] and T6[°C] are reported. In the second plot the control mass flow rates 

ṁ10  [
kg

s
] and ṁ8  [

kg

s
], respectivly the mass flow rate of the heat pump and the boiler are shown 

against the cost of the natural gas divided by the boiler efficiency Cng [
€

kWhf
] and the cost 

producing heat from the heat pump 
Cel

COP
[

€

kWhth
]. Similarly in the last plot the heat transfer rates 

of heat pump and boiler are reported instead.  
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Figure 4.3.14 January OPT vs RBC 1) SOC vs T7 and T6, 

 2) ṁ10 and ṁ8 vs  Cng and 
Cel

COP
, 3) Q̇hp and  Q̇b vs Cng and 

Cel

COP
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In the first plot 1)  is shown how both in January and April, the SOC of the RBC is always kept 

at very high values, because the controller is programmed to charge the thermal storage as 

soon as the it starts to be depleted, while SOC in the optimal controller undergoes a lot of 

swings and on average is lower. This is also due to the fact that the average temperature in 

storage is lower in the optimal case, beside in the night before January’s Monday to allow the 

controller to reach thermal comfort. 

From plots 2) and 3), is shown how in winter the cost of producing heat with the boiler is 

almost always lower than the one of the heat pump, leading the optimal controller to prefer 

using the boiler most the times, while the sequential RBC always prioritize the heat pump. In 

April instead the opposite happens since producing heat with the heat pump is always cheaper. 

 

 

Figure 4.3.15 April OPT vs RBC 1) SOC vs T7 and T6,  

2) ṁ10 and ṁ8 vs  Cng and 
Cel

COP
, 3) Q̇hp and  Q̇b vs Cng and 

Cel

COP
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  Conclusions 

In this study it was demonstrated: 

1. The designed dynamic system model of the hybrid heating system with thermal 

storage and the building model, even though simplistic, is able to represent the general 

thermal behavior of the building and of the heating system in a realistic way. 

2. The rule based controllers were designed as a reference, and the sequential rule based 

controller, by giving priority to the heat pump, resulted in an overall better 

performance with respect to the other rule based controller. However all the problems 

highlighted in the introduction, overheating in Spring and Autumn, not exploiting the 

thermal storage and maintaining a minimum temperature even when there are no 

people in the building still remain. 

3. The formulated optimal control problem, the constraints and the time horizon were 

obtained by tuning all the involved parameters. Different values of the parameter k 

and the weight parameter Wen−dis were tried to find the right equilibrium between the 

energy cost function and the thermal discomfort cost function. Various constraints, in 

particular on the storage temperatures were tried, in order to prevent the optimal 

controller to give unrealistic solutions. Lastly different times horizon and time steps 

were applied to obtain a trade off between the computational time and realistic results, 

which can be safely extended for the whole heating season. 

4. The results of the optimal controller, show how it is possible to overcome the problems 

presented in the rule based controllers, for example to prevent overheating in the 

warmer season, the average inlet temperature T1 is lower with respect to the RBC case, 

but starting heating up the building earlier, especially in the weekend. This allows also 

the building temperature to drop during the weekend while still achieving thermal 

comfort in Monday morning. Finally the optimal controller exploited the storage 

system to supply the energy demand to the building, while charging it using the 

cheaper alternative between the heat pump and the boiler depending on the weather 

conditions and the price of electricity. 

5. These results lead the optimal controller to outperform the rule based controller, 

leading to an average 10% economic saving and a 11% in heat delivered by the heat 

pump and the boiler to the thermal storage. Instead the primary energy consumption 

and the emissions are not significantly lower, because in winter the optimal controller 

tends to favor the use of the boiler since is the cheaper option, while the sequential 

RBC always favors the heat pump. 

6. However the solution of the optimal controller presents an issue with dealing with the 

photovoltaic system, as discussed in paragraph 4.3.2. Furthermore the optimal 
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controller does not account for the degradation of the actuators, the circulation pumps 

or inefficiencies due to very low partial load, because there is not a term in the cost 

function that accounts for them, leading the overall solution to be a suboptimal 

solution with margin for improvement. Further studies can be conducted in this sense, 

considering also a more complex model for the heat pump and the boiler control, the 

losses due the circulation pumps and the degradation of the components. 

7. The solution from the optimal controller can be used to design an optimized rule based 

controller or simpler MPC formulation for real time applications. Also design studies 

can be conducted employing the optimal controller and changing key parameters such 

as the temperature difference across the heat pump and boiler, or the size of the 

thermal storage, to see how these affect the performance of the system. 
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A. APPENDIX 

EQUATIONS  

A.1.1 Thermal storage model equations 

Starting from the energy and mass balance across the thermal storage in Figure 2.3.2, we 

obtain the following equations 

𝜌𝑤𝑐𝑤𝐴𝑠
𝑑(ℎ7𝑇7)

𝑑𝑡
= 𝑚8̇ 𝑐𝑤(𝑇8) + �̇�10𝑐𝑤(𝑇10) − 𝑓ℎ7�̇�5𝑐𝑤𝑇7 − 𝑈𝑃ℎ7(𝑇7 − 𝑇𝑎𝑚𝑏)

− 𝑓ℎ6(�̇�11 + �̇�9)𝑇7 

 (A.1.1)  

𝜌𝑤𝑐𝑤𝐴𝑠
𝑑((ℎ𝑡𝑜𝑡 − ℎ7)𝑇6)

𝑑𝑡
= 𝑚5̇ 𝑐𝑤𝑇2 − (1 − 𝑓ℎ7)�̇�5𝑇6 + (1 − 𝑓ℎ6)(𝑚11

̇ + �̇�9)𝑐𝑤𝑇6 

−𝑈𝑃(ℎ𝑡𝑜𝑡 − ℎ7)(𝑇6 − 𝑇𝑎𝑚𝑏) 

(A.1.2)  

𝜌𝑤𝑐𝑤𝐴𝑠
𝑑ℎ7
𝑑𝑡

= �̇�10 + �̇�8 − 𝑓ℎ7�̇�7 − 𝑓ℎ6(�̇�11 + �̇�9) 

 

 

(A.1.2) 

 

 

The Eq A.1.1 describes the energy balance in the hot node of the thermal storage, the Eq A.1.2 

is the energy balance of the cold node and the Eq A.1.2 is the mass balance of the hot node 

expressed in terms of the height. In the derivative term of the energy balances both the height 

and the temperature are present 
d(h7T7)

dt
 and 

d((htot−h7)T6)

dt
, in order to have a more suitable 

formulation for the numerical integration we have to separate the two terms by applying the 

multiplication rule for derivatives in particular in Eq. A.1.3 : 
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By substituting the expression for 
dh7

dt
 in the energy balances from the mass balance we obtain 

the expression in (2.4.1.8) and (2.4.1.9). 

A.1.2 Weight calculation for cost function 

The constant weight Wen−dis serve the purpose of changing the dimensional units of the 

thermal discomfort function from [K2h] to [€], this parameter was found by solving the 

optimization problem in each control horizon considered, five sample days for each month 

from Thursday to Monday, with a k value of 0, in this way the total cost function would 

become: 

Meaning that the optimal controller will solve the optimal control problem trying to 

minimize the thermal discomfort inside the room for the given period and Wen−dis can be set 

equal to 1 . Once the solution was obtained it was possible to obtain the value of the integral 

for the two considered terms, furthermore a plausible starting point for the simulation would 

be to give the same contribution to the energy cost function Je̅n(t) and thermal discomfort 

cost function Jd̅is(t) . By setting k value to 0.5 and the difference of the two cost function 

equal to 0, the following expression is obtained: 

In order to account for the fact that the thermal discomfort cost function will increase once k 

is set to a value different from 0, the weight was reduced by a factor of 102, obtaining the final  

average value for Wen−dis = 5.12 [
€

K2h
]  

A.1.3 Pseudo Spectral Method 

The Pseudo spectral method converts the continuous time problem into a discretized problem 

in which an m-vector of controls is considered from the initial to the final time U(τ) =

[U0(τ), … , Um−1(τ)] and a n-vector X(τ) = [X0(τ), …Xn−1(τ)], τ ∈ [0, tf]  which minimize the 

functional : 

𝑑(ℎ7𝑇7)

𝑑𝑡
=
𝑑ℎ7
𝑑𝑡

𝑇7 + ℎ7
𝑑𝑇7
𝑑𝑡

 

𝑑((ℎ𝑡𝑜𝑡 − ℎ7)𝑇6)

𝑑𝑡
=
𝑑ℎ7
𝑑𝑡

𝑇6 + (ℎ𝑡𝑜𝑡 − ℎ7)
𝑑𝑇6
𝑑𝑡

 

(A.1.3) 

 

𝑚𝑖𝑛 𝐽𝑡𝑜𝑡 (𝑡) = ∫ 𝐽𝑑𝑖𝑠(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0

 
(A.2.1) 

 

𝑊𝑒𝑛−𝑑𝑖𝑠 =
∫ 𝐽�̅�𝑛(𝑡) 𝑑𝑡
𝑡𝑓
𝑡0

∫  𝐽�̅�𝑖𝑠(𝑡)𝑑𝑡
𝑡𝑓
𝑡0

 
(A.2.1) 
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Subject to 

The time transformation τ =
tf

2
(t + 1) is introduced in order to apply this Pseudo spectral 

methodology, in such a way the Chebyshev interpolating polynomial are defined on the 

interval t ∈ [−1,1], the functional become: 

  

Subject to 

Once reached this point, to obtain spectral accuracy, the grids on which the physical problem 

is to be solved must be obtained by spectral methods. Introducing Sm as the space of algebraic 

polynomials of degree ≤ m, and let Tk(t), k, ≥ 0, −1 ≤ t ≤ 1 , denote the orthogonal family of 

Chebyshev polynomials of the first kind in this space, with respect to the weight function 

𝑤(t) = (1 − t2)−
1

2. The new grid interpolation points will be the extrema 

Of the mth order Chebyshev polynomial Tm(𝑡). 

Now by expanding the state and control in a Chebyshev  series of the mth order, the following 

approximate solution is determined: 

𝐽 = 𝐻(𝑋(𝑡𝑓), �̇�(𝑡𝑓), 𝑡𝑓) + ∫ 𝐺(𝑋(𝜏), �̇�
𝑡𝑓

0

(𝜏), 𝑈(𝜏), 𝜏)𝑑𝜏 
(A.3.1) 

𝑋(0) = 𝑋0 

𝑋(𝑡𝑓) = 𝑋𝑓 

𝑋𝑚𝑖𝑛  ≤ 𝑋(𝜏) ≤ 𝑋𝑚𝑎𝑥 

𝑈𝑚𝑖𝑛 ≤ 𝑈(𝜏) ≤ 𝑈𝑚𝑎𝑥 

(A.3.2) 

𝐽 = ℎ(𝑥(1), �̇�(1), 1) + ∫ 𝑔(𝑥(𝑡), �̇�
1

−1

(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡 
(A.3.3) 

𝑥(−1) = 𝑥−1 

𝑥(1) = 𝑥1 

𝑥𝑚𝑖𝑛  ≤ 𝑥(𝑡) ≤ 𝑥𝑚𝑎𝑥 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 

(A.3.4) 

 

𝑡𝑗 = cos (
𝑗𝜋

𝑚
) , 𝑗 = 0,1, … ,𝑚 

(A.3.5) 

𝑥𝑚(𝑡) =
1

2
𝑎0𝑇0(𝑡) +∑𝑎𝑛𝑇𝑛(𝑡)

𝑚

𝑛=1

 

𝑢𝑚(𝑡) =
1

2
𝑏0𝑇0(𝑡) +∑𝑏𝑛𝑇𝑛(𝑡)

𝑚

𝑛=1

 

(A.3.6) 
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Where α ≡ (a0, a1, … am) and β ≡ (b0, b1, … , bm) are unknown. For simplicity the choice of m 

can be seen as function of the required accuracy with the truncantion error for x(t) and u(t) 

∑ anTn(t)
∞
n=m+1  and  ∑ bnTn(t)

∞
n=m+1 . 

Now substituting the state and control approximations and considering the Chebyshev 

coefficients {Cn(α, T)} and {Bn(α, β, T)} of h[xm(t), T] and 𝑔(xm(t), um(t), t, T) respectively and 

applying the properties explained in [25]  it can be stated that 

The functional of the cost function will become  

The two coefficients can be calculated by employing the following formula 

The system dynamics are replaced instead by the following approximation 

∫ 𝑞(𝑡)𝑑𝑡 = 𝑞0 −∑
1+ (−1)𝑛

𝑛2 − 1
𝑞𝑛

∞

𝑛=2

1

−1

 

If 𝑞(𝑡) =
1

2
𝑞0𝑇0(𝑡) + ∑ 𝑞𝑛𝑇𝑛(𝑡)

∞
𝑛=1  

(A.3.7) 

𝐽(α, β, 𝑇) =
1

2
𝐶0(α, 𝑇) +∑𝐶𝑛(𝛼, 𝑇)

∞

𝑛=1

+ 𝐵0(α, β, 𝑇) −∑𝐵𝑛(α, β, 𝑇).

∞

𝑛=2

 
(A.3.8) 

𝐶𝑛(𝛼, 𝑇) =
2

𝐾
∑ℎ[𝑥𝑚(𝑐𝑜𝑠𝜃𝑖), 𝑇] cos  𝑛𝜃𝑖

𝐾

𝑖=1

 

𝐵𝑛(α, β, 𝑇) =
2

𝐾
∑𝑔[𝑥𝑚(cos 𝜃𝑖), 𝑢𝑚(cos 𝜃𝑖), cos 𝜃𝑖 , 𝑇] cos 𝑛𝜃𝑖

𝐾

𝑖=1

 

(𝑛 = 0,1, … ,𝑁), 𝐾 > 𝑁, 𝜃𝑖 =
2𝑖 − 1

𝐾

𝜋

2
  

(A.3.9) 

𝑑𝑥𝑚
𝑥𝑡

= 𝑓𝑀(𝑥𝑚(𝑡), 𝑢𝑚(𝑡), 𝑡, 𝑇) 

Where  

𝑓𝑀(𝑥𝑚(𝑡), 𝑢𝑚(𝑡), 𝑡, 𝑇) =
1

2
𝐴0(𝛼, 𝛽, 𝑇)𝑇0(𝑡) + ∑𝐴𝑛

𝑀

𝑛=1

(𝛼, 𝛽, 𝑇)𝑇𝑛(𝑡) 

With 

𝐴𝑛(𝛼, 𝛽, 𝑇) =
2

𝐾
𝑓(𝑥𝑚(cos 𝜃𝑖), 𝑢𝑚(cos 𝜃𝑖), cos 𝜃𝑖 , 𝑇) cos 𝑛𝜃𝑖  

(𝑛 = 0,1, … ,𝑀), 𝐾 > 𝑀, 𝜃𝑖 =
2𝑖 − 1

𝐾

𝜋

2
 

 

 

(A.3.10) 
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The left side of (A.3.10) is a polynomial of degree m-1, while the right side is a polynomial of 

degree M. if the function f is nonlinear M=m-1. 

Finally the optimal controller has been reduced to a parameter optimization problem which 

can be stated in this way. Find α, β and T so that J(α,β, T) is minimal, subject to the constraints 

shown in  [26], many mathematical programming techniques can be used to solve this 

constrained problem, the TOMLAB PROPT MATLAB toolbox uses the solver SNOPT. 

A.1.4 SNOPT 

 Sequential quadratic programming (SQP)methods have proved highly effective for solving 

constrained optimization problems with smooth nonlinear functions in the objective and 

constraints. In SNOPT are considered problems with general inequality constraints, with 

available first derivatives and the constraint gradients are sparse. 

This particular SQP algorithm uses a smooth augmented Lagrangian merit function and makes 

explicit provision for infeasibility in the original problem and the QP subproblems. The 

Hessian of the Lagrangian is approximated using a limited-memory quasi-Newton method. 

For the details on the numerical method, the problem formulation and solution is shown in 

[23] 
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B. APPENDIX  

PRICES 

 

B.1.1 Electricity prices, Feed-in tariff and Natural gas 

prices 

The electricity prices were taken from the G.S.E. website [27] for heating period between 

October 2016 and April 2017, in particular a monthly variation with two price bands, F1 going 

from 8:00 to 19:00 and F2 for the rest of the day and the weekend, in the table B.1.1 are 

reported the values: 

 

Table B.1.1 Electricity prices 

 

The Feed-in tariff is the economic contribution given when the PV system produces more 

energy than necessary and therefore is sold to the grid. In Italy it’s regulated by the “Scambio 

sul Posto” regulation [28], in particular the contribution is calculated as : 

F1 [€/kWh] F2 [€/kWh]

October 0.165 0.159

November 0.179 0.172

December 0.173 0.167

January 0.222 0.213

February 0.170 0.164

March 0.136 0.131

April 0.132 0.127
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Where CCS stands for “Contributo in Scambio sul Posto” and is a yearly partial refund of the 

bills paid during the year, given back by G.S.E to the owner of the plant.The terms of the 

equation represent: 

• Oe “Onere energia” is the product between the kWh of energy taken from the grid 

and the PUN “Prezzo Unico Nazionale”, which is the price associated with energy 

production;  

• Cei “Controvalore dell’energia immessa” is the product between the [kWh] of energy 

input into the grid and the “Prezzo zonale orario”, which can be approximated as the 

PUN;  

• CUSf “Corrispettivo Unitario in Scambio Forfettario” , which accounts for all the 

other items in the bill related to the transmission of energy, the distribution, and 

other businesses, without the taxes; 

•  Es “Energia scambiata”, is the minimum value between the energy taken and energy 

injected in the grid 

In this problem case, the is a main assumption, the self consumption will be higher than 

energy sold to the grid changing the previous formula to: 

Given this formula we can switch from a yearly contribution to a hourly contribution without 

any problem, and therefore Cfeedin will be : 

The values of PUN were taken from GSE website [27] with a monthly variation in the period 

from October 2016 and April 2017 while the values of the CUSf were taken from the bill of a 

commercial activity close the school in analysis. The values are reported in the Table B 1.1.2 

 

Pun [€/kWh] CUSf [€/kWh]

October 0.0538 0.0250

November 0.0583 0.0257

December 0.0564 0.0257

January 0.0724 0.0248

February 0.0554 0.0250

March 0.0445 0.0250

April 0.0431 0.0250

𝐶𝐶𝑆 [€ 𝑦𝑒𝑎𝑟⁄ ] = 𝑚𝑖𝑛[𝑂𝑒; 𝐶𝑒𝑖] + 𝐶𝑈𝑆𝑓 ∙ 𝐸𝑠 

 

(B.1.1) 

 

𝐶𝐶𝑆 [€ 𝑦𝑒𝑎𝑟⁄ ] = (𝑃𝑈𝑁+𝐶𝑈𝑆𝑓) ∙ 𝐸𝑠 

 

(B.1.2) 

 

Cfeedin = 𝑃𝑈𝑁+𝐶𝑈𝑆𝑓 [
€

𝑘𝑊ℎ
] 

 

(B.1.3) 
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Table B 1.1.2 PUN and CUSf values 

The natural gas prices were taken from GSE website [27] , even tough the natural gas price 

may fluctuate in one month period, the main variation is seasonal, therefore an average 

monthly value was taken and the respective values are reported in the table below for the 

period from October 2016 to April 2017: 

Table B 1.1.3 

 

B.1.2 Emissions and Primary energy 

Beside the economical analysis, it is also interesting to check how the optimal controller 

outperforms the RBC in terms of primary energy consumption and CO2 emissions, in order to 

do so, an average monthly value that converts kWh consumed to primary energy and CO2 is 

needed. The data for PEFs [
kWhf

kWhel
] “primary energy factors” and yearly electricity consumption 

[Gwh]  were taken from the Italian TSO “ transmission system operator”, Terna. For the 

biomasses only a constant coefficient was considered for indirect consumption and emission 

considering the production and the transport, in particular a PEF = 0.1 [
kWhf

kWel
] and 𝑒𝐶𝑂2 =

25 [
g

kWel
], meanwhile other renewable resources were considered with a zero contribution to 

emissions and primary energy consumption.   

Now in order to find the average monthly value, the composition of electrical energy produced 

every hour yearly is needed, however it is rather difficult to find data on the amount of energy 

imported and exported and the mix of production of foreign countries, therefore only national 

production was considered. The final monthly values were taken from an energy equality 

analysis, that consider also grid losses with a constant coefficient. However these numbers 

consider the national mix, since Lombardy mix is known, the parameters were reweighted with 

respect to Lombardy average mix taken from Lombardy energy monitoring website [29] . The 

final values are reported in Table B 1.2.1 

 

 

Natural gas price[€/kWh]

October 0.0540

November 0.0591

December 0.0585

January 0.0687

February 0.0645

March 0.0531

April 0.0539
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Table B 1.2.1 

 

The value of  PEFs during the year result in being pretty low, considering that the European 

average is around 2 [
𝑘𝑊ℎ𝑓

𝑘𝑊ℎ𝑒𝑙
], however this is due to the fact that a large part of energy in 

Lombardy is produced by using renewable energies, especially Hydroelectric, in fact fuel 

fired electricity accounts only for around the 50% of the total production. 

 

PFE [kWhf/kwhel] ECO2 [g/kWhe]

October 1.314 336

November 1.221 313

December 1.345 344

January 1.345 343

February 1.354 344

March 1.244 318

April 1.128 289
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C. LIST OF 

FIGURES 

C.1.1 Rule based control scatterplots 

In these plots are reported the scatterplots for each temperature band for the rule based 

controller 

 

 

Figure C 1.1.1 Scatter plot Troom < 19.5 [°C] 
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Figure C 1.1.2 Scatter plot 19.5 ≤ Troom ≤ 20[°C] 

 

Figure C 1.1.3 Scatter plot 20 ≤ Troom ≤ 21[°C] 

 

 

Figure C 1.1.4 Scatter plot 21 ≤ Troom ≤ 22[°C] 
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Figure C 1.1.5 Scatter plot 22 ≤ Troom ≤ 22.5[°C] 

 

Figure C 1.1.6 Scatter plot Troom > 22.5[°C] 

 

C.1.2 Sequential rule based scatter plots 

In this plots are reported the scatterplots for the sequential rule based controller 
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Figure C 1.2.1 Scatter plot Troom < 19.5 [°C] 

 

Figure C 1.2.2 Scatter plot 19.5 ≤ Troom ≤ 20[°C] 

 

Figure C 1.2.3 Scatter plot 20 ≤ Troom ≤ 21[°C] 
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Figure C 1.2.4 Scatter plot 21 ≤ Troom ≤ 22[°C] 

 

Figure C 1.2.5 Scatter plot 22 ≤ Troom ≤ 22.5[°C] 

 

Figure C 1.2.6 Scatter plot Troom > 22.5[°C] 
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C.1.3 Rule based control monthly results 

 

Figure C 1.3.1 October results for RBC, 1) Tfloor, Troom  and Twall vs ɸo 2) T7 and T6 State of 

charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

  

Figure C 1.3.2 November results for RBC, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and T6 vs 

State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure C 1.3.3 December results for RBC, 1)  Tfloor, Troomand Twall vs ɸo 2) T7 and T6 vs State 

of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

 

Figure C 1.3.4 February results for RBC, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and T6 vs State 

of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure C 1.3.5 March results for RBC, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and T6 vs State of 

charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

C.1.4 Sequential rule based controller monthly plots 

 

Figure C 1.4.1 October results for sequential RBC, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and T6 

vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure C 1.4.2 November results for sequential RBC, 1)  Tfloor, Troomand Twall vs ɸo 2) T7 and 

T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

 

Figure C 1.4.3 December results for sequential RBC, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and 

T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure C 1.4.4 February results for sequential RBC, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and 

T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

 

Figure C 1.4.5 March results for sequential RBC, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and T6 

vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 



 

84 

C.1.5 Optimal controller monthly results 

 

Figure C 1.5.1 October results for optimal controller, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and 

T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

  

Figure C 1.5.2 November results for optimal controller, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 

and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure C 1.5.3 December results for optimal controller, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 

and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

 

Figure C 1.5.4 February results for optimal controller, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 

and T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 
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Figure C 1.5.5 March results for optimal controller, 1)  Tfloor, Troom and Twall vs ɸo 2) T7 and 

T6 vs State of charge 3) Q̇in , Q̇hp and Q̇b vs ɸo 

 

 

C.1.6  Daily comparison optimal controller vs 
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sequential RBC 

Figure C 1.6.1 October time step cost function and cumulative cost function vs time 

 

Figure C 1.6.2 November time step cost function and cumulative cost function vs time 



 

88 

 

Figure C 1.6.3 December time step cost function and cumulative cost function vs time 

 

Figure C 1.6.4 February time step cost function and cumulative cost function vs time 
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Figure C 1.6.5 March time step cost function and cumulative cost function vs time 

 

Figure C 1.6.6  October OPT vs RBC 1)  Troom vs Occupation heat gain, 2) Q̇in = Gfr(Tf − Tr), 

Pb − Pv vs T1 3) Electricity demand, Png vs 
𝐶𝑒𝑙

𝐶𝑂𝑃
 



 

90 

 

Figure C 1.6.7  November OPT vs RBC 1)  Troom vs Occupation heat gain, 2) Q̇in = Gfr(Tf −

Tr), Pb − Pv vs T1 3) Electricity demand, Png vs 
𝐶𝑒𝑙

𝐶𝑂𝑃
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Figure C 1.6.8  December OPT vs RBC 1)  Troom vs Occupation heat gain, 2) Q̇in = Gfr(Tf −

Tr), Pb − Pv vs T1 3) Electricity demand, Png vs 
𝐶𝑒𝑙

𝐶𝑂𝑃
 

 

Figure C 1.6.9  February OPT vs RBC 1)  Troom vs Occupation heat gain, 2) Q̇in = Gfr(Tf −

Tr), Pb − Pv vs T1 3) Electricity demand, Png vs 
𝐶𝑒𝑙

𝐶𝑂𝑃
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Figure C 1.6.10  March OPT vs RBC 1)  Troom vs Occupation heat gain, 2) Q̇in = Gfr(Tf − Tr), 

Pb − Pv vs T1 3) Electricity demand, Png vs 
𝐶𝑒𝑙

𝐶𝑂𝑃
 

 

Figure C 1.6.11 October OPT vs RBC 1) SOC vs T7 and T6, 2) ṁ10 and ṁ8 vs  Cng and 
Cel

COP
, 3) 

Q̇hp and  Q̇b vs Cng and 
Cel

COP
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Figure C 1.6.11 November OPT vs RBC 1) SOC vs T7 and T6, 2) ṁ10 and ṁ8 vs  Cng and 
Cel

COP
, 

3) Q̇hp and  Q̇b vs Cng and 
Cel

COP
 

 

Figure C 1.6.12 December OPT vs RBC 1) SOC vs T7 and T6, 2) ṁ10 and ṁ8 vs  Cng and 
Cel

COP
, 

3) Q̇hp and  Q̇b vs Cng and 
Cel

COP
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Figure C 1.6.13 February  OPT vs RBC 1) SOC vs T7 and T6, 2) ṁ10 and ṁ8 vs  Cng and 
Cel

COP
, 

3) Q̇hp and  Q̇b vs Cng and 
Cel

COP
 

 

Figure C 1.6.11 March OPT vs RBC 1) SOC vs T7 and T6, 2) ṁ10 and ṁ8 vs  Cng and 
Cel

COP
, 3) 

Q̇hp and  Q̇b vs Cng and 
Cel

COP
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