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ABSTRACT

Software-Defined Networking (SDN) enables programmability in the network. Unfortunately,
current SDN limits programmability only to the control plane. Operators cannot program
data plane algorithms such as load balancing, congestion control, failure detection, etc. These
capabilities are usually baked in the switch via dedicated hardware, as they need to run at
line rate, i.e. 10-100 Gbit/s on 10-100 ports.

In this work, we present two data plane abstractions for stateful packet processing, namely
OpenState and OPP. These abstractions allow operators to program data plane tasks that
involve stateful processing. OpenState is an extension to OpenFlow that permits the defi-
nition of forwarding rules as finite state machines. OPP is a more flexible abstraction that
generalizes OpenState by adding computational capabilities, opening for the programming
of more advanced data plane algorithms. Both OpenState and OPP are amenable for high-
performance hardware implementations by using commodity hardware switch components.
However, both abstractions are based on a problematic design choice: to use a feedback-loop
in the processing pipeline. This loop, if not adequately controlled, can represent a harm for
the consistency of the state operations. Memory locking approaches can be used to prevent
inconsistencies, at the expense of throughput. We present simulation results on real traffic
traces showing that feedback-loops of several clock cycles can be supported with little or no
performance degradation, even with near-worst case traffic workloads.

To further prove the benefits of a stateful programmable data plane, we present two novel
applications: Spider and FDPA. Spider permits to detect and react to network failures at
data plane timescales, i.e. micro/nanoseconds, also in the case of distant failures. By using
OpenState, Spider provides functionalities equivalent to legacy control plane protocols such
as BFD and MPLS Fast Reroute, but without the need of a control plane. That is, both
detection and rerouting happen entirely in the data plane.

FDPA allows a switch to enforce approximate fair bandwidth sharing among many TCP-like
senders. Most of the mechanisms to solve this problem are based on complex scheduling
algorithms, whose feasibility becomes very expensive with today’s line rate requirements.
FDPA, which is based on OPP, trades scheduling complexity with per-user state. FDPA
works by dynamically assigning users to few (3-4) priority queues, where the priority is chosen
based on the sending rate history of a user. Experimental results on a 10 Gbit/s testbed
show that FDPA is able to provide fairness and throughput comparable to scheduling-based
approaches.
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SOMMARIO

Software-Defined Networking (SDN) permette la programmabilità delle reti. Purtroppo, le
attuali tecnologie SDN limitano la programmabilità solo al piano di controllo. Gli operatori
non possono programmare algoritmi del piano dati come il bilanciamento del carico, il con-
trollo di congestione, il rilevamento di guasti, ecc. Queste funzionalità sono generalmente
implementate nei dispositivi di interconnessione tramite hardware dedicato, poiché devono
essere eseguite a velocità di linea, ovvero 10-100 Gbit/s su 10-100 porte.

In questo lavoro di ricerca, presentiamo due astrazioni del piano dati per l’elaborazione di
pacchetti in maniera stateful, ovvero OpenState e OPP. Queste astrazioni permettono agli
operatori di programmare algoritmi del piano dati che comportano un’elaborazione basata su
stato. OpenState è un’estensione di OpenFlow che consente la definizione di regole di flusso
nella forma di macchine a stati finiti. OPP è un’astrazione più flessibile che generalizza Open-
State aggiungendo funzionalità computazionali, permettendo la definizione di algoritmi più
avanzati. Sia OpenState che OPP permettono un’implementazione ad alte prestazioni utiliz-
zando componenti hardware commodity. Tuttavia, entrambe le astrazioni si basano su una
scelta di progettazione problematica, cioè quella di utilizzare un feedback-loop nella pipeline
di elaborazione dei pacchetti. Questo feedback-loop, se non adeguatamente controllato, può
rappresentare un problema per la coerenza delle operazioni di lettura e scrittura dello stato.
Approcci basati su blocco della memoria possono essere utilizzati per prevenire incongruenze,
a scapito del throughput. In questa ricerca, presentiamo dei risultati di simulazione su tracce
di traffico reali, che dimostrano che feedback-loop lunghi diversi cicli di clock possono essere
supportati con poca o nessuna degradazione del throughput, anche in situazioni di traffico
vicine al caso peggiore.

Per dimostrare ulteriormente i vantaggi di un piano di dati programmabile e stateful, presen-
tiamo due nuove applicazioni: Spider e FDPA. Spider consente di rilevare e reagire a guasti
di rete su scale temporali tipiche del piano dati, cioè micro/nanosecondi, anche in caso di
guasti distanti. Utilizzando OpenState, Spider fornisce funzionalità equivalenti a protocolli
noti del piano di controlli come BFD e MPLS Fast Reroute, ma senza bisogno di un piano
di controllo. Cioè, sia il rilevamento che il re-instradamento vengono effettuati interamente
nel piano dei dati.

FDPA consente ad un dispositivo di interconnessione di applicare una condivisione di banda
equa tra diverse sorgenti di traffico TCP. La maggior parte dei meccanismi esistenti per risol-
vere questo problema si basano su complessi algoritmi di scheduling, la cui implementabilità si
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rivela molto costosa con le richieste di throughput di oggi. FDPA, implementato utilizzando
OPP, permette di sostituire alla complessità degli algoritmi di scheduling, la complessità del
mantenere uno state per utente. FDPA si base sul principio che gli utenti possono essere
assegnati dinamicamente ad una coda prioritaria, dove la priorità viene scelta in base alla
frequenza di invio di pacchetti di un utente. Abbiamo realizzato un testbed a 10 Gbit/s,
i risultati mostrano che FDPA è in grado di garantire una suddivisione della banda equa e
throughput comparabile ad approcci basati su scheduling.
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CHAPTER 1 INTRODUCTION

Networking technologies have undergone a major revolution in recent years. Both academia
and industry have worked to make networks more open and programmable. Open, as op-
posed to the traditional closed paradigm, where network equipment vendors develop both
proprietary hardware and software, bundled together in the same black box, hard to change
once deployed. Programmable, to give system owners the possibility to code their needs,
instead of relying on the slow development cycles adopted by vendors to add support for new
protocols and services.

Software-Defined Networking (SDN) has been the epicenter of this revolution. SDN is based
on the simple idea of decoupling the control plane from the forwarding devices’ data plane.
Abstracting networks into separate planes is a convenient way of reasoning about network
programmability. The data plane is the one responsible for the forwarding of packets, i.e. the
circuitry necessary to move (or drop) packets between ports of the same device. The control
plane is where the network-level intelligence is implemented, i.e. decide which devices and
ports a packet should be sent through to implement a given network policy, such as routing
or security.

The two planes have different operative requirements that significantly affect how programma-
bility is enabled. The data plane needs to process packets as fast as possible. Today’s line
rate requirements are 10–100 Gbit/s on 10–100 ports. For this reason, the data plane is also
called the fast-path. Such high-performance requirements call for implementations based on
dedicated hardware, such as ASIC, network processors (NPU), or FPGAs . In contrast, the
control plane can operate at lower speeds, but it needs to perform relatively complex com-
putations, e.g. find the best path in BGP. As a consequence, implementations favor general
purpose CPUs and high-level languages such as C, Java or Python.

SDN was first introduced to enable programmability of the control plane. Indeed, SDN
abstracts the data plane by means of an Application Programming Interface (API). Software
running on the control plane can use such API to instruct the devices on how to forward
packets. SDN’s primary challenge was that of convincing network equipment vendors to
open their boxes and provide such APIs to operators, to let them implement their own
control software, i.e. convince vendors to abandon a generous stream of revenues. Clearly, a
daunting task. However, challenges in the data plane are of a different nature, as they relate to
the inherent technical complexity of making high-performance architectures programmable.
This thesis is about mechanisms to enable programmability in the data plane. However,
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before deepening into this topic, it is useful to discuss how control planes have been made
programmable.

1.1 Control plane programmability

SDN builds upon the observation that most protocols, e.g. OSPF, BGP, etc. all define similar
mechanisms to distribute state such as the network topology and other metadata (e.g. link
utilization). Decisions on where to forward packets are then taken independently from each
device, according to a given routing logic that looks at the distributed network state. The
result is a plethora of standard protocols, such as IETF’s RFCs (more than 8000 at the time
of writing). RFCs, apart from describing ideas on how to improve networks, specify in plain
English language (sometimes ambiguously) the expected behavior that the control plane of a
device should implement to support a given protocol. It comes that most protocol designers
had to repeat the same effort over and over to develop and debug complex state distribution
mechanism for each protocol. Similarly, software engineers from different vendors had to
produce many similar implementations of these specifications for the control plane of many
different network devices.

In SDN, the control plane resides in a logically centralized software external to the switches,
usually running on commodity servers called “controllers”. A controller communicates with
many devices’ data plane using a forwarding API. OpenFlow [5] is a prominent instance of
such an API. It is a standardized open protocol that abstracts the data plane as match+action
tables (MAT). Controllers can instruct devices on where to forward packets by installing
entries in the devices’ MAT. Each MAT entry specifies a match, used to identify a slice of
traffic, and an action that specifies processing to apply to matching packets, such dropping
or forwarding to one or more ports, placing packets in output queues, and modifications to
header fields.

The motivation of creating OpenFlow as an open protocol is that switches can be developed
to be vendor-agnostic, greatly simplifying the work of control plane writers who can now reuse
principles common in software engineering. Indeed, given the initial SDN observation and
the assumption of a data plane API common to all vendors, most software engineers would
end up with the same conclusion: (i) write a distributed data store to maintain an updated
view of the network topology and other metadata; (ii) make it fault tolerant and scalable
by replicating the data onto multiple machines; (iii) write it once and reuse it over and over
for many protocols. Now, protocol developers do not have to worry about writing each time
a new state distribution mechanism or a standard binary protocol. This is the purpose of
today’s network operating systems (OS) such as ONOS [6], OpenDaylight [7], RYU [8], and
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many others. They provide high-level APIs to application developers, such as an updated
topology view, monitoring primitives, hooks for link/node failure events, and other services
that make far easier the implementation of networking applications, such as routing, security
or virtualization. That is, operators of an SDN network can incrementally add support for
new services or optimize existing ones by writing high-level software operating on a data
structure, running on top of a network OS, instead of designing and standardizing a complex
distributed protocol, finally waiting for equipment vendors to adopt it.

The aftermath of SDN and OpenFlow is a vendor-agnostic architecture that has profoundly
changed the market. On one side, switching silicon suppliers are let free to focus on improving
performance and resources of their chips, i.e. more throughput and memory. On the other
end, third-party companies, or even network owner themselves, who develop the software
needed to control these chips. Today one can buy so called “white-box” off-the-shelf switches
at a cheaper price compared to that of traditional vendors. These switches are equipped with
generic hardware and are shipped without any protocol implementation, one can then decide
to run it using a free open source network OS.

1.2 Data plane programmability

Even if some ideas on programmable networking have been researched for nearly two decades
[9], it is fair to say that OpenFlow is the technology which brought SDN to the real world.
Quoting [9], “Before OpenFlow, the ideas underlying SDN faced a tension between the vision
of fully programmable networks and pragmatism that would enable real-world deployment.
OpenFlow struck a balance between these two goals by enabling more functions than earlier
route controllers and building on existing switch hardware, through the increasing use of
merchant-silicon chipsets in commodity switches”.

The OpenFlow’s MAT abstraction proved to be valuable in describing commonality between
many existing packet forwarding technologies. Switching chips were already designed using
dedicated tables for tasks such as L2 learning, L3 longest-prefix match (LPM) routing, or
access control lists (ACL). As a result, vendors were able to implement an OpenFlow interface
on top of their existing switching chips, making their devices marketable for the new SDN
market.

However, network switches perform many tasks in addition to standard packet forwarding,
such as load balancing, to make a more efficient use of network paths; rate control and
active queue management (AQM), to reduce network congestion; scheduling, to provide QoS
and fairness; fine-grained measurements, to let network OSs take better decisions on where
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to route packets; failure detection, to promptly reroute premium customers’ traffic, etc.
Differently from packet forwarding, these tasks read and write state maintained at the switch
as part of the packet processing that happens in the fast-path. For this reason, we can refer
to these tasks as stateful data plane algorithms. Today these algorithms are implemented in
switching chips using dedicated hardware and cannot be changed by network operators.

Making stateful data plane algorithms programmable in switching chips would bring a number
of benefits.

1. Optimize existing algorithms, research new ones. The lesson about SDN and
OpenFlow teaches us that operators like to have finer control of their network, instead
of relying on equipment vendors to listen to their requests to modify existing func-
tions or implement new ones. Moreover, programmable switching chips would allow
researchers to experiment new ideas on high-performance hardware, instead of relying
on expensive ASIC design, time-consuming FPGA-based implementations, inaccurate
and long simulations, or low-performance software-based emulation.

2. Lower the control burden on the SDN controller. OpenFlow forces a “two-
tiered” programming model: any stateful processing intelligence is delegated to the
controller, whereas switches limit to install and enforce stateless packet forwarding rules
delivered by the controller. Centralization of the network applications’ intelligence turns
out to be an advantage for all those applications where changes in the forwarding state
do not have strict real time requirements, and depend upon global network state. But
for applications which rely only on local flow or port states, the latency toll imposed by
the reliance on an external controller cannot meet the requirements of high-performance
networks [10]. Example of such applications are those that forward packets based on
the status of a port, e.g. rerouting upon detection of a link that is down or congested,
or applications that forward packets differently based on the state of a TCP connection,
e.g. stateful ACLs that allow outbound connections, but not inbound. Adding support
for programmable states in OpenFlow would allow for a more efficient implementation of
these applications, without being affected by the latency and overhead imposed by the
controller intervention. Interestingly, data center operators have already reported on
the benefits of adopting a MAT-based programming model capable of using connection
state as a base primitive, rather than just packets [11].

3. Offload of middlebox processing functions to the network. Following the pro-
grammability trend, stateful network functions commonly implemented using hardware
middleboxes, are being transformed in virtualized software appliances that run on com-
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modity servers [12]. Network operators are supporting this trend [13], usually called
Network Function Virtualization (NFV) [14]. Virtual network functions (VNFs) have a
number of advantages when compared to legacy hardware ones. They can be dynami-
cally created, updated, migrated and run on commodity servers. However, developing
VNFs on general purpose CPUs is a hard task [15]. Indeed, a commodity server is
usually equipped with a couple of 10 Gbit/s network interfaces, and 40 Gbit/s inter-
faces are becoming common. Unfortunately, current general purpose CPUs speed is
not growing as fast as the network interfaces speed [16]. Therefore, a switching chip
with support for the programming of custom stateful processing tasks, would permit
the offloading of some or all the processing to the server NICs [11] or to the network
nodes, thus permitting VNFs to support larger traffic volumes, at a lower cost.

There is no reason why programmability should not be extended to the full spectrum of
tasks performed by the data plane, even those requiring to access and modify state at each
packet. A major concern is the feasibility of such a programmable stateful data plane. Indeed,
state-of-the-art fixed-function switching chips are required to operate at line rate, i.e. 10–100
Gbit/s on 10–100 ports, likely more in the future. Programmability should not be introduced
at the expenses of performance.

Luckily, silicon manufacturers are already producing programmable switching chips [17, 18,
19] competitive in performance with state-of-the-art fixed-function chips. These chips provide
low-level primitives that can be configured with software to add support for arbitrary protocol
headers and forwarding actions, i.e. a programmer is not restricted to a subset of L2-L4
headers as in OpenFlow, but she can program the switch to parse new, non-standard headers
with arbitrary length and structure; he can also define custom actions to modify the parsed
headers.

While these programmable chips greatly improve the flexibility of the forwarding tasks, they
ignore or address only marginally the problem of programming stateful data plane algorithms.
Some [20, 18] limits statefulness to dedicated, i.e. not programmable, functions, such as
counters or metering. Others [17, 19], in order to guarantee the forwarding of packets at
line rate, offer limited support [11]: have limited memory for state, support limited types of
operations, and limit the type of per-packet computation.

The design of a switching chip is usually optimized to contain its area and power consumption.
Seminal work on Reconfigurable Match Tables (RMT) [20], while addressing the case of a
stateless programmable chip, proved an important result: the improved flexibility of the
forwarding circuitry comes at an additional cost of less than 15% in chip area and power
consumption when compared to a similar fixed-function chip. 80% of chip area is due to
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memory (TCAMs and the IO/buffer/queue subsystem), and less than 20% area is due to
logic. Hence, as a rule of thumb, if we would like to add more programmable processing
logic to execute stateful tasks, that would be unlikely constrained by chip area or power
consumption.

Despite the recent advances in programmable switching chips and the promising RMT result,
the feasibility of a programmable data plane that is optimized for the programming of stateful
data plane algorithms, is still an open question.

1.3 Research questions

In this thesis we address the following research questions:

1. Can we devise an abstraction for a programmable data plane that is specifically targeted
for stateful packet processing?

2. Would this abstraction be feasible at line rate?

3. Is there a tradeoff between programmability and performance in packet processing? If
yes, is there a sweet spot that maximizes both?

4. Which new applications would be enabled by such programmable data plane?

1.4 Summary of contributions and organization of thesis

The remainder of this thesis is organized as follows. In Chapter 2, we present two abstractions
to program stateful data plane algorithms: OpenState and Open Packet Processor (OPP).
OpenState has been designed as an extension to OpenFlow and allows the description of
forwarding rules as finite state machines (FSM) operating on per-flow state, maintained by
the switch and updated as a consequence of packet-level and timeout events. We show how
OpenState can be supported in hardware with minimal extension to an ordinary OpenFlow,
TCAM-based, hardware pipeline. However, OpenState allows to describe a very limited set
of applications. To solve this problem, we propose OPP. Building upon OpenState, OPP
enables more programmability by permitting the description of packet processing tasks using
Extended Finite State Machines (EFSM). Relative to OpenState, OPP adds support for
the evaluation of conditions on state, arbitrary custom registers, and support for arithmetic
and logic operations. We then discuss the hardware feasibility of OPP, which similarly to
OpenState, can be realized with commodity switch hardware components.
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The design of both OpenState and OPP is characterized by a feedback-loop architecture
that might generate state inconsistencies when processing traffic at high-rates. Preventing
such inconsistencies via memory locking introduces a tradeoff between programmability and
performance. We analyze this tradeoff by running simulations on real traffic traces from both
carrier and data center networks. We find that, in most of the cases, the risk of incurring
in such inconsistencies is low. We design a scheme to perform memory locking in a packet
forwarding pipeline. We show that even long complex operations (up to 30 clock cycles per
packet) affect throughput only marginally, at the cost of extra processing latency in the order
of hundreds of nanoseconds.

The rest of the thesis describes two novel applications of programmable stateful data planes.

In Chapter 3, we present Spider, a data plane scheme that provides (i) detection of failures
based on switches’ periodic link probing and (ii) fast reroute of traffic flows even in the case
of distant failures. Spider is inspired by legacy control plane protocols such as Bidirectional
Forwarding Detection (BFD) and MPLS Fast Reroute. Differently from these protocols,
Spider performs detection and rerouting entirely in the fast-path. It offers guaranteed, short
(few microseconds or less) failure detection and recovery delays, with a configurable tradeoff
between probing overhead and failover responsiveness. We provide an analysis on flow tables’
memory impact, and experimental results on its performance in terms of recovery latency
and packet loss.

In Chapter 4, we present FDPA, a data plane scheme to enforce fair bandwidth sharing of the
same link among many TCP-like senders. Most of the mechanisms to solve this problem are
based on complex scheduling algorithms, whose feasibility becomes very expensive with today
high-throughput requirements. We propose a scheme that does not modify the scheduler.
FDPA enforce fairness by dynamically assigning traffic flows to an existing strict priority
scheduler, based on the users’ rate history, where rate estimation is performed using OPP
capabilities. We conducted experiments on a physical 10 Gbit/s testbed with real TCP traffic.
Results show that FDPA produces fairness comparable to approaches based on scheduling.
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CHAPTER 2 ABSTRACTIONS FOR STATEFUL DATA PLANES

2.1 OpenState

OpenFlow is a stateless data plane abstraction. Changes of the forwarding rules do not
depend on the history of packets seen by the switch, rather, forwarding rules can be update
only via the explicit involvement of an external controller. The latter implements stateful
processing intelligence, i.e. decides how rules should evolve in time as a consequence of events,
either generated at the data plane or external. The explicit involvement of the controller for
any stateful task and for any update of the match+action rules, is problematic as it imposes
excessive overheads [10]. Centralization of the stateful intelligence is an advantage for all
those applications where changes do not have strict real time requirements, and depend
upon global network states. But for applications relying only on local flow or port states,
the reliance on an external controller for any update seems a very inefficient design choice.
In the worst case, the slow control plane operations a priori prevents the support of network
control algorithms which require prompt, real time reconfiguration of the data plane.

To solve this problem, we propose OpenState, an extension to OpenFlow that adds support
for stateful forwarding behaviors. OpenState is based on the observation that many net-
working applications can be expressed as switch-local state machines operating on flow-state,
i.e. state that is unique to each flow, where the definition of a flow is left to the program-
mer’s choice, e.g. all packets belonging to the same IP source-destination address, or the
same TCP/UDP 5-tuple. OpenState allows to program in the switch any networking tasks
that can be modeled using a formal finite state machine abstraction called “Mealy Machine”.
While OpenState does not permit to describe any stateful data plane algorithm, it is impor-
tant because it sets the basic requirements for a programmable packet processing architecture
to support said stateful behaviors.

OpenState provides a new forwarding API for SDN. The design of such API builds upon the
observation that the very same OpenFlow MAT primitives can be reused for a different goal
and with a broadened semantic. In a nutshell, OpenState permits to i) perform matches on
packet header fields plus a flow-state label maintained by the switch, and ii) associate to such
match both a forwarding action (or set of actions) and a state transition, which determines
the flow-state that will be visible to the next packet of the same flow. The immediate result
is a forwarding behavior that depends on the history of packets seen by the switch.

The design of OpenState is based on two fundamental principles that follow the design of
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OpenFlow itself:

• The abstraction must be amenable to high speed implementation, i.e. 10-100 Gbit/s
on 10-100 ports.

• The abstraction must not violate the vendor-agnostic principle which has driven the
OpenFlow invention, and that has fostered SDN, i.e. it must not emerge as a low-
level technical approach, rather it should leave space to switch vendors to optimize and
differentiate their implementations.

2.1.1 Abstraction

An illustrative example: port knocking

A very descriptive example of an application that would benefit of a stateful data plane
abstraction is that of a port knocking firewall, a well known method for opening a port on a
server otherwise inaccessible. A host that wants to establish a connection (say an SSH session,
i.e., port 22) delivers a sequence of packets addressed to an ordered list of pre-specified closed
ports, say ports 5123, 6234, 7345 and 8456. Once the exact sequence of packets is received,
the firewall opens port 22 for the considered host. Before this event, all packets including
the knocking ones are dropped.

As any other stateful application, such an operation cannot be configured inside an OpenFlow
switch, but must be implemented in an external controller. The price to pay is that a
potentially large amount of signaling information (in principle up to all packets) must be
conveyed to the controller. Moreover, a timely flow-mod command1 from the controller is
needed to open port 22 after a correct knocking sequence, to avoid that the first legitimate
SSH packet finds port 22 still closed. Implementing this application in the logically centralized
controller brings no gain: it does not benefit from network-wide knowledge or high level
security policies, but uses just local states associated to specific flows on a single specific
device. It is then reasonable to devise an abstraction to program the port knocking algorithm
in the switch itself.

The port knocking behavior can be modeled as follows: each host is associated with the
FSM illustrated in Figure 2.1. Starting from a DEFAULT state, each correctly knocked port
will cause a transition to a series of three intermediate states, until a final OPEN state is
reached. Any knock on a port different from the expected one will bring back to the DEFAULT
state. When in the OPEN state, packets addressed to port 22 (and only to this port) will be

1A flow-mod is message in the OpenFlow protocol to add, modify or remove MAT entries.
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Figure 2.1 FSM of the port knocking example.

forwarded, whereas all remaining packets will be dropped, but without resetting the state to
DEFAULT.

A closer look at Figure 2.1 reveals that each state transition is caused by an event, which
specifically consists in a packetmatching a given port number. Moreover, each state transition
caused by a match event, is associated to a forwarding action (in the example, drop or
forward). A state transition thus reminds very closely an OpenFlow match+action rule.

Mealy Machines

The match which specifies an event not only depends on packet header information, but also
depends on the state; using the above port knocking example, a packet with destination port
22 is associated to a forward action when in the OPEN state, but to a drop action when in
any other state. Moreover, the event not only causes an action, but also a transition to a
next state (including self-transitions from a state to itself).

All this can be modeled in an abstract form by means of Mealy finite-state Machine, or simply
Mealy Machine2 [21]. Formally, a Mealy Machine is an abstract model comprising a 4-tuple
< S, I,O, T > where:

• S is a finite set of states;

• I is a finite set of input symbols (events);

• O is a finite set of output symbols (actions); and

• T : S × I → S × O is a transition function which maps <state, event> pairs into
<next-state, action> pairs.

2Classical theory on state machines makes a distinction between a Mealy Machine and a Moore Machine.
A Mealy Machine associates outputs with transitions, while a Moore Machine associates outputs with states.
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Such an abstract model can be made concrete by restricting the set O of actions to those
available in current OpenFlow devices, and by restricting the set I of events to OpenFlow
matches on header fields and metadata easily implementable in hardware platforms. The
finite set of states S (concretely, state labels, i.e., bit strings), and the relevant state transi-
tions, in essence the “behavior” of a stateful function, are left to the programmer’s choice.

In the following we will loosely refer to a Mealy Machine simply as a FSM.

2.1.2 From state machines to pipelines

State management

Matches in OpenFlow are generically collected in flow tables. The discussion carried out
so far recommends to clearly separate the matches which define events (matching on the
destination port in the port knocking example) from those which define flows, meant as
entities which are attributed a state (each host IP address in the port knocking example).
Two distinct tables, State Table and FSM table, and three logical steps thus naturally
emerge for handling a packet (Figure 2.2):

1. State lookup: It consists in querying the state table using as key the packet header
field(s) which identifies the flow, for instance the source IP address; if a state is not
found for a queried flow, we can assume that a DEFAULT state is returned;

2. FSM execution: The retrieved state label, added as metadata to the packet, is used
along with the header fields involved in the event matching (e.g., port number), to
perform a match on the FSM table, which returns i) the associated actions, and ii) the
label of the next state;

3. State update: It consists in rewriting or adding a new entry to the state table using
the provided next state label.

The example in Figure 2.2 shows how the port knocking example is supported by the proposed
approach. The 7 entries in the FSM table implement the port knocking state machine.
Assuming the arrival of a packet from host 1.2.3.4; the state lookup (top figure) permits to
retrieve the current state, STAGE-3. Via the FSM table (middle figure), we determine that
this state, along with the knocked port 8456, triggers a drop action and a state transition
to OPEN (middle figure). The new state is written (bottom figure) back in the state table
for the host entry. In the FSM table, we assume an ordered matching priority, with the last
row having the lowest priority. As a result, all the four transitions to the default state for
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Figure 2.2 State Table, FSM table, and packet handling for the port knocking example.

packets not matching the expected knocked port are coalesced in the last entry. A notable
characteristic of the proposed solution is that the length of the tables is proportional to the
number of flows (state table) and number of states (FSM table), but not to their product.

The above described abstraction still misses a fundamental further step: how to extract the
flow key from a packet? To this purpose, we have to conceptually separate the identity of the
flow to which a state is associated, from the actual position in the header field from which
such an identity is retrieved. Moreover, as further motivated in Section 2.1.2, we find useful
to distinguish between two keys: lookup key, and update key, used respectively to read and
write values in the state table. Thus, we need to provide the programmer with the ability
to use eventually different header fields in these two accesses to the state table. We define
as lookup-scope and update-scope the ordered sequence of header fields that shall be used to
produce the key used to access the state table. In the port knocking example lookup_scope
= update_scope = [ipsrc].

To summarize, the basic data plane abstraction introduced so far comprises the specification
of:

1. an FSM table comprising four columns: i) a state, ii) an event expressed as an Open-
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Flow ternary match on packet headers, iii) a list of OpenFlow actions to apply to the
matching packet, and iv) a next-state label;

2. a state table comprising two columns: i) a flow key and the associated ii) state label.

3. the lookup-scope and update-scope used to extract the flow key to access the state
table for, respectively, read and write operations. For simplicity we can refer to a key
scope as any ordered sequence of pointers to header fields used to extract a key.

OpenState API

In this section we describe the API necessary to program an OpenState switch. We describe
also two important additional capabilities that for simplicity we have not mentioned so far:
cross-flow state handling, and time-based events.

The API is defined as an extension to OpenFlow, meaning that we can assume all primitives
and capabilities assumed by OpenFlow plus the OpenState’s primitives. The OpenFlow
specification refers to a MAT simply as a flow table, and to MAT entries as flow entries.
OpenFlow version 1.0 is based on a single flow table, while starting from version 1.1 the
switch can support multiple flow tables pipelined. The protocol message used to add, modify
and remove flow entries is the flow-mod message. Unless explicitly changed by the remote
controller through flow-mod messages, flow tables are static, i.e., all packets matched by a
given flow entry experience the same forwarding behavior, for this reason we can refer to an
OpenFlow flow table as a stateless processing block. OpenState introduces the notion of a
stateful block, as an extension of a single OpenFlow table. Stateful blocks can be pipelined
with other stateful blocks as well as stateless blocks. In the following we describe the API
necessary to program a single stateful block.

Figure 2.3 depicts the packet processing architecture of an OpenState’s stateful block.

The FSM table introduced before is implemented using an ordinary OpenFlow flow table,
preceded by a state table. Extraction of the key to access the state table is performed by two
dedicated key extractors, configured respectively with the lookup-scope and update-scope.
The key is extracted concatenating the header fields in the same order as specified in the key
scopes. As further explained in Section 2.1.2, the order of the fields is important because
it permits to handle the case of bidirectional flows, i.e. in a client/server paradigm, update
the state of the flow carrying the reply as a consequence of the behavior of the flow carrying
the request. The state table maps keys to state labels, an entry of such table is said state
entry. When processing a packet, if a given key is not found in the state table a default
state label, said also state 0, is returned. The state table has an additional column that
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Figure 2.3 Abstract pipeline model of a stateful processing block in OpenState.

defines the timeouts associated with a given state entry. Similarly to flow entries timeout in
OpenFlow, state timeouts allow a given state entry to expire after a certain amount of time,
moreover they can be used in OpenState to define time-based events to force state transitions
independently from packets received. Details of the state timeout mechanism are provided
in Section 2.1.2.

After a state label is returned by the state table, the packet is processed by the flow table.
Here flow entries can be defined to match both the packet headers (we assume the same
headers as in OpenFlow) and on the state label, virtually added to the packet headers as
a metadata. As in OpenFlow, the flow table returns the packet and a list of actions, to be
applied either immediately or at the end of the pipeline.

The next-state column of the FSM table is embodied by a special action set-state. When
adding an entry to the flow table, along with the ordinary OpenFlow actions, a programmer
can add a set-state action to instruct the switch on how to update the state table when that
entry is matched. The set-state action takes as parameters the new state label to write in the
state table, and the timeouts associated with it. Differently from other OpenFlow actions,
the set-state action is not appended to the action list, but instead it is executed immediately
to update the state table, creating a feedback-loop.

When a packet triggers a set-state action, the state table is updated using the flow key
returned by the key extractor configured with the update-scope, which can produce a key
different from the one used in the lookup phase. If a given flow key already exists in the
flow table, the state label is rewritten and the new timeouts are set, otherwise, if the flow
key is not found, a new state entry is instantiated. It is important for the update key to be
extracted before the packet is processed by the flow table, otherwise the evaluated key would
depend on the result of any OpenFlow header rewrite action. As explained in Section 2.3,
knowing beforehand which state entry could be potentially updated, allows us to lock access
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to the state table when processing packets in parallel, so to prevent state inconsistencies.

To summarize, the necessary steps to configure a stateful block in OpenState are:

1. Instantiate the state table, via configuration of the lookup-scope and update-scope;

2. Define state transitions, by inserting flow entries that match the state label and use
the set-state action.

After being provisioned, the state table is initially empty. It is then populated based on the
set-state actions defined in the flow table.

Figure 2.4 show an example of OpenState configuration for the port knocking example.

Cross-flow state handling

There are a number of stateful processing functions where the history of packets of a given
flow is used to determine the state of another flow, this situation can be defined as cross-flow
state handling. We provide here an example and relative OpenState configuration of an
application based on cross-flow state handling: a L2 learning switch.

Example: L2 learning switch L2 learning is the process implemented by a legacy L2
bridge. In such devices, each time a packet is received the following operations are performed:

1. a learning table is update mapping the Ethernet source address (for simplicity ethsrc)
to the switch input port where the packet was received;

2. the learning table is queried using the Ethernet destination address (ethdst), if an
entry is found, then the packet is forwarded to the corresponding port (learned before),
otherwise the packet is flooded on all ports.

Without loss of generality, we assume the learning table is indexed using only the Ethernet
address. In real bridge implementations, a combination of the Ethernet address, the VLAN
ID and the switch input port is used to distinguish between VLANs and to avoid loops.

While there are many different OpenFlow-based implementations of a L2 learning switch,
more or less optimized, given the stateless nature of the OpenFlow data plane, they are all
based on the following reactive approach. The flow table of the OpenFlow switch is initially
empty, apart for the table-miss3 that generates a packet-in. The controller implements the

3Table-miss is the OpenFlow wording for the lowest priority rule that matches all packets otherwise not
matched by any other rule.



16

Port knocking

lookup_scope = [ipsrc]
update_scope = [ipsrc]

Match Actions
state=DEFAULT, dport=5123 drop, set_state(STAGE-1)
state=STAGE-1, dport=6234 drop, set_state(STAGE-2)
state=STAGE-2, dport=7345 drop, set_state(STAGE-3)
state=STAGE-3, dport=8456 drop, set_state(OPEN)
state=OPEN, dport=22 forward
state=OPEN drop
* drop, set_state(DEFAULT)

Figure 2.4 Example of flow table configuration and key scopes to implement the port knocking
example. Flow entries are assumed to be in priority order, where the first entry has maximum
priority. “dport” is the TCP/UDP destination port. The generic action “forward” indicates
that the packet can be forwarded. In a real OpenFlow-like configuration, a programmer
should include routing actions to output packets on specific ports.

learning table. Indeed, for each packet-in the controller updates and queries a local version of
the learning table, if an entry is found for the packet-in’s ethdst, then the controller installs
a flow rule in the switch to forward this and subsequent packets of the same flow over the
learned port, otherwise the controller generates a packet-out4 to flood the packet on all switch
ports. Using this approach, the number of flow rules depends on the number of hosts in the
network, which can be problematic in some cases, e.g. in a data center with tens of thousands
of virtual machines each one with a different Ethernet address.

A more efficient way of implementing a L2 learning switch based on OpenState, that does
not involve interacting with the controller, is depicted in Figure 2.5. In this case, state labels
are used to codify the location (port) of a given host. The state table is queried looking
at the ethdst of the packet (lookup-scope), while it is updated using the ethsrc (update-
scope). The entries in the table forward packets according to the state label (flood if default)
and update the state based on the packet’s input port. This example on purpose assumes
compatibility with the current OpenFlow specification, and theN2+N size of the table (being
N the number of switch ports) thus depends on the OpenFlow limitations, and not on our
abstraction. Indeed, assuming a platform compatible with RMT [20] where action parameters
can be pointers to header fields, this assumption would yield a flow table comprising of only

4Packet-out is the OpenFlow wording for the action of sending a data packet from the controller to a
switch, encapsulated in an OpenFlow header that specifies the actions to be applied by the switch on the
packet, e.g. output on a given port or flood.
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L2 learning switch

lookup_scope = [ethdst]
update_scope = [ethsrc]

Match Actions
state=DEFAULT, inport=1 flood, set_state(PORT-1)
state=PORT-1, inport=1 output(1), set_state(PORT-1)
state=PORT-2, inport=1 output(2), set_state(PORT-1)

...
state=PORT-N, inport=1 output(N), set_state(PORT-1)

...

...
state=DEFAULT, inport=2 flood, set_state(PORT-2)
state=PORT-1, inport=2 output(1), set_state(PORT-2)

...
state=PORT-N, inport=2 output(N), set_state(PORT-2)

...

...
state=DEFAULT, inport=N flood, set_state(PORT-N)
state=PORT-1, inport=N output(1), set_state(PORT-N)
state=PORT-2, inport=N output(2), set_state(PORT-N)

...
state=PORT-N, inport=N output(N), set_state(PORT-N)

Figure 2.5 OpenState configuration to implement a L2 learning switch with N ports; inport
indicates the switch input port of the packet, action flood replicates and forward a packet
to all switch ports except inport; the state label represents the port number to which the
packet shall be forwarded, i.e. the location of a given host.

two entries (Figure 2.6).

With OpenState, the size of the flow table does not depend on the number of host H but
on the number of switch ports N � H (or just 2 if OpenFlow would support pointers to
header fields as action parameters). Instead the size of the state table depends on H. As we
will explain in Section 2.1.3, given the nature of the state table, i.e. exact match on the key,
this can be implemented in a cheap RAM-based hash table, opposed to the expensive (in
terms of chip area and power consumption) TCAM-based flow table, necessary to support
OpenFlow ternary matches. Such consideration makes the OpenState-based L2 learning
switch implementation scale easier than the OpenFlow one based on the reactive-approach.

Finally, to provide a further example of the generality of OpenState, if one would like to
implement bridging based on VLANs, it would suffice to set the key scope as lookup_scope
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Simplified L2 learning switch

lookup_scope = [ethdst]
update_scope = [ethsrc]

Match Actions
state=DEFAULT flood, set_state($inport)
state=* output($state), set_state($inport)

Figure 2.6 Simplified configuration of the example in Figure 2.5. $inport and $state are
used to point at the value contained in the packet header fields, respectively the switch input
port and the state label.

= [vlanid, ethdst], and update_scope = [vlanid, ethsrc].

Time-based events

OpenState defines timeouts for the entries of the state table, useful to specify time-based
events and transitions in a FSM, e.g. “move to state B after X time in state A”, or “set the
state of the flow to IDLE if no packets are received for X time”. So far, the only type of events
that can trigger a state transition are packet-based events, i.e. match on an incoming packet.
However, some applications would benefit from defining events based on time, regardless if
a packet is received or not, i.e. in a stateful firewall, set the state of a TCP connection to
CLOSED after no packets are received for a given amount of time. Similarly, timeouts could
be used to flush unused state entries, to limit the size of the state table.

Analogue to OpenFlow’s flow entries, the state table is designed such that each entry has an
idle-timeout and a hard-timeout associated with it. Moreover, both timeouts are associated
with an expired state, respectively idle-expired-state and hard-expired-state, to be applied
when a state timeout expires. To summarize, a row of the state table would look like this:

key state idle-timeout hard-timeout idle-expired-state hard-expired-state

Timeouts are set the same way state entries are added (updated) to the state table, by means
of a set-state action. We can assume state timeouts are not set unless explicitly declared in
the set-state action, i.e. the entry will never expire.

Hard-timeouts cause the state entry to be updated to the hard-expired-state after a given
interval since the entry was last updated, regardless of how many packets it has matched. Idle-
timeouts cause the state entry to be updated to the idle-expired-state when it has matched
no packets in a given interval, i.e. the state entry was idle. When a state entry is expired
because of a timeout, and its value updated with the expired state, it remains in that state
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until a new set-state action is performed. If the expired state is the DEFAULT state, then
the entry is removed from the state table. The reader should remember that all flows are
virtually in state DEFAULT, even if a state entry is not present in the state table. Hence,
removing an entry is equivalent to setting its state label to DEFAULT.

State timeouts are useful to define events at the granularity of packet time-scales, i.e. short
time scales comparable to the interval between two packets of the same flow. Hence, a
switch target implementing OpenState should provide a timeout granularity in the order of
microseconds or less. This is easy, considering that current switch targets already expose a
clock interface operating at finer frequencies, i.e. 0.1-1 GHz.

The application presented in Chapter 3 makes extensive use of state timeouts. However, it
is useful to present another programming example of OpenState: flowlet-based path load
balancing.

Example: flowlet-based path load balancing. Load balancing traffic over multiple
paths (also known as load sharing) is an important feature that allows flexible and efficient
allocation of network resources. Given multiple paths that a switch can use to forward a
packet, legacy load balancing schemes such as ECMP selects an output port hashing the
transport layer 5-tuple5 modulo the number of paths, thus splitting load across multiple
paths. Hashing is a convenient approach as it guarantees consistency of the forwarding
decision, i.e. packets with the same 5-tuple will be forwarded to the same output port, and
hashing is a stateless function that can be implemented very efficiently in hardware. Different
hashing schemes exist, each one with its associated tradeoffs [22], however, a key limitation
of hash-based schemes is that two or more large, long-lived flows (usually referred in the
literature as “elephant” flows) can collide on their hash and end up on the same output port,
creating a bottleneck.

The ideal solution would be to split traffic of the same flow at the packet level, instead of
pinning the whole flow to a static path choice. However, sending two packets of the same
flow over two different paths with different delays might generate packet reordering at the
receiver, which can cause unnecessary throughput degradation when using TCP.

Flowlet-based switching is a technique first introduced in [23], that suggests splitting traffic at
the level of bursts of packets, called flowlets. Switching bursts, instead of packets, minimizes
the risk of packet reordering. The approach is based on the fact that, if the idle time between

5A hash function is applied to the combination of 5 header fields: IP source address, IP destination
address, IP protocol, source port, and destination port. Packets of the same transport layer flow will have
the same hash value.
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Flowlet-based path load balancing

lookup_scope = [ipsrc,ipdst,ipproto,sport,dport]
update_scope = [ipsrc,ipdst,ipproto,sport,dport]

Flow table
Match Actions
state=DEFAULT group(1)
state=1 output(1)
state=2 output(2)
... ...
state=N output(N)

Group table

Group ID Type Action buckets

1 SELECT

<set_state(1, idleto=D), output(1)>,
<set_state(2, idleto=D), output(2)>,
...
<set_state(N, idleto=D), output(N)>,

Figure 2.7 OpenState configuration to implement a flowlet-based load balancer.

two successive packets is larger than the delay difference between two parallel paths, one can
route the two packets on different paths without causing reordering at the receiver. The main
origin of flowlets is the burstiness of TCP, where idle time at RTT and sub-RTT scales can
be observed.

By using flow states and associated timeouts, OpenState allows a programmer to program
a flowlet-based load balancer (Figure 2.7). Key scopes distinguish state between different
TCP flows. For each incoming packet of a new TCP connection, a DEFAULT state is returned
by the state table, causing a group table to be invoked. OpenFlow’s group table are used to
randomly choose (SELECT6) an output port among N available. Here the group table picks a
random action bucket, forwarding the packet on one of the N available ports, and updating
the state accordingly. Subsequent packets will be forwarded using the value returned from
the state table, not anymore DEFAULT. By setting the state idle-timeout idleto = D we can
define the lifetime of the forwarding decision. For example, with D = 10 seconds the flow-
state will be maintained only if a packet from that flow is seen at least once every 10 seconds.

6Starting from OpenFlow 1.1, the SELECT group type has been introduced to support load sharing over
multiple ports. Citing the latest OpenFlow specification “Packets are processed by a single bucket in the
group, based on a switch-computed selection algorithm (e.g. hash on some user-configured tuple or simple
round robin). All configuration and state for the selection algorithm is external to OpenFlow.”. In our example
we would need the switch to implement a selection scheme other than hashing, preferably a randomized one.
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For the sake of path load balancing, we can safely assume that an idle interval of 10 seconds
represents the end of an instance of a TCP flow, hence this setting would be equivalent to
ECMP. By setting D to a value smaller than the average idle time between flowlets, a new
forwarding decision will be taken for each flowlet, hence implementing flowlet-based load
balancing.

2.1.3 Hardware feasibility

In this section we provide an overview of the feasibility of a switching chip supporting Open-
State. A prototype implementation of OpenState on a FPGA-based platform was presented
in [24], however, such a prototype is not a contribution of this thesis. Nevertheless, it is
important to point out the details of this implementation as they prove the applicability and
limitations of the design choices we devised so far. The OpenState hardware design presented
here has been developed incrementally starting from a typical OpenFlow pipeline design.

Background: pipelined architectures. The implementation of a high performance packet
processing chip, i.e. 10-100 Gbit/s on 10-100 ports, requires processing packets in parallel.
The reason is simple. A typical requirement for a switch with terabit throughput is that
of being able to process 1 packet per nanosecond, which translates to 1 billion packets per
second. Assuming that the switch needs to perform only 1 operation on each packet, e.g.
lookup the destination address in a learning table, and that this operation can be completed
in 1 cycle of the chip clock, then building a chip with operating frequency of 1 GHz would be
enough to support such line rate. However, switches today, both legacy and SDN, need to
perform many operations on each packet, for example push/pop of a VLAN header, lookup
up a L2 learning table, LPM lookup on the IP address, ACL, encapsulation, etc. Let us
assume we need to perform 10 such operations, unfortunately it is hard and extremely ex-
pensive to build a 10 GHz processor, instead, these 10 operations can be performed in parallel
using a pipelined architecture.

In such architecture, each stage of the pipeline performs one or few operations, and all the
stages are executed in parallel. At each tick of the hardware’s clock, packets are moved to
the next pipeline’s stage, the packet in the last stage exits the pipeline and a new packet
enters in the first stage. While the data plane emits one packet per clock cycle, it is in fact
processing a number of packets in parallel. The length of the pipeline finally defines the
number of packets actually processed at the same time, in a given clock cycle. Clearly, the
longer the pipeline, the longer the time spent by the packet into the switch.
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Extending the TCAM-based OpenFlow pipeline. In an OpenFlow switch, one flow
table represents one stage of the pipeline. Flow tables in OpenFlow implement ternary
matching capabilities, i.e. the possibility to match only on a subset of the header bits,
to support for example IP prefix matching and ACLs. For this reason, flow tables are
usually implemented using a special type of content-addressable memories (CAM), called
Ternary CAM (TCAM). Standard CAMs use data search words, i.e. a packet’s header fields,
consisting entirely of 1s and 0s. TCAMs, instead allow a third matching state of “don’t care”
for one or more bits in the stored search word, thus adding flexibility7 to the search. More
importantly, given a packet header, TCAMs are able to find a matching entry in only 1 clock
cycle.

In order to support OpenState, the OpenFlow TCAM must be extended with two other
logical stages: key extractors, and state table (Figure 2.8). In our FPGA prototype, such
a pipeline spans 5 clock cycles, meaning that up to 5 packets can be found traveling at the
same time. The state table and the flow table spans each one 2 clock cycles, meaning that
those stages can be seen recursively as a pipeline of 2 stages each. For example, for the flow
table 1 cycle is due to the TCAM match and the other for the lookup of the corresponding
actions to apply, stored in a RAM block.

A major concern of such a pipeline architecture is due to the feedback-loop required to write
back the state in the state table after a packet has finished processing in the flow table.
Such a loop can create inconsistencies when processing packets of the same flow back-to-
back, i.e. traveling one immediately after the other in the pipeline, as the second one might
read the state entry before it can be updated by the first one. We discuss the risk of such
inconsistencies and we propose methods to prevent them in Section 2.3.

Key extractors. This stage extracts both the lookup key and the update key. This is a
fairly simple and standard operation performed by many switching architectures. A trivial
implementation is that of applying consecutive shift-and-mask operations to extract and con-
catenate portions of the header. Given the stateless nature of this operation, the complexity
of this block does not affect the scalability of the system. Indeed, the case of complex keys
requiring numerous shift-and-mask iterations over the packet headers, can be handled with
a dedicated pipeline spanning many clock cycles.

7As a side note, the added flexibility of TCAMs comes at a cost. TCAM’s chip area is typically six to
seven times that of an equivalent bitcount SRAM [20]. Hence, TCAMs are an expensive resource that should
be dimensioned carefully in a switch.
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Figure 2.8 Logical pipeline of a stateful block in OpenState

State table. The state table must be able to uniquely map a key to a state entry. If
an entry is found, then the corresponding timeouts must be evaluated, and the resulting
state label returned (either the original or the expired). If no entry is found, then the state
table should return a DEFAULT state. Moreover, the state table should permit the creation or
update of existing entries as a consequence of a set-state action.

Uniquely mapping keys to values in constant time is not a trivial task. Assuming a 112
bits key (the length of a TCP/UDP 5-tuple), we can think of a memory with 2112 unique
addresses, however such an addressing space is hardly feasible and inefficient with current
hardware technology. Instead, we can use a hash table to map keys to a restricted space.
Hash tables have the nice property of providing constant time O(1) for read operations,
however one should look out for the possibility of two keys colliding onto the same hash. In
the case of a state table this would mean an inconsistent state for some flows. As such, we
need to provide a mechanism to avoid collisions. For this reason, in the FPGA prototype, the
state table is implemented by using a d-left hash table[25], with d = 4 sized for 4K entries.
The choice of a d-left allows for constant, deterministic access times for both read and write
operations with almost-zero risk of collisions and with around 70% memory efficiency. Other
perfect hashing schemes that offers better memory efficiency exists. For example the well
known cuckoo hashing [26] scheme attains around 99% efficiency, however, insertion time of
these structure is usually not deterministic has they require multiple iterations to rearrange
elements in case of collision.

Finally, in order to provide a non-blocking behavior of the hash table, the RAM blocks
comprising the d-left table are configured to work as dual port memories, with one write port
and one read port. This choice permits updating a state entry without blocking the lookup
of another one. If the same entry of the RAM is concurrently read and written, the block
RAM is configured to provide the new value to the read port.
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State timeouts. Instantiating a timer thread for each state entry can be extremely resource
expensive for a switch, instead timeouts should be evaluated as needed, i.e. each time a packet
hits a given state entry. As such, a simple and efficient way for a switch to expire state entries
is that of taking note of the time t0 when each state entry was updated (or added). When a
packet hits a given entry, the switch can compare the packet arrival timestamp with t0, if this
interval is greater than the idle or hard timeout, then the state table should return the expired
state corresponding to the timeout that expired before. The complexity of this structure,
shared by the whole state table, is that of few comparators, i.e. negligible complexity that
does not represent a risk for the scalability of the system.

On supporting multiple update keys. There are use cases of OpenState in which a
set-state can be directed to a key or another, depending on the state or the match event
[27]. It could be possible to further generalize the API by allowing for more than one update
key extractors, and having the set-state action pick one of them using a runtime parameter.
After this time working on the design of OpenState, it is not clear what could be a reasonable
number of key extractors to instantiate, a preliminary analysis of some use cases suggests it
could be limited to only two update key extractors. However we do not exclude that there
might be cases that require more. For simplicity and without loss of generality, we assume
only one update key extractor.

2.1.4 Remarks

OpenState departs minimally from the well-known and successful OpenFlow abstraction.
Indeed by adding a state table, two key extractors, and a set-state action8, it is possible
to deliver a level of flexibility in the switch, namely the configuration of stateful forwarding
behaviors, which goes well beyond what is currently supported in today’s OpenFlow switches.
Moreover, OpenState can be readily implemented with today’s commodity switch hardware
components, i.e. simply prepending the ordinary OpenFlow TCAM with a hash table and
two key extractors. The tricky part is the feedback-loop, which, if not controlled, can cause
erroneous forwarding behaviors. We postpone this discussion to Section 2.3.

Limitations of OpenState

The main limitation of OpenState is that the set of stateful functions that can be programmed
by means of a Mealy Machine, is relatively small. As a rule of thumb, OpenState fits well for
those tasks that can be described with a reasonably small number of states and associated

8The state label can be considered a metadata header field, already supported by OpenFlow.
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transitions, those that can be contained in a TCAM. There will always be functions that
cannot be described, or which implementation would be inefficient if using a Mealy Machine.

A straightforward example is the following: consider a function that samples packets witch
constant rate 1:1000, where sampled packets are sent to the controller for further inspection.
Such a function can be described with a Mealy Machine with |S| = 1000 (number of state
labels), where each packet triggers a state transition to the next state, i.e. increments the
state, and when in state 1000 packets are sent to the controller and the state reset to 0. This
approach would require at least 1000 entries in the flow table. Clearly, such implementation
is extremely inefficient due to the inherent cost of a TCAM supporting 1000 entries. It would
be more efficient if the abstraction would allow for simple arithmetic computations on the
state, e.g. integer sum to increment the value of a variable count. We could then have only
two entries in the flow table: the first matching on count < 1000, the second matching on
count ≥ 1000.

The next data plane abstraction, Open Packet Processor, aims at fixing this limitation.

2.2 Open Packet Processor

Open Packet Processor (OPP) is an abstraction for stateful data plane processing that builds
upon OpenState. OPP heavily generalize the OpenState concept allowing the definition of a
configurable “flow context” in which several per-flow variables can be stored (opposed to a sin-
gle state label), it extends the decision regarding the FSM transitions using logical/arithmetic
conditions, and is able provide means for flexible state updates using Arithmetic and Logic
Units (ALU) to execute elementary operations.

The design of OPP is based on the same design principles of OpenState, and the following
properties:

• Ability to process stateful information directly on the fast path, i.e., sim-
ilarly to OpenState, while the packet is traveling in the pipeline (nanoseconds time
scale). The requirement of performing packet processing tasks in a deterministic, small,
bounded number of hardware clock cycles hardly copes with the possibility to employ
a standard CPU, thus calling for the definition of a domain-specific computing ar-
chitecture from scratch. The abstraction should provide means to (i) evaluate metrics
relevant in traffic control applications and (ii) describe and evaluate conditions on these
metrics, e.g. the average flow rate is above a threshold, or the time elapsed since the
last seen packet is greater than the average inter-arrival time. All this should happen
entirely in the fast-path, without impacting the requirement of a high-performance data
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plane.

• Target independence. The abstraction should serve as a general framework to per-
form advanced state management, i.e. provide a structured way to read, modify, and
write data plane state. However, the design of the abstraction should not be tied to a
finite set of packet actions. As it will be clear in the next section, applications will be
ultimately enabled by the computational primitives exposed by the hardware target,
e.g. the ability of the ALU to perform simple integer sums, rather than floating point
operations. Each target can provide its own finite set of primitives, OPP provides a
framework in which these capabilities can be used in a programmatic way to describe
stateful data plane algorithms. Similarly, the abstraction should not make any assump-
tion on the target capability to parse and modify packet headers, rather OPP should
assume a target capable of performing flexible header parsing and manipulation as in
modern programmable switching chips [19, 18].

2.2.1 Abstraction

Extended Finite State Machines

The EFSM model permits to formalize complex behavioral models, involving per-flow states,
per-flow registers, conditions, state transitions, arithmetic and logic operations. Still, this
model does not require us to know what primitives are available in the hardware platform
and how such primitives are concretely implemented, but just permits us to combine them
together so as to formalize a desired behavior. Hence, it can be ported across platforms which
support a same set of primitives.

The model is formally specified by means of a 7-tuple < I,O, S,D, F, U, T >:

• I: the set of input symbols, i.e. all possible matches on packet header fields;

• O: the set of output symbols, i.e. actions that can be applied to a packet;

• S: the set of symbolic state labels, i.e. application specific states, defined by a program-
mer. Technically state labels are handled as a bit string of arbitrary length. Differently
from Mealy Machines, the state label here is said to be symbolic as the actual state of
the system depends also on a set of registers D;

• D: n-dimensional linear space D1 × · · · × Dn, i.e. all possible settings of n per-flow
registers, i.e. variables. The state of each flow is then completely described by the value
of the state label and its registers. Each register is a bit string of arbitrary length.
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• F : set of enabling functions fi : D → {0, 1}, i.e. conditions (boolean predicates)
evaluated on registers;

• U : set of update functions ui : D → D , i.e. arithmetic instructions to update registers’
content;

• T : transition relation T : S × F × I → S × U × O, i.e. transitions of the EFSM
mapping < state label, conditions, match event > to < next-state, register update
functions, actions >.

With respect to Mealy Machines, EFSMs bring additional programming flexibility. Indeed,
each flow is associated to a state label and n registers, while events are characterized by match
on packet headers, state label and conditions evaluated on the registers. EFSM transitions
describe the next state label, a new value for the registers (expressed as a function over the
old value) and a set of actions to be applied to the packet.

The set of possible match I, packet actions O, update instructions U are provided by the
hardware target, while state labels S, registers D, conditions F and transitions T are left to
programmers’ choice.

2.2.2 Pipeline model

Analogue to OpenState, OPP defines a pipeline of processing stages, either stateless, i.e.
ordinary OpenFlow’s flow table, or stateful, where the ordinary flow table is extended to
provide means to program EFSMs. OPP assumes packets headers are already parsed when
passed to a stage, therefore, OPP can leverage related work on programmable packet parsing
and reconfigurable match tables [28, 20]. Figure 2.9 depicts the architecture of an OPP
processing stage. The pipeline is an extension of the OpenState pipeline: two new blocks,
namely condition block and update logic block are added to the OpenState pipeline comprising
the key extractors, the state table, now called flow context table, and the flow table, now called
EFSM table.

Flow context. First, when a packet enters the stage, a lookup key extractor builds a key
that uniquely identifies a flow context for such packet. Analogue to OpenState, the extractor
is programmed at runtime by specifying a list of relevant header fields and packet’s metadata.
The key is then used to extract a flow context from a flow context table9. The context includes
a state label s and an array of flow registers ~R = {r0, r1, ..., r(k−1)} . If no context is found
for a given key, a default context is used (i.e., with DEFAULT state and all registers set to 0).

9In somewhat analogy with context switching in ordinary operating systems.
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Figure 2.9 Abstract pipeline model of an OPP processing block.

Conditions. The packet’s headers and metadata, which now include the flow context, are
passed to a condition block. The condition block can be programmed at runtime for the
evaluation of up to m expressions with mathematical operators like >, <, =. For example,
conditions can be used to compare if a port number is greater than the value stored in a given
flow context’s register. Conditions can also be evaluated over an array of global registers ~G,
described later, which is shared by all flows. The output of the condition block is a Boolean
vector ~C = {c0, c1, ..., c(m−1)}, where ci = 1 if the i-th condition is true, otherwise ci = 0.

EFSM table. The packet’s headers and metadata, plus ~C and the state label s, are passed
to the EFSM table. As the name recalls, this table describes the transitions of the state
machine. Such table is a typical MAT that supports ternary matching on the just mentioned
values. For each entry in the table, a programmer can specify (i) a list of OpenFlow-like
actions to be executed on the packet, (ii) the next state label s in which the flow context
shall be set, and (iii) a list of instructions to update the flow context registers ~R.

Update logic block. The packet’s headers and metadata, the update instructions and the
new value of the state label (next state) are passed to the update logic block. Here, an array
of ALUs performs the required update instructions to update the values stored in the flow
context registers ~R, using arithmetic functions. Such functions can range from simple integer
sums, for instance to update the value of a register representing a packet or byte counter, to
more complex ones, e.g., floating point processing, depending on the specific implementation
and required performance. The result of this block is then used to update the flow context
identified by the key generated by the update key extractor.

Global registers. The stage also maintains a vector ~G = {G0, G1, ..., G(h−1)} of global
registers. Differently from the flow context registers ~R, ~G can be accessed by all flows within
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the same OPP stage. These variables can be used in the condition block and their value can
be updated by the instructions executed by the update logic block. As we will discuss in
Section 2.3, since the variables ~G are global, to avoid inconsistencies, their read and update
operations must happen atomically, i.e. without pipeline feedback-loop.

2.2.3 Programming examples

Long-lived flows detection A first trivial example is that of a simple mechanism which
distinguishes short-lived flows from long-lived flows by considering “long” any flow that has
transmitted at least N packets, and applies different DSCP tags. In this case, an OPP
programmer would need to (i) define two states, DEFAULT, and LONG, (ii) one per-flow register
r0 to count packets, (iii) one global register g0, storing the constant threshold N , (iv) a
condition c0 = r0 > g0 applicable when in state DEFAULT, and (v) an update function r0 ←
r0 + 1 to increment the value of r0.

Figure 2.10 shows the configuration of an OPP stage implementing such algorithm. In this
example, we are assuming the target provides capabilities to (i) parse and increase the DSCP
field of a packet, and (ii) perform integer sum in the ALU. For simplicity, we omit the actions
necessary to forward a packet to an output port. We can imagine those being defined in a
subsequent stateless OpenFlow-like stage.

Flowlet-based path load balancing. Figure 2.11 depicts an OPP configuration equiva-
lent to the example of the flowlet-based path load balancer introduced in Section 2.1.2.

Support of this algorithm in OPP requires, for each packet being transmitted, to update a
per-flow register r0 with the quantity pkt.t + D, being pkt.t the actual packet timestamp of
the packet and D a constant value, stored in g0, representing the average idle time between
bursts. When a packet arrives, we check the condition pkt.t > r0. If true, meaning that
the packet is the first of a new burst, we compute a new pseudo-random choice as pkt.t % 2
(modulo) and store it to r1, the same port choice is used to forward the packet. If pkt.t > r0

is false, meaning that the packet belongs to an existing burst, we route the packet using the
previously assigned r1. In this case we do not make use of any state label to take forwarding
decisions, after the first packet, the state is set to a dummy value ACTIVE.

The assumptions of this example are that the hardware target can expose the packet times-
tamp as a metadata, and that it provides ALU capabilities to perform and integer sum, and
a modulo operation.

Remarkably, OPP is able to generalize not only OpenState, but also OpenFlow primitives.
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Long-lived flows detection

lookup_scope = [ipsrc,ipdst,ipproto,sport,dport]
update_scope = [ipsrc,ipdst,ipproto,sport,dport]

Conditions

c0 r0 < g0

Match Next state Update instr. Actions
state=DEFAULT, c0=0 DEFAULT r0 ← r0 + 1 set_dscp(EF), forward
state=DEFAULT, c0=1 LONG set_dscp(AF)
state=LONG LONG set_dscp(AF)

Figure 2.10 OPP configuration to implement detection of long-lived flows. AF and EF
represent DSCP standard DiffServ per-hob behaviors, respectively, “assured forwarding” and
“expedited forwarding”.

Flowlet-based path load balancing

lookup_scope = [ipsrc,ipdst,ipproto,sport,dport]
update_scope = [ipsrc,ipdst,ipproto,sport,dport]

Conditions

c0 pkt.t > r0

Match Next state Update instr. Actions

c0=1 ACTIVE r0 ← pkt.t + g0
r1 ← pkt.t % 2 output(r1)

c0=0 ACTIVE r0 ← pkt.t + g0 output(r1)

Figure 2.11 OPP configuration to implement a flowlet-based load balancer.

This is made clear from the fact that the OPP configuration does not require structures such
as the OpenFlow’s group table for port selection, or state timeouts. An equivalent behavior
is entirely described by means of an EFSM. Random port selection is described by means of
a modulo operation over the packet timestamp, while state timeout expirations are described
natively using a register and a condition.

Dynamic priority queuing based on rate estimation. An intuitive way of providing
minimum rate guarantees to different users sharing the same link is that of prioritizing their
traffic based on the rate history. If a user is sending at a rate higher than the guaranteed
threshold, then he should be put in a lower priority queue, and vice versa. In Chapter 4, we
discuss more in details the approach and provide experimental results with real TCP traffic.
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Priority queuing based on rate estimation

lookup_scope = [ipsrc]
update_scope = [ipsrc]

Conditions
c0 pkt.t > r4
c1 r3 > g1

Match Next state Update instr. Actions
c0=0, c1=0 ACTIVE r0 ← r0 + pkt.bytes set_prio(high)

c0=1, c1=0 ACTIVE

r1 ← pkt.t - r2
r3 ← r0 ÷ r1
r0 ← pkt.bytes
r2 ← pkt.t
r4 ← pkt.t + g0

set_prio(high)

c0=0, c1=1 ACTIVE r0 ← r0 + pkt.bytes set_prio(low)

c0=1, c1=1 ACTIVE

r1 ← pkt.t - r2
r3 ← r0 ÷ r1
r0 ← pkt.bytes
r2 ← pkt.t
r4 ← pkt.t + g0

set_prio(low)

Figure 2.12 OPP configuration to implement priority queuing based on rate estimation.

We present here an OPP configuration to implement such algorithm (Figure 2.12). At high
level, we need to find a way to estimate the average arrival rate of an user at regular intervals,
e.g. 1 second. To this purpose, we define two conditions, c0 = pkt.t > r4, where pkt.t is the
packet timestamp and r4 is the time after which the rate should be estimated; c1 = r3 > g1

where r3 is the estimated rate and g1 is the guaranteed rate threshold.

When c0 is false, for each packet, we add the size of the packet (pkt.bytes) to r0; when c0 is
true, i.e. it is time to evaluate the rate, the rate (r3) is evaluated over the interval that goes
from the packet timestamp (pkt.t) to the last time the rate was measured (r2), after which r0

is reset, r2 is set to the packet timestamp, i.e. now, and r4 is set to now plus the estimation
interval, i.e. the next time the rate should be estimated. These two entries (when c0 is false
or true) are repeated for the values of c1, for a total of 4 entries in the EFSM table. If c1 is
true, the flow is put in a low priority queue, otherwise in high priority.

In this example we are assuming that the hardware target allows for priority queuing, i.e. a
priority scheduler with at least two queues, and ALU capabilities to perform an integer sum
(assume time in microseconds or milliseconds), an integer subtraction and an integer division
operation. Moreover, we assume up to 2 operations can be pipelined, as the result of r3 =
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r0÷r1 depends on the result of r1 = pkt.t−r2, which rewritten becomes r3 = r0÷ (pkt.t−r2)

2.2.4 Hardware feasibility

A prototype hardware implementation of OPP has been described in [29], however, such a
prototype is not a contribution of this thesis. Instead, in this section we discuss issues related
to the feasibility and limitations of a switching chip supporting OPP, based on the experience
of developing and using such prototype.

Prototype overview. The prototype is based on the NetFPGA-SUME [30] board. It
can forward packets of 4 10GbE ports at line rate, providing a throughput of 156.25 Mpps
(Million packets per second) when forwarding minimum size packets (64 bytes). The FPGA
is clocked at 156.25 MHz, with a 64 bits data path from the Ethernet ports, corresponding
to a 10 Gbit/s throughput per port. Analogue to OpenState, the hash table used to store
the flow context has been implemented using a d-left table with d = 4, and based on RAM
blocks. The flow context table can host up to 4K entries. As in OpenState, the RAM blocks
are realized as dual port RAM, so as to provide a read and a write operation for each clock
cycle. The EFSM table is instead implemented using a very small TCAM of 32 entries of
160 bits. Indeed, TCAM implementation over FPGAs is very inefficient and is currently an
open research issue [31, 32, 33]. Still, the reader should recall that such TCAM has not to
be used as an ordinary OpenFlow’s flow table, but rather to describe the transitions of the
EFSM. That is, its size should not depend on the number of flows, but on the number of
EFSM transitions of a given algorithm. Thus it is reasonable to keep the size of this TCAM
small.

The prototype is configured with the parameters shown in Table 2.1. The configuration of
the ALU requires a special mention and will be described more in details later.

The whole system has been synthesized using the standard Xilinx design flow. Table 2.2
reports the logic (LUT) and memory resources (RAM) (in terms of absolute numbers and
fraction of available FPGA resources) used by the OPP FPGA implementation, and compare
these results with those required for the NetFPGA-SUME single-stage reference L2 learning
switch [34] and a OpenState stage. The reader should recall that OPP is an evolution of the
original OpenState stage. The synthesis results confirm the trend already shown by RMT
[20]: the hardware area is dominated by memory, while adding intelligence/features in the
logic requires a small silicon overhead. The OPP additional logic w.r.t. OpenState, i.e.
condition and update blocks, uses a small fraction of the total area, of only 2% increment.
Notice that the reported resources include the overhead of several blocks not described here,
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Parameter Value Description
k 4 × 32 bit Number of flow context’s registers. Each register is 32bit

long.
m 8 Each condition is in the form var1 op var2, with

operand being one of >, ≥, <, ≤, or ==, and vari-
ables being packet header’s fields, registers (either flow
or global) or constants.

n 32 bit Size of packet’s metadata moved between stages
h 8 × 32 bit Number or global registers. Each register is 32 bit long.
ALUs 5 Number ALUs. Each ALU performs an operation in the

form res = var1 op var2. res and vars can be registers
or packet fields (including metadata). op can be one of
+, −, shift, etc. ALUs support also more advanced
traffic control functions such a ewma, var, avg.

Table 2.1 Parameters of the OPP hardware prototype.

Resource type Reference switch OpenState OPP switch
# Slice LUTs 49436 (11%) 62637 (14%) 71712 (16%)
# Block RAMs 194 (13%) 245 (16%) 393 (26%)

Table 2.2 Hardware cost comparison of OPP, NetFPGA SUME ref. switch and OpenState.

such as the micro-controller for the OPP configuration at runtime, the input/output FIFO
queues for the 10GbE interfaces, which are required to operate the FPGA and do not need
to be replicated for each stage. In fact, given the required resources, a NetFPGA-SUME can
currently host a pipeline of up to 6 stateful OPP stages.

Pipeline feedback-loop Similarly to OpenState, the pipelined nature of OPP calls for a
feedback-loop. In the FPGA prototype, such loop spans exactly 6 clock cycles, from when the
flow context is read until it is written back, after being processed by the update logic block.
Such loop requires 2 clock cycles more than OpenState, mostly due to processing performed
by the update logic block. As already outlined, such a loop can create inconsistencies when
processing packets of the same flow back-to-back, i.e. traveling one immediately after the
other in the pipeline, as the second one might read the flow context entry before it can be
updated by the first packet. Intuitively, the risk of such inconsistencies increase with longer
loops. An evaluation of the risk and performance of such feedback loop is presented in Section
2.3.
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Update logic block configuration. The update logic block is the OPP component in
charge of providing computational primitives involving arithmetic processing. The capabil-
ities offered by this block are not tied to the OPP abstraction, nevertheless, they are of
primary importance. Indeed, as it should be clear from the examples, this block’s capabili-
ties define what algorithms can be ultimately supported. We present here an instance of the
OPP update logic block as implemented in the FPGA prototype, however it should be made
clear to the reader that optimizing this block is not a goal of this thesis, and further research
should be conducted.

In our prototype, this block comprises 5 parallel ALUs able to perform a set of elementary
instructions as listed in Table 2.3 and 2.4. Instructions in Table 2.3 are those of a typical
RISC architecture, while instructions in Table 2.4 are specific for traffic control tasks. The
specific instructions to be performed are provided by the output of the EFSM table. Each
instruction is 32 bit long and comprises an opcode, followed by a variable number of operands
that depend on the specific instruction. Both input operands (INi) and output operands
(OUTi) can be flow registers, global registers, or packet fields. In some instructions, one or
more of the operands (IOi) are both used as input and output. IMM represents the case of
a constant value, specified directly in the instruction declared in the EFSM table.

The advanced instructions of Table 2.4 are domain-specific operations deemed useful in traffic
control applications. Such operations include on line computation of running averages (avg),
variances (var), and exponentially decaying moving averages (ewma10) which can serve the
purpose of a moving average, but which can be incrementally computed and do not require
to maintain a window of samples.

These instructions have been implemented as dedicated hardware primitives running at the
system clock frequency and taking up to two clock cycles to complete execution. Dedicated
circuitry is needed as they would would normally require several more clock cycles if imple-
mented using more elementary operations. These instructions represent the “critical path”
of the update logic block, as they take the most time to complete, affecting the total length
of the feedback-loop. Interestingly, most of the complexity is due to a division operation that
has been limited to support dividend and divisor of 16 bits, in order to complete execution
in two cycles. Supporting larger operands, e.g. 32 bit, would require more clock cycles, and
hence longer critical path delays.

10Being tk the last sample time, and xk′ a new sample occurring at time tk′ , for simplicity of the hardware
implementation, ewma is approximated as m(tk′) = m(tk)αtk′ −tk +xk′ , where α = 1/2 to compute powers as
shift operations. The intermediate decay quantity in the second line is used just for clarity of presentation.
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Type Instructions Definition
Logic NOP do nothing

NOT OUT1← NOT (IN1)
XOR, AND, OR OUT1← IN1 op IN2

Arithmetic ADD,SUB,MUL,DIV OUT1← IN1 op IN2
ADDI,SUBI,MULI,DIVI OUT1← IN1 op IMM

Shift/ Rotate LSL (Logical Shift Left) OUT1← IN1 << IMM
LSR (Logical Shift Right) OUT1← IN1 >> IMM
ROR (Rotate Right) OUT1← IN1 ror IMM

Table 2.3 ALU basic instruction set.

Instruction Definition
avg() IO1← IO1 + 1

IO2← IO2 + (IN1− IO2)/(IO1 + 1)
IO1← IO1 + 1

var() IO2← IO2 + (IN1− IO2)/(IO1 + 1)
IO3← IO3 + ((IN1− IO2)2 − IO3)/(IO1 + 1)
IO1← IN1

ewma() decay = 1 << (IN1− IO1)
IO2← IO2/decay + IN2

Table 2.4 ALU advanced instruction set.

Performance achievable with an ASIC implementation

FPGA is a convenient platform to assess the feasibility of an hardware design, however, due
to constraints of the technology itself, FPGAs cannot provide full scale and performance. To
this purpose, it is worth discussing the performance and resources available on a dedicated
OPP ASIC design.

In doing that, we make the same technology assumptions of state-of-the-art programmable
forwarding ASIC RMT [20]. We can then assume the OPP micro-controller, ingress/egress
queues, and memory for the packet buffers are the same of RMT, hence an OPP ASIC design
would be able to manage 64 ports working at 10 Gbit/s if clocked at 1 GHz. This frequency
can be easily achieved by the blocks composing the condition logic block and the update logic
block. Indeed, these blocks are similar to the hardware primitives described in [35], where
the hardware is also clocked at 1 GHz.

As already mentioned, memory accounts for the largest part in the chip area. Memory in
OPP is needed for the TCAM realizing the EFSM Table and the SRAM memory realizing
the flow context table. Concerning the TCAM, as already mentioned, the size of the EFSM
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table depends on the number of state transitions, which we can estimate (while still being
conservative) being an order of magnitude smaller than the number of flows in an ordinary
OpenFlow’s TCAM. Thus, a reasonable allocation could be 1K TCAM rows of 256 bits each,
i.e. 256 Kbits of TCAM, which is only 20% of the 1.2 Mbits of TCAM available in an RMT
stage.

Regarding the flow context table, assuming a total of 32 Mbytes on-chip SRAM as in in RMT,
the number of flow context entries depends on the number and size of the flow registers.
For example, a reasonable configuration with flow context entries of 256 bits could be the
following: 128 bits key, 32 bits state label, and 128 bits to be arbitrary partitioned between
all registers, e.g. 4× 32 bits or 8× 16 bits. With 32 Mbytes on-chip SRAM the ASIC would
be able store up to 1 million flow contexts, to be distributed among OPP stages.

2.2.5 Remarks

As a final remark, it is important to stress that the specific instruction set provided by the
update logic block is independent of the proposed OPP abstraction, i.e., its extension or
improvement does not affect the overall OPP design. Indeed, looking closely at the FPGA
implementation of OPP, one could notice that not all the programming examples presented
before can be executed on such target. The configuration depicted in Figure 2.12, presents two
issues: (i) estimating the rate requires pipelining of two instructions, and (ii) the prototype
supports division on operand truncated to the first 16 bits. The latter represents a problem
if we consider that one of the operand is a byte counter that can easily overflow the 16 bits,
e.g. assuming to count bytes over 1-second interval with a 10 Gbit/s link. (i) can be solved
simply pipelining two update logic blocks, providing the output of the first as the input of
the second; while (ii) can be solved by implementing support for 32 bit division. In both
cases, the added complexity of the logic block affects the length of the feedback-loop, which
could affect the performance of the system.

In general, there will always be applications that requires more complex computations. The
update logic block should be seen as an interchangeable piece of the pipeline. Essentially, it
represents the flow processor of our system. Finding a configuration for such processor that
is expressive enough to allow the execution of a broad range of packet processing algorithms
is outside the scope of this thesis.

However, we argue that OPP provides a convenient framework where to research and ex-
periment with such a flow processor. OPP provides a structured way for managing different
kinds of state: per-flow, global and per-packet (i.e. headers and metadata) all fed to such
flow processor. That of using a feedback-loop in the pipeline model is an important design
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choice. As it will be hopefully clear after the next section, it is both a blessing and a curse.
A blessing, because such loop does not put any constraint on the flexibility of the processor.
As long as it can accept one packet each clock cycle, i.e. it can recursively pipeline packets11,
that processor can be used in an OPP pipeline. A curse, because if not controlled, this
feedback-loop can generate state inconsistencies resulting in erroneous forwarding behaviors.
In the next section we give guidelines on the maximum allowable time budget, i.e. how much
time the processor is allowed to spend on a single packet, that maximizes both throughput
and flexibility.

2.3 Understanding the performance of feedback-loop architectures

As it should be clear from the previous sections, the implementation of a high performance
hardware data plane requires processing packets in parallel. Typically this is achieved using a
pipelined architecture. OpenState and OPP are abstractions designed to provide the ability
to program stateful algorithms that read and modify data plane’s state, while keeping line
rate performance. However, the pipeline architecture outlined for both abstractions includes
a shared memory, state table or flow context table, which is accessed at different stages of
the pipeline. This is a problematic scenario for the consistency of the state. In fact, the
execution of both OpenState and OPP is split to be executed over multiple pipeline’s stages.
Since state is typically read in the first stage and written back, after modification, in the last
stage, there is a risk the first stage may read an inconsistent state when a new packet enters
the pipeline. That is, the read state is going to be invalidated by a result written back in a
later stage.

When state read and write operations are quick enough to be executed in a single pipeline’s
stage, i.e., in a clock cycle, as in the case of the global registers in OPP, the state consistency
problem is inherently solved, while a data hazard arises when more complex computations
are required.

We argue that such risk is negligible when considering realistic traffic workloads.This hypoth-
esis is based on two observations. First, data plane pipelines perform processing only acting
on packets’ header. For a given line rate, larger packet sizes actually mean a lower rate of
packet headers to process. Hence, more time per packet header can be used to execute the
pipeline operations. Second, the risk of a data hazard is limited to the risk of having in the
pipeline two or more packets whose processing requires access to the same portion of the
state, e.g. the same flow context in OPP.

11A flow processor spanning 10 clock cycles should be able to process 10 packets in parallel.
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To check the actual data hazard probability when taking into account these observations, we
designed a trace-based simulator and run it using real traffic traces, from both carrier and
datacenter networks. Results confirm that, in most cases, there is just a little probability of
incurring in a data hazard even if state read and write operations happen in different clock
cycles. Of course, such probability depends on the packet size and network flows distributions,
as well as on the aggregation level of the flow definition.

Given these findings, we provide as second contribution a sketch of a pipeline design that
avoids such data hazards by stalling the pipeline, when needed. Simulation results show that
such a design is able to provide line rate throughput, despite the stalls, even extending the
time between state read and write to several clock cycles. Furthermore, this design introduces
little overhead in terms of memory and circuitry complexity when compared to state-of-the-
art solutions. On the flip side of the coin, when using locking it is impossible to provide
line rate throughput in all the cases, therefore the data plane performance is dependent on
the actual traffic load properties. Moreover, stalling the pipeline requires the introduction
of small queues at the entrance of the pipeline stages. Dimensioning such queues introduces
a new variable in the design space: small queues may provide lesser throughput, while big
ones may introduce significant latency to the packet forwarding.

2.3.1 Background: packet processing pipelines

For simplicity and without loss of generality, from now until the end of this chapter, we
will refer only to the OPP model. All considerations made from this point are equivalently
applicable to OpenState.

We present here the data plane architecture used as reference model for the simulations. Pro-
grammable data plane solutions such as RMT [20], Intel’s FlexPipe [18], and Cavium’s XPli-
ant Packet Architecture [17] implement a high level architecture similar to the one sketched
in Figure 2.13. In such architectures, packets received from the input ports are stored (en-
queued) in a per-port queue and served, with a round robin policy, by a mixer that feeds the
packets to an ingress pipeline. After the ingress pipeline, packets are stored in a common
data memory. A scheduler selects which packets should be transmitted to the egress queues.
A packet selected for forwarding is first processed by an egress pipeline, which is in principle
similar to the ingress one, before being finally transmitted to the egress queues12.

Both ingress and egress pipelines are composed by a programmable packet parser [20] and
by a variable number of MAT elements. For each new packet, the parser extracts the headers

12While we focus on store-and-forward mode of operation, such considerations are applicable also to data
planes that work in a cut-through configuration.
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Figure 2.13 Programmable data plane architecture.

that are then processed by the MAT elements. A MAT element implements itself a pipeline,
whose architecture may sensibly change from one implementation to the other. We can focus
on the MAT element’s pipeline, since it is in here that stateful operations are executed.

For the sake of the discussion, we can ignore most of the details of the actual MAT element
and model its internal pipeline using just a sequence of stages plus memory. Each stage
performs a limited amount of operations, such as read and write from/to memory, or some
sort of computation. Since a complex operation can be split in a number of simpler opera-
tions executed in multiple stages, the number of stages finally defines the complexity of the
operations that can be implemented by the MAT element. Also, since each stage adds a
clock cycle to the latency, the number of stages directly impacts the forwarding latency of a
packet traversing the MAT element. Finally, and most importantly for the state consistency
problem, the number of stages between a memory read and a memory write operations has
important implications on the probability of incurring in a race condition. Intuitively, the
longer is the time to process a value read from memory, before writing it back, the more
probable is the reception of a new packet whose processing requires access to that same
memory area. Without loss of generality and to simplify the exposition, we can assume that
the first MAT element’s pipeline’s stage reads from memory, while the last writes back to it.

Rethinking design assumptions

If we would like to design a stateful switching architecture capable of guaranteeing line rate
performances and state consistency with any possible traffic workload, we should eliminate
the risk of data hazards by allowing memory read and write operations only within the same
stage of the pipeline. Such a design derives from the worst case assumption that all packets
have minimum size, that they arrive back-to-back, i.e., with no inter-packet gaps, and that
they all need to access the same memory area. More specifically, let us consider a data plane
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with a throughput of 640 Gbit/s, with a chip clocked at 1 GHz, as it is the case of RMT [20].
As showed in Figure 2.14, we can assume that packets are read in chunks of at most 80
bytes (i.e., 80 × 8 bit × 1 GHz = 640 Gbit/s) when entering the data plane’s pipeline.
Consequently, it will take 1 clock cycle to read packets with minimum size ≤ 80 bytes, while
it will take more cycles to read longer packets, e.g., 19 for 1500 bytes.

As mentioned earlier, the data plane’s pipeline is dimensioned to accept the headers of a
new packet at each clock cycle. However, even when all packets arrive back-to-back, the
variability of the packet size will cause the pipeline to experience one or more idle cycles. For
example, in the case of maximum size packets of 1500 bytes, the pipeline will receive a new
packet’s headers at intervals of 19 clock cycles13.

It is known that packets produced by today’s application have very variable size distributions.
E.g., spanning from 64 bytes to 1500 bytes (in a typical case), which could leave some space
for relaxing the constraint on the atomicity of memory read and write operations, when
dealing with non corner-case traffic loads.

Per-flow concurrency

The second observation, which follows the OPP model, is that data plane state can be
categorized in two types: global state and flow state. The first type is state that is shared
among all packets, with no distinction, while flow state is shared only by packets of the same
flow, where the definition of the flow can be arbitrary (recall the key extractor in OPP)

Usually packet processing functions use a combination of the two, or only one. For example,
a stateful firewall needs to maintain state for each TCP connection. A source NAT (SNAT)
that dynamically translates the source IP address and port of outgoing connections, needs
to maintain both flow state and global state: flow state for each L4 connection in order to
distinguish between packets of new or existing connections, and in the case of new ones, it
needs to pick a source address and port from a pool of available ones. Maintaining a pool
of addresses and ports, e.g. using a stack, is an example of global state. Advanced load
balancing schemes such as CONGA [36] maintain state at different aggregation levels: i)
the 5-tuple in order to distinguish between flowlets, i.e. burst of packets, of the same L4
connection, ii) tunnel ID to maintain real-time utilization levels of several paths and iii)
global state to maintain the best path among all available ones, to assign new flowlets to.

13While in principle it is possible to widen the pipeline data-path to reduce the maximum number of clock
cycles to process a packet, and to increase the throughput, the routing of such a big number of parallel wires
prevents several technological challenges that actually limit the maximum data-path width. For example
in RMT[20] it is explicitly mentioned that the data-path is limited due to these technology constraints.
Furthermore, the maximum achievable throughput is finally limited by the network interfaces speed.
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Figure 2.14 Processing of a RMT-like pipeline. Packets are read from input ports in chunk
of 80 bytes. Longer packets cause idle cycles in the pipeline.

In OPP, before the packet is processed by a MAT, a flow key is derived by looking solely at
a subset of header fields decided by the programmer at configuration-time. Moreover, the
operation on state that a programmer can define are limited to the portion of the memory
associated to the packet’s flow key. As such, by using the OPP’s flow context table abstrac-
tion, multiple packets accessing and modifying different entries of the table can be processed
in parallel, with no harm for consistency. In other words, packets with different flow keys
can be processed in parallel.

2.3.2 Measuring the risk of data hazards

We start by evaluating the actual probability of generating data hazards when processing
packets in OPP, i.e. with stateful functions spanning many clock cycles. To do so we
implemented a simulator that we feed with real traffic traces. The code of the simulator is
available at [43].

Table 2.5 Packet traces used in simulations

Trace Source Num. of packets Distinct flows per 1 million pkts
5-tuple ipdst ipdst/16

chi-15 CAIDA [37] 3.5 billions 100.6K 57.7K 4.6K
sj-12 CAIDA [38] 3.6 billions 429K 17K 2K
mawi-15 MAWI [39][40] 135 millions 40.8K 17.3K 1.7K
fb-web Facebook [41][42] 447 millions n/a n/a n/a
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Figure 2.15 Packet size cumulative distribution.

Traffic traces

We used 4 publicly available traffic traces (Table 2.5). Three traces (chi-15, sj-12, mawi-15 )
are taken from backbone carrier networks and one from a datacenter (fb-web). Each trace
presents different characteristics, in terms of packet size (Figure 2.15) and number of flows
when using different aggregation keys (Table 2.5). CAIDA publishes 1-hour long traces 4
times per year. We selected chi-15 as one representative of usual conditions as the packet
size and number of flows is close to the majority of the other traces published by CAIDA
in the recent years [44]. The packet size presents a bimodal distribution, 30% of packets
have minimum size below 80 bytes, wile 50% have larger size close to 1500 bytes. On the
other hand, sj-12 and mawi-15 represent an abnormal situation. In both traces there is
a prevalence of smaller packets and, in the case of sj-12, also an unusual large number of
5-tuples w.r.t. the number of distinct IP destination address.

Finally, fb-web includes packets collected from a Facebook’s datacenter’s cluster that serves
web requests. As such it presents a predominance of small packets (80% have size < 200
bytes). Unfortunately, the traces provided by Facebook are the result of uniform sampling
with rate 1:30K. As a consequence, we were not able to count the number of distinct flows.
The reason is that the probability that two consecutive packets belong to different flows is
higher than the other traces, not because of the traffic characteristics but because packets are
indeed distant in time (a distance potentially greater than the average flow life). Hence, we
use fb-web only to measure the effects of the variable packet size, not the flow distribution.
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Results: fraction of data hazards

We simulate the case of a stateful processing block comprising N sequential (pipelined)
stages, where each stage is executed in 1 clock cycle, and where the first stage reads from
the memory while the last writes back. A data hazard is the event in which the first stage of
the action pipeline processes a header, while another one is currently traveling in the same
pipeline. Clearly, when N = 1, there is no risk of data hazards.

We simulate a “near-worst case” scenario, by feeding all packets back-to-back, i.e. 100%
line rate utilization with no inter-packet gaps. Packets are read in chunks of 80 bytes (as in
RMT), hence taking 19 clock cycles to read 1 packet of 1500 bytes. For N ≤ 18, there is
no risk of data hazard. Conversely, with small packets the pipeline will experience shorter
idle gaps. In the worst case, the headers of minimum size packets arriving back-to-back,
will be also processed back-to-back in the pipeline, hence causing a data hazard for any
N > 1. When considering per-flow concurrency, if two headers belonging to distinct flows
are processed back-to-back, this does not generate a data hazard.

The simulator process traffic in batches of 100K packets. For each batch, it computes the
fraction of data hazards (FDH) over the total number of clock cycles needed to process 100K
packets (which depends on the packet size). To reduce simulation time, for each trace it
selects batches at a rate of 1:100, in other words it evaluates one batch of 100K consecutive
packets every 10M packets. The observation here is that traffic characteristics vary slowly in
a period of 10M packets, hence multiple batches close in time will produce similar results. For
each trace, the simulator extracts the 99th percentile from all FDH samples. As an example,
if for a given trace the 99th percentile of the FDH is 0.3, it means that in the 99% of batches
evaluated, the FDH was below 30%.

Figure 2.16 shows the results for all traces when all packets are considered belonging to the
same flow, i.e. accessing global state. Instead, in Figure 2.17 FDH values are plotted for
each trace when aggregating packets with different flow keys. As expected, the FDH greatly
depends on the packet size distribution and flow keys, with smaller probability of hazards for
traces with higher prevalence of larger packets, and for longer, i.e. finer, flow aggregation keys.
such a chi-15. In the second case, per-flow concurrency affects the results. For example, with
sj-12 when considering state associated to distinct 5-tuples, the risk on incurring in a data
hazard is way below the case when state is associated to distinct destination IP addresses.
This result follows the flow distribution showed in Table 2.5. For all traces, using 5-tuples
performs better than other flow keys. For chi-15, in all cases the FDH is around 1%.

This result is important because it shows the probability of creating inconsistent state, and
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hence, if memory locking is a viable approach, the probability of incurring in such locking,
thus affecting both throughput and latency.

2.3.3 Preventing data hazards via memory locking

We propose here a general approach to perform memory locking among packets competing
to access the same memory portion. This approach was designed around OPP, but it can be
generalized to any architecture implementing a feedback-loop of multiple clock cycles.

Locking is implemented by stalling the pipeline. That is, if two packets of the same flow
arrive back-to-back, processing is paused for the second packet until the first one has left
the pipeline. This already affects throughput by a factor of 1/N per flow, hence aggregate
throughput is maximized when at least N flows are active. Clearly, stalling calls for buffering
which also introduces additional latency. We are interested in measuring the impact on
throughput and latency when such locking approach is implemented.

Figure 2.18 depicts a simple but effective pipeline design that implements stalling in order to
prevent data hazards. In this design, a stateful processing function spanning N clock cycles,
e.g. an OPP stage of 6 clock cycles, is preceded by few Q queues and a scheduler. For each
packet’s headers, a first block extracts a flow key (FK), then a dispatcher stores the headers
in the q-th queue, where q = hash(FK) mod Q, thus preserving the processing order between
packets of the same flow. Each queue can store at most Qlen headers.

The scheduler decides which packet to admit in the processing pipeline by looking at the tip
of each queue and comparing the head-of-line FK with the at most N FKs currently traveling
in the pipeline. The scheduler admits a header if its FK is not currently in the pipeline. The
scheduler is work-conserving, meaning that all non-empty queues are compared at the same
time, if at least one header can be served it will do so. To avoid starvation of a queue, the
scheduler serves queues in a round-robin fashion, i.e. with cyclic priority.

We know from OPP that the FK can have arbitrary length of FKlen bits, depending on the
number of state memory cells available, for example FKlen = 32 bits for 232 memory cells. As
Q < 2F Klen , multiple flows will end up sharing the same queue. Such an event may generate
head-of-line blocking, in which all packets in a queue are held by the first one. Clearly, such
a problem can be reduced by adding more queues, which has a cost in terms of silicon needed
to implement both the queues and the scheduler.

For the scheduler to be work-conserving, it needs to compare all queues at the same time,
hence increasing the number of wires with i) the number of queues and ii) the number of bits
to compare for each queue. For this reason, to simplify the implementation of the scheduler’s



45

 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20  25  30

FD
H

 (9
9t

h 
pe

rc
.)

mawi-15 chi-15 sj-12 fb-web

Figure 2.16 Fraction of data hazards (FDH) w.r.t. increasing pipeline depth when all packets
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Figure 2.18 Architecture of a stateful processing block with memory locking. Headers are
queued based on their flow key (FK). A scheduler compares the FK of the head of each queue
with what is traveling in the function pipeline, admitting only one header per flow.

comparator, the FK is reduced to a smaller space ofW bits. This operation can be performed
by the flow key extractor, which along the FK (needed later to access the state) extends the
headers with a field w. A trivial approach is that of hashing the FK in the reduced space, i.e.
w = hash(FK) mod W . For example withW = 4, the scheduler is able to distinguish among
24 = 16 flows. If W < FKlen there will be different flows colliding onto the same value w,
impacting performance. Flow collision also depends on the hash function, during simulations
we set hash() = crc16(), which is a common function in packet processing architectures.
However, we did not investigate the impact of other hash functions on the distribution of
FKs among the different queues and values of w.

Silicon overhead

We provide in this section an evaluation of the feasibility of the proposed locking design.
The combinatorial logic complexity of the locking scheme is that of Q comparators, each one
comparing the W bits of the head of the queue with each of the N stages of the pipeline.
We have synthesized the comparators using the Synopsys Design Compiler and a 45 nm
standard-cell library. The VHDL code is available at [43]. Table 2.6 shows the area and
minimum critical-path delay of one comparator when W = 4 and N = 8, 16, 32. In all the
cases timing constraints are easily met at 1 GHz, which is the clock frequency of state-of-the-
art architectures such as RMT and Banzai [35]. In terms of area overhead, when comparing
our results to a 200 mm2 chip as in [35, 28], we find that comparators area is negligible. For
example, the area of 16 comparators (Q = 16) when N = 16 and W = 4, corresponds to the
0.01% of the total chip area.
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Finally, notice that 45 nm is a fairly old technology for circuit synthesis, hence we expect
both the area overhead and the minimum delay to be even smaller when using more recent
libraries, e.g. 32 nm, 22 nm or 16 nm.

The memory requirements to implement queues is Hlen × Q × Qlen bits, where Hlen is the
length in bits of the data path. With Hlen = 88 bytes (80 for the header and 8 for the
metadata), Q = 4 and Qlen = 100, the locking scheme requires 35.2 KB of memory for the
queues. Approximately a 3.5% memory overhead compared with the memory of a MAT stage
in RMT.

Trace-based results

We evaluated the proposed architecture using the same traffic traces presented in Sec-
tion 2.3.2. When collecting performance metrics, the simulator uses the same approach
described in Section 2.3.2: traffic is processed in batches of 100K packets, with a distance
of 10 millions packets between each batch; and 100% line rate utilization. For each batch
of packets the simulator computes the throughput as the fraction of packets served by the
scheduler, over the total number of packets received; and the latency as the number of clock
cycles from when the packet is completely received to when it is served by the scheduler,
i.e. it enters the function pipeline. For simplicity, when N = 1, i.e. no locking required,
latency is 0. Latency is computed for each packet, for each batch the simulator takes the
99th percentile among all latency values, finally taking the maximum among all batches for
a given trace. For example, a latency value of 5 means that in the worst case, 99% of the
packets experienced a latency of no more than 5 clock cycles, e.g. 5 ns at 1 GHz.

We evaluated these metrics when varying the different parameters described in Section 2.3.3
for the different traces. For simplicity we limit the maximum size of the pipeline to 30 clock
cycles. Table 2.7 summarize results in terms of clock cycle budget, which is the maximum
allowable number of clock cycles for a stateful function to sustaining a given throughput. For
example, to sustain 100% throughput, using queues of size 10 (headers) does not provide any
benefit, as the clock cycle budget is 1 for each trace and flow key. However, by adding more

N Area at 1 GHz Minimum delay
8 196 µm2 240 ps
16 929 µm2 360 ps
32 1560 µm2 400 ps

Table 2.6 Area and minimum critical-path delay of one comparator in a 45 nm standard-cell
library when W = 4.
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capacity to queues up to 100, budget improves even when using only 1 queue, allowing for
functions spanning 20 clock cycles for all flow keys with chi-15, and 4 clock cycles with sj-12,
but only when aggregating packets per 5-tuple. Clearly, long queues impact latency. Both
clock cycle budget and latency improve when admitting a lower throughput of 99.9%, i.e.
allowing for 0.1% drop probability. Clearly, reducing utilization (100% in our experiments)
reduces further the risk of drops while maintaining the same cycle budget.

Figures 2.19, 2.20, 2.21 and 2.22 show the detailed results in terms of throughput and latency
for all the traffic traces considered.

2.3.4 Discussion

Issues with blocking architectures While the proposed solution for memory locking
enables the execution of more complex operations directly in the data plane, it implements a
blocking architecture. That is, if applied to OPP, for particular workloads, the data plane is
unable to offer line rate forwarding throughput. As a consequence, the data plane processing
should be adapted to the expected network load characteristics, for the line rate to be achiev-
able. The results presented help in defining the boundaries of the achievable performance,
for a given workload and set of operations. An additional problem of the dependency on the
workload is the possibility to exploit such dependency, e.g., to perform a denial of service
attack on the data plane. However, the ability to program stateful algorithms in the data
plane could help in detecting and mitigating such exploitations at little cost.

What can we do more with more clock cycles? As discussed in Section 2.2.4, the
length of the pipeline, and thus the number of clock cycles, depend on the complexity of
the update logic block. More clock cycles allow for more complex functions. To the far
end, one can envision the possibility of using a general purpose packet processor, carefully
programmed to complete execution in a longer, but bounded, clock cycle budget, with pre-
dictable performance when the traffic characteristics are known. Finally, another option is
that of supporting larger, potentially off-chip memories like DRAMs which have slower access
times to read and write values. The same multi-queue scheduling approach could be used
to coordinate access to multiple parallel memory banks, where each bank is associated to a
queue.

When is consistency really an issue? Lastly, but perhaps most important, one can ar-
gue that preventing data hazards in packet processing might not be such a strict requirement.
State inconsistencies can cause one or more packets to be processed erroneously, for example,
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Table 2.7 Clock cycle budget (and latency) when using memory locking

Maximum number of clock cycles (up to 30) per processing function, to sustain a given throughput. In all cases W = 4 bits.
“Global” represents the case when packets need to access global state. Latency values are given for 1 GHz clock frequency, i.e.

1 clock cycle = 1 ns.
chi-15 sj-12 mawi-15 fb-web

Thrpt Qlen Q 5-tuple ipdst ipdst/16 global 5-tuple ipst ipdst/16 global 5-tuple ipdst ipdst/16 global global

100%

10

1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1

100

1 20 (174ns) 20 (190ns) 21 (230ns) 8 (282ns) 4 (49ns) 1 1 1 2 (18ns) 2 (20ns) 2 (35ns) 1 2 (10ns)
4 30 (175ns) 30 (192ns) 30 (320ns) 8 (152ns) 1 1 2 (12ns) 2 (14ns) 2 (25ns)
8 30 (137ns) 30 (144ns) 30 (259ns) 8 (133ns) 1 1 2 (12ns) 2 (14ns) 2 (25ns)
16 30 (122ns) 30 (126ns) 30 (221ns) 8 (123ns) 1 1 2 (11ns) 2 (14ns) 2 (24ns)

99.9%

10

1 8 (16ns) 8 (16ns) 8 (18ns) 4 (18ns) 2 (5ns) 1 1 1 1 1 1 1 2 (10ns)
4 14 (33ns) 14 (31ns) 14 (38ns) 2 (4ns) 1 1 1 1 1
8 16 (39ns) 15 (30ns) 16 (44ns) 2 (4ns) 1 1 1 1 1
16 17 (37ns) 18 (43ns) 16 (42ns) 2 (5ns) 1 1 1 1 1

100

1 27 (568ns) 27 (618ns) 26 (605ns) 8 (282ns) 6 (143ns) 2 (86ns) 2 (84ns) 1 3 (42ns) 3 (48ns) 3 (100ns) 2 (60ns) 2 (10ns)
4 30 (175ns) 30 (192ns) 30 (320ns) 15 (526ns) 2 (79ns) 2 (77ns) 4 (41ns) 4 (52ns) 4 (135ns)
8 30 (137ns) 30 (144ns) 30 (259ns) 22 (731ns) 2 (79ns) 2 (78ns) 4 (38ns) 4 (50ns) 4 (131ns)
16 30 (122ns) 30 (126ns) 30 (221ns) 25 (741ns) 2 (79ns) 2 (72ns) 4 (37ns) 4 (49ns) 4 (129ns)

99%

10

1 21 (80ns) 21 (80ns) 21 (89ns) 7 (60ns) 3 (14ns) 1 1 1 2 (13ns) 2 (14ns) 1 1 2 (10ns)
4 30 (142ns) 30 (148ns) 30 (184ns) 10 (45ns) 1 1 5 (34ns) 4 (31ns) 2 (18ns)
8 30 (129ns) 30 (138ns) 30 (184ns) 11 (47ns) 1 1 6 (42ns) 4 (31ns) 2 (18ns)
16 30 (116ns) 30 (122ns) 30 (180ns) 12 (47ns) 1 1 7 (52ns) 4 (31ns) 2 (18ns)

100

1 30 (950ns) 30 (922ns) 30 (1.1us) 9 (842ns) 8 (268ns) 2 (86ns) 2 (84ns) 2 (171ns) 9 (422ns) 8 (380ns) 5 (316ns) 4 (379ns) 2 (10ns)
4 30 (175ns) 30 (192ns) 30 (320ns) 22 (1.1us) 3 (285ns) 3 (283ns) 24 (1.7us) 17 (1.3us) 7 (572ns)
8 30 (137ns) 30 (144ns) 30 (259ns) 30 (1.9us) 3 (290ns) 3 (292ns) 30 (2.1us) 23 (2.2us) 8 (753ns)
16 30 (122ns) 30 (126ns) 30 (221ns) 30 (940ns) 3 (296ns) 3 (293ns) 30 (1.3us) 25 (2.5us) 8 (759ns)
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Figure 2.19 Throughput and latency for the chi-15 traffic trace.
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Figure 2.20 Throughput and latency for the sj-12 traffic trace.
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Figure 2.21 Throughput and latency for the mawi-15 traffic trace.
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Figure 2.22 Throughput and latency for the fb-web traffic trace. Results are shown only for the case of global state, hence Q = 1,
for the same reason introduced in Section 2.3.2.
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dropped or sent to the wrong path, or their headers confused. Luckily, the unreliability of
the network has been taken into account since the dawn of the Internet. Today’s end-to-end
applications use reliability mechanisms that are also end-to-end, such as TCP.

As an example, from Figure 2.17 we know that with an OPP-like pipeline, i.e. six clock cycles
feedback-loop, applications that rely on state unique to the UDP/TCP 5-tuple are subject to
less than 1% risk of data hazards in most cases, 9% with mawi-15. End-hosts relying on the
data plane performing load balancing (ECMP-like or flowlet-based), stateful firewalling, or
NAT would be minimally affected by such a small probability of inconsistencies. In the case of
load balancing, few packets after the first one of a new flowlet might end up being forwarded
to the old path, arriving out-of-order and causing the TCP to temporarily reduce its sending
rate. Similarly, for a stateful firewall (or a NAT), if an inbound packet is dropped because the
port is still closed (due to outdated NAT rules), the end-host application will likely detect the
event and ask for retransmission. For most practical cases of these applications, 1% of such
risk seems to be a reasonable tax to pay to avoid locking and get guaranteed throughput.

Another interesting case is that of cross-flow state updates. Considering the example of a
L2 learning switch in Section 2.1.2, where lookup-scope = [ethdst] and update-scope =
[ethsrc], here an inconsistency would cause one or few packets to be flooded or sent to an
old route. Now, regardless of the end-hosts asking for retransmission, in this case, it does not
make sense to ask for strict consistency, as a total order between packets of different flows is
not possible.

Assuming two flows A and B, where processing of packets of A updates the state of B and
vice versa, it makes sense to talk about consistency only if a total order between packets of A
and B is possible, i.e. if the switch is able to tell which packet of the two flows was originated
first. Indeed, as for the L2 learning switch, if A and B are flows originated at physically
distinct locations, each one affected by different network delays (i.e. different paths, queuing,
etc.), if the switch receives two packets A and B, at two separate ports at the same time, it is
very impractical to know which packet was generated first. The switch would have to take an
arbitrary decision on which packet to process first, possibly creating an inconsistency. Thus,
as a general rule, when dealing with applications based on cross-flow state handling, if the
two flows are generated by two different, separate processes, then the switch should not need
to enforce consistency via memory locking. Eventual consistency is enough, provided that a
consistent state is reached in a timescale smaller than one RTT.

On the other hand, strict consistency is a legitimate concern for network tasks such as
accounting. For example, considering an operator wanting to bill its customers per volume of
traffic sent. To this purpose, the operator can instantiate a byte counter in OPP. Assuming a
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feedback-loop of 10 clock cycles, and assuming a malicious user capable of having its packets
to be delivered at the switch in batches of 10, all processed back-to-back. Without memory
locking, the counter will account only for the last packet14, end the user billed only for a
tenth of her real usage. This application requires strict consistency.

The bottom line is that programmers of an OPP switch should be free of deciding their own
tradeoff between consistency and performance. Enabling memory locking brings consistency
guarantees but only predictable throughput, on the contrary, applications robust to eventual
inconsistencies permit line rate guarantees all the time.

2.3.5 Remarks

We discussed the case of a stateful packet processing pipeline implementing a feedback-loop,
i.e. when state reads are performed on the first stage, and writes on the last one. Data
hazards are caused when multiple packets travel in the pipeline, potentially accessing the
same memory portion. Prevention of data hazards is performed by stalling the pipeline,
where packets waiting to be served are stored in queues. By using simulations on real
traffic traces from both carrier and datacenter networks, we show that such model can be
applied with little or no throughput degradation, at the expense of added latency of 10-500
nanoseconds in most cases (for an RMT-like pipeline operating at 1 GHz with 640 bits data-
path width). The exact clock cycle budget and latency depends on the (i) pipeline data-path
width and clock frequency, (ii) the granularity of the flow key used to access state, and, most
important, (iii) the packet size and flow distribution of the traffic workload considered. The
case of global state seems to be hard to handle with feedback-loops longer than 1-2 clock
cycles, hence access to global state should always be performed atomically, i.e. in 1 clock
cycle, as in OPP.

2.4 Related work

Driven by the invention of SDN, many researchers have tried to extend network programma-
bility to the data plane, in an attempt to both improve OpenFlow-based SDNs and to enable
a new class of applications. Similar to OpenState and OPP, several works address the fea-
sibility of a programmable data plane that supports the execution of stateful data plane
algorithms. We review the most relevant of these works in this section.

14Both the first and last packet read the same flow context register, and add to that.
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Evolving OpenFlow

OpenFlow specification. OpenFlow, now at version 1.5, has undergone several exten-
sions, but none of this work has targeted the possibility to program stateful forwarding
behaviors. Rather, extensions have been devised to fix punctual shortcomings and accommo-
date specific needs, by incorporating very specific stateful primitives, such as meters for rate
control, group tables for fast failover or load balancing, synchronized tables for supporting
learning-type functionalities, etc. OpenState and OPP show how it is possible to extended
and generalize the stateless OpenFlow match+action abstraction to allow the programming
of custom stateful forwarding behaviors. It is worth mentioning that at the time of writing,
OpenState is being considered for standardization in the next version of the OpenFlow 1.6
specification.

DevoFlow. Curtis et al. [10] were among the first to show how the stateless nature of
the OpenFlow’s data plane and the inherent overhead on the control plane, cannot meet the
needs of high-performance networks, especially in data centers. They propose DevoFlow, an
extension to OpenFlow with dedicated stateful actions for multipath load balancing, rapid
rerouting after a failure, and triggers evaluated over counters. OPP and OpenState are more
generalized abstractions that allow to describe DevoFlow’s stateful functions and others.

FAST. Moshref et al. [45] propose FAST, a forwarding abstraction that shares the same
idea of OpenState and OPP of using state machines to modify the forwarding behavior of
switches. The FAST abstraction is also based on a feedback-loop between a state table and
a flow table. However, the authors limited the evaluation to a prototype software implemen-
tation (based on the learn action of Open vSwitch [46]), instead, we provide an evaluation
on the hardware feasibility of both OpenState and OPP, and the effects of the feedback-loop
on state consistency and performance. Finally, while the work on FAST probably happened
in parallel with OpenState, the latter was published before.

Abstractions for programmable high-speed switches.

The following works devise abstractions and hardware architectures for high-speed pro-
grammable data planes that offer capabilities well beyond OpenFlow.

RMT. Bosshart et al. [20] designed RMT, a first example of a high-performance pro-
grammable chip. RMT provides abstraction for a reconfigurable switching ASIC that can
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parse and modify arbitrary packet headers in a pipeline of match+action tables. Interest-
ingly, RMT shows that such programmability can be supported with performance comparable
to state-of-the-art fixed-function chips: it can process packets at a line rate of 640 Gbit/s.
However, RMT is a stateless forwarding abstraction, programmers cannot define stateful data
plane algorithms in RMT. The only statefulness is relegated to dedicated counters.

P4. Bosshart et al. [47] proposed P4, a domain-specific language to ease the programming
of chips like RMT. P4 allows to define forwarding behaviors in an hardware independent-
manner. Interestingly, the first version of the language v1.0 (also called P414) [48] allows the
definition of stateful behaviors via registers that can be accessed within the pipeline to keep
state (and manipulate it). In principle, one could use P4 to describe a behavior equivalent
to that of an OpenState or OPP stage.

However, P414 lacks of a consistency model, i.e. registers can be accessed at different stages
of the pipeline without providing means to arbitrate concurrent access. As a result, in P4
the only way in which state consistency, hence algorithm correctness, is guaranteed, is to
assume that the pipeline processes one packet at a time. Such assumption is of course not
acceptable, since pipelining of packets is required to provide high performance in hardware.

In the latest version of the specification v1.1 (also called P416) [49], a special @atomic an-
notation has been introduced to require a portion of the code to be executed atomically, i.e.
avoid data races that can ultimately generate state inconsistencies. However, it is up to the
target-specific compiler to implement mechanism to guarantee atomicity, while maximizing
throughput. To the best of our knowledge, we are not aware of any P4 target hardware
platform implementing such specification.

The OPP abstraction, while at a lower level than P4, allows one to define stateful forwarding
behaviors with strict consistency guarantees.

NetASM. Shahbaz et al. [50] proposed an intermediate representation (IR) for pro-
grammable data planes. IRs serves as an intermediate layer between high-level languages
and the low-level, specific instruction set of different kind of network devices: FPGAs, vir-
tual switches, and line-rate switches. NetASM models the low-level operations of a pipelined
packet processing architecture, providing means of expressing stateful behaviors.

NetASM captures the need of differentiating between per-packet and persistent states. Sim-
ilar to OPP, they provide abstractions that can identify and isolate state contexts, providing
modes of atomic execution on a per-context level. However, similar to P416, optimization of
the pipelined processing for atomic operations on persistent states, still requires a compiler to
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perform careful analysis of the program (e.g. data dependence analysis), a task that might
not be straightforward. To the best of our knowledge, we are not aware of any NetASM
compiler for a hardware platform implementing such optimizations.

OPP is an abstraction that instead forces the programmer to think and operate only on two
kind of persistent state context: per-flow state and global state. As shown in Section 2.3,
consistent pipeline access can be optimized by knowing in advance the flow key of each packet.
Ideally, an OPP stage could be used as a NetASM target, provided that a compiler is able
to derive the necessary “flow-key dependence” from a NetASM program. At this point, it
seems more straightforward to directly program the OPP stage.

Domino/Banzai. In [35], Sivaraman et al. propose Domino, a C-like language to program
stateful data plane algorithms, and Banzai, an abstract pipeline model that extends RMT
with support for stateful actions called atoms. This is probably the most related work to the
content of this chapter, as such it deserves a longer analysis.

A Domino compiler maps a high level program to a pipeline of Banzai atoms. A program,
if accepted by the compiler, is guaranteed to run at line rate with any traffic workload.
The authors show how Domino can describe a number of data plane algorithms that can be
then mapped to Banzai. However not all algorithms can be executed with Banzai, some will
be rejected by the compiler. Indeed, Banzai is based on a very conservative all-or-nothing
model: programmability is limited only to those atoms that can read-modify-write state in
only 1 clock cycle, i.e. without any feedback-loop. Clearly, the advantage of this approach is
that there is no need to implement blocking state arbitration mechanisms like in OpenState
or OPP. However, due to silicon technology constraints, there will always be instructions
(atoms) that cannot be executed in 1 clock cycle. This is especially true at the hardware
clock frequencies necessary for terabit switches, usually 1 GHz. It is hard to meet hardware
timing for some instructions. The same authors show how algorithms like CoDel [51] cannot
be supported as they require a square root operation, which is hard to implement in 1 clock
cycle at 1 GHz.

The OPP abstraction is fundamentally different because it offers a tradeoff instead of limiting
programmability: more complex processing, i.e. complex ALUs in the update logic block,
requires longer feedback-loops, which in some cases might not sustain line rate. However,
simulation results in Section 2.3.3 show how the maximum time budget allowable greatly
varies, up to 30 clock cycles (and more15) in normal traffic conditions, at the cost of added
latency of few hundreds of nanoseconds. Banzai instead, impose a very conservative time

15We limited the maximum pipeline depth to 30 clock cycles.
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budget for atoms of only 1 clock cycle.

Another limitation of Banzai, is that the model does not allow for shared-state between
atoms. State is unique to each atom. The consequence is that Domino does not permit
the definition of algorithms that require cross-flow state handling. As outlined by the same
authors, this limitation is due to the fact that memories attached to atoms do not support
multiple ports for read and writes (which instead OPP does), as this would require complex
wiring given the numerous distinct memories (one per atom), hard to support at 1 GHz.
This translates in the inability of a Domino programmer to implement a simple L2 learning
switch. That is, the Domino compiler would reject such program.

Finally, having state attached to atoms can limit the size of the available memory. To support
atomic read-modify-write operations, memories are required to run at the same frequency as
the pipeline. For example, at 1 GHz only memories in the order of tens of megabytes can
be supported. While in OPP the state table could be moved to a slower but larger memory
block. The tax to pay in this case is a feedback-loop with several clock cycles. The value of
the OPP abstraction is that it leaves freedom of choice in the tradeoff between performance,
i.e. throughput, and capabilities, i.e. more complex computations or memory.

TPP. Jeyakumar et al. [52] propose a more radical approach where end hosts can embed
small programs in packet headers that define processing in the switch data plane. Besides
the concern of security (malicious end hosts that inject harmful programs), a very inter-
esting aspect is the proposal of targeted ASIC implementations where an extremely small
set of instructions and memory space can be used to define packet processing. The ASIC
sequentially executes packet’s instructions on a tiny CPU (TCPU). The TCPU implements
a 5-stage pipeline, with memory reads and writes at different stages. TCPU does not enforce
strict consistency guarantees, except for a specific CSTORE instruction that allows atomic
state updates based on condition evaluation. The OPP update logic block allows for richer
processing, while providing strict consistency guarantees.

EFSM. The usage of EFSMs was initially inspired by [53] where EFSMs were used to
convey a desired medium access control operation into a specialized wireless interface card.
While the abstraction (EFSM) is similar, the context (wireless protocols versus flow process-
ing), technical choices (state machine execution engine versus table-based structures), and
handled events (signals and timers versus header matching), are not comparable.
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Other flexible switches. Another way of offering more flexible packet processing is that
of using software router implementations [54, 55] or network processors [56]. However, these
platforms are at least 10–100 times slower than programmable dedicated ASIC switches
[17, 18, 19]. On the other end, FPGAs allow for hardware programmability, but they are
significantly more expensive, while having lower performance than ASICs (lower total mem-
ory capacity, inefficient TCAMs simulation, and higher power consumption). For example,
recent solution like the Xilinx Virtex-7 [57], while forwarding traffic at nearly 1 Tbit/s, they
have a price of one order of magnitude above that of a programmable ASIC solution [58].
Both OpenState and OPP target dedicated ASIC implementations.

Other related work

Arashloo et al. [59] propose SNAP, a centralized programing model that permits the defini-
tion of stateful data plane algorithms at the network level, i.e. programs are written using a
one big switch abstraction of the network, instead of dealing with many switches. A compiler
then translates SNAP programs into switch configurations. OpenState and OPP could be
used as switch target for SNAP.

Sharma et. al [11] analyze the case of stateful packet processing architectures that have
limited state, support limited types of operations, and limit the type of per-packet computa-
tion, in order to forward packets at line rate. They provide approximation techniques for the
implementations of some tasks/building blocks common in many data plane algorithms, such
as metering, counting packets/bytes, slow arithmetic (e.g. multiplication or division), etc.
These techniques permit to mask the aforementioned hardware limitations while guarantee-
ing accurate, but not perfect, results. OPP tackles a similar problem but from a different
perspective. OPP design relaxes the line-rate constraints by allowing for more powerful
processing that does not require approximation techniques. Simulation results show that
line-rate can be achieved in most of the cases, but not always.
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2.5 Conclusions

In this chapter, we presented abstractions for a programmable data plane specifically targeted
for stateful processing, i.e. processing that requires to access and manipulate state maintained
by the fast-path. Handling state in the fast-path, as opposed to that managed at the slower
control plane (either centralized or switch local), permits this processing to happen at line
rate throughput, i.e. 10-100 Gbit/s on 10-100 ports.

Abstractions can be categorized into two levels. At a higher level, we have Mealy Machines
and EFSMs, two well-known abstractions in classical theory of state machines which turned
out to be useful to describe formally packet processing tasks. At a second, lower level, we
have abstract pipeline models for packet processing, OpenState and OPP, which also define
the data plane API used by the network OS or end users to program packet processing tasks.

Mealy Machines and OpenState are useful abstractions because they show how the well-
established OpenFlow match+action model can be easily extended to provide stateful capa-
bilities. The OpenFlow’s flow table itself can be used to describe a Mealy Machine entirely.
This translates in a hardware implementation that minimally departs from TCAM-based
OpenFlow pipelines, realized with commodity switch components such as a hash table with
collision handling (in our case a d-left with O(1) lookup/insert time) and a key extractor (as
simple as shift-and-mask operations of the packet headers).

However, Mealy Machines suffer from a well-known state explosion problem, limiting the set
of stateful tasks that can be described. As a rule of thumb, Mealy Machines, and hence
OpenState, fits well for those algorithms that require a reasonably small number of states
and transitions, those that can be contained in a TCAM, usually in the order of thousands.

EFSM is a more flexible model that extends and generalize Mealy Machines by adding custom
registers, i.e. variables, and computational capabilities. EFSMs permits a more compact
representation of Mealy Machines. The whole state space is partitioned in few symbolic state
labels, and the evolution of the program can be described inside a symbolic state by means of
arithmetic functions over registers. Clearly, this is a way more efficient representation than
Mealy Machines, where one need to enumerate all possible transitions and states (recall the
simple example of a packet counter).

OPP is an abstract pipeline model for packet processing that permits the execution of an
EFSM. OPP extends and generalizes OpenState by adding two more stages to the pipeline:
a condition block and an update logic block. The latter is a crucial piece of the whole
architecture, as it ultimately define which application can run in the fast-path. Essentially
this block is the flow processor of our system. We presented an instance of such processor
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designed for the OPP FPGA-based prototype, which allows for up to five parallel ALUs,
i.e. five parallel computations, where each ALU supports the basic instructions of a RISC
architecture plus three more advanced instructions (avg, var, ewma). We do not claim this
instruction set is the right one. Indeed we show how that is not suitable for at least one of
the OPP programming examples provided, i.e. rate estimation. Finding an architecture for
this processor that is expressive enough to allow the execution of a broad range of algorithms
is outside the scope of this thesis work.

However, we argued that OPP provides a convenient framework where to research and ex-
periment with such flow processor. OPP provides a structured way of managing different
kinds of state: per-flow, global and per-packet (i.e. headers and metadata) all fed to the flow
processor. Using a feedback-loop in the OPP pipeline model does not put any constraint on
the flexibility of the processor, but it can limit throughput. The length of the feedback-loop
(expressed in clock cycles) defines the tradeoff between programmability and performance.

This tradeoff is well known in computing architectures. It is well exemplified by the prolif-
eration of specialized processors in domains where general purpose CPUs cannot offer the
desired performance requirements, e.g. GPUs, DSPs, TPUs, etc. When it comes to packet
processing, most of the related work that we presented focuses on architectures that priv-
ileges line rate guarantees at all the time, instead of enhancing computational capabilities
or available memory for state. In this chapter we discussed ways to favor programmability,
with good, predictable, but not guaranteed, throughput.

OPP’s feedback-loop allows for concurrent reads and writes of the state memory at different
stages of the pipeline. If not controlled, e.g. by stalling the pipeline when needed, such
feedback-loop can cause inconsistencies in the processing of packets. When inconsistencies
are really an issue is an open discussion, that we addressed only marginally. While this
discussion evolves, it seemed necessary to propose a scheme to prevent this issue and evaluate
its impact on throughput.

We proposed to perform memory locking using few queues and a scheduler that admits only
one packet per flow in the pipeline. This avoids two consecutive packets of the same flow to
access the same entry in the state label concurrently. In the case of such an event, the second
packet would have to wait in line until its traveling companion has exited the feedback-loop
(and potentially updated the state). However, packets of different flows can be processed in
parallel without risk of inconsistencies as they access different portions of the memory.

In the end, we have made OPP a blocking architecture, i.e. an architecture which throughput
depends on the traffic workload, the worst case being traffic made of all packets of the same
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flow, all minimum size and arriving back-to-back16. By running simulations on real traffic
traces, we showed how both the actual risk of incurring in data hazards, and the throughput of
the memory locking scheme are highly variable. They depend on the level of flow aggregation
(i.e. the key scopes) and the traffic characteristics (packet size and flow distribution). Results
show that in most of the cases the time budget available to the feedback-loop is of several
cycles, between 9 and 30 (forced cap) for 5-tuples, causing throughput degradation smaller
than 1%, with 100% switch capacity utilization, i.e. a very uncommon near-worst scenario.
Similarly, results suggest that global state updates should be handled in no more than 1-2
clock cycles to sustain high throughput. This explains the decision in OPP of allowing only
atomic operations on the global state.

2.5.1 Future work

Flow processor design. Simulation results show that operations on global registers should
be performed atomically, i.e. in 1 clock cycle as in Banzai [35]. However, processing flow
states has more relaxed constraints. For example a reasonable time budget when processing
distinct 5-tuples is between 9 and 30 clock cycles. What can we do with so many cycles? Is it
enough? Do we need more? We leave for future work the answer to this question. Ideally, we
should come up with at least one design of a good enough flow processor, i.e. the update logic
block in OPP, that makes the best use of this budget, providing the most flexible instruction
set capable of executing a large number of processing tasks.

Programming language for OPP. Programming functions in OPP is hard. Or at least,
it is not straightforward as it could be with a high-level language. We believe that approaches
such as Domino [35] are very promising to address the issue. Introducing support for speci-
fying flow-level consistency requirements in such languages is indeed an interesting area for
future research. It is worth mentioning that the original paper on EFSMs [60] presents ways
of generating an EFSM description starting from a from a high-level C-like program. Gen-
erating one EFSM is relatively trivial, however, some tasks might require the pipelining of
multiple OPP stages, hence the sequential execution of multiple EFSMs. It is unclear how
an high-level algorithm could be split into multiple EFSMs.

Explore other implementation options. While we leveraged an FPGA-based hardware
implementation of OPP (with a sketch of its performance in ASIC) it would be interesting
to verify how different architectures would implement the OPP abstraction. For instance,

16In which case throughput would be scaled by a faction of 1/N where N is the length of the feedback-loop
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using NPUs, GPUs or even software running on general purpose CPUs. Especially for the
last case, while OPP proved to work well in heavily pipelined architectures, it is unclear if
such pipeline model could be efficiently implemented in software, e.g. by pipelining multiple
CPUs, or by intelligently steering traffic (looking at the flow key) between parallel CPUs.
The applicability of OPP with different architectures is an interesting area for future research.
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CHAPTER 3 APPLICATION: FAULT RESILIENCE

3.1 Introduction

Fault resilience mechanisms are among the most crucial traffic engineering instruments in op-
erator networks since they insure quick reaction to connectivity failures with traffic rerouting.

So far, traffic engineering applications for SDN, and failure recovery solutions in particular,
have received relatively little attention from the research community and networking indus-
try which has focused mainly on other important areas related to security, load balancing,
network slicing and service chaining. Not surprisingly, while SDN is becoming widely used
in data centers where these applications are crucial, its adoption in operator networks is still
rather limited. The support in current SDN implementations of features for failure recovery
is currently rather weak and traditional technologies, e.g. Multi-Protocol Label Switching
(MPLS) Fast Reroute, are commonly considered for carrier networks more reliable.

Most recent versions of OpenFlow include a mechanism, namely Fast-failover, for allowing
quick and local reaction to failures without the need to resort on a central controller. Open-
Flow Fast-failover group works only when a local alternative path is available from the switch
that detected the failure. Unfortunately, such an alternative path may not be available, in
which case the intervention of a controller, which reachability is not guaranteed, is required in
order to establish a rerouting at another point in the network. Failure detection and recovery
can be better handled locally in the fast-path assuming different sets of forwarding rules that
can be applied according to the observed network state.

We propose Spider1, a packet processing pipeline design based on OpenState, that allows the
implementation of failure recovery policies with fully programmable detection and rerouting
mechanisms directly in the switches’ fast-path. Spider is inspired by well-known legacy
technologies such as Bidirectional Forwarding Detection (BFD) [61] and MPLS Fast Reroute
(FRR) [62]. Differently from other OpenFlow-based solutions, detection and rerouting in
Spider are implemented entirely in the data plane, with no need to rely on the slower control
plane. As such, Spider allows very short recovery delays (< 1 ms), with a configurable tradeoff
between overhead and failover responsiveness.

The chapter is organized as follows. In Section 3.2 we discuss related work on fault resilience
in SDN. In Section 3.3 we introduce the Spider approach, outlining its pipeline design and
prototype implementation in Section 3.4. We provide experimental results in Section 3.5. In

1Stateful Programmable faIlure DEtection and Recovery
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Section 3.6 we discuss Spider w.r.t. legacy technologies and current SDN platforms. Section
3.7 concludes the chapter.

3.2 Related work on fault resilience in SDN

The concern of quickly recovering from failures in SDN has been already explored by the
research community with the general goal of making SDN more reliable by reducing the need
of switches to rely on the external controller to establish an alternative path. Sharma et al.
in [63] shows how hard it is to obtain carrier grade recovery times (<50ms) when relying on a
controller-based restoration approach in large OpenFlow networks. To solve this problem, the
authors propose also a proactive protection scheme based on a BFD daemon running in the
switch and integrated with the OpenFlow Fast-failover group type, obtaining recovery times
within 50ms. Similarly, Van Adrichem et al. shows in [64] how by carefully configuring the
BFD process already compiled in Open vSwitch, it is possible to obtain recovery times of few
ms. The case of protection switching is also explored by Kempf et al. in [65], here the authors
propose an end-to-end protection scheme based on an extended version of OpenFlow 1.1 to
implement a specialized monitoring function to reduce processing load at the controller.
Sgambelluri et al. proposed in [66] a segment-protection approach based on pre-installed
backup paths. Also in this case, OpenFlow is extended in order to enable switches to locally
react to failures by auto-rejecting flow entries of the failed interface. The concern of reducing
load at the controller is also addressed by Lee at al. in [67]. A controller-based monitoring
scheme and optimization model is proposed in order to reduce the number of monitoring
iterations that the controller must perform to check all links. A completely different and
more theoretical approach based on graph search algorithms is proposed by Borokhovich et
al. in [68]. In this case the backup paths are not known in advance, but a solution based
on the OpenFlow fast-failover scheme is proposed along an algorithm to randomly try new
ports to reach traffic demands’ destination. Similarly, McCauley et al. [69] propose AXE, a
scheme entirely based on the data plane (via a P4-based implementation), to route packets in
a L2 network using learning techniques, until they reach their destination. Interestingly, this
approach can be used also in the face of failures. However, AXE does not say how failures
are detected, instead it assumes the intervention of a separate, higher-level mechanism to
declare a link as failed.

To the best of our knowledge, we are unaware of other prior work towards the use of pro-
grammable stateful data plane abstractions to implement both failure detection and recovery
schemes directly in the fast-path.
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Figure 3.1 Example of the different forwarding behaviors implemented by Spider.
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3.3 Spider approach sketch

Spider provides mechanisms to perform failure detection and instant rerouting of traffic
demands using a stateful proactive approach, without requiring the intervention of the con-
troller. Interaction with the controller is needed only at boot time to provision switches’ state
tables and to fill flow tables with the different forwarding behaviors. No distributed protocols
are required, instead the different forwarding behaviors are handled at the data plane level
by labeling packets with special tags and by using the stateful primitives of OpenState. The
features implemented by Spider are inspired by well-known legacy protocols such as BFD and
MPLS FRR, in Section 3.6 we discuss more about the design of Spider w.r.t. these legacy
technologies.

Backup path pre-planning. Spider does not distinguish between node or link failures,
instead it defines with Fi a particular failure state of the network for which node i is unreach-
able. Given another node j, we can refer to the case of a “local” failure, when j is directly
connected (1 hop) to i, otherwise a “remote” failure when node i is not directly connected
to j. In Spider, the controller must be provided with the topology of the network and a set
of primary paths and backup paths for each demand. Backup paths must be provided for
each possible Fi affecting the primary path of a given demand. A backup path for state Fi
can share some of the primary path, but it is required to offer a detour (w.r.t primary path)
around node i. In other words, even in the case of a link failure making i unreachable from
j, and even other links to j might exist, Spider requires that backup paths for Fi cannot
use any of the links belonging to i. The reason of such a requirement is that, to guarantee
very short (< 1ms) failover delays, a characterization of the failure, i.e. understanding if it
is a node or a link failure, is not possible without the active involvement of the controller
or other type of slow signaling. For this reason Spider assumes always the worst case where
node i is down, hence it should be completely avoided. An example of problem formulation
that can be used to compute an optimal set of such backup paths has been presented in [70].
Finally, if all backup paths are provided, Spider guarantees instantaneous protection from
every single-failure Fi scenario, without requiring the controller to compute an alternative
routing or to update flow tables. However, the unfortunate case of a second or multiple
failures happening sequentially can be supported through the reactive intervention of the
controller.

Failure detection. Spider uses tags carried in an arbitrary header field (e.g. MPLS label
or VLAN ID) to distinguish between different forwarding behaviors and to perform failure
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detection and switch-to-switch failure signaling. Figure 3.1 depicts the different forwarding
scenarios supported by Spider. When in normal conditions (i.e. no failures), packets entering
the network are labeled with tag=0 and routed through their primary path (Figure 3.1a). To
detect failures, Spider does not rely on any switch-dependent feature such OpenFlow’s Fast-
failover, instead it provides a simple detection scheme based on the exchange of bidirectional
“heartbeat” packets. Spider assumes that as long as packets are received from a given port,
that port can be also used to reliably transmit other packets. When no packets are received
for a given interval, a node can request its neighbor to send an heartbeat. As shown in
Figure 3.1d, heartbeat can be requested by labeling any data packet with tag=HB_req. A
node receiving such a packet will perform 2 operations: i) set back tag=0 and transmit the
packet towards the next hop and ii) create a copy with tag=HB_reply and send it back on the
same input. In this way, the node that requested the heartbeat will know that its neighbor
is still reachable. Heartbeat are requested only when the received packet rate drops below a
given threshold. If no packets (either data or heartbeat) are received for more than a given
timeout, the port is declared DOWN. The state of the port will be set back to UP as soon as
packets will be received again on that port.

Fast reroute. When a port is declared DOWN, meaning a local failure situation towards a
neighbor node i, incoming packets are labeled with tag=Fi and sent to an alternative port
(Figure 3.1b), this could be a secondary port belonging to a detour or the same input port
where the packet was received. In the last case we can refer to a “bounced” packet. Bounced
packets are used by Spider to signal a remote failure situation. Indeed, they are forwarded
back along their primary path until they reach a node able to forward them along a detour.
In Figure 3.1c, when node 2 receives a bounced packet with tag=F4, it updates the state
of that demand to F4 and forwards the packet along a detour. Given the stateful nature of
Spider, state F4 is maintained by node 2, meaning that all future packets of that demand
with tag=0, will be labeled with tag=F4 and transmitted directly on the detour. In the
example, we can refer to node 2 as the “reroute” node of a given demand in state F4, while
the portion of the path comprised between the node that detected the failure and the reroute
node is called the “bounce path”.

Path probing. Failures are temporary, for this reason Spider provides also a probe mech-
anism to establish the original forwarding as soon as the failure is resolved. When in state
Fi the reroute nodes periodically generate probe packets to check the reachability of node i.
As for heartbeat packets, probe packets are not forged by switches or the controller, instead,
they are generated simply duplicating and labeling the same data packets processed by a
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reroute node. In Figure 3.1e, node 2 duplicates a tag=0 packet. One copy is sent on the
detour with tag=F4, while the other is labeled with tag=Pi and sent on the original primary
path. If node i becomes reachable again, it will bounce the probe packet towards the reroute
node. The reception of a probe packet Pi from a node with a demand in state Fi will cause
a state transition that will re-enable the normal forwarding on the primary path.

Flowlet-aware failover. Spider also addresses the issue of packet reordering that might
occur during the remote failover. Indeed, in the example of Figure 3.1c, while new tag=0
packets arrive at the reroute node, one or more (older) packets may be traveling backward
on the bounce path. Such a situation might cause packets to be delivered out-of-order at
the receiver, with the consequence of unnecessary throughput degradation for protocols such
as TCP. For this reason Spider implements a flowlet-aware switching scheme [23]. While
Spider is already aware of the failure, the same forwarding decision is maintained for packets
belonging to the same burst; in other words, packets are still forwarded (and bounced) on
the primary path until a given idle timeout (i.e. interval between bursts) is expired. Such a
timeout can be evaluated by the controller at boot time and should be set as the maximum
RTT measured over the bounce path of a given reroute node for state Fi. Effectively waiting
for such an amount of time before enabling the detour, maximizes the probability that no
more packets are traveling back on the bounce path, thus minimizing the risk of mis-ordered
packets at the receiver.

3.4 Implementation

In this section we present the design of the pipeline and the configuration of the flow tables
necessary to implement Spider. The pipeline (Figure 3.2) is based on 4 different flow tables.
An incoming packet is first processed by table 0 and 1. These two blocks perform only
stateless forwarding (i.e. legacy OpenFlow), which features will be described later. The
packet is then processed by stateful tables 2 and 3. These tables implement respectively
the Remote Failover FSM, and the Local Failover FSM described later. Packets are always
processed by table 2 which is responsible for rerouting packets when the primary path of a
given demand is affected by a remote failure. If no remote failure has been signaled to table
2, packets are submitted to table 3 which handles the failover in the case of local failures
(i.e. directly seen on local ports). State updates in table 2 are triggered by bounced packets,
while table 3 implements the heartbeat-based detection mechanisms introduced in Section
3.3. Although table 1 is stateless and for this reason doesn’t need to maintain any state, it
is responsible for triggering state updates on tables 2 and 3. State updates from one table
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Figure 3.2 Spider pipeline architecture.

to another further in the pipeline are possible by using packet metadata fields. Indeed, one
table can set a special value that if matched in the second table will trigger a state transition.

Table 0. It performs the following stateless processing before submitting packets to table
1:

• For packets received from an edge port (i.e. directly connected to a host): push an
initial MPLS label to store the tag.

• For packets received from a transport port (i.e. connected to another switch): write
the input port in the metadata field (used later to trigger state updates from table 1).

Table 1. It handles the processing of those packets which requires only stateless forwarding,
i.e. which forwarding behavior doesn’t depend on states:

• Data packets received at an edge port: set tag=0 , then submit it to the next table.

• Data packets received at the last node of the primary path: pop the MPLS label, then
directly transmitted on the corresponding output port (where the destination host is
located).

• Packets with tag=Fi: directly transmitted on the detour port (unique for each demand
and value of Fi); set tag=0 on the last node of the detour before re-entering the primary
path. An exception is made for the reroute node of demand in state Fi, in this case
the routing decision for these packets is stored in table 2.

• Heartbeat requests (tag=HB_req): packets are duplicated, one copy is set with tag=HB_reply
and transmitted through the input port, the other is set with tag=0 and then submitted
to the next table.

• Heartbeat replies (tag=HB_reply): dropped (used only to update the state on table 3).



72

• Probe packets (tag=Pi): directly transmitted on the corresponding output port be-
longing to the probe path (i.e. the primary path, unique for each demand and value of
Pi) (e.g. Figure 3.1e).

Finally, table 1 performs the following state updates on table 2 and 3:

• For all packets: a state update is performed on table 3 so to declare the port on which
the packet has been received as UP.

• Only for probe packets: a state update is performed on table 2 to transition a flow
state from Fi to Normal.

Table 2 (Remote Failover FSM). Figure 3.3 shows a simplified version of the FSM. A
state is maintained for each different traffic demand served by the switch. As outlined by
the lookup and update scopes, in this case the origin-destination demands are identified by
the tuple of Ethernet source and destination address, a programmer might specify different
aggregation fields to describe the demands (e.g. IP source/destination tuple, or the 4-tuple
transport layer protocol). Given the support for only single-failure scenarios, transitions
between macro states Fi are not allowed (state must be set to Normal before transitioning
to another state Fi). Figure 3.4 depicts a detailed version of the Remote Failover FSM with
macro state Fi exploded. At boot time the state of each demand is set to the default value
Normal. Upon reception of a bounced packet with tag=Fi, the latter is forwarded on the
detour and state set to Fault signaled. The flowlet-aware routing scheme presented before,
is here implemented by means of state timeouts. When in state Fault signaled, packets
arriving with tag=0 (i.e. from the source node) are still forwarded on the primary path.
This behavior is maintained until the expiration of the idle timeout δ1, i.e. after no packets
of that demand have been received for a δ1 interval, which should be set equal to the RTT

Normal 
(default)

F1

Fn

…

lookup-scope=[eth_src, eth_dst]
update-scope=[eth_src, eth_dst]

Figure 3.3 Macro states of the Remote Failover process.
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Figure 3.4 Detail of the macro state Fi for the Mealy Machine of the Remote Failover process.

measured on the bounce path2.To avoid a situation where the demand remains locked in
state Fault signaled, a hard timeout δ2 > δ1 is set so that the next state Detour ready
is always reached after at most a δ2 interval. When in state Detour enabled, packets are
set with tag=Fi and transmitted directly on the detour. In this state a hard timeout δ5

assures the periodic transmission of probe packets on the primary path. The first packet
matched when in state Need probe is duplicated: one copy is sent on the detour towards its
destination, another copy is set with tag=Pi and sent to node i through the original primary
path of the demand. If node i becomes reachable again, it responds to the probe by bouncing
the packet (tag=Pi is maintained) to the reroute node that originated it. The match of the
probe packet at table 1 of the reroute node will trigger a reset of the Remote Failure FSM
to state Fault resolved. When in state Fault resolved, the same flowlet-aware routing
scheme of state Fault signaled is applied. In this case an idle and hard timeout are set in
order to maintain the alternative routing until the end of the current burst of packets. In this
case δ3 must be set to the maximum delay difference between the primary and the backup
path. After the expiration of δ3 or δ4, the state is set back to Normal, hence the transmission
on the detour stops and packets are submitted to table 3 to be forwarded on their primary
port.

2Assuming the OpenState target hardware supports state timeouts with microseconds or less resolution.
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Figure 3.5 Mealy machine of the Local Failover process.

Table 3 (Local Failover FSM). Figure 3.5 depicts the FSM implemented by this ta-
ble. Here flows are aggregated per output port (encoded in the metadata field)3 , meaning
that all packets destined to the same port will share the state. This FSM has two macro
states, namely UP and DOWN. When in state DOWN, packets are forwarded to an alternative
port (belonging to a detour or to the input port in case of bounced packets, according to
the pre-planned backup strategy). At boot time all flows are in default state UP: need
heartbeat, meaning that a heartbeat packet must be generated and a reply received, so
that the port keeps being declared UP. Indeed, the first packet matched in this state will be
sent with tag=HB_req and the state updated to UP: heartbeat requested. While in this
state, packets will be transmitted on the primary output port, until a hard timeout δ7 ex-
pires, in which case the port will be declared DOWN. The timeout δ7 represents the maximum
interval admitted between the generation of the heartbeat request and the reception of the
corresponding reply. Every time a packet (either a data, probe or heartbeat) is received at
table 1 the state of that port is reset to UP: wait. The Local Failover FSM will stay in this
state for an interval δ6 (hard timeout), after which the state will be set back to UP: need
heartbeat. Hence, δ6 represents the inverse of the minimum received packet rate required

3In the prototype OpenState implementation of Spider based on OpenFlow 1.3, matching on the outport
is not supported, for this reason we can use the metadata field to carry this information across tables.
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for a given port to avoid the generation of heartbeats. If the timeout δ7 expires, the port is
declared DOWN. Here, packets will be tagged with Fi (where i is the node directly connected
through the port) and forwarded on an alternative port. Similarly to the Remote Failover
FSM, a hard timeout δ5 assures that probe packets will be generated even when the port is
declared DOWN.

In conclusion, Table 3.1 summarizes the different timeouts used in Spider. We emphasize
how, by tweaking these values, a programmer can explicitly control and impose i) a precise
detection delay for a given port (δ6 + δ7), ii) the level of traffic overhead caused by probe
packets of a given demand (δ5 and δ6), the risk of packets reordering in the case of a remote
failover (δ1, δ2, δ3, and δ4). Experimental results based on these parameters are presented in
the following section.

OpenState-based prototype

A prototype implementation of Spider is available at [71]. It uses a modified version of
the OpenFlow Ryu controller [8] extended to support OpenState [72]. For the experimental
performance evaluation we used Mininet [73] with a version of the CPqD OpenFlow 1.3
softswitch [74] as well extended with OpenState support.

3.5 Performance evaluation

Flow entries analysis

While detection and recovery times are guaranteed and topology-independent, a potential
barrier for the applicability of the solution is represented by the number of flow entries, which
can be limited by the switch memory and depends on the network topology. We can evaluate
the resources required by a switch to implement Spider in terms of flow table entries and
memory required for flow states. Let us start by defining as D the maximum number of
demands served by a switch, F the maximum number of failures that can affect a demand
(i.e. length of the longest primary path), and P the maximum number of ports of a switch.
We can easily model the number of flow entries required by means of Big-O notation as
O(D × F ). Indeed, for table 0 the number of entries is equal to P ; for table 1 in the worst
case we have one entry per demand per fault (D × F ); for table 2 we always have exactly
7 ×D × F , and for table 3 exactly P × (3 + 2 ×D). In total, we have a number of entries
order of P +D × F +D × F +D × P and then of D × F +D × P . Assuming F >> P we
can conclude that the number of entries is O(D × F ).
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Table 3.1 Summary of the configurable state timeouts of the Spider pipeline

Timeout Type Description Value
δ1 Idle Flowlet idle timeout before

switching packets from the
primary path to the detour

Maximum RTT measured on the
bounce path for a specific de-
mand and Fi

δ2 Hard Maximum interval admitted for
the previous case before enabling
the detour

> δ1

δ3 Idle Flowlet idle timeout before
switching packets from the
detour to the primary path

Maximum end-to-end delay dif-
ference between the backup path
and the primary path

δ4 Hard Maximum interval admitted for
the previous case before re-
enabling the primary path

> δ3

δ5 Hard Probe generation timeout Arbitrary interval between each
periodic check of the primary
path in case of remote failure

δ6 Hard Heartbeat requests generation
timeout

Inverse of the minimum rx rate
for a given port before the gener-
ation of heartbeat requests and
the corresponding replies

δ7 Hard Heartbeat reply timeout before
the port is declared down

Maximum RTT for heartbeat re-
quests/replies between two spe-
cific nodes (1 hop)

Table 3.2 Number of flow entries per node.

Net D E C min avg max E2 ×N
5x5 240 16 9 443 775 968 6400
6x6 380 20 16 532 1115 1603 14400
7x7 552 24 25 795 1670 2404 28224
8x8 756 28 36 1069 2232 3726 50176
9x9 992 32 49 1368 2884 4509 82944
10x10 1260 36 64 1188 3584 6153 129600
11x11 1560 40 81 1409 4249 7558 193600
12x12 1892 44 100 1185 5124 9697 278784
13x13 2256 48 121 2062 6218 11025 389376
14x14 2652 52 144 1467 7151 15436 529984
15x15 3080 56 169 3715 8461 16347 705600
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If we want to evaluate the complexity according to network size, we can observe that in the
worst case F = N = E + C, where N is the number of nodes, E edge nodes and C core
nodes. Assuming a protection scheme that uses disjoint paths, which is the most demanding
in terms of rules since all Fi states are managed by the ingress edge nodes, and a full traffic
matrix, we have D = E(E − 1) ≈ E2. In the worst case we have a single node managing all
faults of all demands, where the primary path of each demand is the longest possible, thus
F = N . In this case the number of entries will be O(E2 ×N).

In Table 3.2 we report the values for grid networks n × n where edge nodes are the outer
ones of the grid and there is a traffic demand for each pair of edge nodes. In addition to the
O(E2×N) values, we include in the table the values per node (min, max, average) calculated
for the case of end to end protection where the primary path is the shortest (number of hops)
and the backup path is the shortest node disjoint from the primary. The number of rules
is generated according to the Spider implementation described in Section 3.4 and available
at [71]. We can observe that even the max value is always much smaller than the values
estimated by the complexity analysis, moreover, we can safely say that these are reasonable
numbers well below the capabilities of programmable chips such as RMT. Obviously, for
more efficient protection schemes based on a distributed handling of states Fi (e.g. segment
protection), we can expect an even lower number of rules per node.

As far as the state table is concerned, table 2 for node n needs Dn entries, where Dn is the
number of demands for which n is a reroute node. For the width of the table we need to
consider the total number of possible states that is 1+4Fn, where Fn is the number of remote
failures managed by n. Similarly, for stage 3 there are only 5 possible states and a number
of entries equal to P .

Detection mechanism

To evaluate the effectiveness of the Spider heartbeat-based detection mechanism, we have
considered a simple experimental scenario of two nodes and a link with traffic of 1000 pkt/sec
sent in one direction only. Figure 3.6 shows the number of packets lost after a link failure
versus δ6 (heartbeat interval) and δ7 (heartbeat timeout). As expected, the number of losses
decreases as the heartbeat interval and timeout decreases. In general, the number of dropped
packets depends on the precise instant the failure occurs w.r.t. δ6 and δ7. The curves reported
are obtained averaging the results of 10 different tries with failures reproduced at random
instants.
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Figure 3.6 Packet loss (data rate 1000 pkt/sec)

Overhead

Obviously, the price to pay for a small number of losses is the overhead due to heartbeat
packets. However, Spider exploits the traffic in the reverse direction for failure detection,
and this reduces the amount of heartbeat packets. For the same two nodes scenario in the
previous section, we have evaluated the overhead caused when generating a decreasing traffic
profile of 200 to 0 pkt/sec, with different values of δ6. Results are reported in Figure 3.7.

We can see that, as long as the reverse traffic rate is higher than the heartbeat request
rate (1/δ6), zero or low signaling overhead is observed. When the traffic rate decreases, the
overhead due to heartbeats tends to compensate for the missing packets up to the threshold.
However, this overhead does not really affect the network performance since it is generated
only when reverse traffic is low.

Comparison with a reactive OpenFlow approach

We now compare a Spider-based solution with a strawman implementation corresponding to
a reactive OpenFlow (OF) application able to modify the flow entries only when the failure is
detected and notified to the controller. We have considered the network shown in Figure 3.8a.
For the primary and backup paths, as well as the link failure indicated in the figure, we have
considered an increasing number of demands with a fixed packet rate of 100 pkt/sec each
one. For the OF case, we used the detection mechanism of the Fast-failover (FF) group type
implemented by the CPqD softswitch, and different RTTs between the switch that detects
the failure and the controller. For Spider we used a heartbeat interval (δ6) of 2 ms and
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Figure 3.7 Heartbeat overhead with decreasing data traffic 200-0 pkt/sec and heartbeat
request rates (inverse of δ6) of 10, 40, 70, and 100 pkt/sec.
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timeout (δ7) of 1 ms. For all the considered flows, no local backup path is available: in the
Spider case the network is able to autonomously recover from the failure by bouncing packets
on the primary path, while in the OF case the controller intervention is needed to restore
connectivity.

The results obtained are shown in Figure 3.8b. We can see that the losses with Spider
are always lower than OF. Note that, even if the heartbeat interval used is small, this is
not actually an issue for the network since in the presence of reverse traffic the overhead is
proportionally reduced so that it never affects the link available capacity. The value of the
timeout actually depends on the maximum delay for heartbeat replies to be delivered, which
in high speed links mainly depends on propagation and can be set to low values by assigning
maximum priority to heartbeat replies. In the case of OF, the number of losses increases
as the switch-controller RTT increases. Obviously, losses also increase with the number of
demands since the total number of packets received before the controller installs the new
rules increases as well.

3.6 Discussion

3.6.1 Comparison with BFD

BFD [61] is a widely-used protocol to provide fast failure detection that is independent from
the underlying medium and data protocol. When using BFD, two systems, i.e. forwarding
entities, establish a session where control packets are exchanged to check the liveness of the
session itself. In the common case the session to be monitored represents a bidirectional
link, but it could also be a multi-hop path. The main mode of detecting failures in BFD
is called Asynchronous Mode, where a session endpoint sends BFD packets at a fixed rate.
A path is assumed to have failed if one system stops receiving those packets for a given
detection timeout. Both packets send rate and detection timeout can be enforced by a
network administrator to produce short (in the order of µs4) guaranteed detection delays.
Optionally, an endpoint can explicitly request the other to activate/deactivate transmission
of control packets using the so called Demand Mode. In both modes, the ability of a party to
detect a failure depends on the ability of the device-local control plane to keep track of the
elapsed time between the received control packets, and hence on the liveness of the control
plane itself. For this reason, a third way of operation, namely the Echo Function is defined
in order to test the forwarding plane of a device. When using this function, special Echo
packets are emitted at arbitrary intervals by the control plane of one of the two parties,

4The BFD specification at [61] defines timestamps with µs granularity
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with the expectation to have these packets looped-back by the forwarding plane of the other
endpoint.

In the context of SDN, the devices’ control plane is separated and logically centralized at a
remote, geographical distant location. Current SDN platforms [6, 7] already provide means
of detecting failures that are similar to BFD’s Asynchronous Mode, where specially forged
packets are requested to be emitted by the remote controller from a specific device port
(via OpenFlow packet-out) and expected to be received (via OpenFlow packet-in) by the
adjacent node in a given interval. However, due to the latency and overhead of the SDN
control channel, it is hard to guarantee the same short detection delays as in BFD.

Spider improves SDN by providing ways to detect failure without relying on the slow control
channel. Indeed, in Spider, whose mode of operation based on heartbeats resembles the
BFD’s Echo Function, detection delays can be enforced by appropriately setting timeouts
δ6 and δ7, which are unique for a given switch and port. Moreover, we argue that Spider
represents an improvement over BFD. Indeed, Spider operations are performed solely on the
fast-path, i.e. at TCAM speed, differently from a BFD implementation based on the slower,
device-local control plane. As such, the minimum detection delay of a target implementing
Spider depends for the most part on the timestamp granularity provided by the target and
the propagation delay between two devices. The other general advantage of Spider over BFD
is that it does not require the definition of a separate control protocol, rather the same data
packets are recycled to piggy-back heartbeats using an arbitrary header field (a MPLS label
in our prototype implementation).

Some disadvantages of Spider over BFD are:

• Security: BFD defines means to authenticate a session to avoid the possibility of a
system to interact with an attacker falsely reporting session states. In other words,
all control and echo packets that cannot be validated as coming from a safe source
are discarded. On the contrary, Spider does not use any mechanism to check for the
the validity of the tag carried by data packets. For this reason, Spider tags should be
used only inside the same authoritative domain, dropping any incoming packet at the
edge carrying any unexpected header, and controlling physical access to the network
to prevent the intrusion of an attacker.

• False positives: BFD allows to prevent false positives (i.e. erroneously declaring a
session down) by setting a minimum number of consecutive dropped packets before
declaring the session down. In fact, in presence of transmission errors, some control
packets might be unrecognized and echo packets not looped-back. On the contrary, in
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Spider failure state for a port is triggered after the first missed heartbeat request, that
could be caused by a corrupted heartbeat request, thus causing unnecessary fluctuation
between the backup and primary path (due to the probe mechanism). A similar mech-
anism could be implemented by using OPP flow registers to keep count of the number
of consecutive dropped packets. However, heartbeat packets are smartly requested only
when input traffic is low. In a real network, we can expect that most of the time the
traffic will be flowing in both directions of the same link, hence the transmission of
heartbeat packets itself is a quite rare event.

• Administrative down: BFD allows a network operator to administratively report a
link as down, e.g. for maintenance, thus triggering a fast reaction of the device. On
the contrary, the implementation of Spider presented here, allows down state only as a
consequence of a failure detection event. However, the implementation could be easily
extended to accept an additional state both in the Local Failover and Remote Failover
FSMs to declare a flow or port as affected by failure without triggering the periodic link
probing process. In this case the controller should be able to directly add or replace an
entry in the state table.

• Down state synchronization: In some cases, only 1 of the 2 directions of a link might
break, an event that is common in fiber optics. When using Spider, the party which
incoming direction is down will detect first the failure after the configured detection
timeout, thus stopping sending traffic on that port, after which the other party will
trigger the down state after another detection timeout, resulting in twice the time
for the failover to take place. BFD instead, applies a mechanism for session state
synchronization, such that when a first endpoint detects the failure, it notifies the
other of the down event, in which case (if one direction of the two is still up) the other
endpoint will immediately trigger the failover procedure. In this case, the LS FSM
could be extended to emit such an extra signaling message (via the tagging of the first
packet matching the DOWN: need probe state) and to trigger a forced down state upon
receiving such a packet.

3.6.2 Comparison with MPLS Fast Reroute

Fast Reroute (FRR) [62] is a technique used in MPLS networks to provide protection of
Label-switched Paths (LSP)in the order of tens of milliseconds. Similarly to Spider, backup
LSPs are established proactively for each desired failure scenario, such that, when a router
detects a failure on one of its local ports, it swaps the label at the top of the MPLS stack
with the one of the detour LSP, forwarding the packet to an alternative port. Packets are
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forwarded on a detour until they reach a merge point with the primary path, where the label
is swapped back to the primary LSP. RSVP-TE signaling is used to establish backup LSPs
between routers in a distributed fashion.

Differently from FRR, Spider does not need a separate complex signaling protocol (which
is described in around 30 pages in the original FRR RFC [62]) to establish backup paths.
Instead, computation and provisioning of both primary and backup paths is performed by
the remote controller with all the benefits of the SDN logically centralized paradigm, such
as access to a global topology graph and a centralized API to provision forwarding rules on
switches. It must be noted that in the proposed prototype implementation of Spider, MPLS
labels are used for the sole purpose of carrying failure tags Fi, and must not be confused
with their role in LSPs as the only parameter of the router forwarding function. In fact,
in Spider the forwarding function is independent on the data protocol and can be based on
arbitrary header fields. For example, as in our implementation, the output port of each packet
is decided looking at the 3-tuple comprising Ethernet source address, Ethernet destination
address, and failure tag.

When an alternative path is not available from the node that detected the failure, Spider
allows to bounce back packets on the primary path until they reach a predefined reroute
node, in which case a detour path is enabled. A similar approach is implemented by FRR
when used in combination with another RSVP-TE extension for crankback signaling [75].
Differently from Spider, data packets are dropped before the failure point, while a separate
failure notification is sent back on the primary path. Signalization in Spider is performed
using the same data packets, with the added benefit of avoiding dropping extra traffic, a
feature particularly useful when dealing with geographical distant nodes (e.g. 100 Mbytes
otherwise lost at 10 Gbit/s with 80 ms signalization latency).

3.6.3 Data plane reconciliation

A stateful data plane seems to disagree with the architectural principles of OpenFlow and
SDN, where all the state is handled at the logically centralized control plane, so that devices
do not need to implement complex software to handle state distribution. In fact, when dealing
with legacy distributed protocols (e.g. OSPF), an important concern is how to handle state
reconciliation, for example after a device reset or failure, in which case the state of the device
(e.g. topology graph and link metrics in OSPF) might not be in sync with the rest of the
network devices, causing loops or black holes.

Handling data plane reconciliation with OpenFlow is relatively easy given the stateless nature
of the flow tables. Indeed, modern SDN platforms [6, 7] follow an approach were applications
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operate on a distributed flow rule data store that is then used to keep the data plane in
sync, for example periodically polling the devices’ flow tables so that missing flow rules are
re-installed and extraneous ones removed. Spider forwarding decisions are based not only on
flow rules but also on flow states, maintained by the switch and updated as a consequence
of packets and timeout events. From here the question if this additional state needs to
be synchronized (e.g. notify the controller of every state transition) and re-applied during
reconciliation.

We argue that the reliability of Spider operations does not require support for flow state
synchronization and reconciliation. In other words, when not used, the flow states are guar-
anteed to converge to the expected value in relatively short time with no risk of traffic loops
or black holes. In fact, the per-flow state maintained by both the Remote and Local Failover
FSMs can be learned by observing the incoming traffic (tag value) and does not depend on
other means of state distribution. Moreover, the correctness of a forwarding decision of a
switch does not depend on the flow state of any other switch.

As an example, we can analyze the case of switch j implementing Spider being reset, e.g. the
content of the state and flow table wiped out during a situation of remote failure, i.e. while
serving some flows on a detour, and hence in macro-state Fi for the Remote Failover FSM. If
we assume the controller is able to re-install the flow rules in a time shorter than the detection
delay configured on the upstream switch connected to j, so that it will not generate a failure
state Fj itself, we end up with switch j forwarding traffic according to an empty state table,
i.e. all flows in default state for both the Remote and Local Failover FSM. In this case, when
a packet of a traffic flow affected by the failure state Fi arrives, it will be initially forwarded
as in Normal state on the primary path, meaning that the switch directly connected to the
unreachable node i will bounce back the packet appropriately tagged with Fi, triggering a
state transition to Fault signaled on switch j, and hence initiating the failover procedure.
Similarly, if node j is affected by a local failure state Fj, resetting the state table of the
Local Failover FSM will have as a consequence that packets will be forwarded according to
the default state (UP: need heartbeat), initiating the failure detection procedure, finally
converging to the expected failure state. The tax to pay in this case is a few more packets
dropped, depending on the detection delay configured for that node. If the time to re-
provision the switch configuration (flow tables) after a reset takes more than the detection
delay, this situation can be interpreted as a multiple concurrent failure for which a rerouting
of flows is required to be performed by the controller.
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3.6.4 P4-based implementation

In order to prove the feasibility of the Spider pipeline design, an implementation of it is also
provided using the P4 language. This implementation can be found at [76] and is based on
openstate.p4, a library that can be re-used by other P4 programs to easily express stateful
packet processing using an table-based abstraction equivalent to OpenState.

The P4 based implementation of Spider has been tested with the reference P4 software switch
BMv2 [77]. In the following we discuss some concerns related to the feasibility of Spider and
openstate.p4 on a P4-based programmable target:

• State table: it is needed in order to maintain per-flow states, indexed according to
a flow key that is extracted from each packet according to a given lookup-scope or
update-scope, depending on the type of access performed (read or write). The state
table can be implemented using P4’s register arrays. Hash functions can be used to
efficiently map flow keys to the limited number of memory cells. Obviously, when
using hash functions the main concern is related to collisions, where multiple flows
can end up sharing the same memory cell. In the case of Spider, collisions should be
properly handled to avoid the situation of a flow being forwarded according to a failure
state set by another flow. Such an issue can be solved either by defining a collision
handling mechanism in P4 or by delegating such a function to an “extern” object. The
latter is a mechanism introduced in the more recent versions of the P4 language that
allows a programmer to reference target-specific structure, for example, a key-value
store which uniquely maps flow keys to state values, transparently handling collisions.
Instead, openstate.p4 provides native support for a trivial collision handling scheme
by implementing an hash table with chaining that allows a fixed number of key-value
couples to share the same index. We do not provide any insight about the performances
of the approach, rather we use it to prove to feasibility of Spider for a P4 target.

• State timeouts: the ability of Spider to detect failures depends on the ability to
evaluate timeout events (e.g. no packets received for on a given port for δ7 time).
State timeouts in openstate.p4 are implemented comparing the timestamp of incom-
ing packets with the idle or hard timeout value stored in the state table. However,
packets timestamping is not a feature supported by the P4 specification itself. In our
implementation, we rely on the ability of the BMv2 target to add a timestamp metadata
to incoming packets. Moreover, the failure detection delay depends on the timestamp
granularity, for example a target offering seconds granularity will not be able to detect
failures in less than a second.
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3.7 Conclusions

In this chapter we presented Spider, a new approach to failure recovery in SDN that provides
a fully programmable abstraction to application developers for the definition of the re-routing
policies and for the management of the failure detection mechanism. The use of a stateful
data plane abstraction, minimizes the recovery delay while guaranteeing the failover even
when the controller is not reachable. We believe that the proposed approach can close one of
the gaps between the required and supported features that at the moment are slowing down
the adoption of SDN in carrier grade networks for telco operators.

Spider has been implemented using OpenState and P4. The prototype implementation has
been used to validate the proposed scheme and to experimentally assess its basic performance
in a few example scenarios. The results have shown the potential advantages of Spider with
respect to fully centralized applications where the controller is notified of failure events and
is required to modify all affected forwarding rules.
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CHAPTER 4 APPLICATION: FAIR BANDWIDTH SHARING

4.1 Introduction

It has been reported that TCP traffic represents 80-90% of the packets and bytes flowing
today in the Internet[78]. It follows that most of the traffic sources adapt their sending rate
according to the perceived available bandwidth. Indeed, TCP is the instantiation of an impor-
tant design choice that contributed to the success of the Internet: to leave congestion control
to the end-systems, thus permitting a relatively simpler implementation of the interconnec-
tion devices. TCP rate control algorithms, such as Additive-Increase-Multiplicative-Decrease
(AIMD), help in maintaining a fair allocation of network resources on a per-flow basis. In
the simplest case of multiple TCP streams, all experiencing the same RTT and sharing the
same FIFO queue, each flow tends to occupy the same portion of the link bandwidth [79].

However, relying only on end-systems to guarantee fairness is not enough due to ill-behaving
users and issues intrinsic to TCP-like algorithms. Example of such situations of unfairness
are: (i) applications that open a large number of parallel TCP connections, e.g. peer-to-peer,
or that tweak TCP to get better performances; (ii) non-TCP-like protocols, i.e. protocols
that do not respond to congestion signals such as drops, and (iii) the dependence of standard
TCP to the round-trip times (RTT) [79].

For these reasons, most Internet service providers (ISPs) tend to enforce direct control over
their customers, by throttling their traffic at the network edge, limiting the maximum band-
width of each user to a feasible, but static network allocation. This approach allows ISP to
leave their core and interconnections with other ISPs uncongested all the time. The downside
of such static bandwidth allocation is that the excess bandwidth remains unused, even in
common situations of very low usage, such at night.

Researchers have proposed solutions that enforce a more dynamic bandwidth allocation in
the network interconnection devices. In these approaches, instead of capping the maximum
sending rate at all times, network devices are able to redistribute the unused capacity (if
any) to those users asking for more. The trick here is to design a bandwidth enforcement
scheme that (i) guarantees that all users can obtain at least the level of service they paid for,
i.e. minimum rate guarantees, and (ii) when unused capacity is available, that is shared by
all users, with no one prevailing on others. Today such bandwidth sharing scheme should be
performed on a link of 10-100 Gbit/s.

Fair Queuing (FQ) scheduling [80, 81] is the textbook approach to enforce almost perfect
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fairness among different traffic sources, independently of the behavior of the end-hosts. A
switch implementing FQ works by assigning users to different queues, where a user is an
arbitrary aggregate of packets, e.g. with the same IP source address or the same TCP/UDP
5-tuple. FQ provides high precision of bandwidth partitioning, but unfortunately, such preci-
sion comes at a considerable expense: (i) the time to process a packet depends on the number
N of active users, precisely O(log(N)); and (ii) N per-user queues are required.

The first limitation is important with today’s throughput requirements which drastically
reduce the maximum processing time allowed for a packet, e.g. a switching chip with aggre-
gate throughput of 1 Tb/s has a time budget of 1 ns to process a minimum size packet. The
second limitation affects switching hardware implementations. Here the number of queues
impacts both the memory requirements and the combinatorial logic necessary to implements
the circuitry of the scheduler1. As a consequence, it is hard to scale FQ implementations
to hundreds, thousands or more users. For this reason the number of queues available in
commercial hardware switches is usually bounded to less than 10 [82]. This consideration is
also at the base of legacy quality of service (QoS) approaches such as DiffServ, where traffic
is aggregated into few classes.

To solve this problem, we designed a bandwidth enforcing scheme in which both time and
implementation complexity do not depend on the number of active users N . To this purpose
we do not modify the scheduler, instead we use a widely-deployed strict priority (SP) sched-
uler with only few queues. Fairness can be enforced by dynamically assigning priorities to
users according to the sending rate history of those. We call this design FDPA (Fair Dynamic
Priority Assignment). In FDPA, packets belonging to a user whose arrival bitrate is equal or
less than its fair share are given priority over those users generating traffic at higher rates.
FDPA does not provide precise bit-level or packet-level fairness, but it approximates a fair
repartitioning over longer timescales, in the order of few RTTs.

FDPA can be implemented using abstractions for stateful programmable data planes such
as OPP. The scalability of FDPA does not depend on the number of queues, but instead
on the number of rate estimators that can be instantiated in the switch. Precisely, while
the circuitry to implement a rate estimator can be shared among many flows2, the switch is
required to maintain per-user state, i.e. the measured rate. Hence, the only limit of FDPA
is the memory available in a switching chip. In the case of OPP, this limit is represented by
the maximum size of the flow context table.

1For a scheduler to be work-conserving, i.e. to serve a packet if at least one can be served, all N queues
must be examined at the same time. As such, the number of wires to implement such a structure depends
on N .

2In a typical pipelined hardware architecture, that would be a stage of the pipeline.
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In this work we address the feasibility of the FDPA approach by performing experiments on
a 10 Gbit/s testbed using a software prototype implementation. Results show that FDPA
produce fairness comparable to other schemes such as Deficit Round Robin (DRR). We found
that such an approach produce a tradeoff between fairness and throughput, in which one or
the other are penalized.

The rest of the chapter is organized as follows. We begin by reviewing the related work in
Section 4.2, we then introduce the FDPA design in Section 4.3 and discuss its implementation
options with programmable data planes. In Section 4.4, we present the experimental results
from the 10 Gbit/s testbed, before concluding with a discussion on open questions and future
work in Section 4.5.

4.2 Related work on enforcing fair bandwidth sharing

To reduce implementation and time complexity of FQ, a number of algorithms have been
proposed in the literature. Deficit Round Robin (DRR) [83] is probably the most well known
and widely-deployed algorithm. DRR was proposed to address the time complexity of FQ
achieving O(1) execution time per packet. However, DRR still requires per-user queues.

To overcome DRR’s limitations, further approximations have been proposed. Stochastic Fair
Queuing (SFQ) [84] is a probabilistic variant of FQ. Here traffic streams are hashed onto a
smaller number of queues, and the hash function is periodically perturbed to minimize the
time where two users collide onto the same queue. Here the quality of the approximations
depends on the number of queues, and the perturbation interval. Finally, Approximate
Fair Dropping (AFD) [85] employs a form of active queue management (AQM) by dropping
packets before being stored on a simple FIFO queue. Dropping decisions are based on the
recent history of packet arrivals, with higher probability of drop for users sending at higher
rates. AFD has been used in several switch and router platforms at Cisco Systems [86].

FDPA shares the same design principles of AFD: (i) avoid using per-user queues in favor of
per-user soft state, and (ii) achieve bandwidth partitioning by opportunistically dropping or
delaying packets rather than by enforcing rate by using scheduling. However, while the AFD
design allows for an efficient implementation in a fixed-function ASIC, its realization with
programmable data plane primitives might not be straightforward. Specifically, AFD requires
the implementation of a shadow buffer in which packets are removed at random. Instead as
it will be discussed in Section 4.3.2, FDPA requires much simpler primitives already exposed
by programmable data plane abstractions.

Finally, a more recent approach named PIFO has been proposed to address the need of a
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programmable scheduler [87]. However, similarly to fixed-function schedulers, in PIFO the
number of distinct flows that can be served with a fair queuing discipline is bounded by the
number of queues. In their proposed design, such bound is 2048 in total or 32 per port in a
64 port switch. While one could imagine dedicating all 2048 queues to a port, the authors
do not provide any evaluation of their scheduler with realistic traffic traces.

4.3 FDPA design

In this section we describe the design of a packet forwarding pipeline implementing FDPA.
For the sake of clarity and without loss of generality, we assume a switch with rate controlled
only on one egress port.

Figure 4.1 depicts the design of the pipeline. Packets are first classified per user and then
processed by a rate estimator which measures the arrival bitrate of the specific user. Packets
are then stored in one of the Q priority queues such that the higher is the arrival rate, the
lower will be the priority. A strict priority scheduler (SP) serves queues in priority order:
packets of priority q are dequeued only if all other queues with higher priority are empty,
where q = 1 is the highest priority.

The measured arrival rate for a given user at a given point in time, determines an active
“band” for that user. Packets arrived in band Bq will be assigned priority q (Figure 4.2).
The first band B1 represents the minimum guaranteed portion of the link capacity allocated
to each user, for this reason a feasible allocation requires N×B1 ≤ LinkCapacity. Moreover,
to further penalize ill-behaving users, each queue has a different size Lq, with smaller values
for low priority queues.

4.3.1 Rationale

To discuss the rationale behind this design, it is useful to first analyze the case of a scheduler
with only 2 queues (Q = 2), high priority and low priority, and then move to the case of
more queues.

Two priorities. When congestion occurs, those users sending packets below their fair share
are prioritized over others sending at higher rates. Given the limited size of the queues,
packets with low priority are delayed and in the case of a full buffer, dropped upon arrival.
Such an event signals the TCP source to reduce the transmit rate. With FDPA, this reduction
is expected to continue until the transmit rate hits the first band, in which case the user is
prioritized again. Assuming that all sources are TCP-like and produce long-lived flows, under
severe congestion we can expect traffic sources to shape their transmit rate around their fair
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share, i.e. the upper threshold of the first band. Swapping queues frequently, can cause packet
reordering at the receiver, confusing TCP congestion control and affecting throughput.

In the case of non-elastic sources, e.g. constant bitrate, B1 represents the maximum rate
that a source can send with guarantees of bounded latency and minimum drop probability.
Indeed when a user hits the first band, packets are always served by the same, maximum
priority queue, hence preventing disruption from other TCP sources when aiming to transmit
at higher rates.

However, if some sources are using less than their fair share or because not all the link
capacity has been reserved, i.e. N × B1 < LinkCapacity, using only 2 priorities does not
enforce equal distribution of the excess bandwidth. Indeed, assuming that capacity has been
allocated for many users, but only few of them are active and sending TCP traffic, we can
expect that those users will be competing in the same low priority FIFO queue, without any
guarantee of fairness.

More priorities. To enforce equal distribution of the excess bandwidth, we need to intro-
duce more priorities, so that the more a source increases its rate, the less priority it will get
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with respect to other users. When all sources are TCP-like, following the same rationale of
the previous case, we can expect the transmit rate of each user to converge to a fair share
that considers the excess bandwidth. Such fair share will lay in a rate band other than B1

Figure 4.3 illustrates the expected behavior of 2 TCP-like sources competing for the excess
bandwidth. In this example, one source (1) is ill-behaving as it uses a more aggressive rate
control algorithm3; the other source (2) is well behaving, as for each congestion signal it
halves its transmit rate. At steady state, both sources tend to share the same queue with
priority 3, however the different rate-control behavior that they implement causes them to
oscillate around different average values. Indeed, (1) always tends to increase its rate until it
falls to the 4th band, which cause its packets to timeout as the scheduler will spend as much
time as needed to serve packets of higher priority; (2) instead has higher drop probability
when it falls in band B3, as here the queue is monopolized by packets of (1). However,
by always assuring a higher priority for lower rates, increases of (2) are always guaranteed
at least until hitting the lower threshold of band B3. Intuitively, we can expect that the
difference between the average transmit rate of both sources (∆rate) will be smaller with
narrower bands, hence producing a fairer allocation.

Unfortunately, as in the case with only 2 priorities, multiple narrower bands can increase the
risk of packet reordering, affecting the overall throughput. This generates a tradeoff between
fairness and throughput.

4.3.2 Implementation with programmable data planes

Classifying packets per user is easy and can be done using a match+action table common to
many data plane abstractions. Using such tables one can match on specific header fields and
write the corresponding user ID on the packet’s metadata.

Estimating the bitrate of a flow might be tricky at high speed. Using the OPP configuration
for rate estimation introduced in Section 2.2.3, the switch needs to maintain for each user
a byte counter and a timestamp of the last time the rate estimation was updated. Updates
of the rate values are triggered by packets arrival if the timestamp of the packet exceeds a
predefined interval, i.e. the minimum interval over which the average bitrate is evaluated.
The rate is then computed dividing the number of bytes by the interval between the packet’s
timestamp and the stored timestamp. While division is an operation that might be hard to
perform in a line rate switch, in [11] it is shown how this operation can be approximated
with good precision using primitives available in the update logic block of OPP and other

3The behavior of this source is similar to the case of a user opening multiple TCP streams.
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Figure 4.3 Example of 2 TCP sources competing for the excess bandwidth when using more
than 2 priorities.

programmable data planes. A second match-action table can then be used to direct packets to
the different queues according to the estimated rate band, written in the packet’s metadata.

Along with programmable data planes, it should be noticed how FDPA can be implemented
in switches supporting standard OpenFlow v1.3+. Indeed, OpenFlow define “meters” that
can be configured with different bands as defined by FDPA, such that packets hitting a given
rate can be marked using the the DSCP field, used later to assign packets to priority queues.

Finally, priority schedulers are a common structure available today in switching hardware.

4.4 Experimental results

To prove the applicability of the proposed approach, we implemented a software-based pro-
totype of FDPA and used it with real traffic at 10 Gbit/s, evaluating the effects of different
bands assignment on both fairness and throughput.

Iperf client Iptables
+ TC Open vSwitch

TCP traffic 
generation

Rate estimation 
+ band tagging 
+ RTT emulation

Enqueuing 
based on
band tags

Iperf 
server

Fairness/
throughput 
measures

TC

Priority 
scheduling

Client Switch Server

PFQ 
capture

TCP 
endpoint

Figure 4.4 Software-based processing pipeline used in experiments.
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Testbed

For the experiments we used 3 desktop machines with 8-core Intel Xeon E51660V3 CPUs
(3.0GHz), equipped with multiple Intel 82599 10G NICs. One machine acts as a switch with
4 10G ports, another machine is used to generate traffic from 2 ports, while the last is used
to both generate and receive traffic form different ports. Each machine runs a Debian 9.0
Stretch based on a Linux Kernel v4.9.16.

Figure 4.4 shows the processing pipeline used to emulate FDPA. We used iperf to generate
TCP traffic, Linux’s iptables to estimate the rate and tag packets accordingly. In FDPA,
rate estimation should happen in the switch, however, to simplify the prototype implemen-
tation we decided to move it to the client machines. We used Linux’s tc (Traffic Control)
to emulate different RTTs at the clients and to perform priority scheduling at the switch.
Open vSwitch was used to steer packets to the different queues based on the band tags.
Finally, we used PFQ [88], a framework for accelerated packet I/O, to measure the bitrate
of each user. Both clients and server use TCP Cubic, with the default parameters found in
the Linux Kernel v4.9.16, changing only the memory available to TCP buffers to allow for a
large number of connections. The MTU of all interfaces was set to 1500 bytes.

We configured traffic sources to experience an emulated RTT of around 5 ms with maximum
0.25 ms of variable jitter with 25% correlation. TCP increases its sending rate at RTT
timescales, hence for FDPA to promptly respond to rate variations, the estimation interval
should be in the order of few RTTs. For this reason we used estimation intervals of around
30 ms.

Metrics

We measured the quality of an experiment using two metrics: (i) the aggregate throughput
(TPut) normalized over the link capacity, i.e. bounded between 0 and 1, and (ii) the Jain’s
Fairness Index (JFI) [89]. The JFI is a popular fairness measure defined as:

JFI = (∑
n xn)2

N ·∑n x2
n

where xn is the normalized rate of a user n andN is the total number of users. The normalized
rate xn is defined as:

xn = MeasuredRaten

FairRaten

In the experiments each user is assigned the same fair share. The JFI is bounded between 0
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and 1, where 1 is a fair distribution and 0 is a discriminating one. FDPA should maximize
both TPut and JFI.

Results

Figure 4.5 shows the results obtained from the experiments. Long-lived TCP traffic was
generated from a varying number of users, 50, 100 and 2004, and varying the number of TCP
connections per user based on 4 scenarios: (i) all users have the same number 1 of TCP
connections, i.e. they all well-behave, (ii) when 1/4th of the users mis-behave by opening 10
parallel TCP connections, (iii) when half of the users mis-behave, and (iv) when each user
has a number of connections uniformly distributed between 1 and 10.

When testing FDPA, we vary the number and size of rate bands. The following notation
describes a specific FDPA configuration: F (FirstBand + NumBands ∗ BandSize), where
FirstBand is the size of B1, NumBands is the number of bands following the first one,
each one of size BandSize, except for the last one that has infinite size, i.e. up to the link
capacity. FirstBand and BandSize are expressed as a proportion of the fair share, e.g.
F (1 + 4 ∗ 0.5) describes a configuration where the first band is exactly the fair share, and
the other 4 bands have size half of the latter. We performed experiments with FirstBand ∈
{0.75, 0.85, 1, 1.15, 1.25}, NumBands ∈ {3, 4} and BandSize ∈ {0.25, 0.33, 0.50, 0.67, 0.75}.
For the queue size we found that the following sizing provides the best performances: Lq =
min(20, BDP/qq), where BDP is the bandwidth delay product RTT ×LinkCapacity. With
RTT = 5ms, the sizing for 5 queues is L1 = 4166 (MTU-size packets), L2 = 1041, L3 = 154,
L4 = 20, and L5 = 20.

Samples of the average bitrate measured at the server are collected over a 1-second interval,
each second at the same time for all sources, for 50 seconds. Sampling starts 30 seconds after
launching iperf, allowing all TCP sessions to converge to their average bitrate. For each
second, a value of JFI and TPut is computed. The plots show the median of the JFI and
TPut samples for each experiment, along with a 80% confidence interval. For each traffic
scenario, only three configurations of FDPA are plotted, the one with the best TPut, the one
with the best JFI, and the one that maximizes the product of both. Moreover, a scatter plot
(black dots) of all JFI and TPut values obtained in all FDPA configurations explicitly shows
a clear tradeoff between TPut and JFI.

Results are compared with the following cases:
FIFO. All users are served using 1 FIFO queue of size L = BDP , e.g. 4166 MTU-size

4We put a limit to 200 as the experimental setup suffers of performance degradation when emulating more
users
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1 TCP conn. per user 25% 1 conn., 75% 10 conn. 50% 1 conn., 50% 10 conn. Unif. range 1-10 conn.
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Figure 4.5 FDPA experimental results.
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packets with RTT = 5ms. This is our worst case, when fairness is not enforced.
DRR. The switch performs DRR scheduling with per-user queues, using the tc-drr imple-
mentation provided as part of the Linux’s tc suite. DRR represent the best case scenario,
however it is important to note that while it is still feasible to provide a large number of
per-user queues in software, the same does not apply to hardware switches, where an a priori
instantiation of hardware resources (memory and logic circuitry) is required. Remember that
the majority of today switching chips provide 10 or less output queues per port [82].

As expected, FDPA holds the promise of enforcing fairness w.r.t. a single FIFO queue in all
scenarios, producing results comparable to the ideal case of a DRR scheduler with per-user
queues. However, fairness comes at the cost of throughput. Configurations of FDPA that use
narrower bands provide more fairness, between 0.95 and 0.99 in most cases. Unfortunately,
these configuration systematically incur in throughput degradation, down to 0.85 in some
cases, when for the same scenario DRR achieves almost perfect fairness with throughput
comparable to that of a FIFO queue, i.e. optimal around 0.98, or little less around 0.95.
Vice versa, larger bands improve throughput, at the expense of fairness.

4.5 Discussion

How to improve throughput? Preliminary analysis show that throughput degradation is
mostly caused by packet reordering due to frequent changes in the queue assignment, which
confuses the TCP congestion control. The problematic part is when users are prioritized
again. Here a burst of consecutive packets is swapped from a low priority queue to a higher
priority one, with the effect of having subsequent packets being transmitted before those ar-
rived earlier. A solution to this problem could be that of using a flowlet-based approach[23],
in which queue assignments are valid for the whole burst of packets, where bursts are sepa-
rated by an idle time usually comparable to the RTT. This would increase the probability of
having all packets from the low priority queue sent before the arrival of the new burst. As
shown in Section 2.2.3, flowlet detection is easily implemented in OPP. We leave exploring
such a more advanced design for future work.

Rate estimation. An alternative to the average estimators used in the experiment are
token buckets-based estimators. The advantage of token buckets lays in their ability to
immediately respond to rate spikes and bursts of packets, while an average estimator leaves
enough time to aggressive user to congest the first queue. The downside of frequent band
variations correspond to higher risk of packet reordering, and preliminary results on our
testbed using token buckets show that this is the case. However, we believe that using token
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buckets along with per-flowlet queue assignment could help in improving both fairness and
throughput. We leave this for future work.

How to compute the fair share? We can envision an external controller (or switch-
internal control plane) that periodically adjusts band sizes by counting the number of active
users. In the case of a service provider network, where the number of active users varies
slowly, the frequency of the estimation process is not a limit for the scalability of the approach.
Indeed, using many priorities helps in absorbing temporary rate spikes and minor variation
of the fair share. How to efficiently implement user estimation is outside the scope of this
work, however, it must be noted that a controller could use the same counter instantiated at
the switch for the rate estimation process.

4.6 Conclusions

In this chapter we introduced FDPA, a design for a packet forwarding pipeline to enforce
approximate fair bandwidth sharing among many users sharing the same link of fixed capacity.
FDPA is based on abstractions for stateful programmable data planes such as OPP. We
performed experimental evaluation on a 10 Gbit/s testbed. Results show that performance
are close to that of an ideal DRR scheduler with dedicated queues per user (50, 100, 200).
We identified a tradeoff between fairness and throughput, in which throughput is penalized
when configuring FDPA for more fairness. Preliminary analysis show that packet reordering
is the cause of such effect. We identified potential solutions to such problem that we leave
for future work.
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CHAPTER 5 CONCLUSION

Ideally, network operators would like to buy a switch or router and use it for many years,
without paying for expensive infrastructure upgrades to support new protocols and features.
It would be much more convenient for them to optimize or re-purpose the infrastructure by
simply pushing software or firmware upgrades.

SDN enables programmability of the network’s control plane. Operators can implement new
routing protocols, or network-level services such as network virtualization, by simply writing
software on top of a network OS. OpenFlow abstracts the data plane through an API that
exposes forwarding tables. The network OS controls the devices’ behavior by dynamically
changing forwarding rules. OpenFlow is a powerful abstraction of the data plane that fostered
the adoption of SDN.

However, the data plane is responsible for many other tasks on top of simple OpenFlow-like
forwarding. Operators would like to program those tasks too. Data plane programmabil-
ity would enable network owners and researchers to make a more efficient use of network
resources, by programming for instance more advanced load balancing schemes than legacy
ECMP; to reduce network congestion, by tweaking and optimizing existing rate control mech-
anisms; to take better decisions on where to route packets, by offloading fine-grained measure-
ments directly in the data plane; to minimize the effects of failures on premium customers,
by programming devices to detect failures more quickly. Most of these tasks require the data
plane to keep and manipulate state.

Recent advances in the design and implementation of programmable switching chips provide
enhanced flexibility of the forwarding tasks. Programmers can define new headers to match
and operate on non-standard protocols. However, they marginally address the problem of
programming stateful data plane algorithms, and if they do, they favor line rate guarantees
at all times, instead of enhanced flexibility.

In Chapter 2, we presented two abstractions for programmable data planes that are specif-
ically targeted for stateful processing, providing programming examples, discussing their
feasibility for line rate hardware implementations, and evaluating their performance on real
traffic traces.

OpenState extends OpenFlow by permitting to express forwarding behaviors as Mealy (finite
state) Machines operating on flow-states. The main finding of OpenState is that the same
OpenFlow’s flow table can be used to describe a Mealy Machine entirely, provided support
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for a state memory and means to quickly lookup/update such memory. The hardware imple-
mentation of OpenState departs minimally from that of a TCAM-based OpenFlow pipeline
and can be realized with commodity switch components. The second abstraction, OPP, tries
to address a key limitation of Mealy Machines, namely state explosion. In OPP, processing
tasks can be defined using EFSMs, which extend and generalize Mealy Machines by adding
support for custom flow registers, i.e. variables, and computational capabilities. Similarly,
OPP extends and generalizes the OpenState packet processing pipeline by adding means to
evaluate conditions on per-flow registers and, most important, to perform computations on
different kinds of state: per-flow, global and per-packet (i.e. headers and metadata).

OPP (and so OpenState) is characterized by an important design choice: to allow for a
feedback-loop in the pipeline. Such loop is both a blessing and a curse. It permits to use flow
processors, i.e. OPP’s update logic blocks, of arbitrary flexibility, i.e. taking several clock
cycles, but it also represents a harm for state consistency. The feedback-loop is what makes
OPP different from the related work. Indeed, OPP implicitly favors programmability over
line rate guarantees at all the time with any traffic workload, rather performance in OPP
are just predictable. To prevent state inconsistencies, we designed a memory locking scheme,
thus making OPP a blocking architecture. To convince the reader that there is not much
harm in such design choice, we implemented a simulator and run it using real traffic traces,
from both carrier and datacenter networks. Results show that differentiating state contexts
is useful to enable different levels of programmability, i.e. it is safe to permit feedback-loops
of several clock cycles when dealing with per-flow states, while access to global states should
be always performed in 1 cycle.

We left for future work the design of a flow processor that is expressive enough to execute
a large number of processing tasks, the design of a programming language for OPP, and the
implementation of OPP on other architectures, such as general purpose CPUs, GPUs, or
NPUs.

The devised abstractions should be able to execute existing data plane algorithms and pro-
mote the definition of new ones. In the remaining chapters we presented two novel applica-
tions of OpenState and OPP: Spider and FDPA.

Spider, introduced in Chapter 3, is based on OpenState and permits to detect and react
to link/node failures at fast-path timescales, i.e. micro/nanoseconds, by routing packets to
predefined backup routes, also in the case of distant failures, i.e. enabling a detour at a node
that is several hops distant from the failure. Detection of failures in Spider is heavily based on
OpenState’s state table timeouts. Interestingly, Spider provides functionalities equivalent to
legacy control plane protocols such as BFD and MPLS Fast Reroute, but without the need of
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a control plane (excluding the provisioning of the primary and backup paths). Detection and
rerouting happen entirely in the data plane. Spider is an example of how a simple extension
to OpenFlow such as OpenState can open to a whole new dimension of programmability in
SDN.

FDPA, introduced in Chapter 4, is based on OPP and allows to enforce approximate fair
bandwidth sharing among many TCP-like senders. This is a feature desirable in networks
where unused capacity could be redistributed, without the risk of having some users obtaining
more than others. FDPA is an example of how an abstraction like OPP can help trading one
complexity for another. Scalability of classical fair queuing scheduling algorithms is limited
by the available number of per-user queues. We propose an approach in which per-user queues
are traded with per-user state, necessary to perform rate estimation in FDPA. Results on a
10 Gbit/s testbed show that performance of FDPA is comparable to that of an ideal DRR
scheduler with per-user queues. During the experiments, we identified a tradeoff between
fairness and throughput, in which throughput is penalized when configuring FDPA for more
fairness. Preliminary analysis shows that packet reordering is the cause of such effect. We
identified potential solutions to such problem that we left for future work.
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