
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering

Department of Electronics, Information and Bioengineering

A PYTHON DATA ANALYSIS LIBRARY
FOR GENOMICS AND ITS

APPLICATION TO BIOLOGY

Laboratory of Bioinformatics and Web Engineering

Supervisor: Prof. Stefano Ceri
Co-supervisor: Dott. Pietro Pinoli
Second supervisor (Politecnico di Torino): Elena Baralis

Master Thesis of:
Luca Nanni, Matr 850113

Anno Accademico 2016-2017

To my parents

Abstract

Genomics is the study of all the elements that compose the genetic material
within an organism. The new DNA sequencing technologies (NGS) have
opened new lines of research, which include the study of diseases like cancer
or genetic conditions. The huge amount of data produced by these new
methods makes the genomic data management one of the current biggest
big data problems.

In this context, GMQL, a declarative language built on top of big data
technologies, was developed by the Bioinformatics group at Politecnico di
Milano.

The first aim of this thesis is to enlarge the scope of this language by
designing and implementing a Python package capable of interfacing with
the big data engine, to extract the results and convert them in a useful data
structure and to give the user the possibility to work with GMQL in a full
interactive environment. The package will be able to perform computations
both on the local machine and using a remote GMQL server and will interface
with the main data science and machine learning python packages.

The second focus of this work is on applying the developed package to
concrete biological problems. In particular we will concentrate on the study
of Topologically Associating Domains (TADs), which are genomic regions
within which the physical interactions occur much more frequently than out
of them. We will use the package to analyze these data, extract new knowl-
edge about them and derive their physical properties.

I

Sommario

La genomica è lo studio di tutti gli elementi che compongono il materiale
genetico di un organismo. Le nuove tecnologie di sequenziamento del DNA
(NGS) hanno aperto, negli ultimi anni, nuove frontiere di ricerca fra cui
lo studio dei tumori e delle malattie ereditarie su larga scala. La grande
quantità di dati prodotti da questi nuovi metodi rendono la gestione di dati
genomici uno dei problemi più grandi nel campo dei big data.

In questo contesto, presso il laboratorio di bioinformatica e web engi-
neering del Politecnico di Milano è stato sviluppato il sistema GMQL, che
consiste in un linguaggio dichiarativo il quale, utilizzando tecnologie di pro-
cessamento big data, permette l’esecuzione di query genomiche su grandi
moli di dati.

Lo scopo primario di questa tesi è di estendere questo linguaggio at-
traverso il design e l’implementazione di una libreria python che possa in-
terfacciarsi con il sistema di processamento dati, estrarre i dati di interesse,
convertirli in una struttura dati efficiente e rappresentativa e infine fornire un
ambiente di sviluppo interattivo. La libreria sarà anche in grado di eseguire
localmente o tramite l’utilizzo di un cluster remoto, nonché potrà interfac-
ciarsi con le principali librerie python di data science e machine learning.

In secondo luogo, la libreria verrà testata direttamente nella risoluzione
di complessi problemi biologici. In particolare verrà posta l’attenzione sullo
studio dei domini topologici, i quali sono particolari regioni genomiche carat-
terizzate da un aumentata densità di interazioni fisiche. Durante lo studio
si utilizzerà la libreria per analizzare i dati ed estrarne nuova conoscenza al
fine di derivare le proprietà fisiche di queste particolari regioni.

III

Ringraziamenti

Naturalmente non posso che iniziare i miei ringraziamenti ringraziando il mio
relatore Stefano Ceri e il mio corelatore Pietro Pinoli, che mi hanno seguito,
incoraggiato e sempre sostenuto in questo percorso. Un forte ringraziamento
anche a tutto il gruppo di bioinformatica presso il quale ho lavorato in questi
ultimi mesi e in particolare Arif e Abdo, che mi hanno sempre aiutato in caso
di bisogno. Ringrazio inoltre Michele, Andrea, Ilaria B., Ilaria R., Eirini.

Un ringraziamento particolare ai ragazzi del gruppo dell’Alta Scuola Po-
litecnica, che mi hanno seguito e sopportato in questi due anni di lavoro:
Gianluca, Paolo, Diletta, Flavio e Antonio.

Un particolare ringraziamento naturalmente va a Francesco, Riccardo,
Filippo, Lorenzo, Andrea, Mirco, Giacomo, Francesca, Lisa, Ezia, senza i
quali probabilmente tutto quello che ho fatto finora non avrebbe significato.

Un grazie a i miei coinquilini, che in questi due anni mi hanno sopportato
e hanno riso con me: Ale, Lorenzo ed Elia.

E come nei più classici ringraziamenti, ma soprattutto perché è la verità,
il più grande ringraziamento va a tutta la mia famiglia, che mi ha sostenuto
in tutto e per tutto da sempre.

E (perchè no?) un grazie anche a me stesso, che ha sempre guardato
avanti e cercato di migliorarsi ad ogni passo lungo questa difficile, ma bellis-
sima esperienza.

V

Contents

Abstract I

Sommario III

Ringraziamenti V

1 Introduction 1
1.1 Genomics and the Human Genome Project 1
1.2 Big data in biology and genomics 3
1.3 Motivations and requirements 4
1.4 The Python library in a nutshell 5
1.5 Biological application . 6
1.6 Outline of the work . 7

2 Background 9
2.1 Genomic Data Model . 9

2.1.1 Formal model . 10
2.2 Genometric query language 11
2.3 GMQL operations . 12

2.3.1 Relational operators 13
2.3.2 Domain-Specific Operations 17
2.3.3 Materialization of the results 24
2.3.4 Some examples . 24

2.4 Architecture of the system . 26
2.4.1 User interfaces . 28
2.4.2 Scripting interfaces . 29
2.4.3 Engine abstractions 31
2.4.4 Implementations . 33

VII

3 Interoperability issues and design of the library 35
3.1 Scala language . 36

3.1.1 Compatibility with Java 36
3.1.2 Extensions with respect to Java 36
3.1.3 Spark and Scala . 38

3.2 Python language . 38
3.2.1 An interpreted language 39
3.2.2 A strongly dynamically typed language 39

3.3 Connecting Scala and Python 40
3.4 Asynchronous big data processing and interactive computation 42
3.5 Analysis of Design Alternatives 43

3.5.1 Full-python implementation 45
3.5.2 Mixed approach . 46
3.5.3 Wrapper implementation with added functionalities . . 47

4 Architecture of the library 49
4.1 General architecture . 49
4.2 Remote execution . 53

4.2.1 Dag serialization . 54
4.2.2 Graph renaming . 54

4.3 Interfacing with the Machine Learning module 56
4.4 Deployment and publication of the library 56

5 Language mapping 59
5.1 Query creation: the GMQLDataset 59

5.1.1 Selection . 61
5.1.2 Projection . 61
5.1.3 Extension . 62
5.1.4 Genometric Cover . 63
5.1.5 Join . 64
5.1.6 Map . 65
5.1.7 Order . 65
5.1.8 Difference . 66
5.1.9 Union . 66
5.1.10 Merge . 66
5.1.11 Group . 66
5.1.12 Materialization . 67

5.2 Results management: the GDataframe 67
5.3 Example . 69

6 Biological applications 73
6.1 Some examples . 74
6.2 TADs research . 76

6.2.1 Extracting the TADs 76
6.2.2 Overview of the used data 78
6.2.3 Correlations between gene pairs inside and across TADs 82
6.2.4 GMQL query and Python pipeline 83
6.2.5 Correlations in tumor and normal tissues 86
6.2.6 TADs conservation across species 89
6.2.7 TADs clustering . 91

7 Conclusions 101

Bibliography 103

List of Figures

1.1 The DNA structure. Taken from [14] 2
1.2 Time-line of the Human Genome Project. Taken from [4] . . . 3
1.3 Differences between Primary, Secondary and Tertiary analy-

sis. Taken from [20] . 4
1.4 The role of GMQL in the genomic data analysis pipeline.

Taken from [16] . 4

2.1 A part of region data from a dataset having two ChIP-Seq
samples . 11

2.2 A part of metadata from a dataset having two ChIP-Seq sam-
ples. These metadata correspond to the samples shown in
figure 2.1 . 12

2.3 Accumulation index and COVER results with three different
minAcc and maxAcc values. 18

2.4 Example of map using one sample as reference and three sam-
ples as experiment, using the Count aggregate function. . . . 20

2.5 Different semantics of genometric clauses due to the ordering
of distal conditions; excluded regions are gray. 23

2.6 First version of GMQL. The architecture. 27
2.7 Current architecture of GMQL. Taken from [19] 28
2.8 Command line interface for sending GMQL queries. 29
2.9 Example of web interface usage for GMQL 30
2.10 Complete abstract DAG for the query. 34

3.1 Process of compilation of a Scala program 36
3.2 Py4J model . 41
3.3 Process of creation of the Scala back-end and interaction with

PyGMQL. 41
3.4 Steps in the Spark Submit mode of execution 42
3.5 High level diagram of the first architecture proposal 45
3.6 High level diagram of the second architecture proposal 47

XI

3.7 High level diagram of the third architecture proposal 48

4.1 High level view of the whole GMQL system. 50
4.2 Architecture of the PyGMQL package 51
4.3 Main interactions between the Python library and its Scala

back-end . 52
4.4 An example of programming work-flow using PyGMQL. . . . 53
4.5 The process of materialization depending on the execution

mode of PyGMQL. In the image we can see both the execution
at the API level and at the server level. Each square represents
a step and the arrows represent information exchange. 55

4.6 Example of DAG renaming where the server has to rename
the dataset names, in all the loading nodes, to Hadoop file
system paths . 57

4.7 PyPi work-flow from the point of view of both the package
maintainer and final user . 58

5.1 Interaction between a GMQLDataset and the Scala back-end
for storing the variable information 60

5.2 Visual representation of the region data and the metadata
structures in a GDataframe. Notice how the sample ids must
be the same and coherent in both the tables. 69

6.1 Schematic representation of the Hi-C method 77
6.2 Schematic representation of two TADs and the boundary be-

tween them. Taken from [11] 78
6.3 Descriptive data about the two TADs dataset used in the study 79
6.4 Distribution of sizes in the two TADs dataset used in the study 80
6.5 Schematic illustration of the gene expression process 80
6.6 Distribution of samples in the different tissues present in the

GTEx database . 82
6.7 Comparison of gene correlation in the same and cross sets in

the brain tissue, using TADs from [11] 85
6.8 Comparison of gene correlation in the same and cross sets in

the ensemble of brain, breast and liver tissues, using TADs
from [11] . 85

6.9 Comparison of gene correlation in the same and cross sets in
the muscle tissue, using TADs from [11] 85

6.10 Comparison of gene correlation in the same and cross sets in
the brain tissue, using TADs from [26] 87

6.11 Comparison of gene correlation in the same and cross sets in
the ensemble of brain, breast and liver tissues, using TADs
from [26] . 87

6.12 Comparison of gene correlation in the same and cross sets in
the muscle tissue, using TADs from [26] 87

6.13 Some example in four tissue/tumor comparison. Red dashed
line: tumor same. Blu dashed line: tumor cross. Red contin-
uous line: normal same. Blu continuous line: normal cross . . 88

6.14 Comparison of gene correlation in the same and cross sets
in the ensemble of brain, breast and liver tissues, using the
mouse TADs . 92

6.15 Example of a ChIA-PET dataset as two GMQL dataset with
a common id column . 93

6.16 Visualization of the dendrogram of the hierarchical clustering
with a cutting point at distance 350 95

6.17 Aggregate statistics for the found clusters using the commu-
nity detection algorithm . 98

List of Tables

3.1 Table of the main soft requirements and hard requirements of
the Python API for GMQL 43

3.2 Table of the main users of the library 44

5.1 Mapping between the GMQL aggregate operator and their
equivalent in PyGMQL . 63

5.2 Mapping between the genometric predicates of GMQL and
the ones of PyGMQL . 64

6.1 Cell lines for each TAD dataset considered in the study . . . 79
6.2 For each tumor type the difference of correlation between the

normal and tumor tissue. 89
6.3 Cluster statistics for the gene expression clustering 96

XV

Chapter 1

Introduction

”Frankly, my dear, I don’t give a damn.”

Gone with the wind

1.1 Genomics and the Human Genome Project

With the term Genomics we mean the study of all the elements that compose
the genetic material within an organism [21].

The most important chemical structure studied in genomics is the De-
oxyribonucleic acid (DNA). This chemical compound contains all the infor-
mation needed to guide, develop and support the life and development of all
the living organisms. DNA molecules are composed of two twisting paired
strands. Each strand is made of four units called nucleotide bases (Adenine,
Timine, Guanine, Cytosine): these bases pair each other on the two strands
following specified rules (A - T, C - G). The information is encoded in the
DNA by the order in which these bases are placed in the molecule.

A gene is a portion of DNA that is taught to carry the information used
to build a (set of) protein(s). Proteins are large molecules having a lot of
different functions and one of the most important molecular structure for
living organisms.

The genes are packed into larger structures called chromosomes. These
big sections of DNA are paired together: for example, in the human organism
we have 23 pairs of chromosomes.

In figure 1.1 we can see the full structure of the DNA.
The study of genes and their role on the expression of human traits is one

of the main problems of modern medical research. Genes and their mutations

Figure 1.1: The DNA structure. Taken from [14]

have been proven to be at the base of several diseases. In particular in
these years the subfield of cancer genomics is getting a lot of attentions.
Computations biologists, geneticists and cancer researchers are looking at
the genome level in order to understand the low level interactions leading to
the development of tumors.

These new lines of research are now possible thanks to the new tech-
nologies for DNA sequencing. Sequencing the DNA means to determine the
exact order of the bases in a strand of it [21]. From the 1990 to 2003 an
international project called Human Genome Project was carried out with
the aim to develop sequencing techniques for the full mapping of the human
genome (see figure 1.2 for a time-line of the project).

The project was a success and in the first decade of the new millennium
a new sequencing paradigm was developed, called Next Generation Sequenc-
ing. NGS enabled high-throughput, high-precision and low-cost sequencing
making the DNA mapping a standardized process.

2

Figure 1.2: Time-line of the Human Genome Project. Taken from [4]

1.2 Big data in biology and genomics

NGS technologies and the success of the human genome project opened a
new era in genomics. Never before such a great amount of data was publicly
available for conducting biological research.

Of course the high volume of data produces a wide range of technical
problems:

• Storage: data must be stored in public accessible databases

• Heterogeneity : data can have a potentially infinite number of formats

• Computational power : analyzing the data and applying algorithms to
them must take into account their cardinality

These problems and the requirements that they produce configure the
analysis of genomic data as one of the biggest and most important current
big data problem.

The analysis of genomic data can be divided in three main categories, as
explained in figure 1.3. Primary analysis deals with hardware generated data
like sequence reads. It is the first mandatory step for extracting information
from biological samples. Secondary analysis takes the reads of the previous
step and filters, aligns and assembles them in order to find relevant features.
Tertiary analysis works at the highest level of the pipeline and it is dedicated
to the integration of heterogeneous data sources, multi-sample processing or
enrichment of the data with external features.

3

Figure 1.3: Differences between Primary, Secondary and Tertiary analysis. Taken from
[20]

Figure 1.4: The role of GMQL in the genomic data analysis pipeline. Taken from [16]

1.3 Motivations and requirements

In this thesis we will address the problem of organizing, explore and analyze
tertiary genomic data. In particular we will implement and use a python
package for manipulating such data. We will design this library on the basis
of the already existent GMQL system, which is a big genomic data engine
developed at the Department of Electronics, Information and Bioengineering
of the Politecnico of Milano (see figure 1.4). This python package will be
validated through testing and also by applying it to a specific biological
research problem. This will demonstrate the quality of the product, its
usefulness and its applicability to a wide range of problems.

4

Biologists and researchers in genomics usually organize their work-flow
in pipelines. A pipeline is a chain of operations applied to a set of data.
Usually researchers work with files locally in their computer or in a local
server and use the most common programming languages or frameworks for
data analysis (Python, Perl, Matlab, ecc...). The problem of this approach is
the low scalability and the implicit difficulty in the writing of a good, reliable
and repeatable algorithm.

Therefore in this work we focused on the development of an integrated
python environment having the following main characteristics

• Ease of use: biologists and researchers must be able to use this soft-
ware even without solid computer science background. Therefore the
complexity of the algorithms must be encapsulated into atomic and
semantically rich operations.

• Efficient processing : The package must be able to interface to big data
processing engines. This is a very crucial point as data used in tertiary
analysis are often too big to be handled locally by the user machine.
In particular, as we have said, we will interface with the GMQL sys-
tem which will provide the computational power for doing genomic
operations on big data.

• Data Browsing and exploration: this requirements comes directly from
the previous one. Since we are dealing with high volumes of data, we
must provide a way to explore them easily in order to understand the
best pipeline.

• Personalization: the user must be able to define arbitrary complex
pipelines using the atomic operations provided by the package.

We will apply this package to an open biological problem, which is the
study of Topologically Associated Domains (TADs). TADs are large locations
of the genomes that are thought to carry functional information. We will
try to extract information about TADs by clustering them based on the
expression profiles of the genes inside them.

1.4 The Python library in a nutshell

From the above requirements and through a design process that evaluated
different solutions (which can be found in section 3.5) we developed a python
package called PyGMQL.

5

The package place itself above the GMQL engine and exploits it using its
Scala API or through a remote REST interface. The library therefore enables
the user to operate in two different modes: in local mode the execution is
performed in the user machine like any other python package; in remote mode
the query is sent to the remote server and the results are downloaded, when
they are ready, to the local machine at the end of execution. This creates
some coherency problems that we will describe later with their solution.

Each GMQL operator has been mapped to an equivalent python function
to be applied to a GMQLDataset, which represents the python abstraction
of a GMQL variable.

An appropriate data structure for holding the query results has been
designed. In particular this structure, the GDataframe, is very useful for
performing python specific tasks or applying machine learning algorithms.
A Machine Learning module is being currently developed by Anil Tuncel for
his master project.

In chapter 4 we will deepen into the implementation and specifications
of the python library.

1.5 Biological application

The effectiveness of the library was evaluated through its direct application
to some biological problems. As first thing we applied it to some known bio-
logical problems that were already addressed by the classical GMQL system.

After this, a very complex and open biological problem was addressed:
the understanding of the functional role of Topologically associating domains,
which are genomic regions within which the physical interactions occur much
more frequently than out of them.

We approached this problem by studying the relationship between these
regions and the gene inside of them. We compared the correlation of genes
in the same TAD with respect to genes across different TADs. We did this
operation also considering tumor and normal expressnion profiles for the
same gene.

We discovered a strong relationship between gene expression and TADs:
genes on the same TAD show an higher correlation than across them. Addi-
tionally, the correlation increases when we substitute the normal expression
profile with the tumor one.

We also analyzed the intersection between human and mouse TADs in
order to prove their conservation across different species reaching a coverage
of 60%.

6

Finally we performed cluster analysis of TADs by using expression profiles
and ChIA-PET links (which are basically protein binding sites connections
across the genome). We show how TADs can be clustered together and the
characteristics of the clusters.

In chapter 6 can be found a deep explanation of these problems and the
biological pipelines that were setup for solving them.

1.6 Outline of the work

This document is structured as follows:

• Chapter 2: we will give a deep background about the GMQL system.
This part is fundamental in order to understand the design choices and
the different architectures that were proposed and evaluated during the
process.

• Chapter 3: we will deepen into the problems that making interact a
python package with a Scala one. The proposed solution for exchang-
ing data between the two languages is presented. Since GMQL is a
declarative language that works in a batch execution, we will present
also the problems in shifting this paradigm to an interactive and pro-
grammatic one.

• Chapter 4: here we will present the full architecture of the python
module and the Scala back-end

• Chapter 5: we will deepen into the mapping between GMQL opera-
tors and python functions, also describing the defined data structures
holding the results of a query

• Chapter 6: the final part of the work will explain the TADs problem
and how the developed library was used to analyze it and trying to
address important biological questions.

• We will conclude with an overview of the possible future enhancements
and new research lines that can be opened.

7

8

Chapter 2

Background

”I’m gonna make him an offer he can’t refuse.”

The Godfather

In this chapter we will deepen into the features, the architecture and
the design of the Genometric Query language (GMQL). This will serve as a
starting point for the next sections in which we will explain the process and
the solution that has been designed on top of this technology.

In particular we will explain the following concepts:

1. The Genomic Data Model: a formal framework for representing ge-
nomic data

2. The Genometric Query Language: a declarative language that gives the
user the ability to perform queries on the data defined in the Genomic
Data Model

3. The system architecture: the kind of services that are offered and their
limitations

4. The query execution strategy: how a submitted query is executed

2.1 Genomic Data Model

We have seen that in biology and genomics there is a huge variety of data
formats. The Genomic Data Model (GDM) tries to abstract the file format
and represents genomic data as the combination of two kinds of information:

• Region data: the physical coordinates of the considered genome zone
with the addition of specific fields having different value for each region.
A set of regions is called a sample.

• Metadata: descriptive attributes of a sample (set of regions). They de-
scribe the biological, clinical and experimental properties of the sample.

It must be noticed that while for the region representation there exist
several data formats, there is no agreed standard for modeling metadata. In
GDM metadata are modeled as attribute-value pairs. There is total freedom
in the definition of both the attributes and the values1.

Region data, in order to be comparable between different datasets, should
follow some rules defining their structure: these rules are encoded in a
schema. Each GDM dataset has a schema and it must include at least the
following information: the chromosome, the start and end positions of the
region (encoded as an integer number). Optional parameter is the strand,
which represents the direction of DNA reading.

2.1.1 Formal model

In [20] a formal definition of the GDM is provided. Here we will report it
and deepen into the various design choices.

The atomic unity of a GDM dataset is the genomic region. A region
is defined by a set of coordinates

c =< chr, left, right, strand >

and a set of features

f =< feature1, feature2, ..., featureN >

The concatenation of these two arrays of values creates the region

r =< c, f >

The order of the coordinates and the features is fixed in all the regions of a
dataset and it is dictated by the schema. In addition, these fields are all typed
(for the coordinates we have respectively string, integer,integer,string).

On the other side,metadata are arbitrary attribute-value pairs< a, v >.
It must be noticed that the same attribute can appear multiple times in the
same sample. This is allowed due to the need of specify, in some dataset,
multiple conditions for the same metadata (for example a disease metadata
could have multiple values for the same patient).

A set of regions is called sample and it is structured like follows:

s =< id, {r1, r2, ...}, {m1,m2, ...} >
1Of course, the value must be representable in a textual form

10

Figure 2.1: A part of region data from a dataset having two ChIP-Seq samples

Each sample is therefore identified by an id, which is unique in all the dataset.
A sample has multiple regions ri and multiple attribute-value pairs of meta-
data mi.

A GDM dataset is simply a set of samples having the same region schema
and a sample id which is unique. This identifier provides a many-to-many
connection between regions and metadata of a sample. In figure 2.1 and 2.2
we can see the relations between the metadata and the region data in the
GDM.

2.2 Genometric query language

Having defined the data model we now have to explain how to query this kind
of data. The language that enables us to do so is called GMQL (GenoMet-
ric Query Language). It is a declarative language inspired by the classical
languages for database management [20].

GMQL extends the conventional algebraic operations (selection, projec-
tion, join, etc...) with domain specific operations targeting bioinformatics
applications. The main objectives of the language are:

• Provide a simple and powerful interface for biologists and bioinformati-
cians to huge dataset enabling them to explore and combine heteroge-
neous sources of informations.

• Being highly efficient and scalable

• Being as general as possible in order to tackle a great variety of prob-
lems and biological domains

11

Figure 2.2: A part of metadata from a dataset having two ChIP-Seq samples. These
metadata correspond to the samples shown in figure 2.1

We can express a GMQL query as a sequence of statements crafted as
follows [16]:

<var> = operation(<parameters>) <vars>

Each <var> is a GDM dataset and operations can be unary or binary and
returns one result variable.

The resulting dataset will have inherited or new generated ids depending
on the operation.

The declarative nature of the language implies that the user needs to
specify the structure of the results and he does not care about the imple-
mentation of the operations.

2.3 GMQL operations

We can divide the set of operations in GMQL in two sets:

• Relational operations: these are classical operators that can be found in
all the classical data management systems (SELECT, PROJECT, EXTEND,
MERGE, GROUP, SORT, UNION and DIFFERENCE)

• Genomic-specific operations: designed to address the specific needs of
biological applications (COVER, MAP and JOIN).

12

2.3.1 Relational operators

Select

<S2> = SELECT([SJ_clause ;][<pm>][; <pr>]) <S1>

It keeps in the result all the samples which existentially satisfy the metadata
predicate <pm> and then selects those regions of selected samples which satisfy
the region predicate <pr>. The result will have ids belonging to S1.

We can use semi-join clauses to select the samples using informations
from an other dataset. They have the syntax: <A> IN <extV>. The predicate
is true for a given sample si of S1 with attribute ai iff there exists a sample
in the variable denoted as extV with an attribute aj and the two attributes
ai and aj share at least one value. Formally, if ME denotes the metadata of
samples of extV, then:

p(ai, aj) ⇐⇒ ∃ (ai, vi) ∈Mi, (aj , vj) ∈ME : vi = vj

Semi-joins are used to connect variables, e.g. in the example below:

OUT = SELECT(Antibody IN EXP2) EXP1

which requests that the samples of EXP1 are selected only if they have the
same Antibody value as at least one sample of EXP2.

Project

<S2> = PROJECT([<Am1> [AS <f1>], .., <Amn> [AS <fn>]]

[; <Ar1> [AS <f1>], .., <Arn> [AS <fn>]]) <S1>

It keeps in the result only the metadata (Am) and region (Ar) attributes ex-
pressed as parameters. New attributes can be constructed as scalar expres-
sions fi. If the name of existing schema attributes are used, the operation
updates region attributes to new values. Identifiers of the operand S1 are
assigned to the result S2.

Extend

<S2> = EXTEND (<Am1> AS <g1>, .., <Amn> AS <gn>) <S1>

It creates new metadata attributes Am as result of aggregate functions g,
which is applied to region attributes; aggregate functions are applied sample
by sample. The supported aggregate functions include COUNT (with no argu-
ment), BAG (applicable to attributes of any type) and SUM, MIN, MAX, AVG,

MEDIAN, STD. In the example below:

13

OUT = EXTEND (RegionCount AS COUNT, MinP AS MIN(Pvalue)) EXP

for each sample of EXP, two new metadata attributes are computed, RegionCount
as the number ofsample regions, and MinP as the minimum Pvalue of the
sample regions.

Group

<S2> = GROUP([<Am1>..<Amn>;

<Gm1> AS <g1>, .., <Gmn> AS <gn>]

[; <Ar1>..<Arn>;

<Gr1> AS <g1>, .., <Grn> AS <gn>]) <S1>;

It is used for grouping both regions and metadata according to distinct val-
ues of the grouping attributes. For what concerns metadata, each distinct
value of the grouping attributes is associated with an output sample, with
a new identifer explicitly created for that sample; samples having missing
values for any of the grouping attributes are discarded. The metadata of
output samples, each corresponding a to given group, are constructed as
the union of metadata of all the samples contributing to that group; conse-
quently, metadata include the attributes storing the grouping values, that
are common to each sample in the group. New grouping attributes Gm are
added to output samples, storing the results of aggregate function evalua-
tions over each group. Examples of typical metadata grouping attributes are
the Classification of patients (e.g., as cases or controls) or their Disease

values.
When the grouping attribute is multi-valued, samples are partitioned

by each subset of their distinct values (e.g., samples with a Disease at-
tribute set both to ’Cancer’ and ’Diabetes’ are within a group which is
distinct from the groups of the samples with only one value, either ’Cancer’
or ’Diabetes’). Formally, two samples si and sj belong to the same group,
denoted as siγAsj , if and only if they have exactly the same set of values for
every grouping attribute A, i.e.

siγAsj ⇐⇒ {v|∃(A, v) ∈Mi} = {v|∃(A, v) ∈Mj}

Given this definition, grouping has important properties:

• reflexive: siγAsi

• commutative: siγAsj ⇐⇒ sjγAsi

• transitive: siγAsj ∧ skγAsi ⇐⇒ skγAsj

14

When grouping applies to regions, iby default it includes the grouping at-
tributes chr, left, right, strand; this choice corresponds to the biological
application of removing duplicate regions, i.e. regions with the same coordi-
nates, possibly resulting from other operations, and ensures that the result is
a legal GDM instance. Other attributes may be added to grouping attributes
(e.g., RegionType); aggregate functions can then be applied to each group.
The resulting schema includes the attributes used for grouping and possibly
new attributes used for the aggregate functions. The following example is
used for calculating the minimum Pvalue of duplicate regions:

OUT = GROUP (Pvalue AS MIN(Pvalue)) EXP

Merge

<S2> = MERGE ([GROUPBY <AM1,..,<AMn>]) <S1>

It builds a dataset consisting of a single sample having as regions all the
regions of the input samples and as metadata the union of all the attribute-
values of the input samples. When a GROUP_BY clause is present, the samples
are partitioned by groups, each with distinct values of grouping metadata
attributes (i.e., homonym attributes in the operand schemas) and the cover
operation is separately applied to each group, yielding to one sample in the
result for each group, as discussed in Section 2.3.1.

Order

<S2> = ORDER([[DESC]<Am1>,.., [DESC]<Amn> [; TOP <k> | TOPG <k>]]

[; [DESC]<Ar1>,.., [DESC]<Arn> [; TOP <k> | TOPG <k>]]) <S1>;

It orders either samples, or regions, or both of them; order is ascending as
default, and can be turned to descending by an explicit indication. Sorted
samples or regions have a new attribute Order, added to either metadata, or
regions, or both of them; the value of Order reflects the result of the sorting.
Identifiers of the samples of the operand S1 are assigned to the result S2.
The clause TOP <k> extracts the first k samples or regions, the clause TOPG

<k> implicitly considers the grouping by identical values of the first n − 1

ordering attributes and then selects the first k samples or regions of each
group. The operation:

OUT = ORDER (RegionCount, TOP 5; MutationCount, TOP 7) EXP

extracts the first 5 samples on the basis of their region counter and then, for
each of them, 7 regions on the basis of their mutation counter.

15

Union

<S3> = UNION <S1> <S2>

It is used to integrate possibly heterogeneous samples of two datasets within
a single dataset; each sample of both input datasets contributes to one sam-
ple of the result with identical metadata and merged region schema. New
identifers are assigned to each sample.

Two region attributes are considered identical if they have the same name
and type; the merging of two schemas is performed by concatenating the
schema of the first operand with the attributes of the second operand which
are not identical to any attribute of the first one; values of attributes of either
operand which do not correspond to a merged attribute are set to NULL. For
what concerns metadata, homonym attributes are prefixed with the strings
LEFT or RIGHT so as to trace the dataset to which they refer.

Difference

<S3> = DIFFERENCE [(JOINBY <Att1>, ..,<Attn>)]<S1> <S2>;

This operation produces a sample in the result for each sample of the first
operand S1, with identical identifier and metadata. It considers all the
regions of the second operand, that we denote as negative regions; for each
sample s1 of S1, it includes in the corresponding result sample those regions
which do not intersect with any negative region.

When the JOINBY clause is present, for each sample s1 of the first dataset
S1 we consider as negative regions only the regions of the samples s2 of S2

that satisfy the join condition. Syntactically, the clause consists of a list of
attribute names, which are homonyms from the schemas of S1 and of S2; the
strings LEFT or RIGHT that may be present as prefixes of attribute names as
result of binary operators are not considered for detecting homonyms. We
formally define a simple equi-join predicate ai == aj , but the generalization
to conjunctions of simple predicates is straightforward. The predicate is true
for given samples s1 and s2 iff the two attributes share at least one value,
e.g.:

p(ai, aj) ⇐⇒ ∃ (ai, vi) ∈M1, (aj , vj) ∈M2 : vi = vj

The operation:

OUT = DIFFERENCE (JOINBY Antibody) EXP1 EXP2

16

extracts for every pair of samples s1, s2 of EXP1 and EXP2 having the same
value of Antibody the regions that appear in s1 but not in s2; metadata of
the result are the same as the metadata of s1.

2.3.2 Domain-Specific Operations

Cover

<S2> = COVER[_FLAT|_SUMMIT|_HISTOGRAM]

[(GROUPBY <Am1>, .., <Amn>)] <minAcc>, <maxAcc> ;]

[<Ar1> AS <g1>, .., <Arn> AS <gn>] <S1>

The COVER operation responds to the need of computing properties that re-
flect region’s intersections, for example to compute a single sample from
several samples which are replicas of the same experiment, or for dealing
with overlapping regions (as, by construction, resulting regions are not over-
lapping.)

Let us initially consider the COVER operation with no grouping; in such
case, the operation produces a single output sample, and all the metadata
attributes of the contributing input samples in S1 are assigned to the result-
ing single sample s in S2. Regions of the result sample are built from the
regions of samples in S1 according to the following condition:

• Each resulting region r in S2 is the contiguous intersection of at least
minAcc and at most maxAcc contributing regions ri in the samples of
S1 2; minAcc and maxAcc are called accumulation indexes3.

Resulting regions may have new attributes Ar, calculated by means of ag-
gregate expressions over the attributes of the contributing regions. Jaccard

Indexes4 are standard measures of similarity of the contributing regions ri,
added as default attributes. When a GROUP_BY clause is present, the samples
are partitioned by groups, each with distinct values of grouping metadata
attributes (i.e., homonym attributes in the operand schemas) and the cover

2When regions are stranded, cover is separately applied to positive and negative
strands; in such case, unstranded regions are accounted both as positive and negative.

3The keyword ANY can be used as maxAcc, and in this case no maximum is set (it
is equivalent to omitting the maxAcc option); the keyword ALL stands for the number of
samples in the operand, and can be used both for minAcc and maxAcc. These can also be
expressed as arithmetic expressions built by using ALL (e.g., ALL-3, ALL+2, ALL/2); cases
when maxAcc is greater than ALL are relevant when the input samples include overlapping
regions.

4 The JaccardIntersect index is calculated as the ratio between the lengths of the inter-
section and of the union of the contributing regions; the JaccardResult index is calculated
as the ratio between the lengths of the result and of the union of the contributing regions.

17

Figure 2.3: Accumulation index and COVER results with three different minAcc and
maxAcc values.

operation is separately applied to each group, yielding to one sample in the
result for each group, as discussed in Section 2.3.1.
For what concerns variants:

• The _HISTOGRAM variant returns the nonoverlapping regions contribut-
ing to the cover, each with its accumulation index value, which is as-
signed to the AccIndex region attribute.

• The _FLAT variant returns the union of all the regions which contribute
to the COVER (more precisely, it returns the contiguous region that starts
from the first end and stops at the last end of the regions which would
contribute to each region of the COVER).

• The _SUMMIT variant returns only those portions of the result regions
of the COVER where the maximum number of regions intersect (more
precisely, it returns regions that start from a position where the num-
ber of intersecting regions is not increasing afterwards and stops at a
position where either the number of intersecting regions decreases, or
it violates the max accumulation index).

Example. Fig. ?? shows three applications of the COVER operation on three
samples, represented on a small portion of the genome; the figure shows the
values of accumulation index and then the regions resulting from setting the
minAcc and maxAcc parameters respectively to (2, 2), (1, 2), and (2, 3).

18

The following COVER operation produces output regions where at least 2

and at most 3 regions of EXP overlap, having as resulting region attributes
the min p-Value of the overlapping regions and their Jaccard indexes; the
result has one sample for each input CellLine.

RES = COVER(2, 3; p-Value AS MIN(p-Value)

GROUP_BY CellLine) EXP

Map

<S3> = MAP [(JOINBY <Am1>, .., <Amn>)]

(<Ar1> AS <g1>, .., <Arn> AS <gn>] <S1> <S2>;

MAP is a binary operation over two datasets, respectively called reference
and experiment. Let us consider one reference sample, with a set of ref-
erence regions; the operation computes, for each sample in the experiment,
aggregates over the values of the experiment regions that intersect with each
reference region; we say that experiment regions are mapped to reference re-
gions. The operation produces a matrix structure, called genomic space,
where each experiment sample is associated with a row, each reference region
with a column, and the matrix entries is a vector of numbers 5. Thus, a MAP

operation allows a quantitative reading of experiments with respect to the
reference regions; when the biological function of the reference regions is not
known, the MAP helps in extracting the most interesting regions out of many
candidates.

We first consider the basic MAP operation, without JOINBY clause. For
a given reference sample s1, let R1 be the set of its regions; for each sam-
ple s2 of the second operand, with s2 =< id2, R2,M2 > (according to the
GDM notation), the new sample s3 =< id3, R3,M3 > is constructed; id3
is generated from id1 and id26, the metadata M3 are obtained by merging
metadata M1 and M2, and the regions R3 = {< c3, f3 >} are created such
that, for each region r1 ∈ R1, there is exactly one region r3 ∈ R3, having
the same coordinates (i.e., c3 = c1) and having as features f3 obtained as
the concatenation of the features f1 and the new attributes computed by the
aggregate functions g specified in the operation; such aggregate functions
are applied to the attributes of all the regions r2 ∈ R2 having a non-empty

5Biologists typically consider the transposed matrix, because there are fewer exper-
iments (on columns) than regions (on rows). Such matrix can be observed using heat
maps, and its rows and/or columns can be clustered to show patterns.

6The implementation generates identifiers for the result by applying hash functions to
the identifiers of operands, so that resulting identifiers are unique; they are identical if
generated multiple times for the same input samples.

19

intersection with r1. A default aggregate Count counts the number of regions
r2 ∈ R2 having a non-empty intersection with r1. The operation is iterated
for each reference sample, and generates a sample-specific genomic space at
each iteration.

When the JOINBY clause is present, for each sample s1 of the first dataset
S1 we consider the regions of the samples s2 of S2 that satisfy the join
condition. Syntactically, the clause consists of a list of attribute names,
which are homonyms from the schemas of S1 and of S2; the strings LEFT or
RIGHT that may be present as prefixes of attribute names as result of binary
operators are not considered for detecting homonyms.

Figure 2.4: Example of map using one sample as reference and three samples as exper-
iment, using the Count aggregate function.

Example. Fig. ?? shows the effect of this MAP operation on a small portion
of the genome; the input consists of one reference sample and three mutation
experiment samples, the output consists of three samples with the same
regions as the reference sample, whose features corresponds to the mumber of
mutations which intersect with those regions. The result can be interpreted
as a (3× 3) genome space.

In the example below, the MAP operation counts how many mutations
occur in known genes, where the dataset EXP contains DNA mutation regions
and GENES contains the genes.

RES = MAP(COUNT) GENES EXP;

Join

<S3> = JOIN ([JOINBY <Am1>, .., <Amn>)] [<genometric-pred>]

20

<S1> <coord-gen> <S2>;

The JOIN operation applies to two datasets, respectively called anchor (the
first one) and experiment (the second one), and acts in two phases (each
of them can be missing). In the first phase, pairs of samples which satisfy
the JOINBY predicate (also called meta-join predicate) are identified;
in the second phase, regions that satisfy the genometric predicate are
selected. The meta-join predicate allows selecting sample pairs with appro-
priate biological conditions (e.g., regarding the same cell line or antibody);
syntactically, it is expressed as a list of homonym attributes from the schemes
of S1 and S2, as previously. The genometric join predicate allows expressing
a variety of distal conditions, needed by biologists. The anchor is used as
startpoint in evaluating genometric predicates (which are not symmetric).
The join result is constructed as follows:

• The meta-join predicates initially selects pairs s1 of S1 and s2 of S2

that satisfy the join condition. If the clause is omitted, then the Carte-
sian product of all pairs s1 of S1 and s2 of S2 are selected. For each
such pair, a new sample s12 is generated in the result, having an identi-
fier id12, generated from id1 and id2, and metadata given by the union
of metadata of s1 and s2.

• Then, the genometric predicate is tested for all the pairs < ri, rj >

of regions, with r1 ∈ s1 and rj ∈ s2, by assigning the role of anchor
region, in turn, to all the regions of s1, and then evaluating the join
condition with all the regions of s2. From every pair < ri, rj > that
satisfies the join condition, a new region is generated in s12.

From this description, it follows that the join operation yields to results that
can grow quadratically both in the number of samples and of regions; hence,
it is the most critical GMQL operation from a computational point of view.

Genometric predicates are based on the genomic distance, defined as
the number of bases (i.e., nucleotides) between the closest opposite ends
of two regions, measured from the right end of the region with left end
lower coordinate.7 A genometric predicate is a sequence of distal conditions,
defined as follows:

• UP/DOWN8 denotes the upstream and downstream directions of the genome.
They are interpreted as predicates that must hold on the region s2 of

7Note that with our choice of interbase coordinates, intersecting regions have distance
less than 0 and adjacent regions have distance equal to 0; if two regions belong to different
chromosomes, their distance is undefined (and predicates based on distance fail).

8Also: UPSTREAM, DOWNSTREAM.

21

the experiment; UP is true when s2 is in the upstream genome of the an-
chor region9. When this clause is not present, distal conditions apply
to both the directions of the genome.

• MD(K)10 denotes the minimum distance clause; it selects the K regions
of the experiment at minimal distance from the anchor region. When
there are ties (i.e., regions at the same distance from the anchor region),
regions of the experiment are kept in the result even if they exceed the
K limit.

• DLE(N)11 denotes the less-equal distance clause; it selects all the regions
of the experiment such that their distance from the anchor region is
less than or equal to N bases12.

• DGE(N)13 denotes the greater-equal distance clause; it selects all the
regions of the experiment such that their distance from the anchor
region is greater than or equal to N bases.

Genometric clauses are composed by strings of distal conditions; we say that
a genometric clause is well-formed iff it includes the less-equal distance
clause; we expect all clauses to be well formed, possibly because the clause
DLE(Max) is automatically added at the end of the string, where Max is a
problem-specific maximum distance.
Example. The following strings are legal genometric predicates:

DGE(500), UP, DLE(1000), MD(1)

DGE(50000), UP, DLE(100000), (S1.left - S2.left > 600)

DLE(2000), MD(1), DOWN

MD(100), DLE(3000)

Note that different orderings of the same distal clauses may produce different
results; this aspect has been designed in order to provide all the required
biological meanings.

9Upstream and downstream are technical terms in genomics, and they are applied to
regions on the basis of their strand. For regions of the positive strand (or for unstranded
regions), UP is true for those regions of the experiment whose right end is lower than the
left end of the anchor, and DOWN is true for those regions of the experiment whose left end
is higher than the right end of the anchor. For the negative strand, ends and disequations
are exchanged.

10Also: MINDIST, MINDISTANCE.
11Also: DIST <= N , DISTANCE <= N .
12DLE(-1) is true when the region of the experiment overlaps with the anchor region;

DLE(0) is true when the region of the experiment is adjacent to or overlapping with the
anchor region.

13Also: DIST >= N , DISTANCE >= N .

22

Figure 2.5: Different semantics of genometric clauses due to the ordering of distal
conditions; excluded regions are gray.

Examples. In Fig. ?? we show an evaluation of the following two clauses
relative to an anchor region: A: MD(1), DLE(100); B: DLE(100), MD(1). In
case A, the MD(1) clause is computed first, producing one region which is next
excluded by computing the DLE(100) clause; therefore, no region is produced.
In case B, the DLE(100) clause is computed first, producing two regions, and
then the MD(1) clause is computed, producing as result one region14.

Similarly, the clauses A: MD(1), UP and B: UP, MD(1)may produce differ-
ent results, as in case A the minimum distance region is selected regardless of
streams and then retained iff it belongs to the upstream of the anchor, while
in case B only upstream regions are considered, and the one at minimum
distance is selected.

Next, we discuss the structure of resulting samples. Assume that regions
ri of si and rj of sj satisfy the genometric predicate, then a new region
rij is created, having merged features obtained by concatenating the feature
attributes of the first dataset with the feature attributes of the second dataset
as discussed in Section 2.3.1. The coordinates cij are generated according to
the coord-gen clause, which has four options 15:

1. LEFT assigns to rij the coordinates ci of the anchor region.

2. RIGHT assigns to rij the coordinates cj of the experiment region.

3. INT assigns to rij the coordinates of the intersection of ri and rj ; if the
14The two queries can be expressed as: produce the minimum distance region iff its

distance is less than 100 bases and produce the minimum distance region after 100 bases.
15If the operation applies to regions with the same strand, the result is also stranded in

the same way; if it applies to regions with different strands, the result is not stranded.

23

intersection is empty then no region is produced.

4. CAT (also: CONTIG) assigns to rij the coordinates of the concatenation
of ri and rj (i.e., the region from the lower left end between those of
ri and rj to the upper right end between those of ri and rj).

Example. The following join searches for those regions of particular ChIP-
seq experiments, called histone modifications (HM), that are at a minimal
distance from the transcription start sites of genes (TSS), provided that
such distance is greater than 120K bases16. Note that the result uses the
coordinates of the experiment.

RES = JOIN(MD(1), DLE(12000); RIGHT) TSS HM;

2.3.3 Materialization of the results

Having performed a series of operations on a set of variables, at a certain
point the user will have to declare that he wants to compute the resulting
dataset w.r.t. a particular variable. This can be done using the MATERIALIZE

operator.

MATERIALIZE <S1> INTO file_name;

The result is saved in a file.
It must be noticed that all the dataset defined in GMQL are temporary

in the sense that their content is not stored in memory if the corresponding
variable is not materialized.

All the declarations before a MATERIALIZE operation are merely a decla-
ration of intent : no operation is performed until a materialization. This is a
very important point and it will be crucial in the definition of our solution.

2.3.4 Some examples

In the following we show a set of examples demonstrating the power of the
language:

Find somatic mutations in exons

We have a set of samples representing mutations in human breast cancer
cases. We want to quantify how many mutation there are for each exon17

16This query is used in the search of enhancers, i.e., parts of the genome which have an
important role in gene activation.

17An exon is a portion of a gene which will encode part of the RNA codified by that
gene

24

and select the ones that have at least one mutation. As a final step we also
want to order the result, given as a set of samples, by the number of exons
present in each sample.

Mut = SELECT(manually_curated|dataType == ’dnaseq’ AND

clinical_patient|tumor_tissue_site == ’breast’) HG19_TCGA_dnaseq;

Exon = SELECT(annotation_type == ’exons’ AND

original_provider == ’RefSeq’) HG19_BED_ANNOTATION;

Exon1 = MAP() Exon Mut;

Exon2 = SELECT(count_Exon_Mut >= 1) Exon1;

Exon3 = EXTEND(exon_count AS COUNT()) Exon2;

Exon_res = ORDER(exon_count DESC) Exon3;

MATERIALIZE Exon_res INTO Exon_res

The first operation retrieves the mutations in which we are interested:
it uses the dataset HG19_TCGA_dnaseq that provides DNA sequencing data in
various cancer types and selects the ones about breast cancer. The second
operation works on HG19_BED_ANNOTATION which represents the full genome
annotated in significant parts and gets all the coordinates of the exons. Both
these dataset are aligned to the hg19 reference genome18.

A MAP operation follows which counts, for every exon, how many muta-
tions happen to be on it. This is the most important operation in the query
as it contains basically all the main logic of the program. Follows a simple
selection to filter out exons having no mutations.

The EXTEND operation is used to put in the metadata of each sample how
many exons are present in it. Follows the ordering which uses the metadata
exon_count just created and puts the samples in descending order.

The query ends with a typical materialization.

Find distal bindings in transcription regulatory regions

We want to Find all enriched regions (peaks) in CTCF transcription factor
(TF) ChIP-seq samples from different human cell lines which are the nearest
regions farther than 100 kb from a transcription start site (TSS). For the
same cell lines, find also all peaks for the H3K4me1 histone modifications
(HM) which are also the nearest regions farther than 100 kb from a TSS.
Then, out of the TF and HM peaks found in the same cell line, return all TF
peaks that overlap with both HM peaks and known enhancer (EN) regions.

18A reference genome is a DNA sequence database that is used by scientists to align
their experiments to a common point of reference. There are several versions for different
species, based on the recency and accuracy

25

TF = SELECT(dataType == ’ChipSeq’ AND view == ’Peaks’

AND antibody_target == ’CTCF’) HG19_ENCODE_NARROW;

HM = SELECT(dataType == ’ChipSeq’ AND view == ’Peaks’

AND antibody_target == ’H3K4me1’) HG19_ENCODE_BROAD;

TSS = SELECT(annotation_type == ’TSS’

AND provider == ’UCSC’) HG19_BED_ANNOTATION;

EN = SELECT(annotation_type == ’enhancer’

AND provider == ’UCSC’) HG19_BED_ANNOTATION;

TF1 = JOIN(distance > 100000, mindistance(1); output: right) TSS TF;

HM1 = JOIN(distance > 100000, mindistance(1); output: right) TSS HM;

HM2 = JOIN(distance < 0; output: int) EN HM1;

TF_res_0 = MAP(joinby: cell) TF1 HM2;

TF_res = SELECT(count_HM2_TF1 > 0) TF_res_0;

MATERIALIZE TF_res INTO TF_res;

The first four operations prepare the variables of the relative dataset for
the later computation; in particular:

• We load from HG19_ENCODE_NARROW into TF all the samples representing
peaks relative to the CTCF transcription factor.

• We load from HG19_ENCODE_BROAD into HM all the samples representing
peaks relative to the H3K4me1 histone modification

• Using HG19_BED_ANNOTATION find all the coordinates relative to en-
hancers (EN) and transcription starting site (TSS)

The first thing we do is to join the transcription starting sites to the
CTCF transcription factor. We select only the CTCF which are farther
than 100 kb from a TSS. Same process is done for the histone modification.

Now we take only the HM1 regions that intersect with an enhancer EN and
we take the intersection of the resulting regions into HM2.

Finally, for each cell line, we count how many regions in HM2 intersect
with the transcription factor regions in TF1 and take only the transcription
factors having at least one HM2.

2.4 Architecture of the system

The architecture of the system underwent a series of revisions during time.
In the initial release (see figure 2.6) [16] the GMQL queries were trans-

lated to PIG [1]. Basically a translator between GMQL and Pig Latin [25]

26

Figure 2.6: First version of GMQL. The architecture.

was developed. Pig Latin is a language designed to act as a bridge between
the declarative world of SQL and the low-level performance-driven world of
Map-Reduce [10].

The second version of the system completely revised the architecture and
was designed to have:

• an execution layer independent from the storage one

• the possibility to have multiple engine implementations and to choose
the desired one

• the possibility to have multiple storage systems

• a set of API enabling external applications or languages to interface
the engines

In figure 2.7 we can see a graphical representation of an high level architecture
of GMQL V2 [19].

We can therefore divide the implementation of the system in the following
layers:

• Access layer : the highest level of the architecture. Enables external
users to interact with the system. This can happen through a web
interface, a command line interface and a lower level API in Scala.

• Engine abstraction: at this level the system present a series of modules
that manage the engines from an high level point of view. It contains

27

Figure 2.7: Current architecture of GMQL. Taken from [19]

the language compiler and the repository manager, which interact with
a DAG scheduler, whose objective is to represent the tree structure
of a query. The engines are managed by a server manager and the
submission of a query is managed through a launcher manager.

• Implementations: at this level there are the operator implementations
in the various engines. Currently GMQL offers an implementation in
SciDB, in Spark and Flink. The Spark implementation is the most
updated and stable one.

• Repository implementations: the last level manages the datasets and
currently GMQL enables the user to choose between a local file system,
the Hadoop HDF and the SciDB repository manager.

2.4.1 User interfaces

As we have said, GMQL currently provides the following interfaces for the
final user:

• A web interface (see figure 2.9): the user can specify a textual query
using both its private dataset or public ones. These dataset are stored

28

GMQL-Submit [-username USER] [-exec FLINK|SPARK] [-binsize BIN_SIZE]

[-jobid JOB_ID] [-verbose true|false] [-outputFormat GTF|TAB]

-scriptpath /where/gmql/script/is

Description:

[-username USER]

The default user is the user the application is running on $USER.

[-exec FLINK|SPARK]

The execution type, Currently Spark and Flink engines are supported

as platforms for executing GMQL Script.

[-binsize BIN_SIZE]

BIN_SIZE is a Long value set for Genometric Map and Genometric

Join operations. Dense data needs smaller bin size. Default is 5000.

[-jobid JOBID]

The default JobID is the username concatenated with a time stamp

and the script file name.

[-verbose true|false]

The default will print only the INFO tags. -verbose is used

to show Debug mode.

[-outputFormat GTF|TAB]

The default output format is TAB: tab delimited files in the

format of BED files.

-scriptpath /where/gmql/script/is/located

Manditory parameter, select the GMQL script to execute

Figure 2.8: Command line interface for sending GMQL queries.

using the repository manager. There are also utilities for building
interactively the queries and for exploring the metadata of the datasets.

• A command line (see figure 2.8): a very simple interface for sending
directly the GMQL scripts to execution.

2.4.2 Scripting interfaces

At a lower level of interaction we find a Scala API that the user can use to
build query programmatically. This routines enable the creation of the Di-
rected Acyclic Graph (DAG), which is an abstract representation of a GMQL
query.

29

Figure 2.9: Example of web interface usage for GMQL

The execution of the query is naturally performed locally in this case and
requires the user to provide all the computational environment to execute
it. For example in the following example the user is required to instantiate
a Spark context to support the execution of the GMQL engine.

import it.polimi.genomics.GMQLServer.GmqlServer

import it.polimi.genomics.core.DataStructures

import it.polimi.genomics.spark.implementation._

import it.polimi.genomics.spark.implementation.loaders.BedParser._

import org.apache.spark.{SparkConf, SparkContext}

val conf = new SparkConf()

.setAppName("GMQL V2.1 Spark")

.setMaster("local[*]")

.set("spark.serializer",

"org.apache.spark.serializer.KryoSerializer")

val sc:SparkContext =new SparkContext(conf)

val executor = new GMQLSparkExecutor(sc=sc)

val server = new GmqlServer(executor)

val expInput = Array("/home/V2Spark_TestFiles/Samples/exp/")

val refInput = Array("/home/V2Spark_TestFiles/Samples/ref/")

val output = "/home/V2Spark_TestFiles/Samples/out/"

//Set data parsers

val DS1: IRVariable = server READ ex_data_path USING BedParser

val DS2 = server READ REF_DS_Path USING BedScoreParser2

//Selection

30

val ds1S: IRVariable = DS1.SELECT(

Predicate("antibody", META_OP.EQ, "CTCF"))

val DSREF = DS2.SELECT(Predicate("cell", META_OP.EQ, "genes"))

//Cover Operation

val cover: IRVariable = ds1S.COVER(CoverFlag.COVER,

N(1), N(2), List(), None)

//Store Data

server setOutputPath output_path MATERIALIZE cover

server.run()

We can easily see from this example that this mode of usage of the system
is not as easy and user-friendly as the others.

2.4.3 Engine abstractions

A GMQL query can be represented as a graph. If we simply look at the
single GMQL statements in the language we could say that a node of this
graph represent one statement.

Obviously, each GMQL operation can be split in different subsections
(sub-nodes) and this increase the granularity of our graph representation.
The first division is surely between region nodes and metadata nodes. An
additional category of nodes regards meta-grouping and meta-joining : these
operations are needed to group or join samples from one or more datasets.

Metadata nodes

• ReadMD: reader of metadata files

• ReadMEMRD: reader of metadata from memory

• StoreMD: materialization of metadata

• SelectMD: filtering of metadata

• PurgeMD: deletion of an empty dataset

• SemiJoinMD: the semi-join condition in SELECT

• ProjectMD: projection of metadata

• AggregateRD: produce a new metadata based on the aggregation of
region data

31

• GroupMD: partitions the input data into groups and creates a new meta-
data for each sample indicating the belonging group

• OrderMD: orders the samples according to a metadata value

• UnionMD: union of samples of two input metadata nodes

• CombineMD: combines two metadata nodes and produces as output the
union of each pair of metadata samples

• MergeMD: union of the samples of the input node

Region nodes

• ReadRD: reader of region files

• StoreRD: materialization of region data

• PurgeRD: filters out the regions from the input that have an id that is
not in a metadata node

• SelectRD: filtering of region data

• ProjectRD: projection on region data

• GroupRD: partitions the regions in disjunctive sets and only one region
for each partition is returned

• OrderRD: orders the regions based on one of their attributes

• RegionCover: applies the Genometric Cover to a node

• UnionRD: puts together all the regions from the input node

• DifferenceRD: difference of two datasets. Returns only the regions of
the left dataset that do not intersect with the ones of the right

• GenometricJoin: applies the Genometric Join to two nodes

• GenometricMap: applies the Genometric Map to two nodes

• MergeRD: computes the union of the region nodes and assigns new ids
for avoiding collisions

32

Meta-grouping and Meta-joining

• GroupBy: partitions the dataset based on metadata

• JoinBy: applies the join condition to the cross product of the input
metadata nodes

Example query

For a better understanding of the DAG structure let’s see how the following
query would be implemented as a tree structure:

GENES = SELECT(<pm1>) ANNOTATION;

PEAKS1 = SELECT(<pm2>) BED_DATA;

PEAKS2 = SELECT(<pm3>) BED_DATA;

FILTERED = JOIN(DLE(0) ;

antibody == antibody,

cell == cell) PEAKS1 LEFT PEAKS2;

FILTERED2 = GROUP(chr,start,stop,strand) FILTERED;

MAPPED = MAP(COUNT) GENES FILTERED2;

MATERIALIZE MAPPED;

In figure 2.10 we can see the corresponding DAG implementation.

2.4.4 Implementations

Currently the most updated and stable implementation of the DAG operators
uses Spark [2]. Each DAG node has a corresponding implementation.

Since Spark itself builds a directed acyclic graph for optimize the compu-
tation we result is a second (larger) DAG after the translation of the DAG
operations into Spark ones.

In this work we will only focus on the Spark implementation of GMQL
and our Python API will exploit only this computational engine.

33

Figure 2.10: Complete abstract DAG for the query.

34

Chapter 3

Interoperability issues and
design of the library

”I love the smell of napalm in the morning.”

Apocalypse now

Before getting into the description and design of the Python library that
should integrate the GMQL environment with the Python programming
model we need to explore and compare these two worlds.

GMQL is written in the Scala language and its main implementation
exploit the Spark big data engine for doing computations. We need therefore
to understand how to integrate this language and this computing engine with
Python.

In this chapter we will cover the following aspects:

1. Scala: we will describe the Scala language with a particular attention
on its differences with respect to Java.

2. Python: a description of the Python programming language will follow.
Also the main users and usages of this language will be explained.

3. Interoperability : we will show how make a Python and a Scala program
interact. This step is fundamental for the design of the PyGMQL
library.

4. Interactive computation: we will show the main issues that arise when
we try to make a big data computation system interactive and how
this requirement was satisfied in the design of PyGMQL

Figure 3.1: Process of compilation of a Scala program

5. Alternative architectures: the last part of the chapter is dedicated to
the description of the various alternative architectures that were con-
sidered for PyGMQL. Advantages and disadvantages of each of them
will be presented.

3.1 Scala language

Scala is a multi-paradigm programming language: it is object-oriented, im-
perative and functional. Its design started in 2001 at the École Polytechnique
Fédérale de Lausanne (EPFL) by Martin Odersky and it was the continu-
ation of the work on Funnel, a programming language mixing functional
programming with Petri nets [22]. It was publicly released in 2004 on the
Java platform.

3.1.1 Compatibility with Java

Scala is implemented over the Java virtual machine (JVM) and therefore is
compatible with existing Java programs [23]. The Scala compiler (scalac)
generates a byte code very similar to the one generated by the Java compiler.
From the point of view of the JVM the Scala byte code and the Java one are
indistinguishable. In figure 3.1 we can see the process of Scala compilation.

3.1.2 Extensions with respect to Java

Scala introduces a lot of syntactic and model differences with respect to Java.
Follows a brief list of the main differences:

• In Scala everything is an object, including numbers and functions. This

36

is different from Java, where primitive types (boolean, integers, floats,
etc...) are distinguished from reference types (the classes). This means
that also numbers can have methods for example.

Functions are objects and this is what makes Scala a functional pro-
gramming language. For example in the following code, that shows a
timer function that must perform some action every second:

object Timer {

def oncePerSecond(callback: () => Unit) {

while (true) { callback(); Thread sleep 1000 }

}

def timeFlies() {

println("time flies like an arrow...")

}

def main(args: Array[String]) {

oncePerSecond(timeFlies)

}

}

we can see that the function oncePerSecond gets a call-back function
as argument. The type of the argument can be read as "all functions
which take no arguments and return nothing" (Unit is the null return
value, similar to the void of the C language).

• In Scala it is possible to define anonymous functions which are basically
functions without a name. A revised version of the example above that
uses an anonymous function is below:

object TimerAnonymous {

def oncePerSecond(callback: () => Unit) {

while (true) { callback(); Thread sleep 1000 }

}

def main(args: Array[String]) {

oncePerSecond(() =>

println("time flies like an arrow..."))

}

}

• All classes in Scala inherit from a super-class. When no super-class is
specified it is implicit that the class inherits from scala.AnyRef

• Scala offers the concept of case classes, which are a special kind of
classes that can be seen as plain immutable data-holding objects. The

37

state of a case class depends exclusively on the constructor arguments.
This enables the Scala compiler to perform several optimizations and to
add very useful features like pattern matching, equality and comparison.

In the code below we see an application of case classes in the context
of the creation of an algebraic expression tree:

abstract class Tree

case class Sum(l: Tree, r: Tree) extends Tree

case class Var(n: String) extends Tree

case class Const(v: Int) extends Tree

def eval(t: Tree, env: Environment): Int = t match {

case Sum(l, r) => eval(l, env) + eval(r, env)

case Var(n) => env(n)

case Const(v) => v

}

Notice how the function eval uses pattern matching to understand the
type of the node.

3.1.3 Spark and Scala

The Scala language was selected by the Spark development team as the
engine implementation language. This is due the functional programming
style that facilitates the writing of Big Data applications and the conciseness
of the language.

In the last years several API were offered to the Spark users for interfacing
with the most common programming languages like Python, R and Java.

The GMQL project is currently implemented in Scala for a better com-
patibility with the Spark engine and for facilitating the writing of parallel
genomic operations.

3.2 Python language

Python is an interpreted multi-paradigm programming language with dy-
namic semantics. It is designed for Rapid Application Development (RAD)
[7] and for creating scripts.

The main focus of Python is on the easiness of the language, the plain
learning curve and the readability. This creates applications that are very
easy to maintain, develop and reuse.

38

One of the most powerful aspects of Python is its huge development
community, which is one of the biggest in the world. Every python package
is open source and can be downloaded very easily through package versioning
programs like pip and easyinstall.

3.2.1 An interpreted language

Due to the interpreted programming model, Python can be use interactively
in the sense that one can open a Python shell, digit commands and receive
an immediate response without compiling the source code. In the following
example we see the Python console with some commands and Python control
structures:

$ python3.6

Python 3.6 (default, Sep 16 2015, 09:25:04)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> the_world_is_flat = True

>>> if the_world_is_flat:

... print("Be careful not to fall off!")

...

Be careful not to fall off!

This model suits very well the needs of data scientists and researchers,
that most of the time explore, mine and analyze data without having a clear
initial idea on what to do with them. For this reason Python has become
a de facto standard in the data science community, that regularly publishes
new data analysis packages with state of the art algorithm implementations.

3.2.2 A strongly dynamically typed language

Python is also strongly dynamically typed. This means that it combines two
features:

• Strongly typed language: every value assigned to a variable has a type
that cannot change unless an explicit conversion is ordered

>>> password = 1234

>>> encryption = ’encryption_text’

>>>

>>> type(password)

<type ’int’>

>>> type(encryption)

<type ’str’>

39

• Dynamically typed language: the runtime objects (variables) can hold
values having different types. This is the opposite of statically typed
languages, where a variable is associated directly to a type and the
values assigned to that variable must be coherent with its type.

For example in the following example the variable employeeName is as-
signed with an integer, than a string and then an other integer in three
consecutive python statements.

employeeName = 9

employeeName = "Steve Ferg"

employeeName = 8*9+5

3.3 Connecting Scala and Python

One of the main issues that were addressed during this project was how
can we make a Python module communicate with a Scala program? Since
GMQL is programmed in Scala and all its data structure are implemented
using Scala constructs, we need a way to communicate between our Python
API and the Scala back-end.

The solution that we adopted was inspired by the work done by the Spark
development team for integrating Python with their Big Data processing
system. We use a python library called Py4j[8] that has enables the python
interpreter to dynamically access Java objects contained in a JVM that is
currently running a program. The interaction between the python and Scala
programs follows the classical client-server paradigm. Py4J can be used in
both directions: Scala as main program (client) and Python as a service
(server); Python as main program (client) and Scala as a service (server).

In figure 3.2 we can see an example of interaction using Py4J.
Basically we need to instantiate a client python-side that it is called Java

Gateway: this object will instantiate the communication with a Gateway
Server created in the JVM. The communication can be carried on with sev-
eral protocols like SSL. The server is waiting for commands on a specified
port.

In figure 3.3 we can see what happens when PyGMQL is instantiated in
a python program.

1. First of all we check how many other instances of PyGMQL are cur-
rently running in our system. In the instances file we can find the
port numbers where the different back-ends are listening.

40

Figure 3.2: Py4J model

Figure 3.3: Process of creation of the Scala back-end and interaction with PyGMQL.

2. PyGMQL generates a new port number (different from the already
used ones) and ask the operating system to start the Scala back-end
at the specific port

3. When the back-end is ready it sends an acknowledgement signal to
PyGMQL

4. Now the normal communication can begin: PyGMQL uses the Java
Gateway for sending commands and the Server Gateway receives them.
When the results are ready, they are sent to the caller.

41

Figure 3.4: Steps in the Spark Submit mode of execution

3.4 Asynchronous big data processing and interac-
tive computation

A great attention in the last year is given to the research of interactive ways
to perform or visualize big data operations [27].

One of the main tasks of PyGMQL is to enable an interactive way of
working with big genomic datasets. The problem is that GMQL is a declar-
ative language and this paradigm is suited for batch processing: the user
writes the query entirely, sends it to the system, waits for a response and
finally downloads the result. This execution mode does not fit the require-
ments of the python package we have to develop.

Therefore a big effort was put into hiding from the user the underlying
declarative implementation.

The Spark implementation of GMQL leverages on the Submit mode of
execution (see figure 3.4). This means that the Scala program containing
the query is packed in a JAR file and sent to the cluster at the moment of
execution.

We will see that the PyGMQL library have to support both local and
remote execution. This means that the computational engine must be avail-
able both on the local machine and on the remote server.

For what concerns remote execution, the only thing that we can do is
to hide the submission of the query and the downloading of the results.
The execution command is blocking and waits until the completion of the
download of the resulting datasets.

Local execution requires the execution of Spark locally. In order to hide
this from the user, the Spark engine is packaged in the Scala back-end
together with the GMQL engine. The execution mode of Spark must be

42

changed to local and this means that the user machine acts both as driver
and executor. The submission of the query is substituted by the direct call-
ing of Spark actions like collect or take. The SparkContext is kept alive
during the entire program session and not used only for one single query.

3.5 Analysis of Design Alternatives

Here we describe the design choices and the various alternatives that were
examined during the first part of the project.

Due to the high number of stakeholders and the size of the development
team a time-line was defined. The architecture proposal were evaluated by
the development team of GMQL and a final structure was selected accord-
ingly.

The design choices that led to the various architecture proposal and to
the final architecture had to take in consideration both soft and hard re-
quirements of the system. A soft requirement is related to the development
team and to the project objectives as a research driven software. On the
other side an hard requirement deals with the technicalities of the software,
the specific technical barriers that need to be surpassed and the features that
need to be added to the existing software. In table 3.1 are listed the main
soft and hard requirements for this project.

Table 3.1: Table of the main soft requirements and hard requirements of the Python
API for GMQL

Soft Hard
The implementation of the API must
minimize the amount of modifications
to the already existent system. A con-
servative approach should be always
considered.

The library must be interactive in the
sense that the user can perform a se-
ries of operations, see the result and
continue working with the resulting
data.

The implementation must be easy to
update due to the high rate of changes
to the GMQL system, which under-
goes regular redesign and extensions.

The library must change the paradigm
of the GMQL language from declara-
tive to programmatic. The underly-
ing declarative structure of the system
must be transparent to the user.

43

The function signatures must be co-
herent and similar to the ones of the
GMQL operators. This is needed in
order to make the learning of the soft-
ware by the user simpler.

The user must be able to use all the
usual python libraries for data analysis
in conjunction with the GMQL API.

The library must be publicly available
on the international Python repository

The installation of the library must be
straightforward and similar to a typi-
cal Python library.

It must be stressed out the fact that GMQL is an open project and that
it is constantly evolving. This constitutes an added challenge both from a
design and an implementation point of view. It creates both external (user
driven) and internal (project driven) requirements and both of them are
equally important.

Other important aspect that guided the design of the library was the
type of user that it addresses. We can say that the main users of it are
described in table 3.2

Table 3.2: Table of the main users of the library

User Description
Biologists The principal users. Usually they are not very skilled

in programming and they use languages like R hav-
ing a very smooth learning curve. They mainly use
computer science tools for data extraction

Bioinformaticians Other main users. They have much more computer
science experience and they use a wide variety of lan-
guages and tools.

Data scientists with fo-
cus on biological prob-
lems

As bioinformaticians they have a good knowledge of
programming languages but they usually rely on more
general purpose libraries

Generic researchers They can work on a potentially infinite type of prob-
lems. We can assume that the mean expertise of this
category is similar to the one of biologists

44

Figure 3.5: High level diagram of the first architecture proposal

3.5.1 Full-python implementation

The first architecture proposal that was considered was a complete new
python implementation of the system. The focus of this brand new im-
plementation is on a programmatic interface with the user. Therefore no
compiler is needed and the user directly calls function of an API at a lower
level than in the case of GMQL queries.

The data structures at the basis of the original system (basically the
organization of the samples s =< id, {r1, r2, ...}, {m1,m2, ...} > and the
datasets), that originally are implemented as Scala objects need to be con-
verted to Python structures (for example a dictionary of the type {id →
([r1, r2, ...], [m1,m2, ...])})

The computational engine also in this case is Spark and it is based on
the Python wrapper called PySpark [3], which was already described in the
previous chapter.

In figure 3.5 we can see a conceptual representation of this architecture.
We can see that the original GMQL implementation is left untouched the
new package it totally independent.

Let’s see some advantages and disadvantages of this approach:

Advantage Disadvantage
Full freedom in the implementation.
We can craft the system to be very ef-
ficient for the task it is designed. The
data structure can be designed to be
efficient in Python computations and
to be used in already existent data
analysis libraries.

All the GMQL operators need to be
reimplemented in Python (PySpark).

45

We do not rely on the original engine
implementation, which is designed for
a declarative system. We can exploit
the interactivity of the Python lan-
guage and use PySpark for heavy com-
putations.

We need to implement a new DAG
scheduling system that take into ac-
count the interactivity requirements.

The python data structures enable the
users to use arbitrary selection/pro-
jection criteria by using lambda func-
tions. In general, by relaxing the data
model we can generalize some oper-
ations and enable user-defined condi-
tions/expressions.

The autonomy from the original sys-
tem makes necessary to continuously
synchronize the two versions of the
operators. If an operator is modi-
fied/deleted/added to the original sys-
tem, the same must be done in the
Python implementation.

3.5.2 Mixed approach

The second proposal tried to get the best from the Python world and the
original Scala implementation. Some operators have to be re-implemented
in python in order exploit the power of the language, while others can be
left in their original implementation.

This approach is very complex and requires one to create a sort of trans-
formation procedure between the data structures in Python and the original
ones. It relies on Spark and PySpark and therefore a procedure for converting
the Python RDDs to the Scala ones is needed.

In figure 3.6 we can see the conceptual architecture of this approach.
In the following table we summarize pros and cons of the approach.

Advantage Disadvantage
We can use Python constructs for spe-
cific GMQL operations like selection
and projection

We need to implement a complex
data transformation module Python
to/from Scala

We do not need to re-implement all
the GMQL operators

Synchronization issues persist like be-
fore, because some operators are re-
implemented in Python

46

Figure 3.6: High level diagram of the second architecture proposal

3.5.3 Wrapper implementation with added functionalities

The last approach that has been considered, and that at the end was se-
lected, completely separates the computational engine of GMQL from the
Python API. The Python library uses the GMQL engine as a black box that
takes a set of datasets as input and produces a set of datasets as outputs.
The interaction can be both local, through a to-be-defined communication
protocol, or remote, through the use of a proper REST API.

This approach clearly respects the principle of separation of concerns and
creates a layered and modular architecture. The Python library has the role
of providing efficient data structures for pre-processing and post-processing
the data before and after a GMQL query, which is executed by the below
engine transparently.

The main focus of this approach is on hiding the underlying declarative
architecture and providing, as much as possible, an interactive interface to
GMQL operations. The library, in addition, can add functionalities for ge-
nomic data processing, like clustering methods, classification and statistical
analysis.

Advantages Disadvantages
The architecture is fully modular.
Any change at the lower level is au-
tomatically updated at the API level.

We have lost the total freedom of the
first and second implementation. We
have to rely on an already defined data
model and computational engine.

47

We can use the repository service that
is already provided by the original sys-
tem.

Any additional feature that is added
to the API cannot be propagated to
the underlying system.

Remote computation is already pro-
vided by a REST API

The underlying system is designed for
handling declarative programs, there-
fore it is not suited for interactive pro-
cessing. A particular attention must
be put on the design of a system for
mimicking an interactive interaction.

In figure 3.7 there is the conceptual architecture.

Figure 3.7: High level diagram of the third architecture proposal

Given the hard and soft requirement listed in the previous section, we
selected as most promising solution this last architecture proposal.

48

Chapter 4

Architecture of the library

“I’ve seen things you people wouldn’t believe. Attack ships on fire off the
shoulder of Orion. I watched C-beams glitter in the dark near the Tannhauser
Gate. All those moments will be lost in time like tears in rain. Time to die.”

Blade Runner

In this section we will explain the architecture and the details of the
developed python package. In particular the chapter will be organized as
follows:

• We will firstly illustrate an high level view of the package, the different
modules and their role.

• Then we will deepen into the design choices that were made for enabling
remote and local execution and the interoperability of these two modes.

• At the conclusion of the chapter, a brief description of the packaging
and publication of the library

For a deep explanation of the GMQL operators wrapped in PyGMQL,
the data structure used for holding the results of a query and a complete
example of usage refer to chapter 5.

4.1 General architecture

In this section we will describe the features of the PyGMQL library. We
will follow a top-down approach by firstly describing the different modules
as black boxes and the deepening into the details of each of them.

The python API is part of the GMQL ecosystem and offers to the user
the possibility to perform GMQL computations both locally (in the user

machine) and remotely (through an cluster of server appropriately configured
with the GMQL engine). In figure 4.1 we can see the relationship between
PyGMQL and the GMQL ecosystem along with the use cases of both of
them.

Figure 4.1: High level view of the whole GMQL system.

PyGMQL substitutes the Web interface and offers a set of functions for
building GMQL queries programmatically. The python library interacts with
a local Scala back-end which contains the essential computational modules
of GMQL. In the Scala back-end we can find the definition of the operators,
their interface and the DAG data structure for query optimization. The
Python side and the Scala side dialog through a classical client-server model
in which the Scala back-end acts as the server.

The remote execution is possible through a REST API offered by the
GMQL server, which offers a set of functions that mirror the features of the
Web interface. The user can use both local and remote datasets for building
his queries and he can also decide if the computation must be performed

50

Figure 4.2: Architecture of the PyGMQL package

locally or remotely. This is a very important feature and its details will be
explained later. The download or upload of datasets from/to the remote
server can be done automatically or manually by the user through proper
functions.

In figure 4.2 we show the main modules of PyGMQL.
We can see that the architecture can be seen as two layer of pack-

ages that interact. Starting from the bottom we have some of the de-
pendencies of the library, that are already existent python libraries like
Requests, Pandas, sklearn, scipy. At the same level there is a package
called Resources that contains very important files and executables used for
the management of the execution of the programs: inside this folder there is
also the Scala executable running the back-end.

We can see that the library exposes the following packages to the user:

• dataset: it contains the main abstractions of the library. This module
implements the wrapping procedures and strategies for writing GMQL
queries, loading and storing of datasets, and management of the results
of the queries. It is the most important package in PyGMQL

• FileManagement: this module manages the local and remote datasets.
It can be used for creating temporary directories for storing datasets
or results in general

51

Figure 4.3: Main interactions between the Python library and its Scala back-end

• RemoteConnection: functions and classes for the communication with
the remote server. If the user works in local mode, he does not need
to use this package

• ML: a module implementing clustering and classification algorithms de-
signed for genomics. It is currently developed by Anil Tuncel for his
master thesis.

In particular, the dataset package contains the two most important data
structures in the library:

• GMQLDataset: represents a GMQL variable. The user can apply to
this variable or to a set of them all the GMQL operations. A GMQL
statement is converted to a Python assignment like follows:

new_dataset = dataset.operation(paramters, ...)

where parameters can be also an other GMQLDataset

• GDataframe: The act of materializing a (set of) variable(s) triggers the
execution of the query. This produces a result, which can be stored in

52

Figure 4.4: An example of programming work-flow using PyGMQL.

a GDataframe. This structure is fully python-based and encapsulates
both region and metadata for post-query exploration or analysis.

These two data structures therefore have the role of representing genomic
data in two states of their "life" inside the program. GMQLDataset can be
thought as a pointer to a local or remote genomic dataset during a GMQL
query. GDataframe is a python local structure holding in memory both
regions and metadata and it is generated after a materialize operation or
simply by loading directly a genomic dataset in memory. GDataframe are
designed to be used for exploring, analyzing and mining the data before/after
a GMQL query. In figure 4.4 we can see an example of work flow of a program
that makes use of both these structures.

We can see that it is possible, once a GDataframe is materialized, to come
back to a GMQLDataset and do other GMQL queries. This is an extremely
powerful feature, because it enables to mix very specific operations (like, for
example, a machine learning algorithm that assign to each region a class)
with genomic operations in the same program.

4.2 Remote execution

In this section we will briefly explain how PyGMQL manages the remote exe-
cution of its queries. We will see that this is not a straightforward procedure
due to both language and implementation requirements.

An important design choice that influenced the implementation of the
remote execution feature was to allow the user to select the computation

53

mode (local or remote) wherever in the program he wants. This means that
the user can change the mode from local to remote and vice versa in each
moment.

We have seen that the DAG of a query is composed of several nodes
representing the various operations performed on data. If a query is executed
it means also that the last operation in the DAG is a materialization. Until
then no operation is performed.

This bring to the conclusion that every choice related to materialization
cannot be taken before the materialize operation. Only at that time we
will be able to know what to do. At materialization time, PyGMQL has to
do the following:

• Local mode: Every remote dataset involved in the query must be down-
loaded from the remote server and its name must be changed in the
DAG nodes to the new local path. After that the execution can start
using only local datasets.

• Remote mode: Every local dataset involved in the query must be up-
loaded to the remote server and its name must be changed in the DAG
nodes to the new remote name. The DAG then must be sent to the
server. After that the remote execution can start. At the end of com-
putation, if required, PyGMQL downloads the result datasets.

In figure 4.5 we can see a graphical representation of the whole process.

4.2.1 Dag serialization

In order to send the DAG of the query to the server, this graph must be
transformed into a stream of bytes. The strategy that we adopted was to
serialize the DAG into a string encoded in Base641.

4.2.2 Graph renaming

As we have seen, in order to execute correctly the query we need to be able
to modify some nodes in the DAG. In particular we are interested in the
initial nodes, which are related to the loading of datasets from a location.
In chapter 2 we have seen that these node are named ReadMD (for metadata)
and ReadRD (for region data). The graph renaming process happens both at
the API side (managed by PyGMQL) and at the server side (managed by

1Base64 is a set of binary-to-text encoding schemes. It uses 64 different textual char-
acters to represent bit strings

54

Figure 4.5: The process of materialization depending on the execution mode of PyG-
MQL. In the image we can see both the execution at the API level and at the server
level. Each square represents a step and the arrows represent information exchange.

55

the remote infrastructure). In particular we need to rename some nodes in
the graph in the following cases:

• PyGMQL side

– If we are in local mode and we are using in our query some remote
dataset, we need to change the name of the dataset to the local
path (where it was downloaded).

– If we are in remote mode and we are using in our query some local
dataset, we need to change the local path of the dataset to the
remote name (which were chosen when it was uploaded).

• Remote server side: every time the server receives a DAG to process,
all the nodes related to the loading of data contain the name of the
dataset and not its actual location. For example, if the server uses
Hadoop as file system, then all the nodes must be changed to the
actual path. The server uses the repository

The procedure for graph renaming is recursive and search in the DAG all
the ReadMD and ReadRD nodes and change them depending on the situation.
In figure 4.6 we can see an example.

4.3 Interfacing with the Machine Learning module

Contemporary to the development of the PyGMQL project also a Machine
Learning module specialized on genomics was developed by Anil Tuncel for
its master thesis. The main idea was to exploit the features of PyGMQL to
build on top of it the machine learning algorithms.

The machine learning algorithms and in particular the clustering methods
require a specific data structure that we call Genomic Space. An additional
effort of the PyGMQL project was the definition of the data structure.

The genomic space is a specialization of a GDataframe and therefore
can be used only after the materialization of a query. Therefore the meth-
ods developed by Anil work entirely on Python and do not exploit GMQL
functionalities.

4.4 Deployment and publication of the library

Python packages can be distributed to the community through a service
called Python Package Index (PyPI) [6]. PyPI is a public repository where
python packages are stored. This enables end users to download easily the

56

Figure 4.6: Example of DAG renaming where the server has to rename the dataset
names, in all the loading nodes, to Hadoop file system paths

python packages that they want without knowing the actual location of it.
For example, if a user wants to install PyGMQL in his system he only needs
to execute the following command:

$ pip i n s t a l l gmql

In order to distribute a package like PyGMQL the following steps must
be performed:

1. The "packager" of the library must register the name of the package
to the repository. In our case we choose gmql as library name.

2. The python package must be prepared for being distributed. This
requires the definition of a setup.py file which describes the project,
lists the dependencies and the requirements that the user must satisfy
to use the package. For example: the required version of Python, the
python external libraries that were used in the development, the author
name and email, and so on.

3. A source distribution must be done. This is basically a compressed
file containing the source files of the package. In addition the package

57

Figure 4.7: PyPi work-flow from the point of view of both the package maintainer and
final user

developer can also create a wheel, which is a pre-build file that does
not require the user to build the source code.

4. The last step is to upload the various created files (source distribution
and wheels) to the PyPI repository.

In figure 4.7 we can see a schematic representation of the process.

58

Chapter 5

Language mapping

“Well, here’s another nice mess you’ve gotten me into!”

Stan and Oliver - Sons of the Desert

In this chapter we continue with the description of the library. In partic-
ular we deepen into the description of the mapping of the GMQL operator
to python functions. We will describe also the data structures that hold the
data of a GMQL dataset before and after the materialization.

The discourse will be organized as follows:

1. We will describe the GMQLDataset structure and the rationale behind
its design

2. We will proceed by reporting, for each GMQL operation, its mapping
into a GMQLDataset method

3. Then we will describe the GDataframe structure, its internals and its
usage

4. We will conclude by doing a commented full example of usage of PyG-
MQL

5.1 Query creation: the GMQLDataset

A GMQLDataset is a python object that represents a GMQL variable. All
GMQL operators can be applied to a GMQLDataset and they return an
other GMQLDataset.

new_dataset = dataset.operation(paramters, ...)

Figure 5.1: Interaction between a GMQLDataset and the Scala back-end for storing
the variable information

This logic mimics a classical GMQL query and it is coherent with the
concept of closed algebra of GMQL, like it has been stated in chapter 2.

This component interacts with the Scala back-end for building the DAG
of the queries. In figure 4.3 some components of the Scala back-end are
shown and how they interact with the python side.

The logic behind the construction of a GMQL query works like follows:

1. Each GMQLDataset has associated an id. This identifier is used for
referring to the internal variable in the Scala back-end that represent
the sub-graph of the full DAG of the query.

2. The Scala back-end holds a data structure (hash map) that associate
each identifier to the variable. See figure 5.1

3. In order to apply an operation to a GMQLDataset, the python side
orders to the back-end to perform a specific operation on the specified
id.

4. The Scala back-end builds the new DAG adding the new operation at
the bottom. Generates a new identifier and puts a new record in the
hash map. It ends returning to the python side the new id for the new
GMQLDataset.

5. Since the schema of the new generated dataset can be computed before
the actual query execution, the GMQLDataset gets also the schema of
the new variable. This is very useful for performing error checking
interactively during the query construction.

We proceed by describing the signatures of the operators that can be
applied to a GMQLDataset. They mirror the original GMQL operators but
takes as arguments python data structures and data types.

60

5.1.1 Selection

Here the design choice was to split the selection on region data from the
one on metadata. This is done to reduce the amount of arguments of the
following functions.

Both functions takes a selection predicate as input. This is obtained
through a boolean expression that considers region fields or metadata fields.
For example

(dataset[’cell’] == ’imr90’) & (dataset[’antibody_target’] == ’CTCF’)

is a predicate on metadata that selects the samples concerning cell IMR90
and the antibody target CTCF; while

(dataset.start > 100000) | (dataset.stop < 500000)

is a predicate on region fields that selects the regions that start after position
100000 or end before position 500000.

Follows the signature for the selection on metadata

GMQLDataset.meta_select(self,

predicate=None,

semiJoinDataset=None,

semiJoinMeta=None)

Follows the signature for the selection on region data

GMQLDataset.reg_select(self,

predicate=None,

semiJoinDataset=None,

semiJoinMeta=None)

The semiJoinDataset is another GMQLDataset and has the same role of
the semijoin clause in the GMQL SELECT and the semiJoinMeta is a list of
metadata attributes.

5.1.2 Projection

Using the same rationale of selection, we split also the meta projection from
the region one.

Follows the signature for the projection on metadata

GMQLDataset.meta_project(self,

attr_list=None,

all_but=None,

new_attr_dict=None)

61

Follows the signature for the projection on regions

GMQLDataset.reg_project(self,

field_list=None,

all_but=None,

new_field_dict=None)

attr_list and field_list are respectively list of metadata attributes
and region fields. Same for the all_but parameter, which has the opposite
semantics (take all the metadata attributes / region fileds that are not in
that list).

new_attr_dict and new_field_dict are two dictionaries of the following
type:

new_attr_dict = {

"new_metadata_attribute" = <expression_on_metadata>,

...

}

new_field_dict = {

"new_region_field" = <expression_on_region_fields>,

...

}

where <expression_on_metadata> is an expression built using metadata
attributes from the dataset. For example dataset[’n_regions’]/dataset[’variance’]
computes the division of the metadata "n_regions" and "variance" for each
sample in the dataset; while dataset.pValue / 2 + 25 computes, for each
region, the half of the "p_value" field plus 25.

5.1.3 Extension

Extension uses a logic similar to projection for building new metadata from
region aggregates.

GMQLDataset.extend(self, new_attr_dict)

new_attr_dict is a dictionary of the following type:

new_attr_dict = {

"new_metadata": aggregate_function("region_field"),

...

}

62

where aggregate_function is one of the classical GMQL aggregate functions,
mapped in python like in table 5.1.

GMQL aggregate PyGMQL aggregate
COUNT gmql.COUNT()

SUM gmql.SUM("field")

MIN gmql.MIN("field")

MAX gmql.MAX("field")

AVG gmql.AVG("field")

BAG gmql.BAG("field")

STD gmql.STD("field")

Q1 gmql.Q1("field")

Q2 gmql.Q2("field")

Q3 gmql.Q3("field")

Table 5.1: Mapping between the GMQL aggregate operator and their equivalent in
PyGMQL

5.1.4 Genometric Cover

The signature for a generic genometric Cover is the following

GMQLDataset.cover(self,

minAcc, maxAcc,

groupBy=None,

new_reg_fields=None,

type="normal")

The variants of the GMQL Cover can be specified in the type field
({"normal", "flat", "summit", "histogram"}). Equivalently one can call
directly the following functions using the same set of parameters (without
type)

GMQLDataset.normal_cover(self, ...)

GMQLDataset.flat_cover(self, ...)

GMQLDataset.summit_cover(self, ...)

GMQLDataset.histogram_cover(self, ...)

minAcc and maxAcc play the same role as their homonyms in GMQL and
are integer numbers (or the strings "ALL" and "ANY").

The groupBy is a list of metadata attributes that we can use to group the
results.

63

new_reg_fields is a dictionary of the type

new_field_dict = {

"new_region_field" = aggregate_function("region_field"),

...

}

where aggregate_function is one of the aggregate function in table 5.1.

5.1.5 Join

The signature for a genometric Join is the following

GMQLDataset.join(self,

experiment,

genometric_predicate,

output="LEFT",

joinBy=None,

refName=None,

expName=None)

where experiment is another GMQLDataset. The semantics of this opera-
tor is that the caller GMQLDataset is the reference while the GMQLDataset
used as parameter is the experiment of the Join.

The genometric_predicate is an ordered list of genometric predicates.
The mapping between the GMQL genometric predicates and the ones of
PyGMQL is shown in table 5.2

GMQL genometric predicate PyGMQL genometric predicate
DLE gmql.DLE(value)

DGE gmql.DGE(value)

DLE gmql.DLE(value)

MD gmql.MD(value)

UP gmql.UP()

DOWN gmql.DOWN()

Table 5.2: Mapping between the genometric predicates of GMQL and the ones of
PyGMQL

output is a string that can assume the values {’LEFT’, ’RIGHT’, ’INT’, ’CONTIG’}

with the same semantics of the original language.
joinBy is a list of metadata attributes
With refName and expName the user can also specify the name to give to

the reference and experiment dataset in the result.

64

5.1.6 Map

The signature for a genometric Join is the following

GMQLDataset.map(self,

experiment,

new_reg_fields=None,

joinBy=None,

refName=None,

expName=None)

As in the Join operation, the experiment is an other GMQLDataset and the
semantics is the same.

new_reg_fields is a dictionary of the type

new_reg_fields = {

’new_region_field’: aggregate_function("region_field"),

...

}

like for the Cover operator.
The joinBy is a list of metadata attributes and refName and expName have

the same role as in the Join operator.

5.1.7 Order

The order operation is pretty straightforward as it is very similar to the
GMQL equivalent:

GMQLDataset.order(self,

meta=None,

meta_ascending=None,

meta_top=None,

meta_k=None,

regs=None,

regs_ascending=None,

region_top=None,

region_k=None)

We can order based on metadata and regions by specifying meta and regs

and we can decide the ascending/descending order using le boolean lists
meta_ascending and regs_ascending. If the i-th elements of these lists is
1, it means that the order for that attribute/field will be ascending; if it
is 0 it will be descending. meta_top and regs_top can assume the values
{"top", "topq", "topp"} and meta_k, regs_k are the relative values.

65

5.1.8 Difference

GMQLDataset.difference(self,

other,

joinBy=None,

exact=None)

other is another GMQLDataset and joinBy is, as always, a list of meta-
data attributes.

5.1.9 Union

GMQLDataset.union(self,

other,

left_name="",

right_name="")

other is another GMQLDataset while left_name and right_name are op-
tional parameters that give a name to the left (caller) and right (parameter)
datasets. They are used in the creation of the new attributes.

5.1.10 Merge

GMQLDataset.merge(self, groupBy=None)

groupBy is a list of metadata attributes.

5.1.11 Group

The group operator is still under development also in the declarative version
of GMQL. Anyway the signature of the method has been defined both in
PyGMQL and in GMQL.

GMQLDataset.group(self,

meta=None, meta_aggregates=None,

regs=None, regs_aggregates=None,

meta_group_name="_group")

There exist also a metadata specific version of the operator

GMQLDataset.meta_group(self,

meta, meta_aggregates=None)

66

and a region specific one

GMQLDataset.regs_group(self,

regs, regs_aggregates=None)

meta and regs are lists of metadata attributes or region fields. meta_aggregates
and regs_aggregates are dictionaries of aggregates functions for metadata
attributes and region fields.

5.1.12 Materialization

Follows the signature for the materialization method:

GMQLDataset.materialize(self,

output_path=None,

output_name=None,

all_load=True)

The materialization procedure has a different semantics depending on
the mode in which PyGMQL is set:

• Local mode: the computation must be performed locally. If the user
does not specify anything (all parameters set to None) the local compu-
tation engine produces the result and transfer it directly into a python
GDataframe without saving it. If the user specifies output_path then
the result is also saved in a set of files (two for each sample, one for
regions and one for meta). In local mode output_name and all_load

are not effective

• Remote mode: the computation is performed remotely. The user can
specify the name that will be given to the resulting dataset in the
remote server using output_name. If the user specifies output_path or
all_load then the result is downloaded directly into a local GDataframe.

Only in local mode, the user can also ask to materialize only n samples
from the result. This can be done with the following function:

GMQLDataset.take(self, n)

5.2 Results management: the GDataframe

Once a query has been materialized or the user wants to directly load in
memory a GMQL dataset, we have to define an appropriate data structure

67

to hold all its information. For this task the GDataframe has been designed.
The GDataframe is composed of two tables:

• Region data: one row for each region in the dataset and one column
for each region field

• Metadata: one row for each sample in the dataset and one column for
each metadata attribute

Each row of these tables is associated with an id, which represents the sample
of the dataset that row comes from. Formally, if R is the table of region data
andM is the table of metadata, we have

R = {sample id→ [r1, r2, ...]}

where ri is a vector of values for each region ordered and typed based on the
dataset schema

M = {sample id→m}

where m = {metadata attribute → v},v = [value1, value2, ...]. Every sam-
ple in the dataset must have the same metadata attributes but can have
different values for each of them. Notice the possibility to have multiple
values for the same attributes.

Of course these two data structures must be coherent in the sense that
the keys (the sample ids) must be the same.

For a visual representation of the relationship between R andM take a
look at figure 5.2.

In python this structure is implemented with two Pandas1 dataframes.
The API provides methods for importing into a GDataframe a generic

Pandas dataframe, provided that it has certain characteristics:

• If the data are regions, then there must be at least the columns for
chromosome, start and stop. Every other column is up to the user and
there can be an unlimited number of columns

• If no column for the sample id is provided, the API supposes that there
is only one sample in the dataset and puts the sample column to one
single value in both region and metadata table

• If no metadata table is provided, then an empty table is generated
having only the sample column coherent with the region one.

1Pandas is a very famous and established data analysis library. It is used both by
researchers, data scientists and machine learning engineers for storing data in a tabular
format

68

Figure 5.2: Visual representation of the region data and the metadata structures in a
GDataframe. Notice how the sample ids must be the same and coherent in both the
tables.

5.3 Example

Here we provide a simple example of usage of the library. One can see this
as a brief tutorial that explore some of the most important functionalities of
PyGMQL.

As any python package it must be loaded as follows

import gmql as gl

Since we are going to use the remote service we also need to authenticate
ourselves to the system, in order to use its functionalities and to access our
private remote dataset and also the public ones.

gl.login(username="luca", password="password_luca")

The first thing that the user wants to do is to load some dataset. This
can be done using a local dataset or a remote one. Let’s take as an example
a remote dataset.

remote_dataset = gl.load(remote_name="remote_dataset")

This action basically only downloads the dataset schema and creates a local

69

pointer to the remote dataset. No real action is performed yet.
Let’s say that we want to filter this dataset and take only the regions

that are on chromosome 11 and they start after 100000 bases

filtered_remote_dataset = remote_dataset.reg_select(

(remote_dataset.chr == ’chr11’) &

(remote_dataset.start > 100000))

Now consider having a local dataset that is stored in one tab separated
file having as columns chr, start, stop, gene but without any metadata
or schema file. It is a simple file representing genomic regions and the gene
name associated to that region. This is clearly not a GMQL dataset since it
does not respect its requirements.

We can import this file in a GDataframe and then convert it in a GMQL-
Dataset which is a GMQL standard dataset. This will generate a schema
file and an empty metadata file. The resulting dataset will be local.

import pandas a pd

gene_dataset = pd.read_csv("path/to/gene_dataset.tsv", sep="\t")

gene_dataset = gl.from_pandas(gene_dataset)

gene_dataset = gene_dataset.to_GMQLDataset()

Now we want to join these two GMQL dataset using associating to each
left region the right regions that are distant less than 100 kb

join_dataset = gene_dataset.join(

experiment=filtered_remote_dataset,

genometric_condition=[gl.DLE(100000)])

Now we want to materialize the result into a Python structure. As we
have seen the behavior of the library depends on its status. By default
PyGMQL is set in local mode. Suppose that we have now changed our mind
and we want to perform this operation remotely:

gl.set_mode("remote")

result = join_dataset.materialize(output_path="where/to/save/the/result")

In this way PyGMQL will upload to the remote server the GMQL dataset
gene_dataset, send the serialized DAG to the server, wait for the execution
of the query and finally download the results into a GDataframe, which is
put in the result variable. In addition it will also save the downloaded files
in the "where/to/save/the/result" location in the local machine.

70

In the chapter 6 are present lots of other examples that show also the
management of the GDataframe structure after a query.

71

72

Chapter 6

Biological applications

“My name is Maximus Decimus Meridius, commander of the Armies of the
North, General of the Felix Legions and loyal servant to the true emperor,
Marcus Aurelius. Father to a murdered son, husband to a murdered wife.
And I will have my vengeance, in this life or the next.”

Gladiator

In this chapter we will test the developed package on real biological prob-
lems.

During the development of the library a set of biological problems were
addressed in order to:

• Test the library functionalities and do bug checking

• Acquire additional requirements and suggestions to improve the quality
of the project and add new functionalities

We can say that the direct application of the library to these problems
was the main tool used to evaluate the performances, the usability and the
versatility of the python package.

In particular this chapter will be organized as follows:

1. A set of initial examples of GMQL biological queries (the same that
were discussed in 2) will be transposed to python pipelines for showing
the mapping between the two languages

2. We will deepen into the research problem of topological domains. In
particular, after having described how to extract the TADs from raw
Hi-C data and the various datasets used during this study, we will
show:

(a) how gene expression is related to topological domains both in the
case of normal and tumoral tissues

(b) if topological domains conserve across different species

(c) how TADs cluster together based on gene expression and ChIA-
PET links

6.1 Some examples

As first examples we can translate the queries shown in section 2.3.4 to
python programs. This is only to show the direct mapping between the
classical GMQL operations and the API ones.

Find somatic mutations in exons

The query reported at 2.3.4 can be translated as follows:

import gmql as gl

as first thing we need to login to the remote service

gl.login("username", "password")

we want to perform the query remotely

gl.set_mode("remote")

mut = gl.load(name = "HG19_TCGA_dnaseq")

mut = mut[(mut[’manually_curated|dataType’] == ’dnaseq’) &

(mut[’clinical_patient|tumor_tissue_site’] == ’breast’)]

exon = gl.load(name = "HG19_BED_ANNOTATION")

exon = exon[(exon[’annotation_type’] == ’exons’) &

(exon[’original_provider’] == ’RefSeq’)]

exon1 = exon.map(experiment = mut)

exon2 = exon1.reg_select(exon1.count_Exon_Mut >= 1)

exon3 = exon2.extend({

’exon_count’: gl.COUNT()

})

exon_res = exon3.order(meta=[’exon_count’], meta_ascending = [0])

local materialization: this functions starts the computation

remotely, downloads the result locally and puts it into the

pandas tabular structure that we described

exon_res = exon_res.materialize()

74

from now on we can continue working in python with the materialized

data structures

Find distal bindings in transcription regulatory regions

The query reported at 2.3.4 can be translated as follows:

import gmql as gl

in this example we want to process the data locally.

Therefore we do not need to login to the remote service.

We do not even need to set the mode with "gl.set_mode("local")"

since it is the default behavior

tf = gl.load(name="HG19_ENCODE_NARROW")

tf = tf[(tf["dataType"] == "ChipSeq") &

(tf["view"] == "Peaks") &

(tf["antibody_target"] == "CTCF")]

hm = gl.load(name="HG19_ENCODE_BROAD")

hm = hm[(hm["dataType"] == "ChipSeq") &

(hm["view"] == "Peaks") &

(hm["antibody_target"] == "H3K4me1")]

bed_annotation = gl.load(name="HG19_BED_ANNOTATION")

tss = bed_annotation[(bed_annotation["annotation_type"] == "TSS") &

(bed_annotation["provider"] == "UCSC")]

en = bed_annotation[(bed_annotation["annotation_type"] == "enhancer") &

(bed_annotation["provider"] == "UCSC")]

tf1 = tss.join(tf, [gl.DGE(100000), gl.MD(1)], output="right")

hm1 = tss.join(hm, [gl.DGE(100000), gl.MD(1)], output="right")

hm2 = en.join(hm1, [gl.DLE(0)], output="int")

tf_res_0 = tf1.map(hm2, joinby=["cell"])

tf_res = tf_res_0.reg_select(tf_res_0.count_hm2_tf1 > 0)

The materialization is done locally

tf_res = tf_res.materialize()

These examples show how one can easily map a GMQL query to a python
program. We cannot say that it is possible to do the reverse in all the cases.
The intrinsic power of python, its additional libraries and the possibility

75

to work autonomously on the resulting data and to use personal crafted
ones in GMQL queries makes this new computational environment way more
powerful and complete than the original architecture.

In the next section we will apply the library to a very complex and
unsolved biological problem: we will try to understand the role and how
Topologically Associated Domains (TADs) are organized in the genome.

6.2 TADs research

In chapter 1 we have briefly discussed the main components of the genome
and how it is structured.

We didn’t put a lot of attention on the 3D structure of the chromosomes.
Since they are molecules, they have also a 3D shape and this characteristic
was studied since the first days of genomics.

In the last years a lot of attention was put on the study of chromosome
organization, also thanks to the new advanced method and the huge amount
of data that has been collected [13]. This renewed focus on these aspects has
put the understanding of the 3D structure of chromosomes, and in general
of the genome, at the higher level of research importance.

It has been proven that inside chromosome there exist genomic regions
within which the physical interactions occur much more frequently than out
of them. These regions were called Topologically Associated Domains and
they can be seen as a "summarization" of the 3D conformation of the genome
[11]. The size of a TAD can vary from a few thousand to millions of bases.

During the project we tried to gain more knowledge about the role of
these genomic regions, how they interact with each other and if they form
higher level structures.

In the next section we briefly describe the main process for finding the
TADs given interaction data between zones of the genome.

6.2.1 Extracting the TADs

The Hi-C method [18] is a specific procedure belonging to the set of Chro-
mosome conformation capture (3C) techniques. The aim of this algorithm
is to unravel the spatial organization of chromatin1 in a cell. The steps are
the following:

1. We cross-link the chromatin. This operation connects the parts of
DNA that are spatially close

1With the term chromatin we mean the set of macromolecules consisting of DNA,
protein and RNA

76

Figure 6.1: Schematic representation of the Hi-C method

2. We then cut the DNA in bins using a predefined resolution (in [11]
they used a resolution of 40 kb)

3. The loose ends of the cross-linked DNA are ligated together. The result
is a set of pairs of connected DNA fragments

4. We apply pair-ended sequencing to identify these pairs

In figure 6.1 we can see a visual representation of the process.
The output of Hi-C is a matrix I where the cell Iij represents how many

times bin i interacted with bin j. Obviously this matrix is symmetric.
Using this method and applying later a directionality index, which is

fed into an Hidden Markov Model2, [11] found out that there exist domains
with a lot of intra-domain interactions less inter-domain interactions. Pairs
of regions inside these domains are closer than pairs in different domains.
This demonstrate that the 3D structure of the genome il constituted of self-
interacting segments. A visual representation of this concept can be seen at
figure 6.2.

It has been also shown that the areas between TADs, also called do-
main boundaries have important features: they have been associated with
transcription start sites and CTCF3 binding sites4.

After [11] other methods were developed: [12] proposed an alternative
to the previous method. They argue that TADs are nested and that their
method can find them at different scales. In [26] they used new high res-

2The directionality index of a bin is a function of the ratio between the number of
upstream and downstream interactions for that bin

3CTCF is a transcription factor encoded by the homonym gene that is involved in a
lot of cellular process and in particular affects the regulation of chromatin architecture

4With binding site we mean a zone of the genome that proteins like transcription factors
and other use to bind themselves to.

77

Figure 6.2: Schematic representation of two TADs and the boundary between them.
Taken from [11]

olution (the new bin size is around 1 kb) Hi-C data getting more precise
results.

6.2.2 Overview of the used data

TADs datasets

During our experiments we used TADs extracted both from the Dixon work
[11] and the Rao one [26]. In particular these two dataset differ both in the
cell lines that they describe and the size of the topological domains. In table
6.1 we can see the different cell lines in each of these two datasets.

In figure 6.3 we can see some statistics about these two dataset including
mean size of the TAD, number of TADs for each cell line and so on. In figure
6.4 we can also see the distribution of sizes in the TADs, for each cell line.

Expression dataset

In the following we will put a lot of attention of the expression profiles of the
various TADs. Expression is usually associated to genes and represent the
process by which the information contained in a gene is used to synthesize
the functional product of it. These products are proteins, RNA or other
molecular structures. In figure 6.5 we can see a representation of this process.

Different cell types express different genes and this is the main charac-
teristic that differentiates the tissues between each other. Gene expression is

78

TAD dataset Cell lines
Dixon [11]

• Embryonic stem cells (ES)

• Lung (IMR90)

Rao [26]

• B-Lymphocyte (GM12878)

• Mammary epithelial cells (HMEC)

• Umbilical vein endothelial cells (HUVEC)

• Immortal cells (HeLa)

• Lung (IMR90)

• Lymphoblast (K562)

• Myelogenous leukemia (KBM7)

• Normal human epidermal Keratinocytes (NHEK)

Table 6.1: Cell lines for each TAD dataset considered in the study

(a) Descriptive data about Dixon [11]
TADs

(b) Descriptive data about Rao [26] TADs

Figure 6.3: Descriptive data about the two TADs dataset used in the study

79

(a) Distribution of TAD sizes in Dixon [11]
TADs

(b) Distribution of TAD sizes in Rao [26]
TADs

Figure 6.4: Distribution of sizes in the two TADs dataset used in the study

Figure 6.5: Schematic illustration of the gene expression process

80

modified both by internal processes5 or external ones: cancer, for example,
is often associated with a modified gene expression localized in particular
zones of the genome.

The measurement of gene expression today is usually done through a
technique called RNA sequencing. RNA-seq is composed of the following
phases:

1. Library preparation: the first step is to prepare a collection of DNA
fragments obtained by complementing the RNA. This is done by firstly
isolating the RNA from the DNA, selecting the signals of interest (for
example, if we only want to analyze mRNA we need to add some
chemical components to link to that structure) and synthesize the DNA
using reverse transcription.

2. Sequencing : now we have to assign to these raw sequence reads the ge-
nomic features. This is done by aligning the sequences to the reference
genome

3. Gene expression extraction: expression is quantified by counting the
number of reads that were mapped to each zone of the transcriptome.

From this we can model this kind of data like follows: given a total number of
genes G and a number of samples I, the expression Ygi is an integer number
representing the number of times a read was mapped to gene g for sample i.
Typically the distribution of data is not normal and a further preprocessing
step is performed: we compute the Reads per Kilobase Million as follows [9]:

RPKMgi =
109 · Ygi∑G
g′=1 Yg′i · Lg

where Lg is the length of gene g and
∑G

g′=1 Yg′i is the total number of counts
for sample i.

During our experiments we used two different datasets containing gene
expressions:

• Genotype-Tissue Expression (GTEx) [24]: contains gene expressions
from health individuals divided by tissue. In figure 6.6 we can see the
number of samples for each tissue in GTEx.

• The Cancer Genome Atlas (TCGA) [14]: gene expressions both from
cancer cells and normal cells

5For example there exists DNA sequences called enhancers that promote the expression
of a particular gene. On the other side there are sequences the inhibits the expression

81

Figure 6.6: Distribution of samples in the different tissues present in the GTEx database

6.2.3 Correlations between gene pairs inside and across TADs

The first thing that we tried to do was to confirm the results that are reported
in the literature. In particular we wanted to find the difference in correlation
between genes that are inside the same TAD and genes that are across
different TADs.

We followed this procedure:

1. Given a TADs dataset T , consider the data from two cell lines c1, c2.
We obtain two TADs datasets T1 and T2

2. Given a gene expression dataset G, map each gene gi to the TAD it
belongs to in both T1 = T [cell == c1] and T2 = T [cell == c2]

3. We consider as same the genes that falls in the same TAD in both T1
and T2 and cross the ones that do not fall in the same TAD. The genes
that are same in just one of T1 and T2 are disregarded.

The expressions of the genes were taken from GTEx. Each experiment
involved a specific tissue or a set of them: in particular we used brain, breast,
liver, muscle and an ensemble of brain, breast and liver.

82

For each experiment we plot the Pearson correlation of the expression of
the genes in the same and cross set as a function of the distance between
the two genes. In particular, given the expression vector xg1 relative to gene
g1 and xg2 relative to gene g2, the Pearson correlation coefficient of xg1 and
xg2 is

pearson(xg1 ,xg2) =

∑n
i=1 (xg1i − xg1) (xg2i − xg2)√∑n
i=1 (xg1i − xg1)

2
√

(xg2i − xg2)
2

This plot is obtained using Locally Weighted Scatterplot smoothing6 on
the data points for the various couples of genes. We plot also the mean
correlation between the pairs in same, cross and random couples of genes in
order to assess the different data distribution.

6.2.4 GMQL query and Python pipeline

The creation of the same and cross set can be done using GMQL. Follows
an example of GMQL query that uses gene expressions from the cortex,
the TADs cell lines from lung and B-Lymphocyte and a dataset of gene
coordinates.

GENES = SELECT(tissue=="cortex") GTEx;

J1 = SELECT(cell=="imr90") TADs;

J2 = SELECT(cell=="gm12878") TADs;

PAIRS = JOIN(distance < 500000; CONTIG) GENES GENES;

MAPPING_t = MAP() PAIRS L1;

MAPPING = MAP() MAPPING_t L2;

SAME = SELECT(left.id < right.id and L1.count == 0 and L2.count == 0) MAPPING;

CROSS = SELECT(left.id < right.id and L1.count > 1 and L2.count > 1) MAPPING;

The execution of this query has as assumption to have the GTEx dataset
available in GMQL format. This is not a simple task to achieve. Here we
demonstrate the power of mixing Python data management with GMQL
computations.

location of the datasets

coords_path = "./TSS_coordinates/" # gene coordinates

TADs_path = "./Dixon_TADs/" # TADs dataset

6LOESS is a technique used to fit a scatterplot to a line. At each point in the initial
dataset we fit a low degree polynomial to a small subset of data.

83

Since the datasets that we are using are not standard, we need to define

a personalized parser for each of them.

coords_parser = gl.parsers.BedParser(parser_name="coordinates_parser",

chrPos=0, strandPos=None, startPos=2,

stopPos=3,

delimiter="\t", otherPos=[(4,"gene","string")])

tads_parser = gl.parsers.BedParser(parser_name="tads_parser",

chrPos=0, strandPos=3, startPos=1, stopPos=2,

delimiter="\t")

loading the coordinates dataset

genes_coords = gl.load_from_path(coords_path, parser=coords_parser)

loading the TADs dataset

tads = gl.load_from_path(cell_lines_path, parser=tads_parser)

take the IMR90 TADs

imr90 = tads[tads[’cell’] == ’IMR90’]

gm12878 = tads[tads[’cell’] == ’GM12878’]

compute the pairs

pairs = genes_coords.join(experiment=genes_coords,

genometric_predicate=[gl.DLE(500000)],

output="CONTIG")

do the mapping between the pairs and the TADs locations

mapping_temp = pairs.map(experiment=imr90,refName="", expName="imr90")

mapping = mapping_temp.map(experiment=gm12878, refName="",

expName="gm12878")

computing the same and cross set

same = mapping.reg_select(

(mapping.RegField("left.gene") < mapping.RegField("right.gene")) &

(mapping.RegField("count_left_gm12878") == 0) &

(mapping.RegField("count_left_imr90") == 0)).materialize()

cross = mapping.reg_select(

(mapping.RegField("left.gene") < mapping.RegField("right.gene")) &

(mapping.RegField("count_left_gm12878") > 1) &

(mapping.RegField("count_left_imr90") > 1)).materialize()

Using Dixon TADs

Using the TADs from [11] and the tissues that we previously explained we
obtained the results displayed in figure 6.7, 6.8 and 6.9

In the various experiments we can easily see that at near distances the

84

(a) (b)

Figure 6.7: Comparison of gene correlation in the same and cross sets in the brain
tissue, using TADs from [11]

(a) (b)

Figure 6.8: Comparison of gene correlation in the same and cross sets in the ensemble
of brain, breast and liver tissues, using TADs from [11]

(a) (b)

Figure 6.9: Comparison of gene correlation in the same and cross sets in the muscle
tissue, using TADs from [11]

correlation of genes that are in the same TAD is much higher than the
one of genes across TADs. Also the distributions of same and cross differ

85

substantially.

Using Rao TADs

Using the TADs from [26] we obtained the results in figure 6.10, 6.11 and
6.12.

Also in this case the results are even more prominent.
We can conclude the following: TADs creates insulated regions in which

inner genes show high correlation in expression between themselves and low
correlation with genes on different TADs.

6.2.5 Correlations in tumor and normal tissues

Following the logic of the previous experiment we wanted to see the difference
between correlations in normal tissues and in cancerous tissues. We basically
plotted the Pearson correlation of the same and cross genes in a given tissue,
both in the healthy and in the tumor one.

We used expression data from TCGA, which contains data both from
tissues and tumors. In particular we considered the tissues/tumors in table
6.2.

The pipeline is very similar to the one described before and can be sum-
marized as follows:

1. Consider tissue t from the TCGA dataset

2. Extract the datasetsNt = TCGA [type == NORMAL ∧ tissue == t]

and Tt = TCGA [type == TUMOR ∧ tissue == t]

3. Compute the same and cross sets SAMENt and CROSSNt for the
normal tissue

4. Compute the same and cross sets SAMETt and CROSSTt for the
tumor

5. Plot the Pearson correlation for genes in SAMENt , CROSSNt , SAMETt

and CROSSTt

Our objective is to see if there is a substantial change in correlation in
the two pairs of same and cross sets when a tissue is affected by cancer. In
figure 6.13 we can see some results.

We can see that systematically the cancerous tissues give higher correla-
tion scores both in the same and cross sets and that the relative relationship
between the two sets in conserved. We can say that gene correlation always

86

(a) (b)

Figure 6.10: Comparison of gene correlation in the same and cross sets in the brain
tissue, using TADs from [26]

(a) (b)

Figure 6.11: Comparison of gene correlation in the same and cross sets in the ensemble
of brain, breast and liver tissues, using TADs from [26]

(a) (b)

Figure 6.12: Comparison of gene correlation in the same and cross sets in the muscle
tissue, using TADs from [26]

increases when we go from a normal to a cancerous tissue. In table 6.2 we
can find, for each tissue/tumor type the difference in correlation between the

87

(a) Colon - COAD (b) Prostate - PRAD

(c) Head/Neck - HNSC (d) Kidney - KICH

Figure 6.13: Some example in four tissue/tumor comparison. Red dashed line: tumor
same. Blu dashed line: tumor cross. Red continuous line: normal same. Blu continuous
line: normal cross

normal and the tumor type.
The coefficient in table 6.2 can be computed as follows:

∆TNt =
1

|P |

|G|∑
i=1

|G|∑
j=1∧i>j

pearson
(
xgi
T ,x

gj
T

)
− pearson

(
xgi
N ,x

gj
N

)
where

• G is the set of genes

• P is the set of all the gene combinations

• xgi
T is the tumor expression vector for gene gi

• xgi
N is the normal expression vector for gene gi

88

Tumor Tissue ∆TNt = pearson(Tt)− pearson(Nt)

THCA Thyroid 0,01306
PRAD Prostate 0,05235
BLCA Bladder 0,05460
KIRP Renal clear cell 0,06080
LIHC Liver 0,06297
BRCA Breast 0,06389
UCEC Uterus 0,06496
KIRC Renal papillary cell 0,06506
HNSC Head/Neck 0,08005
LUAD Lung 0,09389
COAD Colon 0,09438
LUSC Lung squamous 0,09491
KICH Kidney 0,12402

Table 6.2: For each tumor type the difference of correlation between the normal and
tumor tissue.

6.2.6 TADs conservation across species

An other question that we want to address is how TADs conserve across the
species? If this is true then topological domains can be thought as a general
genomic structure that regulates life at an higher level than the single species.

In order to address this question we model the problem as follows:

1. Consider a set of TADs T c
h belonging to human for a cell line c and an

other set of TADs T c
m belonging to mouse on the same cell line

2. Perform the lift-over7 of T c
m to the assembly of T c

h obtaining T̃ c
m

3. Take a gene set G lifted over to the assembly of T c
h and map each gene

to the TAD it belongs both in T c
h and T c

m

4. A gene pair (g1, g2) is co-occurent in both th ∈ T c
h and tm ∈ T c

m if g1, g2
are both mapped to th and to tm

5. We count how many co-occurent gene pairs there with respect to the
total number of gene pairs.

In our experiment the cell line c is embryonic stem cell, the human as-
sembly is HG19 and the mouse assembly is MM8.

7The lift-over is a procedure to translate a set of coordinates from a specified genome
assembly to an other

89

We found the following:

• There are 178324 possible pairs of genes in the human TADs

• Among them, 105105 pairs are confirmed also in the mouse TADs

• Therefore there is a 60% overlapping in the distribution of genes in the
TADs between the human and the mouse

Follows the python pipeline for this experiment. It shows the interaction
between a GMQL query and python specific operations.

import gmql as gl

import itertools

import numpy as np

mouse_TADs_path = "./cell_lines_mouse_hg19/"

human_TADs_path = "./cell_lines_human_hg19/"

coords_path = "../Data/GMQLFormat/TSS_coordinates/"

tads_parser = gl.parsers.BedParser(parser_name="tads_parser",

chrPos=0, startPos=1, stopPos=2,

strandPos=3, delimiter="\t")

mouse_TADs = gl.load_from_path(local_path=mouse_TADs_path,

parser=tads_parser)

human_TADs = gl.load_from_path(local_path=human_TADs_path,

parser=tads_parser)

coords_parser = gl.parsers.BedParser(parser_name="coords_parser",

chrPos=0, startPos=2, stopPos=3,

strandPos=1, otherPos=[(4, "gene", "string")],

delimiter="\t")

gene_coords = gl.load_from_path(local_path=coords_path,

parser=coords_parser)

cell_line = "es"

mouse_TADs = mouse_TADs.meta_select(mouse_TADs["cell"] == cell_line)

human_TADs = human_TADs.meta_select(human_TADs["cell"] == cell_line)

mapping_mouse_genes = mouse_TADs.map(experiment=gene_coords,

new_reg_fields={

"genes": gl.BAG("gene")

}).materialize()

mapping_human_genes = human_TADs.map(experiment=gene_coords,

90

new_reg_fields={

"genes": gl.BAG("gene")

}).materialize()

def to_couples(genes_str):

genes_list = sorted(genes_str.split(" "))

pairs = list(itertools.combinations(genes_list, 2))

return pairs

mapping_human_genes_couples = mapping_human_genes.regs.copy()

mapping_human_genes_couples[’genes_couples’] =

mapping_human_genes_couples.genes.apply(to_couples)

all_human_pairs = mapping_human_genes_couples.genes_couples.tolist()

all_human_pairs = [p for x in all_human_pairs for p in x]

n_human_pairs = len(all_human_pairs)

mapping_mouse_genes_couples = mapping_mouse_genes.regs.copy()

mapping_mouse_genes_couples[’genes_couples’] =

mapping_mouse_genes_couples.genes.apply(to_couples)

all_mouse_pairs = mapping_mouse_genes_couples.genes_couples.tolist()

all_mouse_pairs = [p for x in all_mouse_pairs for p in x]

n_mouse_pairs = len(all_mouse_pairs)

intersection = set(all_human_pairs).intersection(set(all_mouse_pairs))

n_intersection = len(intersection)

We also wanted to see if the gene expression correlation between the same
and cross sets respect the same relationship as the ones shown in figure
6.7, 6.8 etc... when we use the mouse TADs instead of the human ones.
Basically we map the genes to the lifted over mouse TADs and perform the
same analysis that is described in section 6.2.3. In figure 6.14 we can see the
results in the case of the ensemble of brain, breast and liver tissues.

We can see that the gene correlation in the same and cross sets is con-
served when using the mouse TADs and the human expression. This indi-
cates that TADs are an higher level genomic structure that regulates gene
expression with similarities between different species.

6.2.7 TADs clustering

The last part of the analysis of Topological Domains properties is dedicated
to their clustering based on some features that we associate to them. In par-
ticular we will show the results of TAD clustering based on gene expression
and on ChIA-PET links.

91

(a) (b)

Figure 6.14: Comparison of gene correlation in the same and cross sets in the ensemble
of brain, breast and liver tissues, using the mouse TADs

The aim of this research is to show that topological domains can commu-
nicate or form higher order structures that can span different chromosomes.
Since it has been proven that TADs are conserved across different species
but chromosomes are not, we can say that topological domains and their
interaction constitute a more stable biological structure.

The application of clustering algorithms to biology is very common and a
lot of different techniques have been tried [15], [17]. Usually gene expression
is the main feature that biologists try to cluster in order to find relevant
functional areas or mutations. We will use gene expression to find set of
TADs that may share common characteristics and this will require to asso-
ciate to each of them an expression vector. On the other side we will use
a completely different set of data called ChIA-PET, to find communities of
TADs that share different connections.

ChIA-PET stands for Chromatin Interaction Analysis by Paired-End Tag
Sequencing and combines Chromatin immunoprecipitation (ChIP)8, Chro-
mosome conformation capture (3C) and next generation sequencing tech-
nologies for determining long range genome interactions. From our point of
view, a ChIA-PET dataset can be seen as mapping between regions in the
genome and can be seen as two GMQL dataset with a join column like in
figure 6.15.

In our experiments we used ChIA-PET data of different cell lines and
targeted to different proteins. In particular we used the following datasets:

In figure 6.16(a) and 6.16(b) we can see a visual representation of the

8ChIP is an experimental technique used to reveal interactions between proteins and
the DNA of a cell. It determines if a specific protein is associated to genomic regions like
transcription factor binding sites or others.

92

Figure 6.15: Example of a ChIA-PET dataset as two GMQL dataset with a common id
column

Cell line Protein
GM12878 RAD21
HCT116 POLR2A
HESC SMC1
K562 CTCF
K562 RAD21
MCF7 CTCF
NB4 POLR2A

ChIA-PET of two cell lines.

Clustering using gene expression data

Being G the set of genes and P the set of patients (features) in the RNA-seq
dataset, the expression matrix E is a |G| × |P | matrix. Each cell Egp of the
matrix is the read count for gene g and patient p.

The considered dataset is constituted already of RPKM normalized data
as follows:

RPKM (Egp) =
109 ·Egp∑G
g′=1Eg′p · Lg

(6.1)

where Lg is the length of gene g and
∑G

g′=1Eg′p is the total number of counts
for patient p.

93

(a) ChIA-PET connections in HESC cell (b) ChIA-PET connections in MCF7 cell

We rescale these values using a log10 transformation as follows:

Ẽgp = log10 (RPKM (Egp)) (6.2)

Given a set of TAD T we map each gene g ∈ G to the TAD it belongs to.
For each TAD t, we take all the expression vectors ẽg of the genes mapped to
it and we do the punctual mean for each feature. We obtain a new expression
matrix X, having a row for each TAD:

Xtp =
1

|Gt|
∑
g∈Gt

Ẽgp (6.3)

where Gt is the set of genes mapped to TAD t.
We filter out the TADs that have the mean expression 1

|P |
∑

p∈P X̃tp = 0

Before doing clustering we normalize each row of X subtracting it by its
mean and dividing by its standard deviation. This is also called z-score:

x̃t =
xt − xt

Var[xt]
(6.4)

We use hierarchical clustering using the ward method and euclidean
distance. For cutting the dendrogram we use a visual method, therefore the
cut is done manually. In figure 6.16 we can see an example of dendrogram
with a cutting at distance 350.

Each TAD is associated to a cluster c ∈ C. Using a distance of 350 we
obtain 25 clusters.

In order to assess the quality of the clustering, we need to measure how
much the TADs in each cluster are correlated at the level of expression.

94

Figure 6.16: Visualization of the dendrogram of the hierarchical clustering with a cutting
point at distance 350

Therefore we build a correlation matrix where rows and columns are or-
dered by cluster number and each cell Rij is the pearson correlation of the
expression vectors xi,xj ∈ X:

pearson(xi,xj) =

∑|P |
k=1 (xik − xi) (xjk − xj)√∑|P |

k=1 (xik − xi)
2
√∑|P |

k=1 (xjk − xj)
2

(6.5)

We summarize the clusters in matrix R by constructing a new matrix C

such that: Cij = 1
|Ci|×|Cj |

∑
k∈Ci

∑
h∈Cj

Rkh if i 6= j

Cii = 1
|Ai|
∑

k∈Ci

∑
h∈Ci,h>k Rkh

(6.6)

where Ai is the number of combination of TADs in cluster i and Ci, Cj

are the set of tads in cluster i and j. Therefore we obtain a |C| × |C| matrix
that correlate each cluster to any other. In figure 6.17(a) and 6.17(b) we can
see both the correlation matrix and matrix C for the case with cutting at
350 distance.

To evaluate the clustering performances we compute the following indi-
cator on matrix C.

diagonality (C) =

∑
i∈C Cii∑

i∈C
∑

j∈C,j>iCij
(6.7)

For the considered case we have a diagonality index of 0.205.
In table 6.3 we plot some quantitative information about the found clus-

ters.

95

(a) R correlation matrix. TAD vs TAD (b) The matrix C

Table 6.3: Cluster statistics for the gene expression clustering

#TADs #chrom #contiguous #connections #inter #intra
cluster

1 221 22 11 29 25 4
2 106 21 1 2 2 0
3 73 19 3 33 10 23
4 152 22 5 9 8 1
5 71 20 0 1 1 0
6 106 22 1 7 7 0
7 63 21 0 0 0 0
8 54 16 5 10 10 0
9 67 17 3 32 26 6
10 81 21 1 4 4 0
11 217 22 16 70 66 4
12 49 15 1 5 5 0
13 202 21 8 16 16 0
14 114 22 5 16 12 4
15 69 19 1 2 2 0
16 140 21 8 16 15 1
17 47 16 0 2 2 0
18 67 20 0 11 11 0
19 85 18 1 2 2 0
20 123 22 7 34 31 3
21 126 21 8 17 17 0
22 96 19 1 2 1 1
23 163 22 11 71 69 2
24 63 17 2 2 2 0

96

25 225 21 9 25 25 0

We can see that the found cluster are inter-chromosomal (the TADs in-
side a cluster are likely to belong to different chromosomes). This should
indicate that TADs structures "communicate" in some way across different
chromosomes and this affects also the gene expression of them.

Clustering using ChiA-PET links

With gene expression clustering we tried to cluster TADs on the base of an
indirect property that they have, the expression of the genes that happen
to be on them. Now we try a completely different approach, which tries to
find communities of TADs on the basis of physical ChIA-PET connection
between them.

Consider the graph G ⊂ V × V with V the set of ChiA-PET vertices.
We map each ChiA-PET vertex to the TAD it belongs. If the vertex does
not intersect any TAD it is not considered.

If the set of TADs is T we build a connection matrix Y having dimensions
|T |×|T |. Each cell Yij represents the number of ChiA-PET connections that
are present between TAD i and TAD j.

The clustering method that we use is borrowed from the network analysis
field and it is called Louvain Modularity [5]. This algorithm tries to optimize
modularity, which is a scale value between -1 and 1 measuring the density of
edges inside communities with respect to the one outside the communities:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (6.8)

where

• Aij is the edge value (weight) between the nodes (TADs) i, j

• ki, kj is the sum of weights of edges attached to i and j

• m is the sum of all the weight in the graph

• ci, cj are the communities of nodes i, j

• δ(ci, cj) =

{
0 if ci 6= cj

1 if ci = cj

97

Of course it is infeasible to scan all the possible groups of nodes, therefore
some heuristic is used to speed up the process. In this method firstly local
small communities are found and then each community is considered as a
single node and the first step is repeated.

Since a lot of TADs are connected with no other TADs (due to the lack of
data in the ChIA-PET dataset) we are forced to discard all the communities
of only one element. Therefore this clustering method does not cluster all the
TADs but only the one that share connections between each other. We are
confident that having more data about connection will increase the number
of connected TADs and therefore the coverage of this method. In figure 6.17
can be found a set of aggregate statistics about the cluster found with this
method.

Figure 6.17: Aggregate statistics for the found clusters using the community detection
algorithm

In particular, consider a cluster c ∈ C and the set of TADs {t1, ..., tn}
belonging to c:

• Mean correlation: average correlation of expression of all the genes
that are mapped to the TADs c

• p-value:

p−value =

∑M
i=1 [mean_correlation(samplei) > mean_correlation(c)]

M

where mean_correlation(samplei) computes the average correlation of
expression of all the genes inside a sample of TADs of the same size
of cluster c. This operation is repeated M times and the value is nor-
malized by that number. A low p-value is index of a strong correlation
inside cluster c with respect to any other possible combination of TADs.

We can see from the statistics that the majority of cluster is small (2 to
5 TADs) and we have a few large clusters, with a maximum size of 81 TADs.
It is frequent that two contiguous TADs share a ChIA-PET link also due to
the dataset of links that we are using.

98

A good part of the clusters are inter-chromosomal like in the case of gene
expression clustering.

We also notice the fact that for the big clusters determined with this
method we have very low p-value. This means that when a strong ChIA-
PET network is established, gene regulation is affected in the same way in
all the network.

99

100

Chapter 7

Conclusions

This is the end, beautiful friend
This is the end, my only friend, the end
Of our elaborate plans, the end
Of everything that stands, the end
No safety or surprise, the end
I’ll never look into your eyes, again

Apocalypse Now

In this work we have developed a python framework for the Genometric
Query Language (GMQL) and we have tested and it on real and complex
biological problems.

GMQL is a big data engine targeted to genomics leveraging on several
computational engines like Spark and Flink. It is currently developed at the
Department of Electronics, Information and Bioengineering of the Politec-
nico of Milano. Its main users are biologists, bioinformaticians and general
researchers.

An initial study of the GMQL engine and language was performed (chap-
ter 2) analyzing the various ways that the user has for interfacing with the
system, the various language operators and their semantics and also the
internal implementation of the language.

Then the differences between the Scala (on which GMQL bases its im-
plementation) and Python language have been studied in order to find the
best communication strategy between the python package and the Scala
GMQL back-end. Also a comparison of possible library architectures has
been performed underlining the advantages and disadvantages of each ap-
proach (chapter 3).

The resulting architecture wraps the GMQL operators into Python func-
tions to be applied to a GMQLDataset, which is the python abstraction of

a GMQL dataset (chapter 5). The library also provides a data structure for
holding the results of a query, the GDataframe. This is a double-tabular
structure that manages the link between the region data and the metadata.
On top of this structure, a machine learning module, implemented by Anil
Tuncel for his master thesis, has been developed. The library offers both
local and remote computation of the queries. In the second case the package
communicates with a remote server with the GMQL engine and repository
installed, sends the query (in a serialized tree-structural form), waits for the
results and finally downloads them in a GDataframe (chapter 4). The li-
brary was finally distributed as a public package in the international python
repository.

In the second part of the project, the developed library was used in a set
of biological applications (chapter 6). In particular we explored the Topo-
logically Associating Domains, which are genomic regions within which the
physical interactions occur much more frequently than out of them. We
have seen that the correlation between pairs of genes that fall inside a TAD
is higher than between genes in different TADs unraveling the fact that
topological domains are zones of the genome having similar regulation (gene
expression). We have also seen that gene pairs correlation is higher in tu-
moral tissues than in normal ones both in the case of same and different
TADs. We wanted also to see if the topological domains conserve across
different species and discovered that 60% of the pairs of genes cohabiting
the same human TAD also happen to be in the same mouse TAD. In the
last part of the research we wanted to cluster the human TADs based on
two features. The first feature was the expression level of the genes inside
the TAD and we ended up finding 20 clusters. The second feature was the
ChIA-PET connections (regions of the genome that "communicate" through
protein binding sites) and we built a TADs network and found a set of "com-
munities". Both the results show that there exist interactions between TADs
in the same and across different chromosomes. Work to understand the real
nature of these interaction needs to be done yet.

102

Bibliography

[1] Apache. Apache pig. https://pig.apache.org/.

[2] Apache. Spark. https://spark.apache.org/.

[3] Apache. Spark. http://spark.apache.org/docs/2.1.0/api/python/

pyspark.html.

[4] Regina C Betz, Rita M Cabral, Angela M Christiano, and Eli Sprecher.
Unveiling the roots of monogenic genodermatoses: genotrichoses as a
paradigm. The Journal of investigative dermatology, 132 3 Pt 2:906–14,
2012.

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Me-
chanics: Theory and Experiment, 10:10008, October 2008.

[6] Python community. Pypi - the python package index. https://pypi.

python.org/pypi.

[7] Python community. What is python? executive summary. https://

www.python.org/doc/essays/blurb/.

[8] Barthélémy Dagenais. Py4j - a bridge between python and java. https:
//www.py4j.org/.

[9] S. Datta and D. Nettleton. Statistical Analysis of Next Generation Se-
quencing Data. Frontiers in Probability and the Statistical Sciences.
Springer International Publishing, 2014.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In Proceedings of the 6th Conference on Sym-
posium on Opearting Systems Design & Implementation - Volume 6,
OSDI’04, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

103

https://pig.apache.org/
https://spark.apache.org/
http://spark.apache.org/docs/2.1.0/api/python/pyspark.html
http://spark.apache.org/docs/2.1.0/api/python/pyspark.html
https://pypi.python.org/pypi
https://pypi.python.org/pypi
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://www.py4j.org/
https://www.py4j.org/

[11] Jesse R Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin
Shen, Ming Hu, Jun S Liu, and Bing Ren. Topological domains in
mammalian genomes identified by analysis of chromatin interactions.
Nature, 485(7398):376, 2012.

[12] Darya Filippova, Rob Patro, Geet Duggal, and Carl Kingsford. Identi-
fication of alternative topological domains in chromatin. Algorithms for
Molecular Biology, 9(1):14, 2014.

[13] Johan H. Gibcus and Job Dekker. The hierarchy of the 3d genome.
Molecular Cell, 49(5):773 – 782, 2013.

[14] National Cancer Institute. The cancer genome atlas. https://

cancergenome.nih.gov/.

[15] Pablo A. Jaskowiak, Ricardo JGB Campello, and Ivan G. Costa. On the
selection of appropriate distances for gene expression data clustering.
BMC Bioinformatics, 15(2):S2, Jan 2014.

[16] A. Kaitoua, P. Pinoli, M. Bertoni, and S. Ceri. Framework for support-
ing genomic operations. IEEE Transactions on Computers, 66(3):443–
457, March 2017.

[17] G. Kerr, H.J. Ruskin, M. Crane, and P. Doolan. Techniques for cluster-
ing gene expression data. Computers in Biology and Medicine, 38(3):283
– 293, 2008.

[18] Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim
Imakaev, Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie,
Peter J Sabo, Michael O Dorschner, et al. Comprehensive mapping of
long-range interactions reveals folding principles of the human genome.
science, 326(5950):289–293, 2009.

[19] M. Masseroli and A. Kaitoua. Gmql architecture. https://github.com/
DEIB-GECO/GMQL/blob/master/docs/gmql_architecture.md.

[20] Marco Masseroli, Pietro Pinoli, Francesco Venco, Abdulrahman
Kaitoua, Vahid Jalili, Fernando Palluzzi, Heiko Muller, and Stefano
Ceri. Genometric query language: a novel approach to large-scale ge-
nomic data management. Bioinformatics, 31(12):1881–1888, 2015.

[21] National Human Genome Research Institute (NHGRI). A
brief guide to genomics. https://www.genome.gov/18016863/

a-brief-guide-to-genomics/.

104

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://github.com/DEIB-GECO/GMQL/blob/master/docs/gmql_architecture.md
https://github.com/DEIB-GECO/GMQL/blob/master/docs/gmql_architecture.md
https://www.genome.gov/18016863/a-brief-guide-to-genomics/
https://www.genome.gov/18016863/a-brief-guide-to-genomics/

105

[22] Martin Odersky. A brief history of scala. http://www.artima.com/

weblogs/viewpost.jsp?thread=163733.

[23] Martin Odersky and Tiark Rompf. Unifying functional and object-
oriented programming with scala. Commun. ACM, 57(4):76–86, April
2014.

[24] National Institute of Health. Genotype-tissue expression. https://www.
gtexportal.org/home/.

[25] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. Pig latin: A not-so-foreign language for data
processing. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 1099–1110,
New York, NY, USA, 2008. ACM.

[26] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamen-
ova, Ivan D Bochkov, James T Robinson, Adrian L Sanborn, Ido Ma-
chol, Arina D Omer, Eric S Lander, et al. A 3d map of the human
genome at kilobase resolution reveals principles of chromatin looping.
Cell, 159(7):1665–1680, 2014.

[27] Nguyen Thanh Tam and Insu Song. Big data visualization. Information
science and applications (ICISA), 2016.

http://www.artima.com/weblogs/viewpost.jsp?thread=163733
http://www.artima.com/weblogs/viewpost.jsp?thread=163733
https://www.gtexportal.org/home/
https://www.gtexportal.org/home/

	Abstract
	Sommario
	Ringraziamenti
	Introduction
	Genomics and the Human Genome Project
	Big data in biology and genomics
	Motivations and requirements
	The Python library in a nutshell
	Biological application
	Outline of the work

	Background
	Genomic Data Model
	Formal model

	Genometric query language
	GMQL operations
	Relational operators
	Domain-Specific Operations
	Materialization of the results
	Some examples

	Architecture of the system
	User interfaces
	Scripting interfaces
	Engine abstractions
	Implementations

	Interoperability issues and design of the library
	Scala language
	Compatibility with Java
	Extensions with respect to Java
	Spark and Scala

	Python language
	An interpreted language
	A strongly dynamically typed language

	Connecting Scala and Python
	Asynchronous big data processing and interactive computation
	Analysis of Design Alternatives
	Full-python implementation
	Mixed approach
	Wrapper implementation with added functionalities

	Architecture of the library
	General architecture
	Remote execution
	Dag serialization
	Graph renaming

	Interfacing with the Machine Learning module
	Deployment and publication of the library

	Language mapping
	Query creation: the GMQLDataset
	Selection
	Projection
	Extension
	Genometric Cover
	Join
	Map
	Order
	Difference
	Union
	Merge
	Group
	Materialization

	Results management: the GDataframe
	Example

	Biological applications
	Some examples
	TADs research
	Extracting the TADs
	Overview of the used data
	Correlations between gene pairs inside and across TADs
	GMQL query and Python pipeline
	Correlations in tumor and normal tissues
	TADs conservation across species
	TADs clustering

	Conclusions
	Bibliography

