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Abstract

THE quantity of public content, generated by users or by sensors, available on the
web nowadays is reaching unprecedented volumes. This massive collection of
data contains an enormous amount of latent knowledge, which can be used for

a variety of purposes, such as event detection and predictive modeling. The goal of the
research presented in this thesis is to explore the methods for extracting such knowl-
edge and building useful applications using low-cost, publicly available, multimedia
web content, with reference to the field of environmental monitoring, which often suf-
fers from the lack of significant and exhaustive input data. This objective requires
addressing such challenges as content acquisition, content normalization and fusion,
analysis and correlation, and model building and training. Specifically, the focus is set
on monitoring snow cover in mountainous regions, that is, the spatial extent of earth sur-
face covered by snow. The effort exploits visual data, terrestrial photography crawled
from the public image sharing websites and publicly available webcams. We present
algorithms for retrieving and analyzing such data, and prove its usefulness thanks to
a data-driven environmental model. The experiments prove that, in the described use
case, the virtual snow indexes obtained from a single public webcam are able to replace
the original authoritative snow measurements without a performance drop and improve
the performance if complemented to the authoritative snow measurements. These re-
sults confirm the feasibility of exploiting visual content publicly available on the web
in real world environmental monitoring scenarios.
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Sommario

LA quantità di contenuti pubblici, generati dagli utenti o da sensori, disponibile
oggi sul web, sta raggiungendo volumi senza precedenti. Questa considerevole
raccolta di dati contiene un’enorme quantità di informazioni nascoste, che pos-

sono essere utilizzate per svariati scopi, come l’individuazione degli eventi e il predic-
tive modeling. L’obiettivo della ricerca presentato in questa tesi è quello di esplorare
i metodi per estrarre tali informazioni e costruire applicazioni utili utilizzando con-
tenuti web a basso costo e pubblicamente accessibili, con riferimento al campo del
monitoraggio ambientale, che spesso soffre dalla mancanza di dati di input significa-
tivi ed esaustivi. Questo obiettivo richiede di affrontare sfide come l’acquisizione dei
contenuti, la loro normalizzazione e fusione, l’analisi e la correlazione, la creazione
di modelli e addestramento. In particolare, l’attenzione è posta sul monitoraggio della
neve in regioni montuose, ovvero l’estensione spaziale della superficie terrestre coperta
dalla neve. Il lavoro sfrutta i dati visuali: fotografie estratte dai siti web di condivisione
di immagini pubbliche e webcams pubblicamente disponibili. Vengono presentati gli
algoritmi per il recupero e l’analisi di tali dati e viene dimostrata la loro utilità grazie
ad un modello ambientale basato su di essi. Gli esperimenti dimostrano che, nel caso
d’uso descritto, gli indici della neve virtuale ottenuti da una singola webcam pubblica
sono in grado di sostituire le misurazioni ufficiali delle neve mantendo lo stesso liv-
ello di prestazioni, mentre le prestazioni migliorano se gli indici della neve virtuale
vengono integrati alle misurazioni ufficiali. Questi risultati confermano la fattibilità di
sfruttare contenuti visuali pubblicamente disponibili sul web in scenari di monitoraggio
ambientale del mondo reale.
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CHAPTER1
Introduction

Over the past two decades, the scientific and technological advances in the web, mobile
hardware and software fields fostered a phenomenon known as the social web. The
social web can be seen as a global network wherein millions of human sensors across
the globe capture different aspects of the spatio-temporal processes, which can be ag-
gregated into a holistic view [164]. The unprecedented amount of content publicly
available on the social web poses unique opportunities for extracting valuable infor-
mation: human-sensors can be used to observe phenomena that are impossible, hard
or costly to observe by hardware alone. This social media knowledge (also known as
collective intelligence or wisdom of the crowd) has been successfully used in different
fields, such as urban monitoring and planning [82], social interactions analysis [58],
marketing [41] and even politics [25].

One of the fields that has historically been based on expert observations and hard-
ware sensors is environmental monitoring. Environmental monitoring is used to ob-
serve conditions of the environment in order to study environmental changes, partic-
ularly those arising from human activities. Understanding and predicting the envi-
ronment evolution is something that humanity has been interested in since prehistoric
times [146], and the progress made in this area in the last decades thanks to scientific
and hardware breakthroughs is outstanding [75]. Environmental monitoring requires
collecting measurements of a very diversified range of physical quantities, which are
then fed to models aimed at understanding past observations (e.g., climate change),
detecting critical events in real-time (e.g., bush fires) and making predictions for the
future (e.g., availability of water resources). Traditionally, such measurements are ob-
tained by means of specialized instrumentation that is designed, installed and managed
by researchers and professionals interested in their analysis.

The advance of the social web, however, offers unique opportunities for novel en-

1
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Chapter 1. Introduction

vironmental monitoring approaches. The public content available on the social web
can be used to enrich traditional measurements by increasing coverage along both the
spatial and temporal dimension. Specifically, thanks to the diffusion of web-connected
devices, millions of publicly available photographs and videos are uploaded daily to
the web [95]. These photographs are generated by humans using personal mobile de-
vices as well as by Internet of Things (IoT) devices (e.g., webcams). The uploaded
photographs contain often a geotag, timestamp and depict outdoor scenarios. As such,
they carry an incredible amount of environmental observations that is waiting to be
found, extracted and used in environmental applications.

1.1 Problem Statement

The goal of this thesis is to study the feasibility of exploiting visual content publicly
available on the social web for environmental monitoring purposes. The thesis aims to
answer this question by illustrating a use case in which the problem has been success-
fully addressed. This includes the complete path from retrieving and analyzing the data
up to using it for environmental purposes and proving its usefulness.

Problem Statement:

Given a massive amount of unstructured and non-authoritative visual content pub-
licly available on the social web, devise techniques for the automatic analysis of
such content, so as to extract environmentally relevant spatio-temporal data and
objectively prove the utility of such data.

We specifically focus on monitoring snow cover in mountainous regions, that is, the
spatial extent of terrain surface covered by snow. Snow processes are traditionally
observed by means of ground measurements stations, which can either be manned or
fully automated. In both cases, measurements are accurate and capture different as-
pects, including the snow depth and density (possibly at different altitudes). However,
the number of ground measurement stations is limited (for example, only 46 stations are
currently deployed over an area of 10 500 km2 covering the Italian Alps in the region
of Lombardy), thus enabling only a sparse sampling of the snow cover over large areas.
Moreover, the high variability of snow processes, which depend on temperature, eleva-
tion, exposure, slope, winds, etc., is such that it is difficult to extrapolate snow depth
and density at different locations. An alternative source of measurements is represented
by remote sensing, which relies on satellite [81] or airborne [135] imagery, synthetic
aperture radar interferometry [161], laser scanner altimetry [145]. These methods can
provide a very high spatial coverage at moderate spatial resolution, but can be insuffi-
cient for applications that require high temporal density (e.g. daily), since observations
might not be available due to cloud cover and limited temporal frequency of satellite
imagery.

We chose public photographs taken in mountain regions as the use case of visual
content. A large fraction of them contains the skyline defined by mountain peaks,
slopes, ridges, crests, etc., both as main subject and as background. Such photographs
implicitly contain precious information related to snow cover phenomena, which can

2
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1.2. Research questions

complement the traditional measurements and has not been fully exploited so far.

1.2 Research questions

In this section, we formulate the research questions that motivate the work of this thesis;
we list the questions following the logical order in which they should be answered to in
order to successfully address the problem.

Research Question 1. How to acquire relevant public visual content from the social
web?

Crawling data from the social platforms and public photo-sharing websites is a trivial
task that requires low implementation and research effort. However, automatically es-
timating if a certain piece of content is relevant and suitable for the desired application
requires non-trivial content processing.

Research Question 2. Is the amount of the available content suitable for environmental
analysis?

Although the statistics on the amount of available web data sound impressive, it is not
obvious whether the relevant data is actually enough to provide a sufficient spatial and
temporal resolution, enabling effective environment process analysis.

Research Question 3. How to automatically extract environmentally relevant spatio-
temporal data from the visual content at scale?

This requires high-performance and high-accuracy image processing and computer vi-
sion algorithms to extract data from uncontrolled collections of photographs acquired
from non-authoritative sources.

Research Question 4. Can the extracted environmental data be objectively proved to
be useful for real environmental applications?

The existing works in the literature usually prove the fact that the obtained data is corre-
lated w.r.t. to a certain phenomena/process, which can support the assumption that the
data can be potentially useful, but do not prove the fact that the data is practically useful
in a specific environmental application that already uses environmental measurements
obtained from traditional sources.

Research Question 5. Can active crowdsourcing be leveraged to engage users into
providing more relevant data and improving the existing data analysis?

Crowdsourcing has been proved successful when accompanying automatic data analy-
sis pipelines in different applications, such as content processing, query processing and
relevance feedback processing [61]. We investigate if the voluntary citizen contribution
can benefit also the approaches that analyze social media for environmental purposes.

1.3 Contributions

In this thesis we explore the feasibility of using social web content to monitor snow
cover. The objective is not to replace the use of ground-, satellite- or airborne-based
measurements. We argue that social web content might represent an additional source

3
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Chapter 1. Introduction

that can complement and enrich the traditional ones, due to its unique characteristics in
terms of spatio-temporal coverage resolution and cost. We focus on visual content and
its accompanying metadata, which can be obtained from two different sources: user-
generated photographs posted on social media websites and image feeds from outdoor
webcams.
The contributions of this thesis, schematized in Figure 1.1, are as follows:

• We describe an acquisition pipeline that continuously retrieves new images con-
taining mountain slopes from photo-sharing platforms and public webcams. The
pipeline deals with all the necessary aspects in order to output only relevant geolo-
cated photographs (this answers to Research Question 1 and Research Question 2).
The specific contributions can be summarized as follows:

– we design a binary classifier that estimates whether a photograph does or does
not contain a relevant mountain view;

– we design an algorithm that filters out webcam images affected by bad weather
conditions, aggregates all daily images into a single combined image and also
mitigates the webcam shaking;

– we describe the implementation of the social network photograph crawler that
acquired from Flickr more than 600 k relevant user-generated photographs
taken in an extended Alpine area during the last 7 years, and the webcam
crawler that acquired more than 100 M images from ∼ 2 k public webcams
in the whole Alpine region over the last 2 years.

• We describe a set of algorithms for mountain image geo-registration that, given
a geolocated photograph as input, infer photograph geographical properties (this
answers partially to Research Question 3). Specifically, the algorithms estimate:

– photograph direction, i.e. the orientation of the camera during the shot;

– on-screen photograph coordinates of the corresponding visible mountain peaks;

– for every photograph pixel, if it corresponds to the sky or to the terrain and
in the latter case, terrain-specific properties, such as GPS position, extent,
altitude and distance from the observer.

• We realize novel approach for snow/non-snow pixel level classification and pro-
pose several virtual snow cover measures (this answers partially to Research Ques-
tion 3), including:

– physical measures that describe a specific real-world physical measure, such
as the snow line altitude;

– non-physical measures that do not carry a specific meaning in terms of a
physical measure, but are correlated with an environmentally relevant trend
that can be used by a data-driven model.

• In collaboration with environmental researchers [23, 71], we present a supervised
learning data-driven water management model that, among other inputs, relies
on the authoritative snow measurements provided by the Italian Environmental
Protection Agency (Agenzia Regionale per la Protezione dell’Ambiente, ARPA).

4
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We define the performance metric of the model and test how the performance
varies if we complement or replace the authoritative snow measurements with the
virtual snow indexes computed by the proposed system (this answers to Research
Question 4). We argue that the data acquired from one single touristic webcam is
able to:

– replace the authoritative snow measurements without a performance drop;
– complement the authoritative snow measurements, improving the performance.

• Finally, we discuss the potential of the crowdsourcing in systems that exploit un-
structured content for environmental monitoring (this answers to Research Ques-
tion 5) with two use cases:

– a web portal that allows users to explore the acquired photographs, contribute
their own content and help the geo-registration process by correcting the er-
rors made by automated tools;

– a real-time augmented reality mobile application that identifies mountain peaks,
engaging the users to contribute with their photographs. To this end, we also
describe a variant of the photograph geo-registration approach executable
real-time on low power devices: this allows us to run the algorithms directly
on consumer mobile phones and engage users with an entertaining experi-
ence.

1.4 Structure of the thesis

The structure of the thesis follows the logical flow depicted in Figure 1.1:
Chapter 2 discusses the background of the work contained in this thesis. It describes
the evolution of the environmental monitoring techniques that adopt social web content,
and illustrates how such content is acquired, processed and validated in the state-of-the-
art.
Chapter 3 describes the mountain image acquisition pipeline and the underlying algo-
rithms.
Chapter 4 describes the devised approach for mountain photograph geo-registration
that enriches the photograph with metadata regarding the position of the photograph
w.r.t. the terrain. It also describes how this approach can be adapted to be used in
real-time on mobile devices, enabling an augmented reality experience.
Chapter 5 narrows the discussion to a specific environmental use case, which is snow
cover. It presents novel algorithms for image snow cover identification and proposes
several virtual snow cover measures.
Chapter 6 introduces the water management model and reports how the performance
of the model responds when the virtual snow cover measures are fed in input.
Chapter 7 provides two use cases of crowdsourcing techniques applied to enhance the
automatic analysis processing.
Finally, Chapter 8 concludes the thesis, discusses the current challenges and proposes
the future direction of the research in this area.
This thesis includes the material from the following publications, co-authored by the
candidate:

5
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Figure 1.1: Schematic overview of the thesis contributions and structure. Black items represent the
automatic data processing pipelines, green items represent environmental models and applications,
blue items represent the crowdsourcing approaches.

• Roman Fedorov, Piero Fraternali, and Marco Tagliasacchi. “Mountain peak iden-
tification in visual content based on coarse digital elevation models” [54].

• Roman Fedorov, Alessandro Camerada, Piero Fraternali, and Marco Tagliasacchi.
“Estimating snow cover from publicly available images” [50].

• Roman Fedorov, Piero Fraternali, and Chiara Pasini. “SnowWatch: a multi-modal
citizen science application” [53].

• Roman Fedorov, Darian Frajberg, and Piero Fraternali. “A framework for outdoor
mobile augmented reality and its application to mountain peak detection” [52].

• Andrea Castelletti, Roman Fedorov, Piero Fraternali, and Matteo Giuliani. “Mul-
timedia on the mountaintop: Using public snow images to improve water systems
operation” [23].

• Matteo Giuliani, Andrea Castelletti, Roman Fedorov, and Piero Fraternali. “Us-
ing crowdsourced web content for informing water systems operations in snow-
dominated catchments” [71].
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CHAPTER2
Background

The idea of using content acquired from the social web in environmental monitoring
scenarios is not new. In this chapter we provide an overview of the scientific literature
that addresses this problem, highlighting the novel contributions of this thesis w.r.t. the
current state of the art.
The chapter is structured as follows: Section 2.1 provides a brief historical perspective
on the adoption of the social web in environmental monitoring, Section 2.2 overviews
the acquisition of the data from the social web while Section 2.3 deals with the pro-
cessing of such data. Finally, Section 2.4 describes the evaluations that asses the value
of the obtained environmental information.
In order to provide a complete picture, we present a generic literature review that covers
the full range of environmental monitoring applications and different content types.
Nevertheless, for the sake of a fair description of the novelty of the algorithms proposed
in this thesis, we also properly narrow the background discussion to specific use cases
in Section 2.3.4, describing the state-or-the-art techniques for mountain image analysis
and image snow cover estimation.

2.1 Web and Environmental Monitoring Evolution

In this section we walk through the events that led to the advent of the social web
and illustrate how these events gradually introduced new environmental monitoring
approaches that use non-authoritative observations. Although providing a historical
perspective is not the primary goal of this chapter, a general overview of this evolution
is crucial to understand the dynamics that brought this research area to its current state-
of-the-art form.
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2.1.1 Citizen Science

The first deviation of the environmental monitoring from the use of the sole authori-
tative data occurred with the birth of citizen science. Citizen science evokes a science
that assists the needs and concerns of citizens, and at the same time implies a form of
science developed and enacted by citizens themselves [91]. Citizen science can also
be described as “a process where concerned citizens, government agencies, industry,
academia, community groups, and local institutions collaborate to monitor, track and
respond to issues of common community [environmental] concern” [180]. In other
words, citizen science shifted the paradigm “only scientists participate to environmen-
tal monitoring” to “also citizens participate to environmental monitoring”.
One of the oldest documented environmental citizen science entities, Earthwatch Insti-
tute1, was founded in 1971 to offer volunteers the opportunity to join research teams
through the collection of field data in the areas of rainforest ecology, wildlife conserva-
tion and marine science. Nowadays, citizen science communities cover the full range
of environmental and ecological monitoring areas, from water monitoring (Waterkeeper
Alliance2, URI Watershed Watch [79], Florida Lakewatch [19]), air quality monitoring
(The Bucket Brigade3), plant monitoring (Pl@ntNet4, Project Budburst5, iNaturalist6,
iSpot7) up to animal species monitoring (Reef Environmental Education Foundation8,
FrogWatch9, Celebrate Urban Birds10, eBird11).
The benefits of citizen science are an increasing environmental democracy (sharing of
information), volunteer engagement, data provided at no- or low-cost to governments
and early warning/detection systems. The challenges, on the other hand, generally
include the lack of volunteer interest (due to, among others, the lack of networking
opportunities) and the inability to access appropriate information or expertise [30]. The
birth of citizen science occured before the adoption of the Internet, thus, it is easy to
understand why the challenge of inaccessible information was hard to overcome.
The citizen science concept is pivotal inside the scope of this work. In the strict sense,
every technique described in this thesis is a citizen science approach, since we collect
data, directly or indirectly, thanks to the citizens. For the sake of the clarity, however,
in the rest of the thesis we use the term citizen science for works that involve direct
engagement of the citizens. We adopt data crawling and passive acquisition terms,
instead, in scenarios that involve automatic data collection from social networks or
from physical web-connected devices.
The citizen science literature contains a huge number of terms with overlapping defini-
tions. Citizen science applied to environmental monitoring is based on spatio-temporal
aggregations and volunteer communities, for the sake of this discussion we consider
the following terms as the synonyms of the environmental citizen science: Community-
Based Monitoring (CBM) [180], Volunteered Geographical Information (VGI) [17],

1http://earthwatch.org
2http://waterkeeper.org
3http://labucketbrigade.org
4http://identify.plantnet-project.org/
5http://budburst.org
6https://www.inaturalist.org
7https://www.ispotnature.org/
8http://www.reef.org
9http://www.aza.org/frogwatch

10http://celebrateurbanbirds.org
11http://www.birds.cornell.edu
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Participatory GIS, Public Participatory GIS (PPGIS) [17, 136], Citizens as Sensors
and Citizens as Voluntary Sensors [73, 74], Participatory Sensing [147].

2.1.2 Web

In 1989, English scientist Tim Berners-Lee invented the World Wide Web, an informa-
tion space that allows documents and other resources to be accessed through the Inter-
net. Although this invention was going to deeply change the world, the real impact of
the web on the society must be postponed by nearly a decade. 1994 was characterized
by thousands of notable websites, while the beginning of the web commercialization
and its exponential growth is estimated to be between 1996 and 1998.
The citizen science communities are based on the engagement and the extent of their
communication campaigns: unsurprisingly, the web had a great impact on these com-
munities. The novel channel for the communication and public engagement rapidly
spread across the existing citizen science projects, and encouraged the development of
the new ones [162]. Not by chance, Earthwatch Institute unveiled its first website in
1994 and hosted the first live educational web broadcast in 1996.
As a matter of fact, the consensus between the researches states that partnering with
existing organizations, such as civic groups, neighborhood organizations, non-profit
environmental protection groups is an effective way to reach target communities, and
providing constant support through email list-servers and online discussion boards is
foundamental to retain participants [31].
Although the late nineties were characterized by an improved one-way web communi-
cation (from scientists to citizens), the real potential of the web applied to the environ-
mental science remained latent for several other years, until the bidirectional data flow
was finally unlocked thanks to the social web.

2.1.3 Social Web

Social web is the term that is usually used to define the set of platforms that allow users
to communicate on the web through the social media tools. The term is often associated
with web 2.0, which (even if coined in 1999) gained popularity in late 2004. The
social web refers to the websites that emphasize user-generated content. The increased
popularity of social media articles and microblogging systems changed the way the
online information is produced: users switched from being only content consumers to
being both content publishers and content consumers.
The citizen science advent revolutionized the way the environmental monitoring is
performed, while the social web, in turn, revolutionized the way the citizen science
campaigns are performed, with novel methods for information dissemination, user en-
gagement and feedback collection. In fact, according to [107], citizen science moved
from the traditional “scientists using citizens as data collectors” concept to “citizens as
scientists” thanks to the social web.
The novel approaches for the user engagement, however, are just half the story: ever
since the rise of the social web, users are creating a massive amount of publicly avail-
able content. This content contains knowledge, both intentionally provided (e.g. a
timestampted photograph of a user in front of the Eiffel Tower states that the user was
in Paris in that moment) and unintentionally provided (e.g. the same photograph acts
as an observation of the meteorological conditions in Paris in that moment).

9
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Being public, though, this content can be used for purposes that it was not originally
intended for: the unprecedented availability of the user-generated data on the social
web poses unique opportunities for extracting valuable environmental measurements
from such data. These can be used to enrich traditional measurements by increasing
coverage along both the spatial and temporal dimension.
Beside high data volume and easiness of access advantages, the adoption of the user-
generated content has several drawbacks, which mainly converge to the roughness of
the data. This content is usually intended to be consumed by other human social users,
so it is poorly structured and tends to require a significant processing effort. In par-
ticular, if we consider every user-generated datum as a single virtual observation of a
real world event, we must face the problem of understanding: what did happen, where
did it happen and when did it happen. Working with user-generated content revokes
the possibility of asking these questions directly to the user, forcing the researchers to
devise automatic data processing techniques.

2.1.4 Webcams

In 1991 the first webcam ever was pointed at a coffee pot in Cambridge University,
allowing the department personnel to check the coffee availability without leaving their
desks. Since then, webcam technology evolved significantly and the range of webcam
use cases expanded far beyond coffee monitoring, but the key concept of webcam adop-
tion remained unaltered: provide a group of people an easy and universal web access to
a visual real-time snapshot of reality. The idea of the low cost real-time image stream
provided through the web was so successful that nowadays, twenty years after the first
commercial webcam launch [29], public webcams densely cover the world [92].
The reason webcams gained such success and popularity lays in the simplicity of pro-
viding information that would require significant processing effort otherwise. The hu-
man brain is an extremely powerful processor and webcams largely exploit this: the
scholars from Cambridge University could have installed a sophisticated physical cof-
fee level hardware sensor inside the pot and transmit the coffee level over the web, but
a simpler solution was to point a camera at the pot, transmit the raw data (images) over
the web and let the brain of each individual to process the data and estimate the coffee
level.
Webcams became universal, real-time application-independent sensors, which can pro-
vide a large quantity of relevant information. Without any sophisticated hardware, soft-
ware, communication tools or constant human intervention, nowadays, one can easily:

• check a mountain hut webcam and decide whether it is a good day for hiking;

• check a seafront webcam and evaluate how much is the beach crowded;

• check webcams placed on different roads and decide to avoid routes affected by
heavy traffic.

Although the webcam industry found a commercial niche in the security and surveil-
lance business, one of the most popular webcam use cases is providing uncontrolled
public access to the data. The low cost of the devices and the easiness of the deploy-
ment (a power and internet connections are sufficient) contributed to the growth of the
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network of the publicly available webcams. Numerous public webcams are placed out-
doors and capture snapshots of the environment. There are several reasons a private
citizen or an entity would install a public outdoor webcam for, among which:

• Commercial and touristic: a strategically placed webcam can provide informa-
tion regarding the touristic attractions and points of interest, reveal the potential
beauty of the place and attract tourists [173].

• Meteorological: visual feed from a webcam can provide information regard-
ing the current meteorological conditions, such as the presence of fog, rain or
clouds [128].

• Environmental: webcams can be also used by scientists in environmental use
cases, providing information regarding the vegetation, snow and water phenom-
ena [14].

• Ecological: webcams are an efficient non invasive tool for ecological and wild
life monitoring [176].

Although webcams appeared on the market before the advent of the social web, we ar-
gue that, nowadays, public webcams actually represent the social web paradigm: thanks
to the decreased costs, common users deploy the webcams and thus become providers
of the web content. Furthermore, the idea of webcams as providers of data only “for
human consultation” is recently being abandoned, thanks to the advances in image pro-
cessing and computer vision fields.

2.1.5 Mobile Web

The mobile web, i.e. the set of web-based services on mobile devices, was developed
since 2007 with the raise of the consumer large multi-touch smartphones. Although
the formal definition of the term implies that the applications should be browser-based,
nowadays, the distinction between browser and native applications can be inapprecia-
ble. In this discussion we treat all mobile web-based applications equally.
While the social web changed the way the citizen science connects to the environmen-
tal monitoring, the advent of the mobile web, in turn, deeply changed the way peo-
ple interact on the social web. First, thanks to the mobile web people currently carry
web-connected devices on daily basis while being outdoor. Second, these devices are
equipped with new sensors, such as camera, compass, microphone and GPS sensor.
The reaction to these new portable opportunities was immediate, with the release of
numerous mobile applications for the environmental monitoring [57], and even frame-
works that enable people without programming skills to build mobile data collection
and management tools for the citizen science campaigns [99].
For example, project Budburst aims at gathering information regarding the flowering of
native plants to study the climate change [147]: mobile phones are used by volunteers
to upload timestamped, geotagged plant photographs. Other examples of using mobile
devices for collecting geotagged photographs are: online database for avian surveys
with access for citizens and scientists alike [170], water level monitoring [122], noise
pollution detection [124] and meteorology monitoring [98].
The mobile web had a strong impact also on the way users generate content on the
social web. First, the volume of the public social media increased due to the increased
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social networking (nowadays, more than half of Facebook users access the service on
mobile only [134]). Second, the user-generated content became richer thanks to the
increased amount of visual content (everyone has a camera at all times). Furthermore,
the content became partially real-time and accompanied by geolocation information.
The advent of the mobile web finally succeeded at creating the human-sensor network:
every socially-active citizen is carrying a mobile device that has been transformed into
a sensor. It can be argued that the mobile web finally enabled successful data crawling
from the social web: all of the works referenced in this chapter that passively mine
content from the social web for environmental monitoring purposes are subsequent to
2007.

2.2 Data Acquisition

Traditional environmental monitoring approaches collect observations from authorita-
tive sources, such as scientists and hardware sensors. The environmental monitoring
approaches that use the social web, instead, focus on non-authoritative sources, i.e.
social web users and web-connected devices deployed by social web users.
The data can be collected in two conceptually different ways: directly engaging the
users into providing the data or passively collecting the existing data. Due to the distinct
characteristics of the two approaches, we discuss them separately.
Section 2.2.1 describes the Active Data Acquisition approach, in which the users are
engaged and motivated to actively provide environmental observations. We also refer
to this approach as crowdsourcing or citizen science.
Section 2.2.2, instead, describes the Data Crawling scenario, in which the users are
unaware of the fact that the content they are publishing on the web is being passively
collected and treated as environmental observations.
Both active and passive data acquisition techniques are relevant to this thesis. While the
major contributions of the thesis are related to the automatic data crawling (described
in Chapter 3), the benefits of the direct user engagement and active data acquisition are
also studied, as Chapter 7 reports.
Furthermore, a growing number of initiatives is mixing, nowadays, both passive and
active data acquisition approaches.

2.2.1 Active Data Acquisition

The most intuitive way to approach the problem of collecting observations from a set
of users is to simply ask them to provide the desired observations. As simple as it
may sound, however, this involves two major issues. First, at least two communication
channels should be established: one that allows the scientists to communicate with the
users and one that allows the users to transmit the observations to the scientists. Second,
collecting observations requires time and effort, the users must be somehow engaged
in doing so and kept motivated to do it in time.
Table 2.1 reports numerous citizen science works in the literature that collect data for
environmental monitoring purposes directly from the users. The aforementioned table
aggregates the works by the corresponding environmental field and lists which commu-
nication channels and engagement techniques they use.

12
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Table 2.1: Examples of citizen science and crowdsourcing works that use a website for the collection
or display of the data (Website), use social networks to collect the data (SN), have a dedicate mobile
application for data collection (Mobile), use gamification techniques (Game) or explicitly describe
and discuss the adopted engagement strategy (Engage)

.

Water
Level

Noise
Pollution

Animal
Species

Air
Quality

Climate
Change Weather

[3
9]

[1
17

]

[1
22

]

[1
25

]

[8
]

[1
24

]

[3
7]

[1
15

]

[1
30

]

[1
43

]

[9
8]

Website X X X X X X
SN X X
Mobile X X X X X X X X X
Game X X
Engage X X X X

Communication Channels

There are several communication channels that are commonly adopted in active crowd-
sourcing campaigns.
Emails and Email Lists are among the oldest Web communication methods. As a mat-
ter of fact, they have been used since the earliest citizen science projects [87]. However,
emails pose several limitations, such as the impossibility of reaching new users and in-
efficient data collection. While nowadays mailing lists are still being used [117], they
are usually adopted as a non-primary communication method, which assists the com-
munication within an already engaged community.
Almost every citizen science project has a dedicated Website and several use it both
for the communication towards the users and for the data collection. Project websites
bring several advantages, such as an increased project visibility, richer content w.r.t. the
mailing lists, universal access from almost any web-connected device and wider pos-
sibilities in terms of community building (forums, member dedicated areas, etc.). The
observations collected through the websites can be highly customized and structured.
While almost every citizen science project makes a heavy use of the Social Networks
for communication campaigns, several use them also for the observation collection, as
Table 2.1 testifies. The main advantage of collecting the observations through the social
networks is the integration: no registration, dedicaded websites or tools are involved,
the users are just asked to perform the same actions they are used to: use a hashtag,
upload a photograph with a tag or publish a post on the project social page [44].
The most recent and, arguably, the most efficient method for observation collection is
the use of dedicated Mobile Applications. Not only it allows the users to submit the
observations in real-time without postponing the task, but it also provides sensors which
are usually not available during normal daily outdoor activities: camera, compass, mi-
crophone and GPS sensor. In fact, almost all of the recent citizen science projects offer
this solution (Table 2.1). Must be highlighted that, with the rise of Rich Internet Appli-
cations (RIAs), websites can be developed to be almost indistinguishable from native
mobile applications. For the sake of this discussion we consider these RIAs as mobile
apps, and keep the term website only for traditional non-RIA architectures.
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User Engagement

A perfect “recipe” for a successful engagement campaign does not exist: it is a heav-
ily domain- and case-specific challenge. Several works in the literature overview the
engagement techniques and study the success stories of citizen science projects. This
include both generic citizen science works [38] and those specifically applied to the
environmental monitoring [76, 118].
Luckily, environmental monitoring receives more and more public attention, and is
proving itself a field that is well suited for the user engagement. However, the difficulty
of engaging the crowd must not be underestimated. The general consensus is that the
communication is the key for a successful citizen science campaign: the citizens need
to share their findings, but they also need to receive feedback from the scientists. The
common conclusion is that the existence of feedback mechanisms is a key issue in any
public participation support system since it promotes citizens’ commitment to partici-
pate. Moreover, volunteers also need to communicate among themselves to support the
organization of monitoring activities [76]. Social networks have been found to have a
great power to generate public interest in a citizen science project [167].
The users can be also engaged through Gamification. Slightly adapting the definition
proposed by Zichermann and Cunningham [188] to our scenario, gamification is a pro-
cess of game-thinking and game mechanics to engage users in collecting environmental
observations. Table 2.1 shows citizen science projects that adopt gamification to engage
their users.

2.2.2 Data Crawling

The data crawling approach consists in passively acquiring content that has been pub-
licly published prior to its acquisition. In this scenario the data is provided unintention-
ally, i.e. the original intent for data publishing was not contributing to an environmental
monitoring campaign.
The advantages of this approach usually include the low cost of data acquisition and
the large volumes of available data. The major drawback, however, is the lack of the
control over the format in which the data is acquired. Social data is usually meant to
be consumed by humans, as such, it is highly unstructured: the effort of extracting the
necessary knowledge from the data tends to be higher than in the active data acquisition
approaches.
The claim that crawling the social web requires low effort may sound controversial,
since the desired querying conditions are not always supported by different social
sources. However, if the desired querying condition is not supported by the content
source, we relax the querying condition until it is supported and enforce the excluded
conditions a posteriori, as a processing step.
For example, one may want to retrieve only images taken in Arizona, US that contain
California Poppy flowers (a task actually approached in [178]). Although it is unlikely
that an API supports flower species filtering, the task can be seen as a simple crawling
task “retrieve all images taken in Arizona, US” followed by an image processing task
“remove all images that do not contain California Poppy flowers”. In case the API does
not provide a geolocation information, we can see the whole process as a crawling task
“retrieve all images”, followed by a first processing step “estimate the location of the
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photo, discard if not Arizona, US” and finally “remove all images that do not contain
California Poppy flowers”.
In this section we deal with the mere crawling of the data that can be easily managed
through the supported APIs, while the eventual processing steps are discussed in Sec-
tion 2.3.
The content that is publicly available on the social web can be generated either by hu-
man users or by Internet of Things (IoT) devices. In this section we cover both options,
illustrating the main social networks the user-generated content can be acquired from
and discussing the potential of the data crawling from the IoT devices (specifically
outdoor webcams).

User-Generated Content Sources

Social networks and social media platforms are the major sources of the user-generated
content. These platforms are reaching unprecedented volumes of data [104]. The type
of the content which can be extracted from these web platforms depends on the nature
of the platform itself and usually include one or more of the following: text, images,
videos and geographical information.
The choice of the best platform to crawl the data from depends on several factors: which
types of content the platform provides, what are the volumes of the content (in terms of
spatial and temporal density), the public accessibility of the content and its historical
availability. Here we provide a brief overview of the ones that are commonly used in
the environmental monitoring field.
We do not discuss the implementation aspects of the crawling, as they heavily depend
on a single software engineer preferences and the software architecture being used.
Generally, all the platforms discussed here provide a solid and mature API.
Twitter is one of the biggest microblogging web services. It focuses on short text
messages eventually accompanied by an image or a short video. Twitter is arguably
the most common source of textual user-generated content in the social data mining
field. There are indeed good reasons behind this: (i) the real-time nature of the con-
tent [151]; (ii) the high volume of the content [94]; (iii) the use of short text messages
and hashtags that facilitates the analysis, often avoiding Natural Language Processing
operations and allows to deal with tweets in different languages.
Some portion of the tweets is created using mobile devices and carry a geotag (es-
timated to be approximately 0.4 % of the overall tweets [7]). Furtheremore, an es-
timated 95 % of the data is not restricted to particular set of users and is publicly
available [174]).
The limitations of Twitter, on the other hand, include the partial availability of real-
time tweets (2 % of the overall stream for unpaid users) and the one week limit on the
historical tweet search.
Facebook is the social network that produces the largest amount of user-generated con-
tent in the world [175], but is extremely privacy-concerned. Consequentially, the public
API access is available only for the content published on public pages (i.e. accounts for
businesses, brands and organizations) and not on personal profiles. Users hardly report
environment observational data on organization pages, so Facebook is rarely used for
environmental data crawling. The rare exceptions include crawling posts from other
citizen science Facebook pages where volunteers publish unstructured environmental
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observations [44, 115].
Google Plus policies are friendly towards content crawling (95 % of the data is esti-
mated to be public [48]). Unfortunately, the volume of content on Google Plus is very
low. For this reason, nowadays, Google Plus is rarely used in the literature.
Although there are several other sources that are commonly used in the social web
data crawling, they are not discussed here because their nature and their content type
is not suitable for the environmental monitoring. These sources include article based
systems (such as Wikipedia, news websites, blogs and Question&Answer platforms).
These sources tend to be updated with less frequency, with high quality content, often
produced by several authors. It is difficult to imagine thousands of people rushing to
edit a Wikipedia article when their home town is hit by a snowfall, while this exact
behavior can be observed on microblogging platforms [100].

Visual Content

“A picture is worth a thousand words” - the famous idiom applies also to the world of
the social web media. An outdoor photograph attached to a user post can often provide
more information than the accompanying text could ever do. The advantages of the
photographs w.r.t. to the text messages are the objectivity (messages are subjective,
while photographs do not lie), universality (no different languages) and the high level of
details. The information provided by a photograph can be rich enough to include details
the user did not intend to provide and even was not aware of: you hardly remember
the amount, size and pattern of the clouds that you observed a week ago, and you
do not tweet messages like “A beautiful day with a bit of stratocumulus lenticularis
clouds!”, however, almost any outdoor photograph you publish on the web does have
that information available.
Flickr and Instagram are two large photo sharing web platforms, having a user base in
the order of 120 M and 600 M users respectively [165]. Instagram, due to its viral and
social nature is mainly studied in the social research: improving communication expe-
rience [179], discovering online popularity and topic of interest [56], tracing cultural
visual rhythms [86]. Flickr, on the other hand, is used mainly to publish photographs
to a wide community, and is used by researchers to retrieve information that helps to
describe the world and its natural phenomena, such as snow cover [51,177], vegetation
cover [186], animal species monitoring [178] and land type estimation [112].
The social networks discussed earlier (Twitter, Facebook and Google Plus) also allow
users to attach photographs to their posts. However, Twitter, Facebook and Instagram
follow a strict policy of not preserving the photograph original size and erasing the
EXIF information. The EXIF container of a photograph carries important information,
such as geotag of the photograph, shooting timestamp, camera model and manufacturer.
This information is essential to applications that aim at extracting spatio-temporal envi-
ronmental information [54,186]. Google Plus has an image-friendly policy (preserving
photograph geotag, EXIF and even the original size if the users allows so), but once
again, the volumes of the content are very low. Thus, Flickr is de-facto the main source
of the photographs used in the social web data crawling applied to environmental mon-
itoring.
Video content is rarely used in the environmental monitoring, mainly due to the pro-
cessing difficulty. However, few pioneer works provided recent succesfull proof-of-
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concept studies, e.g., manually processing Youtube videos to improve flood assess-
ment [127,156]. Video processing techniques are more complex than image processing
ones, and, at the best of our knowledge, up to today no work automatically analyses
web video content for environmental purposes. The amount of the video content on
the web, however, is growing [26] and automatic video analysis is an active topic in
the scientific community [172]. We believe that analysis of the web video content can
become one of the frontiers of the social web environmental monitoring in next years.

Public Webcams

Humans are not the only providers of public social web content. Some of the web-
connected devices that collect and exchange data - collectively called Internet of Things
(IoT) - publicly upload text, images and videos.
While an IoT device can not be engaged in an active crowdsourcing campaign, the con-
tent it produces can be crawled in the same manner as the user-generated one. We focus
on a particular case of IoT devices, which are broadly used in environmental monitoring
research: publicly available outdoor webcams. These webcams are usually installed
by privates and organizations (ski resorts, hotels, restaurants, touristic agencies, etc.) as
an asset for tourists, meteorological scholars and general public. Webcams usually ex-
pose an image, which content is periodically changed (usually with frequency of once
every 1’ - 15’). The use of the webcam imagery brings several important advantages
and disadvantages, and can complement [50] or even substitute [46, 132] the use of
user-generated photographs.
The main advantage of the webcam imagery is the fact that, generally, webcams have a
static frame: their position does not change, niether does their direction. This poses an
enormous advantage for all the applications in which object identification and tracking
play an important role: one can assume that a non-moving object maintains its posi-
tion on all the images, and that any variation of the object on the image is due to the
movement of the object itself and not the one of the camera. These assumptions do not
hold with user-generated photographs, as their different orientation and position must
be considered. However, several works, including the one we present in this thesis, state
that an outdoor webcam should not be considered completely static, since the shaking
of the webcam can introduce non-negligible variations: this shaking can be neutral-
ized with different techniques of image registration using edge-based (Section 3.2.3) or
color-based [46] features. Another advantage of the webcam imagery is the high tem-
poral frequency: a single webcam can produce more images per day than thousands of
human photographers.
The disadvantages of the webcams, on the other hand, are:

• Bad quality content: while an uploaded photograph implies the fact that the pho-
tographer considered the photograph informative enough, a webcam produces im-
ages at a regular frequency regardless of the visibility of the framed objects. A
large portion of the images acquired from the outdoor webcams can be unsuitable
for the defined purpose due to the illumination conditions, weather conditions and
camera malfunctioning: we estimate that 67 % of images acquired from webcams
placed in mountain regions in daylight hours lack from sufficient visibility due to
the fog, rain and snowfall (Section 3.2.2).
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• The location and optical properties of the camera are usually unknown. This pe-
nalizes the algorithms that need the position of the camera and optical details, e.g.,
estimating the Field Of View (FOV) of the camera. The position of each webcam,
so, must be determined manually [46] or by automatic outdoor image geolocation
algorithms [155].

• Lack of a centralized repository. Until the URL of a public webcam is explicitly
provided or mentioned, its existence remains unknown.

Luckily, the last two problems are partially resolved thanks to websites that collect
outdoor webcam datasets. They store the URL, tentative GPS position and other rele-
vant information available for every webcam, and provide public API for the webcam
search. Two of the webcam datasets that must be mentioned are EarthCam12 and Web-
cams.travel13 (containing more than 52 k outdoor webcams).

2.3 Data Processing

Once acquired, the content must be processed in order to extract environmentally-
relevant spatial, temporal, or spatio-temporal measurements. The design of a social
web environmental monitoring campaign is a trade-off between the easiness of the con-
tent acquisition and the volume of the content on one side, and the required processing
effort on the other.
In this section we discuss the processing techniques that are adopted in the state-of-the-
art, based on the content type and the desired result. The described content processing
is not related to a specific acquisition type (active data acquisition or passive data crawl-
ing), it is common, though, for the passively crawled data to require more processing
effort as it tends to be less structured.

2.3.1 Naïve and Manual Processing

Several works do not adopt sophisticated processing methods, mainly because the input
data is structured enough to directly provide the desired environmental measurements.
Examples of these scenarios include using a Twitter query and considering the daily
tweet counts as the output measure [36] or considering every tweet which is geotagged
and contains a specific keyword to be an environmental observation of a forest fire [40].
The absence of complex processing algorithms does not necessarily imply the bad qual-
ity of the work. The “simple is better” principle often holds, and the absence of process-
ing can be a result of a well performed citizen science campaign or an excellent choice
of the public content source [11, 100]. Processing can also be unnecessary if the final
goal of the work is the creation of a map or a list of the detected events without their
aggregation [32]. Furthermore, the need for processing algorithms often disappears in
citizen science scenarious when the input data is already formatted as necessary, for
example, if the users deliver final water level measures [43].
Another aspect that must be considered is the desired volume of the data: the less data
we are ready to settle with, the less processing effort we will likely need. If we consider
our problem to be a binary classification (relevant/non-relevant item), the more relevant

12http://www.earthcam.com
13http://www.webcams.travel
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data we are ready to “sacrifice” - the lower is the recall we are ready to tollerate, con-
sequentially, the precision of the classifier increases. We can obtain high precision
with naïve processing if we are ready to tolerate the low recall. To make an example,
assume that we want to analyze the photographs from Twitter containing the Califor-
nia Poppy flower. One possible crawling approach could be to search for tweets that
contain images and that include the #CaliforniaPoppy hashtag. At the date of writing,
#CaliforniaPoppy hashtag has been used in 15 tweets during the last week, 7 of which
contain an image. All the images depict the California Poppy (this is no surprise, the
hashtag is very specific). The price of using this approach, though, is the data vol-
ume: we end up with approximately one image per day. If this volume is enough for
our purpose - we can avoid any filtering. However, if the volume is not satisfactory,
we are forced to explore other scenarios: for example, crawling all tweets with im-
ages that include #flower hashtag (750 tweets in the last week, at the date of wriring)
and devise a complex content based image classifier that retains only California Poppy
photographs [178].
Manual data processing is also adopted in the literature [35, 89, 156] when the volume
of the data is small. These works usually present proof-of-concept studies, analyzing
the overall quality of the data. For example, Michelsen et al. [127] analyze Youtube
videos taken in the same location in different moments and manually determine the
observed water level, thanks to the graffiti on the cave wall.

2.3.2 Text and Natural Language Processing

Blindly trusting keywords and hashtags can induce ambiguity in the processing step.
For example, querying by hashtag #rain can sound like a safe way to obtain tweets
related to the meteorological event, however, one would end up with more than half of
the tweets related to the just-married Korean singer known by his stage name “Rain”.
Although this example holds only at the moment of the writing, and will not hold in few
days, it highlights the volatile, dynamic and unpredictable nature of the social media
content. Even when the tweet is actually speaking about rain (meteorological event),
there are no guarantees that it is actually a positive observation (“A lot of #rain here
in London today”, a negative observation (“Luckily no #rain today”) or a historical one
(“Unbelievable amount of #rain yesterday”).
In case the ambiguity of the textual data is considered to be high enough to jeopardize
the quality of the results, a relevance classification can be performed. Apart from the
simple techniques (such as regular expression rules [32]), machine learning approaches
are often used, learning the discriminative tags [186] or the entire space of statistical,
keyword and word context features [151].
If a mere relevance classification is not enough, and specific concepts and entities must
be extracted from the text, Natural Language Processing (NLP) and ontology algo-
rithms can be used as proved by the authors of [44] and [115], that automatically ex-
tract places, dates and names of animal species from observational posts of a Facebook
citizen science group.

2.3.3 Data Geolocation

The geolocation of the observations tends to be a binding factor in the works that study
the spatial dynamics of the concerned environmental phenomena. This information can
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Chapter 2. Background

be provided by the users during citizen science campaigns, by the social networks or by
the geotags contained in the photographs. There are, however, numerous scenarios in
which the data is not geolocated and the location must be estimated from the content.
Furthermore, several social sources are characterized by a small portion of the geolo-
cated content. If the amount of geolocated data is not enough - the location of the
remaining part of the content must be infered. For example, only 0.5 % of the tweets
are estimated to have a valid geolocation [7], thus, working with geolocated tweets only
is subject to this strong limitation. In fact, limiting the content to its geotagged subset
has been reported as the root cause of failed experiments [32].
Geolocation can be estimated thanks to the content metadata information (e.g. user pro-
file [27] and social relationships [116]) or analysing geographical terms and names [5],
tags [159] and keywords [28].
Image processing techniques also apply, in fact, content-based geolocation of the pho-
tographs is a hot topic in computer vision literature. Examples include the photograph
gelocation through image visual attributes and descriptions [33], scene features and
reconstructed 3D geometry [113].

2.3.4 Image Processing and Computer Vision

The processing of the visual content requires the adoption of the image processing
and computer vision techniques. The visual content is generally richer than the text,
however, the price to pay is the increased processing difficulty. The last years have
been characterized by impressive advances in image processing and computer vision
fields [166], which resulted in a number of tools that help social media researches to
extract knowledge from their visual data.
The most common scenario is to perform a binary content-based classification, in order
to decide whether a photograph is a valid observation of some environmental phenom-
ena or not. The classification could infer whether a photograph does or does not contain
snow covered areas [177], vegetation [186] or specific flower species [178]. Other use
cases include also cloud monitoring [132], plant phenology [77] and air quality [130].
In Section 3.1.2 we propose a binary image classifier that infers whether a photograph
contains a relevant mountain slope.
The classification is usually performed using supervised machine learning algorithms
(e.g., Random Forest [132], Convolutional Neural Networks [103] and SVM [186] with
color, shape and texture visual vocabularies [178]). The groundtruth data can be ob-
tained through manual annotation, crowdsourcing campaigns [50] or using remote sens-
ing (satellite) data [177].
In case a binary photograph classification is not sufficient and a quantitative mea-
sure must be assigned to a photograph, pixel-wise and segmentation techniques can
be adopted. These approaches are often used in snow and vegetation monitoring, with
segmentation tasks respectively identifying the amount of snow/vegetation visible in a
single photograph.
Specifically, snow cover estimation in mountain images is the primary use case of this
thesis, thus, in the remaining part of this subsection we review the background of moun-
tain image processing and image snow cover identification.
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Mountain Image Processing

The problem of understanding the position of mountain photographs w.r.t. the terrain
has recently attracted the attention of the research community.
Baboud et al. [4] propose an algorithm for photo-to-terrain alignment based on a Digital
Elevation Model (DEM). However, the method is not quantitatively evaluated on a large
dataset, and qualitative results are provided only for 28 photographs. The examples
reported in the paper reveal a very accurate alignment with the terrain, indicating the
use of a high-resolution DEM.
Other works approach a related problem, that is, the estimation of the geographical po-
sition of mountain photographs in the absence of geotags by means of content based
analysis [3]. However, they do not address how to determine the labels of the moun-
tain peaks. In addition, in some of the examples, the sky-to-terrain segmentation is
performed manually, before the photograph is processed by the algorithm.
Liu and Su [119] present an image content search method based on the shape of the
skyline. The idea is to match two photographs which contain the same peaks, similarly
to landmark search in urban environments. However, labeling of mountain peaks is not
supported.
Unlike [4], we provide a quantitative evaluation on a significantly larger dataset and
introduce different adjustments in the preprocessing and alignment algorithm, needed
when coping with photos taken in diverse weather conditions and in the presence of
other objects (trees, mountain slopes in the foreground, etc.). In addition, we adopt
a coarse resolution DEM, which is publicly available. Conversely, [3] is based on an
extremely precise DEM available only for Switzerland (swissALTI3D: 2 m spatial
resolution), and it is not obvious how similar results can be achieved in a different area.
In addition, some works propose methods in which human assistance is needed to per-
form photo-to-terrain alignment [49] [42] [84]. Due to these constraint, the aforemen-
tioned works are not suitable to the scenario addressed in this section, in which a very
large number of images are collected in uncontrolled conditions.

Image Snow Cover Identification

The idea of using visual ground photography for snow monitoring purpose is not new.
However, the state-of-the-art works often adopt a single camera or multiple cameras,
purposely positioned and calibrated by the authors.
Farinotti et al. [49] combined melt-out patterns extracted from oblique photography
with a temperature index melt model and a simple accumulation model to infer the snow
accumulation distribution of a small Swiss Alpine catchment. However, the whole im-
age processing pipeline was completely manual. It included choosing the photographs
with the best meteorological and visibility conditions, photo-to-terrain alignment and
snow covered area identification.
DeBeer et al. [42] examined the spatial variability in areal depletion of the snow cover
over a small alpine cirque of the Canadian Rocky Mountains, by observing oblique
terrestrial photography. The images, obtained from a single ad-hoc installed digital
high-precision camera, were projected on an extremely precise DEM with 1 m reso-
lution. The orientation parameters were found manually for each image. The pixel
level snow classification was obtained by means of a fixed threshold. This was possi-
ble because images were taken in short range, so that snow and terrain could be easily
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distinguished based on brightness alone.
A similar problem was addressed by Hinkler et al. [84], in which the authors derived
snow depletion curves by projecting photographs obtained from a single ad-hoc cam-
era onto the DEM. In this case, though, pixel-level labeling of snow was performed
automatically exploiting RGB color components.
Other works adopt multiple cameras, which are positioned by the authors to monitor a
specific area of interest. Laffly et al. [106] combined oblique view ground-based pic-
tures together with satellite images to produce a high temporal resolution monitoring
of snow cover. The experiments were performed in the basin of a small polar glacier
in Norway (10 km2), with 10 digital cameras each producing 3 images per day. The
described method required a manual installation of 2 m× 2 m orange flags on the snow
at regularly spaced intervals to provide artificial reference points for photo-to-satellite
matching. The identification of snow covered areas on the images was performed man-
ually.
Garvelmann et al. [64] exploited a network of 45 spatially distributed cameras to obtain
measurements of snow depth, albedo and interception in a German mountain range.
Even if the results are highly correlated with ground-truth data, the proposed approach
required the installation of wooden measurement sticks with alternating bars and plastic
boards for compensating the different illumination conditions of each camera.
Other works investigated the benefit of using terrestrial photography for both short-
range and far-range views [140]. In case of short-range, analysis measurement sticks
were installed in front of the cameras, whereas in the far-range the authors did not iden-
tify snow, but simply compared the photographs with simulations of snow distribution.
Floyd et al. [59] monitored the snow accumulation during the rain-on-snow events by
means of the acquisition of photographs from cameras designed and positioned ad-hoc.
This approach required the installation of measurement sticks within the camera field of
view. The analysis was performed on a short-range view, so that a fixed pixel intensity
threshold was enough to perform pixel-level snow classification.
The problem of automatically detecting the presence of snow at the pixel-level was
addressed in just a few works. As mentioned above, both [42] and [59] perform a sim-
ple thresholding of brightness values. However, this is applicable only to short-range
views. Full color information was exploited in [84], which proposed a snow index
based on a normalized difference between RGB components. Similarly, [153] pre-
sented a simple algorithm for pixel-level snow classification based on thresholding the
blue color component, in which the threshold is determined automatically based on the
statistical analysis of the image histogram. The method produced excellent results (pre-
cision above 0.99), but was tested in somewhat controlled conditions, with short-range
views without shadows and cloud occlusions. More recently, Rüfenacht et al. [149] pro-
posed a method based on Gaussiam-Mixture-Model (GMM) clustering of RGB pixel
values, designed to work for long-range images of mountain slopes. All these methods
( [84], [153], [149]) are included in the experimental evaluation in Chapter 5.

2.3.5 Data Aggregation

Once the observations are processed, they must be aggregated together in order to pro-
duce a homogeneous spatial, temporal or spatio-temporal trend. The aggregation and
the interpolation of the data is necessary for several reasons: reaching consensus if
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more observations refer to the same spatio-temporal item; providing an estimation for
missing data; fixing the erroneously predicted data.
Geospatial interpolation is a broad topic with a lot of relevant literature [171]. The tech-
niques adopted in the works that analyze the social web for the environmental monitor-
ing purposes vary from simple voting [186] and Kriging [132] up to applying a Kalman
filter [151] (considering every observation as a single sensor) or even training machine
learning models, that given a histogram of the confidences of the corresponding obser-
vations produce a final decision on the phenomena [177].
Sometimes, instead of a spatio-temporal aggregation, spatial and temporal aggregations
are performed separately [40]. Other examples do not perform any aggregation when a
simple map or list of all the observations is desired [32].

2.4 Evaluation and Experimental Settings

A solid experimental setting is crucial to any robust scientific work. In this section
we describe how the works that extract data from the social web for environmental
purposes evaluate their performance. Furthermore, we describe the novel evaluation
approach that we propose in this thesis, which goes beyond the assessment of the data
correctness and actually assesses the data usefulness.

2.4.1 Input Validation

Prior to the design of the processing steps, the input data should be validated. This
involves assessing the fact that the input is available, correct and sufficient. While such
assessment is often implicitly took for granted (the fact that the results are good implies
that the input was also good), some works focus on this point explicitly.
For example, Hyvärinen and Saltikoff study whether visual social media content can
be used for the monitoring of the meteorological events, such as snowfall, rain and
hail [89]. The goal is not to prove that the social data is useful, but to prove that
it has the potential for being useful. Among other evaluations the authors show two
photographs retrieved from Flickr that contain hail on the ground and compare them
with official meteorological observations, concluding that Flickr photographs are able
to detect hail. While such research question may seem silly to some data scientists
(e.g., “Is it not obvious that geotagged Flickr photograph depicting hail corresponds
to an actual hail?”), the authors answer to several questions that should not be taken
for granted, such as whether Flickr photographs are timestamped precisely enough and
whether they are geolocated with a sufficient accuracy.
Other examples study whether the available volume of the input data is enough, for
example, analyzing the temporal trend of tweets related to particular vegetation species
in order to assess the feasibility of using Twitter to monitor these species [36].
Such works are usually specific to a precise use case and act as the pioneers, encourag-
ing the future research.

2.4.2 Processing Accuracy

Section 2.3 describes a wide range of processing techniques that can be adopted. These
processing techniques are meant to automatically extract some knowledge from the
input social media, that would be hard, costly or impossible to extract manually. The
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success of the environmental monitoring approach strictly depends on the ability of
the underlying processing methods to perform their job, and the performance of these
methods should be properly assessed.
These evaluations are agnostic w.r.t. the environmental nature of the overall approach
and are objective, since they report the capability of the methods to obtain accurate
results, where the accuracy of the result is an objective fact. For example: recogniz-
ing which plant species a Facebook post is talking about [115], identifying similar tree
species from a set of photographs [110], identifying which photographs [177] or even
which pixels of a photograph correspond to snow (Chapter 5) or vegetation [108] sce-
narios.
However, the fact that the extracted knowledge corresponds faithfully to the one de-
picted in the social media does not imply that this knowledge is correct in terms of the
real world environmental phenomena. For example, Chapter 5 proves that the approach
it proposes is able (most of the times) to detect whether a photograph does or does not
contain snow. What it does not prove, though, is that the same approach is able to iden-
tify snow presence in a certain geographical region at a certain time: this is proved by
experiments proposed in Chapter 6.

2.4.3 Result Correctness

The next step in the evaluation ladder is to actually assess the capacity of the proposed
methods to obtain specific spatial or temporal environmental knowledge that is objec-
tively correct. For example, while presenting an approach for the continental-scale
cloud map identification from public webcams [132], the authors prove that the cloud
maps they obtain are correct. The correctness is measured against an authoritative
source: cloud maps obtained from remote sensing (satellite) data.
The comparison with the remote sensing is very common in the estimation of large
geographical scale environmental phenomena. Beside the cloud presence, the satellites
provide a wide range of maps that can be used as groundtruth: snow [178] cover, vege-
tation cover [177] and even fires [11]. Other types of authoritative data to compare the
results against include meteorological data, such as maps of weather events [32], snow-
fall and rainfall statistics [100] or snow depth automatic measurement stations [50].

2.4.4 Result Usefulness

The assessment of the result correctness described in Section 2.4.3 is - de facto - the
state-of-the-art evaluation, required for a work to be considered a solid study of the
social web content applied to environmental monitoring. However, these evaluations
objectively prove the capacity of the proposed techniques to replicate the authoritative
data, but do not prove the utility of doing so.
This phenomena puts the researchers in a vicious circle: the environmental monitoring
community wants a proof that the proposed data is useful w.r.t. the existing sources, so
it must be novel data not available from authoritative sources; however, proving that the
proposed data is correct requires a comparison with an already existing ground truth.
A mitigation of this problem is one of the major contributions of this thesis, as de-
scribed in Chapter 6. The key idea is to adopt a data-driven environmental model that,
among other inputs, relies on the authoritative (government) inputs. Such model must
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have a well defined performance metric, and the assessment of the usefulness of the
results is performed by testing how the performance of the model varies when the input
is complemented with the environmental results obtained by social media processing
pipelines.
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CHAPTER3
Mountain Image Acquisition

In this chapter we describe the acquisition of visual content depicting mountain land-
scapes, which can be obtained from two different sources: user-generated photographs
posted on social media and image feeds from outdoor webcams. These sources have
complementary characteristics. On the one hand, photographs are taken from differ-
ent locations, possibly capturing different views of the same mountain peak, but their
density varies significantly depending on the location (with higher spatial density near
popular touristic destinations) and time of the year (with higher temporal density during
holidays). On the other hand, webcams capture the very same view at a high temporal
resolution. Although webcams are far more numerous than ground-based stations, they
monitor a specific location and do not extensively cover large areas.
Due to the distinct characteristics of photographs and webcams, we address them sep-
arately, designing two visual content processing pipelines tailored to the specific chal-
lenges posed by each source. To this end, we identify and retain for further analysis
only those images depicting a mountainous landscape taken in good weather condi-
tions (i.e., without occlusions due to clouds), for which it is possible to determine the
location and the pose of the shot, so as to automatically identify the positioning of the
image w.r.t. the terrain.

3.1 User-Generated Photographs

Flickr was selected as the data source for user-generated photographs, because it con-
tains a large number of publicly available images, many of which have an associated
geotag (GPS latitude and longitude position saved in the EXIF container of the pho-
tograph). Furthermore, differently from the others popular social networks and image
hosting platforms (i.e. Facebook, Twitter and Instagram), Flickr conserves the original
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Chapter 3. Mountain Image Acquisition

resolution of the photographs and does not wipe out the information carried in the EXIF
container of the file. Both the resolution and the EXIF data (such as focal camera length,
model and manufacturer) are necessary for a successful photograph geo-registration as
described in Chapter 4.
Specifically, we crawled a 300 km × 160 km region across the Italian and Swiss Alps
(in the area of Pennine Alps, Lepontine Alps, Rhaetian Alps and Lombard Prealps,
approximately from 45.6N,6.7E to 47.1N,10.7E).

3.1.1 Crawling Photographs

The Flickr API allows to query the service using temporal and spatial filters. However,
each query is limited to return a maximum of 4 k records. The algorithm is designed to
start from the whole region of interest and recursively split it into subregions and then
perform separate queries. This is performed until the sub-regions have an image count
(information provided by the API) lower than the maximum allowed, so as to retrieve
all the publicly available images in the desired area.
The crawler was implemented as a stack containing regions to be processed. The pro-
cessing of a region consists in either splitting the region in subregions and insert them
onto the stack, or downloading the list of all available photographs and scheduling
them for the relevance classification. The stack is stored in the persistent memory, so
if the process restarts due to a failure - the crawling resumes from the last completed
operation. The crawling is perpetual and incremental in time, at each iteration the pho-
tographs that were uploaded since the last crawling iteration are retrieved. Even if the
system is down for an extended period - the first crawling cycle retrieves all the pending
photographs.
To understand the content of the crawled data we performed a study on all photographs
with a valid geotag within the described region in the temporal window between Jan-
uary 2010 and July 2014. This resulted in approximately 600 k photographs. The first
qualitative analysis of the photographs clearly showed that the portion of the positive
photographs (i.e. relevant for our purpose, containing a mountain slope) was extremely
low. Performing well (both in terms of precision and recall) on such an unbalanced
dataset would have required a classifier to have unrealistically high performance. We
observed that the negative (non-mountain) photographs consisting of indoor and short-
range outdoor photographs were located mainly in the cities and villages. Thus, based
on the intuition that a higher elevation implies higher probability of a photograph to
contain mountains, we performed a study on how the terrain elevation of the shooting
location influences the ratio between positive and negative photographs.
Several online elevation APIs (such as Google Elevation) exist, however, performing
online queries for each potential photograph would significantly increase crawling la-
tency. For this reason the crawler relied on an offline Digital Elevation Model (DEM),
namely SRTM3 Global1, reducing the elevation estimation time to a single access to
the main memory. The DEM can be interpreted as a regular grid covering the Earth
surface that provides the terrain elevation in each point of such grid.
In order to extract the elevation statistics, 6 940 randomly selected photographs from
those taken above 500 m elevation were processed in a crowdsourcing experiment2,

1www2.jpl.nasa.gov/srtm
2Using Microtask platform - http://microtask.com
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designed to collect three labels for each photograph. Specifically, each annotator was
asked to label each image by answering to the following question: “Does this image
contain a meaningful skyline of a mountain landscape?”. Since the concept of a mean-
ingful skyline could be ambiguous, we clarified the expected outcome of the task pro-
viding a tutorial with some selected images representing both positive (mountain) and
negative (small hills and other no-mountain) samples. The total of 20 820 annotations
were collected using an internal unpaid crowd. The labeling task required approxi-
mately 1” per image. The aggregated label was then obtained by means of majority
voting. The results of the crowdsourcing experiment are reported in Table 3.1. Ap-
proximately 23 % (3/3 and 2/3) of the images were classified as positive. Note that in
almost 13 % of the cases there was not full agreement among workers, due to the sub-
jective nature of the task. Figure 3.1 illustrates the number of positive/negative images
for each elevation range. Approximately 50 % of the images taken above 2000 m rep-
resent mountain landscapes and the number of negatives rapidly grows below 600 m.
Hence, we kept 600 m as the elevation threshold for the new images - all images un-
der such threshold were discarded. Specifically, 237 k of the originally crawled 600 k
images were retained.
In future, we plan to investigate whether, depending on the environmental use case,
other environmental variables (e.g. climate or ecological data, soil occupation) can be
more suitable for the photograph filtering.

Table 3.1: Aggregated outcomes of the photograph classification crowdsourcing experiment

Outcome Count
3/3 positive 1 184 (17 %)
2/3 positive 422 (6 %)
2/3 negative 483 (7 %)
3/3 negative 4 851 (70 %)
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Figure 3.1: Histogram of the number of positive/negative samples at different elevations.
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3.1.2 Photograph Relevance Classification

Once acquired, the relevance of every photograph must be estimated and the non-
relevant photographs discarded. We devised a binary image classifier and studied the
performance of a wide set of image descriptors and different feature encoding tech-
niques.
A fixed-dimensional feature vector, which summarizes the visual content, was com-
puted for every image in the dataset. Following the experiments proposed by Xiao
et al. [182] we evaluated the classifier performance with several local and global fea-
ture descriptors. The feature vector was then fed to a Support Vector Machine (SVM)
classifier and its performance was tested. The features descriptors are listed below.
Dense SIFT: we extracted SIFT descriptors from color images by testing different color
models at different scales {2

3
, 1, 4

3
, 5

3
}, sampled from a uniformly spaced grid with step

size equal to 6 × 6 pixels, obtaining around 105 descriptors for each image (the exact
number depends on the image resolution). The descriptors for RGB, HSV and opponent
color models were obtained as the concatenation of the SIFT descriptors of each color
channel. The Bag-of-Visual-Word (BoVW) [183] model was adopted, encoding the
feature vector as a histogram of visual words with a dictionary determined during an
offline training phase. Specifically, 102 · V SIFT descriptors were randomly sampled
from 100 randomly selected images, where V denotes the number of visual words in
the dictionary. The dictionary was learned using k-means, with k = V .
HOG2x2: as with Dense SIFT, Histogram of Oriented Edges (HOG) descriptors were
densely extracted, computing a histogram of oriented gradients in each 8× 8 pixels cell
and normalizing the result using a block-wise pattern (with 2 × 2 square HOG blocks
for normalization). We adopted UoCTTI HOG variant [55]. Similarly to Dense SIFT,
the BoVW model was adopted.
SSIM: self-similarity descriptors [160] were computed on a regular grid at 5× 5 pixels
step. Each descriptor was obtained as a correlation map of a patch of 5× 5 in a window
with radius equal to 40 pixels, quantified in 3 radial bins and 10 angular bins. Similarly
to Dense SIFT, the BoVW model was adopted.
GIST: the GIST descriptor [137] was computed as a wavelet image decomposition
(each image location is represented by the output of filters tuned to different orientations
and scales). We adopted the parameter setting proposed in [182]. The result was a
global image descriptor of 512 dimensions.
CNN: furthermore, we used a pretrained convolutional network for large-scale visual
recognition from [163]. The feature vector was defined as a concatenation of the output
of the last convolution layer and the vector containing all final label scores (a vector of
1 000 probabilities of the photograph to belong to a certain dataset label, such as race
car, volcano, mountain tent, etc.).
We also explored the effects of replacing the BoVW model with the Fisher Vector
encoding as described in [154]. We studied the Fisher Vector encoding applied with
different number of Gaussians, and with/without Principal Component Analysis (PCA).
In order to capture spatial clues, we adopted the spatial histogram approach proposed
by [78] and [109]. In addition to computing a Dense SIFT, HOG2x2 or SSIM V -
dimensional histogram for the whole image, we also split the image in three equally
sized horizontal tiles, and computed a V -dimensional histogram for each tile. Each of
the four histograms (total and three tiles) was L1-normalized and then stacked to form
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3.1. User-Generated Photographs

a 4V -dimensional vector, which was L2-normalized. The choice of horizontal tiles was
driven by the intuition that a generic mountain image is horizontally-symmetric (no dif-
ference between right and left), while vertical information is specific: there is usually
the sky in the upper part and the terrain in the lower part of the image. Analogously to
spatial histogram approach for local features, GIST descriptors were extracted from the
whole image and three images representing equally sized horizontal tiles, then concate-
nated. Figure 3.2 shows an example of the concatenation of 4 V -dimensional vectors.
A similar technique was applied in case of the Fisher Vector, concatenating four encod-
ings (all image features and one for each horizontal tile).

Figure 3.2: An example of the adopted spatial histogram approach concatenating 4 feature vectors.

Experiments

The feature vectors were fed to a SVM classifier using a χ2 kernel. In order to create
a balanced dataset, we retained all the 1 184 positive samples (voted 3/3) and ran-
domly selected the same number of negative samples. Then, we used random 1 658
samples (∼70 %) for training and validation and 710 samples (∼30 %) for testing. In
order to learn the optimal values of the parameters of the SVM classifier, we adopted
k-fold cross validation, with k = 5. Thus, the set of labelled samples for training
and validation was split in k disjoint sets. At each iteration, one set was used for
validation, while the others were used for training. We performed a grid search to
seek the optimal hyper-parameters C and γ of the kernel, each parameter in the set
{0.01, 0.033, 0.066, 0.1, 0.33, . . . , 10, 33, 66, 100}.
Table 3.2 summarizes the results obtained within the test set, by all listed feature extrac-
tors, with the best configuration in terms of C and γ of the SVM kernel. Performance
was measured using accuracy, defined as the fraction of samples for which the classi-
fier provides the correct label. For completeness, Table 3.2 also shows the values of
precision and recall. HOG2x2 obtains similar performance to Dense SIFT; both Dense
SIFT and HOG2x2 slightly outperform SSIM. All three local feature descriptors (Dense
SIFT, HOG2x2, SSIM) perform better than GIST. The poor performance obtained by
the pre-trained CNN can be justified by the fact that the definition of the positive im-
age is very restrictive, indeed, annotators were asked to label as positive only images
with “meaningful skyline of a mountain landscape”, as only such images are relevant
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Chapter 3. Mountain Image Acquisition

in out use case. We believe that the CNN pretrained on one thousand real world classes
was not able to distinguish well between scenarios like a far placed mountain skyline
(positive in our dataset) or a close view of a hill (negative in our dataset).
Table 3.3 shows the detailed results obtained by Dense SIFT (as the best performing
feature) within the test set, for different sizes of the dictionary V ∈ {2 500, 5 000}
and for each color model. In all cases, we obtained very good results, with the highest
value of accuracy (above 95 %) achieved by using the RGB color model, regardless of
the number of visual words adopted. We also computed the learning curves indicating
the accuracy for both the training and the test set, to exclude overfitting and verify that
no additional gains could be expected by further increasing the size of the training set.
In addition, we investigated the use of different vocabulary sizes (namely V = 1 000
and V = 10 000), which did not improve the accuracy. Furthermore, we investigated
the effect of the replacement of the BoVW model with the Fisher Vector encoding. We
used different number of Gaussians for the Fisher Vector (namely 16 and 128), with
and without applying PCA. None of the configurations of the Fisher Vector improved
the accuracy.
Finally, the images that are classified as positive are passed to the next step of the
pipeline, to register the image w.r.t. the terrain. This phase is described in Section 4.1.

Table 3.2: Results obtained by different feature extractors for the photograph relevance classification
problem (mountain vs. non-mountain).

Feature C γ Accuracy Precision Recall
Dense SIFT 3.3 0.66 95.1 94.0 96.3

HOG2x2 3.3 0.033 94.7 93.9 95.5
SSIM 0.66 0.33 93.0 92.5 93.5
GIST 0.33 1 87.61 82.64 95.21
CNN 3.3 0.1 80.0 72.8 95.8

Table 3.3: Results obtained by Dense SIFT for the photograph relevance classification problem (moun-
tain vs. non-mountain).

Color Model V C γ Accuracy Precision Recall
gray 2500 3.3 0.1 93.6 91.9 95.8
gray 5000 1 0.33 94.4 93.6 95.2
RGB 2500 0.33 0.01 95.1 94.7 95.5
RGB 5000 3.3 0.66 95.1 94.0 96.3
HSV 2500 33 0.66 94.2 92.0 96.9
HSV 5000 6.6 1 94.1 92.9 95.5

opponent 2500 0.66 0.66 94.0 92.0 96.6
opponent 5000 1 0.33 93.2 90.7 96.3

3.1.3 Crawler Web GUI

We developed an internal web platform to facilitate the debug, qualitative analysis and
system health monitoring of the crawler component. The platform allows to analyze
the spatial and temporal distributions of the crawled photographs (both classified as
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3.2. Public Outdoor Webcams

positive and negative), provides a heatmap GUI and a timeline histogram with spatial
and temporal boundary filters. For every query the resulting images can be visualized.
Furthermore, the platform acts also as a proxy for the experimental runs: given a set
of parameters (such as the dataset, feature set, SVM, BoVW and Fisher Vector con-
figuration variables) it runs the tests and produces the detailed report that includes the
algorithm performance, error metrics, plots and ROC curves. Figure 3.3 shows several
screenshots of the platform.

3.2 Public Outdoor Webcams

Outdoor webcams represent an additional valuable source of visual content that can be
exploited to monitor snow cover. The use of selected webcams that point to mountain
landscapes poses different advantages and disadvantages with respect to user-generated
photographs. On the one hand, the images captured by a webcam do not need to go
through the relevance classification pipeline described in Section 3.1.2. In addition,
most webcams capture images every 1 to 15 minutes, thus ensuring a very high tem-
poral density. On the other hand, the spatial density is lower than the one of user
generated photographs, because the deployment and maintenance of a webcam is more
time consuming w.r.t. publishing a photograph.

3.2.1 Crawling Mountain Webcams

In order to facilitate the integration of webcams into web pages, a public webcam usu-
ally exposes a URL which returns the most recent available image. Furthermore, web-
cam web servers tend not to respect standard HTML headers such as Last-Modified.
From implementation perspective, the webcam crawler loads the list of all the webcams
in the dataset at the boot and starts asynchronous infinite loops, one for each webcam.
Each loop iteration checks the corresponding webcam image and adds the image to the
dataset if it is changed w.r.t. the previous iteration, then idles for 1′ and starts over
again. Since downloading the entire image to check a webcam every minute requires
unfeasible bandwidth for a single server - the new/old image check is performed only on
a portion of the image. Namely, only the first 5KB of the image are downloaded, hashed
and compared to the previous webcam hash: if the hash is different, it is saved as the
new hash and the rest of the image is downloaded. Furthermore, after the crawler boots,
the first image acquired from every webcam is discarded, as there are no guarantees on
its timestamp (some webcams, due to failures, propose the same images for days or
months).

Populating Webcam List

The first version of the webcam list included ∼ 100 webcams manually found through
search engines using relevant queries and keywords. Then we used webcams.travel3

- the largest webcam directory containing more than 60 k webcams worldwide - and
queried for all the webcams in the Alpine area thorough the public API, resulting in
∼ 3.3 k webcams. We set up a crowdsourcing experiment where annotators were pro-
posed several images from a single webcam (to mitigate the fact that some of the im-
ages could have been affected by low visibility) and asked to classify if the webcam

3http://webcams.travel
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Chapter 3. Mountain Image Acquisition

Figure 3.3: Screenshots of the internal crawler web portal, including the spatial heatmap of photo-
graph distribution (top); temporal distributions of positive, negative and discarded photographs with
corresponding examples (middle); reports of the conducted classification experiments (bottom).

was framing mountains or not. Out of these ∼ 1.8 k webcams were classified as posi-
tive (contain mountains) and added to the webcam crawler. Figure 3.4 shows the map
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3.2. Public Outdoor Webcams

of all the webcams and the corresponding positions in our dataset.

Figure 3.4: Map of all the webcams in our dataset.

3.2.2 Bad Weather Filtering

Due to bad weather conditions that significantly affect short- and long-range visibility
(e.g., clouds, heavy rains and snowfalls), only a fraction of the images can be exploited
as a reliable source of information for estimating snow cover. In this respect, we man-
ually screened 1 000 images crawled from 4 webcams (Valmalenco - Italy, Bormio -
Italy, Metschalp - Switzerland, Hohsaas - Switzerland) in daytime hours (9:00 - 18:00)
and we observed that 67 % of them were not suitable for further analysis due to insuf-
ficient visibility.
Therefore, we devised a simple algorithm that automatically filters out those images
acquired during bad weather conditions. The key assumption is that, when visibility is
sufficiently good, the skyline of the mountain profile is not occluded. For each webcam,
we create a binary mask L with the same size of the acquired image. Such binary mask
indicates those pixels p = (x, y) that are in the neighborhood of the skyline. Hence

L(p) =

{
1 if ∃r ∈ L : ‖p− r‖ ≤ τ

0 otherwise ,

whereL denotes the set of pixels that belong to the skyline, ‖·‖ computes the Euclidean
norm. We empirically set τ = 0.04 h, where h denotes the height of the image in pixels.
Then, for each image acquired by a webcam, we compute its edge map E and we
binarize the result. We define a function f(·) that, given an image, returns the number
of columns that contain at least one non-zero entry, and the skyline visibility score as

v =
f(E · L)

f(L)
,

where · denotes the pixel-wise product between two images of the same size. The
value of v is in the interval [0, 1] and can be intuitively interpreted as the fraction of the
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Chapter 3. Mountain Image Acquisition

whole skyline that is visible in a given image. We retain for further processing only
those images for which v ≥ v̄, where v̄ is a threshold, which was set to 0.75, based
on the experiments illustrated below. The proposed method retains images in which
clouds do not occlude the skyline, although they might still be present and interfere
with estimating the snow cover. However, transient clouds are handled and removed by
the method described Section 3.2.3.

Experiments

In order to build a reliable test dataset, we manually labeled 1 000 images collected
from 4 webcams. Each image was manually tagged as “good weather”, if the entire
mountain area was visible and not occluded by clouds, or as “bad weather” otherwise.
The classifier was evaluated using a ROC curve, which shows the True Positive Rate
(TPR) vs. the False Positive Rate (FPR), illustrated in Figure 3.5. The temporal fre-
quency of the webcam image acquisition is high, so a large number of images is avail-
able. Hence, the choice of the threshold parameter v̄ was driven by the goal of having
low FPR. Namely, v̄ was set to 0.75 (corresponding to the point marked in Figure 3.5),
obtaining a TPR equal to 87.4 % at FPR 3.5 %.
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Figure 3.5: The ROC curve of the webcam image weather classifier when varying the threshold v̄ (posi-
tive stands for good weather).

3.2.3 Aggregating Daily Images

Good weather images might suffer from challenging illumination conditions (such as
solar glares and shadows) and moving obstacles (such as clouds and persons in front
of the webcam). At the same time, snow cover changes slowly over time, so that
one measurement per day is sufficient. Therefore, we aggregated the images collected
by a webcam in a day, to obtain a single representative image to be used for further
analysis. We adopted a simple median aggregation algorithm, which can deal with
images taken in different conditions, removing transient occlusions and glares. Given
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N good weather daily images I1, . . . , IN , we define the Daily Median Image (DMI) as

DMI(x, y) = med{I1(x, y), I2(x, y), . . . , IN(x, y)},

wheremed{·} denotes the median operator, which is applied along the temporal dimen-
sion. Figure 3.6 shows an example of a DMI generated by aggregating 11 images. The
aggregation attenuates the different illumination conditions and removes the persons
standing in front of the webcam partially covering the mountain.

Figure 3.6: An example of a Daily Median Image (bottom) performed on 11 daily images (top).

A challenging factor in the aggregation of the daily images lies in the fact that it is
common for the webcam orientation to slightly vary during the day. This phenomenon
might occur due to strong winds. The DMI of a webcam suffering from temporal
jittering results in a blurry image, unsuitable for further analysis. To handle this issue,
we performed image registration with respect to the reference frame of the first image.
A global offset is computed by means of the cross-correlation between the two skyline
edge maps. Each image is compensated by this offset before computing the DMI.
Figure 3.7 shows an example DMI obtained without (top) and with image registration
(bottom).

3.3 Dataset Spatio-Temporal Analysis

We analyzed the user-generated photographs and webcam images in order to get in-
sights on the spatio-temporal distribution of our datasets. Given the 300 km × 160 km
region the photographs were crawled from, we split it in a 5 km × 5 km step grid.
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Chapter 3. Mountain Image Acquisition

Figure 3.7: An example of a Daily Median Image (DMI) performed without (top) and with image regis-
tration (bottom).

We analyzed all the photographs and the images from all the webcams in our dataset
that are placed in the same region acquired in a 6 months period (from December 1st,
2014 to May 31, 2015). We define spatial coverage as the fraction of the grid cells
that do contain ad least 1 image in the whole period, and temporal frequency as the
average number of images contained in a non-empty grid cell in the observation pe-
riod. Table 3.4 reports the results obtained for both photographs and webcam images.
The results show that photographs have better spatial coverage, whereas webcams have
lower spatial coverage and much higher temporal frequency.

Table 3.4: Spatio-temporal photographs and webcam images distribution.

Spatial Coverage Temporal Frequency
Photographs 38 % ∼ 10
Webcam Images 19 % ∼ 104

The temporal frequency of the user-generated photographs was very low: an average
25 km2 region that has at least one photograph produces 1 - 2 photographs per month.
Clearly, this is insufficient for the large scale environmental analysis: in our use case
we aim at monitoring the snow cover at daily level.
Given the unsatisfactory amount of user-generated photographs, the environmental
experiments performed in this thesis (Chapter 6) use various webcams, but not pho-
tographs. However, all the processing algorithms that are presented in the next chapters
(Chapter 4, Chapter 5) are perfectly suitable both for photographs and webcam images.
In fact, such algorithms are evaluated on webcam images as well as on Flickr pho-
tographs. We argue that, since the volume of user-generated photographs on the web is
growing rapidly [102], the proposed techniques could be applied also to user-generated
photographs with successful environmental impact in the near future.
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Mountain Image Geo-Registration

The distance between the photograph shooting location and the framed mountains can
be very high, reaching easily tens of kilometers. Thus, the photograph geotag only is
not sufficient for the analysis of the depicted mountains. We need to understand which
portions of the image represent which mountains, ideally, identify the geographical
correspondence of each pixel of the image: estimate whether it is a terrain surface
or sky, what is the corresponding geographical area, what are its GPS coordinates,
altitude and distance from the observer. In computer vision, image registration is the
process of transforming different sets of data into one coordinate system. We call our
process geo-registration, i.e. transforming the photograph pixel coordinates into the
real-world geographical coordinates. State-of-the-art review specific to the mountain
image processing and geo-registration is proposed in Section 2.3.4.

Given a terrain model the photograph should be geo-registered with, from geometrical
perspective, three properties of a photograph must be estimated in order to understand
its position w.r.t. the real world: the shooting location (latitude, longitude and altitude),
the direction of the photograph (i.e. the orientation of the camera during the shot) and
the size of the photograph expressed in real-world units. The alignment (i.e. photo-to-
terrain position estimation) is the key element for a successful geo-registration. Fig-
ure 4.1 shows an example of such alignment.

Section 4.1 describes a heuristic algorithm for the photograph-to-terrain alignment that
is suitable for offline processing. Then, Section 4.2 proposes the supervised learning
variant of the former approach that can be performed in real-time on low power mobile
devices.
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Chapter 4. Mountain Image Geo-Registration

Figure 4.1: An example of a mountain photograph-to-terrain alignment. The green icon indicates the
shooting location, red lines indicate the projection of the photograph boundaries.

4.1 Heuristic Photo-to-Terrain Alignment Approach

The latitude and longitude of the photograph acquisition location are known since we
retain only images accompanied by a geotag. The altitude is estimated to be the terrain
elevation at the geotag location. This implies the assumption that the photographer/-
camera was not placed on a particularly high artificial construction or was not aboard
of an aircraft - generally safe assumption for non-urban outdoor photography.
The size of the image can be described through its Field Of View (FOV), i.e. the extent
of the observable world captured by the photograph, expressed in degrees. The FOV
can be calculated given some of the properties of the camera that are stored in the EXIF
container of the image.
The direction of the photograph, instead, is less trivial to estimate: although the EXIF
specifications contain a value representing the camera azimuth angle during the shot
(GPSImgDirection), it is usually not populated even by devices that have the capacity
to do so (i.e. cameras and mobile devices with magnetometer sensor). The direction of
the photograph must be inferred based on the image content. Such problems are usually
tackled thorough the identification of some objects that act as points of reference. We
propose a method for the direction estimation that identifies the only objects we can
be sure to be in the image: the mountains themselves. Luckily, there is no need to
deal with object tracking and movement problems, thanks to the fact that mountains
are among the most motionless and immutable objects on the planet.
Not all mountain features are well suited for the identification: the color features can
drastically change withing few hours due to a different illumination and the pattern fea-
tures can easily mutate as the vegetation is growing or snow is falling/melting. Hence,
we identify mountains and mountain slopes using only the edge features, as the moun-
tain profile is the only visual property that does not change in time. The idea is, so, to
discover the photograph direction by finding an orientation that matches the mountain
profile seen in the photograph with the mountain profile that should be seen in that
direction.
A Digital Elevation Model (DEM) is a regular grid of the terrain surface that specifies
the terrain elevation for every point of the grid. It can also be seen as a 3D model of
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the Earth (or its portion). Given an observation point, a 360◦ panoramic view of the
synthesized terrain (and the mountains) can be generated1.
Our algorithm searches for the best overlap between photograph mountain profiles and
the mountains on the rendered panorama. The algorithm can be used both to identify
geographical properties of the photograph pixels (e.g. generate a photograph depth
map that captures the distance from the observer for every pixel) or to identify the
position on the photograph of some geographical objects. We evaluate the algorithm
in the latter use case: given a geotagged photograph and the geographical position of
the mountain peaks, we estimate the position of the mountain peaks on the photograph.
The algorithm proceeds in four steps, which are illustrated in Figure 4.2:

• Preprocessing (Section 4.1.1) ensures that the photograph and the virtual panorama
are scaled correctly and can be successfully overlapped.

• Edge Extraction and Filtering (Section 4.1.2) extracts the relevant edges from
the photograph and the panorama.

• Global Matching (Section 4.1.3) finds the best matching between the two edge
maps.

• Local Matching (Section 4.1.4) locally adjusts the global matching through a
non-rigid warping.

4.1.1 Preprocessing and Scaling

In order to be able to find the correct overlap between the photograph and the panorama
the two should have the same scale, i.e. the same mountains should have the same pixel
size. Since the photograph and the panorama are taken/generated from the same loca-
tion, the angular size of the mountains on the photograph and the one of the mountains
on the panorama are equal by definition. Thus, the scaling problem consists in ensuring
that both the photograph and the panorama has the same ratio of angular to pixel size.
Let wp/wr be the photograph/panorama pixel width respectively, f be the photograph
horizontal Field Of View (FOV). Considering that the panorama horizontal FOV is 2π
by construction, we define k the factor by which the photograph should be scaled:

k = f
wr

2πwp
(4.1)

Figure 4.3 shows a simplified schema of a digital camera. The observable world is
projected though the lens to the sensor that has a certain size (sensor width and height)
and is placed at a certain distance from the lens (focal length). The angle formed
between the sensor edges and the center of the lens is, indeed, the FOV.
The focal length can be fixed or variable (on cameras mounting the zoom lens), either
way it is commonly stored in the EXIF container of the photograph in the corresponding
field (FocalLength). The sensor dimension, instead, is a physical property of the sensor
and the camera, but it is not stored in the EXIF. In our implementation we consult a

1During the early stages of this work we used an external web API for the panorama generation, kindly provided by
www.udeuschle.de. Later, we developed a proprietary efficient panorama generator that works both on desktop and mobile
platforms, using SRTM DEM (www2.jpl.nasa.gov/srtm) and OpenStreetMap (www.openstreetmap.org) data.
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Figure 4.2: Schematic example of the photograph direction estimation, including the input photograph
and the corresponding panorama, edge extraction and filtering, global and local matching. The
figure depicts only the relevant portion of the panorama due to the space constraints, however, the
panorama must be intended as a full 360◦ cylindrical image.

database of digital cameras2 and retrieve the sensor size by the camera model (both
2Kindly provided by www.digicamdb.com.
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Figure 4.3: Simplified schema of a digital camera (without considering camera lens distortion).

stored in the EXIF: Make and Model). Let l be the focal length and s be the sensor
width expressed in the same units as l, the computation of the scaling factor becomes:

k = arctan(
s

2l
)
wr
πwp

The scaling, however, does not provide a perfect consistency of the photograph w.r.t.
the panorama, since the photograph is affected by the camera lens distortion. Further-
more, the same distortion can not be artificially applied to the panorama because it is
dependent on the camera orientation, which is unknown. In order to mitigate this issue
we apply a reverse camera lens distortion to the photograph and only then proceed to
align it w.r.t. the panorama.

4.1.2 Edge Extraction and Filtering

The matching between the photograph and the panorama relies on the terrain profiles,
hence, we apply an edge extraction algorithm to both the photograph and the panorama.
Furthermore, we use edge extraction algorithm that assigns both edge intensity and
orientation to every pixel: this allows the matching algorithm to distinguish between
similarly- and differently-oriented edges.
In our implementation we use Compass [150] edge detector, that uses the distributions
of pixel colors rather than the mean. It searches for the orientation of a diameter that
maximizes the difference between two halves of a circular window. Compass edge
detector is superior to a multidimensional gradient method in situations that often result
in false negatives and it localizes edges better as scale increases.
However, the resulting photograph edge map contains edges that represent non-terrain
boundaries. We call them noise edges, since they do not correspond to any edge of the
panorama and thus contribute negatively to the correct match. The noise edges can be
found either below the skyline (foreground objects such as trees, houses, persons) or
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above the skyline (e.g. clouds). Furthermore, only boundaries that represent mountain-
on-sky and mountain-on-mountain contours are relevant for the matching, while all
other contours from non-terrain objects create noise edges. In fact, we observed that
the amount of the noise edges is, usually, at least an order of magnitude higher then the
relevant edges. Such amount of noise edges jeopardizes the whole matching and can
lead to a random direction estimation.
To mitigate this problem, first, a skyline detection algorithms is applied, and all edges
contained above the skyline are removed (considered to be clouds and other obstacles).
The skyline detection algorithm is an adaptation of [114]: using the already existing
edge map, we apply a dynamic programming algorithm that finds the path through the
image with the lowest cost. Second, a filtering procedure is applied to the edges of
the photograph, by decreasing the strength of the edge points as the vertical position
decreases.
The panorama does not contain noise edges by definition, so its edge map is kept intact,
furthermore, a morphological dilation is applied to emphasize the edges corresponding
to the skyline. The skyline of the panorama can be easily identified as the upper enve-
lope of the edge map, by keeping, for each column of pixels, the topmost edge point.
Figure 4.2 shows an example of the edge extraction from both the photograph and the
panorama together with the photograph edge filtering and the panorama edge dilation.

4.1.3 Global Photograph-to-Panorama Matching

The matching between the photograph and the corresponding panorama is performed
using a Vector Cross-Correlation (VCC) technique proposed in [4], which takes into
account both the strength and the direction of the edges. We observed that all the
photographs in our dataset has a close-to-zero tilt angle, so we assume the tilt to be 0◦.
This allows us to approach the matching problem as a 2D cylindrical alignment, instead
of a 3D spherical one. The cylindrical matching, in turn, can be implemented as a 2D
image matching in Cartesian space as Figure 4.4 shows.

Figure 4.4: The cylindrical matching (left) can be performed with a 2D cross-correlation in the Carte-
sian space (right).

The output of the VCC is a correlation map that, for each possible horizontal and ver-
tical displacement between the photograph and the panorama, indicates the strength of
the matching. The strength of a single matching is expressed as the sum of the angular
similarity operator between every pair of photograph and panorama overlapping edges.
Let (ρe, θe) be the polar representation of a single edge e, the angular similarity operator
between two edges is expressed as:

M(e1, e2) = ρe1
2ρe2

2cos2(θe1 − θe2)
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The cosine factor is introduced in order to handle the noise by penalizing differently
oriented edges: the score contribution is maximum when the orientation is equal, null
when the edges form a π

4
angle and reaches the minimum negative when the edges are

perpendicular. This penalization avoids that noise edges that randomly overlap with
terrain edges contribute in a positive way to a wrong match position.
This correlation matrix can be computed efficiently with the fast Fourier transform. Let
f and p be the 2D complex matrices of the photograph and the panorama edge maps
respectively, f̂ and p̂ their respective 2D Fourier transforms, the computation of the
VCC matrix becomes:

V CC(f, p) = Re{f̂ 2 ¯̂2p}

Global alignment can match mountain edges also below the skyline and is robust with
respect to skyline detection errors. However, the global maximum of the correlation is
not necessarily the correct match. This might occur, for example, when some edges of
the photograph happen to match the shape of different portions of the panorama. As
such, the top-K matches are further analyzed by the refinement step below.

Refining Global Matching

For each of the top-K candidate matches, we measure the Hausdorff distance [2] be-
tween the skyline edge points of the photograph and of the panorama, when the two
are overlapped at the candidate matching position. A scoring function is computed,
which combines the Hausdorff distance and the rank position computed by the initial
global alignment. The candidate with the highest score is then chosen as the best match
between the photograph and the panorama.

4.1.4 Local Photograph-to-Panorama Matching

Once the correct match between the photograph and the panorama is found, the ge-
ographical information of any photograph pixel can be estimated by considering the
corresponding pixel on the panorama. Vice versa, the mountain peaks can be projected
from the panorama to the photograph.
However, even the best match does not necessarily imply that the panorama and the
photograph can be overlapped perfectly. This is shown in Figure 4.5: first, the rightmost
part of the photograph does not match the actual skyline, due to the occlusion of a
mountain slope close to the virtual observer; second, it is not possible to simultaneously
match all the three peaks in the leftmost part of the photograph by means of a simple
rigid displacement. The differences between the panorama and the photograph edges
arise from several factors: the DEM used to generate the panorama has a finite spatial
resolution (namely 30 m in Figure 4.5) and carries some altitude error; the photograph
is affected by optical distortion while the panorama is not; the geotag of the photograph
contains some errors, thus, the panorama is not generated from the exact same location.
We mitigate this problem by proposing a local matching approach: we choose a set of
local points in which we want to further improve the matching. Every point is given
a certain radius of freedom of movement to find a better matching within its neigh-
borhood. For each local point, a separate VCC procedure is applied, similar to the one
used in the global alignment step. Specifically, for each point we consider a local neigh-
borhood centered in the location identified by the global alignment. In this way each
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Chapter 4. Mountain Image Geo-Registration

Figure 4.5: Example of a photograph-to-panorama matching. The three peaks can not be overlapped
perfectly by any global matching. Furthermore, the rightmost part of the photograph is different w.r.t.
the panorama: red areas 1 and 2 identify the same mountain edge on the panorama and photograph
respectively. This error is probably due to a wrong photograph geotag.

point position is refined by identifying the best match in his local neighborhood. Fig-
ure 4.2-bottom shows an example of a local matching of a single local point. Overall,
this approach can be seen as an application of a non-rigid warping of the photograph
with respect to the panorama for a better edge alignment.
Following the use case of mountain peak identification, we consider all the peaks iden-
tified by the global matching step to be local points and apply the local matching.

4.1.5 Mountain Identification Evaluation

We evaluate the performance of the alignment algorithm by estimating mountain peak
positions on a set of photographs selected from the ones crawled from Flickr, as de-
scribed in Section 3.1. We manually inspected a random subset of 200 photographs
and the corresponding panoramas generated based on the accompanying EXIF meta-
data to make sure that a plausible matching existed. Indeed, in some cases, we found
that the geotag was available but incorrect, such that the generated panorama could not
be matched to the photograph by any means. Finally, we retained 162 photographs in
our test set. Then, the ground truth data was generated by an alignment tool developed
ad-hoc, which allows the annotator to find the correct position of the photograph w.r.t.
the panorama and then to locally warp the image by overlapping each mountain peak
present in the photograph to the corresponding one in the panorama.

Measures

For each peak i = 1, . . . n, let (xpi , y
p
i ) and (xri , y

r
i ), denote the pixel coordinates in

the coordinate system of the photograph and of the panorama, respectively. When the
photograph is aligned with a displacement (∆x,∆y), we define the angular error in the
position of the i-th peak as

εi(∆x,∆y) =
√
dx(xri ,∆x+ xpi )

2 + dy(yri ,∆y + ypi )
2 ,

where
dx(x1, x2) = (360/wr) min(wr − |x1 − x2|, |x1 − x2|)

is the angular distance (in degrees) between two points along the azimuth, given the
circular symmetry of the panorama, and wr is the number of pixels corresponding to
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Figure 4.6: Performance of the photograph-to-terrain global matching and the refinement step.

360◦. Similarly
dy(y1, y2) = (360/wr)|y1 − y2|

where the same angular resolution in degrees/pixel is assumed due to small elevation
angles. When creating the ground truth, the images are warped so as to minimize the
average angular error

ε(∆x,∆y) = (1/n)
n∑
i=1

εi(∆x,∆y)

and to find the best displacement

(∆x∗,∆y∗) = arg min
∆x,∆y

ε(∆x,∆y)

Note that ε∗ = ε(∆x∗,∆y∗) cannot always be reduced to 0, due to the coarse nature of
the panorama.
Let (∆xGk ,∆y

G
k ), k = 1, . . . , K, denote the displacements of the top-K candidate

matches of global alignment. We define pGθ,K as the fraction of the photos in the test set
that have at least one candidate match displacement (∆xGk ,∆y

G
k ) lying within angular

distance θ from the ground truth (∆x∗,∆y∗). The refinement step selects (∆xRK ,∆y
R
K)

to be one of the displacements (∆xGk ,∆y
G
k ) (not necessarily the best). Then, pRθ,K is the

fraction of photographs for which the difference between (∆xRK ,∆y
R
K) and (∆x∗,∆y∗)

is below θ. Note that pRθ,K ≤ pGθ,K by construction, and the equality holds if the refine-
ment step is always able to identify the correct match within the top-K candidates.
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Chapter 4. Mountain Image Geo-Registration

The local alignment step computes a different displacement (∆xLi ,∆y
L
i ) for each of

the n peaks. Then, the average error is defined as

εL = (1/n)
n∑
i=1

εi(∆x
L
i ,∆y

L
i )

Results

Figure 4.6 shows the performance of the global matching on the whole dataset. It
can be observed that pGθ,K saturates when θ exceeds 3◦. Specifically, 69.6 % of the
photographs are aligned with an average error below 3◦, when considering the top-1
match. The fraction of correctly aligned photos grows to 81.8 %, 87.2 % and 91.2 %
when K is 3, 5 and 10, respectively. Diminishing returns in the average error are
observed when increasing K; thus, we selected K = 3 in the refinement step by trial
and error method, which results in 78 % of correctly aligned photos. The refinement
performance curve lies approximately halfway between the top-1 and top-3 curves of
global matching. This shows the benefit of introducing the refinement step and its
ability to pick the correct candidate from the top-3 candidates.
Taking a deeper look into the dataset, Table 4.1 describes the performance of the pro-
posed method depending on the different properties of the visual content, manually
annotated in two ways; first, we marked whether the photograph contains clouds (80
out of 162); second, we marked the presence of mountains close to the observer that
might occlude the skyline in the background (49 out of 162). The presence of clouds
is one of the main obstacles to be addressed. This is due to the fact that, when clouds
partially occlude the skyline, the outcome of the skyline detection algorithm might fail.
In addition, edge points due to clouds above the skyline might compromise the filtering
procedure, since the latter is based on the assumption that there are no edges above the
skyline. In the case of global matching, the fraction of correctly matched photographs
grows to 72.4 % and 82.9 % in the absence of clouds, when considering the top-1 and
top-3 candidates, respectively. Conversely, the presence of clouds leads to a reduction
of correct matches, which represent, however, at least 66.7 % of the cases. The perfor-
mance of the refinement step is also affected by the presence of clouds, being equal to
77.6 % / 72.2 % when clouds are absent / present. The impact of clouds is higher in the
refinement step than in the top-3 candidates global matching, since the former relies
heavily on the correctness of the estimated skyline.
Another issue lies in the presence of mountain slopes nearby the observer. Indeed,
in this case small errors in the geotag might lead to a panorama which does not cor-
rectly represent the viewpoint of the photograph. This situation is clearly visible in the
rightmost part of Figure 4.5. In the case of global matching, the fraction of correctly
matched photographs grows to 74.8 % and 89.3 % in the absence of nearby mountains,
when considering the top-1 and top-3 candidates, respectively. A similar behaviour is
observed for the refinement step (81.6 %).
Local matching further improves the matching between the photograph and the panorama.
This is measured by comparing the average angular error between the peak positions
after the refinement step, ε(∆xRK ,∆y

R
K), with the one obtained after local matching, εL.

In our experiments, we found that the error decreased from ε(∆xRK ,∆y
R
K) = 0.99◦ to

εL = 0.78◦, i.e., a 21 % reduction with the radius of the local neighborhood set to 7.5◦.
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pG3,1 pG3,3 pR3,3

Whole dataset 69.6 % 81.8 % 75.0 %

Absence of clouds 72.4 % 82.9 % 77.6 %
Presence of clouds 66.7 % 80.6 % 72.2 %

Absence of nearby mountains 74.8 % 89.3 % 81.6 %
Presence of nearby mountains 57.8 % 64.4 % 60.0 %

Table 4.1: Performance results decomposed by dataset categories and photograph content properties

Unfortunately, it was not possible to compare our results with those obtained by other
algorithms based on similar techniques, due to the lack of a publicly available dataset
and unspecified quantitative evaluation metrics [4]. Instead, [3] and [119] address dif-
ferent problems (respectively, geo-tag estimation and relevant image retrieval) and can-
not be compared directly with our work.

4.2 Mobile and Real-Time Photo-to-Terrain Alignment

One of the goals of this thesis is to study how the social engagement of the users can
benefit automatic web content analysis. To this end, we developed a user-facing dedi-
cated web platform and a public Augmented Reality (AR) mobile application that per-
forms real-time photo-to-terrain alignment. The idea is to entertain and engage the
users providing real-time information about the mountains being framed with the mo-
bile device in order to receive more mountain photographs and contributions. Among
other features, the AR application identifies the mountain peaks and displays their name
on the screen in real-time.
The heuristic/offline approach (described in Section 4.1), however, has several flaws if
used in a real-time scenario. While the architecture of the application and the engage-
ment aspects are described in Section 7.3, in this section we discuss the algorithmic
part of the mobile image alignment (and specifically mountain peak identification) task,
which requires significant adaptations of the heuristic/offline approach.
The main challenges induced by the mobile and real-time AR requirements include:

• Lower computational power w.r.t. offline architectures.

• Higher accuracy required: while it is tolerable for a data mining pipeline to misiden-
tify the photograph direction and the mountain peak positions (the image can be
discarded), an erroneous peak identification on a mobile application used live pro-
duces a disappointing user experience and the enriched image, once saved, can
not be easily fixed on a small screen device.

• Faster response time: peak positions must be overlaid in real-time and no over-
head for image processing initialization is acceptable, because mobile users do
not tolerate delays in the order of seconds.

On the other hand, a significant advantage of the mobile version is the availability in
real-time of the position and orientation sensor values, which, although subject to error,
provide an estimate of the panorama in view.
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The preprocessing of the image becomes a trivial task on a mobile device: the location
is provided by the GPS sensor, while the FOV is provided directly by the camera com-
ponent, eliminating the need for the FOV computation. The input image captured by
the camera is then scaled using Equation 4.1.

4.2.1 Edge Extraction

The former methods work well for offline peak detection, because they are applied to
pre-filtered images (fixed webcams have a view that does not change and can be manu-
ally checked once and for all for suitability; user-generated photographs go through an
offline binary classification step to retain only samples with obstacle-free skyline view).
But they are not well suited to a mobile AR scenario, where it is more likely that the
camera is used in adverse weather conditions and in presence of transient occlusions of
the skyline. In these cases, a cloud, a high voltage cable, or a roof would be recognized
as part of the mountain skyline; this would impact the heuristic edge filtering, i.e., a
cloud edge would be treated as skyline and the mountain slope below it would be con-
sidered as noise. Such erroneous classification would hamper the alignment with the
panorama and the positioning of peaks, yielding an unacceptable user’s experience.
Furthermore, although the proposed edge detector (Compass) is superior w.r.t. the naive
edge detection approaches, it is highly time-consuming (extracting edges from a single
mountain photograph takes minutes on top of the line mobile phones). The refining step
of the global matching algorithm is also computationally expensive, since it calculates
the Hausdorff distance for the top-K matching candidates.
In order to decrease the computational effort and increase the robustness even to small,
transient occlusions we devised the following variations:

• The edge map is extracted from the photograph with a simple and fast edge detec-
tion algorithm (Canny [20]).

• Instead of dealing with mountain-on-mountain edges, we consider only the skyline
edges (i.e. mountain-on-sky) to be relevant. Consequentially, the panorama edge
map is defined as the upper edge pixel of each column.

• Every edge of the photograph is fed to a supervised learning classifier that esti-
mates whether the pixel corresponds to a landscape skyline (positive) or not (neg-
ative). All negative edges are removed from the edge map. Furthermore, the
orientation of the edges is disregarded and the intensity of the remaining edges
is assigned proportionally to the probability of the edge to be positive (as esti-
mated by the skyline classifier). The skyline classifier is described in detail in
Section 4.2.2.

4.2.2 Skyline Detection

We developed an approach, which finds the landscape skyline of a photograph, i.e., the
set of all the points that represent the boundary between the terrain slopes and the sky.
Every edge pixel of the input image is fed to such binary classifier, and only positive
edges are retained. The landscape skyline classification problem can be formulated as
follows: given aN×M×3 patch of the input image centered in a pixel that corresponds
to an edge, estimate whether the central pixel represents a landscape skyline or not.
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We developed the classifier based on the application of a Convolutional Neural Network
(CNN) supervised learning algorithm. The choice of the CNN over other machine
learning algorithms (e.g. Logistic Regression, SVM, Random Forest) was motivated by
the ability of the CNN to learn the best features to employ, which avoids their manual,
and subjective, definition.
Recently, Convolutional Neural Networks have been demonstrated as an effective class
of models for understanding image content, giving state-of-the-art results on image
recognition, segmentation, detection and retrieval [97]. CCN architectures make the
explicit assumption that the inputs are images, which allows to encode certain prop-
erties into the architecture. These then make the forward function more efficient to
implement and vastly reduce the amount of parameters in the network [96].
A typical downside of using the CNN is the need of a very large amount of training
data. This downside was not an obstacle in our case, because the items to be classified
are small patches extracted from the input image edges; in our experiments, an aver-
age 640 × 480 pixel outdoor image contained tens of thousands of such edge pixels.
Furthermore, as described below, the pixel-wise dataset annotation was not required.
A CNN consists of a number of convolutional and subsampling layers optionally fol-
lowed by fully connected layers. In our network the input images are scaled to 640× 480
pixels and for each candidate edge pixel a 28 × 28 × 3 patch centered in the pixel
position is extracted. The adopted network topology is described in Table 4.2.

Layer Type Input Filter Stride Output
Layer 1 Conv 28× 28× 3 5× 5× 3× 20 1 24× 24× 20
Layer 2 Pool Max 24× 24× 20 2× 2 2 12× 12× 20
Layer 3 Conv 12× 12× 20 5× 5× 20× 50 1 8× 8× 50
Layer 4 Pool Max 8× 8× 50 2× 2 2 4× 4× 50
Layer 5 Conv 4× 4× 50 4× 4× 50× 500 1 1× 1× 500
Layer 6 Relu 1× 1× 500 max(0,x) 1 1× 1× 500
Layer 7 Conv 1× 1× 500 1× 1× 500× 2 1 1× 1× 2
Layer 8 Softmaxloss 1× 1× 2 1× 2

Table 4.2: Landscape skyline classifier CNN topology.

CNN Application

Normally, a machine learning algorithm for binary pixel-level classification would re-
quire us to extract a patch for every edge and perform a skyline/non-skyline classifica-
tion on that patch as shown in Figure 4.7.
Given a CNN, instead, we are able to remove the last softmax layer from the network
and apply the CNN to the whole image in one global convolution, resulting in an im-
pressive speed-up. In our tests a global CNN convolution took ∼ 300 ms on a Nexus 6
phone, while running independently every edge patch through the CNN took 5 s - 10 s,
based on the number of edges in the photograph.
The result of the CNN application is a matrix that assigns the skyline classification
score to every pixel of the image (except the few pixels on the border). Figure 4.8-
bottom-left shows an example of such matrix that may seem to be inaccurate, since the
sky pixels tend to have a positive score: however, we must consider that the CNN is
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Figure 4.7: Examples of patches centered in edge pixels extracted from a mountain image.

trained to classify only the edge pixels. While the skyline likelihood score is provided
for every pixel, the CNN is not trained to classify non-edge pixels as negative, thus, the
classification of non-edge pixels is random and irrelevant. In fact, this does not create
a problem, since we perform a pixel-wise multiplication between the skyline map and
the edge map, retaining only edges that are classified as skyline. This is clearly shown
in Figure 4.8 (bottom right).

Figure 4.8: Example of the CNN application including the original image (top left), the corresponding
edge map (top right), the CNN skyline score matrix (bottom left, white - positive, black - negative)
and the final skyline edges (bottom right, the scalar product of the edge map and the skyline score
matrix).
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Dataset Collection and Experiments

The required classification task is narrow and specific: we want to identify only land-
scape skyline pixels, consequentially, all the edges between a non-terrain object (arti-
ficial obstacle, living being, foreground vegetation) and the sky should be classified as
negative. Furthermore, we want the dataset to be representative of mountain views that
are normally seen by users using the application (containing obstacles, taken in adverse
weather conditions, etc.). Since we were not able to identify an existing dataset with
such characteristics, we created one specifically for this task.
Photographs dataset: we started with selecting∼ 8.2 k random images from our user-
generated mountain photograph dataset crawled from Flickr (Section 3.1). In order to
filter out photographs that were not relevant examples (a tiny portion of the skyline is
visible, extremely bad weather conditions with no mountain visibility, etc.), for every
photograph, the annotator was asked if the photograph represents a credible scenario in
which the mobile application could be used. If the annotator answered negatively - the
photograph was discarded, otherwise the annotator was invited to draw the landscape
skyline over the photograph. Out of 8.2 k photographs 1.7 k were discarded (20.6 %)
and 6.5 k annotated with the landscape skyline.
Since every skyline was annotated by a single user, we performed a second crowd-
sourcing experiment to ensure the annotation quality. The original photograph with the
annotated skyline in overlay was displayed to another annotator and asked if the sky-
line seemed correct, discarding the skylines that were marked as incorrect. The filtering
phase removed 0.55 % of the annotated skylines.
For each of the remaining photographs all the patches corresponding to the edge points
were extracted and classified automatically (positive if the point is located no more
than d pixels from any annotated skyline point, negative otherwise). With this semi-
automatic procedure, it was possible to generate the massive amount of pixel-level
training data necessary to train the CNN without actually performing a pixel-level an-
notation.
In order to avoid unbalancing the dataset and prioritizing the edge-rich images, we fixed
a threshold N and we kept only a random subset of N positive and N negative patches
from each image (or kept all the patches if less than N ). We set d = 5 and N = 400,
which resulted in∼ 5.7 M total patches (approximately half positive and half negative).
Selecting a random subset of the patches to form the test set would result in a strong
bias in the evaluation: statistically, for every patch in the test set there would be very
similar patches (extracted from the same photograph) in the train set. The capacity of
the classifier to estimate the skyline in novel illumination and terrain scenarios would be
compromised and the performance overestimated. Thus, we split the dataset at image
level: all the patches of a random subset of 65 % of the images formed the train set, all
the patches from a subset of 25 % of the images formed the validation set, while all the
patches from the remaining 10 % of the images formed the test set.
The performance of the classifier trained and tested on the aforementioned dataset re-
sulted in 95.25 % accuracy, and the visual inspection of test set image skylines was
satisfactory. However, during the field testing of the application we noticed that the
performance were very poor when the weather conditions were not perfect. After the
analysis of the dataset we realized that the problem consisted in the fact that Flickr
photographs tend to depict very good weather conditions (since users choose their best
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shots to be uploaded) so the CNN was not trained to deal with cloudy weather, which
is a common scenario in daily app usage.
Mixed dataset: in order to mitigate the good weather bias we enriched the dataset
with webcam images. For each webcam in our dataset we randomly extracted 2 - 3
images taken during daylight hours no closer than 2 month to each other, ending up
with a total of 4.7 k webcam images. Webcams capture images on a regular basis
independently from the weather, thus, this dataset extension allowed us to capture the
realistic weather scenarios in all the four seasons of the year. All the images were fed to
the same annotation pipeline (1.2 k were discarded due to extremely bad weather and
visibility) and their skyline extracted, resulting in 2.5 k annotated webcam images.
As a first experiment we added a small portion of the webcam images to the Flickr pho-
tographs dataset and replicated the classifier evaluation: the accuracy of the classifier
decreased, confirming that there was indeed a bias towards the good weather (experi-
ments on a dataset of 6.5 k photographs plus 0.9 k webcam images resulted in 92.4 %
accuracy). Trained on the full dataset (6.5 k + 2.5 k), however, the CNN was able to
adapt to the various weather conditions, obtaining a final accuracy of 94.6 %. Fig-
ure 4.9 depicts the ROC curve obtained by the final CNN configuration.

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7
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1

Figure 4.9: The ROC curve obtained by the pixel-level binary CNN classifier.

4.2.3 Global Matching

Since the orientation of the edges is discarded, a normal cross-correlation is used dur-
ing the global matching. The refinement of the global matching using the Hausdorff
distance is also removed.
Instead, we use the sensed orientation of the device to improve the performance of the
matching step. Since the match between the virtual panorama and image skyline is
approximate, each candidate peak position receives a score, which is an estimate of the
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confidence of the matching algorithm (the cross-correlation score). Such score can be
manipulated to take into account the agreement between orientation as sensed from the
compass and estimated by the orientation sensor of the device. For example, a kernel
function based on the difference between the sensed and estimated orientation can be
used as a scale factor.
Furthermore, the computation of the matching can be avoided in the areas of the image
in which the kernel factor is equal to zero, because those regions would provide an
unreliable peak position estimation. Such optimization decreases the computation time:
we assume a maximum 15◦ orientation sensor error and perform the photo-to-panorama
alignment not in the whole 360◦ panorama, but only in a 30◦ + FOV portion of it.
Thanks to the supervised learning skyline detection, the algorithm is able to deal with
very adverse conditions: Figure 4.10 shows an example of such matching. The in-
put image (top left) is taken from behind a window, the corresponding fragment of
the panorama (middle left) contains two mountain peaks (red arrows). The edges ex-
tracted from the input image (top center) contain an enormous amount of noisy edges
(mountain vegetation, houses, window frame) that would make the alignment with the
panorama impossible; the CNN filtering procedure (top right, green points) success-
fully retains only skyline edge pixels. The panorama skyline to match is extracted
simply by picking top points (middle center, red points); the alignment between the
two skylines (middle right) allows us to project the two peak positions on the input
image with high precision (bottom, augmented image).

Figure 4.10: Example of the peak identification in presence of many noisy edges.
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Non-Zero Tilt

The offline version of the matching algorithm assumes the camera tilt as negligible
(equal to 0◦) and reduces the problem to the matching between two cylinders, avoiding
the (much more costly) spherical match. This assumption proved viable experimen-
tally; mountain ranges are far from the position of the user and the error induced by a
moderate tilt is compensated by the skyline matching algorithm. On a mobile device
the assumption of zero or constant tilt must be relaxed, to cope with the movements
of the mobile device made by the user during a viewing or shooting session. To avoid
switching from 2D cylindrical to 3D spherical alignment, which would jeopardize the
response time, we designed an approximate approach: the input image is rotated by
the tilt provided by the orientation sensor, standard 2D alignment is performed, and
the final peak coordinates are rotated in the inverse direction at the end. This method
deals with tilting effectively and preserves the fast response time of the 2D alignment,
to obtain corrections to the 3D object positions.

4.2.4 Occlusion Management

The virtual panorama view contains only the peaks that could be visible by an observer
based on the elevation model; in the real image, virtually visible peaks can be occluded
by irrelevant objects, such as houses, people or even clouds or fog. The CNN network
used for edge filtering in the mobile AR scenario helps dealing with occlusions: the
network is trained to recognize the landscape skyline, i.e., the portion of the topmost
edges that actually represent the boundary of a mountain slope. This capability sup-
ports effective occlusion detection. Given a correct alignment between the landscape
skyline of the image and the virtual skyline of the panorama, the peaks that are actually
visible in the image will have fragments of the landscape skyline in their vicinity, while
occluded peaks will not. Thus, once the alignment is found, for each peak a visibility
score v is defined as the number of landscape skyline points located no farther than
d pixels from the peak position. A peak is considered visible if v ≥ v̄ (where v̄ is a
fixed threshold). Figure 4.11 shows an example of peak identification with 3 virtually
visible peaks. In this case, peak n.2 is occluded by the bell tower; indeed, besides a few
false positive pixels, the bell tower contour is absent in the overall identified landscape
skyline (top right). After the alignment, the neighborhood of each peak is analyzed
(bottom right): peaks n.1 and n.3 present a large number of landscape skyline points
(green dots) in their vicinity, while peak n.2 does not, so it is marked as non-visible and
not included in the augmented image (bottom left).

4.2.5 Experiments

The evaluation of the matching accuracy was performed on the VENTURI Mountain
Dataset [144]. The data set is a collection of 12 outdoor sequences accompanied with
GPS positions and orientation sensor logs, resulting in 3 117 frames. For each frame the
position of the mountain peaks is manually annotated. We measured the performance in
terms of average peak position angular error. The observed average peak position error
was 1.32◦, which is lower than the minimum error obtained by the authors of [144]
and defined suitable for mobile computation, namely 1.87◦. The average time currently
required by peak identification algorithm to process a frame is less than 400 ms. Such
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4.2. Mobile and Real-Time Photo-to-Terrain Alignment

Figure 4.11: Example of the peak identification in presence of occlusions.

timing is totally dependent on the architecture and characteristics of the device being
used, which in this case correspond to a Motorola Nexus 6 with Chipset Qualcomm
Snapdragon 805, CPU Quad-core 2.7 GHz Krait 450, GPU Adreno 420, RAM 3GB,
OS Android 5.1.1.
The average frame process time can be higher on lower-end mobile devices, however,
due to the architecture of the system that is described in Section 7.3, the on-screen peak
positioning is always real-time thanks to the sensor data, while the time complexity of
peak identifiers influences only the update frequency of corrected peak positions.

Figure 4.12: Example of the peak identifications based on the device sensor only (left) and alignment
approach (right). Images from the Venturi dataset [144].

Figure 4.12 shows an example of the mountain identification process in the mobile
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Chapter 4. Mountain Image Geo-Registration

AR scenario. Initially, the on-screen peak positions are determined only through the
orientation sensor data (left, red icons represent the predicted positions, arrows the real
positions and the angular error is reported). After the photo-to-panorama alignment is
performed, the peak positions are estimated more precisely (right).
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CHAPTER5
Estimating Snow Cover

Once a valid image that contains a mountain slope is retrieved and geo-registered, the
portion of the image that represents the mountain area can be analyzed w.r.t. the con-
cerned phenomena. In this chapter we describe a specific use case, which is snow cover
monitoring. However, similar techniques can be applied to different problems, such as
vegetation cover monitoring [186], water bodies [168], etc.
Given an image, our goal is to compute a Virtual Snow Index (VSI), which, thanks to
the orthorectification [120] of the photograph, can be correlated with the fraction of the
visible area covered by snow. The area of the image that corresponds to the mountain
surface must be divided into snow and non-snow areas. Although such segmentation
of a mountain picture is often a trivial task for a human eye, it represents a challenging
computer vision problem. As an example, Figure 5.1 shows several 7 × 7 pixel patches
extracted from a webcam image. If someone was asked to classify these patches as
snow or terrain areas without looking at the original image in the lower part of the
figure, one would probably state that the first 3 patterns represent terrain, and the last
4 correspond to snow areas. Looking at the whole image, though, it would be possible
to notice that, counter-intuitively, the patches n.2 and n.3 correspond to snow covered
areas, whereas patches n.5 and n.6 are extracted from terrain areas. This example shows
how the pixel-level snow classification heavily depends on the context of the image, and
not only on single pixel intensities.

5.1 Snow Mask Identification

In this section we illustrate and evaluate approaches for pixel-level snow classifica-
tion described in the literature. All listed methods adapt in an implicit or explicit way
to different illumination conditions: threshold derived from statistical analysis of the
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Chapter 5. Estimating Snow Cover

Figure 5.1: Several patterns of a webcam image. Patterns 1,5,6 represents terrain/vegetation area, while
patterns 2,3,4,7 belong to the snow covered area.

pixel intensities [153], empirically defined color bands [84], and probabilistic model
fitting [149]. Even so, all of them classify pixels as “snow” or “non snow” considering
exclusively their intensity values. Conversely, given the challenging nature of the task,
we propose and study the benefits obtained by a novel supervised learning algorithm
that considers also the context of each pixel. State-of-the-art review specific to the
image snow identification problem is proposed in Section 2.3.4.
Let I denote the input image and M the binary mask having the same size as I , where
M(x, y) = 1 indicates that the corresponding pixel of the image belongs to the moun-
tain area, and M(x, y) = 0 otherwise. The snow cover estimation is performed by a
pixel-level binary classifier that, given I and M as input, produces a snow mask S that
assigns to each pixel a binary label denoting the presence of snow.

S(i, j) =

{
1 if I(i, j) corresponds to snow covered area
0 otherwise

∀{(i, j)|M(i, j) = 1}

As a baseline method, we consider a naïve method, henceforth called Fixed Threshold,

which applies a simple threshold to a grayscale image, assuming that snow pixels are
brighter. Given an input grayscale image G and a threshold value t̄, the resulting snow
mask is defined as:

S(x, y) =

{
1 if G(x, y) ≥ t̄

0 otherwise
.

The methods for pixel-grained snow classification evaluated in this work include:

Snow-noSnow: Salvatori et al. [153] propose a pixel level snow classifier called Snow-
noSnow. It is based on the analysis of the blue component of an RGB image, because
the snow surface presents higher reflectance values in the blue wavelength range. The
authors claim that in 90% of the cases the histogram of any RGB component of a
mountain image is shaped as a bimodal distribution. Let B denote the blue component
of the image normalized in the range [0, 255] and BH the histogram of the intensity
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5.1. Snow Mask Identification

values of {B(x, y)|M(x, y) = 1} where M denotes the mountain area mask. The
classifier of [153] applies a threshold to each pixel of the blue component:

S(x, y) =

{
1 if B(x, y) ≥ t

0 otherwise
,

where t is equal to the first local minimum of BH greater then t̄, or t = t̄ if such local
minimum does not exist. The parameter t̄ represents the lowest empiric intensity value
of a snow pixel.

RGB Normalized Difference Snow Index (RGBNDSI): Hinkler et al. [84] describe
a classifier that applies a threshold not on a single color band, but on an empirically
derived band, called RGBNDSI. The idea is to find a fictitious band, which is related to
the Mid-Infrared (MIR) band used for Normalized Difference Snow Index calculation.
Such index is used for the snow cover analysis of satellite imagery [152]. Let R, G and
B denote, respectively, the three components of a true color image and let:

RGB =
(R +G+B)

3
,

RGBhigh =
B3

R3
G3,

τ = 200(a(avg(RGBhigh)) + b),

MIRreplacement =
τ 4max(RGB(x, y))

RGB4
,

where MIRreplacement is an empirical approximation of the MIR band, τ is an index
of the brightness of the image and RGBhigh is an empirically derived matrix. The
authors state that τ can be expressed as the mean of RGBhigh, but a further linear
transformation is applied to improve the performance in case of a large fraction of dark
pixels. The values of a and b are derived by the authors for the specific camera used in
the experiments, thus can not be applied to our context. For this reason, as suggested
in [84], we set τ = avg(RGBhigh). Finally, the derived color band to be thresholded is
defined as

RGBNDSI =
RGB −MIRreplacement

RGB +MIRreplacement

,

and the estimated snow mask is:

S(x, y) =

{
1 if RGBNDSI(x, y) ≥ t̄

0 otherwise
.

Once again, the threshold value t̄ is derived empirically. To this end, a statistical thresh-
old selection method proposed by Salvatori et al. [153] can be applied. The RGBNDSI
method is an extension of the Snow-noSnow method, which replaces the blue band with
an empirically derived one.

Gaussian Mixture Model (GMM): Rüfenacht et al. [149] propose a snow classifier
based on a GMM, where all the pixels to be classified are considered points in a 3
dimensional color space. A Gaussian mixture distribution with k ≥ 2 components is
fitted to the set of points {I(i, j)|M(x, y) = 1}. The Gaussian component with the
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Chapter 5. Estimating Snow Cover

highest mean intensity value is considered as the snow component, whereas all the
others are deemed non-snow components. Each pixel is then labeled as snow, if its
probability to belong to the snow component p(x, y) is higher than a given threshold t̄:

S(x, y) =

{
1 if p(x, y) ≥ t̄

0 otherwise
.

Being a parametric model, the GMM has several parameters that can be optimized.
Following the tests of combinations of number of mixture components, as well as type
of covariance matrix (spherical and full) performed in [149], we adopt the best reported
configuration (namely, XYZ color space, 3 components, spherical covariance matrix).

Supervised Learning Snow Classifiers: in addition to the methods previously pro-
posed in the literature, we propose supervised learning methods that, differently from
the traditional approaches, consider also the context of every pixel.
For each pixel, a feature vector of 33 elements is built and fed as input to a binary
classifier. Given an image I , represented with a 3 dimensional color space, the feature
vector of each pixel {(x, y)|M(x, y) = 1} is obtained as the concatenation of 3 feature
vectors, one for each color band Ik, k = 1, 2, 3. The 11 elements feature vector of
each color band includes: 9 values for the pixel intensities contained in the 3 × 3
neighborhood of the analyzed pixel, 1 value representing the global intensity GI , and 1
for the local intensity LI(x, y). The global intensity is defined as the average intensity
of all the pixels representing the mountain area:

GI = avg({Ik(xi, yi)|M(xi, yi) = 1})

The local intensity is the average intensity of the pixels within the mountain area, de-
fined as:

LI(x, y) = avg({Ik(xi, yi)|M(xi, yi) = 1 ∧ ‖(x, y)− (xi, yi)‖ ≤ d̄})

The extent of the neighborhood is conveyed by the radius d̄, which was set to 15 pixels.
We evaluated this approach feeding the feature vectors to three supervised learning
classifiers: Support Vector Machine (SVM) [187], Random Forest (RF) [85] and
Logistic Regression (LR) [111].

5.2 Snow Mask Post-Processing

As mentioned in Chapter 3, it is common for a webcam to face bad weather conditions.
If all the daily images are affected by low visibility it is not possible to produce the
Daily Median Image (DMI) and to estimate the snow cover. Also, if the DMI is gen-
erated with few images, it can still suffer from solar glares and occlusions. In order to
robustly estimate snow cover, it is possible to exploit the fact that such phenomenon
varies slowly in time and that the neighborhood pixels are likely to belong to the same
class (“snow” or “non-snow”). To this end, a post-processing method is proposed,
which allows us to estimate the snow cover also for the days where no input data is
available (due to missing data from the webcams or when all images are taken in bad
weather conditions). Let Si, i = 1, . . . , D, denote the snow mask of the i-th day, given
a number N of estimated daily snow masks observed in an interval of D ≥ N days.
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5.3. Snow Classification Performance Evaluation

We obtain all missing snow masks by linear interpolation. For each day i, such that Si
is missing, we consider the closest available masks, i.e. Si−k1 and Si+k2:

Si(x, y) =
k1

k1 + k2

Si−k1(x, y) +
k2

k1 + k2

Si+k2(x, y).

Once snow masks are computed for each day, we apply a median filter in the spatio-
temporal domain to each pixel of each mask, defined as

Ss,ti (x, y) = med{Si−t(x− s, y − s), . . . , Si+t(x+ s, y + s)},

where med{·} denotes the median operator, s and t are respectively the extent of the
spatial and temporal window.

5.3 Snow Classification Performance Evaluation

In this section we describe the experiments performed in order to evaluate the accuracy
of the proposed snow classifiers. We explore different datasets with different character-
istics and describe which methods perform well/poorly in which conditions.

5.3.1 Datasets

To evaluate the performance of the snow cover estimation methods we considered 3 dif-
ferent datasets. The Webcams dataset comprises the images collected from two publicly
available webcams placed in proximity of ground meteorological stations. This allowed
us to have a reliable source of data for the study of the consistency of the snow esti-
mations with respect to other measurements, such as air temperature. The PermaSense
dataset was collected by the PermaSense project1 at the Matterhorn field site and used
in [149]. The Photos dataset is a subset of randomly extracted user-generated mountain
photographs crawled from Flickr, as described in Section 3.1. Figure 5.2 shows a sam-
ple image from each dataset, highlighting with the opacity the region of interest (i.e. the
binary mask M ), while Table 5.1 reports the detailed information about the datasets.
For each dataset, a subset of the images uniformly distributed over time was selected,
and for each image the groundtruth snow mask was created by manually tagging all
the mountain area pixels as “snow” or “non-snow”. Each image of the Photos dataset
was included in the labeled image set. A total of 7 M pixels contained in 59 images
were manually labeled. Each dataset has its own specific characteristics and is studied
separately.
In order to normalize the testing conditions, all the input images were downsampled so
that at least one of the dimensions reached a fixed maximum value (w̄ and h̄ respec-
tively). A scale factor k = min(1,max( w̄

w
, h̄
h
)) was applied to each image, where w

and h are respectively the width and the height of the image. In our implementation we
set w̄ = 640 and h̄ = 480.
For each dataset, we defined Pi as the collection of all the pixels that were assigned a
label snow/non-snow. Pi was split in a subset of 80 k samples forming the test set, and
the remaining samples were assigned to the training set. In order to evaluate the ability
of the supervised learning classifiers to adapt to different imaging conditions, they were
trained using the data equally distributed from all the datasets.

1http://www.permasense.ch
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Chapter 5. Estimating Snow Cover

Table 5.1: Description of the datasets used for snow cover estimation experimental study.

Dataset Description Location # images
# labeled
images

Webcams Webcam #1: Single mountain, well de-
fined snow line

Bormio, Italy 343 10

Webcam #2: Plural mountain peaks,
snow at different altitudes

Valmalenco,
Italy 338 10

PermaSense Webcam framing a small portion of Mat-
terhorn mountain

Switzerland 2491 19

Photos Random sample of crawled mountain
photographs

Italy-Switzerland
border 20 20

Figure 5.2: Sample images of the four different datasets (from left to right: Webcam 1, Webcam 2,
Photos, PermaSense).

Results

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
r
u
e
P
o
s
it
iv
e
R
a
t
e

 

 

Fixed Threshold
Snow-noSnow
GMM
Random Forest

Figure 5.3: ROC curves obtained in the Webcams dataset by the different snow classifiers.
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Figure 5.4: ROC curves obtained in the PermaSense dataset by the different snow classifiers.
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Figure 5.5: ROC curves obtained in the Photos dataset by the different snow classifiers.
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Chapter 5. Estimating Snow Cover

Figure 5.3 shows the ROC curve obtained on the Webcams dataset. We report results
for the Fixed Threshold baseline, the Snow-noSnow classifier, and the GMM classifier
with 3 Gaussian components. We also include the results obtained by the Random For-
est (RF) classifier - as the best performing supervised learning method - which was
trained on equally balanced data from all datasets. The number of trees of the RF is 50,
all the variables are selected for each decision split. Dealing with images taken from
the same webcam, the Fixed Threshold method adapts efficiently to the common illu-
mination factors and performs better than the other non-supervised methods (including
RGBNDSI, not shown to avoid cluttering the figure). The RF method dominates the
others, showing the improvement obtained by exploiting the pixel context.
Table 5.2 shows the True Positive Rate (TPR) obtained by all classifiers when keeping
the False Positive Rate (FPR) fixed at 0.1. The GMM method was evaluated with 2
and 3 Gaussian components. The first column contains the TPR obtained without using
Daily Median Images (DMIs), as described in Section 3.2.3, and without the spatio-
temporal median filter. In this case, the image with the highest skyline visibility score
(described in Section 3.2) is used as the representative of each day. The second column
shows the TPR with the DMI. The third column specifies the TPR obtained with both
the spatio-temporal median filter and the DMI. The use of the DMI improves the perfor-
mance of all methods, while the spatio-temporal median filtering has a positive impact
only on those methods obtaining low TPR (GMM methods) and a negative impact on
more accurate methods (RF, SVM, LR, RGBNDSI, Snow-noSnow, Fixed Threshold),
due to over-smoothing. Namely Ss=1,t=1

i was computed, but the same trend has been
observed for different values of s and t.
Figure 5.4 shows the ROC curves obtained within the PermaSense dataset. Since the
images in the PermaSense dataset represent a fragment of the Matterhorn, it was not
possible to apply the skyline visibility score described in the Section 3.2. Hence, we
used the statistical methods for the bad weather image filtering based on color analysis,
proposed by the authors of the GMM method [149]. Table 5.3 shows the TPR obtained
for the PermaSense dataset keeping the FPR fixed at 0.1. All the classifiers, with the
exception of the RF, SVM, LR benefit from the spatio-temporal median filtering. Anal-
ogously to the Webcams dataset, all the methods benefit from the use of Daily Median
Images.
Figure 5.5 depicts the ROC curves obtained on the Photos dataset. The major differ-
ence with respect to the other datasets is the fact that the Fixed Threshold method is
dominated by all the others. These results are as expected, as the photographs were
taken in different locations, with different cameras and different conditions. The Fixed
Threshold method is not able to find a threshold value that is suitable for all images,
while the other methods are more capable of adapting to varying conditions. In this
case, we do not report the results as in Table 5.2 because median filtering and DMI can
not be applied to this dataset that contains spatially and temporally independent images.

5.3.2 Computing Virtual Snow Indexes

The final goal of the described pipeline is to produce snow indexes (derived form the
extracted snow masks) to be fed into environmental models.
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5.3. Snow Classification Performance Evaluation

Table 5.2: TPR obtained in the Webcams dataset by the different snow classifiers.

without Median
without DMI

without Median
with DMI

with Median
with DMI

Random Forest 79.7 93.5 (+13.8) 91.6 (+11.9)
SVM 81.8 92.6 (+10.8) 91.6 (+9.8)
Linear Regression 78.3 89.7 (+11.4) 88.8 (+10.5)
GMM3 73.7 79.2 (+5.5) 82.7 (+9.0)
GMM2 79.9 80.2 (+0.3) 83.3 (+3.4)
RGBNDSI 72.9 87.1 (+14.2) 87.0 (+14.1)
Snow-noSnow 68.6 81.7 (+13.1) 80.5 (+11.9)
Fixed Threshold 76.0 88.4 (+12.4) 87.6 (+11.6)

Table 5.3: TPR obtained in the PermaSense dataset by the different snow classifiers.

without Median
without DMI

without Median
with DMI

with Median
with DMI

Random Forest 83.8 90.2 (+6.4) 89.2 (+5.4)
SVM 84.7 89.2 (+4.5) 88.7 (+4.0)
Linear Regression 87.0 87.9 (+0.9) 87.2 (+0.2)
GMM3 70.6 77.8 (+7.2) 83.2 (+12.6)
GMM2 60.2 78.6 (+18.4) 84.7 (+24.5)
RGBNDSI 73.6 78.3 (+4.7) 84.7 (+11.1)
Snow-noSnow 59.7 64.1 (+4.4) 87.1 (+27.4)
Fixed Threshold 66.5 78.8 (+12.3) 82.3 (+15.8)

Physical Snow Indexes

Thanks to the image geo-registration and orthorectification (using the associated topog-
raphy data) it is possible to estimate the geographical properties of every pixel, such as
its corresponding terrain area and altitude. Consequentially, it is possible to compute
snow cover indexes that actually correspond to real-world measures. For example one
may calculate the exact snow covered area expressed in square kilometers or the snow
line altitude (the point above which snow and ice cover the ground) expressed in meters.
As a proof of concept we devised an index that depicts the latter example, estimating
the snow line altitude given a snow mask of a geo-registered mountain photograph.

Given a snow mask S, the area of the image covered by the mountain was split into N
horizontal bands. Let Ai denote the altitude of the lowest pixel of the i-th horizontal
band (where A1 and AN corresponds respectively to the lowest and highest altitude
bands). We define Snow Line Altitude (SLA) index a vector of N elements, where
SLAi is a number in the range [0, 1] that defines the fraction of the i-th horizontal
band containing snow pixels. In other words, SLA can be seen as the snow cover
percentage at different altitude levels. Given an SLA, we estimate the snow line altitude
L as L = Ak + SLAk(Ak+1 − Ak), for a value of k such that SLAk−1 < s̄ and
SLAk, . . . , SLAN ≥ s̄ where s̄ is the threshold that defines the maximum negligible
snow cover percentage.
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Chapter 5. Estimating Snow Cover

Non-Physical Snow Indexes

The snow cover indexes, however, can also not correspond to a specific real-world
measure. The absence of a intuitive representation of the snow index does not imply
that it is not useful. As long as the index is correlated with the snow cover dynamics, a
data-driven environmental model can benefit from being receiving such index in input.
To prove this thesis we propose several indexes and environmentally evaluate them in
Chapter 6.
From the snow mask S, the snow indexes are computed as follows. Let H denote a real
value map having the same size as I , whereH(x, y) denotes the altitude of the terrain in
the point that corresponds to I(x, y) (e.g., altitude in meters, that can be estimated from
the projection of the pixel on the DEM), for each (x, y) such that M(x, y) = 1 (i.e.,
for pixels representing points within the mountain region of the image). M and H can
be obtained during the mountain peak identification phase, because each pixel of the
photo gets aligned with a pixel of the virtual panorama; the latter carries information
not only about the edges of the mountains, but also about the type (terrain/sky) and
altitude of each DEM pixel. Let Ĥ denote the linearly normalized version of H , where
the minimum/maximum altitude corresponds to 0/1. Then, a virtual snow index for
an image I is defined as

∑
(x,y)|S(x,y)=1 V SI(x, y), where V SI is a virtual snow index

function that transforms a pixel position into a snow relevance coefficient. We tested
three different snow feature functions:

V SI1(x, y) = Ĥ(x, y)2

V SI2(x, y) =
Ĥ(x, y)

Nx,y

V SI3(x, y) = 1

(5.1)

where N is the number of horizontal bands in which we split the mountain area of the
image and Nx,y denotes the number of mountain pixels belonging to the same band of a
pixel I(x, y). The first snow index weights each snow-covered pixel quadratically w.r.t.
its altitude, the second one weights each snow-covered pixel linearly w.r.t. its altitude
and normalizes the score w.r.t. the number of pixels contained in the same band, and
the third one weights each snow-covered pixel uniformly regardless of its altitude. The
values for the three indexes are computed for each day and their operational value is
assessed in Section 6.3.
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Environmental Applications and Evaluations

In this chapter we describe the environmental evaluation of the virtual snow measures,
which are obtained from the geo-registered web images as described in Section 5.3.2.
Differently from the evaluations performed in the previous chapters, in which we study
the accuracy of the proposed methods (e.g. how often a pixel classified as snow does
actually represent snow), here we evaluate the practical environmental usefulness of the
obtained data.
The work presented in this chapter is the result of the collaboration with environmental
researches, co-authors of [23, 71].
A common approach for the environmental evaluation of non-authoritative data is to
compare it against an authoritative environmental ground truth. Examples include: (i)
comparing an estimated continental snow cover [178], vegetation cover [177] or cloud
presence [132] map against satellite observations; (ii) comparing detected meteorologi-
cal events against official government event lists [32]; (iii) comparing inferred snowfall
and rainfall measurements against official meteorological data [100]. Such evaluations,
however, are common to be subject of critics stating that the works propose a new way
to replicate already existing data, while there is no proof of its usefulness. While these
works usually provide justifications on why the new approach could be useful even if
the authoritative data already exist (e.g. complement areas where satellite data is miss-
ing [177], faster event identification [77] or even weakness of satellites to space debris
military attacks [177]) - the objective environmental utility of such data tends actually
to remain unproven.
This phenomena puts the researchers in a vicious circle: the environmental monitoring
community wants a proof that the proposed data is useful w.r.t. the existing sources, so
it must be novel data not available from authoritative sources; however, proving that the
proposed data is correct requires a comparison with an already existing ground truth.
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To mitigate this limitation, instead of evaluating the correctness of the obtained data,
we evaluate its practical usefulness. While the correctness is an objective quality, the
usefulness, by definition, is subjective and is related to a specific context and a use case.
Thus, we define a use case, in which we prove the authoritative environmental measure-
ments to be relevant (a data-driven environmental model, which operation is influenced
by snow dynamics). Furthermore, such model has a well defined performance metric.
By adding Virtual Snow Indexes (VSI) to the model we are able to evaluate the oper-
ational value of the VSI, i.e. the performance impact triggered by the usage of VSI as
input data.
Specifically, the operational value of the obtained VSI is assessed for a real world wa-
ter management problem in the snow-dominated catchment of Lake Como, a regulated
lake in Northern Italy, where snow melt is the most important contribution to the sea-
sonal storage. The VSI operational value is quantified by comparing, via simulation,
the performance of the lake operating policies designed using VSI and traditional snow
information, with the performance of the baseline policy obtained by regulating the
lake without snow information [70]. We define the model, apply an input selection pro-
cedure (in order to prove that the official snow information is actually relevant to the
model) and evaluate the impact of the VSI. Numerical results show that such informa-
tion is effective in extending the anticipation capacity of the lake operations, ultimately
improving the system performance.
This form of assessment provides an indirect validation of the utility of web and crowd-
sourced information as the VSI extracted from web mountain images and the traditional
observational data collected with dedicated tools are not always comparable directly
due to the difference in their physical interpretation and spatio-temporal resolution
(e.g., geo-located photos allow estimating the presence of snow, but not the physical
measures usually employed in snow process models, such as the snow water equiva-
lent).
The rest of this chapter is structures as follows: Section 6.1 introduces the snow process
monitoring problem and how it is managed in the state of the art; Section 6.2 reports
two preliminary qualitative experiments that study the correlation between the extracted
snow information and the authoritative data; Section 6.3 describes how we assess the
operational value (i.e. the environmental usefulness) of VSI; Section 6.4 provides the
details of the case study and Section 6.5 reports the results.

6.1 Snow Processes Monitoring

Snow is a key component of the hydrologic cycle in many regions of the world. De-
spite recent advances in environmental monitoring are making a wide range of data
available, continuous snow monitoring systems able to collect data at high spatial and
temporal resolution are not well established yet, especially in inaccessible high latitude
or mountainous regions.
Snow accumulation and melting are fundamental components of the hydrological cycle
in many watersheds across the world (e.g., [88, 129]). Approximately 40-50% of the
Northern Hemisphere is covered by snow [141] and snow plays a key role in mountain
areas, which, in Europe, account for 40% of the total surface [157].
In such contexts, an accurate characterization of snow availability and its evolution in
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time can be extremely valuable for a variety of operational purposes, from avalanche
prediction (e.g., [142, 158]), water systems operations through medium to long-term
streamflow forecast (e.g., [1, 181]), or drought risk management (e.g., [169]). The
projected temperature increase induced by climate change, with consequent reductions
of large volumes of snowpack and acceleration of the water cycle in many mountainous
areas, will further amplify the importance of better understanding snow dynamics [6,
105].
Snow processes are generally monitored through both ground monitoring networks
(e.g., [16,121]) and remote sensing (for a review, see [45,101] and references therein).
Yet, both sources have serious limitations in alpine contexts mainly related to the high
spatial (e.g., [133]) and temporal variability of snow related processes [10, 47, 72].
Ground stations are generally very coarsely distributed. Satellite products provide data
on a denser grid but are diversely constrained depending on the sensors installed [131].
High spatial and temporal resolution imagery (i.e., daily maps with spatial resolution
of about 500 m) can be derived from Moderate Resolution Imaging Spectroradiometer
(MODIS) products, which are, however, strongly affected by the weather, because op-
tical sensors cannot see the earth surface when clouds are present [139]. Space-board
passive microwave radiometers (e.g., AMSR-E) penetrate clouds but have coarse spatial
resolution (25 km). Finally, the use of active microwave systems (e.g. RADARSAT) is
so far limited to the detection of liquid water content.
The last few years have seen a rising interest in complementing traditional observa-
tions by using cameras and short-range visual content analysis techniques [14], which
allow improving the temporal and spatial resolutions for specific applications. Many
case studies showed that the use of one or several time-lapse cameras allows mapping
both the spatial and temporal patterns of a variety of snow characteristics, including
glacier velocity, snow cover changes, or detailed monitoring of snowfall interception
(see [140] and references therein). However, most of these systems generally rely on
cameras designed and positioned ad hoc (e.g., [84]), possibly including in the camera
view some specific objects, such as flags or sticks, which simplifies the calibration of
geometry and colors (e.g., [59,64,106]). In addition, the use of these cameras is gener-
ally very expensive and often requires intensive manual efforts in the image processing
phase. This latter includes a variety of crucial, time-consuming operations, such as
the selection of photographs with good meteorological and visibility conditions, the
photo-to-terrain alignment and orientation, and the labeling of snow covered pixels for
estimating the total snow cover (e.g., [42, 49]).

6.2 Qualitative Experiments

We performed two qualitative analyses of the virtual snow cover estimations to show the
consistency with other environmental variables. Section 6.2.1 reports tests performed
on non-physical virtual measures (VSI, defined in Section 5.3.2), while Section 6.2.2
reports tests performed on physical virtual measures (SLA, defined in Section 5.3.2).

6.2.1 Virtual Snow Index

A qualitative analysis of the Virtual Snow Index (VSI) can be performed by compara-
tively analyzing the trajectory of the VSI with respect to the snow height observations
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in the closest ground station or with respect to some physical variables closely related to
the snow dynamics. We calculated the VSI (using V SI3 as defined in Equation 5.1) of
a single webcam placed in Northern Italy. Figure 6.1 contrasts the historical trajectory
of the VSI in 2013 with the trajectories of the snow height observations (left) at Oga
San Colombano station that is located around 15 km far from the webcam, and with
the freezing level registered in the area (right). Despite some differences due to the
different locations of the webcam and the ground station, the first comparison shows
similar temporal patterns: most of the snowmelt occurs between April and first half of
May, followed by a late snowfall at the end of May; no snow is present since late June,
with the first snowfall of the next winter observed in early October. The comparison
between the VSI and the freezing level shows a negative correlation between low values
of freezing level from January to March as well as in November and December, which
are associated to high values of the VSI. On the contrary, the freezing level increases
in summer time in correspondence to low and zero values of the VSI. Moreover, it
is worth noting the consistency in the oscillations of the two trajectories especially in
winter time, when the snow accumulation is captured by increasing values of the VSI
associated to decreasing freezing levels and, viceversa, the snow melting corresponds
to decreasing values of the VSI and increasing freezing levels.
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Figure 6.1: Comparison of the trajectories during 2013 of the VSI with the snow height measured at
Oga San Colombano (left) and with the freezing level (right).

6.2.2 Snow Line Altitude

As a second test, we studied the snow line altitude, i.e. the minimum elevation at
which snow is present. We studied the snow line altitude dynamics for one of the
webcams used in the Webcams dataset (described in Table 5.1). We acquired 40 k
images during a two month period going from May 15th, 2015 to July 14th, 2015.
For 49 days (out of the 61 days of the monitored period) at least one good weather
image was retrieved and the corresponding Daily Median Image (DMI) was generated
as described in Section 3.2.3. Then, a snow mask was extracted for each DMI and the
missing day snow masks estimated by the interpolation described in Section 5.2. We
performed the photo-to-terrain orthorectification that allowed us to estimate the altitude
of every pixel on the webcam photographs. Finally, the Snow Line Altitude (SLA) was
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estimated for each observed day as described in Section 5.3.2.
Figure 6.2 shows the trend of the SLA (smoothed by a median filter with the window
size equal to 4 days), along with the air temperature registered by a nearby ground
station. It can be observed that the snow melting process was characterized by four oc-
currences when the snow level altitude increased abruptly. This behavior is correlated
with the four temperature peaks observed by the meteorological station. Furthermore,
the obtained snow line trend can not be computed through the traditional snow moni-
toring techniques, due to the low temporal frequency of the satellite imagery and the
low number of physical measurement stations placed at such high altitudes. This ex-
ample shows a possible application of the snow cover estimation based on public visual
content, and confirms the consistency of the proposed methods and metrics.
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Figure 6.2: The snow level altitude and the temperature trends during the observation period.

6.3 Virtual Snow Indexes Operational Value Assessment

The assessment of the operational value of virtual snow measures is done by comparing
the performance of alternative operating control policies for the regulation of Lake
Como. A control policy is a function returning the quantity of water to be released ut
at each time instant t = [0 . . . T − 1], as dependent upon an information vector zt, i.e.,
ut = p(zt). In our study we employ the following policies:

• Perfect Control Policy ( PCP ): an ideal policy used as an upper bound of the
system performance, which makes always the optimal decision based on perfect
knowledge of current and future system conditions.

• Baseline Control Policy ( BCP ): considers only limited information (day of the
year and current lake level).

Furthermore, we employ Informed Control Policies (ICPs), which are defined by ex-
tending the input zt of the BCP with the selected information, i.e., zt = (t, lt, It).
Specifically, we study the following ICP:

• ICPSH : considers BCP inputs and the official snow height observations re-
ceived from ground measurement stations in the region of interest.
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• ICPSWE : considers BCP inputs and the Snow Water Equivalent (SWE), an
authoritative snow quantification produces by the Italian Environmental Protection
Agency (ARPA) thanks to ground measurement stations and satellite data.

• ICPV SI : considers BCP inputs and the Virtual Snow Indexes (VSI) produced
by the pipelines described in this work.

• ICPSWE+V SI : considers BCP inputs, SWE input and VSI input.

The assessment quantifies how closer the ICPs get to the perfect one, in comparison to
the baseline. This evaluation methodology, called Information Selection and Assess-
ment (ISA) framework [70], consists of 3 steps that are described in the next subsec-
tions:

• Quantification of the expected value of perfect information, i.e., the potential for
improving operations under the assumption of perfect knowledge of future condi-
tions (Section 6.3.1).

• Automatic selection of the most valuable information to improve current opera-
tions (Section 6.3.2).

• Evaluation of the selected information on the resulting control policy performance
(Section 6.3.3).

6.3.1 Expected Value of Perfect Information

The Expected Value of Perfect Information (EVPI) is the performance gain that can be
achieved under the assumption of perfect foresight on the future [184]. If the value of
EVPI is small, a limited information policy already performs close to the best strategy
and thus the benefit of additional input data approximating future system conditions is
limited.
The availability of perfect knowledge of the future external drivers (e.g., lake inflows)
is equivalent to assume that the operator is an omniscient oracle implementing a Per-
fect Control Policy ( PCP ), consisting of an optimal sequence of release decisions
uPCP[0,T−1], conditioned on the current system status (i.e., the time instant t and the current
lake level lt), and on the perfect knowledge of the future inflows. In the experiments
illustrated below, the PCP is built by solving the control policy design problem over a
2-year horizon in which the sequence of inflows is known. This is a standard nonlinear
optimization problem and can be solved by either a local optimization method (e.g.,
gradient-based) or a global optimization method (e.g., direct search). Alternatively,
since the objective functions in our application are time-separable, we use determinis-
tic dynamic programming (DDP), which is more efficient and provides an almost exact
solution.
PCP performance (JPCP ) has a relative value, because it depends on the physical
characteristics of the system, e.g., the ratio between the lake capacity and its inflow. The
EVPI has, hence, to be estimated as the distance between JPCP and the performance
of a Baseline Control Policy ( BCP ), defined as a simple closed-loop control policy,
where zt includes the time index t and the current lake level lt.
In a single-objective scenario, the EVPI is simply the difference between the (scalar)
performance of the PCP and BCP . In a multi-objective case, the evaluation is
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more complex; the performance objectives JPCP and JBCP are vector functions and
the solution is not unique, but rather a set of Pareto optimal solutions (Pareto Front).
Among the commonly used metrics (see [123]), the ISA framework adopts the hyper-
volume indicator (HV ), which captures both the proximity of the Pareto Front JBCP

to the ideal one JPCP as well as the distribution of the BCP solutions in the objective
space. The hypervolume measures the volume of objective space dominated (�) by the
considered set of solutions (S). Then, the HV indicator is defined as the ratio of the
hypervolumes of the solutions produced by BCP and PCP :

HV (BCP, PCP ) =

∫
α(sBCP )dsBCP∫
α(sPCP )dsPCP

(6.1a)

with

α(s) =

{
1 if ∃s′ ∈ S such that s′ � s

0 otherwise
(6.1b)

If policy A has a value of HV greater than a policy B, the solutions produced by A
dominate a larger fraction of the objective space, which means that A is better than B
in pursuing the multiple objectives of the system. The EVPI can then be computed as
the difference between the HV of PCP (i.e., 1 by definition) and the HV of BCP .

6.3.2 Most Valuable Information Selection

A large value of EVPI indicates that a control policy endowed with more information
can approach the performance of the ideal, omniscient one. The ISA methodology
helps identify the input information that enables the informed policy to approximate as
much as possible the optimal sequence of decisions uPCP[0,T−1].
The set Ξt of candidate inputs may comprise exogenous variables, i.e., variables that
are observed in the time interval [0, T − 1] but are not part of the problem formulation;
examples are rainfall, temperature, snow presence, etc. Since Ξt can comprise redun-
dant and collinear variables, its smallest subset It ∈ Ξt that carries the most valuable
information must be identified, as the one that best explains the optimal sequence of
decisions. Several techniques can be used to solve this feature selection problem [62],
such as cross-correlation analysis, mutual information analysis, or input variable se-
lection methods. We use the hybrid model-based/model-free Iterative Input Selection
(IIS) algorithm (Algorithm 1), which can approximate strongly non-linear functions
and scale to large datasets made of long time series and many candidate variables [62].
Given a generic output variable vo and the set of candidate inputs vi, IIS first ranks the
inputs w.r.t. a statistical measure of significance and adds the best performing input v∗

to the current set of selected variables V . This step avoids the inclusion of redundant
variables: after an input is selected, all the other inputs highly correlated with it will
rank low in the next iterations. Then, the algorithm estimates a model of vo with input
V , such that v0 = m̂(V), and estimates the model performance with a distance metric
D (e.g., the coefficient of determination) as well as the model residuals (vo − m̂(V)),
which become the new output at the next iteration. The algorithm stops when the next
best input variable selected is already in the set V , or when over-fitting conditions are
reached. Among the many alternative model classes, IIS relies on extremely random-
ized trees (Extra-Trees), a tree-based method proposed by [65] that was empirically
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Algorithm 1 Iterative Input Selection

Inputs: a dataset F of candidate inputs vi and
the output variable to explain vo.
Initialization:
Set V ← 0, v̂o ← vo, Dold ← 0
Iterations: repeat until stopping conditions are met
- select the most relevant input v∗ ∈ vi to explain v̂o

- if v∗ ∈ V , return V endif
- V ← V ∪ v∗
- m̂(·)← Extra-Trees(F , vo,V)
- v̂o ← vo − m̂(·)
- ∆D ← D(vo, m̂(·))−Dold

- Dold ← D(vo, m̂(·))
- until ∆D < εD
return V

demonstrated to outperform other models in terms of modeling flexibility, efficiency,
and scalability with respect to the input dimensionality. Moreover, Extra-Trees struc-
tures can be exploited to infer the relative importance of variables, as required for their
ranking [22].

6.3.3 Expected Value of Sample Information

After selecting the most valuable information It ⊂ Ξt, the next step is to design the
Informed Control Policies (ICPs) that exploits such information to make decisions.
As mentioned in Section 6.3 we define four ICPs ( ICPSH , ICPSWE , ICPV SI
and ICPSWE+V SI ) and search the optimal control policy with approximate dynamic
programming methods.
We use the evolutionary multi-objective direct policy search (EMODPS), a simulation-
based technique that combines direct policy search, nonlinear approximating networks,
and multi-objective evolutionary algorithms [67]. EMODPS exploits the parameteriza-
tion of the control policies pθ and explores the parameter space Θ to find a policy (p∗θ)
that optimizes the expected system performance (Jθ, conventionally assumed to be a
cost), i.e., p∗θ = arg minpθ Jθ where the policy pθ is parameterized by parameters θ ∈ Θ
and the problem is constrained by the dynamics of the system. Finding p∗θ is equivalent
to finding the corresponding optimal policy parameters θ∗. A tabular version of the
EMODPS method is illustrated in Algorithm 2.
In general, we expect the ICP to fill the performance gap between the upper and lower
bound solutions (i.e., the PCP and BCP ), and to produce a performance JICP as
close as possible to JPCP . The benefit associated to the use of the selected information
is called Expected Value of Sample Information (EVSI) and can be quantified by means
of the same metrics used for the evaluating the EVPI (see Section 6.3.1). However,
since the relative contribution of each component of It to the ICP performance might
not be equivalent to the relative contribution in explaining the optimal sequence uPCP[0,T−1],
which is the metric on which information selection is performed, the ISA procedure is
applied iteratively. At first, we consider only the first candidate variable selected by the
IIS algorithm, assuming that it also has the highest potential to improve the lake op-
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Algorithm 2 Evolutionary Multi-Objective Direct Policy Search.

Initialization:
Generate a random parameter values population {θ1, . . . , θP }
Iterations: repeat until stopping conditions are met
- generate a trajectory τ i via model simulation according to the

stochastic transition function xt+1 = f(xt,ut, εt+1)
and following the policy pθi (with i = 1, . . . , P )

- compute performance J1
θi , . . . , J

q
θi , with i = 1, . . . , P

- generate new population by selection, crossover and mutation
w.r.t. the best individuals (i.e., non Pareto-dominated solutions)

erations. We design informed policies conditioned on this variable only, and estimate
the corresponding EVSI by comparison with the PCP and BCP performance. We
then iterate the procedure by incrementally adding variables to the exogenous informa-
tion vector It, designing the associated policy, and evaluating the corresponding EVSI.
When either the attained performance is satisfactory or the marginal improvement in
the EVSI between two consecutive iterations is negligible, the procedure ends.

6.4 Case Study: Lake Regulation with Virtual Snow Indexes

Lake Como is a regulated lake in the Adda River basin, Italy (Figure 6.3). The lake has
an active storage capacity of 254 Mm3 and is fed by a 3 500 km2 alpine catchment that
reaches altitudes over 4 000 m asl. Downstream from the lake, the Adda River serves
a dense network of irrigation canals belonging to four agricultural districts for a total
irrigated area of 1 400 km2 (green area in Figure 6.3). Major cultivated crops are maize
and temporary grasslands, while minor crops include rice, soybean, wheat, tomato, and
barley. The hydro-meteorological regime in the catchment is the typical sub-alpine one,
with scarce discharge in winter and summer, and peaks in late spring and autumn due
to snowmelt and rainfall, respectively. In particular, snowmelt from May to July is the
most important contribution to the formation of the seasonal storage (Figure 6.4).
The alpine orography constrains the accurate monitoring of snow dynamics. The ex-
isting ground stations (46 over the 10 500 km2 alpine area in the Lombardy region)
provide a very coarse coverage of the region and are not sufficient to reliably monitor
the snow coverage and the associated water content. This is instead estimated by the
Regional Agency for Environmental Protection (Agenzia Regionale per la Protezione
dell’Ambiente - ARPA1), which produces estimates of Snow Water Equivalent (SWE)
through a hybrid procedure combining snow height and temperature data from ground
stations, measures of snow density in few specific locations, satellite-retrieved data of
snow cover (ARPA currently adopts MODIS [139]), and model outputs for spatially in-
terpolating these data. As a result of this complex procedure, ARPA elaborates a weekly
estimate of SWE. Such reports are delivered only weekly due to the well known limita-
tions of snow products derived from optical sensors associated to the frequent satellite
occlusion by cloud coverage. This limitation is particularly restrictive in the alpine
region, where previous studies observed an average cloud occlusion of 63 % over a

1www.arpalombardia.it
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Figure 6.3: Adda River Basin: Lake Como, Adda River, downstream agricultural districts, ground
stations, and public webcams.

five year monitoring period [138], with critical episodes of cloud coverage lasting for
more than 25 days per month in winter time. On the contrary, webcams are less af-
fected by cloud coverage and can provide observations during cloudy days as shown
illustratively in Figure 6.5. In this study, we contrast the operational value in informing
the lake operation of four different snow-related data sources: (i) daily observations
of snow height from coarsely distributed ground stations; (ii) weekly SWE estimate
provided by ARPA; (iii) daily values of the VSI extracted from public web images;
(iv) both SWE and VSI data.
The existing regulation of the lake is driven by two primary, competing objectives:
water supply, mainly for irrigation, and flood control in the city of Como, which is the
lowest point of the lake shoreline. In particular, the agricultural districts downstream
would like to store the snowmelt volume for the summer water demand peak, when the
natural inflow is not sufficient to satisfy the irrigation requirements (see the magenta
area in Figure 6.4). Yet, storing such water increases the lake level and, consequently,
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Figure 6.5: Comparison of MODIS daily snow cover map (left panel) with the images acquired by a
webcam (right panel) on Jan. 9, 2014 at the location denoted by the asterisk in the map.

the flood risk, which would be instead minimized by keeping the lake level as low
as possible. On the basis of the existing works e.g. [21, 66], these two objectives are
formulated as follows:

• Flood control: the average annual number of flooding days in the evaluation hori-
zonH , defined as days when the lake level ht is higher than the flooding threshold
(h̄=1.24 m):

Jflood =
1

H/365

H∑
t=1

Λ(ht) where

Λ(ht) =

{
1 if ht > h̄

0 otherwise

(6.2)
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• Irrigation supply: the daily average quadratic water deficit between the lake re-
lease rt+1 and the daily water demand wt of the downstream system, subject to the
minimum environmental flow constraint qMEF to ensure adequate environmental
conditions in the Adda River:

J irr =
1

H

H∑
t=1

max
(
wt −max(rt+1 − qMEF , 0), 0

)2
(6.3)

This quadratic formulation aims to penalize severe deficits in a single time step,
while allowing for more frequent, small shortages [83].

6.4.1 Content Selection for the Case Study

Our dataset contains more than 100 M mountains images located across the Lake Como
catchment; such images are produced by 2 k webcams and include also more than 600 k
photos produced by users. However, not all relevant images are directly exploitable for
the assessment; environmental models require a very long observation period: a sta-
tistically significant evaluation requires observations spanning multiple years, to cope
with seasonal effects, thus, our sources lack a long enough time series to be usable as
input. A manual search found historical images of a few webcams and aggregated them
to the dataset. Specifically, we found one webcam with enough historical data, which
was chosen for the experiments. The webcam is placed in Livigno, while the snow
height data are measured at the Truzzo ground station (see Figure 6.3). The mountain
framed by the webcam is positioned inside the Como Lake catchment and its snow level
is known to affect the lake water dynamics. Even with a single webcam, the experi-
mental results described in this chapter demonstrate a significant utility of the (virtual)
snow-related data.

6.4.2 Policy Design

The selected policy parameterization strongly influences the choice of the optimiza-
tion approach. In scenarios where the complexity of the policy parameterization, and
consequently the number of parameters to optimize, is high, evolutionary algorithms
(EAs) have been successfully applied, also in presence of high-dimensional decision
spaces and noisy and multimodal objective functions [18]. In our framework, the In-
formed Control Policies (ICPs) are designed via EMODPS by parameterizing the poli-
cies as Gaussian radial basis functions, which have been demonstrated to be effective in
solving this type of multi-objective policy design problems [68, 69], particularly when
exogenous information is used for conditioning the operations [70]. To perform the
optimization, we use the self-adaptive Borg MOEA [80], which has been shown to
be highly robust in solving multi-objective optimal control problems, where it met or
exceeded the performance of other state-of-the-art MOEAs [185]. Each optimization
was run for 2 million function evaluations. To improve solution diversity and avoid
dependence on randomness, the solution set from each formulation is the result of 30
random optimization trials. The final set of Pareto optimal policies for each experiment
is defined as the set of non-dominated solutions from the results of all the optimization
trials.
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The ideal set of operating policies ( PCP ), which assume perfect foresight of future in-
flows, were designed via Deterministic Dynamic Programming. The weighting method
is used to aggregate the two operating objectives (i.e., flood control and irrigation) into
a single objective, via convex combination.
The traditional baseline regulation of the lake ( BCP ) is represented in terms of a set
of operating policies conditioned on the day of the year dt and on the lake level ht. Also
these policies were designed via EMODPS.

6.5 Results and Discussion

The performance of the set of Informed Control Policies (ICPs) is contrasted with the
baseline solution ( BCP ), namely the traditional lake regulation conditioned on the
day of the year and the lake level, and the upper bound solution, namely an ideal set of
policies ( PCP ) designed under the assumption of perfect foresight of future inflows.
We assess the operational value of authoritative snow measures ( ICPSH and ICPSWE

), then we evaluate the operational value of virtual snow measures ( ICPV SI ). Finally,
we asses the potential of the VSI to complement the authoritative data, by validating
the performance of ICPSWE+V SI , which uses both SWE and VSI inputs.

Quantifying the EVPI

The first step of the ISA framework (Section 6.3) estimates the Expected Value of
Perfect Information by contrasting the PCP and the BCP . Figure 6.6 shows the
performance of the PCP (represented by black squares) evaluated over the horizon
2013-2014. The black circles represent the performance of the BCP (traditional con-
trol policies conditioned on the day of the year and the lake level). The performance of
the Informed Control Policies is discussed later on in this section.
Both axis are to be intended as lower is better, with the best solution located in the
bottom-left corner of the figure. Visual comparison of the Pareto Fronts shows that the
potential for improvement over the BCP is large: the gap between basic information
and the perfect knowledge is substantial in terms of both operating objectives, as rep-
resented by the area between the line passing through the black squares and the black
circles.
Quantitative EVPI assessment is provided by the HV indicator in Table 6.2, where the
difference between BCP and PCP is equal to 0.29, confirming the gap between Per-
fect and Baseline Control Policies and consequentially the large potential improvement
for IPCs.

Exogenous Variables Selection

The question whether snow information can help making more informed decisions is
addressed by using the ISA framework to identify the most informative exogenous
variables It ⊂ Ξt. We first evaluate the day of the year and the lake level together
will all the exogenous variables except our virtual snow indexes, to check if the official
snow information is relevant. The rationale for retaining the day of the year and the
lake level is to extend the BCP and avoid selecting exogenous variables correlated
with t or lt. We perform 20 runs of the IIS algorithm to filter the randomness associated
to the construction of the Extra-Trees models. Despite the limited length of the time
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Figure 6.6: Pareto front of the performance in terms of irrigation supply and flood control of the different
operational policies.

series (only 2 years), which introduces some variability across the runs, the best result
consistently selects as most valuable information the day of the year (t), the lake level
(lt), and the official SWE estimated provided by ARPA (SWEt). This confirms the
key role of snow dynamics in the Lake Como system. Using the 3 variables selected,
the Extra-Trees model approximates the optimal sequence of release decisions uPCP[0,T−1]

attaining a model performance, evaluated using the coefficient of determination (D),
equal to 0.639. Table 6.1 shows the contributions of variables and statistics over the 20
repetitions.

Table 6.1: Variables selected by the IIS algorithm.

Variable Best-run Selection Average contribution
frequency, 20 runs (R2), 20 runs

t 0.231 100% 0.334
lt 0.348 85% 0.194
SWEt 0.060 45% 0.108

Benefits of Official Snow Information

The persistence of the day of the year (t) and the lake level (lt) as the first two most
relevant variables is not surprising, given the strong influence of the seasonality on both
the hydro-meteorological regime and the water demand. This information is the only
one used in the BCP (black points in Figure 6.6). To quantify the value of the official

82



i
i

“thesis” — 2017/9/5 — 13:28 — page 83 — #95 i
i

i
i

i
i
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snow measures, we assess the performance of the ICPSH and ICPSWE conditioned
on the information vectors zt = (t, lt, SHt) and zt = (t, lt, SWEt) respectively. The
resulting ICPSH and ICPSWE policies are represented in Figure 6.6 by blue and
green points respectively. The comparison of the performance of the BCP and these
policies shows a relevant contribution of the official snow information: this is due to
an improved medium-long term foresight, as snow information provides useful insight
about the expected water availability during the next summer, when the irrigation de-
mand is high and the conflict between flooding and irrigation is critical. A quantitative
evaluation of the EVSI associated to this variable is given by HV reported in Table 6.2:
HV increases from 0.7079 to 0.7881 (i.e. +11.3 %) when moving from BCP to
ICPSH and slightly less for ICPSWE : 0.7848 (i.e., +10.9 %).

Benefits of Virtual Snow Indexes

The question of whether the Virtual Snow Indexes (V SIk, defined in Equation 5.1) can
be useful w.r.t. the official ARPA data is addressed through the following experiments:
first, we replace the ARPA SWE variable with each virtual snow index V SIk and ana-
lyze the performance of the corresponding policy ICPV SIk . Second, we explore the
possibility of complementing - instead of replacing - the ARPA SWE variable with the
VSI, by evaluating the performance of ICPSWE+V SIk , conditioned on the information
vector zt = (t, lt, SWEt, V SI

k
t ). We report only the results obtained using the third

snow index V SI3 (henceforth, simply V SI), because it consistently outperforms the
other two indexes.
Figure 6.6 shows that the performance of the VSI is comparable to, and sometimes
higher than, the one of the ARPA SWE and snow height measurements. In fact, the red
Pareto Front intersects the green one and the blue one, with some ICPV SI solutions
outperforming the ICPSH and ICPSWE points. This observation is confirmed by the
corresponding values of HV reported in Table 6.2, with ICPV SI obtaining a higher
value than the two policies that use official snow information, which corresponds to a
11.6 % improvement with respect to the BCP .
Finally, the performance of ICPSWE+V SI , conditioned on both SWEt and V SI (or-
ange points in Figure 6.6) outperforms both BCP and all the other ICPs. Such supe-
riority is certified by the values of HV : ICPSWE+V SI obtains an HV value equal to
0.8158, which corresponds to a 15.2 % improvement with respect to the BCP and a
4 % improvement with respect to ICPSWE .

Table 6.2: Quantification of Expected Value of Perfect and Sample Information in terms of hypervolume
indicator.

Policy HV ∆HV

BCP (Baseline) 0.7079 –
ICPSH (Snow Height) 0.7881 +11.3%
ICPSWE 0.7848 +10.9%
ICPV SI 0.7898 +11.6%
ICPSWE+V SI 0.8158 +15.2%
PCP (Perfect) 1.0 –
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Results Conclusions

In this section we described the results obtained by different control policies in terms
of a visual Pareto front observation and in terms of a quantified hypervolume measure.
We proved that following claims are true for the defined case study:

• the potential improvement w.r.t. the baseline control policy is large;

• official snow information is ranked as highly relevant by the variable selection
algorithm;

• official snow information improves the performance of the control policy by more
than 10 %;

• virtual snow information is able to successfully replace the official snow informa-
tion with a slight performance improvement;

• virtual snow information improves the performance even when the control policy
is already using the official snow information, thus, the two are not duplicates.

These results suggest a significant potential for complementing the official snow esti-
mations with virtual snow indexes derived from public web media. No orthorectifica-
tion was performed since the simplest virtual snow index (all snow pixels contribute
with the same score) resulted in the best performance.
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CHAPTER7
Crowdsourcing and Citizen Science

Multimedia processing is a highly competitive research field, where software systems
need to emulate the human capacity of recognizing the meaning of objects, a skill ma-
tured in millions of years of evolution. Several state of the art works [12,61] advocate a
quantum leap in the openness of multimedia processing platforms and the involvement
of human beings in all multimedia processing phases as the key factors for innovation
in next-generation multimedia processing applications.
In this chapter we describe how putting humans in the loop [60] can improve the au-
tomatic environmental monitoring approach presented in this thesis. We propose a
human computation approach, whereby the contribution of human performers is inte-
grated within processing pipelines, to support tasks where human judgment is superior
or complementary to the pure algorithmic approach. We empower the fully automatic
visual data processing with a human computation that combines the conventionally
isolated areas of crowdsourcing, social network and gaming with a purpose.
According to [61], the intervention of humans in the computation can occur at three
levels:

• implicit, in which the computerized system directly harnesses the sensing capacity
of humans, e.g., by using biometry to register the unconscious reactions caused
by the exposition to content;

• decisional, in which the computerized system exploits the explicit rationality of
individuals, e.g., in knowledge extraction or result comparison/evaluation;

• social, in which the computation exploits the capability of humans to work coop-
eratively towards the achievement of complex tasks in a more efficient and faster
manner, e.g., by distributing across large communities micro-tasks in knowledge
extraction or result evaluation.
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Specifically, we explore the potentiality of using the decisional and social computations
thanks to the diffusion of mobile devices, social networks and online games that has
spawned a novel generation of hybrid applications, associated under the generic label
of citizen science, which harness the online, voluntary contribution and cooperation of
common people for the resolution of complex tasks in environment monitoring and a
variety of other domains, including computer vision, transport, bio-medical research,
and more [126]. The common traits of these applications include:

• The use of people as soft sensors, to acquire data about the physical environment
to be monitored or analyzed (e.g., mobility routes for traffic management, photos
of hazardous events for disaster monitoring). Such soft sensing could happen on
demand, by proactively engaging people to collect data upon necessity, or pas-
sively, by collecting traces of people’s activities (e.g, phone calls, tweets, photos)
produced originally for other purposes.

• The fusion of heterogeneous data, coming not only from people, but also from
conventional sensors (e.g., fusion of satellite imagery and user generated photos
for environment monitoring, extraction of users’ profiles based on water consump-
tion data and activity logs on a utility consumers’ portal [63]).

• The need of validating data, for improving input accuracy and training/tuning data
processing algorithms. Validation could be either automatic (e.g, via machine
learning approaches), delegated to people, e.g., via crowdsourced quality control
campaigns or both automatic and crowdsourced.

• The provision of mechanisms for recruiting, engaging, and retaining people, who
contribute voluntarily and should be acknowledged for their participation.

Simplifying, citizen science applications could be regarded as hybrids between scien-
tific workflows and online digital games:

• Like scientific workflows, they must amass vast collections of heterogeneous data,
assess their validity, possibly improve their quality, and subject them to a process-
ing pipeline leading to the creation of useful output knowledge.

• Like online digital games, they must trigger the motivation of users, engage them
to the accomplishment of achievements, and possibly foster cooperation-competition
behavioral patterns.

Such functional aspects intertwine with non-functional requirements:

• Cloud and SaaS deployment: besides the usual reasons for adopting SaaS and
cloud, a virtualized back-end facilitates the collection and integration of data from
heterogeneous sources under a same data model; furthermore, a multi-tenant data
repository enables statistical analysis across different data sets (e.g., consumption
data collected from different utility companies).

• Plug-in interfaces: although citizen science applications follow a common recipe
(back-end data processing pipeline plus gamified crowd interfaces), the ingredi-
ents vary. Data processors are specific of the application at hand, as well as the
interfaces for performing tasks published to the crowd.

86



i
i

“thesis” — 2017/9/5 — 13:28 — page 87 — #99 i
i

i
i

i
i
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• Multi-modality: the user interfaces benefit from a dual deployment, for both fixed
(notably, PC) and mobile devices. The mobile interface supports tasks that must
be executed in near real-time and exploit the user’s location; the fixed (e.g., PC)
interface better serves more elaborated tasks, such as textual annotation or accu-
rate verification of content.

We propose a generic three-tier architecture for rapid development of citizen science
applications, described in Section 7.1. The architecture is generic and can be applied
to any citizen science problem (both to environmental and other types of monitoring,
such as urban monitoring, emergency management, etc.).
Section 7.2 describes how the proposed generic architecture has been applied to a com-
plex citizen-participated scientific workflow, called SnowWatch. SnowWatch is a web
platform aimed at snow cover monitoring through the fusion of the algorithms for auto-
matic web content processing described in this thesis and the crowdsourcing and citizen
science approaches. The client tier consists of a public web portal and an augmented
reality mobile application.
The mobile application is meant to engage the crowd in taking and uploading mountain
pictures, thus, increasing the SnowWatch dataset of available photographs. However,
since it is required to work in real-time, a part of the backend algorithms has to be
implemented client-side, in the mobile application. To deal with this non-trivial task
we devise a novel framework for outdoor augmented reality applications, which is de-
scribed in detail in Section 7.3.

7.1 Rapid Prototyping of Citizen Science Applications

This section discusses a generic software architecture we devised for the rapid devel-
opment of citizen science applications, based on three main tiers:

• A back-end that supports the composition of data processing workflows, by the
collation of independent, loosely-coupled data acquisition and analysis modules.
Differently from traditional scientific workflow systems, the pipeline engine can
delegate data acquisition and processing tasks not only to automatic services, but
also to a crowd of contributors.

• A client tier, which can hosts multiple applications, web and mobile, that im-
plement common interfaces for publishing tasks to workers and collecting their
contributions.

• A middle tier independent of both the data processing back-end and of the client
crowdsourcing applications, which factors out the engagement policies and achieve-
ment rewarding rules enacted to secure people participation and durable commit-
ment.

7.1.1 General Architecture and Data Model

Figure 7.1 overviews the general architecture, which consists of three tiers, back-end,
middle tier and client tier, tied together by a common data model.
Figure 7.2 shows the essential elements of the conceptual data model shared by the
components of the system architecture. Its purpose is the representation of user’s ac-
tivities in gamified applications for data processing. It draws on previous user and
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Figure 7.1: Overview of the proposed generic architecture, components, and service interfaces.

task models (most notably, WS Human Task [90], SWUM [24], and [13]); it describes
users and their activities, the latter formalized as tasks associated with operational data
(called observations in the context of citizen science applications). To these classic
concepts of data- and crowd-intensive processes, it adds the notions of user’s actions,
achievements and rewards, to correlate the task model to the gamification aspects.
The data model is organized in four sub-models. The User and Social Model (in yel-
low): introduces humans into the conceptual model, by expressing the roles they play
and their social interactions (e.g., friendship links, physical neighborhood, etc). The
Observation Model (in blue): describes the task-related data (observations); they are
the main input of the data processing pipelines and carry the latent knowledge that must
be extracted; observations are characterized as sensor-generated or citizen-provided.
The Process Model (in green, simplified for brevity in Figure 7.2): focuses on the
tasks and their execution constraints. The Gamification Model (in red): expresses the
engagement and rewarding mechanisms typical of gaming and of gamified applications
(including scores, achievements, rewards, and leader boards).
The backbone is the user taxonomy in the User and Social Model. The main con-
cept is the Citizen, which specializes into Active Citizen, and Competitor Citizen. The
generic Citizen entity represents a user who interacts by consuming observations (e.g.,
accessing the knowledge produced by the system as a mere observer). A citizen who
performs tasks, and thus can also produce observations, is called Active Citizen; if she
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is also engaged into gaming or gamified applications, she is called Competitor Citizen.

The Gamification Model defines the properties and associations characterizing the
Competitor Citizen, with the entities Action, Reward, and Achievement. The Competi-
tor is rewarded for her performed Actions, which result from the execution of Citizen
Tasks; a task can be associated with zero, one or multiple actions (e.g., a task that re-
quires the user to log-in into the system and execute a piece of work may be associated
with two rewarded actions: a log-in action, rewarded with a fixed amount of points,
and a work-specific action, rewarded with a variable amount of points depending on
the quality of the contribution, difficulty of the work, etc). An Action is defined by
a name, the Area of interest (e.g., participation, socialization, education, content cre-
ation, content assessment, etc), and the score. Different policies can be associated to
an action, i.e., whether the action can only be rewarded once or multiple times, re-
peated only after a given time interval, executed only on one specific object or repeated
on multiple objects, rewarded up to maximum number of points or before a due date,
etc. By earning points with Actions in a given Area, a Competitor earns points, attains
Achievements and spends earned points by redeeming Rewards. Achievements are a
virtual recognition, such as digital badges, whereas Rewards are real goods that the
users can redeem, consuming her points. Both can be specialized to describe a variety
of ways to challenge users and acknowledge their contribution.

The Observation Model comprises the Observation entity, which represents the task
operational data of a citizen science application: typically, a piece of text, image, video,
or video stream describing a phenomenon, contextualized in a given Location (optional)
on a give Date (optional). It can be automatically generated from a Sensor or provided
by a Citizen. A Sensor is defined by a Type (physical, e.g., a water flow sensor, or
virtual, e.g., a webcam producing mountain photos from which snow measures can
be extracted); a Frequency which specifies the temporal rate at which the Sensor pro-
duces Observations and a Status (enabled, stand-by, disabled or faulted). The source
of an Observation can also be a citizen, with two possible scenarios: the Observation
is acquired passively by crawling social networks and content sharing sites (Crawled
Observation), or is uploaded proactively by an Active citizen (Uploaded Observation).
Annotation represents (possibly noisy) meta-data extracted from an Observation by hu-
mans or services (e.g., the position of a mountain peak).

The Process Model describes the hybrid service and human task pipelines by which the
Observations are processed to generate knowledge. It supports a simplified version of
BPEL4People and WS Human Task workflow concepts, including a notion of Process,
consisting of Tasks that involve the interaction with, the processing, or the creation of
Observations; a Task can be Automatic, i.e., executed by software components (e.g., a
classification algorithm), or human (Citizen Task), i.e., performed by an Active Citizen.
Executed tasks are recorded with their run-time meta-data (StartTime, EndTime, etc.).
The Process Model connects to the Gamification Model as follows: if a Citizen Task
is associated to a Gamification action, the outcome of the task becomes visible to the
Gamification Engine, which determines a reward for the Competitor Citizen executing
the task and adds the corresponding amount of points to her profile.
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Figure 7.2: Excerpt of the common data model for data integration, including components of the User
and Social Model (yellow), Observation Model (blue), Process Model (green) and Gamification
Model (red).

7.1.2 Back-end: Data Acquisition and Processing

The back-end tier of the architecture of Figure 7.1 is responsible of the connection to
the data sources and the processing of observations with a mix of automatic and human
steps. It comprises the run-time support for the execution of processes following a
simplified version of the BPEL4People and WS-Human Task specifications. A number
of automatic task types are predefined, and are assigned to abstract processors. An
abstract processor specifies an interface and an interaction protocol, which is (manually,
at design-time) instantiated by concrete services that offer the computational resources
for executing the task.
The Data Source Connector specifies the interface and protocol for integrating data
acquisition services, and is further refined into specializations adapted to various classes
of data sources. As an example, Figure 7.3 (left) shows the interface and the interaction
protocol of the Webcam Data Source Connector, which crawls frames from webcams.
Data source connectors can be specified also in the case in which the data source is a
human being: in this case the interaction protocol refers to the Task GUI and Crowd
Connector that implement the data acquisition step. An example of this situation is
provided next, for data processors.
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Figure 7.3: Specifications of the Webcam Data Source Connector (left) and of the Alignment Citizen
Task (right)

The Data Processor interface specifies the common traits of services that execute ob-
servation processing steps, by transforming input observations into intermediate out-
put or final knowledge. Examples of predefined processors, with default concrete im-
plementations, include: text pre-processors (language detectors, stop-word removers,
stemmers), text classifiers (topic detectors, tweet relevance classifiers) image low level
and high level features extractors, image classifiers (whole image, pixel-level), and im-
age object detectors (e.g., mountain peak detectors). Data processors can be specified
also in the case in which the processor is a human being: Figure 7.3 (right) shows the
case of the Human_Image_Alignment Connector: the interaction protocol refers to the
Citizen Task GUI and to the Crowd Connector used to crowdsource the task and the
Gamification Engine.
The Crowd Connector interface factors out the non-functional properties related to the
crowd interaction from the Citizen Task. In this way, one can define a crowd interaction
mode once, as a specific crowd connector, and reuse it in multiple tasks with different
purposes, data, and GUIs. The non-functional properties of a crowd connector include:
the delivery channel(s), the criteria for people assignment (push of task to people, task
publication for people to pick), the reference to the task rendition GUI (embedded or
linked), the triggering event, the due date, the output aggregation policy. Predefined
crowd processors are provided, which range from the simplest case, (push email mes-
sages to a workers’ list, with a link to an external task execution GUI), to full-fledged
crowd campaigns executed with dedicated frameworks. Figure 7.3 (right) shows the
reuse of a Crowd Connector for simple push email campaigns in the delivery of an
image alignment task.
The Data Aggregator interface supports the instantiation of services that extract ag-
gregate properties from data sets. Examples include the extraction of trending topics,
users, and hashtags from sets of Tweets, the computation of statistics from time series
or spatial data, the computation of median daily images from webcam photo series.
Finally, the Knowledge Extractor interface caters for the description of services that
compose high-level, user-oriented information from low-level observations and inter-
mediate data or pull together multiple outputs to deliver a high-level representation
amenable for publication in a human interface. For example, provided knowledge ex-
tractors compute snow altitude indexes from processed mountain images and overlay
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images with peak names and positions and snow-related meta-data.

7.1.3 Middle Tier: the Gamification Engine

The middle tier hosts support services for enabling the registration of users and man-
aging their identity (Identity Manager) and logging actions (Action Logger). Its most
important component is the Gamification Engine, which is a rule based engine trans-
forming actions into points. Such points determine the automatic unlocking of Achieve-
ments (e.g., the assignment of badges), establish the status of users in local or global
competitions (handled by the Leaderboard Manager), and enable the redemption of
a Reward by the user (handled by the Reward Manager). The gamification rules are
described declaratively in the data model and executed by the Gamification Engine. A
gamification rule has the form:

WHEN action A of user U occurs on object O at time T
IF Action_Mapping(A, M)
THEN Assign_Points(U, A, O, T, M.parameters)

The rule is triggered by the occurrence of an action (A), performed by a user (U), at time
T, possibly on some known object (O). This event can be signaled to the Gamification
Engine via service calls produced either by the successful termination of a Citizen Task
(e.g, the processing of an observation) or by system events (e.g., the user entering in
the top-ten of a leaderboard). The rule fires only if there is an active mapping defined
for it, which means that there is a working association between the action and the set
of parameters that determine the calculation of the points and achievements associated
with it. Mappings can be defined but not enabled, e.g. for debugging purposes. If
an active mapping is found, its parameters are collected (type of action, base points)
and the rule is executed. Execution takes in input the relevant user, the action, the
affected object, the time-stamp of execution, and the mapping parameters, assigns the
proper amount of points to the user, and checks if some achievement is reached. The
predefined types of actions include:

• Fire once/N times: the action is rewarded only at the first occurrence (or for the
first N occurrences).

• Fire once per object: the action can be rewarded an unbound number of times,
but only on distinct objects (for example, as many times as learning objects are
read by the user, but only once per distinct learning object).

• Fire before: the action is rewarded only before a due date.

• Fire after: the action is rewarded only if a given time span has elapsed after its
last occurrence (e.g., reward at maximum one log-in action per day).

• Fire until: the action is rewarded only before a given condition becomes true (for
example, only the first N users that perform it are rewarded).

The calculation of the points by default is independent of the affected object and amounts
of base points to grant is specified in the action properties. However, more elabo-
rated policies can be plugged in by specifying further action types (e.g., smoothing the
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amount of points over time, basing it on some attributes of the object that qualify the
difficulty of the task, etc.)
An example of the admin gamification GUI, including areas, actions, achievement and
rewards is shown in Figure 7.4.

Figure 7.4: Admin GUI for editing the Gamification Data model entities and relationship.

7.1.4 Client Tier

The client tier comprises a set of predefined GUI utility components for building gam-
ified crowdsourcing interfaces. The Recruitment interface supports registering and au-
thenticating users into the system; it also manages identity reconciliation, to support
users registered to multiple connected applications. The Notification interfaces sup-
ports bidirectional communication with citizens. The Social interface enables the post-
ing of achievements on social networks and the creation of peer-to-peer invitations to
tasks. The Gamification interface supports the publication of leaderboards and achieve-
ments, and the redemption of rewards. The Data interface supports the publication of
observations and the upload of new content.

7.2 SnowWatch Implementation

The SnowWatch project [51] targets the need of low cost analysis of environmental
and ecological phenomena, made extremely pressing by climate change and shrinking
public investments in monitoring infrastructures. It tackles the problem of mountain
environment monitoring with a Citizen Science application for the collection of public
images depicting Alpine mountains and the extraction of snow indexes usable in en-
vironmental models. The SnowWatch project is a fusion between the content process-
ing algorithms presented in this thesis (photograph acquisition, Section 3; photograph
geo-registration, Section 4; photograph snow cover analysis, Section 5) and the citizen
science applications described in this section.
Crowdsourcing is employed for four tasks: validating the classification of images that
contain visible mountain profiles (Section 3.1.2); validating the geo-registration w.r.t.
the terrain computed automatically (Section 4.1); adding/adjusting the GPS geotag of a
photograph; collecting images on demand, e.g., portraying mountain for which there is
not enough user-generated conent and no webcams are available. Figure 7.5 shows the
pipeline of service and crowd tasks that compose the SnowWatch process.
The pipeline is implemented by instantiating the general architecture of Figure 7.1
reusing standard components and adding, where necessary, domain-specific services.
The data model is specialized too, e.g., the generic Observation entity is sub-classed to
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Figure 7.5: Pipeline of service and human tasks in SnowWatch

accommodate properties needed to represent the technical features of photos (geo-tag,
sensor model, optical parameters, field of view, etc). Figure 7.6 shows how the general
architecture proposed in Figure 7.1 has been applied to the SnowWatch architecture.
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Figure 7.6: Overview of the SnowWatch architecture, a specialization of the one proposed in Figure 7.1.
Specialized components are highlighted in gray.

The back-end data acquisition and processing interfaces have been instantiated as fol-
lows. Two Image source connectors and one Data Aggregator have been configured, for
acquiring images from photgraph sharing websites, webcams, and users, and improving
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their quality. The Flickr Crawler described in Section 3.1 is used in Photo Crawling
automatic task of Figure 7.5; it specializes the generic, keyword-search, image source
connector with three filtering criteria: the photo must be geo-tagged; located within a
rectangular region provided in input; the altitude of the shooting location must be higher
than a minimum threshold. The Mountain webcam crawler described in Section 3.2,
used in the Webcam Image Crawling and Weather condition filtering (Section 3.2.2)
automatic tasks, specializes the generic webcam source connector with a filtering step.
Since cloudy meteorological conditions are very common at high altitudes, the con-
nector discards images with bad weather conditions. The Image aggregator, used in
the Daily image aggregation automatic task (Section 3.2.3), specializes the Data Ag-
gregator interface to collapse a set of input mountain images, taken in good weather
conditions, into one daily median image.
The Data Processor interface is the one most heavily specialized, to incorporate the
domain-specific algorithms for mountain image analysis. The realized specializations
include the Mountain photo relevance classification (Section 3.1.2) and the Photo-to-
terrain geo-registration (Chapter 4).
The Crowd Connector has been instantiated to support the human tasks of Figure 7.5, as
follows: a task GUI has been added in the client tier, enabling the execution of the task.
And a crowd connector has been allocated in the back-end, to support the recruitment
of the contributors.
Finally, the Knowledge Extractor has been instantiated with a Virtual snow indexes
computation service (Section 5.3.2).
The Middle Tier (Gamification Engine) has been reused without modification. Its ad-
ministrative interface (shown Figure 7.1) has been used to configure the Gamification
Data Model, by creating: i) actions that can be performed by a user (e.g. upload a
photo, share a photo with friends, comment a photo, validate a photo, manually align a
photo, etc); ii) achievements and actions required to obtain them; iii) rewards that can
be provided to users for their achievements.
The Client Tier of the application has been customized by adding the GUIs needed for
supporting the execution of human tasks and an exploratory web portal interface for the
general public:

• Exploratory web portal: it customizes the Exploration Data Interface (Figure 7.7
top) to support browsing the geolocated image collection, in two ways: with a
map view, placing the images on a map in the positions they were shot; and with a
gallery view that publishes all images into a scrollable grid. The web portal sup-
ports also the crowd tasks: Photo upload; Geotag edit; Mountain photo classifica-
tion validation, the user can label as negative (does not contain mountains) a photo
that was erroneously classified as positive; Photo-to-terrain geo-registration val-
idation, the user can adjust the automatically computed alignment of the photo
w.r.t. the rendered terrain view (Figure 7.7 bottom).

• Mobile application: the user can upload own photographs using a mobile appli-
cation supporting the human task whereby the user can take photos of mountains
with the peak names automatically overlaid onto the image, described in details in
Section 7.3.

Overall, the development of the SnowWatch application required 10 % of the total ef-
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Figure 7.7: GUIs of the SnowWatch human tasks: exploratory web portal home page (top) and manual
photo-to-terrain geo-registration (bottom).

fort, with 90 % of the effort spent in the research of the computer vision and machine
learning algorithms in the back-end. The effort has been spent in the integration of the
services in the pipeline and in the realization of the human task and data exploration
GUIs. Negligible effort has been requested by the integration of the crowd support: al-
ternative crowdsourcing approaches have been used for different purposes: from small
captive crowds reached by email in the early validation phase to the deployment of
a Social Network crowd connector for posting peak-labeled images in one’s wall and
inviting friends to test the application. The gamification aspects have been added a
posteriori; the proposed generic architecture has sensibly speed-up the integration of
such functionality: once the task GUIs have been completed and the gamification rules
configured, the only technical effort has been the addition of one service call from the
task GUI to the Gamification Engine for action notification.

In retrospective, the main contribution of the proposed rapid prototyping architecture
resulted in the evolutive maintenance phase. Substantial change requests in a variety
of areas, such as data analysis services, workflow of the data processing tasks, human
task interface and device, recruitment and engagement methods have been tackled ef-
fectively thanks to an approach based on a mix of a common centralized data model,
standard service interfaces, reusable components, and declarative business rules, fac-
tored out of the code. These benefits are especially welcome in applications directed to
volunteer crowds, which must exhibit a persuasive nature, attract people, engage them
in (sometimes not so exciting) activities, retain their attention over long periods of time,
and even change their habits. This entails the need of adapting the crowd engagement
methods, task interfaces, and gamification rule continuously, to fit them to the current
level of people’s engagement.
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7.3 Augmented Reality Mobile Application

In this section we describe the mobile application, which is a part of the SnowWatch
client tier. The application supports the crowdsourcing task of adding new photographs
to the SnowWatch platform whereby the user can take photographs of mountains and
upload them automatically. Differently from the other crowdsourcing tasks, the mobile
application borrows key concepts from Games With A Purpose (GWAP) paradigm:
the idea is to engage the user into using the application due to a personal entertaining
instead of a volunteer participation to a citizen science campaign. Specifically, the
entertaining aspect of the application is the capability of identifying mountains that are
framed with the mobile device in real-time.
For this purpose, we devised a novel framework for the development of outdoor mobile
Augmented Reality (AR) applications. Section 7.3.1 describes the framework, which
is generic and can be applied to any outdoor AR scenario that requires precise object
identification through computer vision algorithms. Section 7.3.2, instead, describes the
experience of implementing the mountain identification application through the pro-
posed framework and discusses engagement milestones achieved by the application.

7.3.1 Mobile Augmented Reality Applications Framework

Outdoor augmented reality applications exploit the position and orientation sensors of
mobile devices in order to estimate the location of the user and her field of view so as
to overlay such view with information pertinent to the user’s inferred interest. These
solutions are finding a promising application in the tourism sector, where they replace
traditional map-based interfaces with a more sophisticated user experience whereby
the user automatically receives information based on what he is looking at, without the
need of manual search. Examples of such AR apps include, e.g, Metro AR and Lonely
Planet’s Compass Guides1. The main challenge of such applications is providing an ac-
curate estimation of the user’s current interest and activity, adapted in real-time to the
changing view. Commercial applications, which operate mostly in the tourism field,
simplify the problem by estimating the user’s interest based only on the information
provided by the device position and orientation sensors, irrespective of the content ac-
tually in view. Examples are sky maps, which show the names of constellations, planets
and stars based on the GPS position and compass signal. An obvious limit of these ap-
proaches is that they may provide information that does not match well what the user is
seeing, due to errors in the position and orientation estimation or to the presence of ob-
jects partially occluding the view. These limitations prevent the possibility for the AR
application to create augmented content usable for monitoring purposes. If the over-
lay of the meta-data onto the view is imprecise, it is not possible for the user to save
a copy of the augmented view, e.g., in the form of an image with captions associated
to the objects. Such augmented content could be useful for several purposes: archiv-
ing the augmented outdoor experience, indexing visual content for supporting search
and retrieval of the annotated visual objects, and even for the extraction of semantic
information from the augmented content.
AR is a well established research topic within the Human Computer Interaction field,
which has recently attracted new attention due to the announcement by major hardware

1http://www.lonelyplanet.com/guides
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vendors of low-cost, mass-market AR devices. In particular, the recent trend of mobile
devices as AR platforms benefits from the improved standardization (most AR software
can now be used without ad hoc hardware), increased computational power and sensor
precision [93]. The survey in [9] overviews the history of research and development in
AR, introduces the definitions at the base of the discipline, and positions it within the
broader landscape of other technologies. The authors also propose design guidelines
and examples of successful AR applications and give an outlook on future research
directions. An important branch of the discipline is the outdoor AR. Several works
address the problem, usually to identify [34] and track [148] points of interest in urban
scenarios. Although standard solutions for mobile AR already exist (e.g. Wikitude2),
they rely only on compass sensors or the a priori known appearance of the objects. We
present a novel framework for the fusion of the two techniques: refining the compass-
based AR performance without knowing a priori the appearance of the objects.
The problem addressed in this framework is the design of mobile AR applications for
the enrichment of outdoor natural objects. Restricting the focus to devices that support
a bi-dimensional view, a generic architecture must be realized that receives as a first
input a representation of the reality - in which the user is embedded - captured by the
device sensors; such representation typically comprises a sequence of camera frames
captured at a fixed rate, and the position and orientation of the device, captured by the
GPS and orientation sensors; the second input is the information about the possible
objects present in a region of interest. The output is the on-screen position of relevant
objects and the association of relevant meta-data to such objects, computed at the same
frequency of the input capture. Besides the near real-time execution time, the system
must also cope with the following requirements:

• Uncontrolled viewing conditions: the objects to be identified have no fixed, known
a priori, appearance, because the viewing conditions can drastically change due to
weather, illumination, occlusions, etc.

• Uncertain positioning: position and orientation sensor errors make the location
estimation potentially noisy; thus the identification of the relevant objects from
these signals alone cannot be assumed to be fully reliable and must be corrected
with information from the camera view.

• Bi-dimensional reduction: although the objects’ position in the real world is esti-
mated in the 3D space, the on-screen rendition requires a projection onto the 2D
surface of the camera view, based on a model of the camera.

• Uncertain internet connection: especially for rural and mountain regions.

Figure 7.8 shows a representation, through an UML component diagram, of the refer-
ence architecture of a mobile outdoor AR application. The key idea is to enable the
near real-time reality augmentation process thanks to a proper partition of functionality
and a mix of synchronous and asynchronous communications among the modules. The
architecture consists of four sub-systems: the Sensor Manager, the Data Manager, the
Position Alignment Manager and the Bi-dimensional Graphical User Interface, which
draws objects and their metadata in provided on-screen coordinates.

2http://www.wikitude.com/app/
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Figure 7.8: The proposed architecture of a mobile outdoor AR application.

Sensor Manager

The Sensor Manager coordinates data acquisition from the device sensors. It typically
comprises one module per each signal processed by the application; the typical config-
uration comprises the GPS Sensor Manager, the Orientation Sensor Manager and the
Camera Sensor Manager. The modules work asynchronously and provide input to the
Position Alignment Manager and Data Manager, which subscribe to their interface and
are notified when a new signal arrives from a sensor.

Data Manager

The Data Manager is responsible for providing to the other sub-systems the initial
positions of the objects in view and the meta-data for enriching them. It receives as
input the specification of an area of interest (typically, inferred from the user’s position,
which defines the region the user may be looking at, or may be moving within), and in-
teracts with an external repository containing a virtual representation of the world (e.g,
a sky map or a DEM). It produces as output Object Positions, which specify the (ini-
tially approximate) 3D coordinates of the candidate objects to display. Within the Data
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Manager, a Data Provider component queries one or more external geo-referenced data
sources, with the current user’s location, and extracts the coordinates of the objects that
are likely to lie within the view of the user. For example, in a sky observation app, it
queries the sky map for the celestial coordinates, plus meta-data such as type, name,
distance, etc., of the potentially visible objects. The Cache Manager implements data
pre-fetching and synchronization policies, based on information about current cache
content, network availability, and cost of data transfer. Since data about the objects
can be large the Cache Manager realizes a trade-off between on-demand transfer from
external data sources and caching in the local storage of the device. Furthermore, it
enables disconnected usage, as needed in the outdoor scenario, in which internet con-
nection may not be always granted.

Position Alignment Manager

The Data Manager provides a fast computation of the initial Object Positions, to enable
the immediate update of the GUI. But its output may be noisy, because the estimated
user’s position, the camera orientation and the virtual world representation may all con-
tain errors. It is well-know that the GPS and orientation signal of mobile devices may
be inaccurate; on the other hand, also the virtual world representation, e.g., a Digital
Elevation Model (DEM) describing the earth surface, may be affected by errors, e.g.,
due to low resolution. Therefore, the Position Alignment Manager comprises com-
ponents for updating the positions of the objects, adapting them to the actual content
of the camera view, and projecting them to the device’s view. It takes in input the
initial object positions provided by the Data Manager and produces in output the cor-
rected on screen object coordinates. To support the trade-off between accuracy and
speed, the (demanding) computations required for improving accuracy are delegated
to separate modules, which provide asynchronous corrections to the initial candidate
positions, by applying content-based object detection techniques. These modules feed
the Object Position Corrections store (see Figure 7.8) with the adjustments computed
asynchronously, which the Position Updater and 3D/2D Converter components exploit
to correct the on screen coordinates used by the GUI. Examples of components for the
content-based refinement of object positions are Pattern-Based and Similarity-Based
Object Identifiers.
A Pattern-Based Object Identifier performs a frame-based match. It uses the virtual
world representation as a pattern to search within the real world image. It takes in input
the virtual representation of the world (e.g., the synthetic rendition of a constellation
or of a piece of mountain skyline) and computes a ranked list of approximate matches
between the virtual image and the real one, with respect to some similarity function.
As a collateral output, the Pattern-Based Object Identifier can also extract from the real
world image the regions that correspond to the identified objects, according to the best
match. Such artifacts, cached in the Object Appearance Store of Figure 7.8, denote
the visual appearance of the objects of interest in the current view and can be used for
accelerating the correction of objects’ positions when the view changes.
A Similarity-Based Object Identifier performs object-based similarity search; it takes
in input the object appearance artifacts and searches them in the frame, using computer
vision techniques.
Finally, the 2D/3D Converter projects 3D positions onto the bi-dimensional screen
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space. It takes in input the device position, orientation, and Field Of View (FOV),
applies a prospective projection, determines the on-screen coordinates of the candidate
objects and discards those out-of-view, e.g, due to micro-movements of the device.
For example, it projects the celestial coordinates of the relevant sky objects into on-
screen coordinates. The on-screen coordinates are used by the GUI for rendering the
augmented reality view.
The asynchronous communication between the components that compute position cor-
rections and those that project positions and render the virtual reality view aims at en-
abling a best effort, near real-time adjustment of the view. The prospective projection
is a constant-time procedure, so that the total response time of the Position Updater and
of the 3D/2D Converter is linear w.r.t. to the number of candidate objects. Since this
number is reasonably bound, the resulting time complexity is constant, which allows
the mobile device to call the Position Updater and the 3D/2D Converter synchronously
at every frame arrival and redraw the view in near real-time based on the best available
approximation of the object positions.

Capture and Replay Testing Framework

Testing an outdoor AR application is a complex task that requires evaluating simul-
taneously the precision of object positioning and the response time, two competing
objectives, in a realistic setting that considers the sensor inputs (not available in the
lab). The assessment criteria must also take into account usage conditions: if the user
keeps the device steady, low error is the prominent goal, while higher execution time
due to re-positioning after micro-movements is less relevant; conversely, if the device is
subject to movement (e.g, during walking), fast execution can be more important than
object positioning precision. Therefore, testing should be supported by an auxiliary
architecture that helps achieve the following objectives:

• Perform lab testing in conditions equivalent to real outdoor usage.

• Contrast different designs in the same operating conditions and assess the same
designs under different operating conditions.

• Use the performance metrics best suited to a specific application and operating
condition.

To support such requirements, we have extended the architecture of Figure 7.8 with a
testing framework based on a Capture & Replay approach:

• A Capture application: it is a mobile application that can be used to record an out-
door usage session, complete with all sensor data (camera, GPS and orientation)
and user’s activity (start, stop, video record, snapshot, etc.).

• An Annotation application: it is an application that allows one to annotate the
frames of a usage session with the position of the visible objects, so to create a
gold standard for evaluating the accuracy of object positioning.

• A Replay test driver: it is an application that can attach to the Position Alignment
Manager sub-system of the architecture of Figure 7.8 and measure its performance
based on a plug-in metrics.
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The Capture application collects execution traces. A trace consists of a sequence of en-
tries that record all the events occurred during a usage session, including: information
about the device manufacturer and model; the set of frame images taken at frequency
F , with their acquisition timestamp; and the sequence of time-stamped sensor readings,
i.e., the values of the position and orientation sensors acquired at the maximum fre-
quency supported by the device. The above mentioned information, logged by default,
is normally sufficient to reproduce the user activity for a typical outdoor AR applica-
tion; however, the Capture application can be extended to support additional logging, if
needed by a specific application. Note that the described Capture & Replay approach
allows lab tests to assess the Position Alignment Manager in the same operating con-
ditions that occur in an outdoor session, because it exploits the same frame acquisition
rate and sensor sampling frequency experimented in the real time use.

7.3.2 Mountain Identification Augmented Reality Application

The SnowWatch mobile AR application specializes the architecture described in Fig-
ure 7.8. In this section we describe the application-specific concepts and component
refinements introduced for the mountain identification context.
The objects to be identified are mountain peaks and the object positions are 3D global
system coordinates laying on a unit sphere centered in the device location.
An application-specific Cache Manager has been implemented, responsible for pre-
fetching and caching the Digital Elevation Model fragments corresponding to the geo-
graphical region the user is visiting. Pre-fetching is enabled when the WiFi connection
of the device is on and cache data are used by the Data Provider component to com-
pute the Object Positions during outdoor usage. When the user moves out of the region
for which data are in the cache, a cache miss triggers the download of a new frag-
ment, which, in case of cache full, replaces the fragment relative to the region visited
earliest. The user can also manually select regions (defined by country borders) to be
permanently downloaded offline.
The Similarity-Based Object Identifier component is implemented with a state-of-the-
art cross-correlation patch recognition technique [15], which has been ported to the
mobile execution environment.
The component where the most relevant adaptations have been introduced is the Pattern-
Based Object Identifier, which uses the set of algorithms that implement the pattern
matching between the skyline extracted from the DEM and the skyline visible in the
camera view, and computes Object Position Corrections based on the outcome of such
procedure. The algorithms are described in detail in Section 4.2.
During the application development the Capture and Reply Testing Framework (Sec-
tion 7.3.1) has been widely used to simulate registered outdoor scenarios. This fa-
cilitated both the improvement of the mountain identification precision and the GUI
development (since the developer was able to test the new GUI in a challenging moun-
tain scenario). Furthermore, the framework automated regression testing of the mobile
application, by computing quality metrics to trace regression errors. The regression
testing was used to ensure application quality prior to every version release.
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Engagement Experiments

In order to test the engagement potential of the mobile crowdsourcing, we developed
the aforementioned application as a fully market-ready Android product. With a help
of professional graphic designers and usability experts we finalized the app with several
functionalities, such as: settings that allow to customize the mountain information dis-
played on the screen, photo shooting and social sharing buttons. We ran a beta testing
program with 100 users for one month and fixed numerous stability and compatibility
issues. Figure 7.9 shows several screenshots of the application.

Figure 7.9: Several screenshots of the mobile AR application.

The experiment aimed at the sole evaluation of the engagement that can be reached
with the application, thus, in order to avoid dealing with privacy policies and issues,
the functionality of automatic photograph uploading to the SnowWatch website was
disabled in the public version of the application.
We deployed the application publicly on Google Play Store3, listed as a free app. The
only advertisement consisted in ∼ 10 posts on Facebook groups of mountain lovers in
Italy. No professional or paid marketing campaigns were performed.

3http://peaklens.com
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At the end of the monitored period of 7 months (from February 1, 2017 to August 24,
2017) the following engagement results were achieved:

• 87 k total downloads of the application and 57 k installs on active devices. Fig-
ure 7.10 shows the trend of the downloads and active devices in time.

• Average 2200 active daily users in the last month (average 2700 active daily users
during the weekends). The active users are all the distinct devices that commu-
nicated with the application Web server during the day (this is a pessimistic esti-
mation since the application is also able to work offline). Figure 7.11 shows the
day-by-day active daily users.

• Top 25 position of the Google Play Store applications within the Travel & Local
category in Italy, Switzerland, Austria and Slovenia.

• More than 50 spontaneous blog and forum posts reviewing and promoting the
application.
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Figure 7.10: Day-by-day total user installs and active device installs of the mountain identification
application.

The geographical distribution of the application is concentrated in Italy (54 %), since
we announced it only on Italian social pages. However, it naturally expanded to the
whole Alpine area, including Switzerland (12 %), Germany (7 %), France (6 %) and
Austria (5 %). The United Stated market has also been involved with 5 % of the down-
loads.

Conclusions

In this section we described the experiment of deploying on the market the entertain-
ment AR application that motivate users to take mountain photographs. The experiment
showed that such application (that uses the algorithms developed for the automatic pro-
cessing pipelines) has a great public engagement power and has the potential to con-
tribute with massive amount of user-generated photographs. Next experiments in this
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Figure 7.11: Day-by-day daily active users of the mountain identification application.

direction will include the collection of the photographs from the users and their valida-
tion.
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CHAPTER8
Conclusions and Future Work

In this thesis we explored the feasibility of using multimedia content publicly available
on the web to enhance environmental monitoring. We addressed the problem through
the use case of snow cover estimation using public mountain images.
We described an acquisition pipeline that automatically retrieves new images contain-
ing mountain slopes from photo-sharing platforms and public webcams. We discovered
that the amount of user-generated photographs depicting relevant mountain slopes is in-
sufficient to get spatio- or temporally-consistent snow cover trends. Webcam streams,
on the other hand, proved to guarantee a good spatial and excellent temporal frequency
of the visual observations.
We also presented algorithms for processing the acquired photographs: i) mountain
image geo-registration that, given a geolocated photograph as input, infer photograph
geographical properties; ii) virtual snow cover computation that, given a photograph
identifies which areas are covered by snow and produces virtual snow indexes.
We tested the environmental usefulness of these indexes by feeding them into a real
environmental resource-management model developed in collaboration with environ-
mental researchers. We proved that, in the described use case, the virtual snow indexes
obtained from a single public webcam were able to replace the original authoritative
snow measurements (provided by the Italian Environmental Protection Agency, Agen-
zia Regionale per la Protezione dell’Ambiente) without a performance drop and im-
prove the performance if complemented to the authoritative snow measurements. At
the best of our knowledge, this is the first successful effort in moving beyond proving
the data correctness and objectively prove the practical usefulness of the public visual
web content in a real world environmental monitoring use case. We hope that this work
will encourage more computer science scholars to explore the environmental potential
of the public web content and stimulate more environmental researchers to experiment
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Chapter 8. Conclusions and Future Work

with web-originating inputs in their models.
The environmental impact of the obtained virtual data was, however, estimated through
simulations. We would like to foster a closer collaboration with environmental re-
searches to assess the performance of different control policies with real tests using
live models.
Given the insufficient volumes of user-generated photographs, only webcam imagery
was used for the environmental experimental setting. However, all the described pro-
cessing algorithms are compatible both with webcam images and user-generated pho-
tographs. The volume of the user-generated content continues to grow and we acquire
longer time series of mountain photographs. Our future work will include environmen-
tal tests at a larger scale, using hundreds or thousands of public webcams and user-
generated photos. Our long-term challenges include the derivation of the statistical
snow cover models using predictive models that rely on other environmental variables.
Furthermore, the proposed approaches for content acquisition, relevance classification
and pixel-level estimation of the desired phenomena are generic and can be applied to
other environmental problems. We would like to port the proposed architecture to such
problems, including sediment monitoring in river beds and vegetation monitoring in
mountain regions.
In this thesis we also proposed a preliminary study on how the crowdsourcing can ben-
efit the automatic web data acquisition and analysis pipelines. We described a web
portal that allows users to contribute with own content and correct the mistakes made
by automatic processing. Furthermore, we explored how the users can be engaged
into providing photographs through an entertaining experience: we developed a mo-
bile augmented reality application that is able to perform a real-time precise mountain
identification. The deployment of the application on the mobile market resulted in 16 k
users in the first 2 months, confirming its engagement potential. We plan to carry on
with this research track and perform a longitudinal study on the effectiveness of the
alternative recruitment and gamification policies, and investigate what works and what
does not in the design of citizen science applications that seek the voluntary contribu-
tion of people.
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