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Sommario

ISistemi di raccomandazione sono sicuramente tra le applicazioni di mag-
giore successo del data mining e machine learning; molte innovazioni
tecnologiche significative su questo fronte sono state sviluppate negli

ultimi due decenni. La ricerca accademica in questo campo è stata forte-
mente sospinta dalla disponibilità di grandi dataset composti da matrici
user-item. La vasta maggioranza di questi lavori si è quindi focalizzata
su di un’astrazione del problema basata su singole interazioni user-item. Il
problema della raccomandazione si presenta quindi come completamento
di matrici fortemente sparse, in cui le interazioni user-item mancanti de-
vono essere predette.

Ciò nonostante, in molti domini si registrano multiple interazioni di tipo
diverso tra user e items nel corso del tempo. La maggior parte degli algo-
ritmi ottimizzati per questa formulazione del problema non sono in grado
di utilizzare l’informazione contenuta nelle sequenze ordinate di interazioni
che sono frequentemente registrate nei log di molte applicazioni reali. Es-
istono inoltre domini nei quali i prodotti devono essere raccomandati in
un certo ordine. Anche queste situazioni non sono gestite dagli algoritmi
basati sulle sole matrici user-item.

Per rispondere a queste esigenze, è stata recentemente introdotta una
nuova classe di algoritmi detti sequence-aware recommender systems (SARS).
Questi algoritmi possono gestire l’informazione contenuta nei log di inter-
azioni degli utenti senza dover ricorrere ad ulteriori astrazioni come quella
della matrice user-item.

Questa tesi si focalizza sullo studio e definizione di nuovi algoritmi di
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raccomandazione sequence-aware e sulle rispettive applicazioni. Viene in-
izialmente presentata una caratterizzazione dettagliata del problema, delle
sue relazioni e differenze rispetto ad altri problemi di raccomandazione cor-
relati (nello specifico, la raccomandazione basata sulla matrice user-item,
i sistemi di raccomandazione context-aware e time-aware). Viene infine
fornita un’analisi dello stato dell’arte, degli algoritmi esistenti e delle pro-
cedure di valutazione.

La seconda parte si focalizza su due problemi specifici, quelli di rac-
comandazione session-based e session-aware. Questi problemi hanno rice-
vuto particolare attenzione da parte della comunità solo di recente data la
loro rilevanza in molti scenari pratici. Viene inizialmente presentato uno
user-study atto a validare l’utilità di algoritmi sequence-aware personaliz-
zati nel contesto delle prenotazioni di hotel. Dopodiché vengono presentati
due nuovi algoritmi per la raccomandazione session-based e session-aware.
In questi scenari è disponibile la sequenza di azioni più recenti dell’utente
(quelli relativi alla sessione corrente); l’obiettivo è quello di determinare
gli item rilevanti per l’utente nella sessione corrente, considerando anche
gli interessi storici dello stesso quando questi sono disponibili. A tale scopo
abbiamo studiato modelli basati su Recurrent Neural Network (RNN), mod-
elli neurali studiati espressamente per processare sequenze di informazioni.
I nostri esperimenti mostrano che nuovi sistemi di raccomandazione sequence-
aware basati su RNN sono efficaci in numerosi scenari applicativi reali,
quali la generazione di raccomandazioni session-based basate su descrittori
dei prodotti, la personalizzazione delle raccomandazioni session-based per
utenti che riutilizzano il servizio, la raccomandazione di stazioni musicali e
la generazione automatica di playlist. Questi modelli ci hanno permesso di
studiare anche l’importanza dell’ordine delle trace in una playlist, un prob-
lema ancora largamente irrisolto per la comunità del Music Information
Retrieval.

Gli approcci presentati in questa tesi sono stati validati utilizzando di-
versi grandi dataset di domini differenti, quali video, annunci pubblicitari e
lavorativi, hotel e musica. Viene inoltre presentato un nuovo dataset per la
raccomandazione musicale all’interno delle sessioni di ascolto degli utenti.
I risultati sperimentali mostrano la validità dei modelli sequence-aware pre-
sentati in questa tesi.
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Abstract

RECOMMENDER SYSTEMS are one of the most successful applica-
tions of data mining and machine learning technology in practice
and significant technological advances have been made over the

last two decades. Academic research in the field in the recent past was
strongly fueled by the increasing availability of large datasets containing
user-item rating matrices. Many of these works were therefore based on
a problem abstraction where only one single user-item interaction is con-
sidered in the recommendation process. The recommendation problem is
therefore framed as matrix-completion, in which the missing entries in the
user-interaction matrix have to be predicted.

In many application domains, however, multiple user-item interactions
of different types can be recorded over time. Most algorithms that are op-
timized for this particular problem setting cannot make use of the rich in-
formation that is hidden in the sequentially-ordered user interaction logs
which are often available in practical applications. In addition, there are
application domains, in which the items have to be recommended in a cer-
tain order. Such situations are typically not covered as well in research
setups that rely on a user-item rating matrix.

To address this problem, in the recent years researchers have developed
a new breed of algorithms named sequence-aware recommender systems
(SARS). Such algorithms can handle the information in user interaction
logs by design without resorting on abstractions such as the user-item ma-
trix.

This thesis focuses on the study of novel algorithms for sequence-aware
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recommender systems and their applications. We first provide a charac-
terization of the problem; we highlight the relations and differences with
respect to other related recommendation problems, namely recommenda-
tion based on matrix-completion, and with respect to context-aware and
time-aware recommender systems. We provide an in-depth review of the
state of the art, a categorization of the existing approaches and evalua-
tion methodologies. We then focus on the problems of session-based and
session-aware recommendation. These problems have gained attention re-
cently, given their proximity with many real-world recommendation sce-
narios. We first validate the usefulness of personalized sequence-aware
recommendations in session-based scenarios through a user study run in
the hotel booking domain. We then present novel sequence-aware algo-
rithms for session-based and session-aware recommendation. In such a
setting, we are given the sequence of the most recent actions of a user and
the problem is to find items that are relevant in the context of the session
and, when historical information on the user is available, that also match
the user’s general interests and taste. In particular, we investigate models
based on Recurrent Neural Networks (RNN), the neural network config-
uration of choice for processing sequentially-ordered data. We show the
effectiveness of sequence-aware recommenders based on RNNs in several
real-life scenarios, namely session-based recommendation with rich prod-
uct descriptors, personalized session-based recommendation for returning
users, music station recommendation and automated playlist generation.
We also investigate the importance of the track order in automated playlist
generation, shedding some light on this long debated issue by the Music
Information Retrieval community.

In our experimental evaluation, we empirically evaluate the proposed
models on large datasets from several domains, namely video, classified
advertisement, hotel, job and music recommendation. We also present a
novel large-scale dataset for music recommendation over user listening ses-
sions. The empirical results show that our sequence-aware models are in-
deed effective in several session-based recommendation scenarios in terms
of recommendation accuracy.
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CHAPTER1
Introduction

1.1 Motivations

Recommender Systems (RS) are software applications that support users
in finding items of interest within larger collections of objects, often in a
personalized way. Today, such systems are used in a variety of application
domains, including for example e-commerce or media streaming, and re-
ceiving automated recommendations of different forms has become a part
of our daily online user experience. Internally, such systems analyze the
past behavior of individual users or of a user community as a whole to de-
tect patterns in the data. On typical online sites, various types of relevant
actions of a user can be recorded, e.g., that a user views an item or makes a
purchase, and several of the actions of a single user may relate to the same
item. These recorded actions and the detected patterns are then used to
compute recommendations that match the preference profiles of individual
users.

Along with the success of RS in practice, academic research in the field
has made tremendous progress in the past decade in terms of the develop-
ment of new techniques to accurately predict the relevance of items for indi-
vidual users. In terms of the data that is used in academic settings to design
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Chapter 1. Introduction

and evaluate recommendation algorithms, the most common setup is to use
(publicly available) datasets that contain a user-item rating matrix. Such a
matrix contains at most one explicitly-stated or implicitly-derived prefer-
ence statement for each user-item combination, and the computational task
of a recommender often is to compute the missing values in the matrix.

While such a research setup helps to abstract of the particularities of a
domain and supports the reproducibility of research results, it potentially
also oversimplifies the underlying problem. Furthermore, algorithms that
are optimized for this particular problem setting cannot make use of the
rich information that is hidden in the sequentially-ordered user interaction
logs which are often available in practical applications. In addition, there
are application domains in which the items have to be recommended in a
certain order. Such situations are typically not covered as well in research
setups that rely on a user-item rating matrix.

A typical example problem setting in which sequentially-ordered user
interaction logs are crucial for obtaining highly accurate recommendations
is that of session-aware recommendation. In such a setting, we are given
the sequence of the most recent actions of a user and the problem is to find
items that not only match the user’s general taste but are also relevant in the
context of the session. The intent of the user is, therefore, strongly bounded
to the current session, and recommendations must be dynamically adapted
as the user’s intent get sequentially revealed through her interaction with
the system.

In some more extreme but very common scenarios, no information about
the user’s general taste is available to the system (session-based recommen-
dation). This typically happens in contexts in which users rarely register
and log-in to the system, like in many video streaming platforms for exam-
ple, or in context with very low user return rates. In both cases, we must
resort only on the handful of interactions of the user in the current session
to generate recommendations. It becomes, therefore, crucially important to
infer any possible detail about the user’s interests and goals from the se-
quence of actions in the current session. To this end, relevant information
can be gathered also from the characteristics of the items the user inter-
acts with. The problem of context adaptation with sequence-aware recom-
menders in session-based and session-aware scenarios is the main subject
of this thesis.

In some application domains even the order of the elements in the cur-
rent session is relevant. In playlist recommendation, for example, there ex-
ists a long debated issue on whether the order of the tracks in the playlist, or
at least their relative position, has any importance for the recommendation,
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1.2. Goals

i.e. for predicting which tracks will be successively added to the playlist.
In this thesis we consider the problem of automated playlist generation, in
which tracks are sequentially added on the basis of the existing tracks in
the playlist, and used sequence-aware models to shed some light on this
question. We finally present a new large-scale dataset of music listening
sessions, with the goal of helping the research in this field beyond what is
achievable with the currently available data sources.

1.2 Goals

In this thesis we aim to develop novel algorithms for sequence-aware rec-
ommender systems. In particular, we focus our attention on a prominent
problem in real-life scenarios, that of session-based recommendation. For
such purpose, we worked to create novel and advanced machine learning
algorithms that can naturally deal with large quantities of sequentially-
ordered data from the logs of user activity, and generated effective rec-
ommendations in real-life scenarios. To this end, we have addressed the
following research goals.

RG1: review the state of the art on sequence-aware recommender
systems, in order to characterize the tasks and the existing algorith-
mic approaches to this problem. As stated in the motivation, most of
the research in Recommender Systems considers the matrix-completion
paradigm. However, a huge body of research has been recently done to
extend or substitute this paradigm to address the need for generating recom-
mendations from the logs of user actions. We aim at an extensive and rigor-
ous survey of the state of the art in sequence-aware recommender systems
to characterize the tasks, algorithms and evaluation procedures adopted in
the literature so far.

RG2: measure the perceived impact of personalized recommenda-
tions in session-based recommendation scenarios through a user study.
From the analysis in RG1, we noticed that the majority of the existing
works employ sequence-aware recommenders for context-adaptation based
on the last-N actions of the user. Until the most recent times, the problems
of session-based and session-aware recommendation have been mostly ne-
glected by the community. These two problems, however, are better rep-
resentative of the way users interact with many online systems, and are
therefore worth to be investigated in detail. We also noticed an overall lack
of user studies in sequence-aware recommendation, excluded few excep-
tions [53, 96], and in session-based recommendation in general.

As a first step, we aimed at evaluating the perceived quality of person-
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Chapter 1. Introduction

alized recommendations in a true session-based scenario through a user
study in the hotel booking domain. We used a simple sequence-aware ap-
proach based on implicit elicitation combined with traditional collabora-
tive and content-based RS. Once we assessed the effectiveness of the rec-
ommendations in session-based scenarios, we pursued the development of
advanced sequence-aware algorithms for session-based and session-aware
recommendation.

RG3: develop novel sequence-aware algorithms for real-world session-
based recommendation scenarios, that can handle both new and re-
turning users, and exploit item features as well. From our survey of
the state of the art in RG1, we noticed the complete absence of sequence-
aware solutions that consider item features as part of the modeling of the
user activity within the session. Item features can provide precious de-
tails on the actual interests of the user in the current session, and can be
extremely useful in session-based scenarios where no historical informa-
tion on the user is available. Beside this, we noticed an almost complete
absence of sequence-aware algorithms for session-aware recommendation.
These algorithms are aimed at modeling the historical interests of the user
together with her short-term goals within sessions, with the goal of pro-
viding personalized session-based recommendation suited to the long-term
and short-term interest of the user 1.

We therefore worked on the development of new sequence-aware algo-
rithms for session-based and session-aware recommendation. Supported
by the recent breakthroughs in deep-learning models, we focused on mod-
els based on Recurrent Neural Networks. We target two orthogonal prob-
lems: (i) session-based recommendation enriched with item features, that
can leverage the sequential dependencies between items and their features
in modeling the user’s activity in the current session; (ii) session-aware
recommendation, that merges the long-term interests of the user with her
activity within the session into a single, comprehensive, sequence-aware
recommender system. We validate the performance of the proposed ap-
proaches over several large-scale datasets coming from real-world indus-
trial application scenarios, using standard evaluation methodologies.

RG4: model the evolution of musical tastes through radio-station
recommendation, verify that order matters in automated playlist gen-
eration, and foster the research on sequence-aware session-based music

1Notice that “personalization” in this context refers to the capability of the recommender to provide different
recommendations to users that have performed exactly the same sequence of interactions in the current session.
In “pure” session-based recommendation, instead, recommendations are customized solely on the basis of the
actions of the user in the current session. Hence, two users that perform the same sequence of actions look
exactly the same to the eyes of the RS in the latter case.
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recommendation by releasing a new, large-scale music listening dataset.
Again from our review of the state of the art in RG1, we noticed that music
is one of the application domains in which sequence-aware recommenders
are widely employed, e.g. to generate automatically plalyists and radio sta-
tions. With to respect this, we first study sequence-aware recommenders
based on Recurrent Neural Networks as models to represent the evolution
of user musical tastes through radio station recommendation. We then delve
into the dynamic of automated playlist generation, and addressed one im-
portant question remains open in the domain of music recommendation,
namely that of the importance of the order of songs in playlists. We there-
fore designed an experiment aimed at answering this question. Finally, to
address the need for large datasets for session-based music listening rec-
ommendation, we present a novel, open, large-scale session-based dataset
for music listening recommendation.

1.3 Contributions

This thesis work has resulted in several contributions to the state of the art
in sequence-aware recommender systems, which is summarized next.

In Chapter 2 we provide a comprehensive, in-depth review of the state of
the art in sequence-aware recommender systems. We present a characteri-
zation of the problem with respect to other areas of recommender sys-
tems, we discuss about the main tasks and subtasks targeted by sequence-
aware recommenders, and we provide a detailed review of the algorithmic
approaches used in the literature so far. We categorize the existing works
based on their task and algorithmic family. Finally, we review the offline
evaluation procedures for sequence-aware recommender systems.

In Chapter 3 we present a case-study on session-based recommenda-
tion for hotel bookings. We investigate a methodology based on implicit
elicitation to leverage traditional recommender algorithms, such as collabo-
rative filtering and content-based algorithms, to address session-based rec-
ommendation in an hotel booking scenario with new users. We perform
an online study and show the effectiveness of recommenders over trivial
non-personalized and editorial baselines in a strongly popularity biased sce-
nario.

In Chapter 4 we present a novel sequence-aware recommender based
on Recurrent Neural Networks (RNN) for feature rich session-based
recommendation. Our work differs from the existing works in the use of
item features along with item identifiers to model the sequential aspects in
the activity of the user in the current session, with final goal of improving
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the accuracy of the recommendation. We show that relevant sequential fea-
tures can be extracted also from the “raw” content of items (i.e. not using
abstract item descriptors such as metadata). We prove that item features
can be effectively leveraged to improve the ranking quality through exten-
sive evaluation on two industrial datasets for session-based recommenda-
tion scenarios with new users.

In Chapter 5 we present a novel sequence-aware recommender based
on Hierarchical RNNs for personalized session-based recommendation
for returning users. The proposed solution is capable of modeling the evo-
lution of user interests over time, and to use the long-term user’s interests to
personalize the recommendations at session level. Differently from the ex-
isting works that decouple the long-term and short-term models of the user,
our method seamlessly models both aspects into a single, comprehensive
framework. The experimental results on two industrial datasets show the
effectiveness of personalization in session-based recommendation, both in
scenarios in which the user interests tend to be very repetitive (i.e. having
weak contextual effects) or when they are strongly bounded to the current
session (i.e. having strong contextual effects).

In Chapter 6 we study the effectiveness of sequence-aware recommender
in modeling the evolution of user musical tastes. We consider station rec-
ommendation (i.e., the recommendation of radio station, akin to whole, infi-
nite playlists) as a proxy for the user musical interests, and compare several
sequence-aware recommenders from the state-of-the-art in this task. Our
experimental results show that RNN-based models outperform the other
competitive approaches in terms of sequential recommendation quality when
the user history – expressed as the number stations available in the user
profile – is sufficiently long. Moreover, we show that RNNs suggest more
tracks in the long-tail of musical tastes than other approaches. We exploit
this fact into by combining the predictions from several classifier into a
Learning-to-Rank framework. Our results show significant improvements
in the ranking quality when the recommendations generated by the RNN
model are added to the pool of candidate items.

In Chapter 7 we investigate the role of song ordering in automated
playlist generation. This is a long debated question that has not received
enough agreement by the Music Information Retrieval community. We de-
signed an experiment based on randomized playlists and used sequence-
aware models based on RNNs to address this question. Our results show
that the order of songs has negligible impact on the recommendation qual-
ity, and that RNN-based models are robust to new, unseen (randomized)
sequences of songs.
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In Chapter 8 we present a new large-scale dataset for session-based
music and playlist recommendation. With respect to existing datasets,
our dataset has unprecedented size and it is already partitioned into user
sessions.

1.4 List of Publications

Journal publications

1. Deldjoo Y., Elahi M., Cremonesi P., Garzotto F., Piazzolla P., Quad-
rana M. (2016). Content-based video recommendation system based
on stylistic visual features. Journal of Data Semantics

2. Quadrana M., Bifet A., Gavaldà R. (2015). An efficient closed fre-
quent itemset miner for the MOA stream mining system. AI Commu-
nications 28.1

Conference publications

1. Quadrana M., Karatzoglou A., Hidasi B., Cremonesi P. (2017). Per-
sonalizing Session-based Recommendation with Hierarchical Recur-
rent Neural Networks. In Proceedings of the 11th ACM conference on
Recommender systems (RecSys 2017).

2. Cella L., Cereda S., Quadrana M., Cremonesi P. (2017). Deriving
Item Features Relevance from Past User Interactions. Proceedings of
the 25th Conference on User Modeling, Adaptation and Personaliza-
tion (UMAP 2017).

3. Hidasi B., Quadrana M., Karatzoglou A., Tikk D. (2016). Paral-
lel Recurrent Neural Network Architectures for Feature-rich Session-
based Recommendations. In Proceedings of the 10th ACM conference
on Recommender systems (RecSys 2016).

4. Deldjoo Y., Elahi M., Quadrana M., Cremonesi P., Garzotto F. (2015).
Toward Effective Movie Recommendations Based on Mise-en-Scène
Film Styles. In Proceedings of the 11th Biannual Conference on Ital-
ian SIGCHI Chapter (CHItaly 2015).

5. Cremonesi P., Quadrana M.. (2014). Cross-domain Recommenda-
tions without Overlapping Data: Myth or Reality?. In Proceedings of
the 8th ACM Conference on Recommender systems (RecSys 2014).
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6. Cremonesi P., Garzotto F., Quadrana M.. (2013). Evaluating top-n
recommendations "when the best are gone". In Proceedings of the 7th
ACM conference on Recommender systems (RecSys 2013).

Posters

1. Vall A., Quadrana M., Schedl M., Widmer G., Cremonesi P. (2017).
The Importance of Song Context in Music Playlists: Enabling Rec-
ommendations in the Long Tail. ACM RecSys 2017

2. Cremonesi P., Garzotto F., Pagano R., Quadrana M. 2014. Recom-
mending without short head. In Proceedings of the companion publi-
cation of the 23rd international conference on World wide web com-
panion (WWW 2014).

3. Turrin R., Quadrana M., Pagano R., Paolo C., Andrea Condorelli.
30Music listening and playlists dataset. ACM RecSys 2015

1.5 Structure

This thesis is structured as follows:
Part I: Background

• Chapter 1 introduces this thesis by presenting motivations, research
goals, contributions and the publications related to this thesis.

• Chapter 2 presents the sequence-aware recommenders systems by first
providing an intuitive definition of the problem; we then characterized
sequence-aware recommenders in terms of their inputs, outputs, com-
putational tasks and relations with other areas in recommender sys-
tems. We identify the main tasks and subtasks addressed by sequence-
aware recommenders, and categorize the state of the art according to
this new classification. We then present a comprehensive review of
the existing algorithms for sequence-aware recommender systems; we
identify classes, sub-classes and families of algorithms, and catego-
rize the state of the art according to our taxonomy. Finally, we review
the existing data partitioning techniques and evaluation protocols for
sequence-aware recommendation that are used throughout this thesis.

Part II: User Study

• Chapter 3 presents an experimental study on session-based recom-
mendation for hotel booking.
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Part III: Novel Algorithms

• Chapter 4 presents a novel algorithm for session-based recommen-
dation with item features based on Recurrent Neural Networks. The
proposed approach enhances the existing session-based models based
on RNNs by models item identifiers and feature vectors in parallel by
means of novel alternating training procedures.

• Chapter 5 presents a novel algorithm for personalized session-based
recommendation based on Hierarchical RNNs. The proposed solution
models the evolution of the user interests across sessions and leverages
such information at session level seamlessly, providing an effective
way of personalizing recommendations for returning users.

Part IV: Sequence-Aware Recommendation in Music

• Chapter 6 explores the use of sequence-aware recommenders to model
the evolution of musical tastes through time.

• Chapter 7 compares the performance of several sequence-aware rec-
ommenders for automated playlist generation and investigates on the
importance of the order of songs that are currently contained in a
playlist in predicting the forthcoming tracks.

• Chapter 8 presents a novel large-scale dataset for the modeling of user
listening activity at session level.

Part V: Conclusions

• Chapter 9 offers the conclusions and future works.
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CHAPTER2
Sequence-aware recommender systems

Recommender Systems (RS) are software applications that support users
in finding items of interest within larger collections of objects, often in a
personalized way. Today, such systems are used in a variety of application
domains, including for example e-commerce or media streaming, and re-
ceiving automated recommendations of different forms has become a part
of our daily online user experience.

Internally, such systems analyze the past behavior of individual users or
of a user community as a whole to detect patterns in the data. On typical
online sites, various types of relevant actions of a user can be recorded, e.g.,
that a user views an item or makes a purchase, and several of the actions of
a single user may relate to the same item. These recorded actions and the
detected patterns are then used to compute recommendations that match the
preference profiles of individual users.

Along with the success of RS in practice, academic research in the field
has made tremendous progress in the past decade in terms of the develop-
ment of new techniques to accurately predict the relevance of items for indi-
vidual users. In terms of the data that is used in academic settings to design
and evaluate recommendation algorithms, the most common setup is to use
(publicly available) datasets that contain a user-item rating matrix. Such a
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matrix contains at most one explicitly-stated or implicitly-derived prefer-
ence statement for each user-item combination, and the computational task
of a recommender often is to compute the missing values in the matrix.

While such a research setup helps to abstract of the particularities of a
domain and supports the reproducibility of research results, it potentially
also oversimplifies the underlying problem. Furthermore, algorithms that
are optimized for this particular problem setting cannot make use of the
rich information that is hidden in the sequentially-ordered user interaction
logs which are often available in practical applications. In addition, there
are application domains, in which the items have to be recommended in a
certain order. Such situations are typically not covered as well in research
setups that rely on a user-item rating matrix.

A typical example problem setting in which sequentially-ordered user
interaction logs are crucial for obtaining highly accurate recommendations
is that of session-based recommendation. In such a setting, we are given
the sequence of the most recent actions of a user and the problem is to find
items that not only match the user’s general taste but are also relevant in
the context of the session. In some application domains even the order of
the elements in the current session is relevant. For “next-track music rec-
ommendation” problems, for example, the goal is to find a track that is not
too different from the last played track, e.g., in terms of the tempo. Gener-
ally, the goal in session-based recommendations is to extract patterns from
sequentially-ordered interaction logs in an offline process which can then be
matched with the current session to determine suitable recommendations.

There are, however, also other interesting patterns which can be derived
from such interaction logs but are not tied to a specific user session. Based
on the ordering and the timestamps of the user actions, we can for example
detect interest drifts of individual users over time or detect short-term pop-
ularity trends in the community that can be exploited by recommendation
algorithms. Furthermore, for the problem of recommending consumables
like ink for a printer, we could use interaction logs to learn the best point in
time to remind users to replenish their stock.

Finally, as mentioned above, there are application domains of recom-
mender systems, where the recommendation of one item only makes sense
after some other event has happened. E-commerce sites like Amazon.com
sometimes provide recommendations under the label “Often bought to-
gether”. However, when a user inspects an SD-card on the shop, recom-
mending the purchase of a digital camera might not make much sense. Such
ordering constraints might be weak or relatively strict (as in the case of the
recommendation of accessories for another product) and be implemented
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as part of the logic of a sequence-aware recommender. Furthermore, in
particular the weak or implicit ordering constraints might be mined from
sequentially-ordered interaction log data and considered in the recommen-
dation process.

2.1 Intuitive definition

Sequence-aware recommendation deals with scenarios in which the se-
quence of recent interactions of the user is relevant in inferring her current
interests or tastes and, in turn, to provide high quality recommendations.
We provide here an intuitive, high-level definition for Sequence Aware Rec-
ommender System.

Definition 2.1.1. A Sequence Aware Recommender System is a recommender
system that models the dynamics in user’s interaction by extracting of se-
quential features from the logs of historical user activity, with the ultimate
goal of adapting to users’ short-term needs and providing high quality sug-
gestions on the following item(s) the user should interact.

This definition draws a line between “traditional” item recommendation
and sequence-aware recommendation. In traditional item recommendation,
the recommender system has to infer the general user’s preference over the
individual items in order to suggest her items that she may like to explore.
Recommendations are usually provided in the form of a list of items ordered
by relevance [113]. The relevance of each item is computed independently
from the other items the user has recently interacted with. Moreover, the
interdependence between user’s interactions is not considered as well.

We also emphasizes the centrality of the adaptation to the short-term
intent and needs of the user in sequence-aware recommendation. Tradi-
tional item recommender systems tend to ignore the underlying structure
of the user feedback, and this can severely limit the capability of the RS of
capturing the user’s intent unless it can be explicitly represented by some
contextual variables, like in CARS [8]. This limitation becomes more evi-
dent when the most recent interactions of the user have a high influence on
the actions she will perform next. We will discuss in detail on the differ-
ences between traditional item recommenders based on matrix-completion
and sequence-aware recommenders in the next section.

Let us use an example to describe the problem. In Figure 2.1, the user
is planning a trip and she has already booked a flight, a room in a hotel
and rented a car. Intuitively, the next activity has to be something like
visiting a museum or having fun at some attraction park since the user intent
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?
Figure 2.1: Example of sequential recommendation scenario. The user has already

booked a flight, booked a room in a hotel and rented a car. What action she will
most likely take next?

is clearly to move around. Good recommendations are hence places in
driving-distance from her destination. In this example, the intent of the user
can be determined implicitly from the sequence of her actions. However,
a traditional item recommender system can only infer the user preference
over individual items (hotel, car, museum, park, etc.) but it has no way of
inferring neither the user’s intent, unless explicitly specified by the user.

Another scenario in which traditional item recommendation falls short
is that of repeated item consumption, in which users generally interact with
items multiple types, like in the consumption of multimedia content like
music or videos for example. In automated playlist generation, for exam-
ple, the music recommender system that has to suggest the next song(s)
to append to a user generated playlist. Users usually listen tracks several
times in different moments. User tastes can be elicited by a traditional
item recommender system from their aggregated historical activity [5, 18].
However, a playlist is composed by songs that must play well in sequence
and obey to some musicological ‘coherence’ properties [67]. By blindly
adding songs picked from the user’s favorites we can easily generate sim-
ple playlists that individually satisfy the user’s taste, but lead to a musically
unappealing experience when played in sequence. Instead, the knowledge
over user’s tastes must be combined with the characteristics of the sequence
of tracks that are in the playlist in order to create an engaging listening ex-
perience that is coherent with the user’s tastes [18]. We will investigate
more in depth on the effectiveness of sequence-aware recommendation in
automated playlist generation in Chapter 7.

2.2 Characterizing Sequence-Aware Recommender Systems

Sequence-aware recommendation problems are different from the tradi-
tional matrix-completion setup in a number of ways.
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2.2.1 Inputs, Outputs, and Computational Tasks

Inputs The main input to sequence-aware recommendation problems is an
ordered and usually time-stamped list of past user actions. Each action
can be associated with one user of the system or be an anonymous action.
Each action can furthermore be associated with one of the recommendable
items. Finally, each action can be of one of several pre-defined types and
each action, user, and item may have a number of additional attributes. In
addition, a sequence-aware is given the point of time (e.g., in terms of the
last user action or timestamp) for which a recommendation is sought for.
Overall, the inputs can be considered as a sort of enriched clickstream data.

In the traditional matrix completion setup, all ratings are attached to one
of the known users. We do not require this to be the case for sequence-
aware recommenders. Anonymous user actions are not uncommon, e.g., in
the e-commerce domain, where users are often not logged in. Nonetheless,
relevant information can be extracted from past anonymous sessions. We
also do not require that each action is related to an item, since, for exam-
ple, relevant information can be extracted from the users’ search or navi-
gation behavior as well. Finally, in most application scenarios, each action
will have an assigned action type (e.g., item-view, item-purchase, add-to-
cart, etc.). And, depending on the domain, additional information might be
available that describes further details of an action (e.g., whether an item
was discounted when the action took place), the users (e.g., demographics),
or the items (e.g., metadata features).

Generally, such forms of input data are available in many practical appli-
cations, e.g., in the form of application or web server logs, and we do not as-
sume to have larger quantities of explicit ratings are available in sequence-
aware recommender systems.

Outputs The output of a sequence-aware recommender are one or more
ordered lists of items, where each of the items can have additional annota-
tions.

In this general form, the outputs are similar to those of a traditional
“item-ranking” recommendation setup.1 However, in sequence-aware rec-
ommenders, the returned lists may have to be interpreted in different ways,
depending on the specific application scenario. In some scenarios, like
session-based recommendation, the interpretation can be as usual, i.e., the
items represent alternatives for the user to consider next. In other scenarios,

1Rating predictions or relevance prediction scores can be the basis for ranking the items, but we do not require
the existence of such scores.
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however, the interpretation can be that the user should consider all recom-
mendations and do this in the provided order. A typical example is the
recommendation of a series of learning courses which can only be attended
one after the other. In yet another scenario, the system might return mul-
tiple lists where each contains a ranked list of elements of a certain type.
This could be the case when complements to a main item are recommended,
e.g., a list of hotels and a list of car rental services that are displayed after
the user has booked a flight. We will describe the application scenarios in
more detail below.

Computational Tasks In order to filter and rank the items in the resulting out-
put, different types of computations are usually done by sequence-aware
recommenders, and the particularities of these calculations again depend
on the specific application scenario. Most commonly, one task that is not
present in traditional matrix completion setups is the automated identifi-
cation of sequence-related patterns in the recorded user actions. This can
be sequential patterns, where the order of the actions is relevant, or they
can be co-occurrence patterns, where it is only important that two actions
happened together, e.g., within the same session. In some cases, also dis-
tance patterns can be relevant, e.g., when the problem is to compute a good
point in time to remind the user of something through a recommendation.
Note that the corresponding patterns do not have to be explicit, as often
done, e.g., in sequential pattern mining [85], but can be implicitly encoded
in complex machine learning models as well.

Besides the identification of such patterns that are subsequently used in
the recommendation task, another computational task of a sequence-aware
recommender can be to reason about order constraints. Such constraints
can be either prescribed and given for an application domain as strict con-
straints (e.g., in terms of a given curriculum for the learning course recom-
mendation problem), given as heuristics (e.g., in terms of track transition
rules for next-track music recommendation), or be implicitly derived from
the given input data as a sort of weak constraints.

Finally, the patterns (or more generally, the learned models) that were
identified in the data and the constraints have to be related with the point
in time for which the recommendation is sought for. In a session-based
recommender, one might consider the last few user actions and then look
for past sessions that were similar to the current one. On the other hand,
when a recommender is used as a reminder for the repeated purchase of
consumables, the distance (in time) to the last purchase action of the user
to the present time might be relevant.
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2.2.2 Relation to Other Areas

Implicit-Feedback Recommender Systems Our characterization of the sequence-
aware recommendation problem mainly targets scenarios in which we ob-
serve the individual and collective behavior of a user community over time
instead of asking for explicit item ratings. Such explicit item ratings can
be taken into account in a sequence-aware recommender as one of several
types of user actions. One problem with explicit ratings however is that the
point in time when users provide a rating can be quite different from the
point in time when they consumed or purchased an item (e.g., when a user
initially rates a bunch of movies when registering for a movie recommen-
dation service). The sequence and timestamp of the ratings might easily
mislead sequence-aware recommenders.

In the literature, the difference between implicit and explicit feedback
recommender systems only lies in the type of the available preference sig-
nals. Many research works on implicit feedback algorithms are however
focused on the matrix completion problem as well and do not consider mul-
tiple interactions over time as we do in our problem characterization.

Context-Aware and Time-Aware Recommender Systems In some of the applica-
tion scenarios that we discuss in the next section, sequence-aware recom-
mender systems can be considered as a special form of context-aware rec-
ommender systems. In particular in session-based recommendation scenar-
ios the users’ short-term intents, which can be estimated from their very last
actions, can represent a crucial form of context information that should be
taken into account when recommending [66]. Similarly, the current point
in time can be seen as a relevant contextual factor in sequence-aware rec-
ommenders, e.g., when considering the repeated purchase of consumables.

Time-aware recommender systems specifically consider the timestamps
that are associated with past user interactions in their models and adapt the
recommendations to a given temporal context, see [20] for an overview.
Time-aware recommender systems share a number of commonalities with
sequence-aware recommenders, e.g., in terms of how we can benchmark
different approaches in offline settings, as will be discussed later. The focus
of sequence-aware recommenders is however often less on the exact point
of time of past user interactions, but on the sequential order of events. Fur-
thermore, a number of proposals on time-aware recommenders mainly rely
on the matrix completion problem setting and, e.g., factor in the timestamps
of the single user-item interactions into the recommendation process [73].
While this can serve similar purposes as sequence-aware recommenders,
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e.g., detecting an interest drift in user preferences, many time-aware rec-
ommendation algorithms do not account for multiple user-item interactions
over time.

2.3 Tasks

The recommendation quality can largely benefit from the exploitation of
the features in sequences of user interactions. For example, the sequence
of interactions in current session can be used to infer the goal of the user
and, consequently, to provide recommendations that are tailored to that
goal. Sequence-aware recommendation hence can be used for context-
adaptation. From an in-depth analysis of the literature, context-adaptation
is by far the most relevant task that is accomplished with sequence-aware
recommenders (see Table 2.1).

Nevertheless, sequence-aware recommenders can be used for a variety
of other subtasks, such as to find similar items (or substitutes) and com-
plements in e-commerce, to generate list continuations (like in automated
playlist generation), to detect individual and community trends and to iden-
tify repeated user behavior patterns. Finally, some important considerations
can be made on the ordering constraints that rule the consumption of items
in certain domains.

2.3.1 Context adaptation

Context adaptation in recommendation systems has been subject of exten-
sive research. Users behave differently and exhibit different preferences
depending on the context in which they interact with the system [2]. Tra-
ditional examples of contextual variables are time of the day, location,
weather, mood and the goal of the user. According to the classification
of [41], time, location and weather are examples of representational con-
text, since the context can be explicitly defined by the combination of some
observable attributes. On the other hand, variables like the mood of the user
or her goal cannot be defined by means of any observable attribute, but they
must be inferred from recent user’s interactions. This type of context is said
interactional. Additionally, some contextual variables like the goal of the
user are strongly bounded to the current user session. This means that the
RS may be asked to infer the context from just a handful of interactions
performed by the user in the current session.

Let us consider the following example. Given a user who is navigat-
ing within the apps in her smart-phone, once opened the ‘contacts’ app, it
is very likely that she will open the ‘caller’, ‘messages’ or ‘e-mail’ apps
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next. However, she will unlikely launch the ‘camera’ app, regardless of
the fact that she is currently in a park in a very sunny day. The sequence
of apps opened by the user inform the system about her interactional con-
text, whereas the current location and weather constitute the representa-
tional context. Additionally, the next action of the user will not be likely
influenced by the apps she used the day before, i.e., her goal is bounded to
the current session, or at least to the most recent apps opened. The most
recent activity of the user is a proxy of the actual user’s goal (e.g. to com-
municate with one of her contacts), and can be used to suggest to the user
the right app to open next [84].

Sequence-aware recommenders can be used to infer the short-term goal
of the user from the sequence of her most recent activities. Furthermore,
the whole user history can be partitioned into sessions in which the user
interacts with the system divided by periods with no user interactions. This
is typical of domains like e-commerce or web browsing in which user ses-
sions can be identified explicitly (e.g. with log-in/log-out actions) or im-
plicitly (e.g. by analyzing the distribution of user activity over time and by
“manually” partitioning the user log into sessions).

Context-adaptation can be obtained by extracting frequent sequential
patterns from the historical activity of users and then by mapping it to the
most recent user actions [84, 95, 98, 114, 145, 151]. Alternatively, sequence
learning techniques can be used to generate a latent representation of the
user’s intent directly from the sequence of interactions [48, 57, 61, 65, 123,
127, 133, 148].

Context-adaptation with sequence-aware recommenders can be classi-
fied in the following three categories:

• Last-N interactions. This is the simplest form of context-adaptation
and it is based on the sequence of the most recent N actions of the
user. This is usually adopted when it is not possible to partition the
user activity into sessions, or it simply does not make sense to do that.
For example, in next check-in recommendation user movements are
bounded to the very last few visited places or to the last one [26].

• Session-based recommendation. In this case recommendation depends
exclusively on the current session. Session-based recommendation is
common in systems having new or anonymous users – i.e. users not
registered or logged into the system. For these kind of users, the only
information that is available is the sequence of interactions in the cur-
rent session. No historical data is available. This prevents from using
classical personalization techniques, such as Collaborative Filtering,
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since they rely on historical feedback. In this scenario the RS can rely
only on the contextual information that can be extracted from the cur-
rent session to generate recommendations. Therefore, it is crucially
important to make full use of the information available in the current
session to infer the goal of the user and to recommend the proper fol-
lowing interactions. This is a prominent problem in many practical
scenarios like e-commerce [66] and news recommendation [48]. We
will present significant enhancements to session-based recommenda-
tion based on sequence-aware methods in Chapters 4 and 5.

• Session-aware recommendation. In this case we instead focus on re-
turning users, i.e. the user is not new to the the system and the rec-
ommender system can determine her historical, long-term preferences
from her past activity. However, there is still the possibility that the
long-term interests may not be aligned with the goal of the user in the
current session. When users can consume items several times (e.g., in
music or video-on-demand.), for example, the knowledge on histori-
cal activity of the user provides precious details on her tastes. How-
ever, knowing long-term user interests may not enough to provide high
quality recommendations in the current session because the user can
interact with the same item in different contexts or goals in mind. In
music recommendation, for example, we may know that the user has
a strong historical preference for classical music; despite that, the user
may be interested in listening some hard-rock music in the current ses-
sion, and suggesting Beethoven right after some hard-rock tracks is
arguably a good recommendation. In other words, recommendations
must be tailored on the short-term interests and historical, long-term
interest used as additional source of information.

The key challenge of session-aware recommendation is combining
the long-term tastes and interests with short-term goals. Similarly to
session-based recommendation, the short-term goal of the user can be
inferred from the sequence of interactions in the current session. Still,
the SARS now has to balance the long-term preferences of the user
with her short-term interests.

This problem can be addressed by jointly learning two models, one
for long-term user profiling and a second one for the inference of the
short-term goal of the user. The joint learning procedure allows to
effectively model these two aspects together by, for example, optimiz-
ing a single objective function, like done in [112, 143] and [126]. We
will present a method based on Hierarchical RNN that jointly models
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the evolution of the user taste over time and the activity of the user at
session level Chapter 5.

2.3.2 Subtasks

Beside context-adaptation, as described in the previous section, a variety of
subtasks can be tackled with sequence-aware recommenders. We present
here an overview of what we believe are possible subtasks that can be ac-
complished with SARS. Beware that many of them have received little at-
tention from the community so far, so we were not able to find references
in the literature for some of them. Nevertheless, we believe it is worth in-
troducing them here also to shed light on the possible future developments
of the field.

• Find similar items: In e-commerce settings, this problem corresponds
to the task of finding substitute items, i.e., alternatives for the currently
inspected item or the set of items inspected in a session. In another
application domain the problem consists of recommending items that
have similar features as a given object, e.g., a similar user on a social
network, a next video to watch or a next track to listen to on a media
streaming platform. Often, the selection of items to recommend is
largely dependent on the very last user action (e.g., currently viewed
item); the set of similar items is however usually based on patterns in
the community (e.g., item co-occurrence patterns in sessions) as well
and not only based on item metadata features.

• Find complements: In contrast to the last problem, the goal here is to
find items that complement a given item. In the e-commerce scenario
this for example would mean the recommendation of accessories for
a given item. Note that in reality, recommendation lists often contain
a mix of complements and substitutes and the optimal choice can de-
pend on the domain [38]. Having complement items in a list can in
general help users to discover new things.

• Find a list continuation: In this particular problem setting, the prob-
lem is to create an ordered list of recommendations which are all to
be considered (consumed) by the user in the given order. In contrast
to the find similar items task, the ordering of the recommended items
is relevant. Sometimes the ordering of items of the current session is
considered as well. A typical application scenario is the creation of
automated playlist continuations of videos or musical tracks [67].
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• Find logically-next item(s): In this case the next item to recommend is
a application-specific “logical next step”, given the last interaction(s)
of the user. Examples of applications are next-query recommendation
approaches [57,127] or next-app recommenders [7]. Usually, the logic
of determining the next item follows more strict rules than, e.g., in
heuristic-based next-track music recommendation scenarios.

• Trend Detection: Besides short-term adaptation, the detection of trends
is another potential, but less explored, goal that can be accomplished
by sequence-aware recommenders. We can distinguish between the
following types of information that can be extracted from sequential
log information to be used in the recommendation process.

– Community trends. Considering the popularity of items within
a user community can be important for successful recommenda-
tions in practice, e.g., in streaming media recommendation [51].
Since the popularity of items can change over time in different
domains, sequence-aware recommenders can aim to detect and
utilize popularity patterns in the interaction logs to improve the
recommendations. Such trends can be long-term (e.g., things be-
coming outdated or out-of-fashion over time), seasonal, or reflect
short-term and one-time popularity peaks. In the fashion domain,
for example, considering the community trends of the last few
days can represent a successful strategy when selecting items for
recommendation [68].

– Individual trends. Changes in the interest in certain items can
also happen at an individual level. These interest changes can be
caused when there is a “natural” interest drift, e.g., when users
grow up, or when their preferences change over time, e.g., due
to the influence of other people, due to exceptional events, or
when they discover something new. An example of application is
the modeling of the dynamics of the musical taste of users [97].
Changes of the individual behavior can also be caused by trends
in the community, in particular when users are early adopters of
new things. Note that session-aware recommendation, as dis-
cussed above, in some sense also implicitly considers short-term
changes in the user behavior, but the focus is not explicitly on
detecting and considering behavioral changes.

– Obsolete items. As a special form of considering trends in the
individual and collective user behaviour, sequence-aware recom-
menders can aim at the identification of obsolete items, which
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should not be recommended anymore. This can be done both on
the individual and community level. At the individual level, one
could for example try to identify outliers in the user interest (e.g.,
when someone bought a gift for someone else in an online shop)
or specific categories of items that the user has not interacted with
for a longer period of time (e.g., an artist that was not played for
years on a music streaming site by a certain user).

• Repeated Recommendation: In several application domains, recom-
mending items that the user already knows, has consumed or pur-
chased in the past can be meaningful. These application scenarios
are not considered at all in the traditional matrix completion setup as
described above. We can identify the following categories of repeated
recommendation scenarios.

– Identifying repeated user behavior patterns. Past interaction logs
can be used by sequence-aware recommenders to identify pat-
terns of repeated user behavior. A typical application example
could be the repeated purchase of consumables, like printer ink.
Such patterns can be both mined from the behavior of individual
users, as in [149, 150], or the community as a whole. Another
interesting field of application is App recommendation, in which
frequent App usage patterns can be mined from user activity and
used to enhance the user experience [7, 84, 99]

– Repeated recommendation as reminders. In a different scenario,
repeated recommendations can help to remind users of things they
were interested in the past. Depending on the domain, these re-
minders could relate to objects that the user has potentially for-
gotten (e.g., an artist that she or he liked in the past), or to objects
that the user has recently interacted with. The latter scenario is
particularly relevant in e-commerce.

In both mentioned scenarios, besides the selection of items to re-
peatedly recommend, a sequence-aware recommender has to reason
about the timing of the recommendations [149, 150]. In the remind-
ing scenario in e-commerce, the time frame to remind users of previ-
ously seen items might be narrow and objects may become obsolete
very soon, e.g., if they were not purchased after a few view events.
Nonetheless, always reminding users of reminding items they have
inspected in the last session might be inappropriate if the user’s cur-
rent shopping intent does not match that of the previous session.
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In the context of the recommendation of consumables, items can be
repeatedly recommended after longer periods of times, e.g., weeks or
even months. Proper timing can however still be important and such
types of repeated recommendations share similar problems as proac-
tive recommenders, e.g., that their recommendations might interrupt
the user at the wrong time.

2.3.3 Order constraints

In certain domains, the characteristics of items may pose a sort of ordering
between interactions. For example, it is reasonable to think that users that
have watched a certain movie will watch its sequels later on, or a user who
bought a printer will probably buy its replacement cartridges anytime soon.

We distinguish between strict and weak order constraints, and order con-
strains that mined directly from the logs of users’ activity.

• Strict or weak order constraints: In the domain of the recommenda-
tion of a sequence of learning courses, for example, there might be
strict requirements regarding the order of different courses that have
to be considered by the recommender. e.g., when one cannot attend
one course before another one was completed [144]. In the domain of
movie recommendation, in contrast, it might be reasonable to recom-
mend a sequel to a movie only after a user has watched the preceding
episode. Such a constraint is however not necessarily strict. Weak or-
der constraints are typical of music listening, in which the sequence of
songs played next typically shares some musicological and style fea-
tures with the previously played songs (e.g., genre, timbre, rhythm,
etc.). This musicological ‘coherence’ constraints [67] restrict the pool
of candidate songs in the recommendation list (or playlist) but does
not pose any strict ordering between them.

• Mined order constraints: A sequence-aware recommender can mine
such sequential patterns from the log data, e.g., to automatically detect
that users who watched a certain movie later on have watched its se-
quel. Sequential pattern mining techniques in fact have been applied
in the past in different application domains of recommenders, e.g., for
predicting the next navigation actions of users on websites [95, 98] or
the find next tracks to play in music recommendation problems [18].
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2.4 Categorization of the state-of-the-art

We categorize the state-of-the-art of sequence-aware recommender systems
with respect to 3 dimensions: the type of context-adaptation, the kind of or-
der constraints, the usage of item features and the application domain. We
believe that this categorization allows to highlight the overlooked aspects
of this field and to accurately position this thesis wrt. the existing works.

Table 2.1 summarizes the categorization. Some considerations on the
existing literature of sequence-aware recommender systems follows.

• Context-adaptation: From the first glimpse it is immediately evident
the centrality of context-adaptation in sequence-aware recommenda-
tion, since almost the totality of the papers in the literature address this
aspect, even if from different perspectives. More than half of the pa-
pers in the literature address the most basic form of context-adaptation
based on the last-N interactions of the user. However, the interaction
of the user with many existing online services is usually organized
into sessions. By focussing only on the last-N interactions of the
user we can oversimplify the problem and, for example, discarding
relevant information at the beginning of a session, or discarding rele-
vant informations contained in the past sessions of the user. For this
reason, session-based and session-aware recommendation has gained
significant traction in the recent years, also favored by new publicly
available datasets (like the 30Music dataset described in Chapter 8 and
the XING dataset [1]) and the increasing interest from industry.
While session-based recommendation has been addressed in relatively
many existing works in the literature (∼30% of the papers analyzed),
session-aware recommendation has received attention by a minority
of the existing works. A possible reason can be found in the inherent
complexity of modeling and combining the long-term and short-term
interests of the user into a single effective recommendation model. We
will address this point in Chapter 5, where we will present the details
of a new personalized session-based recommender for returning users
based on Hierarchical RNNs.

• Subtask: As we can see, only a minority of the existing works di-
rectly addresses one of the subtasks described before, with the rec-
ommendation of the most suitable next item or basket being the most
investigated aspects. In this thesis we do not explicitly focus on any
of these subtasks, but we envision their importance as future research
directions for this field.
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• Order constraints: The vast majority (> 77%) of the research in
sequence-aware recommendation focuses on patterns that are auto-
matically mined from user log data. This is reasonable since the ex-
plicit definition of order constraints is not always possible and it fre-
quently requires the adoption of costly procedures such as constraint
satisfaction (see e.g. [101] or the addition of ad-hoc post-filtering stages
to traditional item-to-item recommendation [67].

This does not necessarily means that all sequence-aware recommenders
adopt frequent pattern mining (FPM) techniques or its surrogates. In
fact, as we will see in the next chapter, FPM-based recommenders
represent only a fraction of the algorithms for sequence-aware rec-
ommendation. Many other techniques, such as Markov Models and
Recurrent Neural Network, can implicitly represent order constraints
between items by using sophisticate transition models.

In the music domain, a question remains open: does the order of the
songs in the playlist matters in building good quality playlists? Sev-
eral works in the literature of playlist recommendation tried to answer
this question from different perspectives (see [18] for a comprehen-
sive review). In this thesis, we present a possible answer through an
experiment based on randomized playlists and sequence-aware rec-
ommenders, that is presented in detail in Chapter 7.

• Item features: Surprisingly, the usage of item features and metadata
has been completely neglected by the existing literature of sequence-
aware recommenders. We show how rich item features can be effec-
tively used in sequence-aware recommendation in Chapter 4.

• Domains: Some interesting considerations can be done on the appli-
cation domains as well. From our analysis, most of the research in
sequence-aware recommendation focuses on the e-commerce (∼30%)
and music (∼26%) domains, followed by web-page (∼13%) and Point-
of-Interest (∼10%). Other domains like advertisement, app and query
recommendation are less represented. A reason for this can be cer-
tainly found in the larger number of publicly available datasets for the
former two domains (see Table 2.2). This also serves as an indicator
of the importance of sequential user feedback in every domain and on
the quality of the sequence-based patterns that can be extracted from
the logs of user.

In this thesis, we had the opportunity to work on a variety of different
domains. In Chapter 4 we will show experiments in video recom-
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mendation and classified advertisement; in Chapter 5 we focus on job
recommendation and, again, on video recommendation; in Chapters
6, 7 and 8 we instead show some novel developments in music recom-
mendation.

Paper Year Type Sub-task Repet. Trend Ord. Domain

Baezayates et al., [7] 2015 SA NEXT I APP
Chen et al., [24] 2012 LI W/I MUS
Chen et al., [25] 2013 LI W/I MUS
Cheng et al., [26] 2013 LI I POI
Feng et al., [45] 2015 LI I POI
Garcin et al., [48] 2013 SB I NEWS
Grbovic et al., [53] 2015 LI I EC
Hariri et al., [54] 2012 SB W/I MUS
He et al., [57] 2009 SB NEXT I QU
Hidasi et al., [61] 2016 SB I EC
Hosseinzadeh et al., [65] 2015 LI I MUS
Jannach et al., [66] 2015 SA I EC
Jannach et al., [67] 2015 SA SIM/LIST W/I MUS
Letham et al., [76] 2013 LI I EC
Lian et al., [77] 2013 LI BASKET I POI
Lim et al., [78] 2015 LI S POI
Lu et al., [84] 2014 SB NEXT I APP
Maillet et al., [86] 2009 N/A LIST W MUS
Mcfee et al., [90] 2011 LI W/I MUS
Mobasher et al., [95] 2002 SB NEXT I PAGE
Moling et al., [96] 2012 SB MUS
Moore et al., [97] 2013 LI SIM I W/I MUS
Nakagawa et al., [98] 2003 SB NEXT I PAGE
Natarajan et al., [99] 2013 SA NEXT I MUS/APP
Pauws et al., [101] 2006 N/A S MUS
Rendle et al., [112] 2010 LI BASKET I EC
Rudin et al., [114] 2011 LI I EC
Shani et al., [123] 2005 LI I EC/PAGE
Song et al., [126] 2015 SB NEXT I EC/VID
Sordoni et al., [127] 2015 SB NEXT I QU
Tagami et al., [132] 2015 LI BASKET I ADS
Tavakol et al., [133] 2014 SB I EC
Wang et al., [139] 2015 LI BASKET I EC
Wu et al., [142] 2013 SB W/I MUS
Xiang et al., [143] 2010 SA I OTHER
Yap et al., [145] 2012 LI I PAGE
Yu et al., [146] 2012 LI LIST S OTHER
Zhang et al., [148] 2013 LI NEXT I ADS
Zhao et al., [149] 2012 LI TIME I EC
Zhao et al., [150] 2014 LI TIME I EC
Zhou et al., [151] 2004 LI NEXT I PAGE
Zidmars et al., [152] 2001 LI I PAGE

Type SA: Session-aware, SB: Session-based, LI: Last-N interactions, N/A: no context-adaptation; Sub-task SIM: Find similar
items, LIST: List continuation, BASKET: Basket recommendation, NEXT: “Logically” next item recommendation; Repeated
Recommendation REP: Find items for repeated recommendation, TIME: Find timing for repeated recommendation; Trend
Detection I: Detect individual trends, C: Detect community trend, S: Detect seasonal trends; Application domain APP: App
recommendation, MUS: Music domain, QU: Query recommendation, EC: E-Commerce domain, CS: Learning courses rec-
ommendations, AD: Advertisements, PAGE: Web page recommendation, OT: Others; Trend Detection W: Weak, S: Strict, I:
Inferred

Table 2.1: Categorization of works on context-adaptation.
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Short name Domain Users Items Interactions Sessions Reference

Recsys Chall. 2015 E-commerce N/A 38k 34M 9.5M [61]
Ta-feng E-commerce 32k 24k 829k N/A [139]
T-Mall E-commerce 1k 10k 5k N/A [139]
AVITO E-commerce N/A 4k 767k 32k [135]

Microsoft Page 27k/13k 8k 13k/55k 32k/5k [151, 152]
MSNBC Page 1.3M/87k 1k 476k/180k N/A [145, 152]
Delicious Page 8.8k 3.3k 60k 45k [143]
CiteULike Page 53k 1.8k 2.1M 40k [143]

AOL Query 650k N/A 17M 2.5M [127]

Foursquare 2 POI 225k N/A 22.5M N/A [26]
Gowalla POI 54k 367k 4M N/A [26]

Art Of the Mix Music N/A 218k N/A 29k [54, 67, 90]

XING Job 785k 1M 8.8k N/A [1]

Table 2.2: Publicly available datasets for sequence-aware recommendation.

2.5 Algorithms for sequence-aware recommendation

The main computational task of any sequence-aware recommender system,
as briefly introduced in the previous sections, is the automated extraction
of sequence-related features and patterns from the logs of user actions.

The vast majority of the papers in the literature rely on sequence learn-
ing methods, such as sequential pattern mining and sequence modeling.
This methods can deal with sequences of user actions naturally, and can
generate recommendations tailored on the short-term activity of the user
in a straightforward way. For example, frequent sequential patterns can
be extracted from historical user sessions and collected in a database that,
at recommendation time, is queried with the sequence actions performed
by the user the current sessions, and the best matches are used to generate
recommendations on what items the user should interact with next [95,98].

While patter mining-based models decouple pattern extraction from rec-
ommendation, more sophisticated sequence modeling techniques, such as
Markov models [24, 123] and, more recently, Recurrent Neural Networks
[61], use advanced state-transition models learned from user logs to tackle
both tasks at once. For example, in Markov Chain-based models [123], the
transition probabilities are estimated on the seen transitions between items
in user sessions. At recommendation time, the transition model is used
to evolve the state of the user according to her most recent actions and to
recommend the next actions proportionally to their likelihood to come next.
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Class Sub-class Family Papers

Sequence Learning Frequent Pattern
Mining

Frequent items &
item-to-item

[66, 95, 98]

Frequent sequences [84, 95, 98, 114, 145, 151]

Sequence modeling Markov Models [48, 57, 65, 90, 96, 123, 133]

Recurrent Neural
Networks

[61, 127, 148]

Distributed item
representations

Latent Markov
embeddings

[24, 25, 45, 142]

Distributional
embeddings

[7, 39, 53, 132]

Supervised models w/
sliding window

[7, 139, 152]

Matrix completion [146, 149, 150]

Hybrid methods Factorized Markov
Chains

[26, 77, 112]

LDA/Clustering w/
sequence learning

[54, 99, 126]

Others Graph-based [143]

Discrete optimization [67, 78, 101]

Table 2.3: Taxonomy of algorithms for Sequential Recommender Systems.

Beside sequence learning methods, sequence-aware recommendation
can be framed as a traditional matrix-completion; however, straigth matrix-
completion based on matrix and tensor factorization quickly becomes un-
manageable even when modeling realitevly short user histories, and it is
therefore used only in some borderline cases [149, 150]. More frequently,
matrix-completion is combined with Markov Chains to build more flex-
ible sequence-aware recommenders with higher robustness to data spar-
sity [26, 112].

In this section, we provide an overview of the algorithms for sequence-
aware recommender. We identify three main classes of algorithms: se-
quence learning, matrix-completion and hybrids. We categorize the works
in the state-of-the-art according to our taxonomy in Table 2.3.

2.5.1 Sequence Learning

Sequence Learning methods are used in a variety of application where
data has an inherent sequential nature, like in natural language processing,
time-series prediction and DNA modeling. Given the sequential nature of
user actions, sequence learning methods are widely employed in sequence-
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aware recommendation as well.

Frequent Pattern Mining (FPM)

Definition Frequent Patter Mining (FPM) methods were originally devel-
oped for discovering patterns in user consumption from large transaction
databases [3, 4]. Patterns can be categorized into unordered patterns (or
itemsets) and sequential patterns.

FPM extracts patterns of items that frequently occur together in the logs
of user actions, e.g within sessions. Patterns having a support (i.e., the
number of occurrences of the pattern in the dataset) greater than a prede-
fined minimum support threshold are stored into a pattern database. Pattern
databases usually rely on efficient data structures such as prefix-trees for
fast query [95, 145]. At recommendation time, the recent actions of the
user are mapped against the pattern database to generate recommendation
lists.

Frequent Itemset and Association Rules (AR) mining [3] count the sup-
port of itemsets regardless of the order of the items within them. On the
other hand, in Sequential Pattern Mining [4] the order of items is main-
tained. Contiguous Sequential Patterns enforces patterns to be formed ex-
clusively by adjacent sequences of items.

SP mining is clearly preferable in sequence-aware recommendation since
the order of the user actions is preserved and used to generated recommen-
dations. This can be extremely beneficial in contexts in which the order
of user actions is highly informative on her intents, such as in query [151]
and app recommendation [84]. However, the strict sequentiality constraint
of SPM can severely limit the number (and the quality) of the patterns that
can be mined, especially in conditions of high data sparsity that is typical
in recommender system scenarios.

Albeit less powerful, AR mining is still a valuable recommendation
strategy for sequence-aware recommendation, even if the the order of the
user actions is not maintained. Frequent itemsets are still extracted from se-
quences of user actions, such as user sessions, and the absence of the order
constraint mitigates the impact of data sparsity. This turns out to be ben-
eficial in certain sequence-aware recommendation scenarios such as page
recommendation [95].

One extreme case of AR mining are simple item-to-item co-occurrence
models [119], i.e. models that can generate suggestions of the type “users
who bought this... also bought this...”, which are strictly with AR of size 2.
Despite their simplicity, co-occurrence models were employed with great
success in e-commerce [79] and music recommendation [66].
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Existing works Mobasher et al. [95] and Nakagawa et al. [98] investigate
the impact of sequential and non-sequential patterns in page prefetching
and recommendation. Web usage data is first split into sessions, and then
ARs, SPs and CSPs are extracted from sessions. In recommendation, the
engine matches the current session of the user against the collection of
rules. Candidates are generated using fixed-sized sliding window over the
current session: the last N user actions are matched against rules of size
N +1, and candidates get weighted by the confidence of the corresponding
rules. To speed up the search, frequent patterns are stored into a directed
acyclic graph (the Frequent Itemsets Graph). The authors show that less
constrained patterns (AR and SP) have better quality in the page recommen-
dation task, while CSP provide better performance in the page prefetching
task. A very similar approach is described in [151].

With FPM personalization is obtained only by matching the activity
of the user over a database a pre-extracted patters. Yap et al. [145] pro-
pose instead to weight patterns according the their personalized relevance
for the user. They compare non-personalized popularity-based weighting
schema against three personalized ones (cosine similarity, Longest Com-
mon Subsequence and Competence Score). Specifically, the Competence
Score measures the extent to which a candidate pattern is compatible with
the sequence of interactions in the current user session and it can be effec-
tively used to recommend more next-items for the target user. Personalized
weighting schemes outperform non-weighed sequential patterns and non-
personalized weighing schemes.

Finally, Lu et al. [84] present Mobile Application Sequential Patterns
(MASPs) mining for usage prediction in smart-phones. Transactions are
composed by sequences of apps together with the location of the user at
each time. The MASP-mine algorithm takes into account both user move-
ments and Apps launched to discover complete mobile App sequential pat-
terns. At prediction time, the pattern with maximal support that matches
the recent user movements and activity is used to predict the App launched
next.

The main drawback of FPM methods is their sensitivity to the mini-
mum support threshold used to distinguish frequent patterns from infre-
quent ones. Weak minimum support thresholds will return a huge number
of noisy rules, whereas strict minimum thresholds may discard important
rules that are rare. Rudin et al. [114] propose to use an “adjusted” confi-
dence score to address these limitations. Alternatively, Mobasher et al. [95]
and Nakagawa et al. [98] propose an all-kth-order method to increase the
flexibility of the model without resorting to too weak minimum support
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thresholds. For a given collection of rules extracted with a fixed minimum-
support threshold, the recommendation engine first uses the largest possible
active session and then iteratively decreases its size until a recommendation
is generated. The algorithm therefore looks for higher quality rules first and
then reduces its quality constraint until a rule is found. Zhou et al. [151] use
a very similar approach by iteratively removing the first item in the current
usage sequence until a matching pattern is found.

Sequence modeling

Description Every sequence of user’s interactions is to all effects a time se-
ries with the discrete observations and optional time-stamps attached, and
can be therefore studied with complex time-series models. However, since
the role of time-stamps in sequence-aware recommendation is principally
used to sort user’s actions and it is not used to the end of the recommenda-
tions the time variable can be safely ignored and “simpler” sequence mod-
els used instead.

In general, sequence modeling (and, obviously, time-series) allows to
model the effect of past observations over future ones. In sequential rec-
ommendation, this means that we can model the impact of past user in-
teractions over her future ones, and use these models to generate recom-
mendations from her recent activity. Sequence modeling methods for in
sequence-aware recommendation mainly belong to two categories: Markov
Models and Recurrent Neural Networks (see Table 2.3).

Markov Models Markov models represent sequential data as stochastic pro-
cess over discrete random variables (or states). The Markov property limits
the dependencies of the process to a finite history. For example, in first-
order Markov Chains (MCs) the transition probability of every state de-
pends only on the previous state. Higher-order MCs use longer temporal
dependencies to model more complex relationships between states 2.

In sequence-aware recommender systems, the Markov property trans-
lates into assuming that the item(s) the next user action depends only on
a fixed number of her most recent actions. This assumption is consistent
with the intuition that the near history often is more relevant than the far
past, but severely limits the possibilities of the model to represent long-
term dependencies. However, the Markov assumption is necessary to make
the space of possible transitions manageable from the model, an issue that
affects specially Markov Chains.

2See [46] for details on Markov models for pattern recognition
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In fact, MCs cannot be naïvely applied to sequence-aware recommen-
dation since data sparsity quickly leads to poor estimates of the transition
matrices.
Shani et al. [123] enhances Markov Chains with several heuristics – namely
skipping, clustering and finite mixture modeling – to mitigate the impacts
of data sparsity. The model is trained over data coming from the purchase
records of the users of an online book store, and shows the superiority of
sequential models over non-sequential ones. McFee et al. [90] use Markov
Chain mixtures for playlist generation. The mixture is a weighed ensemble
of several MCs (uniform, weighted and k-nearest neighbors) whose weights
are learned via maximum-likelihood optimization on a training dataset of
playlists.

Shani et al. [123] and Moling et al. [96] use reinforcement-learning
based on Markov Decision Processes (MDPs) for sequence-aware recom-
mendation. User decisions are modeled as sequential decision making
problem – backed by an underlying MC – which allows to tailor recom-
mendations not only on the recent user activity but also on the expected re-
ward (income) for the shop. As for MCs, the state space of MDPs quickly
becomes unmanageable in real-life scenarios. In Tavakol et al. [133] the
state space is factorized over a set of mutually independent item attributes
to reduce complexity. In the case of a clothing marketplace, for example,
dress characteristics such as category, color, gender and price can be con-
sidered; the sequential relationships between attributes are independently
modeled by the MDP to predict the characteristics of the products the user
will likely search next.

Another strong limitation of MCs is the absence of an universally good
value for the order of the model. He at al. [57] use a mixture of Variable-
order Markov Models (a.k.a. context trees), which use a context-dependent
order to capture both large and small Markov dependencies in the data, for
session-based query recommendation 3. A different approach was adopted
by Garcin et al. [48] in the context of a news recommendation application.
They assign one predictor (expert) to each context (node) in the context-
tree, being each node associated with a different order of the Markov model.
Each predictor is then trained to predict the forthcoming news article given
its context. As the sequence of actions of the user grows, deeper nodes in
the tree become active and contribute to the final recommendations.

The limitations of MCs are partially addressed by hidden-state models,
like Hidden Markov Models (HMMs). In HMMs, each hidden (or latent)
state is a discrete variable associated with a probability distribution over the

3See [10] for a comprehensive analysis of algorithms for learning VMMs.
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observed variables. In conformity with the Markov property, every hidden
state in the HMM is conditionally dependent only on the previous one [49].
HMMs for sequence-aware recommendation model user actions as obser-
vations of some discrete hidden state whose distribution changes with the
changes in the user’s behavior. Therefore, the hidden states of the model
are a possible representation of the context of the user [65]. However,
their discrete-valued hidden states poses strong constraints on the contex-
tual information that they can store, which in turn limits the applicability of
HMMs to sequence-aware recommendation.

Recurrent Neural Networks Recurrent Neural Networks (RNNs) [64] are dis-
tributed real-valued hidden state models with non-linear dynamics 4. At
each time step, the current input in the sequence and the hidden state from
the last step are used to update the hidden state of the RNN. The hidden
state is then used to predict the probability of the forthcoming items in the
sequence. The recurrent feedback mechanism memorizes the influence of
each past data sample in the hidden state of the RNN, hence overcoming
the fundamental limitation of Markov Chains. They are therefore good
candidates for modeling the complex dynamics in user action sequences.
Variants of RNN such as LSTM [52] and GRU [28], by means of their so-
phisticate hidden dynamics, can model much longer and complex tempo-
ral dependencies than other competitive approaches, like Hidden Markov
Models.

Zhang et al. [148] use RNNs for sequential click prediction in advertise-
ment. At each time step, the RNN is trained to predict the next click of the
user given her current click and the previous state of the network using a
classification loss (cross-entropy).

Hidasi et al. [61] use Gated Recurrent Units (GRUs) [28] – a vari-
ant of RNNs – for modeling user activities in a session-based scenario.
The model is still trained to predict the next item in the sequence given
the current one, but the addition with a sampled pairwise ranking loss
functions such as BPR [111]. This approach is extremely effective in a
pure session-based scenario, without any historical information, and out-
performs item-to-item models, the industrial state-of-the-art approach for
large scale session-based recommendation. We will describe this model in
detail, and propose further development to it, in Chapters 4 and 5.

Sordoni et al. [127] propose a generative model for session-based query
recommendation based on Hierarchical Recurrent Encoder-Decoder RNN.
The next query recommended to the user is generated directly from a rep-

4See [80] for a comprehensive review on Recurrent Neural Networks.
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Figure 2.2: Distributed item representations for sequential recommendation with
Prod2Vec skip-gram [53].

resentation of the text of the previous query (the first level of the hierarchy)
and a representation of all the previous queries issued by the user in the
current session (the second level of the hierarchy).

Distributed item representations

Description Distributed item representations are dense, lower-dimensional
representations of the items built out of sequences that can preserve the se-
quential relationships between items. Similar to latent factor models, every
item is associated with a real-valued embedding vector, which represents
the projection of every item on a low-dimension space in which certain
item transition properties are preserved. Given the current session of the
user, or the sequence of her most recent actions, recommendations on the
next-item(s) are generated by traversing the embedding space in a stochas-
tic fashion [24], or by searching the nearest neighbors to the last item(s)
explored by the user [53].

Existing works Chen et al. [24] present the Latent Markov Embedding (LME),
a regularized maximum-likelihood embedding of Markov Chains in Eu-
clidean space. Every item is projected into a space such as the distance
between any pair of items in this space is proportional to their transition
probability in a first-order Markov Chain. The resulting vector spaces can
be traversed to generate sequences stochastically (e.g., playlists). Chen et
al. [25] extend LME by clustering items and adding cluster-level embed-
dings to account for locality in item transitions. Wu et al. [142] propose
Personalized LME (PME) where both items and users are projected into a
Euclidean space so that the strength of their relationship is reflected by the
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projection. This allows to incorporate long-term user preferences into the
model and to use them in recommendation. Feng et al. [45] use a pairwise
ranking function analogous to the Bayesian Pairwise Ranking [111] to con-
dition the transition probabilities on the personalized ranking preferences
of users.

Another approach consists in leveraging the so-called “distributional hy-
pothesis”. In linguistics, this hypothesis states that semantically equivalent
words occur frequently in the same contexts. This hypothesis allows to
generate distributed representations of words that preserve their syntactical
and semantical properties, like Word2Vec [93] and GloVe [102]. Similar
considerations apply to sequence-aware recommendation too. Grbovic et
al. [53] propose Prod2Vec, a SRS based on distributed product represen-
tations learned from sequences of e-mail receipts. Similar to LME, every
item is projected onto a lower dimension space in which such hypothesis is
preserved. Specifically, Prod2Vec uses the skip-gram model (shown in Fig-
ure 2.2), which projects items that tend to have similar neighboring items
(i.e., items that tend to be ‘surrounded’ by the same set of items) close one
to the other. Once learned the item vectors, the recommendations for the
last-N item in the user sequence is given by the top-K most similar items in
the resulting vector space computed with cosine similarity, discounted with
a temporal decay factor to account for aging effects. Additionally, when
users can interact with multiple items at the time, the skip-gram model can
be extended to take sets of items in input [53]. In order to account for the
directed order dependencies between interactions, the skip-gram model can
be modified to consider only future items as context [39].

Supervised learning with sliding windows

Description While sequence learning methods rely on ad-hoc solutions to
model sequences, sliding window models convert sequence prediction into
a traditional supervised learning problem that can be solved with any off-
the-shelf classifier such as decision trees, feed-forward neural networks and
learning-to-rank methods.

The approach closely resembles autoregressive models and it is rela-
tively simple. A sliding window of size W is passed over each sequence
(see Figure 2.3). At each step, all the items within the window are used
to build the features of the supervised learning problem and the identifier
of the immediately next item is used as target variable. Consequently, the
sequence prediction problem is converted into a multi-class classification
problem, or into a multi-label classification if multiple target items are al-
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Figure 2.3: Sequential recommendation with generic supervised learning with sliding
window.

lowed.
However, this approach has several shortcomings. First of all, it is hard

to define the descriptive features properly, since they can be heavily domain
dependent and can be hardly reused. Secondly, results can be highly sen-
sitive on the choice of W . Finally, setting up a multi-class (or multi-label)
classification problem can be extremely computationally expensive when
the set of items grows considerably, and the quality of the learned model
can be severely affected by unbalanced distributions in the target variable,
which are common in real-life recommendation scenarios. For these rea-
sons, ad-hoc sequence models are usually preferred over supervised models
with sliding window.

Existing works Nevertheless, there are few interesting applications of this
approach to sequence-aware recommendation in the literature. Zidmars et
al. [152] frame sequential click prediction as a binary prediction problem.
Click streams data is “expanded” by defining a set of ‘accumulator’ vari-
ables (lagged and cache variables) to represent the contextual and historical
activity of the user. Finally, a page-level probabilistic decision-tree model
is trained classify requests on the next page; at recommendation time, pages
are ranked according to the predicted probability of being the next page.

Beaza Yates et al. [7] use contextual features extracted from the app
usage log of the last 12 hours for sequential app usage prediction. These
contextual features include some basic features, such as geo-location and
phone usage features, and session features, which are basically the Word2Vec
representations [93] of the actions of the user in the sliding window. Finally,
they use a parallelized version of the Tree Augmented Naive Bayes (TAN)
algorithm for the classification of the next app usage.
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Wang et al. [139] use Feed-forward Neural Networks for next-basket
recommendation where only the items in the previous basket are used to
rank the items in the next-one (W = 1). The first layer of the NN en-
codes the previous basket as fixed-size real-valued feature vector that is
computed by taking the element-wise maximum (max-pooling) or average
(mean-pooling) of the embeddings of the items that compose the basket.
The second and final layer of the NN learns to rank the items in the next-
basket by taking as input the concatenation of the user’s and previous bas-
ket’s embeddings. All the embeddings are learned end-to-end by means of
a ranking loss function.

2.5.2 Matrix completion

Sequence-aware recommendation, as we have already discussed, funda-
mentally differs from traditional matrix-completion. However, there are
a few cases in which this paradigm can be applied. also to sequence-aware
recommendation.

Zhao et al. [149, 150] solve a matrix-completion problem on the item
purchase matrix. The model, called Purchase Interval Matrix Factorization
(PIMF), factorizes the matrix by using a weighted loss function that max-
imizes the expected utility for the user, in which the utility is weighed on
observed time intervals between each pair of items. The resulting model
can predict the personalized relevance of an item depending on the time
at which recommendations are generated, and hence providing an effective
strategy for sequence-aware recommendation.

Personalized story generation is the application domain of the approach
proposed by Yu et al. [146]. Stories are represented as a prefix graph, in
which each node represents a prefix of a story, i.e. a possible sequence
of point plots. In their problem encoding, they are given a “prefix-rating
matrix” to be completed, where the items are replaced by possible story
prefixes and users provide ratings only to some of such prefixes. Matrix
factorization is used to predict the missing entries in the prefix-rating ma-
trix. The highest scored full-story that descends from the current “story-
so-far” of the user is used to suggest the next plot point. The rating of the
user is collected on the next plot point, and the process continues iteratively
(factorization, recommendation, rating) until the story reaches an end.

2.5.3 Hybrid methods

Description Hybrid models combine the flexibility of sequence learning
methods with the robustness to data sparsity of factorization-based matrix-
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completion techniques. Such hybridization enables sequence learning meth-
ods to use powerful learning-to-rank collaborative models (such as BPR
[111]), which cannot be done in standard sequence learning, apart from
few exceptions [61].

Existing works A first hybridization technique is to combine matrix factor-
ization with Markov Chains trough tensor factorization. Rendle et al. [112]
propose pairwise tensor factorization technique for next-item recommen-
dation named Factored Personalized Markov Chain (FPMC). In the case
of first-order MCs, user interactions can be represented as a 3-dimensional
(user, current item, next item) tensor, in which each entry in the tensor is an
observed transition between two items performed by a specific user. Since
only a tiny fraction of the possible transition pairs are observed, the re-
sulting tensor will be extremely sparse. FPMC uses pairwise factorization
with BPR loss to predict the unobserved entries in the tensor, thus to pre-
dict personalized transitions between pairs of items. In short, FPMC can be
seen as a first-order Markov Chain whose transition matrix is jointly fac-
torized with a standard 2-dimensional user-item matrix factorization. The
joint factorization allows to infer the unobserved transitions in the Markov
Chain from other users’ transition pairs. At recommendation time, items
are ranked according to their likelihood to be the next item given the last
item the user has interacted with.

Due to its robustness to data sparsity, FPMC has been used in differnt
domains. Rendle et al. [112] use it for next-basket recommendation. Lian
et al. [77] use FPMC directly in check-in group prediction.

Other types of hybrids exist. In the context of playlist recommendation,
Hariri et al. [54] use Latent Dirichlet Allocation (LDA) [17] to extract latent
topics from playlists, where playlists are taken as documents and songs as
words for the LDA. Sequential pattern mining is applied on top to find
patterns of latent topics in playlists. At recommendation time, the frequent
patterns are mapped to the topics extracted from the listening session and
used to filter the recommendations generated by a classical user-based KNN
recommender.

Song et al. [126] propose the States Transition pair-wise Ranking Model
(STAR), which combines LDA with first-order MC to simultaneously model
the user’s long and short-term favorites. User’s long-term favorites are rep-
resented as topics generated by LDA with a user’s specific prior. User’s
short term favorites are instead captured by a transition matrix in the MC.
The unified model is basically an hidden Markov Model whose latent states
are controlled by the personalized LDA generative model, and it is trained
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via full Bayesian inference with Markov Chain Monte Carlo (MCMC).
Finally, Natarajan et al. [99] propose iConRank, a method based on

behavioral clustering to introduce personalization into sequence models.
Behavioral clustering groups users with similar sequential behavior by ap-
plying k-means clustering on the per-user transition matrices of a first-order
MC. Personalized PageRank algorithm is then used to build transition mod-
els at cluster-level. At recommendation time, the user is mapped to its cor-
responding cluster and the cluster-level transition model is used to provide
sequential recommendations.

2.5.4 Other methods

Only a handful of methods do not fit into the above categories.

Graph-based methods

Xiang et al. [143] use a graph-based approach, where long-term and short-
term user’s preferences are fused into a two-sided bipartite graph, the Session-
based Temporal Graph (STG). One side of the STG connects users with the
items they have ever interacted with (long-term preference). The other side
of the graph instead connects session identifiers with the items the user has
interacted with in the session (short-term preference). Edges are weighted
to reflect influence of long and short-term preferences more precisely. The
relationships between items are propagated through the graph via Injected
Preference Fusion (IPF). At recommendation, the STG is traversed via the
Temporal Personalized Random Walk (TPRW) to generate session-aware
recommendations.

Discrete optimization

Discrete optimization is commonly employed in sequence-aware recom-
mendation when weak or strict ordering constraints between items exist.
Typical examples are playlist generation, travel planning and learning course
sequence generation.

Pauws et al. [101] solves Automated Playlist Generation (APG) with
local search. APG generates sequences of songs that satisfies a set of con-
straints, such as: (i) each pair of adjacent songs must be similar, (ii) each
two songs must be sufficiently different and (iii) the playlist must have a
maximum duration, and so on. This is an NP-hard Constraint Satisfaction
Problem problem that is solved via local search with simulated annealing.

Lim et al. [78] use discrete optimization for personalized tour recom-
mendation. Tours are represented by sequences of POI visits extracted
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from geo-tagged photos. The historical activity of each user is first split
into sequences of tours and used as ground truth. Then, the tour recom-
mendation is solved as an integer programming problem that looks for the
optimal sequence of POIs with a fixed start and ending location and a given
time budget. The objective function combines different non-personalized
scores, such as the popularity of each POI, and personalized scores, such as
time-based and frequency-based user interests and personalized POI visit
duration.

Beside sequence generation, Jannach et al. [66] use discrete optimiza-
tion for next-song recommendation. Candidate songs are first scored by a
complex session-to-item kNN procedure, which weights candidate songs
according to their compatibility with the tracks recently listened by the
user in terms of, e.g., playlist-level and song-level content-based similar-
ities (e.g., based on tags and musicological features). To account for the
weak ‘coherency’ constraints that exist between subsequent tracks in a lis-
tening session or in playlists, the list of top-N candidates is re-ranked at
recommendation time though a greedy procedure that minimizes the dif-
ference between the sequence of songs and the recommended list wrt. a
chosen group of (musicological or content) features, showing superior rec-
ommendation performance wrt. the unconstrained variants.

2.6 Evaluation of sequence-aware recommender systems

In this chapter, we present the evaluation procedures that can be used in the
evaluation of sequence-aware recommenders. First, we analyze in detail
offline evaluation protocols together with some practical guidelines for the
evaluation of this family of RSs. We then provide a brief overview of online
evaluation.

2.6.1 Offline evaluation

In offline evaluation, the quality of RS is measured without inquiring real
users, which is usually a slow, intrusive and expensive procedure. The
quality of the results obtained by an offline evaluation procedure depends
strongly on the data partitioning procedure, on the evaluation protocol and
on the metrics that are employed. The whole evaluation procedure must
reflect as much as possible the real application scenario [32].

As a general guideline, the evaluation procedure must be carefully cho-
sen according to the actual sequential recommendation scenario that we are
modeling (next-item, sequence, session-based or session-aware sequential
recommendation) and to the computational resources that are available.
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We describe here the data partitioning techniques and the evaluation pro-
tocols that are used in the evaluation of sequence-aware recommender.

Data partitioning procedures

The first step of the evaluation of a generic RS is the generation of the
training and test data-sets. The former is used to train the recommendation
algorithm, whereas the second contains held-out data used exclusively dur-
ing the evaluation. Additionally, a fraction of the data in the training dataset
can be held-out for tuning the hyper-parameters of the recommendation al-
gorithm (the validation set).

Due to the sequential nature of data, the dataset partitioning of sequence-
aware recommender differs from classical item recommendation [59]. Dataset
partitioning procedures can be classified into between-sequence and within-
sequence procedures. Between-sequences procedures partition the dataset
by holding out complete sequences, i.e., without breaking sequences apart.
On the other hand, within-sequence procedures act directly over the indi-
vidual interactions that compose the sequences. Each sequence can be split
into contiguous sub-sequences that are assigned either to the training or to
the test dataset.

Partitioning procedures can be additionally classified into temporal and
non-temporal procedures. Temporal procedures consider the temporal or-
dering between interactions and sequences to partition the dataset. They
can be used exclusively when all the sequences or the events in the dataset
can be ordered in time (i.e., when all time-stamps are available). On the
other hand, non-temporal procedures partition the dataset without consid-
ering time and can be with any sequence dataset.

Taxonomy We now present a taxonomy of the data partitioning procedures
for sequential recommendation according to the aforementioned categories.

• Split between-sequences. The procedure assigns complete sequences
to either the training dataset STRAIN or the test dataset STEST. The pro-
cedure never separates the interactions within a sequence. The split-
ting can be performed in two different ways:

– Random hold-out (Figure 2.4a). Sequences in S are randomly as-
signed to either one of the two datasets. The ratio between the
size of the training and test datasets in terms of number of se-
quences is fixed a-priori (e.g., 60% training and 40% test, 60/40
in short), but the number of interactions contained in each parti-
tion can vary significantly with different sampling seeds. For this
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reason, this evaluation procedure is usually combined with cross-
validation in order to increase its significance and reliability.

– Temporal hold-out (Figure 2.4b). The dataset is partitioned ac-
cording to their temporal ordering by using temporal threshold
tTEST. Sequences in S are first ordered by the time-stamp of their
first interaction. Then the procedure assigns all the sequences
starting before tTEST to STRAIN and the sequences that start after
to STEST. The number of sequences and interactions in each parti-
tions depends on the temporal distribution of the activity of users.
Common choices are, for example, setting tTEST equal to the last
day in the dataset, or the last week or month in order to reduce
the impact of weekly effects on the evaluation.

• Split within-sequences. The procedure partitions the interactions within
each sequence into at most two contiguous subsequences that are as-
signed either to the training or to the test datasets.

– Leave last-k out (Figure 2.4c). Assigns the last k interactions of
a sequence to the STEST and the remaining part of the sequence
to STRAIN. All the sequences in S are affected by the split. The
number of interactions in STEST is fixed and equal to k|S|.

– Temporal hold-out (Figure 2.4d). All the sequences having inter-
actions before and after a temporal threshold tTEST are split into
two contiguous subsquences. The subsequence of interactions
before tTEST is assigned to STRAIN. The remaining subsequence
is assigned to STEST. All the sequences ending before tTEST are
completely assigned to STRAIN. All the sequences starting after
tTEST are completely assigned to STEST.

Discussion Each data partitioning procedure has its own advantages and
drawbacks depending on the characteristics of the data (Table 2.4).

• Temporally ordered data. When the time-stamps are available, all
the interactions in the dataset S can be ordered absolutely in time,
as shown in the examples in Figure 2.4.

– Temporal splits preserve the temporal ordering among the inter-
actions in the training and test datasets to different extents. In
between-sequence temporal hold-out, there is no sequence in the
training dataset that starts after any sequence in the test dataset;
however, it is still possible to have interactions in the training
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Figure 2.4: Partitioning of a sequence dataset. Circles in white/blue represent the se-
quences and interactions assigned to the training/test datasets respectively.
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dataset that occurred after some of the interactions in the test
dataset (Figure 2.4b). In within-sequence temporal hold-out, the
temporal partitioning is performed at interaction level. For this
reason, this procedure is the one that most strictly preserves the
temporal ordering among interactions, because no interaction in
the training dataset could occur after any interaction in the test
dataset (Figure 2.4d).

– Non-temporal splits partition the dataset without considering the
temporal ordering between interactions. This can be source of un-
desired leakage of information from the training to the test phase.
It is actually possible to partition the dataset in a way such that
the training set contains interactions or complete sequences that
occurred after the interactions in the test dataset. In the exam-
ple in Figure 2.4a, the training sequence s5 contains interactions
that have been generated after all the interactions in the sequence
s2. Similarly, in Figure 2.4c the test interaction of sequence s1

precedes all the training interactions of sequences s4 and s5. As
a consequence, the recommendation system will be trained over
data that was generated after the data used for testing. While
this is feasible in offline evaluation, this clearly clashes with the
characteristics of any real-life scenario, in which “future” data is
clearly not available to train our models. This fact can severely
limit the practical utility of the evaluation results achieved with
this approach. For this reason, temporal split procedures should
be generally preferred over non-temporal ones in datasets with
temporally ordered data.

• Non-temporally ordered data. When time-stamps are not available,
interactions can be ordered only relatively to each sequence. For ex-
ample, in music playlists songs are ordered in the way they are played
within each playlist, but there does not exist any absolute ordering
between all the songs played in the playlist dataset.

– Temporal splits. In these scenarios, temporal partitioning proce-
dures cannot be used, and non-temporal procedures must be used
instead.

– Non-temporal splits. Random-hold out can be used multiple times
over the same dataset with cross-validation to increase the signif-
icance of the evaluation results. However, the evaluation pro-
cedure runs over complete sequences, which can be a computa-
tionally expensive procedure depending on the length of the se-
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Procedure Pros Cons

between
sequence

sequence
hold-out

cross-validation is
possible

temporal leakage of
information

temporal
hold-out

preserve sequence
temporal order

time-stamps needed;
test size depends on
temporal data distribution

within
sequence

leave last-k
out

balanced testing temporal leakage;
biased towards the last
interactions of each
sequence

temporal
hold-out

preserves interaction
temporal order

time-stamps needed;
test size depends on
temporal data distribution;
not all sequences are split

Table 2.4: Comparison of the partitioning procedures for sequence datasets.

quences and on the nature of recommendation algorithm.
On the other hand, leave last-k out partitioning is generally less
computationally expensive since only the last k terms of every
sequence are used in the evaluation. In the extreme case, only the
last interaction is considered by the evaluation procedure (k = 1).
However, the main drawback of this procedure is that it tends
to be biased towards the ending of the sequence of interactions.
While this can be a desirable effect in application scenarios such
as e-commerce where the last interactions usually corresponds to
a conversion event, in other application scenarios it can be source
of biased evaluation results. For example, in playlist recommen-
dation, the last track in human generated playlists is frequently
chosen to be the most popular one to create a sort of “grand fi-
nale” effect [18]. Hence, predicting the last track can be much
easier than predicting the previous ones. A way of overcoming
this problem is to consider more than a single item in the test set,
i.e. using k > 1.

Evaluation protocols

We now describe the possible evaluation procedures. We consider that
sequences in the sequence dataset has been partitioned into two datasets
STRAIN and STEST with one of the aforementioned data partitioning proce-
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Symbol Meaning

S the sequence dataset
STRAIN the training dataset
STEST the test dataset
p the user profile
q the ground truth
x a generic interaction
E a set of interactions
L a top-N recommendation list
d the length of the look-ahead sequence
q[: d] sub-sequence with the first d elements of q
set(s) set of items in the sequence s

Table 2.5: Notation used in the description of the evaluation procedures

dures.
The evaluation protocols for sequence-aware recommenders must con-

sider the sequential nature of the data in the test dataset, and the classical
evaluation of top-N recommenders cannot be used directly with sequence-
aware recommenders.

We identify 3 possible evaluation protocols: sequential evaluation, se-
quential evaluation with look-ahead, set evaluation.

Another fundamental assumption is the Missing-as-Negative (MAN)
one. The MAN assumption, commonly used in the evaluation of recom-
mendation systems, considers the unseen interactions are taken as negative
examples [129]. Hence, the interactions in the test sequence are considered
as the only relevant ones for the user. This assumption allows to the evaluate
the quality of the next-item recommendation by means of accuracy metrics,
such as Mean Average Precision and Recall. The evaluation metrics used
in the evaluation of sequence-aware recommenders will be discussed in a
dedicated subsection later on.

Protocols We now provide a concise description of the evaluation protocols
for sequence-aware recommenders based on the MAN assumption. The
notation is described in Table 2.5.

The evaluation of sequence-aware recommender requires to define of a
user profile p, used to a recommendation list, and of a ground truth q, used
to evaluate the quality of recommendations produced.

In the case of partitioning between-sequences, STEST is made of com-
plete sequences. Every sequence s ∈ STEST can be partitioned into user
profile and ground truth with one of the following two approaches:
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• leave last-m out (LLO): put the last m interactions of s in the ground
truth and the remaining interactions in the user profile

• keep first-l in (KFI): put the first l interactions in the user profile and
the remaining in the ground truth

Both approaches split each test sequence s into two contiguous sub-sequences
p and q. In LLO, the length of the ground truth q is fixed a-priori for every
sequence in STEST, but the length of the user profile p can vary, with that the
information available to the sequence-aware recommender at recommenda-
tion time. Conversely, with KFI the length of the user profile is fixed, but
the number of interactions in the ground truth depends on the length of the
test sequence s.

Conversely, on the case of partitioning within-sequences, each sequence
s ∈ S has already been split into user profile p and ground truth q (excluded
the borderline cases in which individual sequences are not split, e.g., when
using temporal thresholds to partition the dataset).

Notice that, when multiple types of interactions are available (e.g. click-
ing, bookmarking or replying to a job posting), the ground truth q can be
restricted to the interactions of a given type (or types) of interest.

Once the user profile p and the ground truth q have been defined, then the
following procedures are available to evaluate the recommendation quality
of sequence-aware recommender under examination.

• Sequential evaluation.

i) Given p, generate a top-N recommendation list L;
ii) Evaluate L over the first interaction x ∈ q;
iii) Append x to p and remove it from the head of q;
iv) Repeat (i) until q is empty.

• Sequential evaluation with look-ahead.

i) Given p, generate a top-N recommendation list L;
ii) Evaluate L over the set of the first d interactions E = set(q[: d]);
iii) Append q[: d] to p, and remove it from the head of q;
iv) Repeat (i) until q is empty.

• Set evaluation.

i) Given p, generate a top-N recommendation list L;
ii) Evaluate L over the set of interactions E = set(q).
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Discussion Each evaluation protocol provides different estimates of the se-
quential recommendation quality of a sequence-aware recommenders. There-
fore, two different sequence-aware recommenders must be compared under
the same evaluation protocol to obtain a fair comparison. Additionally, the
evaluation protocols can significantly differ in the number of recommen-
dation requests. Hence, the evaluation protocol must be carefully chosen
according to the computational resources that are available.

• Sequential evaluation simulates interactive evaluation in which the ac-
tions in the ground truth are considered as the optimal ones. By pre-
serving the original order of the interactions in the ground truth, it
allows to evaluate the behavior of the sequence-aware recommender
with a dynamically evolving user’s history. Additionally, it allows
to evaluate how the sequence-aware recommender behaves when new
interactions are sequentially added to the user’s history. For these rea-
sons, this is the preferred choice for the evaluation of next-item recom-
mender systems. However, it can be very computationally demanding
since it requires to generate and evaluate a number of recommendation
lists equal to the number of interactions in the ground truth.

It is important to notice that in sequential evaluation is based on the
strong sequencing assumption that the next interaction is the only pos-
itive one. This strong sequencing assumption that may be too re-
strictive for domains with weak-ordering relationships between items,
such as, for example, music, and underestimate the actual perceived
quality of recommendations.

• Sequential evaluation with look-ahead is a relaxed version of sequen-
tial evaluation in which recommendations are evaluated over a subset
of forthcoming interactions, the so-called look-ahead set. The look-
ahead can be defined by taking a fixed-number of the next interactions
in the ground truth. Another option is to define the look-ahead as
the set of interactions generated in a fixed time-interval, such as, for
example, all the interactions generated in the next hour or day.

In the evaluation of a recommendation list L, all the items in the look-
ahead set E are considered as true positives. This relaxes the sequenc-
ing assumption of sequential evaluation, since the interactions in the
look-ahead set can occur in any order. The sequence of interactions
in the look-ahead is then concatenated to the user profile in its origi-
nal order, and the evaluation proceeds with the following look-ahead
set. This evaluation protocol is less computationally expensive than
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sequential evaluation, since the ground truth is split in sets of roughly
equal size or equal time-span. By means of a look-ahead set, this
procedure relaxes the strict sequencing assumption used in sequential
evaluation while partially retaining the sequential behavior of the user.
However, the evaluation results can be highly sensitive on choice of
the look-ahead set [53].

• Set evaluation completely brakes the ordering of the interactions in
the ground truth. All the interactions in the ground truth are consid-
ered as true positives, regardless the order in which they were actually
performed by the user. Hence, this evaluation procedure allows to
measure the capability of the sequence-aware recommender to predict
interactions the user will eventually perform. This evaluation pro-
tocol is therefore significantly less computationally demanding than
sequential evaluation, since it requires to generate a number of recom-
mendation lists equal to the number of sequences in test set. However,
it completely disregards the sequential order in the interactions in the
ground truth, which can lead to misleading results on the quality of
the recommendation issued by the sequence-aware recommender.

Evaluation metrics

All the evaluation protocols require to evaluate a recommendation list L
over a set of items, where this set is composed of a fraction of the items in
the ground truth. This is a classical top-N recommendation scenario [32]
that can be evaluated with accuracy metrics. The values of the accuracy
metrics are commonly averaged at the end of the evaluation to obtain a sin-
gle evaluation score. A non-exhaustive list of the evaluation metrics that
can be used for top-N recommendation is Precision, Recall, Mean Aver-
age Rank (MAR), Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), Normalized Discounted Cumulative Gain (NDCG) and the F1 met-
ric.

Evaluation of session-based and session-aware recommenders

As we have discussed in Chapter 2, the whole user history can be frequently
seen as the concatenation of sessions ordered in time. In principle, any of
the aforementioned evaluation protocols can be used with session data, by
considering each session as a sequence of interactions independent from
any other one. However, in this way we loose the reference of the user. For
this reason, this approach is typically used in session-based recommenda-
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tion, in which the activity of the user in the current sessions is independent
from her past one.

In session-aware recommendation, instead, the historical activity of the
user matters when generating recommendations int the current session. There-
fore, the sequence-aware recommender can consider a fraction of the past
user’s sessions to gather additional details on her historical, long-term tastes
and to adapt to sudden drifts in her interests. the evaluation procedure must
be adapted to this new scenario.

We briefly describe the framework for the evaluation of session-aware
recommendation proposed in [66].

• Dataset partitioning. The history of every user is partitioned into
training and test sequence datasets STRAIN and STEST as usual. Splits
within-sessions are not allowed. Sessions are partitioned at user-level
and temporally. Alternatively, the last-k sessions of each user are used
for testing and the remaining ones for training.

• Evaluation protocol. The evaluation is performed as session-level.
Any of the evaluation protocols used for the evaluation of a generic
sequence-aware recommender (sequential evaluation, sequential eval-
uation with look-ahead and set evaluation) can be used to evaluate the
quality of recommendation within sessions. Specifically, the evalua-
tion of a test session σu

m of the user u requires the definition of the
user profile pu and the ground truth qu with either LLO or KFI 5. Ad-
ditionally, a number c ≥ 0 of sessions before σu

m is added to pu to add
short-term contextual information to the information gathered from
the current session (c = 0 in session-based recommendation).

In summary, for every user session σu
m in STEST, we first define the

user profile pu and the ground truth qu in σu
m; then:

i) Add c ≥ 0 sessions previous to σu
m to pu;

ii) Evaluate the recommendation quality on qu given pu with one of
standard evaluation protocols.

2.6.2 Online evaluation

Online evaluation analyzes the behavior of the recommender system in a
real-life scenario by directly monitoring the activity of the users, typically
by means of A/B testing. This allows to analyze the impact of the RS with
much more detail. However, the analysis of large amounts of users on a real

5User index u added for clarity.
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system is a costly procedure, and results are hardly reproducible out of the
original environment used for the evaluation. Still, it is generally agreed
by the community that online evaluation provides more significant insights
on the real impact of a recommendation engine than what offline evalua-
tion does. Only a few works in the literature of sequential recommendation
adopted online evaluation. [123] used online evaluation to asses the quality
of a sequential recommendation algorithm based on Markov Decision Pro-
cesses. The online study involved 900 real users of an online book store
for a period of about 2 years. The MDP was used to generate recommen-
dations online. However, to evaluate the impact of different MDP policies,
the authors run a simulation from the data collected online.

[96] perform an online evaluation of a radio-station recommender sys-
tem based on MDPs by means of A/B testing over 70 users. The metrics
used for the evaluation are the percentage of tracks listened and the daily
usage of the system.

Finally, [53] evaluate a sequential recommender based on item embed-
dings over online Yahoo mail traffic in a standard A/B testing scenario, and
study the impact of the proposed recommender system in term of Click
Trough Rate (CTR) and Yield Rate (YD).
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CHAPTER3
Session-based Hotel Recommendation: a

User Study

In this chapter, we present a user study on session-based recommendation
in the hotel booking domain. The goal of this study is to provide a first in-
tuition of the effectiveness of personalized recommendations, specifically
based on a simple sequence-aware approach, in session-based scenarios.
For this reason, we will not focus on the design of new algorithms for
sequence-aware recommendation in this chapter (it will be the subject of
the following chapters). Instead, we will analyze in detail in the perceived
impact of recommendations on users in a real session-based scenario.

We consider the domain of hotel booking for the following reasons: (i)
hotel booking is strongly session-based, i.e., most Online Travel Agencies
(OTA) allow unregistered and anonymous users to use their services, thus
past user information is rarely available; (ii) hotel booking is a so-called
“bounded domain”, i.e. hotels have a maximum “capacity” and item avail-
ability is variable. As we will see, this fact strongly correlates with the
perceived usefulness of recommendations by users.

For to the purposes of our study, we used traditional collaborative filter-
ing and content-based algorithms together with implicit elicitation to gen-
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erate recommendations within the user session. Implicit elicitation is used
to build a “temporary” user profile from the interactions of the user with
the UI; we combined it with simple time-decay to consider the order of the
actions of the user in the session and to reduce the importance of the less
recent interactions on the recommended items.

Secondly, we have considered a specific condition of the hotel booking
domain, that of bounded availability. There are domains where all items
are always available, regardless of the number of users who have already
“consumed” them, and others where the possibility of actual consumption
depends on contextual circumstances, e.g., time. In the video-on-demand
or e-book domains, for example, the electronic format of products allows
for a potentially infinite number of customers to consume them at any time.
In the e-tourism domain, a hotel or a tourism service can be consumed only
by a limited number of users, hence the same item may become unavailable
at some points of time (e.g., during high season). In “bounded” domains,
where the “capacity” of products is constrained and item availability is vari-
able, also the quality of the actual offer of items is not constant: as the num-
ber of available items decreases, the quality of the remaining ones tends to
decrease, because the items that “are gone” are typically the “best” ones.

We compared the impact of non-personalized and personalized recom-
mendations both in the scenario of unbounded and bounded availability of
hotels. We evaluate the perceived quality of recommendations in terms
of different subjective metrics, such as the user satisfaction and trust, and
objective metrics, such as the average cost per night and the number of
explored hotels.

The results of this work were published as a short paper at the ACM
Recsys 2013 conference [30], and as poster at the WWW 2014 conference
[29]. This chapter is an extended versions with additional considerations
on the implicit elicitation mechanism and on the experimental results.

The rest of this chapter is organized as follows. In Section 3.1, we
present the related works. In Section 3.2, we present the general method
of the study. In Section 3.3, we describe the implicit evaluation proce-
dure. In Section 3.4, we present our methodology to simulate the bounded
availability condition. In Sections 3.6 and 3.7, we present the experimental
results and the discussion. Finally, in Section 3.8, the conclusions of the
work are drawn.
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3.1 Background and related work

An implicit assumption of most existing studies on Recommender System
(RS) evaluation is that all items are always available, regardless the number
of users who have “consumed” (bought, used) them. Unlimited availability
of items is typical of many sectors that are relevant for RSs. In the video-on-
demand or e-book business, for example, the electronic format of products
allows a potentially infinite number of customers to consume them at any
time.

Still, in many domains items are or involve physical resources that have
constrained “capacity”, i.e., the same product can be consumed by a limited
number of users. Examples are clothing, events, or travel services. The
possibility for the customer of consuming items of this type depends on
contextual circumstances and varies over time. In e-tourism, for instance,
a hotel may become unavailable during high season or when the booking
time is close to the desired time of usage.

We are interested to study the recommendation process and its eval-
uation in what we call bounded domains which are characterized by the
constrained capacity of items and the temporal nature of item availability:
whenever the capacity of an item has been consumed, the recommender
system must consider that item as “missing”.

The interest of missing items of this kind originates from the observa-
tion that they are not missing at random: as the number of available items
decreases, the quality of the remaining ones tends to decrease, as the items
that “are gone” are typically the “best ones”. For instance, the hotels that
are booked first in high season are normally the optimal ones in terms of
price/comfort rate, while the remaining hotels are probably the most expen-
sive or the worst located. Under this assumption, our goal is to investigate if
and how missing (e.g., consumed) items affect the quality of recommender
systems trained on popularity-biased datasets (e.g., datasets with a small
number of very popular items and a large number of much less popular
items).

A number of studies focused on the similar but yet very different “miss-
ing ratings” problem, which is related to the sparsity of user-rating matrixes
and addresses the question if and when missing ratings should be consid-
ered as a negative, positive or neutral user feedback when training [88] and
evaluating [107] a recommender algorithm.

Other works explore the evolution of RSs as a pure additive process:
new users join the system, new content is added, new ratings are pro-
vided [73] [34]. Tracking the evolution of user preferences and encompass-
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ing behavioral patterns of user rating in the computational model allows
achieving significant improvements on recommendation accuracy [73].

Previous studies in unbounded domains show that high-rated items in-
troduce biases in the design and evaluation of recommenders because of
the so called popularity effect and positivity effect [107]: the majority of
high ratings are condensed in the small fraction of the most popular items,
or short-head.

The findings of a wide off-line study [19] pinpoint that when the user rat-
ing distribution is not taken into account, the accuracy of non-personalized
algorithms is comparable to the performance of sophisticated personalized
algorithms. When the most popular and widely ranked items in the short
head are removed personalized algorithms are ranked higher than the non
personalized algorithm.

3.2 The Study: General Method

In the following steps we compare the perceived quality of personalized and
non personalized recommendations in “normal” conditions of full availabil-
ity of items with the situation “when the best are gone”. We further validate
the results by analyzing the impact of a non-random consumption processes
on the statistical properties of the dataset and, indirectly, on the accuracy of
recommendations.

3.2.1 Instrument

For the purpose of our study, we have developed PoliVenus, a web-based
testing framework that can be easily configured to facilitate the execution
of controlled empirical studies in on-line booking services. PoliVenus im-
plements the same layout of Venere.com 1 online portal and simulates all
Venere.com functionality except payment functions. The PoliVenus frame-
work is based on a modular architecture, can operate with and without rec-
ommendations, and can be easily customized to different datasets and 20
different recommendation algorithms.

PoliVenus offers the same user experience as the real Venere.com portal.
This is our baseline experimental condition. Filtering the catalogue accord-
ing to hotel characteristics (e.g., budget range, stars, accommodation type,
city area), users are presented with a list of hotels meeting such character-
istics that are ordered according to the editor’s ranking criteria (e.g., best

1Venere.com is a subsidiary of Expedia (https://www.expedia.com/) has now become Hotels.com
and it is accessible at https://it.hotels.com/.
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sellers, marketing strategies). Users can explore the various hotels, check
availability, and modify the desired attributes of accommodations.

Without recommendations, hotels are listed by default according to the
editor’s ranking, although users can change the default sorting at any time
according to service level or price. With recommendations, hotels are or-
dered according to the recommender system ranking.

The user profile required by personalized algorithms to generate rec-
ommendations is based on the user’s current interaction with the system
(implicit elicitation). This choice is motivated by three main reasons:

• we want to support users who have no rating history or who are not
interested in logging into the system (session-based recommendation);

• we are interested in exploring a smooth integration of personalized
recommendations in existing online booking systems; to enable ex-
plicit elicitation would require the introduction of an intrusive add-on;

• according to a large number of works, lower effort of implicit elicita-
tion (as compared to explicit elicitation) increases the perceived effec-
tiveness of recommendations [42] [50] [108].

The details of the elicitation mechanism are described in Section 3.3.

3.2.2 Dataset

Venere.com has made us available with a catalog of more than 3,000 hotels
and 72,000 related users’ reviews. Each accommodation is provided with
a set of 481 features concerning, among the others: accommodation type
(e.g., residence, hotel, hostel, B&B) and service level (number of stars),
location (country, region, city, and city area), booking methods, average
single-room price, amenities (e.g., spa), and added values (e.g., in-room
dining). User’s reviews associated to each accommodation consist of nu-
meric ratings and free-text.

We have enriched the original Venere.com dataset with additional re-
views extracted from the TripAdvisor.com web site using a web crawling
tool. Table 3.1 reports the detailed statistics of the dataset used in our ex-
periments.

3.2.3 Structure of the study

The study is organized in four steps, overall involving 382 tested subjects.
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Total (Venere + Tripadvisor) Venere Tripadvisor (crawled)

Hotels 3,100 3,100 3,100
Users (reviewers) 210,000 72,000 138,000
Reviews and ratings 246,000 81,000 165,000
Hotel features 481 481 N/A

Table 3.1: Dataset used in the study

• The first step consists of a preliminary user experiment (240 users)
devoted to identify the “most appropriate” personalized algorithm to
be used in our final case study.

• In the second step the results of step 1 are investigated from a different
perspective in order to design the implicit elicitation mechanism to be
used in our final case study.

• This third step explores the process through which users select the
items they choose to “consume” and defines the technique to simulate
the “best are gone” condition (i.e., which hotels to set as “not avail-
able” in high season).

• Finally, in the last fourth step we compare the effects of a non person-
alized algorithm against the personalized algorithm chosen in step 1
and explore how missing items influence in the perceived quality. The
comparison has been performed with an online study (142 users).

Step 1 is described in details in [31] and consisted of an empirical study
involving 240 users. In short, we considered three algorithms one content
algorithm (DirectContent), one collaborative algorithm (PureSVD), and one
interleaved hybrid algorithm that combines the previous two algorithms.
The results showed that the adoption of the hybrid algorithm significantly
increases the perceived quality of the user experience, hence we adopted
this algorithm for our following research.

3.3 Implicit Elicitation

In step 2 the results of step 1 have been used to define the implicit elicitation
mechanism. The implicit elicitation mechanism adopted in PoliVenus is
the following: whenever a user interacts with an object on the interface, the
system assigns a score to the hotel related to that object (e.g. link, button,
map, picture, etc.). With all these signals, PoliVenus builds the user profile
for the current user session: the user profile contains implicit hotel ratings,
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where each rating is computed as a linear combination of all the signals
generated for that hotel. The user profile is continuously updated with every
new signal and the list of recommended hotels is updated accordingly.

In order to consider the sequentiality of user interactions and to give
more importance to the most recent interaction, we have employed an ex-
ponential decay function to the predicted ratings. Whenever a new signal
enters in the user profile, all previous ratings are divided by a damping
factor. The magnitude of the damping factor controls the decay rate.

In our work, we use users’ signals to estimate explicit ratings that will
be later used by other recommender algorithms. Each object f is associated
with a weight wf measuring the extent to which the interaction with item
i through object f expresses an interest for item i. Explicit ratings can be
estimated by the rule

r̂ui =
∑
f

wfsuif (3.1)

where suif measures the number of user’s u interactions with object f for
item i.

In order to give more importance to the most recent interaction, when-
ever a new signal f on item i is collected for user u, all other signals for the
same user are divided by a damping factor h.

suif ← suif + 1

sujg ← sujg/h (for j 6= i and g 6= f )

Parameters wf and h have been learned by using the interactions of 240
users collected with the study described in Step 1. For each user u we
assume that, by booking hotel i, the user is expressing a positive opinion
for that hotel, i.e., rui = 5. In order to learn the wf and h parameters we
minimize the squared error

h∗, w∗ = argmin
(h,w)

(
rui −

∑
u,i,f

wfsuif

)2

(3.2)

The learned weights w∗ and the decay rate h∗ have been used to implement
the implicit elicitation mechanism adopted in step 3.

3.4 Defining the Short-Head

During high season periods it could be difficult for a user to find a room,
since most of the best hotels are already booked and the remaining ones
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may be in the less attractive locations of the city or may offer low quality
services. Furthermore, during high season hotels have higher prices than in
low season, due to the higher request. We refer to this scenario as the best
are gone scenario.

It is not obvious how to reproduce this scenario in order to make our sim-
ulation realistic in user experiments. Intuitively, two are the main features
that distinguish low and high season: prices variation and room availabil-
ity variation. The first aspect – prices variation – is easily addressed as
Venere.com provided us with both low season and high season prices. In
this section we describe which and how many hotels have been removed
from the initial set in order to simulate the second aspect – room availabil-
ity variation.

Experience tells us that best hotels are the first to be booked, and con-
sequently the first to become unavailable in high season. In order to define
which are “the best” hotels, we can use two different metrics. According
to the common sense, the best hotels are the ones with the largest average
rating , defined as

rui =

∑
u rui
ni

(3.3)

where rui is the rating from user u to item i, and ni is the number of users
who rated item i. However, average ratings computed over a larger support
are considered more reliable by the users. Therefore, popularity can be
used as an alternative metric to define the best hotels. The two metrics are
not necessarily correlated, as low popularity may come along with a high
hotel rating and vice versa. To overcome this ambiguity, we adopted the
definition of shrunk average rating introduced in [11]

r̃ui =

∑
u rui

ni + k
(3.4)

where k is a shrink constant that controls the support of the estimate. For
k = 0 hotels are ranked according to the traditional definition of average
rating. For k → ∞ hotels are ranked according to their popularity. In our
experiments we set k = 10.

Hotels are sorted based on their shrunk ratings and the topmost hotels
that capture 66% of ratings are considered the “best”. In our dataset there
are 1500 “best” hotels, out of 3100 hotels overall (almost 50%). This
number is close to the percentage of fully booked hotel as reported by
Venere.com during high season periods in Rome. The “best” hotels are
considered fully booked in the high-season scenario and are removed from
the dataset during the on-line recommendation.
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Figure 3.1: Distribution of the number of ratings for the first 100 most popular hotels.

Figure 3.1 reports the popularity of the 100 most popular hotels, for both
the low and high season scenarios. Hotels (horizontal axis) are sorted in de-
scending order of popularity. The dashed line represents the number of rat-
ings in the original, unmodified dataset (i.e., the low season scenario). The
solid line represents the most popular hotels which remain in the dataset
when the best hotels have been removed (i.e., the high season scenario).
It is clear from the figure that the high season scenario removes from the
dataset the short-head of the distribution.

3.5 The Study

3.5.1 Dependent Variables

We model the user centric effects on quality of recommendations that can
be associated to the introduction of personalized recommendations using
two types of constructs: i) subjective variables - attributes resulting from
the user’s perception and judgment of the decision making activity; ii) ob-
jective variables objectively measurable attributes of the decision process
and outcome. The complete list of variables is presented in Table 3.2. Sub-
jective variables are measured using a web based questionnaire, proposed
to participants at the end of their reservation process. Objective variables
are assessed using interaction log data.

3.5.2 Independent Variables

The effects of recommendations are explored under different experimen-
tal conditions, defined by the combination of two manipulated variables:
hotels availability and recommendation algorithm.
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Variable Type Description Question

Choice satisfaction Subj. The subjective evaluation of
the reserved hotel in terms of
quality/value for the user

Are you satisfied with your
final choice?

Trust Subj. The perceived degree of
matching between the char-
acteristics of the chosen ho-
tel emerging from the use of
the system and the real char-
acteristic of the accommo-
dation

Will the description of the
chosen hotel match its real
characteristic?

Hotel price Obj. The cost of one night for the
reserved hotel

N/A

Extent of hotel search Obj. The number of hotels that
have been searched, for
which detailed information
has been acquired

N/A

Table 3.2: Dependent variables used in our studies

For hotels availability we consider two possible values: low season (or
full availability) and high season (“when the best are gone”).

Our study considers three recommendation techniques: Editorial, Hy-
brid and Popular.

• Editorial. We consider as baseline “algorithm” the most common ap-
proach of online booking systems, which ranks hotels based on some
marketing strategy. We adopted the default ranking of Venere.com,
which is (mainly) based on the number of users who booked the hotel.

• Hybrid. This technique generates a list of recommended hotels inter-
leaving the results from PureSVD and DirectContent algorithms. In-
terleaving has been proposed in [19] with the name “mixed hybridiza-
tion” and, although trivial in its formulation, has been shown to im-
prove diversity of recommendations. PureSVD is a collaborative algo-
rithm based on matrix-factorization; previous research shows that its
accuracy is one of the best in the movie domain [31]. DirectContent
recommends hotels whose content is similar to the content of hotels
the user has rated [82]. Content analysis takes into account 481 fea-
tures (e.g., category, price-range, facilities), the free text of the hotel
description, and the free text of the hotel reviews. DirectContent is a
simplified version of the LSA algorithm described in [11].
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• Popular. This technique generates a ranked list of items based on the
shrunk average rating .

3.5.3 Study execution

Our main research audience is represented by users aged between 20 and
40 who have some familiarity with the use of the web and had never used
Venere.com before the study (to control for the potentially confounding fac-
tor of biases or misconceptions derived from previous uses of the system).
The total number of recruited subjects who completed the task and filled the
questionnaire by the deadline was 142. They were equally distributed in the
6 experimental conditions. We recruited participants from current students,
ex-alumni and administrative personnel at the School of Engineering and
the School of Industrial Design of our university. They were contacted by
e-mail, using university mailing lists. The invitation included the descrip-
tion of the task to be performed and the reward for taking part in the study.
Users were not aware of the true goal of the experiment.

To encourage participation, and to induce participants to play for real
and to take decisions as they would actually do when planning a vacation,
we used a lottery incentive [106]. Participants had the chance of winning
a prize, offered to a randomly selected person who completed the assigned
task and filled the final questionnaire by a given deadline. The prize con-
sisted of a coupon of the value of 100eto be used to stay in the hotel ficti-
tiously reserved using PoliVenus.

All participants were given the following instructions: “Imagine that
you are planning a vacation in Rome and are looking for an accommoda-
tion during Easter season; choose a hotel and make a reservation for at
most two 2 nights; dates and accommodation characteristics (stars, room
type, services, and location) are at your discretion. After confirming the
reservation (simulated), please complete the final questionnaire”.

After accessing PoliVenus and agreeing on the study conditions (lottery
participation and privacy rules), each participant was automatically redi-
rected to the homepage of the PoliVenus reservation system and randomly
assigned to one of the six experimental conditions. After committing the
reservation, the user was directed to the questionnaire page containing 10
questions, a subset of which is reported in Table 3.2.

3.6 Results

In this section we analyze and discuss the results of the final study where
we compare the situation “with all items” against the one when “the best
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are gone”.
We first polished the collected data by removing the ones referring to

subjects who showed apparent evidences of gaming with the testing system
(e.g., those who interacted with the system for less than 2 minutes) or left
too many questions unanswered. In the end, we considered the data refer-
ring to 125 participants. They were almost equally distributed in the six
experimental conditions, each one involving a number of subjects between
20 and 24.

Analysis of variance (Anova) suggests that the six different experimen-
tal conditions (type of algorithm and hotel availability) have a significant
impact (p<0.05) on all the variables. We ran multiple pair-wise comparison
post-hoc tests using Tukey’s method on the mean value of the dependent
variables. The results are shown in Figures 3-7, together with 95% confi-
dence intervals.

Figure 3.2 describes user satisfaction in the 6 experimental conditions
for the low season and high season scenarios. In the low season scenario
(Figure 3.2a), more than 90% of the users are happy with their choice (per-
centage of “yes” answers to the question about choice satisfaction) with
top popular non-personalized recommendations; and the satisfaction mea-
sure is significantly better compared to the baseline Editorial presentation
of hotels.

In the high season scenario users are overall less satisfied than in the low
season in all 3 experimental sub-conditions. This is not surprising as users
may interpret the scarcity of resources in a given period as a weakness of the
catalogue of services and ascribe the phenomenon to the service provider
rather than an objective contingent situation. For users receiving editorial
and top popular recommendations the percentage of satisfied users reduces
to half its value: satisfied users drop from 60% down to 30% in the editorial
case, and from 90% down to 45% in the top popular case. In contrast, users
receiving personalized recommendations in the high season situation are
now the most satisfied (70%) and their number does not significantly differ
from the low season scenario.

It is interesting to compare these results against an objective variable,
the average price per night of the hotels reserved by the users. In non-
personalized conditions there is a statistically significant negative corre-
lation between hotel price and satisfaction. In the low season scenario
(Figure 3.3a) users who receive popular recommendations and are more
satisfied spend significantly less, on average, than users in the baseline sce-
nario: 100evs. 150eper night. Again, no statistically significant difference
emerges in conditions of personalized recommendations (where the cost of
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Figure 3.2: Percentage of satisfied users.
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Figure 3.3: Average cost per night.

booked hotels is between 100eand 150e). In high season, when most of
the hotels are fully booked and the average cost per room increases, the
average price of booked hotels increases by more than 70% in the editorial
condition and by approximately 50% in presence of top popular recom-
mendations (Figure 3.3b). Still, it is not significantly different from the low
season scenario when users’ decision is supported by personalized recom-
mendations.

Concerning effort, Figure 5 plots the task execution time in the different
experimental conditions. This finding confirms the intuition that searching
for hotels in the low season period intuitively takes shorter time than in the
high season period when most of the best hotels are fully booked and the
decision making process is more complex.

Less intuitively, in both low and high season conditions, the most sat-
isfied users invested more time on the decision process than less satisfied
users. The findings on the effort measured with a different variable average
number of hotels “explored” by the users – are consistent with the results
on task time. In the low season scenario, Figure 3.4a shows that users who
receive top popular recommendations and are the most satisfied, explore the
largest number of hotels. The same happens in the high season scenario for
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Figure 3.4: Number of explored hotels.
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Figure 3.5: Percentage of users trusting the booked hotel

users who receive personalized recommendations and are the most satisfied
(Figure 3.4b).

Figure 3.5 highlights a correlation between trust and satisfaction. Ac-
cording to Figure 3.5a, the majority of the users in the low season scenario
trust the booked hotel (i.e., they believe the hotel characteristics matches its
description). Noticeably, all low season users receiving top popular recom-
mendations and all high season users receiving personalized recommenda-
tions trust the system. For users receiving editorial recommendations trust
drops from 90% (low season) down to 65% (high season).

3.7 Discussion

3.7.1 User-centric quality

The low season condition is comparable to the situation of potentially un-
limited capacity, when all items are always available, which characterizes
most domains considered by RS research. Hence it is not surprising that
our results on satisfaction in the low season scenario are in line with prior
findings [31] that consider the movie domain and pinpoint that the per-
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ceived quality of non personalized algorithm is comparable to the one of
personalized algorithms. There are a number of possible interpretations of
this phenomenon, consistent with the results of our off-line study. It is well
known that the opinion of the crowd has a strong persuasion effect, often
times higher than individual unexpressed preferences.

When there is a large amount of products potentially satisfying the char-
acteristics explicitly specified by the user (e.g., stars, services, location),
the most important attributes of items that drive the user decision process
are number of ratings and their value. Trivially, most users are biased by
success, hence algorithms that are biased by popularity are better. These
algorithms implement a first order persuasion criteria – product success.
When the offer of products abounds, less biased algorithms that rely more
on a second order persuasion criterion – personalization – are not appre-
ciated and are less trusted: their suggestions do not match the opinion of
the crowd and this mismatch can be noticed by the users just by looking at
the popularity and ratings of the suggested items. It is worth noticing that
the mismatch in perceived quality between personalized and non personal-
ized recommendations that emerges from our study is stronger that in the
findings of [31]. This effect may be due to the intrinsically different char-
acteristics of the hotel booking domain with respect to the movie domain
which is the subject of the studies reported in [31]. Personalized algorithms
attempt to support novelty and serendipity. But, differently from other do-
mains (e.g., movies) these attributes are not necessary important in hotel
booking. Users who already stayed in a city might wish to book the same
hotel used in the past if it offered a satisfactory experience. If this accom-
modation is available, recommendations of something new or unexpected,
regardless its degree of match with personal tastes, might not be taken much
into account. In contrast, users would not buy a movie twice, appreciating
the recommendation of items that are novel and serendipitous.

Let us now consider what happens when short head items are missing
(high season scenario). Our findings show that, in the relative ranking of al-
gorithms, personalized recommendations are now more effective than pop-
ularity based recommendations. In conditions of scarcity of offer most pop-
ular choices are not available (i.e., short head items are missing). Most of
the available items are in the longer tail, with no or few user ratings. They
all appear to be “below threshold”, indistinguishable from one another, with
respect to the attributes of average rating and popularity that act as persua-
sion factors when the offer is abundant. Users are less biased by popularity
and popularity-based algorithms reduce their effectiveness. At this point,
other qualities of items become important, such as an acceptable match
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between item characteristics and personal needs. Hence personalized algo-
rithms which are unbiased by popularity increase their persuasion strength
as they provide better support to users in discovering alternative and novel
but yet satisfactory solutions.

Beside satisfaction, other results emerging from our user study are con-
sistent with the above arguments. In the high season, “trust” and “num-
ber of explored hotels” increase and reach the top level with personalized
recommendations, while they decrease with popularity-based recommen-
dations. When the best and most obvious solutions are gone, users are
forced to spend more effort in searching for items and exploring informa-
tion related to the choice process (as shown also by the values of the time
variable). But this burden is mitigated by the benefits of a more satisfying
and trustworthy decision process. Finally, it is interesting to consider the
results of the “price of booked hotels” in the different experimental condi-
tions. It is intuitive that higher levels of choice satisfaction are related to
lower price of the chosen hotel. What is more surprising, but is consistent
with the above analysis and the findings on effort, is that the average cost of
reserved hotels in the condition of personalized recommendation is not af-
fected by the scarcity of offer, remaining stable in low and high season. By
effect of personalized recommendations, users tend to explore more items,
become more conscious of alternative offers, and seem to be more able to
discover hotels at reasonable prices.

3.7.2 Validity of the study

The internal validity of our user study is supported by the accuracy of our
research design and by the quality of study execution. We have carefully
implemented a mechanism to randomly assign participants to the different
experimental conditions. We have adopted a lottery incentive to improve
the accuracy of the task’s execution and offer a shared motivation to all
participants. Still, the individuals’ intrinsic characteristics and actual be-
havior always bring to an experiment a myriad of factors that can be hardly
controlled. In terms of external validity, the results of our study are ob-
viously limited to the participants and conditions used in our study. We
cannot generalize our findings to contexts where other design decisions are
adopted in relationship to algorithms, elicitation techniques, and interface.
Still, within the scope of our specific design choices, the applicability of our
results might not be confined to the specific online booking system used.
Most services available in the market provide a user experience very simi-
lar to Venere.com, in terms of filtering criteria and information/navigation
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structures, and it is likely that replications of our study on other systems
may lead to results consistent with our findings. Finally, the high overall
number of testers (240 in the first user study, and 142 in the second one)
and the relatively high number of subjects involved in each experimental
condition may allow us to generalize our results to a wider population of
users.

3.8 Conclusions

In this chapter we focus on session-based recommendation in business sec-
tors that we call bounded domains. We present a relatively simple yet ef-
fective way of building a profile of the user from the sequence of interac-
tions in the current session based on implicit elicitation combined with time
decay. With such mechanism we were able to provide personalized recom-
mendations to new users solely on the basis on their activity in the current
session.

We bring a number of contributions to RS research and practice. From
a research perspective, our work considers attributes of items – constrained
capacity and availability – that have received so far little attention in the
RS community. Our main result is that in our case study the subtractive
effect resulting by item consumption strongly weakens the performance of
non personalized popularity based recommendations. In contrast, person-
alized recommendations do not exhibit such a negative behavior: “when
the best are gone” on-line measured satisfaction and effort remain stable,
while trust improves. We are not aware of other online experiments that
consider the effects of subtractive operations on recommender quality.

Our results emphasize the importance of personalization strategies in
session-based recommendation. In this chapter we focused on the implicit
signals generated by the user from her interactions with the UI. However,
we left out other important signals that can be used to better identify the
intent of the user in the current session, such as the information hidden
in the sequence of items explored by the user (we loosely addressed this
aspect by introducing a time decay factor in the user profile), or the se-
quential relations between the content of the explored items themselves, as
well as the influence of past user sessions on the current one. All these
aspects cannot be easily encoded into a single, relatively static user profile
vector. Furthermore, traditional collaborative or content-based algorithms,
as we have seen in Chapter 2, do not provide the sufficient flexibility to
adapt to the short-term changes in the user interests. Therefore, it urges the
definition of new, powerful, sequence-aware algorithms for session-based
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and session-aware recommendation. We will present novel solutions that
address these and other research needs in the following chapters.
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CHAPTER4
Feature-rich session-based

recommendation with Recurrent Neural
Networks

In traditional recommender systems, it is often assumed that the complete
user history is available. As shown in the previous chapter, this assumption
does not hold in many real-world recommendation use cases: (1) many e-
commerce sites do not require user authentication even for purchase; (2) in
video streaming services users rarely log in; (3) many sites have a small
percentage of returning users; (4) the user intent can change between dif-
ferent sessions, typical for example in classified sites. These are typical
cases of session-based recommendation in which is fundamental to extract
as much information as possible from the interactions of the user in the
session given the absence of user profiles.

In this chapter, we consider the problem of next-item recommendation
in session-based scenarios with click-stream data. The interactions in ev-
ery session are represented by the stream of temporally ordered item-IDs
clicked by the user. The goal is to predict the right item the user will click
next, given her past activity in the current session.

Beside item-IDs, we also take into account the characteristics of the
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items that have been clicked. In real systems items usually come with rich
feature representations. In streaming services, videos are usually associ-
ated to a title and a small thumbnail that are explicitly chosen to capture
users’ attention. In classified advertisement, announcers usually provide a
short title and a description of the product being sold, aiming to attract po-
tential buyer’s interest while she is browsing among many other – possibly
similar – announcements. Features become particularly important in a ses-
sion modeling setting where historical user specific data is missing or has
no importance. Given the absence of user profiles, in session-based rec-
ommendation it is vital to draw as much information as possible from the
interactions of the user in the session, and such features should be utilized
to aid the session modeling process.

We utilize Deep Learning techniques both to extract high quality fea-
tures from visual information and to model the sessions. We model indi-
vidual user sessions as sequences of clicks with Recurrent Neural Networks
(RNNs) and extract visual features from video thumbnails with pretrained
Convolutional Neural Networks (CNNs). We also extract features from text
via bag-of-words.

The jointly modeling of sequences of clicked item-IDs and item features
is addressed by introducing novel parallel RNN (p-RNN) architectures. We
discuss about the optimal training procedures for session modeling with
p-RNNs. We run an extensive evaluation of the model in two real-life sce-
narios – video and product recommendation – over two large datasets of
two commercial websites provided by Gravity R&D 1. We compare against
item-KNN, which is today’s industrial standard for session-based recom-
mendation.

Part of the results of this work were presented as a full paper at the
ACM RecSys 2016 conference [62]. This chapter is an extended version
of this paper, with additional details on the training procedure, the hyper-
parameter tuning and experimental results that were not covered in the pa-
per.

The rest of this chapter is structured as follows. In Section 4.1 we
present the necessary background on Recurrent Neural Networks, on session-
based recommendation with RNNs and on feature-based recommendation.
In Section 4.2 we describe the feature extraction from image and text. In
Section 4.3 we present the proposed p-RNN architectures and the training
procedures. In Section 4.4 we present the experimental setup, the parameter
tuning and the results of our experiments. Finally, conclusions are drawn
in Section 4.5.

1http://www.yusp.com/
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4.1 Background and related works

In this section, we present a brief introduction to Recurrent Neural Net-
works. We then describe a prior work on session-based recommendation
that served as foundation of ours. Finally, we briefly describe the state-of-
the-art on feature-rich recommendation.

4.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural models explicitly devised to
process sequences of arbitrary length. They have been recently used with
success in a variety of fields like speech signal modeling and polyphonic
music modeling [28]. They differ from feedforward neural networks by
the inclusion of connections that span adjacent time steps, introducing the
notion of time in the model [80]. They are characterized by a distributed
hidden state that is used to store information about the past efficiently, and
non-linear dynamics to compute complex updates of the hidden states.

At each time step t, the RNN receives the input data point xt and the
previous hidden state ht−1. In standard “vanilla” RNNs, the hidden state,
or activation, ht is updated according to the following equation

ht = g (Whxxt +Whhht−1 + bh) (4.1)

where Whx and Whh are the input and hidden transformation matrices, bh
is the hidden bias, and g is a smooth and bounded activation function such
as a logistic sigmoid function or hyperbolic tangent.

In short, at each time step t, the hidden state of the network ht is com-
puted as a simple weighted sum of the current input xt and the previous
hidden state ht−1 with a non-linear function g on top. Given the current
state ht, the RNN outputs a probability distribution ŷt over the next ele-
ment of the sequence like in the following equation

ŷt = softmax (Wyhht + by) (4.2)

where softmax (zk|z) = exp(zk)∑
j exp(zj)

is the softmax function.
The network can be trained to minimize the classification error over the

next element in the sequence using, for example, the cross-entropy loss

L (yt, ŷt) = −
∑
t

∑
k

ytk · log (ŷtk) (4.3)

Activations can be stacked to increase the depth of the RNN, and complex
RNNs structures can be constructed to address the characterstics of the task
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Figure 4.1: A visualization of a Recurrent Neural Network. The weights of the network
Whx,Whh and Wyh are the same at every time step.

that is modeled (e.g. text classification, sequence to sequence translation,
text generation). See [80] for a comprehensive review on sequence learning
with RNNs.

When all the components of the RNN and the loss function are differ-
entiable, the network can be trained in a gradient-based fashion through
the back-propagation [115]. However, learning with RNNs is known to be
very challenging due to the problems of vanishing and exploding gradients
that occur with backpropagation across many steps [100]. These issues
can be addressed by means of advanced learning algorithms such Trun-
cated Back-Propagation Through Time (TBPPT) [140], gradient clipping
and second-order methods (e.g. [36, 44]).

Additionally, “modern” RNNs use complex hidden dynamics to miti-
gate the aforementaioned issues. We briefly describe here the two most
used variants, namely Long Short-Term Memory (LSTM) [64] and Gated
Recurrent Unit (GRU) [27]. Both models use complex dynamics to learn
when and how much to update their hidden state, which in turn allows to
mitigate the impact of vanishing gradients. They both replace hidden units
with memory cells. LSTMs and GRUs basically differ only in the complex-
ity of their cells.

Long Short-Term Memory (LSTM)

LSTMs have been subject to many modifications since its introduction
in [64]. We present here the version of [52]. The LSTM (Figure 4.2a)
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maintains a memory cell ct at time t. The activation ht is computed as

ht = ottanh (ct) (4.4)

where ot is the output gate that modulates how much information in the
memory cell is exposed. The output gate is computed as

ot = σ (Woxxt +Wohht−1 +Wocct) (4.5)

where σ (z) = 1
1+exp(−z)

is the sigmoid function. The content of the mem-
ory cell is updated by partially forgetting the previous memory and adding
the new memory:

c̃t = tanh (Wcxxt +Wchht−1)

ct = ftct−1 + itc̃t

where ft and ct are the forget gate and input gate respectively, that are
computed by

ft = σ (Wfxxt +Wfhht−1 +Wfcct−1)

it = σ (Wixxt +Wihht−1 +Wicct−1)

Gated Recurrent Unit (GRU)

GRUs (Figure 4.2b) are simpler versions of LSTMs. The activation of the
GRU is a linear interpolation between the previous activation and the can-
didate activation h̃t:

ht = (1− zt)ht−1 + zth̃t (4.6)

where the update gate zt and the candidate activation h̃t are given by:

zt = σ(Wzxxt +Whzht−1)

h̃t = tanh (Whxxt +Whh(rt � ht−1))

and finally the reset gate rt is given by:

rt = σ(Wrxxt +Wrhht−1) (4.7)

The simpler cell dynamics of GRUs makes them less computationally
expensive than LSTMs. Still, they have been shown to maintain the same
properties of LSTMs in many sequence learning tasks [27]. For these rea-
sons, GRU is the model of choice in this work. In order to simplify the
understanding of the following sections, we will refer to GRU simply as
RNN, unless explicitly noted.
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(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 4.2: Illustration of (a) LSTM and (b) GRU cells from [27].

4.1.2 RNNs for session-based recommendation

The first successful application of RNNs to session-based recommendation
to our knowledge in presented in [61]. The input to the network is the
current item of the session while the output is the next item in the session.
Inputs are one-hot encoded, i.e., the input vector has length equal to the
number of items in the catalog and only the entry corresponding to the
current item is one while others are set to zero. An additional embedding
layer can be used in input, but empirically it does not show any performance
benefit.

The architecture of the network (Figure 4.3a) is composed of GRU layer(s)
and additional feedforward layers that can be added between the last layer
and the output. The output of the network is the predicted preference on
the next item, i.e., the likelihood of being the next item in the sequence.
In addition, GRU layers can be stacked and the input can be propagated to
layers deeper in the network.

To address the peculiarities of the recommendation domain, the authors
introduce three modifications to the training procedure, namely session-
parallel mini-batches, output sampling and ranking loss.

• Session-parallel mini-batches. RNNs in NLP are generally trained
with in-sequence mini-batches, e.g., by segmenting sequences into
fragments with a sliding window over the words in the text and con-
catenating such fragments to generate a mini-batch. However, user
sessions can be of very different length, and breaking sessions down
into fragment would not allow to capture how the session evolves over
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time. For these reasons, the authors propose session-parallel mini-
batches (Figure 4.3b). Sessions are first ordered, then the first and
second events of the first B sessions form respectively the input and
the output mini-batches, and so on. Forthcoming sessions are added
to the mini-batch as old sessions end and the corresponding hidden
states in the RNN reset.

• Output sampling. The computation of the output activation of the
network (Equation 4.2) scales linearly with the number of items. This
can be extremely costly when dealing with large catalogs of tens of
thousands or even millions of items. Therefore, the authors propose
to sample the output and to compute the score only for a small subset
of the items. The sampling is performed efficiently by considering, for
every item in the mini-batch, all the other examples in the mini-batch
as negative examples. This procedure considerably reduces the com-
plexity in training and has the desirable property of being a popularity-
based sampling approach [110], since the likelihood of an item being
in the other training examples is proportional to its popularity.

• Ranking loss. Next event prediction can be interpreted as a tradi-
tional classification task. However, in recommender systems ranking
losses generally outperform other approaches. For this reason, the au-
thors propose to use pointwise and pairwise ranking losses. Pointwise
losses, such as cross-entropy, estimate the ranking of items indepen-
dently and learn how to push the relevant item up in the recommen-
dation list. Pairwise losses, such as BPR [111], instead consider the
score and ranks of pairs of relevant (positive) and non-relevant (nega-
tive) items and optimize for the relative ordering between pairs.
In the training procedure, the loss is averaged over samples of NS

items (NS = B in the case of training with parallel mini-batches). rs,i
and r̂s,i are the actual and predicted relevance score for the next-item
i in the session s. Notice that, in the case of binary implicit feedback
like in click-stream data, rs,i = 1 iff i is the item clicked by the user in
the next event in s and 0 otherwise. The pointwise and pairwise losses
used to train RNNs with click-stream data are:

1. Pointwise:
– Cross-entropy. This is the mini-batch version of the cross-

entropy loss defined in Equation 4.3. The loss at a given point
in the session s is computed as:

LS = −rs,i · log (r̂s,i) (4.8)
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This loss maximizes the score of the positive items without
considering the negative ones. This loss can be subject to
numerical instability issues due to values r̂s,i close to 0 during
training (with consequent loss values that approach infinity).
This issue is commonly addressed by by adding a very small
constant ε to LS , e.g. 10−24, which bounds the values LS can
take.

2. Pairwise:
– BPR. This is the well-known Bayesian Pairwise Ranking [111]

loss, widely used in recommendation systems. It compares
the relevance score of a positive item and a sampled negative
item. The loss at a given point in the session s is defined as:

LS = − 1

NS

·
NS∑
j=1

log (σ (r̂s,i − r̂s,j)) (4.9)

where j are the negative samples.
– TOP1. This pairwise ranking loss was explicitly devised for

the task. It is a regularized approximation of the relative rank
of the positive item and it is computed as:

LS =
1

NS

·
NS∑
j=1

σ (r̂s,j − r̂s,i) + σ
(
r̂2s,j
)

(4.10)

The first term in the summation is a continuous approxima-
tion of the relative rank of the relevant item I {r̂s,j > r̂s,i}
where the indicator function is replaced with a sigmoid. This
induces the model to assign high scores to r̂s,i. The second
term in the summation acts as a regularizer and pushes the
score of non-relevant items towards zero.

The network is trained with Adagrad [44] with momentum [130] for a
fixed number of epochs (10). The final results of the paper show that single-
layer RNNs trained, parallel mini-batches and TOP1 loss significantly out-
perform the Item-KNN baseline and other non-personalized and sequence-
agnostic baselines such as Popularity by large margins (+20-24% in Recall
and +15-20% in MRR over Item-KNN) on two large datasets, hence estab-
lishing a new state-of-the-art in session-based next-event recommendation.
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Figure 4.3: Architecture and parallel mini-batches.

4.1.3 Feature-rich Recommender Systems

The integration of item features into recommendation systems sets its roots
into Content-based recommendation [113]. Items can be associated with
very diverse types of features, like human-curated metadata [125] and tags
[83]. While item features are important resources in item cold-start sce-
narios [120], it is acknowledged by the community that collaborative ap-
proaches quickly outperform content-based ones as soon as user interac-
tions become sufficiently dense [103]. This fact is primarily imputable to
the higher quality of the user and item descriptors that can be extracted
from interaction data. Additionally, metadata and tags are just abstract,
structured item representations that do not really reflects what the user is
actually seeing or listening, i.e., the actual content of the item.

To address the inherent mismatch between traditional item representa-
tions based on tags and metadata and the actual content of items, recently
a new class of recommenders, said feature-rich recommender systems, has
been developed. These recommenders leverage features that are automati-
cally extracted from the unstructured item content itself and combine them
with traditional collaborative and content recommendation.

In the context of video recommendation, in [37] we considered stylistic
and low-level features that automatically extracted from videos in content-
based recommendation. Low-level features (lighting, color and motion)
capture the inherent stylistic aspects of movies that cannot be straightfor-
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wardly encoded by metadata, showing significant improvements in recom-
mendation wrt. video recommendation based on metadata.

In place of handcrafted feature descriptors, deep models can be used
to extract features from unstructured content such as music or images [40,
124]. For example, convolutional deep networks have been used to extract
features from music tracks that are then used in a factor model [136]. More
recently [138] introduced a more generic approach whereby a deep net-
work is used to extract generic content-features from items, these features
are then incorporated in a standard CF model to enhance the recommenda-
tion performance. This approach seems to be particularly useful in settings
where there is not sufficient user–item interaction information. Image fea-
tures that have been extracted using convolutional networks have been used
in classical matrix factorization-type CF in [58, 89] to enhance the quality
of recommendations.

4.2 Feature extraction

4.2.1 Feature extraction from images with Deep CNNs

Recently, deep learning research on convolutional neural networks (CNNs)
achieved breakthroughs in a variety of different image-related tasks, like
object recognition, image segmentation, video classification, etc. [70, 74]
even surpassing human performance on the task of object recognition [56].
Unlike other approaches, CNNs don’t require prior feature extraction, since
they are capable of working on the raw image data. CNNs trained on mil-
lions of images produce image features that can then be used as input in
other algorithms e.g. clustering [40, 124]. These models generalize well
and also perform well on images that the CNN has never encountered dur-
ing training and can thus be used as generic feature extractors. This makes
CNNs ideal for extracting high quality image features.

We used the GoogLeNet [131] implementation of the Caffe deep learn-
ing framework [70] to extract features from the thumbnails of the videos.
The network was pre-trained as an image classifier on the ImageNet ILSVRC
2014 dataset [116] that contains 1.2M images organized into 1000 cate-
gories. The video thumbnails first had to be scaled down and cropped in
order to fit the input of the network. Features were extracted from the last
average pooling layer, extracted as the value of the pool5_7x7_s1 layer
(Figure 4.4). The feature vectors were normalized to have unitary l2-norm.
The image feature representation we end up with is a real-valued vector of
length 1024.
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Figure 4.4: Diagram of GoogLeNet [131]. We extracted features from the last average
pooling layer pool5_7x7_s1.

Figure 4.5 demonstrates the feature quality by showing the 3 most sim-
ilar images to two query images, where similarity is defined as the cosine
similarity between the image feature vectors. Given the good quality, we
do not plug the CNN directly into the RNN, as it would introduce unnec-
essary complexity to the training and is also unpractical, because (a) this
network would converge much slower as it needs to learn the model on
incomplete/changing item representations; (b) the network would not be
suitable for datasets with lower number of items, as 10,000s of items are
not enough to leverage the full potential of the CNN; (c) retraining would
take much longer. Another possibility is to use the pretrained network and
fine tune the item representations during the training of the RNN. This did
not make much difference in our experiments, therefore we did not use fine
tuning.

Figure 4.5: Top3 similar images to query images, based on cosine similarity of image
feature vectors.

4.2.2 Feature extraction from unstructured text

Given the strict limitation on the length of the descriptions imposed by on-
line classified advertisement platforms, advertisers usually provide rather
concise text for their items. The main goal of the description is to attract
the attention of potentially interested users. Therefore, descriptions often
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contain only the main characteristics of the item and use syntactically in-
correct sentences. Moreover, it is not rare to have descriptions written in
multiple languages to capture a broader audience. The majority of descrip-
tions of our dataset used a subset of 3 main languages with a handful of less
frequent ones also present.

Given the inherent noise in user generated, unstructured text and multi-
ple languages in our data, we adopted the classical bag-of-words represen-
tation to encode product descriptions. First we concatenated the title and
the description of the items. We explicitly avoided to repeat the title if this
was already written at the beginning of the text. We filtered stopwords and
extracted uni–grams and bigrams from text, and discarded all the entries
that appear only once. Finally, the resulting bag-of-words was weighted
using TF-IDF [118]. The final item representation is a sparse vector of
length 1,099,425 with an average of 5.44 non-zero coordinates.

We considered other methods to extract features from unstructured text,
e.g. distributed bag-of-words [92] and Language Modeling with RNNs [94].
However, the classical bag-of-words with TF-IDF was found to work better
with our data. We attribute this to the noisiness of user generated content.
The lack of English text and the presence of multiple languages prevented
us from using pre-trained word representations, e.g. from Word2Vec.2

Experiments with adding an embedding layer between the features and
the network resulted in worse performance, therefore, the classical bag-of-
words/TF-IDF features were used as item representations and were used
directly as the input of the RNNs.

4.3 Parallel RNNs

In this section, we describe the proposed parallel RNN (p-RNN) architec-
tures that utilize item representations (features) for session modeling. A
p-RNN consists of multiple RNNs, one for each representation/aspect of
the item (e.g. one for ID, one for image and one for text). The hidden states
of these networks are merged to produce the score for all items. We also
introduce baseline architectures, naive approaches for using the different
item representations.

As a basis, we take the best RNN setting from the session-based rec-
ommender described in Section 4.1.2. We used a single GRU layer without
feedforward layers and the TOP1 pairwise loss function along with session-
parallel mini-batching and output sampling. The input of the networks is
the item ID of a session. The input in then translated into either:

2https://code.google.com/p/word2vec
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a) a one-hot ID vector
b) a precomputed dense image feature vector
c) a sparse unigram + bigram text feature vector

The details on feature extraction are presented in Section 4.2. The proposed
architectures use a subset of the above 3 item representations. The output is
a score for every item indicating the likelihood of being the next item in the
session. During training scores are compared to a one-hot vector created
from the item ID of the next event in the session to compute the loss. In
order to reduce computational costs, only the score of the target item and
that of a small subset of “negative” items are computed during training.

4.3.1 Architectures

We devised the following architectures. For simplicity, we only present
architectures with ID and image features; for text features one can proceed
analogously as with image ones. The parallel architectures can also deal
with ID, image and text features simultaneously. The architectures can be
separated into two groups:

1. Baseline architectures (Figure 4.6):

• ID-only: This architecture only uses the one-hot ID vectors and
it is identical to the one described in Section 4.1.2. It serves as a
baseline in our experiments.

• Feature-only: The input of this variant is one of the content fea-
ture vectors (image or text). Otherwise it works similarly to the
previous network.

• Concatenated input: The easiest way to combine different item
representations is to concatenate them. This network uses the
concatenated representations as its input.

2. p-RNN architectures (Figure 4.7):

• Parallel: The first parallel architecture trains one GRU network
for each of the representations. Outputs are computed from the
concatenation of the hidden layers of the subnets. This is equiv-
alent to computing output scores separately, weighting them and
applying through the final activation function. Training can be
done in different ways (see training strategies in Section 4.3.2).

• Parallel shared-W: This architecture differs from the previous
one by having a shared hidden to output weight matrix. Scores
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are not computed for each subnetwork separately. Instead, the
weighted sum of the hidden states is multiplied by a single weight
matrix to produce the output. Having a shared weight matrix
greatly reduces the number of parameters and thus decreases train-
ing times and overfitting.
This model is also analogous to the pairwise model from context-
aware factorization research. The hidden to output matrix is the
item feature matrix. The hidden states are different representa-
tions of the session, i.e., different context dimensions.
• Parallel interaction: In this architecture, the hidden state of the

item feature subnet(s) is multiplied by the hidden state of the ID
subnet in an element-wise manner before computing the score of
the subnet(s). Mixing different aspects of the session to com-
pute item scores is analogous to context-aware preference mod-
eling. For that task, [63] found that the interaction model, i.e. the
sum of the user–item and user–context–item interaction to per-
form the best. This architecture mimics that model with the ID
subnet being promoted to the primary representation of the ses-
sion. The main difference to the context-aware task is that all of
our representations are session representations and not (mostly)
independent dimensions. Also note that contrary to the original
interaction model, the output weight matrix (item feature matrix)
is not shared in our model.

4.3.2 Training p-RNNs

Training parallel architectures is not trivial. Standard backpropagation across
the whole architecture can produce suboptimal results due to different com-
ponents of the architecture learning the same relations from the data. This
can be avoided by pretraining some parts of the network and training the
rest afterwards. This cycle can be done several times, motivated by the suc-
cess of alternating methods like ALS for matrix factorization.
Note that, while the parameters of fixed networks remain unchanged, they
still participate in the forward pass and they are only excluded from the
backpropagation. We developed three training strategies for training p-
RNNs, namely simultaneous, alternating and residual and interleaved train-
ing. We also provide the pseudo–code for alternating, residual and inter-
leaved training in the case of training p-RNNs with ID and image features.

• Simultaneous: Every parameter of every subnet is trained simultane-
ously. It serves as the baseline.
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Sim. Alt. Res. Int.

ID-only X
Feature-only X
Concatenated input X
Parallel X X X X
Parallel shared-W X X X X
Parallel intmodel X X X X

Table 4.1: Compatibilities between architectures and training strategies.

• Alternating (Algorithm 1): Subnets are trained in an alternating fash-
ion per epoch. For example, the ID subnet is trained in the first epoch,
while the others are fixed; then we fix the ID subnet and train the im-
age subnet for one epoch; and so on. The cycle restarts after each
subnet was trained.

• Residual (Algorithm 2) Subnets are trained one after the other, on
the residual error of the ensemble of the previously trained subnets.
The cycle does not start over, but the individual training of a subnet
is longer compared to the alternating method. For example, the ID
subnet is trained for 10 epochs, then the image subnet is trained on the
residual error of the ID subnet and so on.

• Interleaving (Algorithm 3): Alternating training per mini-batch. For
each mini-batch of training examples, the first subnet is trained, the
second subnet is trained on the residual error for the current mini-
batch and so on. The more frequent alternation allows for a more
balanced training across subnets without the drawbacks of the simul-
taneous training.

Not every training procedure is compatible with every architecture as
we described above. Table 4.1 summarizes compatibilities.

4.4 Experiments

4.4.1 Datasets

The evaluation was done on two large proprietary datasets.

• VIDXL: was collected over a 2-month period from a Youtube-like
video site, and contains video watching events having at least a pre-
defined length. During the collection item-to-item recommendations
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were displayed next to the featured video, generated by a selection of
different algorithms.

• CLASS: consists of product view events of an online classified site.
The site also had recommendations displayed with different algorithms
during the collection period.

During the pre-processing of the raw event streams, we filtered out un-
realistically long sessions as these are likely due to bot traffic. We removed
sessions of one (single click) event because they are not useful for session-
based recommendations and also removed items whose support is below
five, as items with low support are not ideal for modeling. The sessions
of the last day of each dataset are put into the test set. Each session is
assigned to either the training or the test set, we do not split the data mid-
session. We also filter items from the test dataset if they were not in the
training set. This affects only a tiny fraction of the items. The datasets are
summarized in Table 4.2.

Data Train set Test set ItemsSessions Events Sessions Events

VIDXL 17,419,964 69,312,698 216,725 921,202 712,824
CLASS 1,173,094 9,011,321 35,741 254,857 339,055

Table 4.2: Properties of the datasets used in the experiments.

4.4.2 Evaluation procedure

We evaluated the quality of the sequential next-event prediction task de-
scribed in Section 2.6.1. Given an event of the session, we measured how
well algorithms predict the next event of the session. The trained model is
fed with the events of a session one after another and we check the rank of
the selected item of the next event. The hidden state of the network is reset
to zero after a session ends.

As recommender systems recommend only a few items at once, the rel-
evant item should be amongst the first few items of the list. For this reason,
we limited our analysis to the first 20 items in the recommendation list.
Therefore, we used the following ranking metrics:

• Recall@20, or hit-rate@20, is the proportion of cases having the de-
sired item amongst the top-20 items of all test cases. Recall does not
consider the actual rank of the item as long as it is below 20. This is
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an accurate model for certain practical scenarios where no recommen-
dation is highlighted and their absolute order does not matter. Recall
also usually correlates well with important online KPIs, such as click-
through rate (CTR) [60].

• MRR@20, is the average of the reciprocal ranks of the desired items.
The reciprocal rank is set to zero if the rank is above 20. MRR takes
the rank of the item into account, which is important in cases where
the order of recommendations matters (e.g. the lower ranked items are
only visible after scrolling).

We compared the models described in Section 4.3 against the Item-kNN
baseline, which recommends the most similar items to the current one in the
session based on their session-level co-occurrence. The similarity between
two items i and j is computed according to the formula

sim(i, j) =
|S(i) ∩ S(j)|√

|S(i)|+ λ ·
√
|S(j)|+ λ

(4.11)

where S(z) returns the sessions in the training database where the item z
occurs at least once, and λ is a shrinkage factor to avoid coincidental high
similarities of rarely visited items. This baseline provides recommenda-
tions of the type “others who viewed this item also viewed these ones”
and despite of its simplicity it is usually a strong baseline [79]. [61] shows
that this baselines significantly outperforms other baselines such as general
popularity, personalized popularity and latent factor models in scenarios of
session-based similarity analogous to ours. In our experiments, we found
the neighborhood size k = 100 and λ = 20 to be the optimal values.

4.4.3 Parameter tuning

We used random search [14] to tune the hyper-parameters of our models
wrt. Recall@20. In random search, we used a separate validation set gen-
erated from the full training set using the same procedure described in Sec-
tion 4.4. At test time, the best networks were retrained on the full training
set and the final results were evaluated on the test set.

In parameter optimization, we considered single layer networks with
100 hidden units and TOP1 loss (defined in Section 4.1.2). Networks
are trained with Adagrad [44], momentum [130] and Dropout regulariza-
tion [128]. As in [61], single-layer RNNs always outperformed multi-layer
ones, so we do not analyze them here.

Due to the size of the datasets, we optimized the hyper-parameters of
the ID-only and Feature-only networks individually and used their optimal
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Network Loss Mini-batch Dropout Learning rate Momentum

ID-only TOP1 100 0.2 0.05 0.2
Image-only TOP1 100 0.1 0.1 0.0

Table 4.3: Best parametrizations for the VIDXL dataset.

values also with larger networks (i.e., with hidden size > 100) and in the
parallel settings. While it is possible that better parameter configurations
could be found by optimizing the parameters directly on the larger and
more complex networks at the expense of a greater computational cost, this
approach worked well in practice.

The hyper-parameters in common between ID-only and Feature-only
networks are:

1. learning rate: the learning rate set in Adagrad;
2. momentum: momentum coefficient used in the training procedure;
3. dropout: dropout probability used to regularize the learning;
4. batch size: number of sessions in each parallel mini-batch.

Each feature network has some additional hyper-parameters depending on
the nature of the features.

VIDXL dataset

Table 4.5 reports the optimal parameters for the ID and image network used
in our experiments.

CLASS dataset

As we have introduced in Section 4.2.2, we considered different ways of
using textual features with RNNs. Due to inherent noise in our multi-
lingual, -generated textual data, the most complex language models like
Word2Vec [92] did not perform well. The simple TF-IDF weighted uni-
gram and bigram vectors outperformed the most complex language models
by several orders of magnitude from the early stages of our analysis. For
this reason, we did not consider complex language models in our final so-
lution.

In Table 4.4, we present the values for Recall@20 (the metric used in the
parameter tuning, as we described before) for different configurations of the
Text-only RNN with TF-IDF features. The parameters of all the networks
were optimized with the same random optimization procedure described
before on the same validation set. Unigram and unigram+bigram features
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Feature type Size Embedding Dropout Learning rate Momentum Recall@20

unigrams 200k - 0.1 0.2 0.2 0.1812
unigrams 200k 200 0.1 0.1 0.2 0.1638
unigrams +
bigrams

1M - 0.2 0.2 0 0.2089

unigrams +
bigrams

1M 200 0.2 0.05 0.3 0.1960

Table 4.4: Best parametrizations for the text-only network on the CLASS dataset computed
on the validation set. The optimal mini-batch size is 100 for all the entries in the table.

are weighted with TF-IDF and then normalized to have unitary l2-norm. In
our experiments, the addition of bigrams produced a notable improvement
in performance (+15.28% over unigram-only features) at the cost of a 5x
larger set of features.

It is worth noting that the size of the input vector has a huge impact
on the overall size of the Text-only network. In fact, the size of the input
matrices of the GRU model grow linearly with the number of input fea-
tures and, of course, with the hidden size. GRUs have 3 input-to-hidden
matrices, thus a 2x longer feature vector requires 6x more memory for the
input matrices that has to be allocated on the GPU (notice that GPUs nowa-
days have memory that is at least a order of magnitude smaller than RAM
in workstations). We opted for GRUs over LSTMs also for space reasons
(LSTMs have an additional input-to-hidden matrix).

We could partially handle this space complexity by using efficient sparse
vector operations, since text feature vectors tend to be really sparse (on av-
erage 5.33 non-zero entries for unigram+bigram TF-IDF features). We also
tried to convert the sparse feature representation into a smaller dense em-
bedding vector in input to the GRU. By using embedding vectors we reduce
the memory consumption of the model and the training times. We exper-
imented with embeddings of different sizes (100, 200, 500). However, the
addition of the embedding layer degrades notably the accuracy (−6.17% in
its best configuration with unigram+bigram features and 200-dimensional
embedding vectors), so we had to discard this option in favor of the original
sparse high-dimensional feature vectors.

Table 4.5 reports the optimal parameters for the ID and text network
used in our experiments.
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Network Loss Mini-batch Dropout Learning rate Momentum

ID-only TOP1 100 0.3 0.05 0.3
Text-only TOP1 100 0.2 0.2 0.0

Table 4.5: Best parametrizations for the CLASS dataset.

4.4.4 Session-based video recommendation with video thumbnails

We experimented with different architectures and training strategies de-
scribed in Section 4.3 to see how image data can contribute to recommen-
dation accuracy. Image feature were extracted with the procedure described
in Section 4.2.1.

To speed up evaluation, we computed the rank of the relevant item com-
pared to the 50,000 most supported items. While this evaluation methodol-
ogy somewhat overestimates the rank and thus the evaluated metrics are a
little bit higher, the comparison of the algorithms remains fair [12].

All the proposed network configurations were subject ti extensive study
and experimentation on small-sized networks first. Then, the best config-
urations were promoted for experimentation on the large-sized networks.
This step was necessary due to the size of the dataset that made full eval-
uation on large networks unpractical. The training times ranged from sev-
eral hours for the small-size networks to days on the large-sized ones with
cutting-edge GPUs.

Small-size networks

In this first experiment, we set the number of hidden units to 100 for the
baseline architectures and 100 per subnetwork for p-RNNs (100+100 hid-
den units). The networks are trained for 10 epochs as there is no significant
change in the training loss after that.

In Table 4.6, we summarize the results with different architectures and
training methods in terms of Recall@20 and MRR@20 respectively. p-
RNNs with 100+100 hidden units can easily outperform the ID-only net-
work with 100 units. This can be likely due to the additional information
source and the increase of the overall capacity of the network. Therefore,
we also measured the accuracy of the ID-only network with 200 units. Note
that this is a very strong baseline, because doubling the number of hidden
units increases the capacity of the network ∼4 times, while having 100+100
only doubles it. Also, the doubled capacity of p-RNN is split between two
information sources, therefore it is clearly in disadvantage to even an RNN
with doubled capacity. Nevertheless, we show that p-RNNs can often beat
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Method Recall@20 MRR@20

Item-kNN 0.6263 (+0.00%/-10.05%) 0.3740 (+0.00%/-3.63%)

ID only 0.6831 (+9.07%/-1.90%) 0.3847 (+2.86%/-0.88%)
ID only (200) 0.6963 (+11.18%/+0.00%) 0.3881 (+3.77%/+0.00%)
Feature only 0.5367 (-14.31%/-22.92%) 0.3065 (-18.05%/-21.03%)
Concatenated 0.6766 (+8.03%/-2.83%) 0.3850 (+2.94%/-0.80%)

Parallel (sim) 0.6765 (+8.02%/-2.84%) 0.4014 (+7.33%/+3.43%)
Parallel (alt) 0.6874 (+9.76%/-1.28%) 0.4331 (+15.80%/+11.59%)
Parallel (res) 0.7028 (+12.21%/+0.93%) 0.4440 (+18.72%/+14.40%)
Parallel (int) 0.7040 (+12.41%/+1.11%) 0.4361 (+16.60%/+12.37%)

Shared-W (sim) 0.6681 (+6.67%/-4.05%) 0.4007 (+7.14%/+3.25%)
Shared-W (alt) 0.6804 (+8.64%/-2.28%) 0.4035 (+7.89%/+3.97%)
Shared-W (res) 0.6425 (+2.59%/-7.73%) 0.3541 (-5.32%/-8.76%)
Shared-W (int) 0.6658 (+6.31%/-4.38%) 0.3715 (-0.67%/-4.28%)

Int. model (sim) 0.6751 (+7.79%/-3.04%) 0.3998 (+6.90%/+3.01%)
Int. model (alt) 0.6847 (+9.32%/-1.67%) 0.4104 (+9.73%/+5.75%)
Int. model (res) 0.6749 (+7.76%/-3.07%) 0.4098 (+9.57%/+5.59%)
Int. model (int) 0.6843 (+9.26%/-1.72%) 0.4040 (+8.02%/+4.10%)

Table 4.6: Results on VIDXL, using image features extracted from thumbnails. The best
performing model is typset in bold and the best performing p-RNN is italic. p-RNN
architectures use 100+100 hidden units, others use 100. Performance gain over item-
kNN and ID-only are shown in parentheses.

this strong baseline as well, while they are typically better than the ID-only
network with 100 units.

The ID-only RNN outperforms the item-kNN baseline and the other
baselines by a large margin. The Recall for the ID-only RNN on this task
is very high, therefore it is very hard for the more advanced architectures to
significantly improve on this result.

The Feature-only RNN is worse than the ID-only network and even
worse than item-kNN, demonstrating that the sequence of item features
alone is not enough to model the session well. However, recommendations
seemed appropriate from a manual look. The lower Recall and MRR can
be attributed to several factors:

• The features extracted from the thumbnails may not concur with the
ones that the users find interesting, therefore modeling the sessions
only on these automatically extracted features is hard for the network.

• Offline evaluation probably underestimates its performance, because
the user might have clicked on the item, had it been shown to her as a
recommendation. The network selects an item with a similar picture to
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the one the user clicked, but does not always select that exact item (see
the example in Figure 4.5, many videos with the same content have
similar feature representations, but only one is actually clicked by the
user). This measurement bias is not present if items are represented as
IDs, therefore it can be more accurate in an offline evaluation setup.

Using concatenated input of IDs and image features hardly differs from
that of the ID-only network, since the stronger input dominates during the
training. It is hard for a single GRU layer to handle two types of inputs at
once, resulting in a performance very similar to that of the ID-only network.
Adding item features using the naive approach has no observable benefits.
Therefore, we propose to use p-RNNs instead.

Moving on to the proposed p-RNN architectures, one can see that sev-
eral configurations outperform the strong ID-only baseline by large mar-
gins. Due to the originally high Recall of the network, these novel architec-
tures mostly increase the MRR. This means that the they do not find more
relevant items, but they rank them better. These results are also shown in
Figure 4.11. Some considerations on each parallel setting follow.

• Parallel is the best performing architecture. With the naive simulta-
neous training it is much better than the strong ID-only baseline wrt.
MRR, but slightly worse wrt. Recall. With simultaneous training, dif-
ferent components of the p-RNN learn the same relations from the
data, thus the full capacity of the network is not leveraged. Therefore,
we propose using alternative training strategies.
All the alternative training methods are quite effective in this scenario,
with alternative training being the best. The p-RNN with residual
training outperforms the strong ID-only baseline by 14.40% in MRR,
while achieving similar Recall. The improvement is even greater over
the industry de facto item-kNN solution: 12.21% in Recall and 18.72%
in MRR.

• Parallel shared-W is, conversely, the worst performing architecture.
The parallel shared-W architecture constrains the output weight ma-
trix to be shared between sub-networks in order to reduce overfitting.
However, this does not necessarily translates in better prediction and
recommendation performances, also because RNNs have other effec-
tive methods that fight overfitting, such as dropout, that might not
work well in conjunction with this structure of the network.
Additionally, the same adaptive learning rate method used to train the
networks – Adagrad – might be responsible for the reduced perfor-
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mance of this architecture. During training, Adagrad increasingly
reduces the learning rate in a parameter-wise fashion, hence reduc-
ing the opportunity for a parameter to change as the training goes on.
While discounting the learning rate has many beneficial effects on the
convergence of the training procedure [44], it affects more severely
parallel networks with a single, shared output matrix than ones with
an output matrix per sub-network. Despite this, we found Adagrad to
be the best adaptive learning rate method in our experiments.

• Parallel interaction achieves intermediate performance wrt. the other
two architectures. Because output matrices are not shared between
sub-networks, this architecture does not suffer from the same issues
of the shared-W architecture. Still, the interaction model, by explic-
itly promoting the ID representation as the main representation of the
session, seem to constraint excessively the modeling capabilities of
the network. In comparison, the parallel architecture allows each sub-
network to contribute freely to the final prediction, thus the interaction
of the aspects modeled by each sub-network is learned directly from
data.

The best performing architecture is the classic parallel one. With the naive
simultaneous training it is significantly better than the strong ID-only base-
line wrt. MRR, but slightly worse wrt. Recall. With simultaneous training,
different components of the p-RNN learn the same relations from the data,
thus the full capacity of the network is not leveraged. Therefore we propose
using alternative training strategies.

Large-size networks

By increasing the number of hidden units, the capacity of the RNN in-
creases, thus this parameter has a large effect on performance. However
this parameter also obeys the law of diminishing returns. We found that
results do not improve significantly above 1000 hidden units on this prob-
lem. We ran experiments with 1000 units on non-parallel and 500+500
units on the best performing p-RNN architecture (i.e. parallel) to confirm
that adding item features can also benefit session modeling when increasing
the network capacity and/or the number of epochs has diminishing returns.

In Table 4.7 and Figure 4.8, we report the results in this setting. With
more hidden units, the performance of all networks increases. Even the
Feature-only network outperforms the item-kNN baseline as the capacity
of the network is enough to leverage the information in the image features.

101



Chapter 4. Feature-rich session-based recommendation with Recurrent
Neural Networks

Network variant Recall@20 MRR@20

Item-kNN 0.6263 (+0.00%/-13.96%) 0.3740 (+0.00%/-14.02%)

ID-only 0.7279 (+16.22%/+0.00%) 0.4350 (+16.31%/+0.00%)
Feature-only 0.6479 (+3.45%/-10.99%) 0.4089 (+9.33%/-6.00%)
Concatenated 0.7216 (+15.22%/-0.87%) 0.4291 (+14.73%/-1.36%)

Parallel (sim) 0.7084 (+13.11%/-2.68%) 0.4420 (+18.18%/+1.61%)
Parallel (alt) 0.7142 (+14.03%/-1.88%) 0.4456 (+19.14%/+2.44%)
Parallel (res) 0.7165 (+14.40%/-1.57%) 0.4513 (+20.67%/+3.75%)
Parallel (int) 0.7262 (+15.95%/-0.23%) 0.4587 (+22.65%/+5.45%)

Table 4.7: Results on VIDXL, using image features extracted from thumbnails. The best
performing model is typset in bold and the best performing p-RNN is italic. p-RNN
architectures use 500+500 hidden units, others use 1000. Performance gain over item-
kNN and ID-only are shown in parentheses.

Still, recommendation based on item IDs is more effective, for the same
reasons of the previous experiment.

A part from this case, the relation between the results is similar to that of
the previous experiments. This further underpins that p-RNNs with alter-
native training strategies are vital for efficiently incorporating item features
into learning session models. Further increasing the number of hidden units
and/or the number of epochs did not increase the performance of any net-
work with large margins, but p-RNN architectures notably outperform the
ID-only network with more than 2 times larger capacity in terms of MRR
(5.45% with interleaving training) and have similar Recall. In summary,
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Figure 4.8: Recall and MRR for session-based recommendation with image features on
the VIDXL dataset (large-size networks). Note: we represent only the best p-RNN
setting (parallel) obtained from the experiments with small-size networks.
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parallel architectures with the proposed training strategies can notably in-
crease performance, even when increasing the capacity of the network has
diminishing returns. In other words, adding additional data sources (im-
age features) can increase the accuracy and ranking in recommendations
beyond the maximum achievable just from item IDs in this scenario.

4.4.5 Session-based classified advertisement recommendation with prod-
uct descriptions

We experimented with the different architectures and training strategies to
see how textual features extracted from product descriptions can contribute
to the recommendation accuracy in the scenario of classified advertisement
recommendation. The details on feature extraction from textual data are
reported in Section 4.2.2. As in the experiments with image features, we
experimented with small-size networks first. The best architectures in this
setting were successively promoted for experimentation with the large-size
networks.

Small-size networks

We used the same setting used for image features. We set the number of
hidden units to 100 for the baseline architectures and to 100 for each sub-
network for p-RNNs (100+100). In this case, we have not restricted the
evaluation to a subset of the most popular items in the dataset and all items
instead. This partly explains the overall lower Recall and MRR values that
we obtained in this scenario.

The results for Recall@20 and MRR@20 are reported in Table 4.8. Sim-
ilar considerations to the case with image features apply also to this sce-
nario. ID-only RNNs outperform the Item-kNN by a large margin. Most p-
RNNs configurations outperform Item-KNN in terms of MRR and achieve
similar results in terms of Recall. However, none of them can outperform
the ID-only network with 200 hidden units. The ID-only network can make
better usage of the additional capacity wrt. parallel networks with 100+100
units.

A reason for this can be that learning from sparse high-dimensional tex-
tual feature vectors is considerably much harder than learning from item
IDs. In fact, the Feature-only network is considerably worse than the ID-
only one and Item-kNN. The lower performances can be attributed to:

• The sparsity in the input features requires networks with larger capac-
ity to be exploited properly and to learn useful relationship between
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Method Recall@20 MRR@20

Item-kNN 0.2387 (+0.00%/-12.34%) 0.0839 (+0.00%/-18.57%)

ID only 0.2478 (+3.82%/-8.99%) 0.0949 (+13.11%/-7.89%)
ID only (200) 0.2723 (+14.08%/+0.00%) 0.1030 (+22.80%/+0.00%)
Feature only 0.2148 (-9.99%/-21.09%) 0.0751 (-10.52%/-27.13%)
Concatenated 0.2171 (-9.03%/-20.25%) 0.0789 (-5.97%/-23.43%)

Parallel (sim) 0.2303 (-3.53%/-15.43%) 0.0837 (-0.18%/-18.71%)
Parallel (alt) 0.2557 (+7.13%/-6.09%) 0.0914 (+8.93%/-11.30%)
Parallel (res) 0.2704 (+13.30%/-0.68%) 0.1010 (+20.37%/-1.98%)
Parallel (int) 0.2572 (+7.75%/-5.55%) 0.0940 (+12.04%/-8.76%)

Shared-W (sim) 0.2274 (-4.72%/-16.48%) 0.0827 (-1.41%%/-19.71%)
Shared-W (alt) 0.2463 (+3.21%/-9.52%) 0.0904 (+7.82%/-12.20%)
Shared-W (res) 0.2409 (+0.91%/-11.54%) 0.0908 (+8.23%/-11.86%)
Shared-W (int) 0.2310 (-3.24%/-15.18%) 0.0836 (-0.36%/-18.86%)

Int. model (sim) 0.2298 (-3.72%/-15.60%) 0.0835 (-0.45%/-18.94%)
Int. model (alt) 0.2388 (+0.05%/-12.29%) 0.0875 (+4.27%/-15.09%)
Int. model (res) 0.2209 (-7.43%/-18.85%) 0.0797 (-5.03%/-22.66%)
Int. model (int) 0.2390 (+0.14%/-12.22%) 0.0885 (+5.50%/-14.09%)

Table 4.8: Results on CLASS, using image features extracted from thumbnails. The best
performing model is typset in bold and the best performing p-RNN is italic. p-RNN
architectures use 100+100 hidden units, others use 100. Performance gain over item-
kNN and ID-only are shown in parentheses.

subsequent items. This fact can be easily verified by using large-sized
networks.

• Similarly to image features, accuracy metrics might be underestimat-
ing the performance of the network. In fact, there might exist many
items having similar descriptions, hence very similar feature vectors.
The network selects an item with a similar description to the one that
is actually clicked by the user, but does not always selects the item the
user actually clicked. This inherent measurement bias affects less the
ID-only network, therefore it can be more accurate in an offline setup.

Using concatenated input IDs and textual features now performs similar
to the Feature-only network. The input of the network is the concatenation
of the sparse one-hot vector for the item ID (of size ∼340k) and the sparse
textual feature vector (of size ∼1M ). Textual features are now the domi-
nating term in the input, consequently performances are really close to the
Feature-only one. Simple concatenation is not viable with sparse features
and IDs, therefore we must rely on parallel architectures to exploit properly
the two sources of information.
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Training info Recall@20 MRR@20

Item-kNN baseline 0.2387 (+0.00%/-16.22%) 0.0839 (+0.00%/-21.00%)

ID-only, 10 epochs 0.2849 (+19.35%/+0.00%) 0.1062 (+26.58%/+0.00%)
Feature-only 0.2397 (+0.42%/-15.87%) 0.0937 (+11.68%/-11.77%)
Conc. input 0.2844 (+19.15%/-0.18%) 0.1029 (+22.65%/-3.11%)

Parallel (sim) 0.2741 (+14.83%/-3.79%) 0.1019 (+21.45%/-4.05%)
Parallel (alt) 0.2877 (+20.53%/+0.98%) 0.1096 (+30.63%/+3.20%)
Parallel (res) 0.2946 (+23.42%/+3.40%) 0.1119 (+33.37%/+5.37%)
Parallel (int) 0.2854 (+19.56%/+0.18%) 0.1058 (+26.10%/-0.38%)

Table 4.9: Results on CLASS, using textual features extracted from product descriptions.
The best performing model is typset in bold and the best performing p-RNN is italic.
p-RNN architectures use 500+500 hidden units, others use 1000. Performance gain
over item-kNN and ID-only are shown in parentheses.

The comparison between p-RNNs is in line with the previous findings
with image features. The parallel setting clearly performs better than others
both in Recall and MRR by large margins. Therefore, we consider only it
in the experiments with large-size networks.

Large-size networks

We again used 1000 hidden units for the baselines architectures and 500+500
for p-RNNs. The results shown in Table 4.9 are in line with that of the ear-
lier experiments with image features. The text only network outperforms
by a large margin the item-kNN baseline in terms of MRR. This confirms
that textual features can be effectively exploited to generate better rank-
ings when the network has sufficient capacity. However, it falls short when
compared with the ID-only network. This confirms that text features alone
are not enough. With concatenated input, the network performs similarly
to the ID-only network analogously thanks to the larger capacity of the text
sub-network.

The alternative training strategies are of crucial importance when train-
ing p-RNNs. As in the experiment with image features, the simultaneous
training is clearly sub-optimal wrt. recommendation accuracy. The clas-
sic p-RNN with alternative training strategies outperform both the ID-only
RNN and item-kNN in both Recall and MRR by a large margin. Residual
training proved to be the best strategy in this experiment with ∼3% im-
provement in Recall and ∼5% in MRR over the ID-only network. Note
that further increasing the number of hidden units or number of epochs for
the baseline RNNs did not improve the results any further. Thus, using
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Figure 4.9: Recall and MRR for session-based recommendation with image features on
the CLASS dataset (large-size networks). Note: we represent only the best p-RNN
setting (parallel) obtained from the experiments with small-size networks.

text based item features in p-RNNs with proper training can also increase
recommendation accuracy beyond what is achievable from IDs only.

4.5 Conclusions

Recommendation in session-based scenarios is an extremely hard task. It
is much more complex to gather information about the users’ tastes and in-
terests, due to the complete absence of the historical profile of the user. In
this scenario all the classical approaches to recommendation beside simple
item-kNN fall short, and one needs to find new solutions in order to effec-
tively learn the users’ interest and intent out of the handful of interactions
she may perform in a session. The sequence of user interactions certainly
constitutes a crucially important source of information to this purpose. In
fact, it is known that patterns in the sequence of items IDs can be extracted
from the logs of activities of users and exploited to generate next-item rec-
ommendations. Beside the sequence of item IDs, also item features provide
valuable information on the interests of the user in a session.

In this chapter, we examined the use of item features (image data and
text) in RNN-based session modeling to improve session-based recom-
mendations. We focused on next-item recommendation in two real-world
scenarios with user-generated content, namely video recommendation and
classified advertisement recommendation. We used features that are au-
tomatically extracted from unstructured noisy data (video thumbnails and
multilingual product descriptions). This is in line with real-life experience
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(a) VIDXL dataset

(b) CLASS dataset

Figure 4.10: Comparing best performing p-RNN against the ID-only RNN and item-kNN.

in which high-quality human-curated metadata is available only for a small
fraction of items, whereas the large majority of items are represented only
by their unstructured content. Despite the inherent challenges of this set-
ting, we discovered that RNN-based session models can effectively exploit
item features to improve the recommendation quality, after some needed
adaptations to handle the additional sources of information properly. We
pointed out that item features are not enough to properly model the ses-
sion and combining multiple data sources efficiently is not trivial. We
proposed p-RNN architectures that can leverage the added value of mul-
tiple item representations. We devised alternative training strategies (alter-
nating, residual and interleaving training) that fit these architectures better
than backpropagating the error through the whole network. The proposed
architectures and training methods outperformed both RNNs with ID-only
input and item-kNN – the de-facto industry standard for this problem – by
large margins. Finally, we showed that by using p-RNNs with alternative
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training, recommendation accuracy can be increased beyond the maximum
that is achievable by RNNs with ID-only input by increasing their capacity
and/or the number of training epochs. We demonstrate the power of the
proposed solution (500 units per subnet) by comparing it to item-kNN and
the ID-only network with 1000 hidden units on Figure 4.10.

Notwithstanding the positive results with item features, the most signif-
icant improvements are relative MRR, hence to the capability of bringing
interesting item up in the recommended ranked list. The improvements in
Recall are mostly marginal, i.e. the capability of retrieving new interest-
ing items for the user is almost unchanged. However, offline evaluation
may shadow part of the improvements since feature-based networks tend
to recommend items having the right characteristics for the user but that
may have not been actually clicked by her. An online study may help in
clarifying this point.

Item features can also be used to recommend new and cold-items. This
is a desirable feature for domains where items have a high turn-over rates
(like in classified advertisement for example), in which items added and
removed from the pool of the available ones at faster pace that what can be
effectively covered by retraining traditional ID-based methods.
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ALGORITHM 1: Alternating training (training order: Id, Img)
Input : Network parameters Θ = {ΘId,ΘImg}; Final non-linearity g; Loss function L; Training

dataset D; Training epochs N
/* ŷ = g (WIdhId + WImghImg + by) */
foreach training epoch in {1..N} do

/* 1) fix ΘImg, optimize L(y, ŷ|D; ΘId) */
/* 2) fix ΘId, optimize L(y, ŷ|D; ΘImg) */

end

ALGORITHM 2: Residual training (training order: Id, Img)
Input : Network parameters Θ = {ΘId,ΘImg}; Final non-linearity g; Loss function L; Training

dataset D; Training epochs N
/* 1) Optimize the Id-network only */
/* ŷId = g (WIdhId + by) */
/* Optimize L(y, ŷId|D; ΘId) for N epochs */

/* 2) Fix the Id-network, optimize the Img-network only */
/* ŷImg = g (WIdhId + WImghImg + by) */
/* Optimize L(y, ŷImg|D; ΘImg) for N epochs */

ALGORITHM 3: Interleaved training (training order: Id, Img)
Input : Network parameters Θ = {ΘId,ΘImg}; Final non-linearity g; Loss function L; Training

dataset D; Training epochs N
/* ŷ = g (WIdhId + WImghImg + by) */
foreach training epoch in {1..N} do

foreach mini-batch xB ∈ D do
/* 1) fix (hImg,ΘImg), optimize for L(y, ŷ|xB ; ΘId) */
/* 2) fix (hId,ΘId), optimize for L(y, ŷ|xB ; ΘImg) */

end
end
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CHAPTER5
Personalizing Session-based

Recommendations with Hierarchical
Recurrent Neural Networks

In many online systems where recommendations are applied, interactions
between a user and the system are organized into sessions. A session is a
group of interactions that take place within a given time frame. Sessions
from a user can occur on the same day, or over several days, weeks, or
months. A session usually has a goal, such as finding a good restaurant in
a city, or listening to music of a certain style or mood.

Providing recommendations in these domains poses unique challenges
that until recently have been mainly tackled by applying conventional rec-
ommender algorithms [72] on either the last interaction or the last session
(session-based recommenders). Recurrent Neural Networks (RNN’s), as
we have analyzed in the previous chapter, can be used for the purpose
of session-based recommendations outperforming item-based methods by
15% to 30% in terms of ranking metrics. In session-based recommenders,
recommendations are provided based solely on the interactions in the cur-
rent user session, as user are assumed to be anonymous. But in many of
these systems there are cases where a user might be logged-in (e.g. music
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streaming services) or some form of user identifier might be present (cookie
or other identifier). In these cases it is reasonable to assume that the user
behavior in past sessions might provide valuable information for providing
recommendations in the next session.

The standard approach in recommender systems for recommendation
in a setting where user profiles are available is to use some kind of stan-
dard collaborative filtering approach such as memory-based methods, item-
kNN, etc. In the case of session-based recommendations this would though
make it difficult or impossible to incorporate the current session-information
into the model. Thus information from more than one click into the past
is typically ignored. On the other hand the simple RNN algorithm for
session-based recommendations would ignore information from the users
past sessions. A simple way of incorporating past user session information
in session-based algorithm would be to simply concatenate past and current
user sessions. While this seems like a reasonable approach, we will see in
the experimental section that this does not yield the best results.

In this chapter we describe a novel algorithm based on RNN’s that can
deal with both cases: (i) session-aware recommenders, when user identi-
fiers are present and propagate information from the previous user session
to the next, thus improving the recommendation accuracy, and (ii) session-
based recommenders, when there are no past sessions (i.e., no user iden-
tifiers). The algorithm is based on a Hierarchical RNN where the hidden
state of a lower-level RNN at the end of one user session is passed as an
input to a higher-level RNN which aims at predicting a good initialization
(i.e., a good context vector) for the hidden state of the lower RNN for the
next session of the user.

We evaluate the Hierarchical RNN’s on two datasets from industry com-
paring them to the plain session-based RNN and to item-based collabora-
tive filtering. Hierarchical RNN’s outperform both alternatives by a healthy
margin.

This work was presented as a full-paper at the ACM Recsys 2017 con-
ference [109].

The outline of this chapter is the following. In Section 5.1 we present
the background and related works. In Section 5.2 we present the HRNN
model and the improved mini-batch learning for personalized session-based
recommendation. In Section 5.3 we present the experiments and discuss
about the results. In Section 5.4 we present the conclusions and the possible
future developments.
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5.1. Background and Related works

5.1 Background and Related works

The existing works in session-based and session-aware recommendation
and Recurrent Neural Network have been already extensively discussed in
Chapter 2 and in Section 4.1. Therefore, we focus here on the differences
between the existing works in literature that target session-aware recom-
mender systems and the approach presented in this chapter.

Jannach et al. [66],propose to use non-contextualized baseline strategies
to learn long-term user preferences and combine them with ad-hoc contex-
tualization strategies to adapt recommendations to the actions performed
by the user in the most recent sessions. A similar approach is used by [67]
for automated playlist generation, in which tracks are first ranked accord-
ing to the long-term user interests, and successively re-ranked according
to the characteristics of the current listening session or playlist. Instead of
using ad-hoc contextualization strategies for short-term recommendation,
our HRNN method instead seamlessly integrates both long-term and short-
term user preferences into a single session-aware model. The short-term
model can be seen as an “enhanced” (personalized) session-based model,
that models the activity of the user in the current session and, at the same
time, leverages the historical activity of the user to decide what to recom-
mend next.

Natarajan et al. [99] propose to cluster users according to their long-
term behavior first, and then cluster-level transition models are used for
contextual adaptation at session-level. Finally, Xiang et al. [143] suggest
to model historical user activity and session-level user interactions into a
bipartite graph that is later browsed with random walks. While both meth-
ods can jointly model both long-term and short-term favorites, they do not
explicitly model the sequentiality of the events at session level and do not
represent the evolution of the user preferences over time, as our HRNN
model instead does.

5.2 Model

In this section we describe the proposed Hierarchical RNN (HRNN hence-
forth) model for personalized session-based recommendation.

5.2.1 Session-based RNN

Our model is based on the session-based Recurrent Neural Network (RNN
henceforth) model presented in Section 4.1.2. To ease the explanation of
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the proposed HRNN model, we briefly describe RNN with a new notation
similar to the one used in [127].

As we have already seen in the previous chapter, the session-based RNN
model takes as input the current item ID in the session and outputs a score
for each item representing the likelihood of being the next item in the ses-
sion. Formally, for each session Sm = {im,1, im,2, ..., im,Nm}, RNN com-
putes the following session-level representation

sm,n = GRUses (im,n, sm,n−1) , n = 1, ..., Nm − 1 (5.1)

where GRUses is the session-level GRU and sm,n its hidden state at step
n, being sm,0 = 0 (the null vector), and im,n is the one-hot vector of the
current item ID..

The output of the RNN is a score r̂m,n for every item in the catalog indi-
cating the likelihood of being the next item in the session (or, equivalently,
its relevance for the next step in the session)

r̂m,n = g (sm,n) , n = 1, ..., Nm − 1 (5.2)

where g (·) is a non-linear function like softmax or tanh depending on the
loss function. During training, scores are compared to a one-hot vector
of the next item ID in the session to compute the loss. The network can
be trained with several ranking loss functions such as cross-entropy, BPR
[111] and TOP1 [61]. In this work, the TOP1 loss always outperformed
other ranking losses, so we consider only it in the rest of the chapter. RNN
is trained efficiently with session-parallel mini-batches. For the exhaustive
explanation of all the ranking loss functions and the session-parallel mini-
batch mechanism, please refer to Section 4.1.2.

It is worth noting that, since user-identifiers are unknown in pure session-
based scenarios, in the session-parallel mini-batch mechanism there are
good chances that negative samples will be “contaminated” by actual posi-
tive, i.e. items the user may interact with in her other sessions. This because
the negative samples for one event in a session are taken from the positive
items of the other sessions in the mini-batch, but no constraint is posed on
which users the other sessions in the mini-batch must belong to. Such un-
desired effect can be effectively mitigated when user IDs are known, as we
will describe in the following section.

5.2.2 Personalized Session-based HRNN

Our HRNN model builds on top of RNN by: (i) adding an additional GRU
layer to model information across user sessions and to track the evolution
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of the user interests over time; (ii) using a powerful user-parallel mini-batch
mechanism for efficient training.

Architecture

Beside the session-level GRU, our HRNN model adds one user-level GRU
(GRUusr) to model the user activity across sessions.

Figure 5.1 shows a graphical representation of HRNN. At each time
step, recommendations are generated by GRUses, as in RNN. However,
when a session ends, the user representation is updated. When a new ses-
sion starts, the hidden state of GRUusr is used to initialize GRUses and,
optionally, propagated in input to GRUses.

Formally, for each user u with sessions Cu = {Su
1 , S

u
2 , ..., S

u
Mu
}, the

user-level GRU takes as input the session-level representations su1 , s
u
2 , ..., s

u
Mu

,
being sum = sum,Nm−1 the last hidden state of GRUses of each user session
Su
m, and uses them to update the user-level representation cum. Henceforth

we drop the user superscript u to unclutter notation. The user-level repre-
sentation cm is updated as

cm = GRUusr (sm, cm−1) , m = 1, ...,Mu (5.3)

where c0 = 0 (the null vector). The input to the user-level GRU is con-
nected to the last hidden state of the session-level GRU. In this way, the
user-level GRU can track the evolution of the user across sessions and, in
turn, model the dynamics user interests seamlessly. Notice that the user-
level representation is kept fixed throughout the session and it is updated
only when the session ends.

The user-level representation is then used to initialize the hidden state
of the session-level GRU. Given cm, the initial hidden state sm+1,0 of the
session-level GRU for the following session is set to

sm+1,0 = tanh (Winitcm + binit) (5.4)

where Winit and binit are the initialization weights and biases respectively.
In this way, the information relative to the preferences expressed by the
user in the previous sessions is transferred to the session-level. Session-
level representations are then updated as follows

sm+1,n = GRUses (im+1,n, sm+1,n−1 [, cm]) , n = 1, ..., Nm+1 − 1 (5.5)

where the square brackets indicate that cm can be optionally propagated in
input to the session-level GRU.
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5.2. Model

The model is trained end-to-end using back-propagation [115]. The
weights of GRUusr are updated only between sessions, i.e. when a session
ends and when the forthcoming session starts. However, when the user
representation is propagated in input to GRUses, the weights of GRUusr

are updated also within sessions even if cm is kept fixed. We also tried
with propagating the user-level representation to the final prediction layer
(i.e., by adding term cm in Equation 5.2) but we always incurred into severe
degradation of the performances, even wrt. simple session-based RNN. We
therefore discarded this setting from this discussion.

Note here that the GRUusr does not simply pass on the hidden state of
the previous user session to the next but also learns (during training) how
user sessions evolve during time. We will see in the experimental section
that this is crucial in achieving increased performance. In effect GRUusr

computes and evolves a user profile that is based on the previous user ses-
sions, thus in effect personalizing the GRUses. In the original RNN, users
who had clicked/interacted with the same sequence of items in a session
would get the same recommendations; in HRNN this is not anymore the
case, recommendations will be influenced by the the users past sessions as
well.

In summary, we considered the following two different HRNN settings,
depending on whether the user representation cm is considered in Equa-
tion 5.5:

• HRNN Init, in which cm is used only to initialize the representation of
the next session.

• HRNN All, in which cm is used for initialization and propagated in
input at each step of the next session.

In HRNN Init, the session-level GRU can exploit the historical preferences
along with the session-level dynamics of the user interest. HRNN All in-
stead enforces the usage of the user representation at session-level at the
expense of a slightly greater model complexity. As we will see, this can
lead to substantially different results depending on the recommendation
scenario.

Learning

For the sake of efficiency in training, we have edited the session-parallel
mini-batch mechanism described in [62] to account for user identifiers dur-
ing training (see Figure 5.2). We first group sessions by user and then sort
session events within each group by time-stamp. We then order users at
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Figure 5.2: User-parallel mini-batches for mini-batch size 2.

random. At the first iteration, the first item of the first session of the first
B users constitute the input to the HRNN; the second item in each session
constitute its output. The output is then used as input for the next iteration,
and so on. When a session in the mini-batch ends, Equation 5.3 is used to
update the hidden state of GRUusr and Equation 5.4 to initialize the hidden
state of GRUses for the forthcoming session, if any. When a user has been
processed completely, the hidden states of both GRUusr and GRUses are
reset and the next user is put in its place in the mini-batch.

With user-parallel mini-batches we can train HRNNs efficiently over
users having different number of sessions and sessions of different length.
Moreover, this mechanism allows to sample negative items in a user-independent
fashion, hence reducing the chances of ‘contamination’ of the negative sam-
ples with actual positive items. The sampling procedure is still popularity-
based, since the likelihood for an item to appear in the mini-batch is pro-
portional to its popularity. Both properties are known to be beneficial for
pairwise learning with implicit user feedback [110].

5.3 Experiments

In this section we describe our experimental setup and discuss in depth the
results.
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5.3.1 Datasets

We used two datasets for our experiments. The first is the XING 1 Recsys
Challenge 2016 dataset [1] that contains interactions on job postings for
770k users over a 80-days period. User interactions come with time-stamps
and interaction type (click, bookmark, reply and delete). We named this
dataset XING. The second dataset is a proprietary dataset from a Youtube-
like video-on-demand web site. The dataset tracks the videos watched by
13k users over a 2-months period. Viewing events lasting less than a fixed
threshold are not tracked. We named this dataset VIDEO.

We manually partitioned the interaction data into sessions by using a
30-minute idle threshold. For the XING dataset we discarded interactions
having type ‘delete’. We also discarded repeated interactions of the same
type within sessions to reduce noise (e.g. repeated clicks on the same job
posting within a session). We then preprocessed both datasets as follows.
We removed items with support less than 20 for XING and 10 for VIDEO
since items with low support are not optimal for modeling. We removed
sessions having < 3 interactions to filter too short and poorly informative
sessions, and kept users having≥ 5 sessions to have sufficient cross-session
information for proper modeling of returning users.

The test set is build with the last session of each user. The remaining
sessions form the training set. We also filtered items in the test set that do
not belong to the training set. This partitioning allows to run the evaluation
over users having different amounts of historical sessions in their profiles,
hence to measure the recommendation quality over users having different
degrees of activity with the system (see Section 5.3.4 for an in-depth analy-
sis). We further partitioned the training set with the same procedure to tune
the hyper-parameters of the algorithms. The characteristics of the datasets
are summarized in Table 5.1.

5.3.2 Baselines and parameter tuning

We compared our HRNN model against several baselines, namely Personal
Pop (PPOP), Item-KNN, RNN and RNN Concat:

• Personal Pop (PPOP) recommends the item with the largest number
of interactions by the user.

• Item-KNN computes an item-to-item cosine similarity based on the
co-occurrence of items within sessions.

1https://www.xing.com/en
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Dataset XING VIDEO

Users 11,479 13,717
Items 59,297 19,218
Sessions 89,591 133,165
Events 546,862 825,449
Events per item† 6/9.3/14.4 9/43.0/683.7
Events per session† 4/6.1/5.5 4/6.2/8.2
Sessions per user† 6/7.8/4.8 7/9.8/7.8

Training - Events 488,576 745,482
Training - Sessions 78,276 120,160
Test - Events 58,286 79,967
Test - Sessions 11,315 13,605

Table 5.1: Main properties of the datasets (†median/mean/std).

• RNN adopts the same model described in [61]. This model uses the
basic GRU with a TOP1 loss function and session-parallel minibatch-
ing: sessions from the same user are fed to the RNN independently
from each other.

• RNN Concat is the same as RNN, but sessions from the same user are
concatenated into a single session2.

We optimize the neural models for TOP1 loss using AdaGrad [44] with
momentum for 10 epochs. Increasing the number of epochs did not sig-
nificantly improve the loss in all models. We used dropout regulariza-
tion [128] on the hidden states of RNN and HRNN. We applied dropout
also to GRUses initialization for HRNN (Equation 5.4). We used single-
layer GRU networks in both levels in the hierarchy, as using multiple lay-
ers did not improve the performance. In order to assess how the capacity
of the network impacts the recommendation quality, in our experiments we
considered both small networks with 100 hidden units per GRU layer and
large networks with 500 hidden units per GRU layer.

We tuned the hyper-parameters of each model (baselines included) on
the validation set using random search [14]. The hyper-parameters used in
our experiments on the XING and VIDEO datasets are reported in Table 5.2
and Table 5.3 respectively. Dropout probabilities for HRNNs are relative to
the user-level GRU, session-level GRU and initialization in this order. The
optimal neighborhood size for Item-KNN is 300 for both datasets.

2We experimented with a variant of this baseline that adds a special ‘separator item’ to enforce the separation
between sessions; however, it did not show better performance in our experiments.
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Model Batch size Dropout Learning rate Momentum

RNN (small)† 100 0.2 0.1 0.1
RNN (large)† 100 0.2 0.1 0.0
HRNN All (small) 100 0.1/0.1/0.2 0.1 0.2
HRNN All (large) 50 0.0/0.2/0.2 0.05 0.3
HRNN Init (small) 50 0.0/0.1/0.0 0.1 0.0
HRNN Init (large) 100 0.1/0.2/0.2 0.1 0.1

Table 5.2: Network hyper-parameters on XING († RNN and RNN Concat use the same
values).

Model Batch size Dropout Learning rate Momentum

RNN (small)† 50 0.2 0.05 0.3
RNN (large)† 100 0.2 0.1 0.3
HRNN All (small) 50 0.5/0.4/0.4 0.05 0.5
HRNN All (large) 50 0.1/0.1/0.3 0.05 0.3
HRNN Init (small) 50 0.1/0.5/0.5 0.1 0.0
HRNN Init (large) 50 0.0/0.5/0.2 0.05 0.0

Table 5.3: Network hyper-parameters on VIDEO († RNN and RNN Concat use the same
values).

Neural models were trained on Nvidia K80 GPUs equipped with 12GB
of GPU memory3. Training times vary from ∼5 minutes for the small RNN
model on XING to ∼30 minutes for the large HRNN All on VIDEO. Eval-
uation took no longer than 2 minutes for all the experiments. We want to
highlight that training times do not significantly differ between RNN and
HRNNs, with HRNN All being the most computationally expensive model
due to the higher complexity of its architecture (see Figure 5.1).

5.3.3 Results

We evaluate with respect to the sequential next-item prediction task de-
scribed in Section 2.6.1, i.e. given an event of the user session, we evaluate
how well the algorithm predicts the following event. All RNN-based mod-
els are fed with events in the session one after the other, and we check the
rank of the item selected by the user in the next event. In addition, HRNN
models and RNN Concat are bootstrapped with all the sessions in the user
history that precede the testing one in their original order. This step slows
down the evaluation but it is necessary to properly set the internal repre-

3We employed Amazon EC2 p2.xlarge spot instances in our experiments.
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XING VIDEO
Recall@5 MRR@5 Precision@5 Recall@5 MRR@5 Precision@5

Item-KNN 0.0697 0.0406 0.0139 0.4192 0.2916 0.0838
PPOP 0.1326 0.0939 0.0265 0.3887 0.3031 0.0777

sm
al

l

RNN 0.1292 0.0799 0.0258 0.4639 0.3366 0.0928
RNN Concat 0.1358 0.0844 0.0272 0.4682 0.3459 0.0936
HRNN All 0.1334† 0.0842 0.0267† 0.5272 0.3663 0.1054
HRNN Init 0.1337† 0.0832 0.0267† 0.5421 0.4119 0.1084

la
rg

e

RNN 0.1317 0.0796 0.0263 0.5551 0.3886 0.1110
RNN Concat 0.1467 0.0878 0.0293 0.5582 0.4333 0.1116
HRNN All 0.1482† 0.0925 0.0296† 0.5191 0.3877 0.1038
HRNN Init 0.1473† 0.0901 0.0295† 0.5947 0.4433 0.1189

Table 5.4: Results of Recall, MRR and Precision for N = 5 on the XING and VIDEO
datasets. small networks have 100 hidden units for RNNs and 100+100 for HRNNs;
large networks have 500 hidden units for RNNs and 500+500 for HRNNs). All the net-
works have statistically significant different (ssd.) results from the baselines (Wilcoxon
signed-rank test p < 0.01). Networks ssd. from RNN are in italic; HRNNs ssd. from
RNN Concat are underlined. Best values are in bold. All differences between HRNNs
are significant excluded the values marked with † superscript.

sentations of the personalized models (e.g., the user-level representation
for HRNNs) before evaluation starts. Notice that the evaluation metrics
are still computed only over events in the test set, so evaluation remains
fair. In addition, we discarded the first prediction computed by the RNN
Concat baseline in each test session, since it is the only method capable of
recommending the first event in the user sessions.

As recommender systems can suggest only few items at once, the rel-
evant item should be amongst the first few items in the recommendation
list. We therefore evaluate the recommendation quality in terms of Re-
call@5, Precision@5 and Mean Reciprocal Rank (MRR@5). In sequential
next-item prediction, Recall@5 is equivalent to the hit-rate metric, and it
measures the proportion of cases out of all test cases in which the relevant
item is amongst the top-5 items. This is an accurate model for certain prac-
tical scenarios where no recommendation is highlighted and their absolute
order does not matter, and strongly correlates with important KPIs such as
CTR [60]. Precision@5 measures the fraction of correct recommendations
in the top-5 positions of each recommendation list. MRR@5 is the recip-
rocal rank of the relevant item, where the reciprocal rank is manually set
to zero if the rank is greater than 5. MRR takes the rank of the items into
account, which is important in cases where the order of recommendations
matters.

Table 5.4 summarizes the results for both XING and VIDEO datasets.
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We trained each neural model for 10 times with different random seeds 4

and report the average results. We used Wilcoxon signed-rank test to assess
significance of the difference between the proposed HRNN models and the
state-of-the-art session-based RNN and the naïve personalization strategy
used by RNN Concat.

Results on XING On this dataset, the simple personalized popularity base-
line is a very competitive method, capable of outperforming the more so-
phisticated Item-KNN baseline by large margins. As prior studies on the
dataset have already shown, users’ activity within and across sessions has
a high degree of repetitiveness. This makes the generation of ‘non-trivial’
personalized recommendations in this scenario very challenging [1].

This is further highlighted by the poor performance of session-based
RNN that is always significantly worse than PPOP independently of the
capacity of the network. Nevertheless, personalized session-based rec-
ommendation can overcome its limitations and achieve superior perfor-
mance in terms of Recall and Precision with both small and large networks.
HRNNs significantly outperform RNN Concat in terms of Recall and Preci-
sion (up to +3%/+1% with small/large networks), and provide significantly
better MRR with large networks (up to +5.4% with HRNN All). Moreover,
HRNNs significantly outperform the strong PPOP baseline of ∼11% in Re-
call and Precision, while obtaining comparable MRR. This is a significant
result in a domain where more trivial personalization strategies are so ef-
fective.

The comparison between the two HRNN variants does not highlight sig-
nificant differences, excluded a small (∼2%) advantage of HRNN All over
HRNN Init in MRR. The differences in terms of Recall and Precision are
not statistically significant. Having established the superiority of HRNNs
over session-based recommendation and trivial concatenation, we resort to
the VIDEO dataset to shed further light on the differences between the pro-
posed personalized session-based recommendation solutions.

Results on VIDEO The experiments on this dataset exhibit drastically dif-
ferent results from the XING dataset. Item-KNN baseline significantly out-
performs PPOP, and session-based RNN can outperform both baselines by
large margins. This is in line with past results over similar datasets [61,62].

4The random seed controls the initialization of the parameters of the network, which in turn can lead sub-
stantially different results in absolute terms. Even though, we have not observed substantial differences in the
relative performances of neural models when using different random seeds.
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History length XING VIDEO

Short (≤ 6) 67.00% 53.69%
Long (> 6) 33.00% 46.31%

Table 5.5: Percentage of sessions in each history length group.

RNN Concat has comparable Recall and Precision with respect to session-
based RNNs and interestingly significantly better MRR when large net-
works are used. This suggest that straight concatenation does not enhance
the retrieval capabilities of the RNN recommender but strengthens its abil-
ity in ranking items correctly.

However, HRNN Init has significantly better performance than all base-
lines. It significantly outperforms all baselines and RNNs (up to 6.5% bet-
ter Recall and 2.3% MRR wrt. RNN Concat with large networks). In other
words, also in this scenario the more complex cross-session dynamics mod-
eled by HRNN provide significant advantages in the overall recommenda-
tion quality. We will investigate the possible reasons for these results in the
following sections. It is worth noting that HRNN All performs poorly in
this scenario. We impute the context-enforcing policy used in this setting
for the severe degradation of the recommendation quality. One possible ex-
planation could be that the consumption of multimedia content (videos in
our case) is a strongly session-based scenario, much stronger than the job
search scenario represented in XING. Users may follow general community
trends and have long-term interests that are captured by the user-level GRU.
However, the user activity within a session can be totally disconnected from
her more recent sessions, and even from her general interests (for example,
users having a strong general interest over extreme-sport videos may oc-
casionally watch cartoon movie trailers). HRNN Init models the user taste
dynamics and lets the session-level GRU free to exploit them according to
the actual evolution of the user interests within session. Its greater flexibil-
ity leads to superior recommendation quality.

5.3.4 Analysis on the user history length

We investigate deeper the behavior of Hierarchical RNN models. Since we
expect the length of the user history to have an impact on the recommen-
dation quality, we breakdown the evaluation by the number of sessions in
the history of the user. This serves as a proxy for the ‘freshness’ of the user
within the system, and allows to evaluate recommenders under different
amounts of historical information about the user modeled by the user-level
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Figure 5.3: Recall@5 and MRR@5 on XING grouped by user history length.
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Figure 5.4: Recall@5 and MRR@5 on VIDEO grouped by user history length.

GRU before a session begins. To this purpose, we partitioned user histories
into two groups: ’Short’ user histories having≤ 6 sessions and ’Long’ user
histories having 6 or more. The statistics on the fraction of sessions be-
longing to each group for both datasets are reported in Table 5.5. Since our
goal is to measure the impact of the complex cross-session dynamics used
in HRNN wrt. traditional RNN, we restrict these analysis to RNN-based
recommenders in the large configuration. For each algorithm, we compute
the average Recall@5 and MRR@5 per test session grouped by history
length. The analysis on Precision@5 returns similar results to Recall@5,
so we omit it here also for space reasons. To enhance the robustness of the
experimental results, we run the evaluation 10 times with different random
seeds and report the median value per algorithm.

Figure 5.3 shows the results on XING. As the length of the user his-
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tory grows, we can notice that Recall slightly increases and MRR slightly
decreases in MRR for all methods, session-based RNN included. The rela-
tive performance between methods does not changes significantly between
short and long user histories, with HRNN All being the best performing
model with 12% better Recall@5 and 14-16% better MRR@5 wrt. session-
based RNN. HRNN Init has performance comparable to RNN Concat and
HRNN All in accordance to our previous findings.

Figure 5.4 shows the results on VIDEO. Recall of all methods – session-
based RNN included – improves with the length of the user history. MRR
instead improves with history length only for RNN Concat and HRNN
Init. This highlights the need for effective personalization strategies to ob-
tain superior recommendation quality at session-level for users that heav-
ily utilize the system. Moreover, the performance gain of HRNN Init wrt.
session-based RNN grows from 5%/12% (short) to 7%/19% (long) in Re-
call@5/MRR@5, further highlighting the quality of our personalization
strategy. Coherently with our previous findings, HRNN All does not per-
form well in this scenario, and its performances are steady (or even de-
crease) between the two groups.

In summary, the length of the user history has a significant impact on the
recommendation quality as expected. In loosely session-bounded domains
like XING, in which the user activity is highly repetitive and less diverse
across sessions, enforcing the user representation in input at session-level
provides slightly better performance over the simpler initialization-only ap-
proach. However, in the more strongly session-based scenario, in which the
user activity across sessions has a higher degree of variability and may sig-
nificantly diverge from the user historical interest and tastes, the simpler
and more efficient HRNN Init variant has significantly better recommenda-
tion quality.

5.3.5 Analysis within sessions

Here we breakdown by number of events within the session in order to
measure the impact of personalization within the user session. We limit the
analysis to sessions having length ≥ 5 (6,736 sessions for XING and 8,254
for VIDEO). We compute the average values of each metric groped by po-
sition within the session (Beginning, Middle and End). Beginning refers to
the first 2 events of the session, Middle to the 3rd and 4th, and End to any
event after the 4th. As in the previous analysis, we focus on RNN-based
models in the large configuration and report the median of the averages
values of each metric computed over 10 runs with different random seeds.
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Figure 5.5: Recall@5 and MRR@5 on XING for different positions within session.
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Figure 5.6: Recall@5 and MRR@5 on VIDEO for different positions within session.

Results for Recall@5 and MRR@5 are shown in Figure 5.5 and Figure 5.6
for XING and VIDEO respectively.

On XING, the performance of all methods increses with the number of
previous items in the session, suggesting that the user context at session-
level is properly leveraged by all RNN-based models. However, there is a
wide margin between personalized and ‘pure’ session-based models. Both
HRNNs have similar Recall@5 and are comparable to RNN Concat. In-
terestingly, the gain in MRR@5 of HRNN All wrt. to both RNN and RNN
Concat grows with the number of items processed, meaning that in this
scenario the historical user information becomes more useful as the user
session continues. HRNN Init has constantly better MRR that RNN Con-
cat, with wider margins at the beginning and at the and of the session.
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On VIDEO, the behavior within session is different. We can notice that
both Recall and MRR increase between the beginning and end of a session
as expected. HRNN Init exhibits a large improvement over RNN and RNN
Concat at the beginning of the session (up to 10% better Recall and 25%
better MRR). This conforms with the intuition that past user activity can be
effectively used to predict the first actions of the user in the forthcoming
session with greater accuracy. After the first few events the gain in Recall
of personalized over pure session-based models reduces, while the gain in
MRR stays stable. In other words, after a few events, the session-level
dynamics start to prevail over longer-term user interest dynamics, making
personalization strategies less effective. However, personalization still pro-
vides superior ranking quality all over the session, as testified by the higher
MRR of both HRNN Init and RNN Concat over RNN. It is important to
notice that better recommendations at beginning of a session are more im-
pactful than later in the session because they are more likely to increase
the chances of retaining the user. Finally, HRNN All is always the worse
method, further underpinning the superiority of the HRNN Init variant.

5.3.6 Experiments on a large-scale dataset

We validated HRNNs over a larger version of the VIDEO dataset used in
the previous experiments. This dataset is composed by the interactions of
810k users on 380k videos over the same 2 months periods, for a total of
33M events and 8.5M sessions. We then applied the same preprocessing
steps used for the VIDEO dataset. We named this dataset VIDEOXXL.
Due to our limited computational resources, we could only test small net-
works (100 hidden units for RNN and for 100+100 HRNNs) on this large-
scale dataset. We run all RNNs and HRNNs once using the same hyper-
parameters learned on the small VIDEO dataset. Although not optimal,
this approach provides a first approximation on the applicability of our so-
lution under a more general setting. For the same reason, we do not provide
an exhaustive analysis on the experimental results as done for the smaller
datasets. To speed up evaluation, we computed the rank of the relevant item
compared to the 50,000 most supported items, as done in [62].

Results are summarized in Table 5.6 and confirm our previous findings
on the small VIDEO dataset. RNN Concat is not effective and performs
similarly to session-based RNN. On the other hand, Hierarchical RNNs
outperform session-based RNN by healty margins. In particular, HRNN
Init outperforms session-based RNN by ∼28% in Recall@5 and by ∼41%
in MRR@5. These results further confirm the effectiveness of the HRNN
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VIDEOXXL
Recall@5 MRR@5 Precision@5

RNN 0.3415 0.2314 0.0683
RNN Concat 0.3459 0.2368 0.0692
HRNN All 0.3621 0.2658 0.0724
HRNN Init 0.4362 0.3261 0.0872

Table 5.6: Results on the VIDEOXXL dataset for small networks. Best values are in bold.

models presented in this paper, and further underpin the superiority of
HRNN Init over the alternative approaches for personalized session-based
recommendation.

5.4 Conclusions

In this chapter we addressed the problem of personalizing session-based
recommendation by proposing a model based Hierarchical RNN, that ex-
tends previous RNN-based session modeling with one additional GRU level
that models the user activity across sessions and the evolution of her inter-
ests over time. HRNNs provide a seamless way of transferring the knowl-
edge acquired on the long-term dynamics of the user interest to session-
level, and hence to provide personalized session-based recommendations to
returning users. The proposed HRNNs model significantly outperform both
state-of-the-art session-based RNNs and the other basic personalization
strategies for session-based recommendation on two real-world datasets
having different nature. In particular, we noticed that the simpler approach
that only initializes the session-level representation with the evolving repre-
sentation of the user (HRNN Init) gives the best results. We delved into the
dynamics of session-based RNN models within and across-sessions, pro-
viding extensive evidences of the superiority of the proposed HRNN Init
approach and setting new state-of-the-art performances for session-based
recommendation.

There are several opportunities for extension. For example, it can be in-
teresting to investigate over other domains like personalized music recom-
mendation, e-commerce and advertisement. Specifically for e-commerce,
previous studies has shown the importance of the long-term and short-term
dynamics of the user interest on the recommendation quality in session-
based scenario [66]. Unfortunately, there do not have access to any dataset
suitable for this task at the moment of writing of this thesis. We are there-
fore forced to leave this aspect to future works.

Another interesting aspect that is certainly worth investigating is the how
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item and user features can be effectively added to the HRNN model. As we
have already seen in Chapter 4, item features can be effectively used to
improve the ranking quality in session-based recommendation. Since item
features can highlight certain properties of items that are of special interest
for the user, by including the into our HRNN model we could be able to
refine the user representation over time (in combination with user metadata
when available) and improve session-based recommendation even further.
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Sequence-Aware
Recommendation in Music
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CHAPTER6
Modeling Musical Taste Evolution with

Recurrent Neural Networks

Musical preference dynamics present a rich and nebulous problem space
for the development of models capable of predicting the temporal structure
of user behavior. Music listening is an extremely long-tailed distribution,
where a massive proportion of user behavior is dominated by an industry
that’s constantly delivering new pop stars in addition to the ebb and flow of
popularity among mega-artists with careers spanning multiple decades.

However, outside of this “short head” behavior, there exists a majority of
listeners who have interest spanning over hundreds of thousands of artists
and millions of tracks. Their music discovery is influenced by a multi-
tude of factors such as social, geographical, generational, or musicological.
They may be going through a maturation of preference in a discovery of
1950’s bop jazz or perhaps developing a guilty pleasure in 1990’s pop mu-
sic.

Despite the richness and complexity of this domain, the evolution of
music preference over time has received very little attention in the recom-
mendation literature to date. At the time of writing, we are only aware of
one paper that has addressed the topic [97].
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In this chapter, we set out to provide a deep dive into this topic and to de-
velop models which are capable of encoding the evolution of listener music
preferences. Our ultimate goal is to provide extremely powerful recom-
mendations, but this must be achieved through the ability to predict where
their preference is headed next.

To construct our dataset of musical preferences, we leverage internet ra-
dio data from Pandora1, a US-based music streaming service with over 80
million monthly active listeners. We compile a dataset of personalized ra-
dio station creation, sampling from a dataset of over 11 billion stations that
have been created to date. These stations can be created (or “seeded”) from
an artist, track, composer or genre, and become personalized to the listen-
ers tastes as they provide feedback. Listeners add stations to their profile
strictly in a sequential manner over time, in synchrony with the evolution
of their tastes. Modeling station creation over time allows us to look at
the dependency structure over these potentially large changes in listening
behavior.

It is worth stressing out that station creation represents the interest of the
user not only on the single artist, genre or track, that serves as seed for the
station, but on the whole collection of songs that stems from it. It is there-
fore a much stronger (and rare) feedback than likes/dislikes on individual
artists/genres/tracks. For these reasons, we believe the flow of stations cre-
ated by the user to be a good proxy of the evolution of her musical tastes
over time.

The work presented in this chapter was run in collaboration with a group
of researchers from Pandora 2. The outline of this chapter is the following.
In Section 6.1 we present the background and related works. In Section 6.2
we present sequence-aware models used in our experiments. In Section 6.3
we present the experiments and discuss about the results. In Section 6.5 we
present the conclusions and the possible future developments.

6.1 Background and Related works

Modeling user preference dynamics over time has been the subject of in-
vestigation across multiple recommendation domains [73, 97]. In recom-
mender systems, modeling the evolution of user tastes over time is crucially
important in order to to react to drift in the user’s preferences and to adapt
recommendations accordingly.

1www.pandora.com
2The author spent the summer 2016 at Pandora Media, Inc. as a research intern.
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Time-aware recommender systems (TARS) [21] exploit time as an addi-
tional contextual dimension that is added to traditional recommender sys-
tems. In these systems, ratings timestamps are exploited to identify peri-
odicity in user habits. In general, the goal is to improve the accuracy of
collaborative filtering models like matrix factorization by adding temporal
dynamics to otherwise static profiles [22, 73]. A downside to this family
of models is that they are dependent on the exact timestamps at which user
feedback is collected, which in turn may not correspond to the actual con-
sumption time. Moreover, users who have a similar evolution in their tastes
over different temporal scales will be treated differently by these models.

Sequence-aware recommender systems (SARS), the subject of this the-
sis, provide the necessary flexibility by relaxing the aforementioned tem-
poral constrains and focusing exclusively on the sequential order of the
historical user activity.

In the music domain, sequential features extracted from historical lis-
tening records can be used to generate coherent continuations to the current
listening session or playlists [18, 67]. To our knowledge, only [97] con-
sidered a sequence based approach to modeling the evolution of user tastes
through time in music. User and song transitions are embedded into a com-
mon latent first-order Markov space that can browsed with Gaussian ran-
dom walks. However, this approach is affected by the same limitation in the
size of the state space of Markov models, which in turn severely constraints
the number of users and songs that can be effectively represented.

This work is the first one that uses Recurrent Neural Networks for mod-
eling user preference dynamics in music to our knowledge.

6.2 Models

In this section we describe our model (and other methods) to capture the
musical taste evolution of the listeners and in particular to solve the problem
of listener’s next searched-created stations (next-station in short hereafter).

6.2.1 Recurrent Neural Network

Recurrent Neural Networks have been thoroughly examined in Chapter 4
and Chapter 5. We recall their formulation here to the sake of readabil-
ity. The Recurrent Neural Network (RNN) computes for each station st a
dense vector ht, the recurrent state, that combines the previous st with the
previous state ht−1 according to the formula,

ht = f(st, ht−1), h0 = 0, (6.1)
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where ht ∈ Rdt , where dt is the number of dimensions of the recurrent
state, and f is a non-linear transformation. In this work we adopted the
Gated Recurrent Unit (GRU) model for the modeling of click-stream data
described in [62]. Each station sn is represented as one-hot vector, i.e., a
vector of length equal to the number of stations S with a 1 corresponding
to the index of the current station, and 0 otherwise. The parametrization f
of GRU is given by:

rt = σ (Urst +Wrht−1) , (reset gate)
zt = σ (Uzst +Wzht−1) , (update gate) (6.2)

h̃t = tanh (Uhzt +Wh(rt · ht−1)) , (candidate update)

ht = (1− zt)ht−1 + zth̃t, (final update)

where σ is the logistic sigmoid, · is the element-wise scalar product between
vectors, Ur, Uz, Uh ∈ Rdh×S and Wr,Wz,Wh ∈ Rdh×dh . The GRU predicts
the next station in the sequence according the following,

ŝt+1 = g(ht−1), (6.3)

where g is another non-linear transformation that projects the recurrent
representation of the GRU onto the space of the stations. The formula-
tion of g depends on the loss function used to train the GRU. In accor-
dance to [62], we initially experimented with three different loss functions:
cross-entropy, Bayesian Pairwise Ranking (BPR) and TOP-1 loss. With
cross-entropy ŝt+1 = softmax(Wyht−1), whereas with BPR and TOP-1
ŝt+1 = tanh(Wyht−1). We settled on BPR loss function since it yields the
best results. A graphical description of this model is provided in Figure 6.1.

The GRU is trained to predict the next station given the complete past
history of the user that is encoded into its recurrent state ht. The training
is performed end-to-end such that sequential relationships between stations
are learned directly from data without the need of ad-hoc feature extraction.

In conformity with the previous chapters, we used a single layer GRU
network trained with parallel mini-batches and negative output sampling in
our experiments. These features are of crucial importance for training the
model over the large dataset used for our experiments.

6.2.2 Similarity-based baseline models

In addition to the RNN, we have considered several similarity-based meth-
ods for next-station prediction. These methods typically assign a score to
each candidate next-station that is proportional to its similarity with the pre-
vious station in the sequence. In this work, we have defined item similarity
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Figure 6.1: RNN model at a high level. The red dots in the input layer represent the
one-hot encoding of the input and the colors in the hidden layer represent the model
activations.

wrt. co-occurrence of stations in user profiles. Specifically, we have con-
sidered the overall item popularity, co-occurrence [61] and Word2Vec [53]
based similarities. Despite their apparent simplicity, these models turn out
to be very strong baselines in this domain, as we will show in the experi-
mental evaluation.

Item Popularity (POP)

Given the extremely long tailed distribution of music, it’s extremely impor-
tant to consider a popularity baseline for any recommendation approach.
For this baseline, we simply take the most popular station seeds (i.e., artist,
genre, composer, track) across the service and utilize the top K as the rec-
ommendations.

Co-occurrence kNN (KNN)

A simple way of assessing the similarity between items is to consider how
frequently they co-occur. More concretely, we compute how many times
two different items occur in the same sequence of user interactions. This
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rather simple approach, that leads to recommendations of the type “others
who added this station also added these other ones,” has proven its effec-
tiveness in a variety of domains, most notably in e-commerce [79].

In this work, we have to the co-occurrence item-item similarity metric
used in [61] for next-click recommendation in click-stream data. The simi-
larity between two items i and j is computed as,

sim(i, j) =
|S(i) ∩ S(j)|√

|S(i)|+ λ ·
√
|S(j)|+ λ

, (6.4)

where S(z) returns the sessions (sequences) in the training database where
the item z occurs at least once, and λ is a damping factor to avoid coinci-
dental high similarities of rarely visited items. At recommendation time T ,
all items are ranked according to their similarity w.r.t. the last item in the
sequence i, and then the top-k similar items to the last one in the sequence
are recommended to the user.

The damping factor is utilized in order to mitigate the impact of data
sparsity on the similarity metric, which is otherwise strongly constrained
by the actual co-occurrences that are observed in the data. Despite these
challenges, this approach showed very strong performance in our experi-
ments.

Word2Vec kNN (W2V)

In addition to item co-occurrence, more complex interactions between items
can be modeled from the sequences of user interactions. In particular, we
adapt prod2vec [53] to the station recommendation case. The prod2vec
model involves learning vector representations of products from sequen-
tial actions of users. In our case, we learn a vector-wise representation of
stations from the sequence of station created by users. In particular, we
consider the sequence as “sentence” and single station as “words.” Further
details on this method can be found in [53].

6.3 Experiments

In the following experiments we will investigate employing a variety of
models for predicting listener preference dynamics. After an explanation of
the dataset and metrics, we will evaluate our model in the task of predicting
the next stations that a listener will create.
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Figure 6.2: Example of the recently played radio-stations. To model the evolution of the
user’s musical tastes, we considered the sequence of stations created only from the
search-box (at the top of the picture) to filter the biases due to the recommendations
offered in other parts of the application. This screen-shot was captured from the Pan-
dora web-app.

Number of Listeners 330, 170
Number of Stations 3, 079, 399
Number of Listeners (Training) 324, 750
Number of Stations (Training) 2, 912, 564
Number of Listeners (Test) 64, 750
Number of Stations (Test) 151, 015

Table 6.1: Statistics of the dataset.

6.3.1 Dataset

For our experiments, we have assembled a data collection containing the
stations added by a random sample Pandora listeners over a 1-year period.
We consider the stations together with the time-stamp in which they were
created. To reduce the impact of selection bias [122] induced by the exist-
ing recommendation systems used by the platform to suggest new stations
to listeners, we considered only stations added through the search-box (see
Figure 6.2). While it is still possible that listener choices are influenced
by recommendations received in other parts of the application (e.g., bias
present in the process of track selection on an existing station exposing a
listener to a new artist), searches through the search-box are clear expres-
sions of the intent of the listener of looking for a new station. These are
less-biased signals that we believe are good indicator of listener interests
and hence adequate for modeling the actual interests of the listener and
their evolution through time.

Details about our dataset can be found in Table 6.1. We collected se-
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Figure 6.3: The distribution of stations by popularity in log-log scale. The occurrence of
user created stations represents popularity of a station, in x-axis. The number of such
stations is shown in the y-axis. Very popular stations such as Today’s Hits Radio has a
high occurrence in creation, but there exists only a few of these stations.

quences of stations added by ∼300k listeners over a 1-year period. Fig-
ure 6.3 depicts the distribution of station creation. As previously discussed
in the introduction of this chapter, music popularity follows a power-law
distribution where a very small number of stations receive an overwhelm-
ing share of total creation.

To create training and testing datasets, we partitioned our dataset tem-
porally, considering the first 11 months for training and the last month for
testing.

As our ultimate focus is to predict how a listener’s taste will evolve, we
focus exclusively on listeners who have created a minimum of three stations
on the service. Listeners who have created only one or two stations are
filtered from our dataset. Furthermore, to remove spurious stations from
our training dataset we also removed any station which was listened for
less than one hour. This leads to a slight overall reduction of the number of
stations both through this filtering as well as our restriction to include only
stations created via listener searches. The final training/testing dataset sizes
are reported in Table 6.1.

6.3.2 Experimental Setup

Given a set of stations created by the listener in the training set utrain =
(s1, s2, s3, . . . , st) and a set of stations created by the same listener in the
test set utest = (st+1, . . . , sn), in order to evaluate our algorithms we aim to
predict the test stations utest. As usual, we evaluate against the sequential
next-station prediction task (Section 2.6.1) and we use standard information
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Recall

@5 @10 @20 @50

200 0.0264 0.0441 0.0708 0.1273
500 0.0275 0.0460 0.0748 0.1367
1000 0.0282 0.0483 0.0781 0.1378

Table 6.2: Recall@K for different hidden unit sizes.

retrieval measures as evaluation metrics. For each listener we compute:

• MRR@K: Mean reciprocal rank is the inverse of the position of the
first correct station in the ranking produced by the algorithm up to
position K.

• Recall@K: The fraction of stations correctly predicted in K sugges-
tions divided by overall number of stations created by the listener in
the test set.

RNN Parameter Tuning

Our models are implemented in python based on the package Theano3

0.9.0, and experiments are performed on NVIDIA Tesla M40 GPUs. As
mentioned in Section 6.2, we used Bayesian Pairwise Ranking as the loss
function. For each size of the hidden units we tuned a set of parameters us-
ing random search. The tuning was performed on a validation set that is of
the same nature as the test set, i.e. contains a set of listeners with an ordered
sequences of stations created. We have tuned the networks for Recall@10.
We found the optimal learning rate to be 0.05 for all the unit sizes. We set
the momentum to 0.1, and dropout to 0.1.

In order to understand the impact of the hidden unit size on effective-
ness, we trained initially the network with 3 different unit size: 200, 500,
1000. Table 6.2 reports Recall@K metrics for different sizes of hidden
units. Recall increases with more units for all the K. However, units larger
than 1000 led to computational cost limitations without significant perfor-
mance gains. We choose 1000 units for the rest of the experiments.

6.4 Results

We report general results of next-stations prediction, in Recall in Figure
6.4a, and MRR in Figure 6.4b, for different prediction cutoff K ranging

3http://deeplearning.net/software/theano/
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(b) MRR@K RNN and baseline algorithms.

Recall

@1 @5 @10 @20 @50

KNN 0.0074 0.0268 0.0451 0.0722 0.1307
RNN 0.0075 0.0282 0.0483 0.0781 0.1378
∆ % +1.9% +5.1% +7.1% +8.2% +5.4%

MRR

KNN 0.0138 0.0251 0.0284 0.0302 0.0306
RNN 0.0139 0.0260 0.0298 0.0320 0.0326
∆ % +0.8% +3.6% +4.7% +6.0% +6.5%

Table 6.3: Overall Recall@K and MRR@K for RNN and the best baseline KNN.

from 1 to 50. In all values of K, KNN is the best performing baseline
model, outperforming popularity (POP), and word2vec (W2V) by a large
margin.

RNN outperforms the best baseline model KNN when K > 10, with
+8.20% in Recall@20, and +5.41% in Recall@50. For small K (≤ 10),
there is no big advantage in recall. However, in MRR metric, even at small
K = 5, and K = 5, RNN ranks better than KNN by 1.57% and 3.62%, re-
spectively. In Figure 6.4b, we can see that with increasing K value, RNN’s
margin of improvement over KNN also increases consistently in MRR. De-
tailed result comparisons of RNN and KNN are reported in Table 6.3.

While we expected the RNN model to predict next stations better be-
cause it specifically modeled sequential behavior of listener’s taste, we want
to dive deep in listener analysis to substantiate this claim. Typically this is
done through slicing and dicing based on listener characteristics.
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(a) Recall@10 RNN and baseline algo-
rithms, segmented by historical session
length.
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(b) MRR@10 RNN and baseline algorithms,
segmented by historical session length.

6.4.1 Listener Segmentation Study

We perform several listener segment studies. In this study we fix K = 10
for both Recall and MRR metrics. First, we segment listeners based on
their historical session length (number of stations created by a listener in
the training set), represented by the number of previously created stations
before the test period. We further bin listeners into 1, 2-5, 6-10, 11-20,
21-40, and 41+ previous stations. The fewer stations a listener has, the
less listening history data we have. Figure 6.5a and Figure 6.5b show that
both RNN and KNN outperforms POP and W2V in all listener segments in
Recall@10 and MRR@10. For listeners with very short history, i.e., ≤ 5
stations, KNN is the best algorithm. However, for listeners with more than
5 stations, i.e. when sequential patterns might be emerging, RNN algo-
rithm overtakes KNN by 11.9% in Recall@10. We attribute this to neural
network’s ability to retain memory. This suggests that our 1 layer network
structure is very efficient at learning preference changes when given enough
history. Yet it is not wise to use it as a standalone model as KNN clearly
claims an advantage with listeners with a very short history. More in-depth
study of ensembles is given in Section 6.4.3. Note that we included metrics
for listeners who created more than 41+ stations for completeness, even
though very few such listeners exists in the dataset.

Armed with the powerful insight that RNN algorithms perform much
better for a subset of listeners, we focus on this set of listeners with > 5
previous stations at prediction time. In Table 6.4, we report the Recall@K
and MRR@K results for this filtered set of listeners. RNN exhibits large
performance gain in both Recall and MRR metrics in all K values over
best baseline KNN. We compare performance by segmenting further on the
listeners by next session lengths, and show results in Figure 6.6. The high-
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Recall

@1 @5 @10 @20 @50

KNN 0.0073 0.0266 0.0438 0.0705 0.1302
RNN 0.0081 0.0290 0.0490 0.0808 0.1436
∆ % +11.5% +8.9% +11.9% +14.6% +10.2%

MRR

KNN 0.0134 0.0245 0.0278 0.0298 0.0304
RNN 0.0149 0.0271 0.0310 0.0335 0.0338
∆ % +10.9% +10.2% +11.7% +12.5% +11.2%

Table 6.4: Recall@K and MRR@K for RNN and the best baseline KNN. Training re-
stricted to listener with more than 5 previous stations.

light is that the RNN outperforms baselines by a larger and larger margin
as the listeners create more stations. This again suggests that RNN learns a
sequential dependency that is not captured by other models.
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Figure 6.6: MRR@10 RNN and baseline algorithms, segmented by next session length.
RNNis more effective for listeners who create more stations in the next session.

6.4.2 Long Tail Music

In personalized music services, the most difficult task is often to predict
long tail (unpopular) music correctly. To further understand the differ-
ence among models in this regard, we single out the true positives from
the test set for K = 50, i.e., the intersection of predicted stations and lis-
tener created stations, and report results segmented by station popularity.
As mentioned in Section 6.3.1, the popularity of a station is represented by
the number of occurrences in the training set. Here we bin the occurrence
value with a bin size of 500.
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Figure 6.7: Correctly recommended item (true positive) distribution comparison. In the
left figure, RNN recommends the most amount of unique least popular items. In the
right figure, RNN recommends 50% more least popular items than KNN in occurrence.

Not surprisingly, Figure 6.7 showed the popularity algorithm predicts
more very popular stations correctly. However, this is done at the expense
of getting none of the long tail stations right, shown in right of Figure 6.7
as the yellow line at 0 true positives for stations with occurrence < 3500.
Indeed, recall that in the general results in Figure 6.4a, POP model lagged
behind both the RNN and the KNN models. It is unexpected and very en-
couraging that RNN in fact recommends almost 50% more least popular
stations (those occurred less than 500 times) accurately than the best base-
line, KNN, as shown in the right of Figure 6.7. In the left figure of Figure
6.7, we also show the RNN and W2V both predict the most unique num-
ber of true positives. This provides further evidence that as a listener’s
taste tends towards more nuanced and less popular, the recurrent neural
network captures that tastes evolution more accurately than a simple near-
est neighbor approach. Given that the RNN also outperforms all models
in Recall@50 and MRR@50, we believe we demonstrated its value as a
promising long tail music recommender.

6.4.3 Learning to Rank

We lastly look at a combination of our models in a cascaded late fusion
ensemble in order to further investigate the predictive power of the RNN.
Recall here that given the stations created by a listener in our training set,
our goal is to predict the next stations a listener is going to create. For
each listener, we generate the top-10 recommendation for each method and
consider the union as the set of recommendation candidates to be re-ranked.

We consider the true target as the station created in the validation set by
the same listener. We than label the true targets as relevant and all the others
as non-relevant. As the final stage we use LambdaMART [141] as our
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supervised ranker to re-rank the candidate list. We tune the LambdaMART
model with 500 trees and the parameters are learned using standard separate
training and validation set.

Features

For this learning to rank (L2R) approach we used a total of 11 features (a
combination of contextual and suggestion features):

1. the inverse of rank of the candidate in KNN
2. the inverse of rank of the candidate in POP
3. the inverse of rank of the candidate in W2V
4. the popularity of the last station created
5. the typology of the last station created
6. the popularity of the candidate station
7. the typology of the candidate station
8. the age of the listener
9. how diverse are the songs listened by the listener

10. how popular are the song listened by the listener
11. the number of stations created by the listener in the training set

+RNN

The proposed RNNcontributes to one additional feature to the previous
mentioned one. In this case we include the top-10 recommendation gen-
erated by RNN to the set of candidates to be re-ranked. We optimize based
on MRR@1, MRR@5.

L2R Results

Table 6.5 reports the improvement in terms of MRR obtained by using RNN
as additional feature in our learning to rank system previously described4.
The rows represents two different ways we optimized the system: on metric
MRR@1 and metric MRR@5 (note that this is done in the training phase).
We then compute the MRR metric on test and report the improvement in
percentage terms, particularly MRR@1, MRR@3 and MRR@5. We aim
to improve the top ranking results, hence the choice of small K values.
Results show an improvement of over 16% in MRR@5 when integrating
RNN as additional feature in our learning to rank system. In general, there
is a large improvement in all cases presented.

4The results on the full dataset show a similar behavior.

148



6.5. Conclusions

@1 @3 @5

+RNN (opt. MRR@1) +10.3% +13.8% +16.7%
+RNN (opt. MRR@5) +9.4% +13.5% +16.1%

Table 6.5: Learning to rank results. Increase in terms of MRR obtained by using a learn-
ing to rank +RNN. We optimize the learning to rank on MRR@1, MRR@5, MRR@10.
Results reported are for listeners with historical session length > 5.

Together with observations from Section 6.4.2, we interpret this results
as a substantial amount of the predictions and the ranking of predictions
obtained by RNN are complimentary to other models.

6.5 Conclusions

This work has presented an investigation into a novel domain in the space of
modeling listener music preference dynamics. We showed the RNN model
to be extremely effective in modeling the evolution of these preferences,
offering a +8.2% increase in Recall@20 over other baselines.

We have found these performance advantages become more pronounced
as more historical data is available for a given user. The RNN outperforms
the other baselines most substantially when a listener has between 6 and 40
stations. This result indicates that long-term dependency structure is im-
portant and that the true advantage of the RNN is its ability to encapsulate
it. With less than 6 stations it is perhaps the case that the data is too limited
to learn this dependency structure. The decrease above 40 stations is likely
related to a small number of listeners having such high station counts.

One of the most exciting advantages of the RNN is its ability to cor-
rectly recommend less popular items. Items that appeared the least were
recommended correctly by the RNN than any other model.

For an additional assessment of the predictive power of the RNN, we
also investigated a cascaded learn-to-rank model which allows us to analyze
the information gain delivered by the RNN over the other baselines. We
showed a 16% increase in total performance in MRR@5.

In future work we plan to investigate deeper architectures as well stronger
ways to integrate side information. Architectures that incorporate features
like genre and popularity about the station as well as demographics about
the listener seem like they could be particularly promising for this work.
Another direction for investigation is to look at the problem in terms of lis-
tening behavior instead of station creation. These models would predict if
someone is going to like a particular song.
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CHAPTER7
Automated Playlist Generation with

Recurrent Neural Networks

Music is on of typical application domain of sequence-aware recommen-
dation, as highlighted in our analysis of the state of the art in Chapter 2.
Among the several recommendation tasks in music, one has received spe-
cial attention from the the Music Information Retrieval and Recommender
Systems communities, that of automated playlist generation and recom-
mendation. According to the definition in [18], a playlist simply is a se-
quence of tracks. Playlist generation consists in the generation of a suitable
sequence of songs given a pool of tracks, a background knowledge database
and, optionally, some target characteristics of the playlist.

Despite the considerable amount of research available on the topic, lit-
tle consensus was found on the importance of the order of songs in the
playlist generation process. According to interviews with practitioners and
postings to a dedicated playlist-sharing website, song order –or at least the
relative position of songs within a playlist – has been identified as an im-
portant aspect when compiling a playlist [35]. Although some approaches
to playlist generation take the song order into consideration, to the best of
our knowledge, they do not explicitly analyze its importance, or the exist-
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ing results are strongly dataset-dependent so that no single conclusion can
be taken [18].

To shed some light on this issue, we studied the sequential generation of
playlists, i.e. recommendations on the next song to add to the playlist are
constantly updated according to the songs that are already available in the
playlist. Consider that online radios, an already well established business
sector with products like Pandora 1, can be seen as particular case of endless
playlist generation, in which the songs are continuously recommended in a
sequential fashion.

In this chapter, we model hand-curated music playlists with Recurrent
Neural Networks and show their competitive performance on this task. We
then perform numerical experiments in which we challenge the recurrent
models by randomizing the order of songs within playlists. The experi-
ments yield negligible performance differences, indicating that the choice
of songs for a playlist is usually more important than their exact position
within it.

This work was done in collaboration with Andreu Vall from Johannes
Kepler University in Linz, Austria. Part of this work was presented as
poster at the ACM Recsys 2017 conference [6].

This chapter is organized as follows. In Section 7.1 we present the re-
lated works. In Section 7.2 we present the methods used for automated
playlist generation in this work. In Section 7.3 we present the experimental
results. Finally, in Section 7.4 we draw the conclusions.

7.1 Background and related works

We briefly review here the most relevant works in the literature of auto-
mated playlist generation.

A well-researched approach to automated music playlist generation re-
lies on song content and recommends a next song that is similar to the
previous one (e.g., belongs to the same genre or has similar audio char-
acteristics [47, 71, 81, 105]). This is expected to confer coherence to the
playlist, but in fact, imposes ad hoc constraints that need not correctly ap-
proximate a successful song order.

Playlist generation has also been regarded as a form of Collaborative
Filtering (CF), making the analogy that playlists are equivalent to users [5,
18]. User- and factorization-based CF models require building a playlist
profile in order to extend it, which can be a severe limitation in extreme but
common tasks such as generating a music playlist from a single seed song.

1www.pandora.com
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Song-based CF [119] is not limited in this sense. In general, CF models
disregard the song order, but it is worth noting that the model presented
in [5] accounts for neighboring songs, and the model introduced in [112]
(not in the music domain) is aware of sequential behavior.

The Latent Markov Embedding introduced in [24] models playlists as
Markov chains. It projects songs into a Euclidean space such that the dis-
tance between two projected songs represents their transition probability.
The importance of the direction of song transitions is evaluated by testing a
model on actual playlists and on playlists with reversed transitions, yielding
comparable performance in both cases. Playlists are also treated as Markov
chains in [91]. They are modeled as random walks on song hypergraphs,
where the edges are derived from multimodal song features and the weights
are learned from hand-curated music playlists. The importance of model-
ing song transitions is assessed by learning the hypergraph weights again,
but treating the playlists as sequences of song singletons instead of song
transitions. In this case, the performance degrades when the transitions are
ignored.

In [54], songs are represented by latent topics extracted from song-level
social tags. Sequential pattern mining is performed at the topic level, so
that given seed songs, a next topic can be predicted. Re-ranking the results
of a CF model with the predicted latent topics is found to outperform the
plain CF model.

7.2 Playlist modeling

In this section we describe the models we use for automated playlist gen-
eration. We adopt the following approach for every model. Two disjoint
sets of playlists are available, one for training and one for test, such that
all the songs in the test playlist also occur in the training playlists. Hyper-
parameter tuning, if necessary, is performed on a validation split that is
withheld from the training set. Given one or several songs from a test
playlist, a trained model has to be able to rank all the candidate songs ac-
cording to how likely they are to be the next song in the playlist. At the end
of the section we describe the evaluation methodology.

7.2.1 Song Popularity

This model computes the frequency of each song in the training playlists.
At test time, the candidate songs are ranked according to their frequency.
Thus, the predictions of this model (equivalent to a unigram model –see
e.g., [87]) are independent of the current song.
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7.2.2 Song-based k-Nearest Neighbors

This is a song-based neighborhood model (see [119]), and its analogous to
the Item-kNN model used for session based recommendation in Chapters 4
and 5.

A song s is represented by the set Ps of playlists it belongs to. For
each pair of songs si, sj in the training set, we compute their binary cosine
similarity

sim(si, sj) =
|Psi ∩ Psj |√

|Psi |+ λ ·
√
|Psj |+ λ

.

The value λ is tuned on the validation set and prevents pairs of rarely ob-
served songs from being very similar to one another. This model considers
two songs to be similar if they co-occur in the same training playlists, re-
gardless of whether they occupy adjacent positions in them. At test time,
the candidate songs are ranked according to their similarity to the current
song (previous songs are ignored). Note that the parameter k should define
the number of neighbors (i.e., candidate songs) to be considered. How-
ever, to make the model maximally expressive, we always consider all the
available songs as candidates.

7.2.3 Recurrent Neural Networks

As we have extensively seen in the previous chapters, Recurrent Neural
Networks (RNNs) are a class of neural network models particularly suited
to learn from sequential data. They have a hidden state that accounts for the
input at each time step, while recurrently incorporating information from
previous hidden states.

We adopt the same approach proposed in [61] and described in detail in
Section 4.1.2. The input to the RNN is now the one-hot vector representa-
tion of each song added to the playlist so far, and the output is the likelihood
for each song in the dataset to be the next song in the playlist.

The RNN is optimized using AdaGrad [44] with momentum and L2-
regularization. We also experiment with dropout [128] in the recurrent
layer, but none of the final hyperparameter configurations use it. We tune
the number of units, the learning rate, the batch size, the amount of momen-
tum, the L2-regularization weight and the dropout probability using the val-
idation split. To tune these parameters, we run 100 random search [14] ex-
periments for each of the loss functions enumerated above. The best hyper-
parameter configuration is chosen according to the validation Recall@100
(i.e., the fraction of times in which the actual next song is included within
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the top-100 ranked candidates), which we consider a proxy of the model’s
ability to rank the right songs on top positions. The number of training
epochs is chosen on the basis of the validation loss. Notice that top-N
recommendation lists of this N and even larger (much larger of what any
user can actually explore) are common practice in the evaluation of playlist
recommender systems [18].

At test time, the RNN model ranks the candidate songs according to the
predicted scores. Since it is recurrent, the model is aware of the current
song, as well as of all the previous songs in the playlist.

7.3 Experiments

We evaluate the general performance of the models presented in Section
7.2 on two datasets of hand-curated music playlists (described below). For
the RNN model, we also explicitly study the importance of the song or-
der in music playlists. As a reference, all the reported results include the
performance of a random model that assigns scores to songs uniformly at
random, yielding random ranks.

7.3.1 Datasets

The “AotM-2011” dataset [91] is a playlist collection derived from the
Art of the Mix2 database. Each playlist is represented by song titles and
artist names, linked to the corresponding identifiers of the Million Song
Dataset3 (MSD) [15], where available.

The “8tracks” dataset is a private playlists dataset compiled from 8tracks,4

an on-line platform where users can share playlists and listen to playlists
other users prepared. Each playlist is represented by song titles and artist
names. Since there are many different spellings for the same song-artist
pairs, we mimic the AotM-2011 dataset and use fuzzy string matching to
resolve the song titles and artist names against the MSD.5

We use the MSD as a common name space to identify songs correctly. In
both datasets, the songs that could not be resolved against it are discarded,
with one of two possible treatments6. The first one consists of keeping
the original playlists and simply removing the non-matched songs. The

2www.artofthemix.org
3https://labrosa.ee.columbia.edu/millionsong
4https://8tracks.com
5We adapt the code released in [69] for a very similar task.
6Since the reconciliation between the song in the 30Music dataset and MSD is not possible, we decided to

exclude this dataset from the experimental evaluation in order to provide the sufficient guarantees on the quality
of the results.
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order in the playlist is preserved, but there are skips within them, which we
ignore. The second treatment consists of breaking up the original playlists
into segments of consecutive matched songs. This way we obtain shorter
playlists without skips. For the sake of space, we base our analysis on the
first treatment, but experiments on the second treatment yield equivalent
conclusions.

A considerable number of playlists in the AotM-2011 contain songs by
one or very few artists. In order to study more diverse playlists (which we
assume to correspond to a more careful compilation process), we keep only
the playlists with at least 3 unique artists and with a maximum of 2 songs
per artist. Although the 8tracks dataset is not affected by this issue,7 we
apply the same filters for the sake of consistency. Furthermore, we keep
only the playlists with at least 5 songs. This ensures a minimum playlist
length, that is required to study the effect of the song position on model
performance. Finally, songs included in less than 10 playlists are removed
from both datasets to be able to show enough observations of each song to
the models.

We randomly assign 80% of the playlists to the training set and the re-
maining 20% to the test set. Note that full playlists are assigned to either
split. At test time, the model deals with playlists that were never seen be-
fore. As in any recommendation task blind to item content, the songs that
only occur in test playlists need to be removed because they can not be
modeled at training time.

The filtered AotM-2011 dataset includes 17,178 playlists with 7,032
songs by 2,208 artists. The filtered 8tracks dataset has 76,759 playlists with
15,649 songs by 4,290 artists. Tables 7.1 and 7.2 report the distribution of
unique songs per playlist, unique artists per playlist and song frequency in
the datasets.

7.3.2 Model parameters

The description of model parameters for each dataset used in our experi-
ments follows.

AotM-2011 dataset The song-based k-nearest neighbors model (k-NN) uses
k = 6,258 neighbors (all the songs in the test playlists) and a smoothing fac-
tor λ = 100. The RNN has 200 units, a learning rate of 0.01, mini-batches
of 16 playlists, a momentum coefficient of 0.5 and an L2-regularization
weight of 0.1. The RNN that is trained on shuffled playlists has 200 units, a

7The terms of use of the 8tracks platform require that no more than 2 songs from the same artist or album
may be included in a playlist.
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AotM-2011 min 1q med 3q max

Training set Songs per playlist 5 6 7 8 33
Artists per playlist 3 5 7 8 32
Playlists per song 1 6 10 16 201

Test set Songs per playlist 5 6 7 8 34
Artists per playlist 3 5 7 8 34
Playlists per song 1 2 3 5 50

Table 7.1: Descriptive statistics for the playlists in the AotM-2011 dataset. “Playlists per
song” indicates the number of playlists in which each song occurs.

8tracks min 1q med 3q max

Training set Songs per playlist 5 5 6 7 46
Artists per playlist 3 5 6 7 41
Playlists per song 1 7 12 24 1,860

Test set Songs per playlist 5 5 6 7 45
Artists per playlist 3 5 6 7 40
Playlists per song 1 2 4 7 458

Table 7.2: Descriptive statistics for the playlists in the 8tracks dataset. “Playlists per
song” indicates the number of playlists in which each song occurs.

learning rate of 0.025, mini-batches of 32 playlists, a momentum coefficient
of 0.4 and an L2-regularization weight of 0.05.

8tracks dataset The song-based k-NN model uses k = 14,299 neighbors
(all the songs in the test playlists) and a smoothing factor λ = 100. The
RNN has 200 units, a learning rate of 0.025, mini-batches of 64 playlists, a
momentum coefficient of 0.3 and an L2-regularization weight of 0.02. The
RNN that is trained on shuffled playlists has 200 units, a learning rate of
0.025, mini-batches of 64 playlists, a momentum coefficient of 0.5 and an
L2-regularization weight of 0.01.

7.3.3 Evaluation procedure

Each trained model is evaluated by repeating using the sequential evalu-
ation procedure described in Section 2.6.1. We show the model the first
song in a playlist. It then ranks all the candidate songs according to their
likelihood to be the second song in that playlist. We keep track of the rank
assigned to the actual second song and of the fact that this was a prediction
for a song in second position. We then show the model the first and the
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second actual songs. The model has to rank all the candidate songs for the
third position, having now more context. In this way, we progress until the
end of the playlist, always keeping track of the rank assigned to the actual
next song and the position in the playlist for which the prediction is made.

A perfect model would always rank the actual next song in the first po-
sition. A random model would, on average, rank the actual next song ap-
proximately in the middle of the list of song candidates. An extremely poor
model would rank the actual next song in the last position. Note that the
actual rank values depend on the number of candidate songs available.

Previous research has often summarized the ranking results in terms of
Recall@N , where N is the length of the list of top next recommendations
(see e.g., [18, 54]). However, the proposed evaluation setting may be too
pessimistic in the music domain [90, 104], where songs other than the ac-
tual one may serve as valid playlist continuations. As a consequence, long
lists of next-song candidates are needed to observe the model behavior.

In order to better observe the performance of each model, we opt for an-
alyzing the full distribution of predicted ranks (the lower the better), sum-
marized by the first quartile, the median and the third quartile rank values
(see Figures 7.1 and 7.2). This approach also facilitates the comparison of
different models.

7.3.4 Model performance and the long tail

We first turn our attention to the general performance of the playlist mod-
els, depicted in Figure 7.1. When we consider all the songs (left-hand side
of the figures), the RNN and the popularity-based model perform compa-
rably well and significantly better than the song-based k-Nearest Neigh-
bors (k-NN) model. This is at first surprising (given the simplicity of the
popularity-based approach), but it can be explained by the impact of a small
number of very popular songs in both datasets (see Tables 7.1 and 7.2). In-
terestingly, if the 10% most popular songs are ignored, the inability of the
popularity-based and the song-based k-NN models to correctly rank next
songs becomes clear, with performances close to random.

This is a clear reminder that we cannot ignore the long-tailed nature
of datasets in the music recommendation domain [23], with consequences
regarding the importance of song order in music playlists:

Observation: Under our experimental setting, if the long tail of non
popular songs is not considered separately, a simple popularity-based
model, that completely neglects the order, performs comparably to an
RNN model.
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(b) 8tracks dataset

Figure 7.1: Distribution of ranks predicted by each model. The boxplots indicate the
first quartile, median and third quartile ranks (lower is better). Left: All songs are
considered. Right: The 10% most popular songs are excluded (only the long tail of non
popular songs is considered). “Pop.” and “Rand.” correspond to the popularity-based
and the random models, respectively. The scale of the y-axis relates to the number of
song candidates in each dataset.

7.3.5 Song Order Randomization

In the following experiments the RNN has to model actual playlists where
the song order has been randomized.

1. Shuffled test: the RNN is trained on actual training playlists and eval-
uated on shuffled test playlists. This is a weak check because if song
order is relevant, the RNN can potentially exploit it at training time.

2. Shuffled training: the RNN is trained on shuffled training playlists8

and evaluated on actual test playlists. This is a strong check because
if song order is relevant, we now make sure to break it. This is to say
that the RNN can not learn from the order at training time.

3. Shuffled training and test: the RNN is trained on shuffled training
playlists and evaluated on shuffled test playlists. We conduct this ex-
periment for completeness.

The results are represented in Figure 7.2. We separate the rank distribu-
tions depending on the position in the playlist for which the prediction is
made. Thus, we obtain a more fine-grained view on the distributions and
can observe the impact of knowing the preceding songs on next-song pre-
dictions. As a reference, we include the performance of the RNN model on
playlists in original order.

8The RNN hyperparameters are re-tuned for this and the next experiment, to ensure that the performance of
the model is not compromised just as a consequence of modifying the training data.
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Figure 7.2: Distribution of ranks predicted by the RNN for original and shuffled playlists,
grouped by the position for which the prediction is made. The boxplots indicate the
first quartile, median and third quartile ranks (a lower rank is better). The scale of the
y-axis relates to the number of song candidates in each dataset.

We observe that the RNN performs comparably well for playlists in orig-
inal order and for any other shuffling experiment, including those in which
we train the RNN on shuffled playlists where the order is for sure broken.
This indicates that the song order does not inform the RNN to make better
next-song predictions.

We also observe that the RNN performance improves (i.e., it assigns
lower ranks to the actual next songs) as more knowledge of the preceding
songs is available. This is a reasonable behavior for an RNN, which informs
its hidden state as it progresses through the playlist. It suggests that the
choice of songs is highly informative for next-song predictions.

Observation: Under our experimental setting, when using an RNN model,
knowledge of the preceding songs is informative for next-song predic-
tions, but their exact order is not.

7.4 Conclusions

In this chapter, we have explicitly investigated the importance of song order
in hand-curated music playlists. We have conducted offline experiments
with different playlist models (including state-of-the-art sequential models)
on two independent datasets. Our findings indicate that the song order is not
informative for next-song predictions. This is evident in heavily popularity-
biased datasets, where predicting the next-song based on popularity alone
performs comparably to a sophisticated sequence-aware RNN model. Once
the trivially predictable popularity tracks are removed, the advantage of the
more complex RNN model becomes evident. We have challenged RNN
models, by submitting them to different configurations of shuffled playlists.
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Our results show that, in this specific problem, sequence-aware mod-
els cannot exploit the order of songs seen during training to make better
next-song predictions in the evaluation. However, we have found that the
knowledge of preceding songs is indeed informative to identify which song
comes next. This further underpins the robustness to unprecedentedly seen
sequences of the RNN-based models, which is the family of algorithms
subject of this dissertation.

Since playlist generation does not seem suitable for further investigation
on sequence-aware methods, in the next chapter we will explore another
application scenario in music recommendation, that of sequential listening
prediction. We will present a new large scale dataset that is openly accessi-
ble to researcher and practitioners interested in the topic.
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CHAPTER8
A dataset for large-scale music listening

recommendation

Music recommender systems propose interesting music to a specific user.
Differently from many other recommendation domains - such as movie rec-
ommendation - items in the music domain are short in duration and are
usually consumed many times by the same user.

Even though users have general preferences about the music they like,
for example in terms of genres or artists, music listening is a strongly con-
textual experience. Playlists are somehow “curated” sequences of songs
that can be played several times by the user and fulfill some quality con-
straints in terms of diversity and coherence between songs, for example at
genre, artist or acoustic level. For such reason, in the previous chapter we
had to remove from our datasets the playlists that did not respect certain
minimal quality constraints to ensure the quality of the obtained results.

Music listening, instead, is about the “raw” signals (play events) gener-
ated by users while they exploring the catalogs of available songs. Music
listening behavior is more prone to be influenced by other contextual fac-
tors, such as mood, that can be hardly elicited from users. To overcome
such limitation, we propose to use the current listening session as a proxy
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to infer the user intent and to predict the tracks will likely listened in the
remainder of her listening session. However, no publicly available dataset
allows to address this research need completely.

To address this research need, in this chapter we present the 30Music
dataset, a new large-scale dataset of music listening sessions collected from
Last.fm. To the best our knowledge, there is no other publicly available
dataset of music listening sessions to date. By releasing this new dataset,
our intent is to foster the research into session-based music recommenda-
tion and contextual playlisting. This is an emerging research field, as has
been highlighted also by other surveys in the field [18].

The dataset was presented as a poster paper at the conference ACM Rec-
sys 2015 and in the Large Scale Recommender Systems (LSRS) workshop
of the same conference.

The outline of the chapter is the following. In Section 8.1 we briefly
describe the other publicly available datasets. In Section 8.2 we describe the
dataset generation process and analyze its salient characteristics. Finally, in
Section 8.3 the conclusions are drawn.

8.1 Background and Related Work

There exist a number of publicly-available music datasets, used in several
music experiments. The most popular and relevant ones are shown in Ta-
ble 8.1.

Most datasets provide content information (e.g., metadata, tags, acoustic
features), but only a few report some user-system interactions (e.g., ratings,
play events) useful to profile users and to experiment with personalization
tasks.

The Million song dataset (MSD) [16] is a public collection well-known
for its size. In fact, it contains audio features (e.g., pitches, timbre, loud-
ness, as provided by the Echo Nest Analyze API1) and textual metadata
(e.g., Musicbrainz2 tags, Echo Nest tags, Last.fm tags) about 1M songs
(related to 44K artists).

Celma [23] has published two music datasets collected from Last.fm
API: 1K-user and 360K-user. The smallest one - 1K-user dataset - contains
the user listening habits (20M play events) of less than 1K users. On the
other hand, the biggest one - the 360K-user dataset - collects the informa-
tion about 360K users, but it does not have any listening data other than
the number of times a user has listened to an artist. Data are provided as

1http://the.echonest.com/
2https://musicbrainz.org/
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downloaded from the Last.fm API.
Yahoo! Labs have released several music datasets3, with different sizes

and content. For instance, the R1 dataset provides 10M ratings of musi-
cal artists; the R2 dataset contains 717M ratings of 136K songs given by
1.8M users, where each song is accompanied by artist, album, and genre
attributes; the R9 dataset publishes track metadata collected by monitor-
ing the track plays of more than 4K Internet radio stations during a period
of 15 days; finally, the C15 dataset is a very large dataset providing four
types of user ratings (tracks, albums, artists, and genres) and being used in
recommender system challenges [43]. Unfortunately, none of the datasets
contains user play events.

Some datasets have been extracted from microblogs. For instance, the
#nowplaying dataset [147] comprises about 50M listening events of 4M
users about 1.3M tracks, extracted from Twitter messages containing the
hashtag ‘#nowplaying’. Similarly, the Million Musical Tweets Dataset [55]
and the MusicMicro dataset [121] contain a set of geolocalized music lis-
tening events collected by monitoring a portion of Twitter messages, filter-
ing special music-related hashtags, and maintaining only tweets containing
a location. In addition, MusicBrainz was used to verify the existence of the
track referenced by the tweet. Finally, the data was enhanced with further
information using the Yahoo! Place Finder API (linking to locations), the
Last.fm API (adding tags), Allmusic.com (adding user mood information),
and the 7digital API (retrieving 30-second audio track).

The Art of the Mix Playlist dataset4, collected from the artofthemix.org
website, consists of 29K user-contributed playlists, containing 218K dis-
tinct songs for 60K distinct artists. However, there are not user listening
events.

Finally, the USPOP’02 dataset [13] is typically used to experiment with
tasks exploiting audio features. In fact, it mainly contains the acoustic fea-
tures about 8K tracks from 400 popular artists, together with a set of tags
for each artist.

In summary, the available datasets have the following four main limita-
tions:

1. They have only either implicit play events (Celma 1K, Celma 360K,
#nowplaying, MMTD, Music Micro) or explicit preferred tracks or
artists (Yahoo! R1, Yahoo! R2, Yahoo! C15, artofthemix). There
are no datasets with both the type of information.

3http://webscope.sandbox.yahoo.com/catalog.php
4http://labrosa.ee.columbia.edu/projects/musicsim/aotm.html
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2. Datasets with play events do not provide the duration of the events.
Therefore, with these datasets it is not possible to make a distinction
between skipped songs (i.e., negative implicit feedback) and full lis-
tened songs (i.e., positive implicit feedback).

3. There are no datasets in which play events are organized into sessions
of contiguous and ordered songs. As the sequence of play events is
meaningful for the user, without this information it is not possible to
evaluate the ability of a music recommender system to create playlists
matching the user taste and context.

4. There are no datasets (with the exception of artofthemix) which pro-
vide user generated playlists. The number of playlists in artofthemix
is small (29K) and the dataset does not provide any other information
about user interactions or explicit user preferences.

8.2 The 30Music dataset

In this chapter we introduce the 30Music dataset, a collection of listening
and playlists data retrieved from Internet radio stations and from over 600
music players (including Rdio, Spotify, Clementine, Amarok, MusicBee)
through the Last.fm API.

Data refers to four different types of user interactions – listened tracks,
listening sessions, user-created playlists, explicit users’ likes on tracks –
enriched with user and item metadata, such as user demographics and track
attributes (artists, albums, social tags).

In this chapter we describe the dataset creation process, its content, and
its possible uses. Attractive features of the 30Music dataset that differenti-
ate it from existing public datasets include, among the others, (i) the user
listening sessions complete of contextual time information, and (ii) the user
playlists, key information to experiment with the task of modeling user taste
and recommending sequences of tracks. Implicit user’s interests can be de-
rived by joining the duration of each listening session with the length of the
corresponding music track, in order to detect “skipping” behaviors.

8.2.1 Dataset creation

The 30Music dataset has been obtained via Last.fm public API7. Last.fm
is a music website that offers several social networking features (e.g., a

5Ratings given to artists
6Playcount of artists
7http://www.last.fm/api
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collaborative wiki system, social tagging, etc.) and can recommend artists
to the users. Last.fm provides, among the others, free API to track details
of user listening sessions.

In the case a user has connected his player to his Last.fm account (which
typically simply implies setting the Last.fm username and password), the
player transfers information on the user listening activity via the Last.fm’s
scrobbling API. Scrobbled messages contain information such as track meta-
data (e.g., title, artist, and album) and the event timestamp. Last.fm stores
the data in the same format as it is transmitted from the player; conse-
quently, scrobbling events can report wrong or incomplete metadata (e.g.,
a misspelled title). Scrobbled information are publicly available through
the Last.fm API. Unfortunately, there is no way to identify which player
generated a specific scrobbled event.

Scrobbling allows Last.fm to collect the listening activity of the users
on any online music player in a way transparent for the user; it does not
require any change in the way users listen to their music. The scrobbling
events are registered by Last.fm to collect statistics on the usage of their
services and generate personalized recommendations to users [9].

It is worth noting that only listening events are recorded, while pause/skip
events are not scrobbled from the user player to Last.fm, as well as any
playlist or explicit preference defined or expressed in the player. The main
way for a user to create a playlist in Last.fm is to access to the website; sim-
ilarly, the user can express explicit preferences (‘love’) about tracks directly
in the website.

To build the 30Music dataset, we started from a list of 2M Last.fm user-
names from the Chris Meller dataset 8. This dataset was obtained using
iteratively the User.getFriends call starting from ‘Chris Meller’ as
seed username and then crawling his friends in the Last.fm social network.
Given the list of users, we used the User.getPlaylists call to collect
the list of playlists created by each user. For each retrieved user playlist,
we call the Playlist.fetch to obtain the single tracks composing the
playlist. Users with at least one playlist were about 45K. Starting from this
set of users, we called the User.getRecentTracks to retrieve the user
listening events over a 1-year time window (events are crawled from Mon,
20 Jan 2014 09:24:19 to Tue, 20 Jan 2015 09:24:19).

Raw playlists and user listening events have been enriched with addi-
tional information about users and tracks. For each user, we the following
user demographics with User.getInfo: country, age, gender, number

8 https://opendata.socrata.com/Business/Two-Million-LastFM-User-Profiles/
5vvd-truf
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of playlists, total playcount, registration date and whether she is a pre-
mium user of Last.fm. Similarly, we retrieved the following track meta-
data with Track.getInfo: duration, global playcount, artist/album/-
track MusicBrainz 9 identifiers, album title and Last.fm social tags.

Data processing

We have performed some basic data cleaning on the raw data. For example,
users with wrong metadata or that are not recognized by the Last.fm API
were removed (this reduced the original set of 2M users to one half). We
also performed applied some basic track deduplication strategies, such as
tracks with exact artist and track names were associated to an unique iden-
tifier. However, we did not unify mispelled tracks or tracks with multiple
versions (e.g., studio, live, unplugged versions etc.).

Finally, we defined a new entity, the user play session, as an ordered list
of play events that are assumed to be consequently listened by the user with
no interruptions. We define a play event to be part of a session if it occurs
no later than 800 seconds after the previous user play event. The choice of
the threshold was made because the empirical distribution of the play time
exhibits a drop close to 800 seconds. Anyways, it is still possible to define
other partitioning into sessions from the data using other thresholds.

30Music dataset format

The 30Music dataset is released in accordance with the Idomaar data for-
mat [117], a multigraph representation oriented to recommender system
evaluation that explicitly represents entities (i.e., nodes) and relations (i.e.,
edges). An entity models any object that can be recommended (e.g., a user
can be recommended a track, an existing playlist, an artist, or he can be
even suggested a tag). A relation models a link between two (or more)
entities (e.g., the play event of a user about a track at a certain time). We
defined the 6 different entities and 3 types of relations.

Entities:

• 45K users. A Last.fm user is identified by his username. Users are
stored together with additional information about gender, age, coun-
try, number of scrobbled events, number of created playlists, the time
they registered to Last.fm service, and whether they are premium users.

9https://musicbrainz.org/
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• 5.6M Tracks. A Last.fm track is identified by the title and the artist.
Tracks report additional information such as duration, social tags, al-
bum and their respective track MusicBrainzID (available for 1,469,606
tracks).

• 57K Playlists. A Last.fm playlist is an ordered lists of tracks defined
by a specific user. A playlist has a Last.fm identifier, a title and it
contains the information about the user that has created it with the
related timestamp, and the tracks it consists of.

• 595K Artists, represented by their Last.fm name and their respective
artist MusicBrainzID (available for 109,285 artists).

• 217K Albums, represented by their Last.fm name and the album Mu-
sicBrainzID for all of them.

• 277K Tags, the social annotations explicitly provided by Last.fm users
to specific tracks, their value and the Last.fm url. Tags are available
for 1.5M tracks with 3.7 tags/track on average.

Relations:

• 31M User play events. Each relation represents the play of a track by
the user in a specific timestamp.

• 2.7M User play sessions. A session, in accordance with the definition
of the previous subsection, contains the time the session starts, the
number of tracks, the ordered list of each played track together with
the start time (related to the begin of the session), the play time, the
play ratio (i.e., the playtime divided by the track duration).

• 1.7M User love preferences. A user love preference reports the ex-
plicit preference given by a user about a specific track.

8.2.2 Dataset analysis

This section presents a statistical analysis of the 30Music dataset. The
dataset contains 31,351,954 play events organized into 2,764,474 sessions
(an average of 11 play events per session). The dataset contains also 1,692,924
explicit ratings (loved tracks), with an average of 33 ratings per user, and
279,351 user-created playlists. Due to the session generation process, the
track duration is not available for the last track of each sessions.

Figure 8.1a plots the empirical cumulative event distributions as a func-
tion of the number of tracks (in percentage). Tracks in the horizontal axis
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Figure 8.1: Cumulative distribution of play events for tracks and artists

were ordered according to their popularity, most popular to the left. The
figure plots the same distribution for two subsets of the play events: play
events of “loved” tracks (i.e., tracks for which the user expressed an ex-
plicit preference) and play events of playlist tracks (i.e., tracks played from
a playlist). We observe that play events present a moderately long-tail dis-
tribution, since ∼20% of the most popular tracks collect ∼80% of the play
events. This long tail effect is mitigated when analyzing preferred tracks
(i.e., loved tracks and tracks in the playlists). We observe that the same per-
centage of play events (80%) involves twice the tracks (40%) when consid-
ering tracks in the playlists. We can deduce that user’s explicit preferences
span a wide set of tracks, but listening habits are strongly biased toward the
short-head of the most popular tracks.

In the analysis over artists (Figure 8.1b) we can notice stronger long-tail
effect than what observed for individual tracks, e.g. the 20% most popular
artists collect more than 95% of the play events. Similar considerations to
the previous case on loved and playlist tracks also apply for artists. We
can deduce that users have preferences spanning many different artists, but
their listening behaviour is strongly biased toward the short-head of the
most popular artist.

Figure 8.2 depicts the distribution of the number of ratings per user (Fig-
ure 8.2a) and per track (Figure 8.2b). Both distributions are clearly power-
law behavior. There is huge number of spurious users with a single play
event, then all users have more than ∼100 play events each, with a tiny
fraction (∼1%) of very active users with ≥ 1000 play events each. The dis-
tribution of the play event per track was already analyzed in the previous
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Figure 8.2: Empirical distribution of the number of play events per user and track
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Figure 8.3: Probability distribution of the playlist lengths and cumulative distribution of
the number of events per session

plots, and here the power-law distribution of the play events per track is
highlighted even further.

Figure 8.3a shows the number of playlists in the dataset as a function
of their length. As one would expect, the number of available playlists
decreases with their length. ThWe can also observe that many playlists
have length of 200 in correspondence to the limit posed by Last.fm itself.

Figure 8.3b refers to play events and shows that 70% of the sessions
have at most 50 tracks. Note that the small jump at length 200 events,
likely correlated with playlists of the maximum available length that are
listened completely by users.

Finally, in Figure 8.4 we show the distribution of the playtime and dura-
tion of the tracks in the dataset. Both distributions are centered at 200-250
seconds (∼3 − 4minutes) which are reasonable track durations and play-
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Figure 8.4: Distribution of track playtimes and duration.

times. Frequency drops significantly after 500-600 seconds, slight before
the 800 second threshold used to generate sessions. Notice that the peak
below 5 seconds is likely due to spurious scrobbling events and cannot be
straightforwardly imputed to skip events.

8.3 Conclusions

In this chapter we have presented 30Music dataset, a novel large-scale
dataset of music listening records crawled from Last.fm. We delved in
depth into the characteristics of the dataset and compared it against the
other publicly available datasets in the field. From a search on Google
Scholar10, this dataset has been already used in ∼10 publications or thesis
works to date. We believe this dataset has already helped, and will keep
helping, the research on the modeling of music listening habits.

10https://scholar.google.com
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CHAPTER9
Conclusion and perspectives

In this thesis, we have developed a series of novel algorithms for sequence-
aware recommendation. First, we have conducted an exhaustive survey of
the state of the art in order to characterize the problem and identify the
overlooked research aspects in the existing works. We then focused on
a specific task, that of session-based recommendation, that can be effec-
tively tackled by sequence-aware recommenders to enhance the quality of
the recommendations above the existing methods. We have validated the
importance of personalized recommendations in a specific session-based
through a user study. We developed a novel recommender system based
on parallel-RNNs, capable of exploiting both item identifiers and rich item
features to improve the quality of the recommendations in session-based
scenarios with new users. We developed a novel session-aware recom-
mender based on Hierarchical RNNs that jointly models the user activity
between and across sessions, providing an unified solution to personalize
recommendations for returning users. We then investigate sequence-aware
recommendation in music. We employed sequence-aware recommenders
to model the evolution of the musical tastes of the user over time. After
that, we investigated the importance of the order of the songs on the quality
of automated playlist generation. Finally, we presented a novel large-scale
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dataset for session-based music recommendation, with the goal of helping
the research in this field.

In this chapter we first summarize and conclude the work conducted in
this thesis. We then present the future research directions for expanding
this work.

9.1 Summary and contributions

A discussion on the main contributions of this work with respect the re-
search goals established in Chapter 1 follows.

9.1.1 Characterizing Sequence-Aware recommender systems

In Chapter 2 we presented a novel and exhaustive survey of the state of
the art in sequence-aware recommender systems. We have first provided an
intuitive definition of the problem. Then, we have characterized sequence-
aware recommenders in the terms of their inputs, outputs and computational
tasks. We have analyzed their relations with respect to other related areas
in Recommender Systems, by highlighting similarities and differences. We
then described the main tasks and subtask for which sequence-aware rec-
ommenders are usually employed. We noticed that context-adaptation is
the main task that can be addressed with sequence-aware recommender
systems, driven also by the emergent applications in session-based and
session-aware recommendation. Finally, we provided a taxonomy for the
existing algorithms evaluation procedures for sequence-aware recommenders.

From this analysis, we were able to identify several overlooked research
aspects that needed to be addressed. We focused on session-based and
session-aware recommendation, because of their stronger connections with
many real-world applications, and because they are relatively less explored
aspects in the literature of sequence-aware recommenders. In particular,
we were able to identify the complete absence of feature-based sequence-
aware models and of “holistic” session-aware recommenders, as well as the
lack of user studies in the field.

9.1.2 Session-based Hotel Recommendation: a User Study

We first run a user study to assess the influence of personalized recommen-
dations in session-based recommendation. In Chapter 3 we build a sim-
ple yet effective sequence-aware recommender based on implicit elicitation
and time decay, and proved that personalization is indeed effective even in
contexts in which no past information on the user interests is available.
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Specifically, we run our user study in a strong popularity biased domain,
that of hotel booking, and evaluated the perceived impact of recommen-
dations in a scenario of limited availability of hotels (“when the best are
gone”). Our findings show that personalized recommendations are capable
of keeping constant user satisfaction even when best available options for
the user are no longer available. From this experiment, we decided to inves-
tigate over more sophisticated sequence-aware recommenders, that can go
beyond what is achievable by combining traditional collaborative filtering
and content-based algorithms with the implicit elicitation mechanism.

9.1.3 Feature-rich session-based recommendation with Recurrent Neu-
ral Networks

From the analysis of the state of the art, we advise the lack of sequence-
aware recommenders capable of exploiting rich item features. The vast ma-
jority of the research focuses on the extraction of patterns from sequences
of item identifiers, but valuable information can be undoubtedly extracted
from the content of the products visualized by the user. This can in turn
provide essential information in new-user scenarios.

In Chapter 4, we have presented a novel sequence-aware recommender
based on parallel-Recurrent Neural Networks (p-RNNs). We proposed p-
RNN architectures that can leverage the added value of multiple item rep-
resentations, such as item identifiers and dense (or sparse) item feature de-
scriptors. We devised alternative training strategies (alternating, residual
and interleaving training) to fit these architectures. The proposed architec-
tures and training methods outperformed the baselines by large margins.
Nevertheless, the improvements were mostly in Mean Reciprocal Rank,
meaning that item features could be effectively exploited by the model to
order the items in the recommendation list better, but not to retrieve more
interesting items for the user, since Recall is only marginally better.

9.1.4 Personalizing Session-based Recommendations with Hierarchi-
cal Recurrent Neural Networks

We also advise the lack of unified solutions for personalized session-based
(or session-aware) recommendation for returning users. The relatively few
existing solutions decouple the long-term modeling of the user interest from
the short-term (session-based) modeling of the user activity. This in turn
requires periodic updates of the long-term models to keep track of the evo-
lution of the user interests over item.
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To address this and other issues, in Chapter 5 we have presented a uni-
fied framework that jointly models the user activity within and across ses-
sions. Our framework uses HRNNs, in which the lower-level of the hierar-
chy models the activity of the user within each session, and the upper-level
models the evolution of the user’s interests across sessions. The upper-
level is also used to initialize the representation of the lower-level, hence
to provide the necessary personalization capabilities to the session-based
recommender. Our experimental results show the superiority of our ap-
proach with respect to “pure” session-based recommendation and to trivial
personalization strategies such as session-concatenation in all the evaluated
metrics. We could also show that the quality of the recommendation im-
proves with the length of the history of the user both within and across
sessions, further justifying the need for personalized models for returning
users also in strongly session-bounded domains, such as video streaming
recommendation. These results underpin the validity of our approach to
session-aware recommendation.

9.1.5 Modeling Musical Taste Evolution with Recurrent Neural Net-
works

We then investigate sequence-aware recommendation in music recommen-
dation. In Chapter 6 we use Recurrent Neural Networks to model the evo-
lution of user tastes over time. We consider the task of music station rec-
ommendation as a proxy for the user musical interests, and compare RNN-
based models against other sequence-aware methods. The experimental
results show that RNN leads when enough historical data is available, since
it can effectively predict the next stations added by the user with greater ac-
curacy. Moreover, RNN-based methods look less prone to popularity biases
than all alternatives, allowing for a much broader exploration of the catalog
of genres, artists and tracks available. We design a learning-to-rank exper-
iment to leverage this property. The experimental result show significant
improvements in the ranking quality when the top-10 recommendations
generated by RNN are added to the pool of candidate recommendations
to re-rank.

9.1.6 Automated Playlist Generation with Recurrent Neural Networks

In Chapter 7 we addressed one long-debated issue in music recommen-
dation, that of the importance of the order of songs in automated playlist
generation. In our survey of the state of the art, we could notice that order
constraints of different degree were considered in the literature of music
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recommendation. However, there is little consensus on whether the order
of songs matters to the final quality of a playlist.

We therefore exploited the knowledge built on sequence-aware recom-
menders based on Recurrent Neural Networks to shed some light on this
issue. We designed an experiment aimed at verifying whether the order of
the songs seen by the model in training was of any importance in predicting
the songs in a held-out set of playlists. The experimental results confirmed
that the order of songs is not relevant. Moreover, our experiments showed
that RNN are capable of building meaningful sequence representations even
when the order of the songs in the playlist is shuffled, showing unexpected
robustness to unseen sequences of songs.

9.1.7 A dataset for large-scale music listening recommendation

In Chapter 8 we presented a new large-scale dataset for music recommen-
dation, the 30Music dataset dataset. As our analysis of the existing datasets
showed, our dataset has unprecedented size and it is one of the few to pro-
vide listening sessions out-of-the-box. We described the salient character-
istics of 30Music dataset, and discussed about the research opportunities
that it opens.

9.2 Future works

This thesis, as we have analyzed previously, presents several novel aspects
of sequence-aware recommendation. There are still open directions that we
could not cover in this work and that we would like to highlight here.

9.2.1 User studies

First, user studies are required to understand the actual effectiveness of
some of the proposed strategies. A first attempt was done in Chapter 3.
However, a larger pool of users is required to evaluate the online valid-
ity of the algorithmic approaches presented in this thesis, as well as other
application domains.

In particular, in our experiments on p-RNNs analyzed in Chapter 4, we
noticed that the RNN configurations based only on item features return
meaningful results, even if performed poorly in the offline evaluation. For
example, in many cases the visual appearance of the recommended items
is close to the actually clicked item but not exactly the same. The offline
evaluation can therefore be overly pessimistic for these models, and online
user studies are required to investigate more on this issue.
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9.2.2 Item cold-start

A related open issue is that of item cold-start with sequence-aware recom-
menders. Similar to what occurs in traditional collaborative filtering, the
vast majority of the existing methods for sequence-aware recommendation
require items to occur a certain minimum number of times in the training
set to be considered by the recommender. For example, very “long-tail”
items that occur rarely in the training sequences will be blocked by strict
minimum support thresholds in frequent pattern mining based models, or
will be associated with noisy transition probabilities and output probabili-
ties in transition models like RNNs. This issue is further amplified for new,
cold-start items that are unseen during training. Continuous item cold-start
is an important issue in domains with high item turn-over rates, in which
new items are constantly added and old items quickly becomes obsolete,
like for news and classified advertisement, for example.

Parallel-RNNs can be readily used to include new and long-tail items
in the pool of recommended items, given their ability of learning and ex-
ploiting sequential relations between item features. In our experiments,
we have shown the effectiveness of p-RNNs when item features that are
directly extracted from raw content are used. This can in turn lead to sig-
nificant advantages over methods based on “high-level” features such as
metadata, since such high-quality descriptors may not be readily available
for every new content added to the system.

9.2.3 Multiple interaction types

Another open research direction is the inclusion of interaction types in our
sequence-aware models. In our contributions we have considered a single
interaction type (e.g., the user clicks on an advertisement, views a video or
listens to a song). However, in real scenarios users can have multiple types
of interactions with the user interface (e.g., playing, replaying or skipping
a song). We presented a preliminary analysis on how multiple signals can
be used with traditional recommenders in session-based scenarios in Chap-
ter 3.

However, little research has been done to date on how to exploit mul-
tiple feedback types in a sequence-aware fashion. Such feedback can be
extremely useful in detecting the intent of the user in session-based scenar-
ios, for example. We also believe that this problem has received little atten-
tion from the research community also due to the lack of publicly available
datasets that provide such type of information (to our knowledge, the XING
dataset is the first dataset to do this). Interaction types, item and user fea-
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tures could be jointly considered to extend our HRNN model into a holistic
user model that dynamically evolves the user representation over time and
promptly adapts to the user’s interests within each session, also on the basis
of the characteristics of the items the user usually interacts with.

9.2.4 Address subtasks

From the analysis of the state of the art we conducted in Chapter 2, we no-
ticed that many subtasks distinct from context-adaptation can be targeted by
sequence-aware recommenders. For example, the proposed HRNN model
“implicitly” incorporates the individual trends in the user interests by mod-
eling its long-term activity through time. From our experiments, the same
model showed a certain degree of adaptability also to repeated user be-
haviors. However, further investigation is needed to verify the validity of
these assumptions. New sequence-aware models can be also devised to tar-
get these specific subtasks, which can be highly relevant according to the
application scenario [75].

9.2.5 Session-based music recommendation

Contextual music recomemndation is an emerging research field [18]. In
this work we have presented a dataset aimed at helping this research, but
more datasets and the further investigation is certainly needed to develop
new sequence-aware algorithms suitable for this problem.

9.2.6 Connections with other areas in Recommender System research

We envision some connections with other research areas in RS research. A
completely unexplored area is that of cross-domain sequence-aware recom-
mendation. Prior studies has shown that user and item cold-start issues in
one domain (e.g., video) can be alleviated by transferring knowledge from
auxiliary domains (e.g., music, book) in which the user-item dynamics are
better known [134]. This is possible especially when it is possible to estab-
lish a connection between the source and auxiliary domains [33]. However,
cross-domain recommendation has been studied only in the terms of the
traditional user-item matrix framework. We hypothesize that useful knowl-
edge could be transferred across domains also from user interaction logs,
and novel cross-domain techniques can alleviate the item and user cold-
start issues in sequence-aware recommendation, that can be solely solved
with content-based methods up to now. For example, the sequential listen-
ing habits of a user can be useful to session-based video recommendations
to her, and viceversa.
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Finally, we advise the need for a more extensive evaluation of sequence-
aware recommenders that goes beyond traditional recommendation accu-
racy. For example, little research has been conducted so far in the study of
other aspects such as the novelty and diversity in sequence-aware recom-
mender systems [137].
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