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Abstract
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Transonic Flow Features in a Nozzle Guide Vane Passage

by Alessandro CECI

The entropy noise in modern engines is mainly originating from two types of mecha-
nisms. First, chemical reactions in the combustion chamber lead to unsteady heat re-
lease which is responsible of the direct combustion noise. Second, hot and cold blobs
of air coming from the combustion chamber are advected and accelerated through
turbine stages, giving rise to the so-called entropy noise (or indirect combustion
noise). In the present work, numerical characterization of indirect combustion noise
of a Nozzle Guide Vane passage was assessed using three-dimensional Large Eddy
Simulations. The study was conducted on a simplified topology of a real turbine
stator passage, for which experimental data were available in transonic operating
conditions. First, a baseline case was reproduced to validate a numerical finite vol-
ume solver against the experimental measurements. Then, the same solver is used to
reproduce the effects of incoming entropy waves from the combustion chamber and
to characterize the additional generated acoustic power. Periodic temperature fluc-
tuations are imposed at the inlet, permitting to simulate hot and cold packets of air
coming from the unsteady combustion. The incoming waves are characterized by
their characteristic wavelength; therefore, a parametric study has been conducted
varying the inlet temperature of the passage, generating entropy waves of greater
wavelengths. The study proves that the generated indirect combustion noise can
be significant. Moreover, the generated indirect combustion noise increases as the
wavelength of the incoming disturbances increases. Finally, the present work sug-
gests that, in transonic conditions, there might be flow features which enhance the
indirect combustion noise generation mechanism.
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Nei motori areonautici moderni, il rumore associato alla grandezza termodinamica
entropia ha origine principalmente da due meccanismi. Per prima cosa, le reazioni
chimiche all’interno della camera di combustione danno origine ad un rilascio di
un flusso di calore instazionario, il quale è responsabile della generazione del ru-
more di combustione diretto. Inoltre, porzioni di aria calda e fredda provenienti
dalla camera di combustione sono accelerate attraverso i vari stadi della turbina,
dando origine al soprannominato rumore entropico (o altresí noto come rumore di
combustione indiretto). Nel presente lavoro, la caratterizzazione numerica del ru-
more di combustione indiretto attraverso le pale guida dello statore di una turbina
è stata effettuata grazie all’utilizzo di simulazioni fluidodinamiche LES (Large Eddy
Simulations). Lo studio è stato condotto su una geometria semplificata di un reale
statore, per il quale erano disponibili i dati sperimentali relativi a condizioni oper-
ative transoniche. All’inizio, un caso di riferimento è stato riprodotto mediante le
simulazioni numeriche in modo da validare un solutore ai volumi finiti attraverso
un confronto con i dati sperimentali. In seguito, lo stesso solutore è stato utilizzato
per riprodurre gli effetti di un sistema di onde di entropia provenienti dalla camera
di combustione e per caratterizzare un’eventuale generazione di potenza acustica
addizionale rispetto al caso base di riferimento. Fluttuazioni periodiche di tem-
peratura sono state imposte all’ingresso del dominio computazionale, permettendo
di simulare masse di aria calda e fredda derivanti dalla combustione instazionaria.
Uno studio parametrico è stato effetuato variando la lunghezza d’onda delle flut-
tuazioni, tramite l’imposizione di temperature di ingresso differenti. Lo studio di-
mostra che l’intensitá del rumore di combustione indiretto puó essere significativa e
puó aumentare qualora aumentino le lunghezze d’onda delle fluttuazioni. Infine, il
presente lavoro suggerisce che, in condizioni transoniche, possano esserci caratter-
istiche della corrente fluidodinamica che favoriscano la generazione del rumore di
combustione indiretto.

http://www.polimi.it




vii

Acknowledgements

I want to express my gratitude to my supervisors Prof. Gianluca Montenegro, Post-Doc. Ro-
main Gojon and Prof. Mihai Mihaescu for inspiring and guiding me throughout my work.

Thank you Valeriu Dragan, Lukas Schickhofer, Niclas Berg, and Asuka Gabriele Pietron-
iro for welcoming me in your group and for the pleasing time spent together. Special thanks
to Asuka Gabriele Pietroniro for providing me the CAD model.

Sincere thanks go to my friends and colleagues at Politecnico di Milano and KTH for all
the fruitful discussions, for the support and for making my stay in the university a joyful
experience.

Grazie di cuore Mamma e Papà per aver sempre creduto in me ed in ogni mia scelta. Gra-
zie a tutta la mia famiglia, che mi ha sostenuto e mi è stata sempre vicino, sebbene spesso i
chilometri di distanza non fossero pochi.

Grazie Giada, che con la tua dolcezza e detreminazione mi hai accompagnato in questo lungo
viaggio. Sei stata luce nelle giornate più buie e forza nei momenti più difficili.

The simulations of this work were performed at the PDC Center for High Perfor-
mance Computing (PDC-HPC) and at the High Performance Computing Center
North (HPC2N), on resources provided by the Swedish National Infrastructure of
Computing (SNIC).





ix

. . . ad Antonino Francesconi





xi

Contents

Acknowledgements vii

1 Introduction and Motivation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Noise Pollution in Modern Civil Aviation . . . . . . . . . . . . . . . . . 1

1.2.1 Aircraft Noise and Health Consequences . . . . . . . . . . . . . 2
1.3 Indirect Combustion Noise in Literature . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Compressible Flows 7
2.1 Kinematics and Dynamics of Compressible Flows . . . . . . . . . . . . 7

2.1.1 Eulerian vs Lagrangian Description . . . . . . . . . . . . . . . . 7
2.1.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Balance of Linear Momentum . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Thermodynamic Description . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 The Perfect Gas Model . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Numerical Modeling of the Problem 19
3.1 Conservative Form of Compressible Navier-Stokes Equations . . . . . 19
3.2 The Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 The foam-extend Framework . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 The dbnsTurbFoam Solver . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 The Rusanov Flux . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 The Barth-Jespersen Limiter . . . . . . . . . . . . . . . . . . . . . 26
3.3.4 Treatment of Laplacian Terms . . . . . . . . . . . . . . . . . . . . 27
3.3.5 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.6 Solution Procedure Algorithm . . . . . . . . . . . . . . . . . . . 28

3.4 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Averaged Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Eddy-Viscosity Hypothesis . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 Two Equations K − ω SST Model . . . . . . . . . . . . . . . . . . 33

3.6 Large Eddy Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.1 Spatial Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Filtered Governing Equations . . . . . . . . . . . . . . . . . . . . 35
3.6.3 Subgrid-Scale Modeling . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.4 Eddy-Viscosity Models . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.5 One Equation Eddy Model for Ksgs . . . . . . . . . . . . . . . . 38



xii

4 Transonic Flow Features in a NGV Passage 39
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Baseline Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Computational Domain and Mesh . . . . . . . . . . . . . . . . . 44
4.2.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Flow Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Comparison With Experiments . . . . . . . . . . . . . . . . . . . 52
4.3.3 Space-Time Correlations . . . . . . . . . . . . . . . . . . . . . . . 54

5 Indirect Combustion Noise 59
5.1 Fluctuating Inlet Temperature . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Forced Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.2 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . 72
5.1.3 POD, Temperature Field . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.4 POD, Pressure Field . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.5 POD, Velocity Magnitude Field . . . . . . . . . . . . . . . . . . . 82
5.1.6 Inlet Temperature Effects . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Comparisons with the Analytical Model . . . . . . . . . . . . . . . . . . 93
5.2.1 Actuator Disk Model . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Incoming Planar Entropy Waves . . . . . . . . . . . . . . . . . . 99
5.2.3 Comparison of the Results . . . . . . . . . . . . . . . . . . . . . . 100

6 Conclusions 107
6.1 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 107

A Scalability Performances of foam-extend 109

B Grid Sensitivity Study 111

Bibliography 113



xiii

List of Figures

1.1 Engine Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Prescription of Antyhypertensive Medications . . . . . . . . . . . . . . 3
1.3 Typycal SPL Spectrum at Approach . . . . . . . . . . . . . . . . . . . . 3
1.4 The Entropy Wave Generator . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Indirect Combustion Noise Mechanism . . . . . . . . . . . . . . . . . . 5

3.1 Neighboring Control Volumes . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 1D Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Approximate Riemann Solver . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Typical Turbulent Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Schematic Representation of an Aero-Engine . . . . . . . . . . . . . . . 39
4.2 NGV Geometry (3D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Facility Test Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 NGV Loading, Experimental Readings . . . . . . . . . . . . . . . . . . . 42
4.5 Circumferential Pressure Distribution, Experimental Readings . . . . . 42
4.6 Wake Measurements, Experimental Readings . . . . . . . . . . . . . . . 43
4.7 NGV Simplified Geometry (2D) . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Front View of the Computational Domain . . . . . . . . . . . . . . . . . 44
4.9 Internal Blocking Strategy (2D) . . . . . . . . . . . . . . . . . . . . . . . 45
4.10 Mesh Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.11 Instantaneous Mach Number Field (Baseline Case) . . . . . . . . . . . . 50
4.12 Instantaneous Pressure Field (Baseline Case) . . . . . . . . . . . . . . . 50
4.13 Q-Criterion Isocontours and Slice of the Divergence of the Velocity

Field (Baseline Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.14 Mean Pressure and Mean Total Pressure Ratio (Baseline Case) . . . . . 52
4.15 Location of NGV Loading and Circumferential Pressure Distribution

Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.16 NGV Loading and Circumferential Pressure Distribution (Compari-

son With Experiments) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.17 Downstream Location of Total Pressure Losses Data Collection . . . . . 54
4.18 Wake Losses (Comparison With Experiments) . . . . . . . . . . . . . . 55
4.19 Sampling Line along the Wake . . . . . . . . . . . . . . . . . . . . . . . 55
4.20 Space-Time Correlation, Reference Point (x0, y0) at t0 = 0 . . . . . . . . 56
4.21 Space-Time Correlation, Generic Reference Point 15 Trailing Edge Di-

ameters Downstream the Point (x0, y0) at t0 = t . . . . . . . . . . . . . . 57
4.22 Space-Time Correlation, Generic Reference Point 34 Trailing Edge Di-

ameters Downstream the Point (x0, y0) at t0 = t . . . . . . . . . . . . . . 58
4.23 Convection Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Instantaneous Temperature Field (Baseline and Forced Cases) . . . . . 60
5.2 Average Integral Amplitude Spectrum of p′ . . . . . . . . . . . . . . . . 62
5.3 Fast Fourier Transform of p′ at f1 (Baseline and Forced Cases) . . . . . 63



xiv

5.4 Fast Fourier Transform of p′ at fs (Baseline and Forced Cases) . . . . . 64
5.5 Fast Fourier Transform of U ′mag at f1 (Baseline and Forced Cases) . . . 65
5.6 Fast Fourier Transform of U ′mag at fs (Baseline and Forced Cases) . . . 66
5.7 Fast Fourier Transform of T ′ at f1 (Baseline and Forced Cases) . . . . . 67
5.8 Fast Fourier Transform of T ′ at fs (Baseline and Forced Cases) . . . . . 68
5.9 Procedure for the Analysis of the Shock Dynamics . . . . . . . . . . . . 69
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Chapter 1

Introduction and Motivation

1.1 Introduction

The role of civil aviation in modern transportation is of primary importance, driving
a sustainable economic and social development. According to the latest ICAO nav-
igation plan [1], 3.3 billion passengers are annually carried on scheduled traffic, in
addition global air traffic has doubled in size once every 15 years since 1977 and will
continue to do so. In this continuously increasing trend, noise emissions started to
develop into a subject of great burden for society. Inevitably, the reduction and the
control of noise emissions are fundamental for community approval and economic
relevance.
Although in the last decades engineers constantly improved their designs for noise
reduction, aircraft noise is still considered the most annoying source among the
transportation ones.

1.2 Noise Pollution in Modern Civil Aviation

Noise pollution of aircraft is due to two types of noise above all: aerodynamic- and
mechanical-noise. The first one radiates from a fluid flow that interacts with a solid
body immersed in it, while the latter originates mainly from the engine, i.e. from
jets, combustors and turbomachinery.
The earliest theoretical work on this subject started in 1951 with M. J. Lighthill [2],
who described such phenomena in a very meaningful way: "The airflow may contain
fluctuations as a result of instability, giving at low Reynolds numbers a regular eddy pat-
tern which is responsible for the sound produced by musical wind instrument, and at high
Reynolds numbers an irregular turbulent motion which is responsible for the roar of the wind
and of jet airplanes; or they may be inherent in the mechanism for producing flow, as in the
siren, or in machinery containing rotating blades".
A qualitative description of engine noise sources is pictured in Figure 1.1. Efforts in
the last decades have been made in order to significantly reduce jet and fan noise,
some examples are the chevrons (the "V" shaped patterns at the trailing edge of jet
nozzles), the sophisticated designs of fan blades and the introduction of very high
bypass ratio turbofan engines.
All these successful attempts have hence left combustion noise as a big remaining
contributor in the scenario and the present thesis will primarily asses this particular
noise source.
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FIGURE 1.1: Engine noise sources (Rolls-Royce Trent 100, copyright
Rolls-Royce), Figure from [3].

1.2.1 Aircraft Noise and Health Consequences

High levels of air traffic may have a significant impact on every day life in modern
society and it is becoming increasingly important to evaluate medically and scientif-
ically the effects of aircraft related noise.
Numerous field studies have been conducted nowadays, with particular interest on
annoyance, medical diseases and functional disorders [4].
Erikson et al.[5] conducted an intensive study on a 10 year period among 20137
men in the age of 40-60 years. They concluded that exposure to aircraft noise above
50 dB(A) (FBN) was linked significantly to a 20% increase in the risk of hypertension.
The HYENA study [6], instead, extensively documented the importance of noctur-
nal aircraft noise exposure in the development of hypertension. It studied a group
of 4861 adults in between 45 and 70 years living in the proximity of six European air-
ports exposed to continuous nocturnal noise levels. The investigation showed that
a 10 dB increase in the night-time noise level was significantly correlated with a 14%
raise in the probability of being diagnosed with hypertension.
The most extensive study in terms of medical prescription increase was performed in
the neighborhood of Köln-Bonn Airport (Germany) [7]. Individual informations re-
lated to medical prescriptions of 809379 persons insured with health-care insurance
firms were analyzed: the research underlined the existence of a strong relationship
between the aircraft noise intensity and the prescriptions of antihypertensive phar-
maceuticals. Figure 1.2 shows the association between exposure and effect.
Learning disorders or difficulties related studies showed impacts on cognitive per-
formances without detectable signs of damage. Investigations on children (aged
from 9 to 10 years) in 89 schools showed correlations between deterioration in mem-
ory performance and aircraft noise exposure of the schools [8].
Finally, a study in the proximity of Frankfurt Airport showed that aircraft noise is
classified as the greatest objectionable source of noise [9].



1.3. Indirect Combustion Noise in Literature 3

FIGURE 1.2: Relation between antihypertensive pharmaceuticals pre-
scriptions and night-time aircraft noise exposure level in women
(with and without exposure). Calm areas had no aircraft noise and
road-rail noise level below 35 dB(A). Figure from [4]. DDD = defined

daily doses.

1.3 Indirect Combustion Noise in Literature

Figure 1.3 shows the relative importance of combustion noise with respect to other
sources in aero-engines on a typical approach, underlining its importance in the fre-
quency range of 200− 1000 Hz.

FIGURE 1.3: Typical SPL spectrum on a turbojet engine at approach
(from SAFRAN Snecma, http://www.safran-group.com/), Figure

from [3].

The combustion noise in aero-engines is known to originate from two different sources.
First, the unsteady heat release due to chemical reactions in the combustion chamber
generates the direct combustion noise, which is related to volumetric expansion and
contraction of gases in the reactive region [10, 11]. Second, hot and cold spots of air
generated by the combustion process are advected and accelerated by the turbine
stages via strong mean flow gradients, giving rise to the so-called entropy noise or
indirect combustion noise. This type of noise source was early investigated in the
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works of Candel [12] and Marble & Candel [13]. They proposed an analytical model
for the convection of non-uniform temperature regions through a nozzle in several
configurations: subsonic, supersonic and supersonic with shock in the divergent.
The model assumes quasi-one-dimensional inviscid flow and compactness of the
nozzle, i.e. the perturbations are considered quasi-steady. The relations linking the
different perturbations are established using only conservation laws. In supersonic
operations the critical mass-flow is also imposed at the throat.
A definitive analytical model of indirect combustion noise for any geometry and dis-
turbance type is still missing in literature [14]; recent developments have been made
by Howe [15] who transformed the momentum equation in Crocco’s form into an
acoustic analogy equation and found a solution to the non compact nozzle problem
using the Green’s function. In his work he also took into account the noise contribu-
tion from separated flow in the divergent section.
From an experimental point of view an extensive study of entropy noise in nozzle
flows has been carried out by Bake et al. [16] and it consists of a straight tube flow
with a heating module and a nozzle where the flow is accelerated. A schematic rep-
resentation of the experiment can be visualized in Figure 1.4.

FIGURE 1.4: Schematic representation of the entropy wave generator
(EWG) experimental setup, Figure from [16].

A large variety of numerical investigation of the EWG experiment can also be found
in literature, in the present thesis the author analyzed the work conducted by Bake
et al. [16] and Leyko et al. [17]. The results showed that the pressure signals obtained
in the EWG experiment come from two main mechanisms: the entropy-to-acoustic
conversion of the perturbations via strong mean velocity gradients in the nozzle,
including the presence of the shock in the divergent, and the acoustic reflection at
the exhaust due to the non perfect anechoic outlet. The numerical and experimental
pressure fluctuations signals are in very close agreement in the low-limit frequency
of the incoming perturbations (nozzle compactness). In this low frequency range
only 1D planar wave are present and the compact assumption is valid.
Different types of investigation on entropy noise analyze, instead, the generation of
acoustic disturbances through turbine blade rows.
In 1977 Cumpsty and Marble [18] proposed an analytical method, based on the ac-
tuator disk theory, for the evaluation of indirect combustion noise through several
turbine stages. It is based on the axial compactness assumption for the blade geom-
etry (analogously to the nozzle one) but it considers a 2D configuration taking into
account the flow deflection due to the circumferential component of the turboma-
chine, which induces vorticity fluctuations. The axial Mach number is also assumed
to be subsonic, even though the flow may leave the blade passage at supersonic dis-
charge conditions. The axial compactness assumption implies that the wavelength
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FIGURE 1.5: Graphic representation of entropy noise generation and
transmission in an aero-engine, Figure from [3].

of the disturbance λ is large compared to the axial chord Cax. The different per-
turbations are related once again by the means of conservation laws and choking
condition at the throat (in case of supersonic discharge).
Leyko et al. [19] analyzed the wave generation and transmission mechanism from
a numerical perspective. In their work they assessed the range of validity of the
compact assumption for a stator blade row, comparing the analytical results with
simulation data. The incoming disturbances used in the simulations were planar 1D
temperature pulses and the acoustic response of the row was evaluated.
Both the acoustic responses predicted by the simulations and the analytical model
agreed for the cases where λ/Cax > 10; while theoretical results rapidly differ from
the numerical ones at higher frequencies. This discrepancy is due to the fact that
in Cumpsty and Marble’s model [18] the incoming planar entropy waves are con-
vected with no distortion through the blades. Planar entropy waves, instead, were
shown to be strongly distorted in the inter blade passage at high frequencies in the
numerical simulations.
An extensive experimental study was recently conducted, instead, in the high pres-
sure turbine facility at Politecnico di Milano in the framework of the European funded
project RECORD (Research on Core Noise Reduction) [20]. Two turbine operating
conditions were investigated, subsonic and transonic respectively. Entropy noise
was evaluated by comparison of the acoustic signals with respect to the ones with-
out any flow disturbances. The study was also carried out for different frequencies
and different amplitudes of the excitations. The entropy wave excitation was shown
to generate additional acoustic power correlating to the temperature amplitude of
the incoming disturbances.

1.4 Thesis Outline

Indirect combustion noise through a nozzle guide vane will be the core content of the
present thesis. The present work will try to offer a more in depth description of the
mechanism in the energy transfer between different thermodynamic quantities. Nu-
merical analyses will be conducted by the means of Large Eddy Simulations (LES)
in order to provide an accurate description of the phenomenon regardless from the
validity of the axial compactness assumption.
Chapter 1 offered an introduction to the problem of interest, underlining the impact
that noise has on human health and the main features of indirect combustion noise.
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Chapter 2, on the other hand, will present the mathematical description of compress-
ible flows, dealing with the equations that govern the motion of a fluid and with the
thermodynamic description of the latter.
Chapter 3 will introduce the numerical modeling of the problem starting with the
presentation of the finite volume method. Then, the different discretization schemes
and the turbulence models will be described in detail. The mathematical description
is also referred to the solver foam-extend which has been adopted in the simulations.
Chapter 4 is focusing the attention on the physics of the problem. The main geo-
metrical and mesh details will be presented. The simulation of the baseline case will
constitute the starting point for the validation of the solver and for the correct repro-
duction of the flow physics.
In Chapter 5 the entropy to acoustic conversion mechanism will be addressed by
imposing a planar entropy wave-train (in terms of temperature fluctuations) at the
inlet of the computational domain. Several analysis will be conducted in terms of
different wavelengths of the incoming disturbances.
Finally, Chapter 6 will conclude the work, also proposing some reflections on what
might be the continuation of the study.
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Chapter 2

Compressible Flows

2.1 Kinematics and Dynamics of Compressible Flows

Fluid mechanics is the science studying the motion and the dynamics of gases and
liquids. Compressible-fluid dynamics is the study of those in which density is not uni-
form and plays an essential role in the physical description [21].
The phenomena analyzed in this thesis occupy a category where compressibility ef-
fects are a crucial descriptive aspect of the flow field: the fluid speed is of the same
order of magnitude as the speed of sound and wave propagation within the fluid is
fundamental.
The laws governing the fluid motion will be explained in the following subsections.
The fluid is considered to be unstructured matter, regardless how fine it might be
divided. This concept is called continuum assumption and the fluid properties are
treated as punctual in space and they are continuous functions of space and time.
An important concept of this model is the material volume, that is a collection of iden-
tical matter enclosed by a material surface which moves with the local fluid velocity.
The material volume moves through space and can change its shape and volume
during the motion. If the material volume is reduced to the limit of a point, it results
in a fluid particle. The material volume and surface will be labeled respectively as
V (t) and S(t) = ∂V (t), where (t) expresses the explicit dependence on time of the
latter quantities.

2.1.1 Eulerian vs Lagrangian Description

In fluid motion, the change of configuration results in a displacement, which in gen-
eral is composed by a rigid body displacement and a deformation. The rigid body dis-
placement consists of a simultaneous translation or rotation of the volume without
change in shape and size. The deformation implies, instead, the change in shape or
size from an initial configuration ζ0(V ) to a deformed state ζt(V ) [22].
When analyzing the motion of a fluid, it is necessary to describe the entire sequence
of deformation throughout time. One way to describe such a process is to use the
Lagrangian description: the position and the physical properties of the fluid in terms
of the referential coordinates and time. In this case the reference state is the unde-
formed condition ζ0(V ) at t = 0. From the Lagrangian description, the displacement
is expressed by a mapping function χ(·), such that x = χ(X, t). The vector X is the
position vector that a fluid particle has in the undeformed configuration, while the
vector x represents the deformed state.
Physical and kinematic quantities are expressed as functions of the position vector
and time: Q = Q(X, t). Therefore in the Lagrangian description the derivative of the
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quantity with respect to time is simply

d

dt
[Q(X, t)] =

∂

∂t
[Q(X, t)]. (2.1)

Given x the instantaneous position of the fluid particle, the flow velocity u and ac-
celeration a are given by

u =
dx

dt
=
∂χ(X, t)

∂t
(2.2)

a =
d2x

dt2
=
∂2χ(X, t)

∂t2
. (2.3)

Continuity in the Lagrangian description is expressed by the spatial and temporal
continuity of the mapping from the reference configuration to the deformed con-
figuration of the material points. The function χ(·) and Q(·) are single-valued and
continuous, with continuous derivatives with respect to space and time.
Thanks to continuity, the map χ(·) can be inverted in order to track backwards the
starting position X of a fluid particle currently at position x. In this case, the current
configuration ζt(V ) is taken as the reference configuration. This particular way to
describe the fluid motion is called Eulerian description and it is conveniently ap-
plied in fluid mechanics. The Eulerian description focuses on what is happening at
a fixed point in space as time passes by, instead of focusing on individual particles
that moves through space and time. The kinematic property of greatest interest is
the rate at which change is taking place rather than the shape of the body of fluid at
a reference time [22].
The mathematical description of the motion is given by the inverse of the mapping
function χ(·), such that X = χ−1(x, t). For such a description to exist it is necessary
and sufficient that the Jacobian determinant is different from zero, i.e. J =

∣∣∣ ∂χi∂Xj

∣∣∣ 6= 0.
The physical property Q in the Eulerian description is then expressed as

Q(X, t) = Q[χ−1(x, t), t] = q(x, t). (2.4)

And the rate of change of such a property is simply

d

dt
[q(x, t)] =

∂

∂t
[q(x, t)] +

∂

∂xi
[q(x, t)]

dxi
dt
, (2.5)

where the first term is often refereed as the local or unsteady rate of change and the
second term as the convective rate of change.
For the case where xi(t)1 is restricted to be the position of a fluid particle, dxi

dt is the
velocity component ui. By convention, the derivative expressed in equation (2.5) is
indicated with the special notation introduced by Stokes:

Dq

Dt
=
∂q

∂t
+ ui

∂q

∂xi
. (2.6)

This is the material derivative of q and this operator has the usual properties of space-
time derivatives.

1In this thesis the kinematic description is mostly based on the indicial notation (sometimes the
vectorial notation is used if it becomes handier or if a more general description wants to be given).
The spatial coordinates will be represented by three Cartesian components x1, x2, x3, which are the
components of the position vector.
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In the case of q being the velocity field u, the material acceleration is

a =
Du

Dt
=
∂u

∂t
+ ui

∂u

∂xi
. (2.7)

2.1.2 Kinematics

During its motion, a fluid particle is subjected to deformations according to the sur-
rounding motion of neighboring particles [21]. The motion of a particle at location
x + dx with respect to one located at x can be calculated knowing all the nine com-
ponents of the velocity gradient tensor2 at position x. This will show how the fluid
particle deforms and it is a complete description around the position x. The velocity
gradient tensor is expressed as

Dij =
∂ui
∂xj

. (2.8)

It can be further split into its symmetric and antisymmetric parts:

Dij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(∂ui
∂xj
− ∂uj
∂xi

)
. (2.9)

The first term on the right hand side is the rate-of-deformation tensor or often called
the rate-of-strain tensor. It is denoted by

Sij ≡
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
(2.10)

and it is symmetric, i.e. Sij = Sji
3

the second term is instead the spin tensor,

Ωij =
1

2

(∂ui
∂xj
− ∂uj
∂xi

)
, (2.11)

which is antisymmetric, i.e. Ωij = −Ωji. It is straight forward to notice that due
to the antisymmetric property the spin tensor has zeros on the main diagonal. This
can be used as an advantage and Ωij can be replaced by an appropriate vector, the
vorticity vector:

ωk = ∂iujεijk
4. (2.12)

The relation between the spin tensor and the vorticity vector is given by

Ωik =
1

2
εijkωj . (2.13)

Finally, it is important to state some properties for the strain rate tensor, the spin
tensor and the vorticity vector [21]:

2Tensors are mathematical objects used to describe physical properties and they are generalization
of scalars, vectors and matrices. The word tensor in this thesis will refer to second-order tensors, which
are distinguished from ordinary matrices. The difference between tensors and matrices is that certain
tensors’ components combinations are invariant under axis rotation and the individual components
transform themselves according to specific laws of transformation. In other words, tensors themselves
are independent of a particular choice of basis.

3A better and more general description of Sij would be achieved expressing its components in any
general reference system with orthogonal curvilinear coordinates, i.e. Sij = 1

2
[η̂i·(η̂j ·∇)u+η̂j ·(η̂i·∇)u].

Where η1, η2, η3 are the versors.
4εijk is the Levi-Civita permutation symbol.
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• The components of the strain tensor are all equal to zero for the case of rigid
body motion. The strain tensor represents fluid deformations.

• The trace of the strain tensor is the divergence of the velocity field and repre-
sents the relative rate of volume growth or contraction of a fluid particle, it is
invariant with respect to the choice of coordinates directions.

• the vorticity vector represents the local rate of rotation of the fluid particle and
it is twice the angular velocity of rigid body motion. Flows which exhibits zero
vorticity vector are called irrotational flows.

One further result from kinematics is the Reynold’s transport theorem, which allows
to express the rate of change of a volume integral of the generic quantity q on an
arbitrary moving control volume:

d

dt

∫
V ∗(t)

q dV =

∫
V ∗(t)

∂q

∂t
dV +

∫
S∗(t)

qb · n dS. (2.14)

The two terms on the right end side are the two contributions to the rate of change of
the integral: the first term expresses the local change in time of q within the volume,
while the second term is the rate of change of q at each element dA due to new
space regions enveloped by the boundary motion of the surface S∗(t), where b is the
boundary velocity and n is the local normal versor to the surface.
Reynold’s transport theorem can be applied to a particular volume, the material
volume. In that case the boundary velocity b is simply the fluid velocity u and the
equation (2.14) becomes

d

dt

∫
V (t)

q dV =

∫
V (t)

∂q

∂t
dV +

∫
S(t)

qu · n dS. (2.15)

With the Reynold’s transport theorem, it is possible to deduce the governing equa-
tions of fluid dynamics from the conservation laws of mass, linear momentum and
energy applied to the material volume [23].

2.1.3 Conservation of Mass

The mass of the material volume is conserved in time and the conservation of mass
has the form

dmV

dt
=

d

dt

∫
V (t)

ρ dV = 0. (2.16)

This is the integral form of the conservation of mass.
Applying the Reynold’s transport theorem, equation (2.16) becomes∫

V (t)

∂ρ

∂t
dV +

∫
S(t)

ρujnj dS = 0. (2.17)

Here the velocity of the boundary b is directly the velocity of the fluid u, which is
defined in the entire flow-field. Then the divergence theorem can be applied on the
second term of equation (2.17) in order to obtain∫

V (t)

[∂ρ
∂t

+
∂

∂xj
(ρuj)

]
dV = 0. (2.18)
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For the arbitrariness of V (t) and in absence of discontinuities the previous integral
equation is equivalent to the differential equation

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (2.19)

which is the local form of the conservation of mass, also known as the continuity
equation.

2.1.4 Balance of Linear Momentum

The balance of linear momentum5 matches the rate of change of the linear momen-
tum in the material volume to the net body force plus the net surface force acting on
it:

d

dt

∫
V (t)

ρui dV =

∫
V (t)

ρgi dV +

∫
S(t)

Ti dS. (2.20)

Among the body forces, only the gravitational force is considered in the momentum
equation, i.e. gi = −gδi3, where g is the intensity of the gravitational field and δij is
the Kronecker delta6.
Considering now the surface type of force in a fluid, the vector Ti is the surface
force per unit area. This vector depends on the orientation of the material surface
and, at a given point in space and time, it can be written as T = T(n). Taking one
imaginary surface ∆S with a normal n, the generic state of stress can have compo-
nents directed both along the normal and the tangential direction. The state of stress
T must therefore depend on three distinct vectors representing the internal action
among the fluid particles. It is then necessary to introduce the stress tensor. It can
be demonstrated that the conservation of angular momentum implies a symmetric
structure for such a tensor [21].
In the case of a Cartesian reference system the stress vector can be expressed as

Ti = σijnj . (2.21)

For a fluid at rest (or in rigid body motion) the stress tensor is expected to reduce to
its isotropic part only, which is simply the hydrostatic pressure p.
This motivates the decomposition of the stress tensor into

σij = −pδij + Σij (2.22)

The deviatoric part Σij of the stress tensor is called the viscous stress tensor. It is easy
to recognize that since−pδij is symmetric, Σij must also be symmetric. It can also be
noticed that in the hydrostatic case the state of stress reduces to Ti = −pδijnj = −pni.
In order to describe the fluid properties related to internal friction, the relation be-
tween the viscous stress tensor and the strain rate tensor must be given. In the sim-
ple (but important) case in which this relation is linear, the fluid is called Newtonian
viscous fluid. For this particular work, only Newtonian fluids will be considered.
Assuming an isotropic fluid, the relation between the viscous stress tensor and the
strain tensor depends only on two scalar coefficients. The aforementioned statement

5Which is the application of Newton’s second law to the material volume V (t).
6The symbol δi3 indicates that the gravitational force acts on the direction of x3
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derives from the invariance principle of tensors with respect to reflections and rota-
tions in space [23, 21]. The constitutive relation Σij = Σij(Sij) is then given by

Σij = 2µSij + λSmmδij , (2.23)

where Smm is the divergence of the velocity field, µ is the shear (dynamic) viscosity
and λ is the dilatation viscosity.
Relation (2.23) can be also written in terms of the bulk viscosity µv = λ+ 2

3µ:

Σij = 2µ
(
Sij −

1

3
Smmδij

)
+ µvSmmδij . (2.24)

According to Stokes’ hypothesis the bulk viscosity µv should be set equal to zero. This
assumption is found to be true only for dilute monoatomic gases both from experi-
ments and Boltzmann kinetic theory [21]. In general, however, the bulk viscosity is
proved to be other than zero.
In the following thesis, the adopted numerical solver assumes the stokes hypothesis
to hold, therefore the last term on the right hand side of equation (2.24) is set to zero.
In general the viscosity of the fluid depends on its thermodynamic state. In the case
of validity of the Stoke’s hypothesis, the only coefficient left is µ; then it is possible
to write µ = µ(T, p).
Finally, combining relation (2.21), the Reynold’s transport theorem and divergence
theorem, the linear momentum conservation equation becomes:∫

V (t)

[ ∂
∂t

(ρui) +
∂

∂xj
(ρuiuj)

]
dV =

∫
V (t)

[
ρgi +

∂σij
∂xj

]
dV. (2.25)

Again, for the arbitrariness of V (t) and in absence of discontinuities the previous
integral equation is equivalent to the differential equation

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = ρgi +

∂σij
∂xj

. (2.26)

Using now constitutive relations (2.23) and (2.24), the differential form of balance of
linear momentum reads

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) = ρgi +

∂

∂xj

[
2µ
(
Sij −

1

3
Smmδij

)]
. (2.27)

2.1.5 Conservation of Energy

The balance of total energy (first law of thermodynamics) simply states that the rate
of change of total energy (internal plus kinetic) in the material volume is equal to
the power of the forces acting upon it plus the rate at which heat is transfered into
it. The power of the forces acting on the material volume is composed by the power
of the surface forces (pressure and viscous forces) plus the one of the volume forces;
this contribution can be expressed as

Ẇext =

∫
S(t)

uiTi dS +

∫
V (t)

uiρgi dV. (2.28)

In order to account for the heat transfer due to thermal conduction, the vector qj
represents the heat flux per unit area entering the material volume. The heat flux
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entering in the control volume is then

Q̇in = −
∫
S(t)

qini dS. (2.29)

Assuming now that the heat flux qi depends on the gradient of temperature in a
linear fashion, a simple proportional relation is given by the constitutive Fourier’s
law:

qi = −k ∂T
∂xi

. (2.30)

The constant of proportionality k is known as the thermal conductivity and it also
depends on the thermodynamic state of the fluid: k = k(T, p).
The conservation of energy then simply reads as

dEtV
dt

= Ẇext + Q̇in, (2.31)

that is for the material volume7

d

dt

∫
V (t)

EtdV =
d

dt

∫
V (t)

(ρet)dV =
d

dt

∫
V (t)

[
ρ
(
e+

1

2
uiui

)]
dV =∫

S(t)
uiTi dS +

∫
V (t)

uiρgi dV −
∫
S(t)

qini dS. (2.32)

Repeating the same procedure for the momentum equations and rearranging some
terms of the resulting equation, the final differential form of the energy equation can
be presented as following

∂

∂t
(ρet) +

∂

∂xj
[(ρet + p)uj ] =

∂

∂xj

[
k
∂T

∂xj
+ 2µui

(
Sij −

1

3
Smmδij

)]
+ uiρgi. (2.33)

2.2 Thermodynamic Description

The resulting set of equations derived from the conservation laws of mass, linear
momentum and energy consists in a system of five equations8, but they contain the
variables ρ, ui, p, T , et, µ and k, which appear to be of a greater number. In order
to solve the aforementioned system of partial differential equations it is necessary to
have the same number of equations as the number of unknowns.
The thermodynamics of motion, hence, occupies a fundamental role in the descrip-
tion of compressible flows, which will be far from complete without it.
The characterization of a particular thermodynamic system is far from a trivial task
from a rigorous mathematical point of view, which involves familiarity with the ax-
iomatic character of thermodynamics and multi-variable calculus.
In the present work, an extensive dissertation of thermodynamics is avoided and
the reader is invited to consult references [24, 21, 23] for a deeper knowledge of the
subject.
This work will limit the analysis to a specific thermodynamic model for the assess-
ment of air properties, which will be later used in numerical simulations. The goal
is still to close the system of differential equations in order to derive the final system

7In the energy equation Et, et and e are respectively the total energy per unit volume, the specific
total energy and the specific internal energy.

8One for the mass, three for the momentum and one for the energy respectively.
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of compressible Navier-Stokes equations.
Even if the word thermodynamics seems to be pointing to physical phenomena in
continuous development, it is usually refereed as the subject which deals with ap-
proximately permanent states of uniform matter, the equilibrium states.
In this text, the matter will be considered to be in a fluid state (liquid or gas), with
isotropic properties (independent from the spatial direction). Moreover the fluid is
considered to remain always in its liquid or gas state, without phase changes. Fi-
nally, it is assumed that the fluid is single component, i.e. it is constituted by a single
chemical specie. The resulting system is called simple thermodynamical system.
Equilibrium states are characterized by some quantities that completely define the
system in that particular state. Such quantities are called state variables. A simple
system stays in its equilibrium state unless some quantities are modified by a partic-
ular condition happening inside or outside the system9. Moreover any changes are
assumed to take place very slowly.
State variables can be extensive or intensive. Extensive variables are quantities which
are proportional to the extension of the system, while intensive10 variables are inde-
pendent from system’s dimensions.
According to the state principle the local thermodynamic state is fixed by any two
independent variables 11; if for example the pair (e, ρ) of independent thermody-
namic variables is selected, any other variable is known in terms of these two: i.e.
p = p(e, ρ), T = T (e, ρ), s = s(e, ρ) and so on (where s is the specific entropy). Re-
lations of this type are called equations of state, and in this way any thermodynamic
quantity appearing in the equations of motion can be expressed in terms of the two
independent ones.
One equation of state of particular interest is the famous thermal equation of state for
an ideal gas p = p(ρ, T ):

p = ρRT, (2.34)

where R = R̃
M̃

, being R̃ and M̃ the universal gas constant and the molecular weight
respectively.
This equation alone is, anyway, insufficient to completely determine all the prop-
erties of the given state at (ρ, T ); i.e. the other thermodynamic variables cannot be
determined from (2.34) alone. An additional relation is needed; a common one is the
specification of the caloric equation of state [21]

e = e(ρ, T ). (2.35)

It is then possible to show that equations (2.34) and (2.35) are sufficient to determine
any other property of the considered fluid.
An alternative way to completely determine the thermodynamic state of a system
resides in the knowledge of the fundamental thermodynamical relation

s = s(e, v), (2.36)

or
e = e(s, v), (2.37)

9A thermodynamic system can be open, closed or isolated. An open system is a system that al-
lows the exchange of mass and energy with the surroundings. A closed system instead only allows
energy exchange. Finally an isolated system does not allow any exchange of mass or energy with the
surroundings.

10Intensive variables are formally derived from extensive ones.
11More exactly by the number of reversible works plus one. In this case there is only one reversible

work mode [21].
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in which v is the specific volume v = 1/ρ.
The existence of the inverse of the first fundamental relation follows from the postu-
lates for the function s = s(e, v) [24, 23].
Their name derives from the fact that they implicitly contain the complete specifica-
tion of the thermodynamic variables of a given system and they alone complete the
description.
On the other hand, the equations of state involve quantities which are easier to mea-
sure, therefore they can be deduced from well conducted experiments.
Finally the knowledge of two equations of state is equivalent to the knowledge of
the fundamental relation12.
All the previous description refers to the branch of equilibrium thermodynamics, which
means that the instantaneous rate of change of the local thermodynamic state is not
too large.
Even if compressible flows do not appear to be slow, usually the local equilibrium
assumption happens to hold in a large variety of phenomena.
Other cases for which this assumption loses its validity are, for example, processes
with dissociation, ionization, chemical reactions and other lagging processes called
relaxation processes [21]. In that particular case the thermodynamic state has also an
explicit dependence on time, i.e. e = e(p, T, t).
A reasonable measure to access whether or not the fluid is in local thermodynamic
equilibrium is to assign a relaxation time τrel as a measure of the time required for a
given quantity to gain back an equilibrium state. If the characteristic time13 ∆tfluid

of the fluid satisfies the inequality

∆tfluid � τrel, (2.38)

then it is considered a good approximation to treat the fluid as if it were in local
equilibrium. This assumption will be assumed to hold throughout all the analyses
done in the present thesis.

2.2.1 The Perfect Gas Model

From the previous considerations, it is now required to construct a thermodynamic
model for air, which is the fluid of interest.
First, the thermal equation of state (2.34) is assumed to hold for air throughout the
envelope of simulated conditions. Gases for which the aforementioned equation is
applicable are called ideal gases.
Then, another equation of state is needed in order to close the differential system
of equations. The missing equation of state will be a caloric equation of state in a
form analogous to the one in (2.35). For certain fluids it is possible to show that
the internal energy depends only on temperature [21]: they are fluid for which the
specific volume v depends only on p/T , that is v = v(p/T ). The important case is
hence the one of ideal gases for which v = R(p/T )−1.
Two other important quantities in thermodynamics are the specific heats at constant
volume and pressure, which are respectively defined as

cv =
∂e

∂T

∣∣∣
v
, cp =

∂h

∂T

∣∣∣
p
, (2.39)

12From the homogeneity property of the fundamental relation [24, 23].
13For instance it can be the time required for a fluid particle to pass through the vane that will be

studied in the present work.
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where h = e + pv is the definition of enthalpy. These quantities can be measured
through experiments or evaluated by more or less complex analytical models.
For the particular case of e = e(T ) only, the exact differentials of internal energy and
enthalpy assume hence the form

de =
de

dT
dT = cv(T )dT, dh =

dh

dT
dT = cp(T )dT. (2.40)

Furthermore, there is a relation between cv and cp:

cp − cv =
dh

dT
− de

dT
=

d

dT
(h− e) =

d

dT
(RT ) = R, (2.41)

which is also known as the Mayer’s relation.
Now the ratio of specific heats

γ =
cp
cv

(2.42)

can be introduced. In general γ = γ(T ) and this ratio will be of great interest for
some derivations that will be developed throughout the work.
The last task is now to obtain a model for cv(T ), in order to integrate the respective
relation in (2.40) and obtain the missing equation of state e = e(T ).
Assuming that the ideal gas model is valid, then in a molecular level it means that
the interactions between molecules are negligible and all the energy of the gas re-
sides in the molecules themselves; i.e. the internal potential energy associated with
intermolecular forces is negligible.
Recalling the equipartitional principle of classical statistical mechanics, it states that
the molecular energy is equally distributed among each degree of freedom. The en-
ergy for each degree of freedom is kbT/2, where kb is the Boltzman constant. For
a generic molecules with ndof degrees of freedom the average energy per molecule
and per mole are respectively

ε =
ndof

2
kbT, Nε =

ndof

2
R̃T. (2.43)

Finally, given a fixed number of degrees of freedom, the specific internal energy and
enthalpy are respectively

e(T )− e0 =
ndof

2
RT, h(T )− h0 =

ndof + 2

2
RT, (2.44)

where e0 and h0 are two reference states.
From the previous relations it is also trivial to derive the model for cv(T ) and cp(T ),
which are respectively

cv(T ) = ndof
R

2
, cp(T ) = (ndof + 2)

R

2
. (2.45)

A diatomic gas has a number of degrees of freedom given by three translation modes
of the center of mass, two rotation modes about two principal axes14 and two vibra-
tion modes about the center of mass. The resulting number ndof will then be ndof = 7.
The dependence of the specific heats on the temperature relies in the number of de-
grees of freedom which are activated for a given temperature. In fact, the equipar-
tition principle fails to predict their correct values if we consider, for instance, air

14One rotational mode is neglected due to the low moment of inertia with respect to the axis con-
necting the two molecules.
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at room temperature: the predicted values based only on the number ndof will be
cv = 7R/2 and cp = 9R/2 and their ratio γ = 9/7. Instead it is found that the correct
value for room condition is cv = 5R/2, cp = 7R/2 and γ = 7/5.
The reason is that classical statistical mechanics does not take into account for the
quantization of energy in vibrational or rotational modes.
It is possible to define a characteristic temperature θr,v in order to evaluate if the
modes are active or not; if T � θr,v then the respective degrees of freedom associ-
ated to that mode must be accounted for.
For the rotational modes, the characteristic temperature is usually very low, for ex-
ample nitrogen N2 and oxygen O2 have a characteristic rotational temperature θr of
2.89[K] and 2.08[K]. Therefore at room temperature there are five degrees of freedom
to consider (three translations and two rotations).
For vibrational modes instead, the characteristic temperature is defined as θv =
hν/kb, where h is the Plank’s constant and ν is the natural frequency of the diatomic
oscillator. This temperature can be considerably high: using again nitrogen and oxy-
gen as example, it is respectively of 3393[K] and 2273[K]. This analysis leads then to
a qualitative relation that allows to consider weather or not rotational modes have
to be considered:

T � θv → cv = 7/2R, cp = 9/2R, γ = 9/7

T � θv → cv = 5/2R, cp = 7/2R, γ = 7/5

and in the present study the range of temperatures of interest will not be sufficiently
large to take into account vibrational modes.
Hence the system of differential equations can be completed with the two equations
of state

p = ρRT

e = cvT.

This type of gas, for which the ideal gas relation (2.34) and cv(T ) = const hold, is
often celebrated as perfect gas or polytropic ideal gas.
It is also worth to mention that the resulting system of the compressible Navier-
Stokes equation is thermodynamically stable, respecting all the assumption of the
postulatory thermodynamic theory.
Finally, a concluding remark has to be specified for the dynamic viscosity µ and the
thermal conductivity k, which also depend on the thermodynamic state of the fluid.
Dynamic viscosity depends sensibly on temperature but very low on pressure. A
very useful model, derived from kinetic gas theory, is the Sutherland’s law

µ(T )

µ1
=

1 + S/T1

1 + S/T

( T
T1

)1/2
, (2.46)

where µ1 is the reference value of viscosity at temperature T1 (usually T1 = 273.15[K])
equal to µ1 = 1.716e−5[kg/(m s)] and S = 110.4[K] is a constant determined experi-
mentally.
For the thermal conductivity instead the use of the modified Euken model is imple-
mented in the solver that will be used in the numerical simulations of the present
work. This model is also based on the kinetic theory of gases and is valid for gases



18 Chapter 2. Compressible Flows

over a fairly large range of temperatures below the critical point. The modified Eu-
ken model is described in Poling, Prausnitz & O’Connell [25] and is given by

k

µcv
= 1.32 + 1.77

R

cv
. (2.47)

The thermodynamic description is now finalized.



19

Chapter 3

Numerical Modeling of the
Problem

3.1 Conservative Form of Compressible Navier-Stokes Equa-
tions

The previous considerations lead to the final representation of the full set of differ-
ential equations required to describe the motion of a compressible fluid. They are
summarized as follows:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) = ρgi +

∂

∂xj

[
2µ
(
Sij −

1

3
Smmδij

)]

∂

∂t
(ρet) +

∂

∂xj
[(ρet + p)uj ] =

∂

∂xj

[
k
∂T

∂xj
+ 2µui

(
Sij −

1

3
Smmδij

)]
+ uiρgi

p = ρRT

T =
e

cv
,

where µ and k are described by the two constitutive relations in equations (2.46) and
(2.47). Pressure p and Temperature T are defined by the two equation of state that
can be rearranged for the couple (ρ, et) 1, resulting in a final system of five equations
for the five unknowns ρ, ui, et. The system is non linear and a peculiar characteris-
tic relays in its hybrid hyperbolic/parabolic nature. In fact the conservation law of
mass is hyperbolic, while the conservation laws for linear momentum and energy
are parabolic due to the presence of a laplacian-like term on the right hand side of
these equations [23].
The previous formulation of the compressible Navier-Stokes equations is nearly
written in the most suitable form to handle their numerical solution in transonic
or supersonic regimes. One important feature of such flows can be the presence of
shockwaves, which exhibit large gradients of physical quantities in a very tiny re-
gion of space. In order to avoid a ridiculously fine discretization in space (leading
to enormous computational costs) an appropriate approach will be discussed in this

1One must recall the expression of the specific internal energy e = et − uiui/2.
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chapter.
It consists in a numerical procedure suited for the solution of the compressible Navier-
Stokes equations in their integral form: the Finite Volume Method.
This solution method requires the formulation of the conservation laws in terms of
their conservative variables: (ρ, ρui, ρe

t).
For a clearer mathematical expression, the aforementioned set of variables will be
translated into a new one

(ρ, ρui, ρe
t)→ (ρ,mi, E

t),

where mi is the linear momentum vector per unit volume and Et is the total energy
per unit volume.
In absence of external volume forces, gi = 0, the Navier-Stokes equations (for a
polytropic ideal gas) can be finally written in their conservative form:

∂ρ

∂t
+
∂mj

∂xj
= 0

∂mi

∂t
+

∂

∂xj

(mimj

ρ
+ pδij

)
=
∂Σij(mi/ρ)

∂xj

∂Et

∂t
+

∂

∂xj

[
(Et + p)

mj

ρ

]
=

∂

∂xj

[
k
∂T

∂xj
+ uiΣij(mi/ρ)

]

p = p
(Et
ρ
− mimi

2ρ2
, ρ
)

= ρ(γ − 1)
(Et
ρ
− mimi

2ρ2

)

T = T
(Et
ρ
− mimi

2ρ2
, ρ
)

=
1

cv

(Et
ρ
− mimi

2ρ2

)
,

where now the constitutive relations for µ and k must be written in terms of the
conservative variables specified above.
It can be noticed that all the terms with spatial derivatives appear as the divergence
of appropriate fluxes. The fluxes in the momentum and energy equations have two
contributions: the flux on the left hand side corresponding to the one of an inviscid
and non-thermally conductive fluid, and the diffusive flux on the right hand side
due to the real character of the fluid with non-zero dissipation properties.
With that set of equations, it is now possible to move forward to the description of
the finite volume method.

3.2 The Finite Volume Method

The differential formulation of the compressible Navier-Stokes equation can be writ-
ten in a more compact way using a vectorial notation:

∂U

∂t
+∇ · F(U) = ∇ · Fv(U), (3.1)
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in which U is the set of conservative variables U = (ρ,mi, E
t)T and F(U), Fv(U) are

appropriate fluxes2. This particular notation will allow to express the finite volume
method in a more general framework.
The solution of these equations is far from being simple for arbitrary spatial do-
mains, requiring often the use of numerical techniques which calculate approximate
solutions.
Anyway, the use of system (3.1) still represents a local description of the dynamics
of a compressible flow, where the equations are written in a differential form. Com-
pressible flow phenomena are often characterized by large variations of flow quan-
tities over a very tiny region of space, for instance shockwaves or boundary layers.
The use of numerical algorithms, which adopt the differential form, must then pro-
vide all the possible variations in the entire domain, resulting in a prohibitive spatial
discretization of the flow-field.
In this case it is necessary to abandon the differential form of conservation laws in
favor of the more suitable integral form. Such a form allows the expression of con-
servation laws in finite region of space for which the domain is decomposed. This
spatial region is represented by a finite number of degrees of freedoms, i.e. a finite
number of small elements, called finite volumes or grid cells. In this work the analysis
will only rely on cell-centered schemes, where the flow quantities are stored at the
centroids of the grid cells.
The integral form of the Navier-Stokes equations is then simply the one obtained
from the conservation laws of mass, linear momentum and energy for any arbitrary
fixed control volume. They are obtained equating the variation of mass, linear mo-
mentum and total energy contained in the fixed control volume to the flux of those
quantities entering in the domain through the surface S = ∂V .
This form will now be written in the vectorial form

d

dt

∫
V

UdV +

∫
S

(F− Fv)ndS = 0. (3.2)

This time the control volume does not change in time and the partial derivative in-
side the first term of equation (3.2) exits outside the integral and assumes the form
of the ordinary differential operator d/dt.
Due to the presence of discontinuities that might propagate in space and time, equa-
tion (3.2) must be integrated also with respect to time. Considering the interval of
time [tn, tn+1] and thanks to the fundamental theorem of differential calculus, it leads
to ∫

V
U(x, tn+1)dV −

∫
V

U(x, tn)dV +

∫ tn+1

tn

dt

∫
S

(F− Fv)ndS = 0. (3.3)

Due to the use of the cell-centered numerical procedure and the existence of the
generic finite volume, one can introduce the mean conservative variables for each
control volume and for each time-step3; that is

Un
j =

1

Vj

∫
Vj

U(x, tn)dV, (3.4)

2The subscript v denotes the viscous fluxes.
3Here the subscript j indicates the flow quantity for the j-th control volume and the superscript n

indicates the n-th time instant.
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where Vj indicates the dimension of the j-th control volume.
Writing now equation (3.3) in terms of the mean conservative variables, it results in

Un+1
j Vj = Un

j Vj −
∫ tn+1

tn

dt

∫
S

(F− Fv)ndS = 0. (3.5)

These equations must be written and solved for any finite volume in which the do-
main is discretized. The knowledge of the conservative variables in any volume
leads then to the complete description of the flow 4.
It is important to notice that the variation of the conservative variables in the control
volume depends only on the evaluation of the respective fluxes through the surface
boundary surrounding it. If the same expression for the fluxes is used between two
adjacent volumes, then the flux contribution on a shared surface is exactly one the
opposite of the other.
An interesting property of the finite volume method is hence that the discretization
does not introduce any error on the flow quantities that are conserved.
Writing the differential problem in this manner it is possible to introduce a new idea
of solution, the weak solution.
The finite volume method suggested a numerical procedure for the solution of the
compressible Navier-Stokes equations. Anyway, equations in the form of (3.2) still
hide several difficulties that have to be addressed in order to obtain a correct numer-
ical solution. First the fluxes F and Fv depend on the conservative variables U in
a non-linear fashion. Furthermore the viscous fluxes still contain spatial derivatives
in their formulation, leading to the mixed hyperbolic-parabolic nature of the system.
Finally, the numerical time integration procedure must be handled properly.

3.3 The foam-extend Framework

The foam-extend5 Computational Fluid Dynamics (CFD) software is part of an open-
source library released under GNU library General Public License 6. It has an exten-
sive range of features to solve anything from complex fluid flows involving chem-
ical reactions, turbulence and heat transfer, to solid mechanics and electromagnetic
fields. For the present thesis, a suitable solver of the compressible Navier-Stokes
equation has been chosen in order to compute a time dependent and accurate flow
field solution.
The adoption of the finite volume method involves the substitution of the set of
governing partial differential equations (PDEs) with a corresponding system of al-
gebraic equations, obtaining the flow variables inside the control volumes and for
finite instants of time. The coordinate system is fixed on a Cartesian frame of ref-
erence which does not change in time. The control volumes (or cells) can be of any
polyhedral shape, with the flow variables that are stored at the center of these poly-
hedral cells. Therefore, the solution method is called cell-centered finite volume
method.
Figure 3.1 represents an arbitrary cell in a finite volumes discretization of foam-
extend. The quantity Sf represents the surface area vector, the vector d, instead,

4Quantities such as the volume averaged velocity or total energy can simply be derived backwards
from unj = (ρu)nj /ρ

n
j and et nj = (ρet)nj /ρ

n
j .

5https://sourceforge.net/p/openfoam-extend/wiki/Home/
6https://www.gnu.org/licenses/
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FIGURE 3.1: Generic neighboring control volumes in foam-extend, Fig-
ure from [26].

represents the distance vector between two cell centers. The labels P and N repre-
sent the cell centers points.

3.3.1 The dbnsTurbFoam Solver

The numerical simulations are performed using the fully coupled density based
solver dbnsTurbFoam, developed within the foam-extend framework. The aim of this
solver is to simulate the unsteady compressible effects within a turbomachinery
vane passage.
The simulations are performed by solving the compressible Navier-Stokes equations
in their conservative form, which is necessary for capturing possible discontinuities
of the flow [27, 28]. The solver adopts the so-called method of lines to decouple spa-
tial and temporal discretizations, reducing the governing equations to a system of
ordinary differential equations (ODEs) [29]. The spatial convective discretization is
performed with the Rusanov flux scheme [30], which is an approximation of the ex-
act Rienman fluxes. This scheme is first order in space but the solver dbnsTurbFoam
interpolates linearly the state from the cell center to the face center which makes the
method of second order. In order to avoid spurious oscillations near regions with
sharp gradients the Barth Jespersen limiter [31] is applied. The time integration is
performed using an explicit 4-stage low-storage Runge-Kutta algorithm.
The solver has been previously validated on two canonical compressible flow simu-
lations by Chandramouli et al. [32]. The present solver embeds Reynolds Averaged
Navier-Stokes equations (with Favré averaging) and Large Eddy Simulations turbu-
lence models for the discretization of the viscous fluxes. Viscous fluxes are resolved
implicitly in time.

3.3.2 The Rusanov Flux

Due to the mixed hyperbolic-parabolic nature of the set of governing equations, the
solution techniques in dbnsTurbFoam adopts Godunov’s [33] like schemes for convec-
tive fluxes. Using the conservative form of Navier-Stokes equations, it is possible to
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obtain a discrete representation of the equations for the j−th control volume:

Un+1
j Vj = Un

j Vj −
Nf∑
k=1

∫ t+∆t

t
F(U)k · nkSk dt+ RHS(FV(U)), (3.6)

where the term RHS(FV(U)) represents a generic contribution of the viscous fluxes,
Nf is the number of faces and (nk, Sk) are respectively the outward normal and the
area of the k−th face 7.
The convective flux F(U)k at each face is calculated by solving the Riemann prob-
lem for the face, that is an initial value problem with discontinuous initial conditions
usually referred as left and right states (in this case they are the state of the two vol-
umes separated by the surface Sk). In order to do that, approximate Riemann solvers
are used by the solver.
For the present work, the Rusanov central scheme has been adopted for the approx-
imation of the time integral of equation (3.6). Central schemes are suitable for cap-
turing rarefaction waves, which can be either left or right going waves.
For a clearer comprehension, the attention will be moved on a simpler case for a
scalar conservation law of the form

∂U

∂t
+

∂

∂x
[f(U)] = 0. (3.7)

Now the solution lies in the x − t diagram, with one dimension in space and one
dimension in time8.

FIGURE 3.2: One-dimensional grid spacing indexing.

Consider, then, a uniform grid with uniform spacing Vj = ∆x = xj+1/2 − xj−1/2,
the cell center is located in the j−th index, while the boundaries are at j ± 1/2. The
situation is pictured in Figure 3.2. In this case, the simple integral form of the scalar
conservation law is given by

Un+1
j ∆x = Unj ∆x−∆t(F̃nj+1/2 − F̃

n
j−1/2), (3.8)

7In some subsections of the present chapter, the quantity k is just an index and shall not be confused
with the thermal conductivity k.

8The scalar product with the surface vector nkSk vanishes in the spatial 1D case.
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where

F̃nj+1/2 =
1

∆t

∫ t+∆t

t
f [U(xj+1/2, t)] dt. (3.9)

Following Godunov’s reasoning [33], the numerical flux is constant in time and can
be explicitly computed as

F̃nj+1/2 = Fnj+1/2, (3.10)

beingFnj+1/2 the Riemann flux of the Riemann problem originated at each cell bound-
ary.

FIGURE 3.3: Schematic structure of the approximate Riemann solver.

The additional idea is to approximate the exact solution of the Riemann problem
with two waves, one traveling to the left with speed sLj+1/2, and one traveling to the
right sRj+1/2; see Figure 3.3. Then the solution is approximated with

U(x, t) =


Unj if x < sLj+1/2t

U∗j+1/2 if sLj+1/2t < x < sRj+1/2t

Unj+1 if x > sRj+1/2t

, (3.11)

with the two states that are separated by the middle state U∗j+1/2. The intermediate
state can be determined by using Rankine-Hugoniot jump conditions:

f(Unj+1)− f∗j+1/2 = sRj+1/2(Unj+1 − U∗j+1/2) (3.12)

f(Unj )− f∗j+1/2 = sLj+1/2(Unj − U∗j+1/2), (3.13)

in which f∗j+1/2 is the intermediate flux. Requiring f∗ to be an independent variable,
equations 3.13 can be solved for the unknown f∗j+1/2:

f∗j+1/2 =
sRj+1/2f(Unj )− sLj+1/2f(Unj+1) + sRj+1/2s

L
j+1/2(Unj+1 − Unj )

sRj+1/2 − s
R
j+1/2

. (3.14)

The numerical flux is chosen to be equal to

Fnj+1/2 = F (Unj , U
n
j+1) = f∗j+1/2. (3.15)
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Finally, the choice of the speeds (sRj+1/2, s
L
j+1/2) leads to different types of schemes.

The Rusanov scheme locally selects the largest speeds in order to avoid interactions
of the waves coming from two different Riemann problems. The speeds are given
by

sRj+1/2 = sj+1/2, sLj+1/2 = −sj+1/2, (3.16)

where
sj+1/2 = max(|f ′(Unj )|, |f ′(Unj+1)|). (3.17)

The resulting flux is given by

Fnj+1/2 = FRUS(Unj , U
n
j+1) =

f(Unj ) + f(Unj+1)

2
−

max(|f ′(Unj )|, |f ′(Unj+1)|)
2

(Unj+1 − Unj ). (3.18)

This scheme is only first order accurate in space, i.e. err ∝ o(∆x). In order to over-
come this limit and improve spatial accuracy, one can use a piecewise linear recon-
struction of the state U when defining the numerical flux F . Then, at the interface
xj+1/2, two states are obtained from the two linear approximations in each of the
neighboring cells. These states are

ULj+1/2 = Uj +
∆x

2
ζj (3.19)

URj+1/2 = Uj −
∆x

2
ζj+1, (3.20)

where (ζj , ζj+1) are appropriate slopes. By doing that, spurious oscillations might
arise near discontinuities or extreme points. This can be rectified by applying a slope
limiter in these regions.

3.3.3 The Barth-Jespersen Limiter

Barth and Jespersen [31] where the first to introduce a two-dimensional limiter wich
allowed the computation of oscillation free solutions for transonic flows on irregular
triangular meshes [34]. They proposed a limited formulation of the reconstructed
solution at each control volume as

U(x)j = Uj + Φj∇Uj ·∆rj , (3.21)

where Uj is the value at the centroid, and ∆rj is the distance of the flux integration
points to the centroid of the cell. The idea is to find the largest possible Φj while
accounting for the monotonicity principle for which the values of the linear recon-
structed state must not exceed the maximum and minimum values of neighboring
centroids [31, 35].
First, the differences Umin

j and Umax
j are computed:

Umin
j = min(Uj , Uneighbours), (3.22)

Umax
j = max(Uj , Uneighbours). (3.23)

Then the requirement
Umin
j < U(x)j < Umax

j (3.24)

is imposed.
For a linear reconstruction, the maxima occurs at the vertices of the cell surfaces. For
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each vertex k, the quantity Uk = U(xk) is computed and the limiting value Φj is
calculated as Φj = min(Φj), with

Φj =


min

(
1,

Umax
j −Uj
Uk−Uj

)
if Uk − Uj > 0

min
(

1,
Umin
j −Uj
Uk−Uj

)
if Uk − Uj < 0

1 if Uk − Uj = 0

. (3.25)

This procedure guarantees that the reconstructed state variables satisfy the mono-
tonicity principle when evaluated anywhere within a cell.

3.3.4 Treatment of Laplacian Terms

The Laplacian terms in dbnsTurbFoam (or more generally in the entire foam-extend
distribution) are linearized and integrated over a control volume as follows [26]:

∫
Vj

∇ · (Γ∇φ) =

∫
Sj

(Γ∇φ) · n dS =

Nf∑
k=1

Γk(∇φ)k · nkSk, (3.26)

in which φ is the scalar field of interest and Γ is scalar coefficient which might vary
arbitrarily in space (e.g. viscosity). The surface gradient discretization is implicit
when the distance vector d between the cell of interest P and the neighbor cell N is
orthogonal to the face plane [26], i.e. simply

(∇φ)k · nkSk =
φN − φP
|d|

|Sk|. (3.27)

When the mesh is non-orthogonal, an additional explicit term is introduced: it inter-
polates cell center gradients, which are themselves calculated by central differencing
cell center values [26].

3.3.5 Time Integration

The use of the method of lines allows the separation of spatial and temporal dis-
cretization of the governing equations. This leads to a system of coupled ordinary
differential equation which, for a cell-centred scheme, can be written as [29]

d

dt
(VjUj) = −Rj . (3.28)

The quantity Rj represents the residual coming form the spatial discretization of
convective and viscous fluxes.
The solver dbnsTurbFoam utilizes an explicit time integration scheme in order to com-
pute the solution of a successive time-step. This means that the solution Un+1 (i.e.
at time t + ∆t) is calculated from a known solution Un and from its corresponding
residual Rn. Therefore explicit schemes are very simple and easy to implement. In
fact the resulting scheme is again formulated as

Un+1
j Vj −Un

j Vj = −∆tRn
j , (3.29)

which is analogous to equation (3.6).
Moreover, the time integration adopts a four-stage Runge-Kutta time scheme, which
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only stores the zeroth solution and the last residual in order to reduce memory re-
quirements [29]. This schemes are therefore under the name of low-storage Runge-
Kutta schemes.
The multi-stage scheme advances the solution as a sequence of updates as

U
(0)
j = Un

j

U
(1)
j = U

(0)
j − β1

∆t

Vj
R

(0)
j

U
(2)
j = U

(0)
j − β2

∆t

Vj
R

(1)
j

...

Un+1
j = U

(m)
j = U

(0)
j − βm

∆t

Vj
R

(m−1)
j .

(3.30)

The coefficients βl (with l = 1, 2, . . . ,m) are the stage coefficients and the residual Ri
j

means that it is evaluated with the solution U
(i)
j of the i−th stage.

For consistency it is only required that the last coefficient βm = 1; moreover, second
order accuracy in time can be achieved only by putting βm−1 = 1/2 [29]. The vector
of coefficient β used by dbnsTurbFoam is

β =


β1

β2

β3

β4

 =


0.11

0.2766
0.5
1

 . (3.31)

For explicit schemes, the time-step size ∆t is strictly related to the governing equa-
tions and to the grid size: the solver dbnsTurbFoam treats viscous and convective
fluxes separately, in addition the time integration of viscous quantities related to
turbulence models are treated in an implicit manner; therefore, the time-step is lim-
ited by the largest characteristic appearing in the governing equation and the CFL
condition [36] has to be satisfied as necessary condition for stability:

CFL =
max[eig(F′(U))]∆t

min(∆j)
< 1, (3.32)

where max[eig(F′(U))] is related to the maximum speed of the characteristics and
min(∆j) is related to the smallest cells of the discretized domain.

3.3.6 Solution Procedure Algorithm

The code architecture can be summarized by the following steps:

• First, the field is initialized in terms of primitive variables of pressure, tem-
perature and velocity, (p, T, ui), and in terms of the needed turbulent quanti-
ties. The thermodynamic model of the gas, as well as the adopted turbulence
model, are also decided at the beginning of the work-flow.

• Then, the code computes the vector of conservative variables for each cell,
starting from the primitive ones.
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• In order to proceed with the time integration, the code reads if the size of the
time-step can be adjustable according to a user defined fixed CFL number, or if
it is directly defined by the user. In all simulation of the present thesis, the time-
step is manually selected and kept constant throughout the single simulation
in order to have CFL < 0.5.

• Sequentially, the approximated Riemann problem is solved for neighboring
volumes; the convective flux at each cell face of the control volume is con-
structed by the mean of Rusanov scheme [30] and Barth-Jespersen limiter [31].
After that, the viscous fluxes are computed using the selected turbulence model
and differencing schemes.

• At this point, the time integration of mass, momentum and energy conserva-
tion laws is performed using the low storage, four-stage Runge-Kutta scheme.
The conservative variables are updated.

• Finally, the primitive variables are computed thanks to the complete physical
description of the flow available in the model. The solver returns as an output
the same set of primitive variables given as input.

• The procedure is iterated until the condition trun < tfinal is satisfied, where trun

is the actual physical time of the simulation and tfinal is the final physical time
selected by the user.

3.4 Turbulence Modeling

Turbulent flows pervade a large number of cases of both fundamental and applied
research. Simulating and understanding turbulent flows is therefore a key tool for
fluid-mechanics and it is still a significant problem, despite the deterministic nature
of the chaotic fluctuations.
In turbulent flows, the fluid moves along irregular paths in a chaotic fashion. This
extensive mixing of different fluid layers may also results in higher skin friction
along solid walls, as well as enhanced heat transfer compared to laminar flows.
The onset of turbulence is characterized by a non dimensional quantity called the
Reynolds number. The Reynolds number is the ratio of inertial forces to viscous forces
within a fluid which is subjected to relative internal movement due to different fluid
velocities. It is a very useful quantity used to identify whether the flow is laminar or
turbulent, and it is also used to predict the transition between the two regimes. The
definition of the Reynolds number is

Re =
ρVcLc
µ

, (3.33)

in which ρ and µ are respectively the density and the dynamic viscosity of the fluid,
while Vc and Lc are the characteristic velocity- and length-scale of the flow.
In order to resolve the complexity of Navier-Stokes equations with Direct Numerical
Simulations (DNS), the required number of turbulence degrees of freedom in space
is of the order Re9/4 and of the order of Re3/4 in time; which is prohibitive for very
large Reynolds numbers, even for modern supercomputers.
In this case, other alternatives need to be found and turbulence must be taken into
account in an approximate manner. For this purpose, several turbulence models are
easily available in literature. In the present work, two principal classes of these mod-
els will be treated. Respectively, they are the multiple equation models and Large-Eddy
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Simulations (LES).
It is important to specify that there exist no turbulence model which can reliably pre-
dict any kind of turbulent flow and each of them has its strengths and weaknesses.
In the present subsection, first the basic equations for turbulent flows will be intro-
duced as a result from mass averaging (Favré averaging) of the governing equations.
Then, the Boussinesq hypotesis and the two-equation K − ωSST model will be briefly
discussed. Finally, the LES approach will be discussed due to the specific interest in
the actual work and because of its actual increasing interest and use in engineering
applications.

3.5 Averaged Navier-Stokes Equations

One of the first approaches to turbulent flows was first proposed by Osburne Reynolds
in 1895. Its idea was to decompose the flow variables qi into a mean and a fluctuating
part, i.e.

qi = qi + q′i. (3.34)

Then, the governing equations are solved for the mean variables, which are often of
greater interest. The mean values can be obtained from averaging procedures and
there are three forms of Reynolds averaging [29]:

• Time averaging, appropriate for statistically steady turbulence.
The mean variable is defined as

qi = lim
T→∞

1

T

∫ t+T

t
qi dt. (3.35)

The limit for T that goes to infinity means that the averaging interval should
be much larger than the temporal scale of turbulent fluctuations.

• Spatial averaging, appropriate for homogeneous turbulence.
Here, the mean quantity is

qi = lim
Ω→∞

1

Ω

∫
Ω
qi dΩ, (3.36)

where Ω is the size of the control volume.

• Ensemble averaging, appropriate for general turbulence.
The mean variable is defined as

qi = lim
N→∞

1

N

N∑
m=1

qi. (3.37)

For all the approaches, it results that the average of the fluctuating part is equal to
zero, that is q′i = 0. Anyhow, the general quantity q′iq

′
j 6= 0 if the two variables are

correlated.
Compressible flows are usually associated with significant density variations, there-
fore it is advisable to adopt a mass averaging (or Favré) approach for certain quan-
tities [29, 37], instead of the Reynolds averaging procedure. This approach is used
in order to avoid the appearance of correlation terms involving the density fluctua-
tions. An usual way to obtain the averaged governing equations, is to use Reynolds
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averaging for density and pressure, while using Favré averaging for other variables
[29]. For instance, the Favré averaged velocity component is given by

ũi = lim
T→∞

∫ t+T
t ρui dt∫ t+T
t ρ dt

. (3.38)

This decomposition reads, hence

ui = ũi + u′′i , (3.39)

where ũi represents the mean value (in the Favré sense) and u′′i is the fluctuating
part. Again the Favré averaged fluctuation is equal to zero, i.e. ũ′′i = 0; but in
general ũ′′i u

′′
j 6= 0. Some useful relations can be derived using both Reynolds and

Favré averaging
ρ̃ui = ρũi, ρu′′i = 0, but u′′i 6= 0, (3.40)

which will be used in order to derive the averaged governing equations.
In compressible turbulence modeling, it is often common to assume that the Morkovin’s
hypothesis holds [29, 37]. It states that the turbulent structures are not largely af-
fected by density fluctuations in the boundary layer if ρ′ � ρ. In this study, the
Morkovin’s hypothesis is assumed to be valid throughout all the simulations.
The application of Reynolds9 and Favré10 averaging to the system of governing
equations, yields [29] to

∂ρ
∂t + ∂

∂xj
(ρũj) = 0,

∂
∂t(ρũi) + ∂

∂xj
(ρũiũj + p) = ∂

∂xj
(Σ̃ij − ρũ′′i u′′j ),

∂
∂t(ρẽ

t) + ∂
∂xj

(ρũj h̃t) = ∂
∂xj

(
k ∂T̃∂xj − ρũ

′′
jh
′′ + Σ̃iju′′i − ρũ′′jK

)
+

∂
∂xj

[ũi(Σ̃ij − ρũ′′i u′′j )].

(3.41)

The set (3.41) is referred as the Reynolds averaged Navier-Stokes equations with
Favré averaging. For conciseness, they will often simply be referred as RANS.
The Reynolds stress tensor concept is also extended to the compressible case, i.e.

ΣF
ij = −ρũ′′i u′′j , (3.42)

which is known as the Favré averaged Reynolds stress tensor. For the molecular
viscous stress tensor Σ̃ij , its component are calculated using Favré averaging.
Adopting now the averaged kinetic energy expression as

ρK̃ =
1

2
ρũ′′i u

′′
i , (3.43)

the total averaged energy can be expressed as

ρẽt = ρẽ+
1

2
ρũiũi +

1

2
ρũ′′i u

′′
i = ρẽ+

1

2
ρũiũi + ρK̃. (3.44)

9For density and pressure.
10For the others variables.
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Analogously, the averaged total enthalpy is defined as

ρh̃t = ρh̃+
1

2
ρũiũi +

1

2
ρũ′′i u

′′
i = ρh̃+

1

2
ρũiũi + ρK̃. (3.45)

In the compressible RANS equations (3.41), it is possible to identify individual terms
with the following physical meaning [29]:

∂

∂xj

(
k
∂T̃

∂xj

)
−molecular diffusion of heat.

∂

∂xj
(ρũ′′jh

′′) − turbulent transport of heat.

∂

∂xj
(Σ̃iju′′i ) −molecular diffusion of K̃.

∂

∂xj
(ρũ′′jK) − turbulent transport of K̃.

∂

∂xj
(ũiΣ̃ij) − work done by the molecular stresses.

∂

∂xj
(ũiΣ

F
ij) − work done by the Reynolds stresses.

The diffusion and turbulent transport of K̃ are often neglected, which is a valid
approximation for transonic and supersonic flows [29].
Finally, in order to close the complete RANS set of equations, the six components of
the compressible Reynolds stress tensor, together with the three components of the
turbulent heat flux, have to be supplied for turbulence modeling.

3.5.1 Eddy-Viscosity Hypothesis

One of the first contribution for turbulence closure models was first introduced for
incompressible flows by Boussinesq. This hypothesis assumes that the turbulent
stresses are related to the mean strain rate in a linear fashion (the same as laminar
flow). In this case the proportionality constant is called eddy or turbulent viscosity.
The formulation for compressible flows can be written as

ΣF
ij = −ρũ′′i u′′j = 2µT S̃ij −

2

3
µTSmmδij −

2

3
ρK̃δij , (3.46)

where S̃ij and K̃ are respectively the Favré averaged strain rate and turbulent kinetic
energy. The eddy viscosity µT represents no physical characteristic of the fluid but
it is a function of the local flow. Additionally, µT is strongly affected by hysteretic
effects.
The additional relations for the turbulent heat flux vector are instead based on

ρũ′′jh
′′ = −kT

∂T̃

∂xj
, (3.47)

with the turbulent thermal conductivity defined as

kT = cp
µT
PrT

. (3.48)
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The quantity PrT is the turbulent Prandtl number and, in general, is assumed to be
constant over the entire flow field. The air turbulent Prandtl number utilized by the
solver dbnsTurbFoam is equal to PrT = 1.0.
Applying the eddy viscosity model, the governing equations are simply derived by
substituting the effective viscosity to the dynamic viscosity coefficient:

µeff = µ+ µT . (3.49)

Furthermore, the effective thermal conductivity replaces the thermal conductivity k.
It is defined as

keff = k + kT = k + cp
µT
PrT

. (3.50)

The Boussinesq hypothesis is very attractive since it reduces the turbulence model-
ing to the single quantity µT .
Anyhow, the limitations of the eddy viscosity model are immediately noticed in the
assumption of equilibrium between turbulence and the averaged strain rate. The
model is also independent on the rotation tensor Ω̃ij .

3.5.2 Two Equations K − ω SST Model

TheK−ω Shear Stress Transport (SST) turbulence model was introduced by Menter
[38] with the aim of blending the positive features of standard K − ω [39] and K − ε
[40] models. The main purposes and features are highlighted by Blazek in reference
[29] and they will be briefly summarized. The K − ω SST model employs the K − ω
approach in the viscus sublayer of the boundary layer, with higher numerical stabil-
ity than the K − ε model. The standard K − ω is also used in the logarithmic region
of the boundary layer where it is evaluated to be better in adverse pressure gradi-
ents and for compressible flows. On the other hand, the K − ε model is adopted in
the wake region, for which the standard K − ω is found to be very sensitive to the
freestream values of ω. The K − ε model is also used in free shear layers.
The peculiar characteristic of the SST model, is related to its modified turbulent
eddy viscosity function. The aim is to accurately predict flows with strong adverse
pressure gradients and flows with pressure induced separation. The formulation is
based on Bradshaw observation that the principal shear stress is proportional to the
turbulent kinetic energy. The transport equations11 for the turbulent kinetic energy
K and for the specific dissipation rate ω read [29]

∂

∂t
(ρK) +

∂

∂xj
(ρujK) =

∂

∂xj

[
(µ+ σKµT )

∂K

∂xj

]
+ ΣF

ijSij − β∗ρωK (3.51)

∂

∂t
(ρω) +

∂

∂xj
(ρujω) =

∂

∂xj

[
(µ+ σωµT )

∂ω

∂xj

]
+
Cωρ

µT
ΣF
ijSij

− βρω2 + 2(1− f1)
ρσω2

ω

∂K

∂xj

∂ω

∂xj
. (3.52)

The turbulent eddy viscosity is then obtained by

µT =
a1ρK

max(a1ω, f2||∇ × u||2)
. (3.53)

11The overline and the tilde symbols will be omitted for the sake of clarity.



34 Chapter 3. Numerical Modeling of the Problem

This definition of the turbulent viscosity comes from the consideration that the Bradshw’s
assumption is satisfied. That is the shear is proportional to the kinetic energy, i.e.
τshear = a1ρK. This condition is also guaranteed in an adverse pressure gradient
boundary layer, where the production of K is larger than the specific dissipation
ω (hence a1ω < ||∇ × u||2). The term f1, then, corresponds to a function which is
responsible of blending the K − ω coefficients in boundary layers with the (trans-
formed) coefficients of the K − ε model in freestream and free shear layers. Its defi-
nition is

f1 = tanh[(arg1)4], (3.54)

with

arg1 = min
[

max
( √

K

0.09ωdw
,

500µ

ρωd2
w

)
,

4ρσω2K

CDKωd2
w

]
, (3.55)

in which dw is the distance to the nearest wall and CDKω is the positive defined
cross-diffusion term defined as

CDKω = max
(

2
ρσω2

ω

∂K

∂xj

∂ω

∂xj
, 10−20

)
. (3.56)

The second function f2 is given by

f2 = tanh[(arg2)2], (3.57)

with

arg2 = max
( 2
√
K

0.09ωdw
,

500µ

ρωd2
w

)
. (3.58)

The other model constants are then defined as follows

a1 = 0.31, β∗ = 0.09, κ = 0.41. (3.59)

Finally, all the coefficients in the SST model (β, Cω, σKi and σωi) are obtained by
blending the coefficients of their respective models. Denoting with φ1 the ones for
the Kω model, and with φ2 the ones of the K − ε modes, the resulting relation reads

φ = f1φ1 + (1− f1)φ2. (3.60)

The K − ω model coefficients are

σK1 = 0.85, σω1 = 0.5, β1 = 0.075, Cω1 =
β1

β∗
− σω1

κ2

√
β∗

= 0.533. (3.61)

Instead, the coefficients for the K − ε model are

σK2 = 1.0, σω2 = 0.856, β2 = 0.0828, Cω2 =
β2

β∗
− σω2

κ2

√
β∗

= 0.440. (3.62)

It is possible, indeed,to provide an integral formulation for the variables of the SST
model. For a control volume V , with a surface S = ∂V , the K − ω SST model reads

d

dt

∫
V

UT dV +

∫
∂V

(F,T − Fv,T) · n dS =

∫
V

QT dV, (3.63)
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with the vector of conservative variables being.

UT = [ρK ρω]T . (3.64)

For a more detailed insight of the integral form, the reader is invited to consult the
K − ε model description in reference [29]; the extension to the K − ω SST model can
be conducted in the very same way.

3.6 Large Eddy Simulations

The use of the Large Eddy Simulations (LES) approach was already employed in
1963 by Smagorinsky [41], in his works on meteorology. LES are based on the obser-
vation that the character of small turbulent scales is more universal than the large
eddies. The idea is then to capture (filter) the contribution of the large (energy carry-
ing) turbulent structures to momentum and energy transfer in the flow. The effect of
small scales, instead, is modeled, and they are not resolved numerically. The models
of the small scales of turbulence are the so-called subgrid-scale (SGS) models.
LES describe a 3D, time-dependent solution of the governing equations. In com-
parison to the RANS equations, they require a much finer discretization in order to
resolve a substantial range of turbulent scales. They are, however, considerably less
expensive than DNS. This aspect makes the use of LES models appealing for solving
engineering problems at a reasonable computational cost.

3.6.1 Spatial Filtering

LES are based on a spatial filtering operation, which decomposes any flow variables
ui into a filtered (resolved) part ui and into a sub-filtered (unresolved) variable u′i:

ui = ui + u′i. (3.65)

The filtered quantity at a spatial location x0 is defined as

ui(x0, t) =

∫
Ω
ui(x, t)G(x0, r,∆) dr, (3.66)

in which Ω denotes the flow domain, G is the filter function and r is the position
vector with respect to x0. The filter function determines the size and structure of
the small scales. The filter depends on the difference x0 − r and on the width ∆ =
3
√

∆1∆2∆3, with ∆i being the filter width in the i−th direction. The foam-extend
framework implicitly uses the simple tophat filter defined as

G =

{
1/∆3 if|(x0)i − ri| ≤ ∆i/2

0 otherwise
(3.67)

3.6.2 Filtered Governing Equations

If LES are applied to compressible flows, the Favré averaging procedure has to be
used together with the spatial filtering. Otherwise, the resulting governing equation
would contain products between density and other variables. In this case, energy,
temperature and the velocity components are decomposed using Favré averaging,
e.g.

ui = ũi + u′′i . (3.68)
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The filtered variable at the location x0 in space is then

ũi(x0, t) =
ρui
ρ

=
1

ρ

∫
Ω
ρ(x, t)ui(x, t)G(x0, r,∆) dr, (3.69)

where the overline denotes the filtering operation. The filtered Navier-Stokes equa-
tion, using Favré averaging, then read

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0,

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj + p)− ∂σ̂ij

∂xj
= −

∂ΣSF
ij

∂xj
+

∂

∂xj
(σij − σ̂ij),

∂

∂t
(ρẼ) +

∂

∂xj
[uj(ρẼ + p)]− ∂

∂xj
(σ̂ij ũi) +

∂q̂

∂xj
=

− ∂

∂xj
[(ρujE − ρũjẼ) + (ujp− ũjp)− (σijuj − σ̂ij ũj)− (qj − q̂j)],

(3.70)

with

σij = 2µSij −
2

3
µSmmδij ,

σ̂ij = 2µ̃S̃ij −
2

3
µ̃S̃mmδij ,

S̃ij =
1

2

(∂ũi
∂xj

+
∂ũj
∂xi

)
,

q = −k ∂T
∂xj

,

q̃j = −k̃ ∂T̃
∂xj

,

ΣSF
ij = ρ(ũiuj − ũiũj).

The right-hand side of the filtered Navier-Stokes equations contains terms that have
to be modeled or contain the subgrid heat flux, diffusion, pressure-dilatation and
viscous dissipation. A very extensive treatment about those term can be found in
the work of Sagaut [37], Blazek [29] and Martin et al. [42].

3.6.3 Subgrid-Scale Modeling

Most of the theoretical tools used in LES modeling are developed in the homoge-
neous turbulence framework. It is where the majority of the SGS models has been
set-up. The scenario describing the energy transfer across scales can be framed in
the following description [37]: the largest eddies extract the kinetic energy from the
mean flow. Such structures, which can be found in areas with high strain-rates, are
initially thick and flatten into vortex sheets. The sheets are unstable and tend to roll-
up into vortex tubes, which, with their stretching, tend to produce filamentary-like
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structures. Energetically speaking, this process results in an energy transfer from the
largest to the smallest scales.

FIGURE 3.4: Typical spectrum for homogeneous turbulence, Figure
from [37].

A typical spectrum for homogeneous turbulence is represented in Figure 3.4.
It involves a production zone (at the smallest wavenumber12 k), an energy trans-
fer zone (where the energy is transferred from the large eddies to the small ones),
and eventually a dissipation zone at the smallest scales (largest wavenumbers). The
transfer zone is also called inertial zone, in which the spectral energy density, Ek,
decreases with the Kolmogorov law Ek ∝ k−5/3.
It is important to state that there might exist an energy transfer from the small scales
to the large ones (inverse-cascade, backscatter) but its intensity is much weaker than
the normal scattering of energy from large to small scales.
Considering a sharp cut-off filter, SGS models are constructed by assuming that the
cut-off wave number kc = π/∆ is located in the inertial range, Figure 3.4, and that
the smallest scales are isotropic. This isotropy hypothesis implies some universality
of the SGS models. Moreover, the location of the cut-off in the inertial zone allows
to assume that the energy transfer throughout the cut-off range is equal to the dis-
sipation rate of the smallest scales. Finally, the smallest scales are assumed to be in
energetic equilibrium with the large ones.

3.6.4 Eddy-Viscosity Models

These type of models are able to represent the global dissipative nature of the small
turbulent eddies, but they cannot reproduce the local details of energy exchange [37,
29]. For the compressible Navier-Stokes equations, the Favré averaged SGS stress
tensor is approximated as

ΣSF
ij − ΣSF

mm

δij
3

= −2ρνT S̃ij +
2

3
ρνT S̃mmδij . (3.71)

Again, the turbulence modeling is moved from the components of the SGS stress
tensor to the turbulent viscosity νT .

12Here the use of k should not be confused with the thermal conductivity k used in the governing
equations or in the thermodynamic description. The use of the letter k is typical for wavenumbers
representation.
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It is important to state that for the resulting modeled SGS heat flux, a similar ap-
proach can be adopted. The subgrid heat flux can be written as

Qj =
cpµT
PrT

∂T̃

∂xj
, (3.72)

in which the turbulent Prandtl number is again equal to PrT = 1.0.

3.6.5 One Equation Eddy Model for Ksgs

For the present work, a one-equation model for the subgrid-scale kinetic energy
ρKsgs = (1/2)ρ(ũiui − ũiũi) is adopted for the closure of LES modeling:

∂

∂t
(ρKsgs) +

∂

∂xj
(ρujKsgs) =

∂

∂xj
(µeff

∂Ksgs

∂xj
)− ρS̃ijBji − Cερ

K
3/2
sgs

∆
, (3.73)

where

B =
2

3
Ksgsδij − 2 νT dev(S̃ij)

νT = Ck
√
Ksgs∆

µT = ρνT

µeff = µ+ µT ,

(3.74)

with the operator dev() indicating the deviatoric part of the tensor of interest. The
constants of the model are respectively Ck = 0.094 and Cε = 1.048. An important
feature of the model is reported by Kim and Menon [43]: the present model has no
assumption of local equilibrium between the subgrid-scale energy production and
dissipation rate. It can account for some non-local history effects which might be
neglected by algebraic models.
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Chapter 4

Transonic Flow Features in a NGV
Passage

4.1 Problem Definition

In an aero-engine, the NGV corresponds to the stator part in a stage of a high pres-
sure turbine. A schematic representation of the investigated zone of interest is pic-
tured in Figure 4.1.

FIGURE 4.1: Schematic Representation of a modern turbofan (high-
lighted HPT section).

The geometry adopted in the present study consists in a simplified topology of a real
NGV cascade, for which experimental data were assessed by Yasa et al. [44] in the
KTH transonic test tunnel facility.
The primary aim of the experimental study was the quantification of aerodynamic
kinetic energy losses, due to secondary flow structures within the vane passage.
Moreover, flow measurements were carried out downstream the passage in order
to characterize flow unsteadiness (e.g. vortex shedding). The experiments were
conducted for both subsonic and off-design transonic conditions. At transonic con-
ditions compressibility effects and complex flow features might arise. These features
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interact with each other and the main stream. Increasing the exit Mach number af-
fects not only the shock losses but it also increases the total pressure loss downstream
of the vane due to higher advection speeds [44].

4.1.1 Experimental Setup

A three-dimensional view of the real passage is presented in Figure 4.2.

FIGURE 4.2: 3D representation of the studied NGV passage.

The vane was experimentally investigated at subsonic and transonic off-design con-
ditions in an annular sector at the Royal Institute of Technology (KTH). The sketch
of the test section with some measurement locations is depicted in Figure 4.3.

FIGURE 4.3: Test section configuration, Figure from [44].

The description of the facility is clearly addressed in the paper of Yasa et al. [44] and
will be repeated here for the sake of clarity. The air flow is supplied by a compres-
sor powered by a 1 MW electric motor. The compressor exhaust air temperature can
vary from 300[K] to 450[K] thanks to an air cooler installed in the system. At this con-
dition a maximum available flow of 4.7 [kg/s] is achieved at 4 [bars]. The mass flow
to the facility can be controlled by two inlet valves and two bypass valves. Pressur-
ized air enters into the settling chamber after passing by honeycomb and five mesh
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TABLE 4.1: NGV main parameters

Parameter Value Unit

Cax,mid 0.0657 [m]
Cax,hub 0.0606 [m]
d 0.0022 [m]
H 0.08345 [m]

screens. The honeycomb serves as flow straightener and woven wire mesh screens
enable the distribution of the airflow equally by breaking the rotating airflow caused
by the fan. A transition duct is placed downstream of the settling chamber to adapt
the circular cross section to the annular sector inlet section. A turbulence grid can
be mounted to the upstream of the test section to vary the inlet conditions. The ex-
periments are conducted without turbulence grid. The downstream pressure can be
lowered (about 15000 [Pa]) by using two exhaust gas fans. The cascade consists of
5 airfoils and the measurements are concentrated on the flow field of the mid-NGV
(phase 0). The NGV design parameters of interest for the present study are the axial
chord Cax,mid at mid-span and Cax,hub at the hub, the trailing edge diameter d and
the blade to blade distance at mid-span H , where the blade to blade distance repre-
sents the pitchwise distance at midspan from the leading edges of two consecutive
blades. These parameters are summarized in Table 4.1.
The operating conditions of the vane have been assessed by looking at different
measurements at specific locations. The inlet stagnation pressure was derived with
data monitored at the settling chamber, while pneumatic taps located at 40%Cax,hub

downstream of the trailing edge were used to setup the operating conditions [44].
The study was carried out for six different cases, each one corresponding to a differ-
ent outlet pressure, from subsonic to transonic conditions. Each case is represented
by the isentropic Mach number M2is at 40%Cax,hub. It is defined as

M2is =

√
2

γ − 1

[(p01

p2

) γ−1
γ − 1

]
, (4.1)

where p2 is the local static pressure and p01 is the inlet total pressure. The range for
M2is goes from 0.6 to 1.2. The investigated case of the present thesis focuses on the
value M2is = 0.95.
Finally, a set of data is available from the experimental investigations; they will be
used for the validation of the numerical solver described in section 3.3. They con-
sist in the blade loading ad mid-span, the circumferential pressure distribution at
40%Cax,hub downstream the passage and wake measurements in terms of the total
pressure ratio

Π =
p0

p01
, (4.2)

in which p0 is the total pressure in the location of the measurements.
For the experiments, the coordinate system defined by Glodic [45] is respected when
presenting the acquired flow data.
The NGV loading (pressure) distribution is measured at mid-span location using
pneumatic taps around the blade (highlighted gray line in Figure 4.2). The loading
is expressed in terms of the isentropic Mach number Mis, which has an analogous
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definition to equation (4.1). In this case the pressure p2 is substituted with the pres-
sure p measured on the blade. The value Mis is plotted versus the non dimensional
distance x/Cax,mid, where the x-direction is aligned with the flow at the inlet.
The experimental pressure readings on the blade are presented in Figure 4.4.

FIGURE 4.4: Blade loading in terms of the isentropic Mach number
Mis at different operating conditions, Figure from [44].

The circumferential pressure distribution data were acquired at a distance 40%Cax,hub

downstream the NGV, corresponding to the discharge plane of the passage, where
M2,is is defined. Pneumatic taps were used to collect pressure measurements. Once
again they are expressed in terms of the isentropic Mach number. Figure 4.5 shows
the collected readings along the vane phase.

FIGURE 4.5: Circumferential pressure distribution in terms of the
isentropic Mach number Mis at different operating conditions, Figure

from [44].

Finally, a 5-hole Pitot tube with a Kulite sensor is used for total pressure and un-
steady flow measurements downstream the passage. Total pressure ratio profiles
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were collected at several locations. The present study will refer to the two locations
at 7.1%Cax,hub and 48.4%Cax,hub downstream. The profiles are available in an ex-
haustive internal report [46]. They are represented in Figure 4.6.

FIGURE 4.6: Total pressure profiles at different downstream locations
(as in the legend), Figure from [46].

Experimental unsteady data were also acquired for the characterization of vortex
shedding. The shedding frequency found by Yasa et al. is equal to 19.7 [kHz] for the
subsonic design case, while it increases up to 21−22 [kHz] for higher velocities [44].

4.2 Baseline Case

The geometry adopted in the present study consists in a simplified topology of the
real NGV passage.

FIGURE 4.7: Three-dimensional CAD geometry and simplified mani-
fold.

The baseline case refers to numerical simulations reproducing only the transonic off-
design condition of the experiments.
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The validation of the numerical solver settings against the available experimental
data consists in the starting point for evaluating the indirect combustion noise mech-
anism on the same simplified topology.
The simplified model is a two-dimensional manifold of the blade geometry at mid-
span: i.e. the real geometry was cut by a cylindrical front at mid-span and then
projected onto a plane. This approximation can be made when the height of the an-
nulus enclosing the guide vanes is small compared to the inner radius of the cascade
[47]. In the current model the annulus height is one order of magnitude lower than
the inner radius, justifying the use of the linear cascade topology.
The CAD model was realized with the SIEMENS-NX software. First, three vanes
were assembled in order to reproduce the real geometry of the passage, as illus-
trated in Figure 4.2. Then a sectioning cylindrical front was constructed; the front
sectioned the three vanes at a radial distance corresponding to the mid-span. Fi-
nally, the mid-section profiles were projected on a plane; the plane was parallel to
the tangent surface of the central cut blade. The linear cascade model is hence ob-
tained.
A schematic representation of the procedure is illustrated in Figure 4.7.

4.2.1 Computational Domain and Mesh

At this point, the geometry of the fluid domain and the respective mesh have been
created. The adopted procedure was to consider the central unwrapped airfoil on
the planar surface and to construct a smart block structure around it. This strategy,
which consists of only one single passage, simulates an infinite linear cascade (along
the projected circumferential direction). The front view of the domain, together with
the reference frame are depicted in Figure 4.8.

FIGURE 4.8: Front view of the computational domain.

In order to apply periodic boundary conditions, the lower and upper boundaries of
the domain in Figure 4.8 have to satisfy one constraint: i.e. the spatial discretiza-
tion along the tangential direction of the edges must be exactly the same. Moreover,
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the height between the lower and upper boundary must correspond to the blade-to-
blade distance H . This outer block revealed itself particularly suitable for such task.
The final internal blocking structure was build via ICEMCFD R©, which allows the
creation of structured hexa-meshes1. Structured grids are highly space efficient, ex-
hibit good convergence and have high spatial resolution [48]. These cells can be
arbitrarily aligned along the local flow direction, capturing flow gradients in a very
accurate manner. It is important, therefore, to align the cells vertical edges along the
wall-normal direction of the airfoil, such that the boundary layers are accurately re-
solved. It is also desirable that the edges of two neighboring cells exhibit the lowest
non-orthogonality.
The internal blocking structure (18 blocks) with the respective boundaries is de-
picted in Figure 4.9.

FIGURE 4.9: Internal blocking strategy, two-dimensional front view.

The next step is to create the two-dimensional mesh that will then be extruded in the
spanwise direction (z-direction in Figure 4.8). The choice of the height of the first
cell around the airfoil (wall) is also crucial: it has to be sufficiently small in order
to resolve the boundary layer features correctly and in the present work the use of
wall function for turbulence modeling is avoided. The near wall normal distance
is characterized by the non-dimensional parameter ∆y+. This distance depends on
some other parameters and the next phase is to determine them.
Another important dimensionless number is the Reynolds number, crucial for the
characterization of turbulence (defined in section 3.4). In this particular setup the
Reynolds number is based on sonic conditions of the baseline simulation: assuming
a polytropic ideal gas behavior of the fluid and isentropic flow, the relation between
total temperature T0 and static temperature T is

T0

T
= 1 +

γ − 1

2
M2, (4.3)

1A hexahedron (often called hexa) is a topological cube with 8 vertices, 12 edges and 6 quadrilateral
faces.



46 Chapter 4. Transonic Flow Features in a NGV Passage

where γ is the specific heat ratio and M is the Mach number defined as the ratio
between the modulus of the flow velocity ||u|| and the speed of sound c.

(A)

(B)

FIGURE 4.10: Mesh Details, leading edge (A) and trailing edge (B)
views.

Then, at sonic conditions2, it results M = 1 and T0/T
∗ = 1.2 for the specific heat

ratio γ = 1.4. Recalling the definition of speed of sound and the perfect gas model,
it results

c2 =
∂P

∂ρ

∣∣∣
s

= γRT. (4.4)

For the baseline simulation the inlet total temperature will correspond to T0 = 304.51[K],
leading to a sonic temperature T ∗ = 253.76 [K] and to a speed of sound c = 319.33

2Usually indicated with superscript ∗.



4.2. Baseline Case 47

[m/s]. The definition of the Reynolds number at sonic condition is then

Re∗ =
ρ∗U∗L

µ∗
=
ρ∗cCax,mid

µ∗
. (4.5)

Using again isentropic relations and the thermodynamic model for the polytropic
ideal gas, the resulting Reynolds number is Re∗ ≈ 106. The Reynolds number is
large enough to consider the flow turbulent. Through empirical relations the skin
friction coefficient can be evaluated for the flow of interest. Its definition is

Cf =
τw

1
2ρ(U∗)2

, (4.6)

where here τw is the wall shear stress at sonic conditions defined as

τw = µ∗
∂u//

∂y

∣∣∣
y=0

, (4.7)

in which u// is the velocity component parallel to the wall.
For the skin friction coefficient estimation the 1/7 power law with experimental cal-
ibration [49] will be used:

Cf = 0.0592 (Re∗)−1/5. (4.8)

Then the wall shear stress can be calculated and the friction velocity uτ is found by

uτ =

√
τw
ρ∗
. (4.9)

Finally, aiming for a non-dimensional wall distance ∆y+ ≈ 1, it results from the
definition of ∆y+

∆y =
µ∗∆y+

ρ∗uτ
=

µ∗

ρ∗uτ
. (4.10)

The first cell height was finally set to ∆y = 5e−6 [m]. A posteriori evaluations on the
numerical solution showed that this value corresponds to an average ∆y+

avg ≈ 5. A
detail of the mesh at the leading and trailing edge can be visualized in Figure 4.10.
Finally, the 2D mesh is extruded for a number of 75 layers in the spanwise direction
in order to represent correctly the three-dimensional features of turbulence. The
depth of the cells in the z-direction is set based on an estimation of the transverse
Taylor micro-scale

λg =

√
10µ∗L

ρ∗k1/2
=

√
10µ∗Cax,mid

ρ∗k1/2
. (4.11)

The total number of elements is nelems = 739500 × 75 = 55462500. The final mesh
characteristics are summarized in Table 4.2.
Sponge zones with gradual grid stretching are used at the inlet and at the outlet
boundaries in order to damp spurious reflections.
The mesh was hence exported in the foam-extend framework for the set-up of the nu-
meric calculations.
Once exported, the mesh required the specification of periodic boundaries. There-
fore the upper and lower boundaries of the domain were grouped together in the
single patch PERIODICUPDOWN via the command createPatch (with its respective
dictionary createPatchDict)3. The same procedure has also been applied to the left

3A reference for the procedure details can be found in https://openfoamwiki.net/index.php/CreatePatch
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TABLE 4.2: Mesh characteristics

Parameter Average Maximum

∆y+ 5 8
Non-Orthogonality 22[◦] 53.8[◦]
Aspect Ratio < 30 49.4
∆x+ 15∆y+

avg −
∆z+ 20∆y+

avg −

and right boundaries (the lateral boundaries in the spanwise direction), resulting
in the single periodic LEFTRIGHT patch. The periodic boundary conditions in the
lateral patches of the domain are used to represent a blade of infinite span.

4.2.2 Initial Conditions

The initial conditions for the baseline case consist on the solution of the Reynolds
Averaged Navier-Stokes equations (with Favré averaging) on the two-dimensional
domain representing the vane passage. The field is initialized with an internal ve-
locity Uint = (52.35, 0, 0)T [m/s], an internal static pressure pint = 104370[Pa] and
an internal static temperature Tint = 303.15[K]. The internal values for velocity and
temperature correspond to the inlet velocity U1 = (M1c1, 0, 0)T and to the static tem-
perature T1 from the experimental operating conditions. The internal static pressure
correspond to the static pressure pout at discharge of the vane, also from experimen-
tal operating conditions. The fluid is considered to be a polytropic ideal gas with

γ =
cp
cv

=
7/2R

5/2R
=

7

5
. (4.12)

4.2.3 Boundary Conditions

The boundary conditions for both the RANS and LES simulations are summarized
as following:

• No slip adiabatic wall, for the blade; i.e. Uwall = (0, 0, 0)T and∇T · n|wall = 0.

• Average static pressure outlet, set equal to pout = 104370[Pa]. This "weaker"
condition for the outlet static pressure is commonly used for turbomachinery
applications since the value of static pressure across the entire outlet is not pre-
cisely monitored and controlled during experimental readings. Moreover, the
fixedMean boundary condition, which is used in foam-extent, extrapolates field
to the patch using the near-cell values and adjusts the distribution to match the
specified, optionally time-varying, mean value 4. This takes into account the
fact that a non stationary wake can exit the fluid domain.

• Stagnation inlet , Total pressure and total temperature are specified, their val-
ues are respectively p01 = 187100[Pa] and T01 = 304.51[K]. The total pressure
corresponds to the one matching the effective experimental condition. The
total temperature is estimated from the static value T1 = 303.15[K] specified
in the experiments and the inlet Mach number M1 = 0.15 through isentropic

4http://www.openfoam.com/documentation/user-guide/standard-boundaryconditions.php.
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relation (4.3). The specification of total conditions is widely used in turboma-
chinery and internal flows. Furthermore, the specification of stagnation prop-
erties at the inlet and static pressure at the outlet consists in a well-posed set of
boundary conditions for the problem of interest. Hence the velocity at the inlet
is not specified. In foam-extend the boundary condition pressureInletOutletVeloc-
ity can be applied to patches where the total pressure is specified. It calculates
directly the velocity from the mass flux entering in the domain, normal to the
inlet boundary.

• Periodic upper-lower boundaries, the cyclic boundary conditions is applied to
enforce a periodic condition between the upper and lower pair of boundaries
enclosing the fluid domain. This condition simulates an infinite linear cascade.

• RANS left-right boundaries, for the solution of the RANS, the lateral patches
are specified as empty, due to the two-dimensional nature of the problem and
the 2D fluid domain adopted.

• LES periodic left-right boundaries, for the solution of the LES, the cyclic bound-
ary conditions is applied to enforce a periodic condition between the lateral
pair of boundaries enclosing the fluid domain. This condition simulates the
effect of a blade of infinite span. Hence, the lateral patches are specified as
physical boundaries with translational periodicity in the spanwise direction.

In addition, a turbulence intensity of I = u′/U = 1% was specified at the inlet for the
calculation of the RANS solution; where u′ is the root-mean-square of the turbulent
velocity fluctuations and U is the mean velocity (in this case the module of the inlet
velocity U1).

4.3 Results

The numerical results obtained with the numerical set-up of the baseline case are
shown in the present section with the aim of understanding the transonic flow fea-
tures in the vane passage. Moreover, probes sampling lines and 2D front slices or
planes of the fluid domain are placed in the domain in order to compare numerical
results with experimental data and to allow a comprehensive post-processing of the
results.

4.3.1 Flow Features

Figure 4.11 shows the instantaneous Mach number field for a two-dimensional slice
defined by the spanwise z-direction normal.
The flow is subsonic at the inlet of the domain and the local Mach number is equal
to M1 = 0.15, corresponding to the velocity of U1 = 52.35 [m/s] which matches the
experimental conditions. Then the flow is accelerated up to sonic condition at the
throat of the nozzle guided vane passage (at x/Cax,mid ≈ 0.75). Passed the throat
the flow interacts with compression and expansion waves emitted from the shed
vortices at the trailing edge, as shown in Figure 4.13. These waves are also imping-
ing on the suction side of the blade and then are reflected back towards the normal
direction of the surface. The flow accelerates further on the suction side due to a
Prandtl-Mayer expansion. Almost at the end of the suction side, it is possible to ob-
serve compressibility effects: a system of weak shocks interacting with the wake is
present throughout the final part of the suction side. By looking at the animation
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FIGURE 4.11: Instantaneous Mach number field.

FIGURE 4.12: Instantaneous pressure field.
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corresponding to Figure 4.13, it seems that the system of weak shocks is moving
with a characteristic dynamics.
The pressure waves’ pattern emitted from the shed vortices can be seen more in the
instantaneous pressure field in Figure 4.12. Moreover, an overall Von Karman vor-
tex street-like pattern is visible in both figures of the Mach number and the pressure
field. This trend starts directly from the rounded trailing edge and last until an axial
distance corresponding to x/Cax,mid = 0.2 downstream the blade, then the overall
two-dimensional organization starts to break down in smaller and less organized
eddies. This is further corroborated by the flow depicted in Figure 4.13.

FIGURE 4.13: Isocontours of Q-criterion (coloured with the velocity
magnitude) superimposed on the divergence of the velocity field.

Turbulent structures in the spanwise direction are three-dimensional. Thus, the se-
lected discretization in the spanwise direction is able to capture the correct three-
dimensional features of turbulence. In the first part of the wake 3D structures are
also present but their organization form the overall 2D vortex street.
The shedding frequency predicted by the 3D LES is of fs = 24 [kHz], corresponding
to a Strouhal number of Sts = fsd/U = 0.176. The Strouhal number is calculated
with the length scale d = 0.0022 [m] being the trailing edge diameter and the veloc-
ity scale U being equal to the one calculated from the exit Mach number of 0.95. The
shedding frequency found experimentally [44] was equal to 21 − 22 [kHz] for this
operating condition.
The mean (time-averaged) pressure distribution and the mean total pressure ra-
tio Π are shown in Figure 4.14. The time average and statistics were calculated
over a time series corresponding to a period of time tsim ≈ 200ts, where tsim is the
real time length of the simulation (0.0083[s]) and ts = 1/fs is the shedding period
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(1/24000 = 4.17e−5[s]).

(A) (B)

FIGURE 4.14: Time averaged pressure distribution (A) and total pres-
sure ratio (B).

The wake region is clearly visible in both figures. Moreover, the pressure distribu-
tion shows the presence of a weak shock on the suction side towards the end of the
blade. The shock is not visible, instead, in the averaged total pressure distribution.
It is also worth to notice the direction of the wake: in both fields of Figure 4.14 the
first part of the wake seems to curve slightly; after passing the trailing edge, the
wake straightens itself and proceeds downstream the cascade.

4.3.2 Comparison With Experiments

The results from the 2D RANS (used for the initialization) and the 3D LES are now
compared with the experimental data.
First, the NGV blade loading at mid-span and the circumferential pressure distribu-
tion are presented in terms of the isentropic Mach number Mis

Mis =

√
2

γ − 1

[(p01

p

) γ−1
γ − 1

]
, (4.13)

in which p is the local time averaged pressure.
The blade loading is expressed as a function of the axial normalized coordinate
x/Cax,mid, while the circumferential pressure distribution is expressed as a function
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of the vane phase (as in the experiments).
Figure 4.15 shows the mid-span slice of the numerical fluid domain where the time
averaged quantities to compare where obtained.

FIGURE 4.15: Location of NGV loading (blue) and circumferential
pressure distribution (black) data collection.

The comparison with the experiments can instead be visualized from Figure 4.16.

0 0.2 0.4 0.6 0.8 1

x/Cax

0

0.2

0.4

0.6

0.8

1

1.2

M
is

(A)

-0.5 0 0.5 1 1.5 2 2.5

Vane Phase

0.8

0.85

0.9

0.95

1

1.05

1.1

M
is

(B)

FIGURE 4.16: NGV blade loading (A) and circumferential pressure
distribution (B); (•) experimental data; ( ) 2D RANS; ( ) 3D LES.

For the pressure side, notably, a very good agreement is found between the exper-
iments and both numerical simulations. The matching is also good on the suction
side, with a slight underprediction after the throat region. The pressure distribution
along the blade involves different features due to the physics of the flow field. On the
pressure side the flow is accelerated up to sonic conditions at almost the end of the
blade; the entire pressure sides behaves like a converging portion of a nozzle. On the
suction side, the flow accelerates up to chocking conditions until x/Cax,mid = 0.75.
Finally, the Mach number is increased due to an expansion on the final part of the
blade. Then the Mach number drops just below sonic conditions due to the presence
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of a weak normal shock at approximately x/Cax,mid = 0.95. The location of the shock
is just slightly overpredicted by the 2D RANS.
Regarding the circumferential pressure distribution, the topology of the domain al-
lows, by construction, to reproduce only one passage, and the subsequent resulting
trend is periodic. The experimental data are available for almost three complete pas-
sages. It can be noticed that the LES result are in perfect agreement in phase 2; 2D
RANS also show a good agreement in that region. The experimental results are not
perfectly periodic in the pitchwise direction.
Then, the experimental wake losses in terms of the total pressure ratio Π (4.2) are
compared with the results of the numerical simulations. The locations of the mea-
surements are two planes respectively at 7.1%Cax,hub and 48.4%Cax,hub downstream
the NGV. Again the location of the measurements’ plane at the mid-span slice can
be visualized in Figure 4.17.

FIGURE 4.17: Downstream location of total pressure losses data col-
lection; 7.1%Cax,hub (blue), 48.4%Cax,hub (black).

The wake losses profile are shown in Figure 4.18.
The increasing wake region extension downstream the NGV passage can be clearly
seen from the pictures. The total pressure losses are also reduced thanks to the en-
hanced mixing in the wake region. The asymmetric profile at the closest location
to the trailing edge is very well captured by the 3D LES. The resulting profile from
the 2D RANS appears slightly more symmetric. In the furthest location, the 3D LES
exhibits a closer profile to the experimental data than the 2D RAND; where the wake
width is underpredicted. Overall, a very good agreement is found for both LES and
RANS results in terms of wake width at 7.1%Cax,hub downstream the passage. In-
stead, at 48.4%Cax,hub, the LES results agree better with experimental data than the
RANS ones.
Regarding the maximum pressure losses, both simulation results overpredict them
at 7.1%Cax,hub, while the LES results are closer to the experimental ones at 48.4%Cax,hub.

4.3.3 Space-Time Correlations

In order to evaluate the convection speed of the turbulent structures in the wake,
points were sampled along the wake at the mid-span of the numerical fluid domain.
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FIGURE 4.18: Total pressure ratio at different downstream locations:
7.1%Cax,hub (A) and 48.4%Cax,hub (B) ; (•) experimental data; ( ) 2D

RANS; ( ) 3D LES.

The direction of the line was chosen accordingly to the discharge direction θ2 = 75[◦]
of the vane. The zone of interest can be visualized in Figure 4.19. The probes sam-

FIGURE 4.19: Sampling line along the wake for the evaluation of
space-time correlations, 75 points starting from (x0, y0, zmid).

pled the signal of the three velocity components (u, v, w). Then the two-dimensional
velocity magnitude along the direction θ2 was calculated as

Uv = u sin(θ2)− v cos(θ2), (4.14)

and its fluctuating part was taken as U ′v = Uv − Uv.
The general cross correlation coefficient for two locations and two times is defined
as

R(r,∆t) =
〈U ′v(x, t0)U ′v(x + r, t0 + ∆t)〉√
U ′v(x, t0)2

√
U ′v(x + r, t0 + ∆t)2

. (4.15)

Figure 4.20 shows the aforementioned correlation coefficient taking as reference point
x the coordinates (x0, y0) and as reference time the instant t0 = 0.
The spatial distance in the figure corresponds to the length of the sampling line and
was adimensionalized by the trailing edge diameter d, while the time scale was
made non-dimensional by using the following definition τ∗ = tU/d, where U is
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FIGURE 4.20: Cross correlation coefficient for two locations and two
times; reference point (x0, y0) at t0 = 0.

again the velocity calculated from Mis = 0.95.
Two lines are also marked in Figure 4.20. The line which is furthest downstream
represents the location where the convected voritces first pass through the system
of shocks. There is no drastic change in slope in the isosurfaces of the correlation
coefficient.
The line closest to the reference point, instead, shows a region where the correlation
coefficient drops. It also shows a change of phase in the correlation between the vor-
tical structures which pass across it.
Then, the same correlation coefficient was calculated with two generic reference
points on the sampled line at a generic time instant t. The first point was taken
15 trailing edge diameters downstream the point (x0, y0) while the second one 34
diameters downstream. The resulting correlation isocontours for the first point are
depicted in Figure 4.21.
Instead, the resulting correlation isocontours for the second point are shown in Fig-
ure 4.22.
Finally, the convection velocity of the turbulent structures is evaluated following the
maximum value of the correlation coefficient in the space -time diagram. This veloc-
ity is simply estimated by the ratio distmax/∆t, where distmax is the distance along
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FIGURE 4.21: Cross correlation coefficient for two locations and two
times; reference point 15 trailing edge diameters downstream the

point (x0, y0) at t0 = t; white circle→ reference point.

the sampled line separating two maxima of the correlation R and ∆t is the time in-
terval between them.
From the two Figures 4.21 and 4.22 it might seem that the velocity of the vortical
structures might change across the shock. Instead it was found that the convection
velocity is constant throughout the sampled line. This is shown in Figure 4.23, where
the convection velocity is expressed in terms of the ratio Uv/U .
Figure 4.23a shows the convection velocity estimation before the vortical structures
change of phase. Figure 4.23b shows its estimation from the reference point 15 di-
ameters downstream to the final point 34 diameters downstream.
Overall strong correlations were found for the velocity signals sampled for the sim-
ulation, underling a global organization of the vortices along the discharge direction
of the vane. In Figures 4.20, 4.21 and 4.22 a strong temporal periodicity is observed
on the ordinate axis τ∗, with a separation ∆τ∗ = 5.68, corresponding to the shedding
frequency fs.
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FIGURE 4.22: Cross correlation coefficient for two locations and two
times; reference point 34 trailing edge diameters downstream the

point (x0, y0) at t0 = t; white circle→ reference point.
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FIGURE 4.23: Convection velocity estimated along the sampled line;
before the phase change (A), after the phase change (B).
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Chapter 5

Indirect Combustion Noise

5.1 Fluctuating Inlet Temperature

After validating the solver settings with the baseline case, for which experimental
results were available, the aim of the present work is to assess (numerically) the
generation mechanism of indirect combustion noise, that is to observe the entropy
to acoustic conversion of inflow disturbances through the NGV passage.
Hot and cold spots of air coming from the combustion chamber will be imposed as
a planar sinusoidal wave train coming from the inlet boundary.
First, a similar numerical setup to the baseline case will be adopted for the "forced"
scenario, with the only difference being the forcing (not-uniform) temperature at
the inlet. The frequency content and the acoustic response of the blade row will be
analyzed for both cases in order to observe the effects of the forcing.
Then, the effect of changing the inlet total temperature will be studied with the aim
of simulating more realistic scenarios and to address the effects on the NGV acoustic
response.

5.1.1 Forced Case

The term "forced" will refer to a particular case with almost identical numerical set-
tings as for the baseline simulation. The important difference relies on the fact that
entropy waves are now imposed at the inlet of the domain. The wave train direction
is aligned with the incoming flow and entropy fluctuations are imposed by only
forcing the temperature field. The shape of the forcing will be sinusoidal, with a
characteristic frequency in time f1 equal to 1000 [Hz]. The Strhoual number associ-
ated to the frequency f1 for both baseline and forced case1 is equal to St1 = f1d/U =
0.00733.
The equation relating entropy fluctuations and temperature is given by

s′

cp
= log

(
1 +

T ′

T

)
− γ − 1

γ
log
(

1 +
p′

p

)
, (5.1)

where the primed value represents the fluctuating part of the thermodynamic vari-
ables and the unprimed quantities are the local mean values. For the present case
only temperature waves are imposed at the inlet, hence equation (5.1) assumes the
form

s′1
cp

= log
(

1 +
T ′1
T1

)
, (5.2)

1Here the velocity scaleU is again the one calculated from the isentropic Mach numberM2,is = 0.95.
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(A)

(B)

FIGURE 5.1: Instantaneous temperature field along a spanwise sec-
tion, baseline case (A) and forced case (B).

in which the subscript 1 indicates the inlet station. The reference total and static
temperatures at the inlet will be the same one of the baseline case, but the static tem-
perature (and the total consequently) will now oscillate according to the expression
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given by
T̃1(t) = T1 +AT1 sin(2πf1t), (5.3)

where T̃1 indicates the inlet static temperature function of time for the forced case, T1

is the inlet static temperature of the baseline case and A is the amplitude of the dis-
turbance, set to be equal to 4.8%. The choice of the frequency is dictated by the high
computational cost of the 3D LES, which otherwise would have been prohibitively
long. However, this frequency is still in the limit range of real case scenarios: previ-
ous studies in literature indicated that combustion noise has its peak intensity typi-
cally in the low frequency range around 200− 1000[Hz] [50, 51, 52, 53].
Similar simulations have been conducted by Papadogiannis et al. [54], which found
that the limiting frequency for the validity of the compact assumption [18] is around
2200[Hz]. Thus, at the selected frequency, the same indirect noise generation mech-
anism as in classical aero-engines should arise. For the case of incoming planar
entropy waves aligned with the flow direction at the inlet, the dispersion relation is
simply given by λs = U1/f1 = M1c1/f1, where c1 is the local speed of sound at the
inlet and λs indicates the wavelength of the entropy waves. For the forced case, this
wavelength corresponds to 76% the axial chord of the blade Cax,mid. The physical
time of the simulation was chosen in order to reproduce the passage of ten planar
waves through the cascade, corresponding to tsim,forced ≈ 10/f1 = 0.01[s].
Snapshots of the instantaneous temperature field in a spanwise section can be visu-
alized in Figure 5.1 for both the baseline and the forced case.
For the baseline case in Figure 5.1a, it is possible to visualize the flow accelerat-
ing up to sonic conditions at the throat. Then the "diamond"-like pattern of waves,
shed from the trailing edge vortices, is present just after the throat. Finally, a sys-
tem of compression and expansion waves is visible at the end of the blade. Figure
5.1b shows instead the features of the flow-field with planar entropy waves injected
at the inlet. The planar forcing is revealed at the inlet by the presence of vertical
stripes in the temperature field, with the wavelength of the entropy waves λs corre-
sponding exactly to the value predicted by the dispersion relation. Once the waves
approach the blades they get distorted by the large flow gradients across the vane,
becoming aligned with the flow direction at the end of the passage. Then, one axial
chord downstream from the blade, it is possible to see almost-planar entropy waves
propagating downstream of the passage. The entropy waves hence go back to their
original planar organization even if the wavelength of the disturbances is only of the
same order of the blade axial chord.
The vortex shedding frequency for the forced case is the same as the one for the
baseline case.
Then, a temporal fast Fourier transform (FFT) has been applied on a set of two-
dimensional snapshots of velocity, temperature and pressure fields, sampled at a
frequency equal to four times the vortex shedding frequency, in order to avoid alias-
ing. This frequency is widely sufficient to capture possible features of the flow-field
appearing at f1 = 1000[Hz].
To evaluate the tones of interest appearing in the frequency content of the signal,
an average integral amplitude coefficient, for the pressure fluctuation field p′, was
defined as

AI(t) =
1

γp01

∫
Vslice

p′(t) d
( V

Vslice

)
, (5.4)

in which Vslice is the volume of the sampled domain.
In Figure 5.2, the forced case shows clearly the appearance of a peak at the Strouhal
number corresponding to the frequency of 1000[Hz], which was not present in the
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unforced simulation. Both cases show instead the same peak at the shedding fre-
quency. Several peaks are also present after the tone at f1, they are related to the
shock dynamics at low frequency present in both simulations.
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FIGURE 5.2: Average integral amplitude spectrum of the pressure
fluctuation field p′; ( ) baseline case; ( ) forced case.

For both the baseline and the forced case, each field showed a distinct tone in the
amplitude of the signal at the shedding frequency fs = 24[KHz], (Sts = 0.176).
Both cases also showed a frequency content in the range of frequencies among 200−
7000[Hz], but with the forced case exhibiting a distinct tone at the inlet forced fre-
quency f1.
Starting from the pressure fluctuations field p′, the amplitude and the phase fields
for both cases are shown in Figure 5.3. The amplitude field is expressed in decibels
[dB], taking as reference pressure the value pref = 20[µPa].
For the unforced simulation (Figure 5.3a), it is possible to observe the presence of a
low frequency dynamics at 1000[Hz] of the system of compression and expansion
waves. The amplitude of the pressure fluctuations is instead negligible upstream of
the NGV passage, up to the throat section.
As entropy waves are imposed at the inlet, instead, one can immediately notice sev-
eral zones of interest in the amplitude field, which were not present in the baseline
case.
First, there is a glowing white area towards the end of the blade (suction side),
where the system of shocks is located; its amplitude is greater then 160[dB]. This
suggest that the inlet forcing frequency can excite the dynamics of the flow in this
region. Then, the convergent section of the vane passage exhibits amplitudes around
150[dB] up to the throat section. A possible explanation can be that entropy waves
interacting with strong mean flow gradients give rise to an entropy-acoustic modal
interaction. Considering for instance a weakly non linear Kovasznay decomposi-
tion [37, 55] of all compressible flow variables, acoustic production due to acoustic-
entropy coupling can arise due to scattering: i.e. the acoustic waves are scattered
by the convected entropy spots passing through the nozzle. According to Kovasz-
nay decomposition [37, 55] the acoustic production scattering term is ∂t(∇ · seup),
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(A) Amplitude (left) and phase (right) fields of p′ at the forcing frequency f1, baseline case.

(B) Amplitude (left) and phase (right) fields of p′ at the forcing frequency f1, forced case.

FIGURE 5.3: FFT of the pressure fluctuation field at the forcing fre-
quency f1, baseline case (A) and forced case (B).

where se is entropy perturbation of the entropy mode and up is the velocity pertur-
bation of the acoustic mode. Finally, the upstream region of the cascade also exhibits
regions of noticeable amplitude which where absent in the baseline case, suggest-
ing the presence of reflected acoustic waves propagating upstream. A dark line in
the neighborhood of the sonic throat identifies also a region of lower amplitude,
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(A) Amplitude (left) and phase (right) fields of p′ at the shedding frequency fs, baseline case.

(B) Amplitude (left) and phase (right) fields of p′ at the shedding frequency fs, forced case.

FIGURE 5.4: FFT of the pressure fluctuation field at the shedding fre-
quency fs, baseline case (A) and forced case (B).

showing the decoupling between the convergent part of the vane and the discharge
section.
At the shedding frequency fs, both cases show practically identical features as it can
be seen from Figure 5.4.
Regarding the fluctuation field of the velocity magnitude U ′mag, the same FFT at the
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(A) Amplitude (left) and phase (right) fields of U ′mag at the forcing frequency f1, baseline
case.

(B) Amplitude (left) and phase (right) fields of U ′mag at the forcing frequency f1, forced case.

FIGURE 5.5: FFT of the velocity magnitude fluctuation field at the
forcing frequency f1, baseline case (A) and forced case (B).

inlet forcing frequency f1 shows several difference between the two simulated cases.
The unforced case of Figure 5.5a highlights again the presence of a latent dynamics
of the system of shocks. The forced case of figure 5.5b, on the other end, presents
higher amplitudes in this region. On the same figure, from the phase field, it is also
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(A) Amplitude (left) and phase (right) fields of U ′mag at the shedding frequency fs, baseline
case.

(B) Amplitude (left) and phase (right) fields of U ′mag at the shedding frequency fs, forced
case.

FIGURE 5.6: FFT of the velocity magnitude fluctuation field at the
shedding frequency fs, baseline case (A) and forced case (B).

possible to observe the "shape" of these fluctuations, which are in close resemblance
to the temperature waves of Figure 5.1b.
Once more, the amplitude and the phase field of the FFT at the shedding frequency
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(A) Amplitude (left) and phase (right) fields of T ′ at the forcing frequency f1, baseline case.

(B) Amplitude (left) and phase (right) fields of T ′ at the forcing frequency f1, forced case.

FIGURE 5.7: FFT of the temperature fluctuation field at the forcing
frequency f1, baseline case (A) and forced case (B).

do not exhibit any detectable difference from each other and it possible to recognize
the shear layers detaching from the blade.
The last analysis is then focused on the FFT of the temperature fluctuation field T ′.
Again, important difference are present at the inlet forcing frequency f1, while simi-
lar features are present at the shedding frequency fs.
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(A) Amplitude (left) and phase (right) fields of T ′ at the shedding frequency fs, baseline
case.

(B) Amplitude (left) and phase (right) fields of T ′ at the shedding frequency fs, forced case.

FIGURE 5.8: FFT of the temperature fluctuation field at the shedding
frequency fs, baseline case (A) and forced case (B).

At f1 the same low frequency dynamics as for pressure and velocity is visible in the
amplitude field of Figure 5.7a (baseline case).
The amplitude field of the forced simulation (Figure 5.7b) shows that entropy waves
reduce their intensity after passing the blade row. The interaction with the system of
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shocks is also visible. On the other hand, the phase field at the same frequency shows
the planar character of the incoming entropy waves; afterwards they get strongly
distorted through the NGV passage and analogous "jet/streaks"-like structures as in
the velocity phase field at f1 are visible in the middle of the passage. The waves be-
come almost planar again after approximately one axial chord Cax,mid downstream
of the blade row.

FIGURE 5.9: Schematic procedure for the analysis of shock dynamics.

In conclusion, the presence of acoustic production at the forcing frequency f1, with
noticeable amplitudes, is observed both upstream and downstream of the blade pas-
sage. The downstream generated noise might be emitted from the system of weak
shocks on the suction side, while the upstream noise might be generated in the sub-
sonic convergent region of the passage and then reflected backwards. Notably, all
the fluctuating fields show significant differences in both phase and amplitude fields
of the FFT at the forcing frequency f1. No perturbation of the shedding dynamics is
induced by the inlet forcing, maybe due to the very different frequencies involved
in the respective phenomena.
From the previous analysis of the flow variables’ frequency content, entropy waves
seem to strongly interact with the system of weak normal shocks; therefore, a sam-
pling line has been traced in that particular zone, where the pressure fluctuation
amplitudes were the highest. For this line, the divergence of the velocity field has
been sampled for a number of 100 points throughout the time evolution of the simu-
lation. The sampling frequency is the same as the one used for the two-dimensional
snapshots. Then, the sampled field is projected on a space-time grid where the spa-
tial coordinate is represented by the non-dimensional distance x/Cax,mid and the
temporal coordinate by a non dimensional time τ∗ = tU/d. A graphic description
of the procedure can be found in Figure 5.9. With this method, the characteristic
dynamics of the system of normal shocks can be identified and the present analysis
will be conducted for both the baseline and the forced case. The divergence of the
velocity field is expressed in terms of its non dimensional counterpart defined as
∇ · ũ = ∇ · (u d/U).
Figure 5.10 shows the non dimensional field ∇ · ũ projected on the space-time dia-
gram for both the baseline and the forced case. Only negative values are shown since
they identify compression zones and hence the formation of shockwaves. Three re-
gions of interest can be identified in the graph.
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(A)

(B)

FIGURE 5.10: Isocontours of∇· ũ in the space-time diagram; baseline
case (A); forced case (B).

Region 1 corresponds to the zone where the position of the shock changes slowly dur-
ing time; this region has fairly similar characteristics for both the baseline and the
forced case. The frequency content in Region 1 is in the range of 200−900[Hz]. Region
2, instead, corresponds to the glowing zone for which the amplitude of the pressure
fluctuations is the highest in Figure 5.3b. For the forced case in Figure 5.10b, black
stripes at regular intervals of time are visible in Region 2. The frequency of these in-
tervals is evaluated by the means of a FFT at a fixed position in space: it corresponds
exactly to the inlet forcing frequency f1 = 1000[Hz]. Remarkably, this characteristic
does not appear for the baseline case in Figure 5.10a and the shock movement is not
organized at any particular frequency of interest; its frequency content is instead in
the range of 500 − 3000[Hz]. Finally, Region 3 corresponds to the initial part of the
wake, where compression and expansion waves are emitted by vortical structures
and appear with higher frequencies. The structure of Region 3 is similar for both
cases and its dynamics is in the range of 3000− 7000[Hz].
These aspects of the shock dynamics in Region 2 justify the high amplitude found by
the FFT at 1000[Hz]. A detailed image of Region 2 is pictured in Figure 5.11 for both
simulations. A shock movement mechanism, with shocks appearing and then van-
ishing, was also documented in literature by the work of Panda [56] and the work of
Risborg & Soria [57]. They underlined shock oscillations cycles in two different jet
flows and this peculiar feature is referred as splitting mechanism.
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(A)

(B)

FIGURE 5.11: Isocontours of∇· ũ in the space-time diagram, detail of
Region 2; baseline case (A); forced case (B).

(A)

(B)

FIGURE 5.12: Isocontours of p′/(γ p01) in the space-time diagram, de-
tail of Region 2; baseline case (A); forced case (B).
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The same dynamics can be visualized for the pressure fluctuation field p′, as the de-
tail of Region 2 in Figure 5.12 exhibits clearly; here the field p′ has been made non
dimensional by the expression p′/(γ p01).
In the end, a similar analysis for the evaluation of the convection velocity of the
vortical structures, emitted from the trailing edge, has been performed. The results
were identical to the one of the baseline case presented in subsection 4.3.3.

5.1.2 Proper Orthogonal Decomposition

The flow-fields analyzed in the present work exhibit complex features with a wide
range of temporal and spatial frequencies. Nowadays, it has become common prac-
tice in fluid-flow analysis to seek for physically relevant features (modes) for the de-
scription of these temporal and spatial characteristics.
In the previous section, only the FFT at two specific frequencies (f1 and fs) has been
conducted, still providing a lot of information of the flow-fields and a large number
of results to analyze.
In the present subsection, the modal analysis under the name of Proper Orthogonal
Decomposition will be used in order to extract the most relevant modes appearing in
the 2D snapshots sampled during the simulations. The study will be performed for
both the unforced and the forced flow-fields.
The term modal decomposition refers to a mathematical technique with the aim of
educing dynamically and energetically relevant features of the flow. In POD, the
spatial modes are often referred as topos, while the temporal ones as chronos.
In the theory of stochastic processes, The Karhunen-Loève (KL) theorem defines an
optimal representation of a stochastic process as an infinite linear combination of
orthogonal functions. In 1967 Lumley [58] applied this technique to extract coherent
structures from turbulent signals.
The POD is based on the optimization of the mean square error of the flow-field
being examined. It is the discretized, finite form of the KL transform [59, 60] and
provides an algorithm to decompose the dataset into a minimal number of basis
functions, which capture the largest amount of energy (L2 norm).
With the POD, one seeks to separate the field of interest in the form2

u(x, t) =
∑
j

aj(t)φj(x). (5.5)

The classical POD method directly determines the set of spatial modes that can op-
timally represent the selected field, while it recovers the temporal coefficients aj
afterwards.
First, the fluctuating part of the field u is extracted at each time-step as

u′(x, t) = u(x, t)− u(x) ∈ Rn, (5.6)

where the overline indicates the time averaged field. Then, the spatial collection u′

at each sampled time is collected into a stacked matrix of the form

X = [u′(x, t1), u′(x, t2), . . . , u′(x, tm)] ∈ Rn×m. (5.7)

The goal of the POD is to determine the optimal basis vectors, with the least num-
ber of modes φj , that best represent the given data in X. The solution leads to an

2It is important to notice that the form in equation (5.5) explicitly employs a separation of variables.
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eigenvalue problem of the form [61]

Rφj = λjφj , λ1 ≥ λ2 ≥ . . . ≥ λn, (5.8)

in which R is the covariance matrix of X, defined as

R =
1

m

m∑
i=1

u′(x, ti)u
′(x, ti)

T =
1

m
XXT ∈ Rn×n. (5.9)

The size n is equal to the number of spatial degrees of freedom of the sampled data.
The eigenvectors found from problem (5.8) are the topo-modes. These modes are
orthonormal, that is their inner product is equal to

〈φi, φj〉 =

∫
V
φi, φjdV = δij . (5.10)

Instead, the eigenvalues λj express how much "energy", of the original data, each
eigenvector φj contains (in the L2 sense). The total amount of energy represented by
r modes can be calculated as

ErL2 =
r∑
j=1

λj/
n∑
j=1

λj . (5.11)

The truncated series of the vector u′ is hence

u′(x, t) ≈
r∑
j=1

aj(t)φj(x). (5.12)

Finally, the temporal coefficients are determined by

aj(t) = 〈u′(x, t), φj(x)〉. (5.13)

It is important to notice that the aforementioned algorithm is strictly valid for a fluid
flow placed on a uniform grid. This is very rarely the case for fluid flows around
complex geometries, therefore the cell volume for for each data point needs to be
included in the formulation to represent correctly the inner product (volume inte-
gral). Then, the covariance matrix needs to be modified accordingly to R∗ = RW =
(1/m)XXTW, where W represents the spatial weights.
In numerical simulations, usually the number of spatial degrees of freedom n is very
large compared to the number of snapshots m available. The resulting weighted
covariance matrix R∗ ∈ Rn×n also becomes ridiculously large, and the use of the
classical method might be practically impossible to handle numerically.
In 1987, Sirovich [62] showed that the temporal correlation matrix gives rise to the
same topo-modes, while reducing drastically the size of the arising eigenvalue prob-
lem, making it computationally more tractable. This approach is known as method of
snapshots, and it reduces to solving the following eigenvalue problem3

XTWXψj = λjψj , ψj ∈ Rm, m� n, (5.14)

in which ψj is the j-th chrono-mode.
The size of the matrix XTWX is nowm×m instead of the much greater original size

3In the case of non-uniform grids.
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n × n. Moreover, the same non zero eigenvalues are shared between XTWX and
XXTW and their eigenvectors are linked via the relationships that exists between
the eigenvalue and singular value decompositions.
The topo-modes, in fact, can be recovered through

φj = Xψj
1√
λj
, ψj ∈ Rn. (5.15)

The totality of the topo-modes can be written in a matrix form as

Φ = XΨΛ−1/2. (5.16)

Due to the significant reduction of the problem size, also computational and memory
resources required reduces drastically. Therefore, the method of snapshots is the
most-widely used for the POD.
In the present work the POD has been applied to the temperature, pressure and
velocity magnitude field. The weighting matrix W was made non-dimensional by
dividing the volume of each cell by the volume of the 2D domain extruded by ∆z
(i.e. one layer). The structure of the matrix is diagonal and each element is given
by diag(Wi) = Vi/Vslice. Since only the diagonal has non-zero elements, the matrix
has been stored in Matlab R© via the command spdiag, which reduces significantly
the memory allocation required. The discrete, generalized L2 weighted product is
defined as

〈u,v〉W = uTWv, (5.17)

and it is useful to remind that now the topo-modes are W-orthogonal, i.e. with the
inner product 〈φi, φj〉W = δij .
Furthermore, given the fact that the weighting matrix is non-dimensional, all the en-
ergy contained in the eigenvalues λj has the units of the matrix X squared4. Then,
the resulting topo-modes from (5.16) are also non dimensional. A schematic descrip-
tion of the algorithm implemented in Matlab R© is given in Table 5.1.

TABLE 5.1: POD algorithm

Algorithm

Input: Snapshots sequence X
Weighting matrix W

1. [Ψ,Λ] = eig(XTWX);

2. Φ = XΨΛ−1/2;

Output: Eigenvalues Λ
Topo-modes Φ
Chrono-modes Ψ

4The eigenvectors ψj forms an orthonormal basis and therefore ||ψj || = 1.
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5.1.3 POD, Temperature Field

Starting with the temperature field, it is immediately possible to recognize the dif-
ferent features characterizing the baseline and the forced cases.
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FIGURE 5.13: Energy percent retaining the first r modes (A), and en-
ergy associated to each mode (B). Temperature fluctuation field T ′;

baseline case.

The energy distribution among the temperature fluctuation modes, is shown in Fig-
ure 5.13 for the baseline case. One can see that the first 8 modes roughly capture
20% of the energy, with mode 1 and 2 containing the highest energy content per
mode ≈ 5%. In order to capture 90% of the energy, 400 modes are needed, while the
99% of the energy is captured with 650 modes. An analysis of the chrono- and topo-
modes showed that the first two POD modes have a similar periodicity (frequency
content) and a similar structure in space, as it can be seen from Figure 5.14. The
chrono-modes frequency content is expressed in terms of the Strouhal number with
the usual definition St = fd/U . The dominant frequency is St = 0.176 as shown
in the chrono-modes of Figure 5.14. From a physical point of view, these structures
represent the vortex shedding phenomenon. The appearance of modes as a couple
is an evidence that the modes represent a wave-like periodic structure of the flow:
the POD modes are represented by real functions, and two modes are needed to de-
scribe a traveling wave, representing the real and complex parts respectively.
The following couple of modes 3 − 4 is instead associated with the system of com-
pression and expansion waves arising from the trailing edge. One could notice, in
fact, the dark and light areas around the trailing edge in Figure 5.15. This region
corresponds to Region 3 highlighted in Figure 5.10. The frequency content is around
St = 0.016 corresponding to a frequency f = 2180[Hz]. Only the third mode will be
showed in Figure 5.15 for the sake of clarity and conciseness.
The couple 5 − 6 is also associated to the shock movement mechanism but with a
lower frequency content at St = 0.004 corresponding to f = 545[Hz], Figure 5.16. In
this case the darkest and lightest zones of the modes are related to the movement in
Region 1, also highlighted in 5.10.
Then, the couple 7 − 8 exhibits again some dominant dynamics of the shock move-
ment at St = 0.012→ f = 1636[Hz], Figure 5.17.
Finally, the last couple 9 − 10 will be showed, once again exhibiting the dynamics
of the shock motion at the dominant frequency St = 0.028 → f = 3818[Hz] and at
St = 0.0081→ f = 1100[Hz], Figure 5.18.
From the previous results, one can clearly distinguish the modeshapes associated
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(A)

(B)

FIGURE 5.14: First (A) and second (B) POD modes of the temperature
fluctuation field T ′; baseline case.

with the shedding phenomenon and the shock movement. Moreover, their fre-
quency content is well separated since there are no topo-modes which are associated
to chrono-modes with both frequencies.
The frequency content of the modes representing the waves traveling at the end of
the blade are not always associated to a single frequency, and even if dominant tones
are distinguishable, several other frequencies appear in the temporal signal. In addi-
tion, the POD also shows that the frequency content of the shock movement is also
in the frequency range ≤ 10 [kHz].
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FIGURE 5.15: Third POD mode of the temperature fluctuation field
T ′; baseline case.

FIGURE 5.16: Fifth POD mode of the temperature fluctuation field T ′;
baseline case.

Moving the attention to the forced case, the situation changes significantly: now, al-
most the totality of the energy is associated to the first two modes, which contain
more than 90% of the energy by themselves. The energy retained as function of the
number of modes and the energy per mode are pictured in Figure 5.19 for the forced
case. The topo-mode associated to the couple 1 − 2 and its respective chrono-mode
is shown in Figure 5.20.
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FIGURE 5.17: Seventh POD mode of the temperature fluctuation field
T ′; baseline case.

FIGURE 5.18: Ninth POD mode of the temperature fluctuation field
T ′; baseline case.

The time signal shows a perfectly periodic trend of the temporal coefficient associ-
ated to the single frequency of f1 = 1000[Hz]. The spectrum of the temporal coef-
ficient, in fact, shows the dominant tone at St1 = 0.00733. The spatial modeshape
also shows the incoming planar wave train of entropy waves which get strongly
distorted as they approach the vane passage. The aforementioned topo-mode has
strong resemblances with the instantaneous temperature field of Figure 5.1b, only
missing the mixing feature caused by the vortex shedding.
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FIGURE 5.19: Energy percent retaining the first r modes (A), and en-
ergy associated to each mode (B). Temperature fluctuation field T ′;

forced case.

FIGURE 5.20: First POD mode of the temperature fluctuation field T ′;
forced case.

The other modes calculated with the POD algorithm are associated to the vortex
shedding phenomenon and to the shock movement mechanism. Their modeshapes
are similar to the ones showed for the baseline case and will not be repeated.

5.1.4 POD, Pressure Field

The analysis is focused now on the pressure fluctuation field p′, for which the POD
algorithm is applied and the same analysis as for the temperature fluctuation field
is performed.
The POD modes for the baseline case are very similar to the ones individuated for
the field T ′. The energy associated to the modes is plotted in Figure 5.21.
The first couple, associated to the shedding mode, contains 17% of the total energy,
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FIGURE 5.21: Energy percent retaining the first r modes (A), and en-
ergy associated to each mode (B). Pressure fluctuation field p′; base-

line case.

while the energy content per mode drops below 5% for the successive ones. To rep-
resent 90% of the total energy, approximately 300 modes are needed.
The modeshape associated to the vortex shedding is pictured is Figure 5.22; once
again the dominant tone is at St = 0.176.

FIGURE 5.22: First POD mode of the pressure fluctuation field p′;
baseline case.

The couple 3 − 4, as for the temperature, is associated with the system of compres-
sion and expansion waves arising from the trailing edge, as depicted in Figure 5.23.
The couple 5 − 6 is, again, associated to the shock movement at an axial position
along the blade of x/Cax,mid = 0.95, with a frequency content at St = 0.004, Figure
5.24.
Other couples are also associated to the low frequency dynamics of the compression
and expansion waves originating from the trailing edge and are analogous to the
temperature topo-modes.
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FIGURE 5.23: Third POD mode of the pressure fluctuation field p′;
baseline case.

FIGURE 5.24: Fifth POD mode of the pressure fluctuation field p′;
baseline case.

Looking now at the POD of the forced case, two additional modes have been found
at the dominant tone St1 = 0.00733, which were not present in the baseline case.
The first couple is still associated with the shedding mode, but the couple 3 − 4 ex-
hibits now a topo-mode at the inlet forcing frequency f1, associated to the shock
movement. The temporal trend can be clearly visualized from the time history of
the associated temporal coefficient in Figure 5.25. The chrono-mode is clearly char-
acterized only by the forcing frequency f1, underlining a strong correlation between
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FIGURE 5.25: Third POD mode of the pressure fluctuation field p′;
forced case.

the topo-mode and the presence of the forcing. From the modeshape, it is also pos-
sible to see the spatial area for which the pressure perturbations are dominant: this
area corresponds to Region 2 highlighted in 5.11b, for which the shock movement is
completely characterized at 1000[Hz].
Finally, the energy content of the POD for the forced case is shown in Figure 5.26.
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FIGURE 5.26: Energy percent retaining the first r modes (A), and en-
ergy associated to each mode (B). Pressure fluctuation field p′; forced

case.

Now, the first 6 modes contain 38% of the total energy as compared to the 30% of the
baseline case, with the couple 3− 4 retaining 12% of it, which was not present in the
baseline simulation.

5.1.5 POD, Velocity Magnitude Field

Finally, the last POD has been conducted for the velocity magnitude field.
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FIGURE 5.27: Energy percent retaining the first r modes (A), and en-
ergy associated to each mode (B). Velocity magnitude fluctuation field

U ′mag; baseline case.

The baseline case shows a dominant couple of modes associated to the shedding fre-
quency at St = 0.176, Figure 5.28.

FIGURE 5.28: First POD mode of the velocity magnitude fluctuation
field U ′mag; baseline case.

The first two modes contain 22% of the total energy as it can be seen from Figure
5.27.
The other couple of modes have an energy content below 2%. The couple 3−4 shows
a wide range low frequency dynamic mode interesting both the shock movement
mechanism and the wake region; some frequency content is also present around the
shedding tone St = 0.176. The corresponding topo- and chrono-modes are visual-
ized in Figure 5.29.
Regarding the forced case, instead, the situation is similar to the pressure fluctuation
analysis, with two modes appearing in position 3 and 4, related to the inlet forcing
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FIGURE 5.29: Third POD mode of the velocity magnitude fluctuation
field U ′mag; baseline case.

frequency f1. This couple contains 10% of the total energy, with the shedding asso-
ciated modes still retaining 22% of the energy, Figure 5.31.
Finally, the modeshapes associated to the dominant tone f1 → St1 = 0.00733 are
shown in Figure 5.30.

FIGURE 5.30: Third POD mode of the velocity magnitude fluctuation
field U ′mag; forced case.

Analogously to the FFT of the forced case in Figure 5.5b, it is possible to observe the
presence of distorted "jet/streaks"-like structures convected through the passage and
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the presence of the shocks.
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FIGURE 5.31: Energy percent retaining the first r modes (A), and en-
ergy associated to each mode (B). Velocity magnitude fluctuation field

U ′mag; forced case.

5.1.6 Inlet Temperature Effects

In the present work, a parametric study has been conducted in terms of the reference
inlet temperature, in order to evaluate the generation of additional acoustic power.
Moreover, the simulation setup will move towards higher inlet temperatures, simu-
lating more realistic scenarios than the one with T1 = 303.15[K].
Again the numerical setup is analogous to the one of the forced case, with the inlet
static and total temperatures changing accordingly to the desired case to simulate.
In addition, the specif heat ratio γ and the specific heat at constant pressure cp will
always be kept constant during the simulation, but with their values based on the
selected inlet static temperatures.
The other two analyses have been performed, respectively, with the inlet tempera-
tures being equal to T1 = 600[K] and T1 = 900[K].
In all simulated cases, the Mach numbers M1 and M2is always keep their value of
0.15 and 0.95 respectively. The definition of the Strouhal number will change ac-
cordingly to the selected case, since sonic conditions are now based on different
total temperatures and hence different velocity scales derived from 0.95M2is. In this
manner it is also possible to evaluate the effects of different wavelengths of the in-
coming entropy waves: keeping the inlet forcing frequency (f1 = 1000[Hz]) and
the lenghtscale d constant, the Strouhal number associated to the incoming distur-
bances decreases since the velocity scale increases for higher inlet temperatures. The
Strouhal number associated to f1, for the three cases, is St1 = 0.00733, St1 = 0.00524
and St1 = 0.00431 respectively.
The present parametric study will, therefore, be able to assess the different acoustic
production mechanism as function of the ratio λs/Cax,mid.
The same FFT and POD techniques will be applied to the resulting fields, and their
results will be compared. Adequate sampling frequencies are used, for higher tem-
peratures, in order to avoid aliasing.
Finally, the results obtained from the parametric study will be also used for compar-
isons with the analytical model, in section 5.2.
Figure 5.32 shows the static temperature ratio T/T1 for the three forced simulations.
At the inlet of the computational domain, the vertical stripes highlight the different
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(A)

(B)

(C)

FIGURE 5.32: Instantaneous static temperature ratio T/T1; forced in-
let temperature T1 = 303.15[K] (A), T1 = 600[K] (B) and T1 = 900[K].
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wavelengths of the entropy waves, given by the dispersion relation λs = M1c1/f1.
Since the inlet Mach number is equal to M1 = 0.15 for all cases, the local inlet
speed of sound c1 changes accordingly to its definition c1 =

√
γRT1. The wave-

lengths normalized by the axial chord Cax,mid are then λs/Cax,mid|300[K] = 0.76,
λs/Cax,mid|600[K] = 1.11 and λs/Cax,mid|900[K] = 1.36. It is also possible to observe
that these waves tends to return to their planar organization downstream of the
vane, in all cases. The flow features are similar to the ones described in subsection
5.1.1, with the hottest spots of the entropy waves traveling more and more down-
stream as the wavelength λs increases. In fact, it is distinctly possible to notice hot
spots of air convected after the sonic line in Figure 5.32c. This aspect is less evident
for the other two inlet temperatures. The wake region seems also to be thicker for
higher inlet temperatures. The shedding frequency increases from fs = 33.6[KHz]
to fs = 37[KHz], for T1 = 600[K] and T1 = 900[K] respectively. The associated
Strhouhal numbers are Sts = 0.173 and Sts = 0.16.
The FFT of the two dimensional snapshots, at the inlet forcing frequency f1 is now
compared for the temperature and pressure fields.

(A) (B)

(C)

FIGURE 5.33: Amplitude (left) and phase (right) of the FFT of the
temperature fluctuation field at f1; forced inlet temperature T1 =

303.15[K] (A), T1 = 600[K] (B) and T1 = 900[K] (C).

Starting from the temperature field, Figure 5.33, the features of the amplitude are
similar for all three cases, with an increasing wake region as mentioned above. For
all the forced cases, the maximum amplitude magnitude divided by its respective
inlet temperature is 4.8% since the maximum temperature is registered at the inlet,



88 Chapter 5. Indirect Combustion Noise

where the forcing is imposed. The phase field identifies, instead, the incoming wave-
fronts which are then distorted and finally propagated downstream.

(A) (B)

(C)

FIGURE 5.34: Amplitude (left) and phase (right) of the FFT of
the pressure fluctuation field at f1; forced inlet temperature T1 =

303.15[K] (A), T1 = 600[K] (B) and T1 = 900[K] (C).

Looking then at the amplitude field of p′, it is directly possible to notice the glow-
ing white area of high amplitudes towards the end of the blade (suction side). This
zone corresponds again to the moving system of compression (weak shocks) and
expansion waves. The case at T1 = 900[K] presents an outburst of the pressure field
amplitude in such a zone, as it can be visualized from Figure 5.34c. The interaction
of the entropy waves with the acoustic field created at f1, becomes more and more
important as the inlet static temperature increases, and hence the wavelength of the
entropy waves is increased.
Moreover, the SPL in the converging portion of the vane and upstream of the blade
increases as well, in accordance with the aforementioned trend. This suggest that
also the entropy-to-acoustic conversion mechanism is enhanced, and the amplitude
of the upstream propagating acoustic wave becomes greater and greater.
Then, it is possible to notice, in all cases, that the convergent part of the vane is de-
coupled from the discharge section.
Moving now the analysis to the POD of temperature and pressure field, several anal-
ogous considerations can be made.
For the temperature fluctuations, almost all the energy is contained in the first cou-
ple of modes 1− 2. This is true for all inlet temperatures. In Figure 5.35 it is possible
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(A) (B) (C)

FIGURE 5.35: First POD topo-mode, temperature fluctuation field;
forced inlet temperature T1 = 303.15[K] (A), T1 = 600[K] (B) and

T1 = 900[K] (C).

to visualize the modeshapes for all inlet temperatures; the chrono-mode is not pre-
sented since it is only a pure sinusoidal function ad 1000[Hz]. The modeshapes are
very similar to each other, with incoming waves of larger wavelength and a thicker
wake region as the inlet temperature increases.
For the pressure fluctuations, instead, the POD is more complex and less straight for-
ward to interpret, since some topo-modes associated to the frequency f1 appear also
mixed to other frequencies. For the intermediate wavelength ratio λs/Cax,mid = 1.11,
the first four modes are always associated with the shedding phenomenon and with
the presence of coherent structures at the forcing frequency f1. They contain 24% of
the total energy but the modes are not always associated to a single frequency. This
aspect can be seen in Figure 5.36.
In Figure 5.36b there is some low frequency content spread over a wider range of fre-
quencies than Figure 5.36a, which only exhibits a dominant tone at St1 = 0.00524. In
addition, there is also a noticeable peak at the shedding frequency in the spectrum
of the chrono-mode. The shedding features are clearly visible in the topo-mode as
well. The energy content per mode is similar to the one in Figure 5.26.
For the largest wavelength λs/Cax,mid = 1.36, instead, the association of a sin-
gle topo-mode to multiple temporal frequencies becomes even stronger than the
previous case. There are, again, two modes which are prevalently linked to the
shedding frequency Sts = 0.16, but they exhibit a noticeable tone at the frequency
St1 = 0.00431. These modes can be visualized in Figure 5.37.
The same situation happens for the topo-modes mainly associated to the frequency
St1 = 0.00431, as it can be seen from Figure 5.38.
The mode in Figure 5.38a shows a clear peak at Sts = 0.16, in addition to the one at
St1 = 0.00431. The enrgy content associated to the first four mode is around 55%,
with the topo-modes associated to f1 retaining 25%of it. All the remaining modes
exhibit an energy content per mode below 2%.
From the previous analyses is then possible to draw important conclusions on the
effect of the inlet reference temperature. First, it has an immediate effect on chang-
ing the wavelength of the incoming disturbances λs, as stated in the beginning of
the present subsection. It also seems to modify the wake width downstream of the
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(A)

(B)

FIGURE 5.36: POD topo-modes of the pressure fluctuation field asso-
ciated to f1, (A) and (B); forced inlet temperature T1 = 600[K].

blade, making it thicker as the inlet temperature increases. The shedding frequency
is almost constant between the lower and the intermediate wavelengths, with the
Strouhal numbers being equal to Sts = 0.176 and Sts = 0.173 respectively. The
shedding frequency decreases instead at St = 0.16 for the largest wavelength. From
the FFT of the temperature fluctuation field it is possible to see that the amplitude of
the entropy waves is reduced, while they try to keep their planar character, even if
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(A)

(B)

FIGURE 5.37: POD topo-modes of the pressure fluctuation field asso-
ciated to the vortex shedding, (A) and (B); forced inlet temperature

T1 = 900[K].

they are strongly distorted across the NGV passage.
The FFT of the pressure fluctuation field, on the other hand, shows that the am-
plitude of the reflected acoustic waves (in terms of SPL) augments for increasing
wavelengths, with the entropy-to-acoustic conversion enhanced across the vane.
Moreover, it is also possible to observe that the amplitude of the downstream trans-
mitted wave increases as well. With a particular zone of interest on the suction side
of the blade, towards its end. This feature is present for all forced simulations, with
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(A)

(B)

FIGURE 5.38: POD topo-modes of the pressure fluctuation field asso-
ciated to f1, (A) and (B); forced inlet temperature T1 = 900[K].

an outbursting region of very high amplitudes (≥ 160[dB]) for the highest tempera-
ture (largest wavelength of the incoming disturbances).
From the POD of the temperature field, all the temporal signals of the chrono-modes
associated to the inlet forcing frequency show a purely sinusoidal trend similar to
the one of Figure 5.19. The associated topo-modes show very similar resemblances
to their respective instantaneous fields of Figure 5.32.
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The POD algorithm for the pressure fluctuation field, on the other end, is not iden-
tifying coherent structures at a single temporal frequency as the inlet temperature
increases. In fact, single topo-modes are linked, in their frequency content, to both
vortex shedding and coherent structures arising at f1. The importance of the modes
related to f1, anyway, is enhanced for larger wavelengths: they can represent up to
25% of the total energy of the field p′ by themselves (as in the case for the largest
wavelength λs). In all simulations, similar POD topo- and chrono- modes appear
when a fluctuating temperature is imposed at the inlet. The presence of such struc-
tures in the baseline case is not evident.
It can be concluded that additional acoustic power is created in all cases, where the
inlet temperature field is forced at 1000[Hz]. The forcing is also able to excite the
low frequency dynamics associated to the movement of compression and expansion
waves emitted from the trailing edge.

5.2 Comparisons with the Analytical Model

In this section, the analytical model proposed by Cumpsty and Marble [18] will be
described analytically. Its results will also be compared with the data collected from
the simulations. The effect of the different wavelengths is also discussed, looking
at how results are benchmarked with the model, as the wavelength of the entropy
waves is increased.

5.2.1 Actuator Disk Model

This method was first introduced in 1977 by Cumpsty and Marble [18]; it is also pos-
sible to find an accurate analytical description in the work of Leyko et al. [19], related
to the indirect combustion noise generated by planar entropy waves, in a subsonic
stator blade-row.
The model is based on the compact assumption, i.e. the wavelength of the distur-
bances λs is much larger than the reference axial chord (in the present case Cax,mid).
The full entropy perturbation can be written in a non dimensional form as described
in equation (5.1), which for small amplitude perturbations becomes

s′

cp
=
T ′

T
− γ − 1

γ

p′

p
. (5.18)

In the case of an inlet boundary purely forced in temperature the expression reduces
to

s′

cp
=
T ′

T
(5.19)

The original model is extended to a series of stator-rotor blade rows, the present
work will only deal with a single stator NGV passage.
The hypotheses of the model are summarized as follows:

• Compact assumption, λs � Cax,mid.

• Low blade pitch-chord ratio, the blade details can be neglected and only the
inlet and outlet flow Mach numbers and directions need to be considered.

• Subsonic axial flow.

• Radial variations are neglected, the flow is treated as two-dimensional in the
axial-tangential plane.
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• The acoustic power is calculated neglecting any discontinuity downstream of
the turbine.

• Pressure waves are propagated from the row upstream and downstream when
entropy waves interact with the turbine stage; vorticity waves, instead, are
only propagated downstream.

Each flow-state, upstream and downstream, is steady, with a uniform state charac-
terized by the flow velocity w of components (U, V ), the direction θ, the uniform
pressure p and the density ρ.
Assuming small perturbations, balance equations can be written on each side of the
blade row. Then, the outgoing waves can be evaluated as functions of the incoming
ones and of the main flow parameters. The waves are characterized by the wave
vector k and by the wave angle ν. For a generic wave of the present model, the
wavenumber k is expressed as k = [kx, ky]

T ; with kx = ||k|| cos ν and ky = ||k|| sin ν.
The velocity perturbation variables u′ and v′ can be related to the fluctuating direc-
tion θ′ by the velocity triangles as

u′

U
=
w′

W
− θ′ tan θ,

v′

V
=
w′

W
+

θ′

tan θ
. (5.20)

A generic configuration can be visualized as example in Figure 5.39.

FIGURE 5.39: Schematic description of the analytical approach. w is
the velocity vector and k is the wave vector. Figure from [19].

The disturbance to the uniform state consist in the vorticity wave ξ′ = ∂v′/∂x −
∂u′/∂y, the entropy wave s′/cp and the acoustic waves p′±/γp. Each perturbation
satisfies the linearized continuity and momentum equation:

D

Dt

(ρ′
ρ

)
+
∂u′

∂x
+
∂v′

∂y
= 0, (5.21)

D

Dt
(u′) = −1

ρ

∂p′

∂x
, (5.22)

D

Dt
(v′) = −1

ρ

∂p′

∂y
. (5.23)

They also satisfy the entropy conservation

D

Dt

( s′
cp

)
=

D

Dt

( p′
γp
− ρ′

ρ

)
= 0. (5.24)
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In which the operator D/Dt = ∂t + U∂x + V ∂y, U = W cos θ and V = W sin θ.
A generic entropy wave whose normal has an angle νs with respect to the x-axis,
with wave number ks and frequency f , can be written as

s′

cp
= As exp[i(2πft− ks · x)]. (5.25)

This wave satisfy the entropy conservation (5.24) if the following dispersion relation
holds:

c||ks||
2πf

M cos(νs − θ)− 1 = 0, (5.26)

being the Mach number M calculated as M = W/c.
The entropy wave is not associated to any velocity field w′s = 0 and no pressure field
p′s = 0 (while it might be coupled to an acoustic field p′±).
The vorticity wave, on the other hand, can be derived directly from (5.22,5.23), not-
ing that Dξ′/Dt = 0. It can be written as

ξ′ = Aξ exp[i(2πft− kξ · x)], (5.27)

with the dispersion relation given by

c||kξ||
2πf

M cos(νξ − θ)− 1 = 0. (5.28)

Since vorticity waves can be treated as divergence-free [18, 19], and they are not
associated to any pressure field p′ξ = 0, the resulting velocity field might be written
as

u′ξ
c

= −i
ξ′

c||kξ||
sin νξ (5.29)

v′ξ
c

= i
ξ′

c||kξ||
cos νξ. (5.30)

Expressing now the velocity components u′ξ and v′ξ in the more convenient form of
the flow variables of interest w′ξ and θ′ξ, it results

θ′ξ = (−u′ξ sin θ + v′ξ cos θ)/w, (5.31)

w′ξ = u′ξ cos θ + v′ξ sin θ. (5.32)

The last pressure perturbation is defined, analogously to the previous ones, as

p′

γp
= A± exp[i(2πf − k± · x)]. (5.33)

Since entropy and vorticity disturbances are described by independent solutions,
acoustic waves generate an irrotational and isentropic acoustic field. The equation
satisfied by the acoustic pressure field can be determined from equations (5.21 - 5.24).
It results ( D

Dt

)2( p′
γp

)
− c2

( ∂2

∂x2
+

∂2

∂y2

)( p′
γp

)
= 0. (5.34)
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The previous expression leads to the dispersion relation, for the acoustic wave, ver-
ified by (

1− c||k±||
2πf

M cos(ν± − θ)
)2
−
(c||k±||

2πf

)2
= 0. (5.35)

From now on, in order to avoid a long mathematical expression, a non dimensional
wavenumber K will be defined as K = c||k||/2πf .
In the present analytical model, the wavenumbers ky,± are real since the domain is
periodic in the azimuthal direction. The wavenumbers kx,± can instead be complex
and their non-dimensional counterparts read

Kx,± =
−M cos θ(1−Ky,±M sin θ)

1−M2 cos2 θ
±
((1−Ky,±M sin θ)2 − (1−M2 cos2 θ)K2

y,±
(1−M cos2 θ)2

)
.

(5.36)
The acoustic waves w′±/c and θ′± can now be related to the acoustic perturbation
p′±/γp by expressing u′± and v′± from the momentum equations (5.22), (5.23) and by
noticing that ρ′/ρ = p′/γp (when considering acoustics only). They read respectively

w′±
c

=
K± cos(ν±−θ)

1−K±M cos(ν± − θ)
p′±
γp
, (5.37)

θ′± =
K± sin(ν± − θ)

M(1−K±M cos(ν± − θ))
. (5.38)

In the end, the contribution of all waves (entropy s, vorticity ξ and acoustic ±) can
be collected together into a transformation matrix linking the primitive variables to
these waves: 

s′/cp
w′/c
p′/γp
θ′

 = Tp
w


ws

wξ

w+

w−

 (5.39)

where

Tp
w =


1 0 0 0

0 −i
sin(νξ−θ)

Kξ

K+ cos(ν+−θ)
1−MK+ cos(ν+−θ)

K− cos(ν−−θ)
1−MK− cos(ν−−θ)

0 0 1 1

0 i
cos(νξ−θ)
MKξ

K+ sin(ν+−θ)
M [1−MK+ cos(ν+−θ)]

K− sin(ν−−θ)
M [1−MK− cos(ν−−θ)]

 , (5.40)

represents the transformation matrix from the fluctuations to the waves.
As a further step, due to the compact assumption, matching conditions between the
flow-fields upstream and downstream the cascade can be imposed. Three of the
four conditions are given by conservation of entropy, continuity of mass-flow and
conservation of total enthalpy. The last condition depends on the blade outlet Mach
number. For subsonic flow a condition on the gas discharge angle with respect to the
blade row is imposed, while for a supersonic discharge flow, a chocking condition,
at the throat, is used instead.
The matching conditions will be conveniently presented in terms of the dimension-
less primitive variables, with the subscript 1 and 2 indicating the states upstream
and downstream the blade respectively.
Then, the entropy conservation is simply

s′

cp

∣∣∣
1

=
s′

cp

∣∣∣
2
. (5.41)
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The equality of mass-flow entering and leaving the blade row requires instead[ρ′
ρ

+
w′

c
− θ′ tan θ

]
1

=
[ρ′
ρ

+
w′

W
− θ′ tan θ

]
2
. (5.42)

The density perturbation in (5.42) might be substituted in favor of pressure and en-
tropy changes using

s′

cp
=

p′

γp
− ρ′

ρ
. (5.43)

Then, eliminating the entropy perturbations thanks to equation (5.41), the mass con-
servation becomes[ p′

γp
+

1

M

w′

W
− θ′ tan θ

]
1

=
[ p′
γp

+
1

M

w′

W
− θ′ tan θ

]
2
. (5.44)

The conservation of total enthalpy implies that the quantity cpT + 1/2W 2 is equal at
the inlet and at the outlet of the cascade. This relation is expressed as[ 1

1 + 1
2(γ − 1)M2

(T ′
T

+ (γ − 1)M
w′

c

)]
1

=
[ 1

1 + 1
2(γ − 1)M2

(T ′
T

+ (γ − 1)M
w′

c

)]
2
.

(5.45)
The temperature perturbations may be rewritten in terms of the entropy and acoustic
ones as

T ′

T
=

(γ − 1)

γ

p′

p
+
s′

cp
. (5.46)

The equation (5.45) hence yields

[ 1

1 + 1
2(γ − 1)M2

( p′
γp

+
s′

(γ − 1)cp
+M

w′

c

)]
1

=[ 1

1 + 1
2(γ − 1)M2

( p′
γp

+
s′

(γ − 1)cp
+M

w′

c

)]
2
. (5.47)

The final matching condition is chosen depending upon whether the discharge flow
of the considered turbine stator is subsonic or supersonic. When the discharge flow
is subsonic, the natural Kutta condition prescribed by Cumpsty and Marble [18] is
specified as

θ′2 = 0, (5.48)

or more generally
θ′2 = αθ′1, (5.49)

in which α is a real constant determined experimentally. Contrariwise, if the dis-
charge flow is supersonic, there exist a sonic throat within each vane, which behaves
like a quasi-steady chocked nozzle. The critical mass-flow per unit area is deter-
mined entirely by the approaching flow [18] and is proportional to

ṁcr ∝
[
pT−1/2

(
1 +

1

2
(γ − 1)M2

) γ+1
2(γ−1)

]
1
. (5.50)

The variation in mass-flow rate m′/m|1 is given by

[p′
p
− 1

2

(1 + 1
2(γ + 1)M2

1 + 1
2(γ − 1)M2

)T ′
T

+
1
2(γ + 1)M2

1 + 1
2(γ − 1)M2

w′

c

]
1
, (5.51)
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and it must be equal to the left hand side of equation (5.42). Equating the two ex-
pressions, the final matching condition, after some manipulations and reductions
[18], is [γ − 1

2

p′

γp
+

1

2

s′

cp
− 1

M

w′

c
+

1 + 1
2(γ − 1)M2

1−M2
θ′ tan θ

]
1

= 0. (5.52)

For the present study the fourth matching condition will be the one corresponding
to the presence of a sonic throat across the NGV passage. The supersonic discharge
Mach number is chosen to be equal to M2 = 1.05 (just above sonic conditions) in
order to apply the analytical model with supersonic discharge.
The set of equations (5.41), (5.44), (5.47) and (5.52) form a complete description for a
generic stator blade row.
These matching conditions can be rewritten in a matrix form that relates the fluctu-
ating primitive variables at the inlet and at the outlet of the blade row:

M1


s′/cp
w′/c
p′/γp
θ′


1

= M2


s′/cp
w′/c
p′/γp
θ′


2

, (5.53)

with

M1 =


1 0 0 0
−1 1/M1 1 − tan θ1

η1/(γ − 1) M1η1 η1 0
1/2 −1/M1 (γ − 1)/2 tan θ1/[η1(1−M2

1 )]

 , (5.54)

and

M2 =


1 0 0 0
−1 1/M2 1 − tan θ2

η2/(γ − 1) M2η2 η2 0
0 0 0 0

 , (5.55)

where η = (1 + (γ − 1)M2/2)−1. The matrix M2 contains zeros in the last row,
constituting a singularity and restricting the way in which they could be handled.
The final problem in terms of the upstream and downstream waves can be then
expressed as

M1Tp
w1


ws

wξ

w+

w−


1

= M2Tp
w2


ws

wξ

w+

w−


2

. (5.56)

The solution requires that the output variables are expressed in terms of the four in-
puts. The upstream vector contains three inputs w+

1 , wξ1 and ws1, while the reflected
acoustic wave w−1 is an output. Diametrically, the downstream vector contains the
outputs w+

2 , wξ2 and ws2, and the input w−2 .
However, the terms on the respective matrices Mi,T

p
wi can be rearranged such that

the vector of inputs and outputs are respectively on the correct side of the formula-
tion: 

(ws)2

(wξ)2

(w+)2

(w−)1

 = Aout
−1Ain


(ws)1

(wξ)1

(w+)1

(w−)2

 (5.57)
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Normally, the matrix Aout will not be singular.
The general expression of the output waves, in the most general case, is rather cum-
bersome. In subsection 5.2.2, however, the simplified case of incoming planar en-
tropy waves will be threated. That is ky = 0 and the only present disturbance is
ws1 6= 0, while wξ1 = w+

1 = w−2 = 0.

5.2.2 Incoming Planar Entropy Waves

The present work will only deal with forced planar entropy waves, ky = 0. More-
over, only the temperature field is forced at the inlet, hence the other incoming dis-
turbances are set to be equal to zero: i.e. only ws1 6= 0.
Therefore, the relations of subsection 5.2.1, in terms of their respective waves, are
simplified and the acoustic response of the blade row is analytically easy to treat.
Starting from the entropy conservation, equation (5.41) simply becomes

ws|1 = ws|2. (5.58)

Then, from the relation imposing the chocked mass-flow a the throat, it is possible
to derive the coefficient w−1 /w

s
1. From the dispersion relation it results

K+
i =

1

1 +Mi cos θi
(5.59)

K−i = − 1

1−Mi cos θi
. (5.60)

Imposing w+
1 = wξ1 = w−2 = 0, relation (5.52) yields to

γ − 1

2
(w−1 )+

1

2
ws1−

1

M1

[ K−1 cos θ1

1−M1K
−
1 cos θ1

]
w−1 +

tan θ1

η1(1−M2
1 )

[ K−1 (− sin θ1)

M1(1−M1K
−
1 cos θ1)

]
w−1 = 0,

(5.61)
which for the dispersion relations in (5.59, 5.60), simply yields to

w−1
ws1

= −1

2

[γ − 1

2
+

cos θ1

M1
+

sin θ1 tan θ1

η1M1(1−M2
1 )

]−1
. (5.62)

The other relations are analogous to the ones found by Leyko et al. [19] in their work
assessing the indirect combustion noise mechanism for subsonic blade rows. With
the same simplifications as before, the mass conservation simply becomes

w−1

(
1− 1

M1 cos θ1

)
= w+

2

(
1 +

1

M2 cos θ2

)
, (5.63)

which leads to
w+

2

ws1
=

1− 1
M1 cos θ1

1 + 1
M2 cos θ2

w−1
ws1

. (5.64)

Finally, the enthalpy conservation will lead to the expression for the generated vor-
ticity wave wξ2, which is of none interest for the present analysis.
For fixed Mach numbers M1 = 0.15, M2 = 1.05 and specific heat ratio γ = 1.4, the
reflection (5.62) and transmission (5.64) coefficient of the acoustic wave are now plot-
ted as function of the incoming and discharge directions of the flow, i.e. θ1 and θ2.
As it can be seen from Figure 5.40, the reflected wave only depends on the inflow
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angle θ1. The red dot highlights the coefficient for the geometry adopted in the sim-
ulations, i.e. θ1 = 0.
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FIGURE 5.40: Reflected acoustic wave generated by an incoming en-
tropy wave; ( ) analytical model, ( ) actual geometry.

For the transmitted wave, instead, the results depends on both incoming and dis-
charge directions. Figure 5.41 show the results of the analytical model. Again the
red dot refers to the actual geometry of the study, with θ2 = 75.
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FIGURE 5.41: Transmitted acoustic wave generated by an incoming
entropy wave; ( ) analytical model, ( ) actual geometry.

The value of the transmission coefficient is w+
2 /w

s
1 = 0.088, while the reflection one

is w−1 /w
s
1 = 0.073. This results will be compared to the numerical simulation in the

next subsection 5.2.3.

5.2.3 Comparison of the Results

The calculation of the acoustic coefficients was performed on two planes orthogonal
to the x−axis, respectively x/Cax,mid = −1.25 upstream and x/Cax,mid = 1.90 down-
stream of the vane. A schematic representation of those planes can be visualized in
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Figure 5.42. The upstream plane will be referred as plane 1, while the downstream
plane will be labeled as plane 2.

FIGURE 5.42: Azimuthal planes adopted for the evaluation of acous-
tic coefficients; ( ) upstream plane 1, ( ) downstream plane 2.

Flow variables were sampled on the planes of interest by the means of 75 local
probes, with a sampling frequency varying accordingly to the simulated case. The
flow quantities were also averaged in the z−direction. For both cases at T1 = 303.15[K]
and for the intermediate temperature T1 = 600[K], the sampling frequency was set
to f = 500[KHz]. In this way frequencies up to 7.5÷10 the shedding frequency were
captured with great margin. The sampling frequency was doubled to f = 1000[KHz]
for the case with the highest temperature T1 = 900[K].
In order to show the presence of additional generated acoustic power, first the un-
forced and forced case at T1 = 303.15[K] will be compared in terms of sound pres-
sure level and temperature amplitudes at f1 = 1000[Hz].
Starting from the average spectrum (over all probes) of the temperature fluctuation
field on plane 1, from Figure 5.43a it is immediate to identify the peak at St1 =
0.00733 for the forced case. Its amplitude corresponds to 4.8% of the inlet static
temperature. No comparable amplitudes, instead, were found for the baseline case.
In fact it is barely possible to see the dashed line, highlighting the spectrum of the
baseline case in Figure 5.43. On the other hand, for plane 2, it is possible to see from
Figure 5.43b, that the entropy wave is attenuated downstream of the blade, while
the greatest amplitude in the entire spectrum is still registered for St1.
Figure 5.44 shows instead the pitchwise character of these waves on their respec-
tive upstream and downstream planes. The pitchwise location is normalized by the
blade to blade distance H , and goes from the lower periodic boundary y/H = 0 to
the upper periodic boundary y/H = 1.
Again, for the baseline case, no comparable amplitudes are found also in the pitch-
wise distribution. The entropy wave is perfectly planar in the upstream part. This
can be expected since the flow is completely uniform in this region. Instead, the
wave loses its perfectly planar character on the plane downstream of the NGV pas-
sage. Once more, it is possible to see that the amplitude of the entropy waves is
reduced on plane 2.
Looking now at the SPL produced upstream and downstream, several conclusion
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FIGURE 5.43: Average spectrum of the forced temperature wave at
plane 1 (A) and at plane 2 (B), T1 = 303.15[K]; ( ) baseline case, ( )

forced case.
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FIGURE 5.44: Pitchwise distribution at the frequency St1 of the tem-
perature wave amplitude at plane 1 (A) and at plane 2 (B), T1 =

303.15[K]; ( ) baseline case, ( ) forced case.

can be drawn on the additional acoustic power generated at the inlet forcing fre-
quency corresponding to St1.
First, the average spectrum of the SPL upstream and downstream of the blade is
presented in Figure 5.45.
It is possible to see the presence of a tone at St1 on both planes. This time, in contrast
with the temperature field, it is possible to observe the presence of low frequency
contents even for the baseline case.
The pitchwise distribution of the SPL is then shown in Figure 5.46.
In accordance to the results of the temperature field, pressure waves are also planar
upstream of the vane, due to the uniformity of the flow. It is clearly possible to visu-
alize the presence of additional acoustics created upstream, Figure 5.46a. In fact, the
difference in SPL between the baseline and the forced case is ≥ 20[dB]. Additional
acoustic power is also generated downstream of the passage as it can be seen from
Figure 5.46b. However, in this case, the acoustic wave is far from planar, with the
presence of dark zones, which are also visible in the amplitude field of the FFT in
Figure 5.3b. Differences ≥ 15[dB] are also registered for the SPL on plane 2.
The upstream and downstream spectra of the pressure fluctuation field are shown in
Figures 5.47,5.48 for the two temperatures of 600[K] and 900[K] respectively. Again,
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FIGURE 5.45: Average spectrum of the SPL at plane 1 (A) and at plane
2 (B), T1 = 303.15[K]; ( ) baseline case, ( ) forced case.
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FIGURE 5.46: Pitchwise distribution at the frequency St1 of the SPL
at plane 1 (A) and at plane 2 (B), T1 = 303.15[K]; ( ) baseline case,

( ) forced case.

two peaks are present both upstream and downstream of the passage at the respec-
tive frequency identified by St1. Notable amplitudes at the low frequency range are
still present for both temperatures, even for the baseline case.
At this point, after having shown the presence of an effective additional generated
acoustic field, the analytical model will be compared with the results of numerical
simulations. In this analysis the specific heat ratio γ will be changed accordingly
to the simulated case. For the coefficients of the analytical model, the parameter γ
as a minor influence on the results, therefore only one value will be reported. The
expression used for the entropy and the acoustic waves are the ones used in equa-
tions (5.18,5.33). The amplitude of these coefficient was averaged over the plane of
interest in order to get a single coefficient at a specific frequency.
The final results are compared in table 5.2. Some considerations can be made in
terms of the amplitude of these coefficients and in relation to their trend with in-
creasing wavelengths of the incoming disturbances.
The value of the transmitted entropy wave ws2/w

s
1 is less then unity for all simulated

cases, but it increases as the wavelength λs increases. Two might be the reasons for
that behavior: first the compact assumption might not hold for the present cases and
therefore the results are not in accordance with the analytical model; second, there
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FIGURE 5.47: Average spectrum of the SPL at plane 1 (A) and at plane
2 (B), T1 = 600[K].
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FIGURE 5.48: Average spectrum of the SPL at plane 1 (A) and at plane
2 (B), T1 = 900[K].

might be, in transonic conditions, sources of losses which do not verify entropy con-
servation across the vane passage.
For the acoustic reflected coefficient w−1 /w

s
1, instead, the value increase monotoni-

cally for higher wavelengths. This aspect suggest that moving towards higher ra-
tios of λs/Cax,mid, the coefficients are in closer agreement with the analytical model,
which is based on the compact assumption.

TABLE 5.2: Acoustic/Entropy wave coefficients

T1 f1 St1 λs/Cax,mid w−1 /w
s
1 w+

2 /w
s
1 ws2/w

s
1

303.15[K] 1000[Hz] 0.00733 0.76 0.011 0.068 0.45
600.00[K] 1000[Hz] 0.00524 1.11 0.032 0.075 0.50
900.00[K] 1000[Hz] 0.00431 1.36 0.047 0.084 0.51
Analytical Model − − →∞ 0.073 0.088 1.00

Finally, for the transmitted acoustic coefficientw+
2 /w

s
1, its value increases again mono-

tonically for higher wavelengths. For the simulated transonic conditions, there might
be flow features which interacts stronger with the system of incoming entropy waves,
as the wavelength λs increase. A good example is the interaction with the system
of compression and expansion waves that are emitted from the trailing edge. In this
case, one can observe that the transmitted acoustic wave associated to the largest
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wavelengths is close to the value predicted by the analytical model. As the λs is fur-
ther increased, it might be possible that this coefficients becomes greater and greater,
underlining additional generated noise in transonic/supersonic conditions. For all
cases, the SPL amplitude field exhibits region of great amplitudes as it can be seen
from Figure 5.34.
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Chapter 6

Conclusions

6.1 Conclusions and Future Work

The indirect combustion noise generation mechanism has been addressed by the
means of 3D LES for a simplified Nozzle Guide Vane passage of a high pressure
turbine. The solver adopted for the simulations was first validated against experi-
mental data available for off-design transonic conditions without temperature forc-
ing. Overall the numerical results are in very good agreement with experimental
data. The larger discrepancies were only found in terms of maximum total pres-
sure losses which might be due to the simplified 2D-extruded geometry adopted,
for which the wake mixing might not be enhanced as in the real case scenario. In
the core part of the work (Chapter 5), a pulsating entropy wave-train was imposed
at the inlet of the domain to simulate temperature non-uniformities coming from
the combustion chamber. The resulting flow-field was analyzed using FFT of two-
dimensional sections sampled during the simulation. At the forcing frequency im-
posed at the inlet, several zones of the fluid domain responds with high amplitudes
of the pressure fluctuations, which are not present in the baseline case. The response
of the NGV passage is stronger as the wavelength λs of the incoming disturbances
is increased. Moreover, this aspect is corroborated by the analysis performed via
the Proper Orthogonal Decomposition method: the baseline case did not show any
particular coherent structure at the inlet forcing frequency f1, St1; while pressure
and temperature fields of the forced cases all showed the presence of high energy
modes at that particular frequency. Moreover, the combination of the POD topo-
and chrono-modes was in accordance with the results found by the sampled shock
line identifying the movement of compression and expansion waves emitted from
the trailing edge. For the pressure fluctuation field, the chrono-modes identified the
characteristic frequency content, while the topo-modes identified the zones with the
highest response of the fluctuation. Several topo-modes, both for the baseline and
the forced case, corresponded to Region 1, 2 and 3 highlighted respectively in Figure
5.10. It is also worth to mention that the POD analysis was not always able to relate
the topo-modes to a single temporal frequency.
An interesting feature was also observed regarding the system of shocks emitted
from the trailing edge: three regions of interest involving the shocks movement were
identified. Region 1 corresponded to the location x/Cax,mid ≈ 0.96 where the position
of the shock changes slowly during time; the region has fairly similar characteristics
for both the baseline and the forced case. It is the zone characterized by the lowest
frequency content. Region 2, instead, corresponds to the region for which the am-
plitude of the pressure fluctuations is the highest. For the forced case, black stripes
at regular intervals of time are visible in Region 2 in the detail of Figure 5.11b. The
frequency of these intervals is evaluated by the means of a FFT at a fixed position
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in space: it corresponds exactly to the inlet forcing frequency f1 = 1000[Hz]. Re-
markably, this characteristic does not appear for the baseline case and the shock
movement is not organized at any particular frequency of interest. Region 3 corre-
sponds to the initial part of the wake, towards the trailing edge at x/Cax,mid ≈ 1.03,
where compression and expansion waves are emitted by turbulent structures and
appear with higher frequencies compared to the two other regions. These aspects of
the shock dynamics in Region 2 justify the high amplitude found by the FFT of the
pressure fluctuation field at 1000[Hz]. The shock movement mechanism was also ex-
perienced and commented in literature by other authors, e.g. by the work of Panda
[56] and by the work of Risborg & Soria [57].
Finally, reflection and transmission coefficients were compared to analytical mod-
els available in literature [18]. The 3D simulations show that the entropy waves are
highly distorted by the passage and lose their strength. This can be addressed from
the entropy wave transmission coefficient which is reduced significantly for all the
wavelengths of the incoming disturbances. The hypothesis of entropy conservation
assumed by the analytical model might not hold in the case of transonic/supersonic
conditions and with short incoming entropy waves. The reflected acoustic wave,
instead, is weaker than the one predicted by the compact theory for all simulations.
However, the reflected acoustic coefficient increases towards the analytical one as
λs increases. This might be also due to the decoupled dynamics of the convergent
part of the NGV from the discharge section: in fact the throat is sonic and down-
stream generated noise cannot propagate backwards. Finally, the transmitted acous-
tic wave is in fairly good agreement with the analytical model, and the transmission
coefficient assumes also larger values for the higher wavelengths λs, suggesting the
presence of flow features, in transonic conditions, which might generate additional
noise. An example is the dynamics of the compression/expansion waves emitted
from the trailing edge, which interacts with the incoming entropy waves.
The transmitted acoustic wave is the main contributor to the generated indirect com-
bustion noise.
Regarding the possible continuations of the work, a complete characterization of
indirect combustion noise of a complete HPT stage (stator plus rotor) remains an
important aspect. This type of analysis might include also the simulation of the com-
bustion chamber coupled to the turbine stage. In alternative to the complete com-
bustion chamber, a frequency spectrum extracted from the latter might be imposed
together with the presence of free-stream turbulence, with larger wavelengths, such
that λ/Cax,mid ∼ 10. This type of simulation will constitute a simulation scenario
very close to the real case.
Last, further investigation on the entropy to acoustic conversion mechanism in tran-
sonic/supersonic condition will also suggest major insights for indirect combustion
noise generation.
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Appendix A

Scalability Performances of
foam-extend

In order to decide the optimal number of cores to use for the simulations, a scalabil-
ity test has been performed with the solver dbnsTurbFoam. This study allowed the
selection of the index identifying the lowest number of cells per core for which the
code was still halving the solving time, while doubling the number of cores.
The analysis was performed on a test-case based on a 3D RANS simulation with the
same settings of the baseline case (section 4.2).
The simulations were conducted on a reduced mesh size, with only 32 layers in
the z−direction. The total number of elements was, then, equal to 739500 × 32 =
23664000. The simulated cases of the scalability test run for a total of 10000 itera-
tions, in order to consider negligible the time required for the case initialization. One
iterations consist in the complete solution of one physical time-step of ∆t = 1e−9[s],
according to the solution algorithm described in subsection 3.3.6. Two main per-
formance indices were assessed: first, the proportionality of the computational time
per iteration required for the simulation with respect to the number of cores adopted;
second, the efficiency of the code, measured in seconds per iteration divided by cells
per core. Six simulations were performed with the only difference being the number
of cores utilized. They were ncores = [32, 64, 128, 256, 512, 1024].
The main results are summarized in Figure (A.1).
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FIGURE A.1: Scalability performances: time per iteration (A), ( ) ref-
erence line n−1cores, ( ) CPU time ; efficiency (B).

As it can be seen from Figure (A.1a), the reference line n−1
cores shows that the time per

iteration scales exactly as titer ∝ n−1
cores.

While for the performance of the code, the index seconds per iteration divided by
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cells per core keeps diminishing as the utilized number of cores increases. Anyway,
it might be noticed that the curve starts to flatten out, evidencing that the efficiency
of the solver is in the neighborhood of optimal conditions using 1024 cores. The
maximum efficiency among the tested cases is reached for roughly 20000 cells per
core.
After these considerations, the choice of the number of cores was also based on the
availability of computational resources. The LES simulations of 53244000 cells were,
therefore, chosen to run on 1600 cores, with a number of cells per core around 35000.
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Appendix B

Grid Sensitivity Study

A grid sensitivity study has been conducted for the LES simulations of the baseline
case. The aim of the analysis is to evaluate the convergence of the results towards the
experimental data, as the grid is refined. The mesh size has been reduced to roughly
30 million cells for the intermediate mesh and to 15 million cells for the coarse one.
The distance of the first layer height, as well as the discretization in the wall normal
direction, has been left unchanged around the airfoil. The mesh was reduced by
doubling the ∆x+ size and increasing the spacing and the number of layers in the
z−direction. The ∆z was augmented to 0.000125[m] and 0.00015[m], leading to 60
layers and 50 layers in the spanwise direction, respectively for the medium and the
coarse mesh. The results are compared in terms of the NGV loading, circumferential
pressure distribution and total pressure losses in the wake.
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FIGURE B.1: NGV blade loading (A) and circumferential pressure
distribution (B); (•) experimental data; ( ) fine mesh; ( ) medium

mesh; ( ) coarse mesh.

Figure (B.1) shows the NGV loading and the circumferential pressure distribution
at a location x/Cax,hub = 0.4 downstream of the vane. The type of graph is similar
to the one of Figure (4.16), but now the comparison is among LES simulations of
different mesh sizes. It can be noticed that the NGV loading is the same for all three
types of mesh, while minimal difference are seen in the circumferential pressure dis-
tribution for the coarse mesh of Figure (B.1b).
A similar plot will now be showed in Figure (B.2) in terms of total pressure losses in
the wake.
The figure shows that very small differences between the fine and the medium mesh
are present in the wake losses profile at x/Cax,hub = 0.071 downstream of the blade.
The coarse mesh exhibits, instead, the largest losses in the center of the wake.
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FIGURE B.2: Total pressure ratio at different downstream locations:
7.1%Cax,hub (A) and 48.4%Cax,hub (B) ; (•) experimental data; ( ) fine

mesh; ( ) medium mesh; ( ) coarse mesh.

The greatest difference, however, is in terms of the wake position at x/Cax,hub =
0.484 downstream of the passage. Again, small differences are present between the
medium and the fine mesh, while the coarse mesh is totally off from the experimen-
tal data.
From this analysis, it can be concluded that the medium and the fine mesh almost
converge to the same solutions, both agreeing fairly well with the experimental data.
The fine mesh is the one adopted in the LES simulations with the entropy waves im-
posed at the inlet.
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