
The EVRP-TW with Heterogeneous
Recharging Stations
An Exact Branch-and-Price Method

By

JACOPO PIEROTTI

Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB
POLITECNICO DI MILANO

A dissertation submitted to the Politecnico di Milano in accordance
with the requirements of the degree of MASTER OF SCIENCE in the
Faculty of Automation and Control Engineering.

OCTOBER 2017

ABSTRACT

E ffective route planning for battery electric commercial vehicle (ECV) fleets has to take
into account their limited autonomy and the possibility of visiting recharging stations
with different technologies during the course of a route. In this thesis, I consider three

variants of the electric vehicle-routing problem with hard time windows: (i) at most a single
recharge per route is allowed, and batteries are fully recharged on visit of a recharging station;
(ii) multiple recharges per route, full recharges only and (iii) at most a single recharge per route,
and partial battery recharges are possible. For each variant, I present exact branch-price-and-cut
algorithms that rely on customized monodirectional forward labeling algorithms for generating
feasible vehicle routes. The main point of the implemented algorithms are the tailored resource
extension functions (REFs) that enable efficient labeling with constant time feasibility checking
and strong dominance rules, even if these REFs are intricate and rather elaborate to derive.

i

ACKNOWLEDGEMENTS

Acknoledgments go to the ETS and the GERAD group for letting me work with them, for
the facilities and for the friendly yet stimulating environment, especially thanks to Prof.
Guy Desaulniers for his guidance.

Many thanks to Prof. Ceselli Alberto for the useful practical advises.
Last but not least, my whole gratitude from the bottom of my heart goes to Professor Fausto
Errico and to Professor Federico Malucelli without whom none of this document would have been
possible.

iii

AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with
the requirements of the University’s regulations for research and that it has
not been submitted for any other academic award. Except where indicated by

specific reference in the text, the work is the candidate’s own work. Work done in
collaboration with, or with the assistance of, others, is indicated as such. Any views
expressed in the dissertation are those of the author.

SIGNED: .. DATE: ..

v

DEDICATION

non al denaro
non all’amore

ne’ al cielo
(F.d.A)

vii

TABLE OF CONTENTS

Page

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Overview . 1

1.2 Literature Review . 2

1.3 General Comment . 4

2 Problem Description and Mathematical Formulation 7
2.1 Network Structure . 7

2.2 Master Problem . 8

2.3 Branch-Price-and-Cut Algorithm . 9

2.3.1 Column Generation . 9

3 Labeling Algorithm 13
3.1 Single Recharge - Full Recharge . 13

3.1.1 Single Recharge - Full Recharge: REFs . 14

3.1.2 Single Recharge - Full Recharge: Label Feasibility 15

3.1.3 Single Recharge - Full Recharge: Dominance Rule 15

3.1.4 Proof that REFs are non-decreasing functions 16

3.1.5 Proof on possible extensions . 17

3.1.6 conclusion . 18

3.2 Single Recharge - Partial Recharge . 18

3.2.1 Formal Model for the SR-PR . 18

3.2.2 Label Definitions . 19

3.2.3 REFs . 19

3.2.4 Label Feasibility . 22

3.3 Dominance Rule . 23

3.3.1 Dominance Rule when Trch
1 = 0 . 23

ix

TABLE OF CONTENTS

3.3.2 Battery&Cost Dominance Rule when Trch
1 = 1 24

3.3.3 Dominance Rule: Conclusion . 33

3.3.4 Dominance Rule: Addendum . 33

4 Acceleration and Branching 35
4.1 Acceleration strategy . 35

4.2 Branching . 36

5 Computational Studies 39
5.1 Benchmark Instances . 39

5.2 Algorithmic Performances . 40

5.2.1 Reduced Instances . 40

5.2.2 Complete Instances . 42

5.3 General Comment . 43

6 Conclusion 45

A Appendix: Direction to Grow 47
A.1 Bloopers . 47

A.2 Future Challenges . 47

B Appendix Python 49

Bibliography 53

x

LIST OF TABLES

TABLE Page

1.1 Literature: Summary . 4

5.1 Test: SRFR - Reduced Instances . 41

5.2 Test: MRFR - Reduced Instances . 41

5.3 Test: SRPR - Reduced Instances . 41

5.4 Test: Comparison - Reduced Instances . 42

5.5 Test: SRFR - Complete Instances . 42

5.6 Test: SRPR - Complete Instances . 43

5.7 Test: Comparison - Complete Instances . 43

xi

LIST OF FIGURES

FIGURE Page

3.1 Curve of a generic Battery level . 25

3.2 Battery curve with no slack time . 26

3.3 Cost curve with no slack time . 27

3.4 Battery curve first subcase . 27

3.5 Battery curve second subcase . 28

3.6 Battery curve third subcase . 29

3.7 Price curve . 30

3.8 Price Battery curve . 32

3.9 Battery Price Comparison . 32

xiii

C
H

A
P

T
E

R

1
INTRODUCTION

The utilization of battery electric commercial vehicles (ECVs) is steadily increasing, e.g., in

the field of small package shipping or the distribution of food, beverages and light goods.

This increase of ECV usage is due mainly to the following advantages:

(i) ECVs produce minimal noise and (almost) zero battery-to-wheel greenhouse gas emissions.

Therefore, they can be employed to meet even the most strict emission targets of delivery

fleets or to serve restricted inner city areas with noise and emission limits. Under certain

country they can also perform by-night delivery thanks to the low-noise pollution.

(ii) ECVs help logistics companies to promote a green image, an important competitive factor

given the increasing number of socially and environmentally aware customers. Moreover,

relative autonomy from fluctuating oil prices can be achieved.

(iii) ECVs become attractive from a cost perspective because of heavy subsidies offered by

several governments around the globe. In addition, governments and private companies

are strongly investing to provide the required recharging infrastructure around the world.

1.1 Overview

Effective route planning of an ECV fleet requires solving vehicle-routing problems (VRPs) that

take into account the limited driving range of ECVs and the possibility of visiting recharging

stations during the course of a route. Several heuristic solution methods for such VRPs have

recently been proposed in the literature. However, to the best of our knowledge, only one exact

solution method (considering heterogeneous recharging stations) has been presented by Ceselli

et al. ((2015)).

1

CHAPTER 1. INTRODUCTION

In this master thesis, we develop three branch-price-and-cut algorithms for as many variants of

the electric VRP with time windows (EVRPTW). The following EVRPTW variants are addressed:

(i) At most a single (S) recharge per route is allowed, and batteries are fully (F) recharged on

visit of a recharging station (EVRPTW-SF).

(ii) multiple (M) recharges per route, full (F) recharges only (EVRPTW-MF).

(iii) At most a single (S) recharge per route, and partial (P) battery recharges are possible

(EVRPTW-SP).

We solved the three EVRPTW variants with branch-price-and-cut algorithms. Branch-price-and-

cut means that an extensive formulation (a set-partitioning model in our case) is linearly relaxed,

the relaxation is solved using column generation and integer solutions are finally enforced

by branching. The solution of the master program, i.e., the linear relaxation of the extensive

formulation, starts with restricting the master to a small subset of variables. The optimization

of this restricted master problem (RMP) provides the necessary dual information needed to

generate missing variables (columns) for the RMP itself. In our problem, as in many extensive

formulations for vehicle routing and crew scheduling problems, the generation of variables uses

a path representation of routes so that the column-generation subproblem is a variant of the

elementary shortest-path problem with resource constraints (ESPPRC). The column-generation

process alternates between RMP reoptimization and solution of the ESPPRC until no more

columns with a negative reduced cost exist.

While the master program for EVRPTW is standard, the three variants give rise to different

ESPPRCs. I think that the contribution of this thesis lies in the concise formulation of the

different ESPPRC variants so that highly effective solution techniques can be applied. An

important aspect is the modeling with as few as possible attributes (resource variables) in such a

way that dominance rules allow the elimination of the majority of the partial paths constructed in

the course of the ESPPRC labeling algorithm. For the variant with partial recharge (SP), there is

an immanent trade-off between the amount recharged and the time spent for recharging: longer

recharging extends the driving range while it may prohibit the timely arrival at a later customer

because of its service time window. Therefore, we require a label that models this trade-off curve.

The proposed methodology provides insights for the design of exact algorithms for more realistic

versions of electric vehicle-routing problems and, more generally, for VRPs that consider time

windows, a limited resource that can be refreshed en route, and in which the refreshing consumes

time that depends on the amount to be refreshed.

1.2 Literature Review

Many others authors tackled similar problem both from a more "mathematical" point of view and

an "economic" one.

2

1.2. LITERATURE REVIEW

The latter is extremely well explained and detailed in Margaritis et al. ((2016)) and Pelletier

et al. ((2014)), which shows us the reasons why a company should invest in green transportation

even though the (apparently) economic inconvenience. The authors also comment on the different

policy of nations addressing this problem, especially in the EU area and, on the other hand, they

also display some market difficulties as companies not willing to take risks due to the high initial

cost of electrical vehicles.

From the more "mathematical" point of view many authors tackled variants related to the electric

VRP. Hiermann et al. ((2016)) proposed a ALNS approach to solve the electric fleet size and

mix vehicle routing problem with time windows and recharging stations, considering only full

recharges. Also Keskin and Çatay ((2016)) proposed an ALNS to solve the electric vehicle routing

problem but they took into account the possibility to partially recharge the vehicles.

Another widely discussed trend is to take into account non-linear recharging functions as Sweda

et al. ((0a)) and Schiffer and Walther ((2017)) did. This of course complicates the model yet it gives

a more detailed description of the real problem. Unfortunately, due to the complicated model,

none of them could find exact method to solve medium-sized instances.

Some authors (Montoya et al.) took in consideration both of the previous aspect (partial as well as

non-linear recharges) trough the use of a modified multi-space sampling heuristic (mMSH); while

other authors as Felipe et al. ((2014)) focused more on allowing partial recharges in instances

with heterogeneous recharging stations.

Roberti and Wen ((2016)) proposed extremely effective heuristic for the TSP with Time Windows

capable of solving 20 costumers instances in about 1
10 of a second, achieving good performances

also in 200 costumers instances, while Gualandi and Malucelli ((2016)) proposed a filtering

algorithm to reduce the graph’s dimension in a resource constrained shortest path problem.

Additionally Gualandi and Malucelli ((2012)) also proposed an exact solution approach to the

constrained shortest path problem with a super additive objective function, which could come

in handy when we will consider non linear recharging functions or the additional cost due to

overcharging.

Contrarily to what Sweda et al. ((0b)) said in their paper "We assume that all charging stations

have identical cost function, which is a reasonable assumption since most public charging stations

in existence today have similar hardware configurations (most recharge at 220 volts, with the

exception of a few fast charging stations that recharge at 440 volts). Furthermore, regional

variations in electricity rates are minimal" we decide to take into account the possibility of

allowing different types of recharges due to the huge difference (in cost but especially in time)

between the traditional electric recharging stations and the so-called "super-charging station".

Other authors took in consideration completely different way of recharging an electrical vehicle,

we would like to bring attention to Goeke et al. ((2015)) that proposed a formulation for the

so called battery swamp problem. The battery swamp is the act of removing a battery, at a

specialized recharging station, to substitute it with a completely charged one. This procedure is

3

CHAPTER 1. INTRODUCTION

interesting because it allows for a short and constant time to recharge, yet it has some drawbacks

as the need to standardize batteries as well as the need to have an easy access to the battery for

removal/inserting operations.

Again, as stated before, only Ceselli et al. ((2015)) proposed an exacted method to solve the

EVRP-TW with Heterogeneous Recharging Stations, yet the results, especially from a time point

of view are not completely satisfying. Finally Desaulniers et al. ((2016)) proposed an effective and

exact branch-and-price algorithm capable of solving big instances in the electric homogeneous

case. To the best of my knowledge these are the only authors proposing exact methods.

Finally, in table (1.1) we present a summary of the main variants treated in the cited papers.

Summary
Author Exact Partial Multiple Non Linear Heterogeneous

Hiermann et al. ((2016)) X X X X X
Keskin and Çatay ((2016)) X X X X X

Sweda et al. ((0b)) X X X X X
Schiffer and Walther ((2017)) X X X X X

Montoya et al. X X X X X
Felipe et al. ((2014)) X X X X X
Ceselli et al. ((2015)) X X X X X

Desaulniers et al. ((2016)) X X X X X

Table 1.1: Literature: Summary

1.3 General Comment

BEV are expected to have much development in the following years, thanks to many advantages

they have with respect to traditional ICE. Almost all authors underline that the companies’

decision to switch from ICE to electric logistic is moved by an anticipation of expected regulations

for less environmentally-friendly vehicles becoming more restrictive in the future rather than for

an economic reason. This may be imprecise if we consider that typically electrical motor requires

much less maintenance than ICE and, despite the high initial cost, in the long run the low (and

stable) cost of electric energy make the electric vehicle cost convenient with respect to the higher

(and less stable) cost of oil. As Savaresi ((2016)) says, buying an electrical vehicle could be though

as buying a discounted traditional vehicle with an enormous virtual tank, it pays off in the long

run but has an high initial cost.

Many authors refers independently to electric or green problem, but it’s worth to say that electric

does not imply "green". For instance Poland electric system is still based on large coal burning

furnace, returning to the atmosphere roughly 80% of how much traditional ICE would pollute

4

1.3. GENERAL COMMENT

during electricity production. This aspect is cited by Pelletier et al. ((2014)) that say "while

electric delivery vehicles can significantly decrease greenhouse gas emissions in areas with clean

electricity generation sources, this environmentally based business case can be harder to make

with more coal intensive production, in which case local pollution is simply replaced by upstream

emissions"

Finally we want to point out that no author takes into account in the objective function the

real cost. Most take into account distance, few time, stating that this quantities are directly

proportional to the cost. This assumption indeed does not hold true in the case of heterogeneous

recharging stations.

5

C
H

A
P

T
E

R

2
PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION

To solve the EVRPTW with Heterogeneous Recharging Stations we use a "path-based formula-

tion" as similar as possible as the one presented in Desaulniers et al. ((2016)).

In particular we exploit the very same structure of the network and formulation of the master

problem, which are:

2.1 Network Structure

Let N be the set of customers that all require deliveries (collection from all customers is identical).

Denote by qi the demand of customer i ∈ N and by [ai,bi] the time window in which service has

to start at this customer. A vehicle can arrive at a customer before the opening of its time window

and wait to start service. We assume an unlimited fleet of identical ECVs with a storage capacity

of Q and a battery capacity of B. At the beginning of the planning horizon, the ECVs are located

in a single depot from which they start fully charged and to which they must return by the end of

the planning horizon.

The vehicles shall start fully charged because it is possible to demonstrate that, given an optimal

solution at these types of problems: or all vehicles start fully charged, or there exists another

solution, with the same cost (thus optimal as well), where vehicles start fully charged. Let R

be a set of recharging stations at which the vehicles can stop en route to recharge their battery,

each recharging station can be equipped with different technologies. We assume that the battery

recharging time is proportional to the amount of energy recharged through a coefficient depending

on the used technology. Traveling from one location i (the depot, a customer or a recharging

station) to another location j incurs a cost ci j , a travel time ti j (that includes service time at i if

i ∈ N), and an energy consumption bi j . We assume that a energy consumption proportional with

7

CHAPTER 2. PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION

the distance is suitable.

In general this assumption is suitable for all types of transportation where the speed/battery

consumption is not depending on the load. as [Maximilian Schiffer and Grit Walther] said "we as-

sume vehicle speed to be constant and neglect differences in altitude ". Also according to Berman

and Gartner (2013) of Navigant, approximately 37,000 BEVs and PHEVs were expected to be

sold for fleet purposes in 2013. Some of these vehicles are used in the delivery of lighter goods.

For example, battery electric cars have been tested in pizza delivery operations in Hamburg

(E-Mobility NSR 2013). Since the load is light there is no significant consumption difference due

to it. Indeed ECVs are more and more common in last-mile delivery distribution, for example in

small packages shipping or in the distribution of food and beverages, and several companies have

started deploying ECVs for their daily operations (see FedEx, 2010; Motavalli, 2010).

Basically this is to say that whenever the load is small with respect to the vehicle weight, we can

neglect the battery consumption’s dependency on the load.

A vehicle route is a sequence of locations that starts and ends at the depot and visits a

nonempty subset of customers and possibly some recharging stations. Its cost is given by the sum

of the travel costs ci j between the pairs of consecutive locations i and j that it visits and the sum

of the costs of the recharges.

A route is feasible if:

(i) it is elementary with respect to the customers (in some policies recharging stations may be

visited more than once)

(ii) the total demand of the visited customers does not exceed the vehicle capacity

(iii) the battery charge level is always non negative along the route

(iv) the customer time windows are respected.

2.2 Master Problem

The EVRPTW consists of finding a set of feasible vehicle routes such that each customer i ∈ N is

visited exactly once by a vehicle and the sum of the route costs is minimized. Let Ω be the set of

feasible routes. For each route p ∈Ω, denote by cp its cost and by api , i ∈ N, a binary parameter

equal to 1 if route p visits customer i and 0 otherwise. With each route p ∈Ω, we associate a

binary variable θp that takes value 1 if the route is part of the solution and 0 otherwise. Using

this notation, the EVRPTW can be formulated as the following integer program:

8

2.3. BRANCH-PRICE-AND-CUT ALGORITHM

min
∑
p∈Ω

cpθp(2.1)

s.t.
∑
p∈Ω

apiθp = 1,∀i ∈ N(2.2)

θp ∈ {0,1},∀p ∈Ω(2.3)

Objective function (2.1) seeks to minimize total routing costs. Set-partitioning constraints

(2.2) ensure that each customer i ∈ N is visited exactly once by a vehicle. Binary requirements

(2.3) restrict the domain of the route variables.

In practice, model (2.1) contains a huge number of variables, namely, one per feasible route in Ω.

This number prohibits using a standard MIP solver or branch-and-bound algorithm for solving it.

That’s why we use a Branch-Price-and-Cut Algorithm, generating only promising routes.

2.3 Branch-Price-and-Cut Algorithm

To solve the set-partitioning model (2.1), we develop a branch-price-and-cut algorithm for each

problem variant. Because the procedure that generates the routes very much depends on the

EVRPTW variant, we will mainly focus on this aspect in chapter (3), while branching is discussed

in section (4.2).

2.3.1 Column Generation

In this section, we focus on the initial linear relaxation of the extensive formulation (2.1), i.e.,

without cuts or branching decisions. Recall that the subproblem aims at generating negative

reduced cost columns (route variables) to be added to the current RMP. If no such columns

exist, the algorithm stops and the computed solution to the current RMP is also optimal for the

complete linear relaxation.

For model (2.1), the column generation subproblem can be defined as follows. Let πi for i ∈ N be

the dual variables associated with constraints (2.2). Let cp, p ∈Ω be the reduced cost of variable

θp with respect to these dual variables, i.e., cp = cp−∑
i∈N apiπi. The subproblem can be stated as:

(2.4) min
p∈Ω

cp

The set of feasible routes in Ω can be implicitly represented in a directed graph G=(V,A) with

vertex set V and arc set A. The vertex set V is given by V = {o,d}∪N ∪R, where o is a source

and d a sink vertex, both associated with the depot. Demand qi and time windows [e i, l i] are

associated with each vertex i ∈ N. For all vertices i ∈ R∪ {o,d}, we define qi = 0 and associate a

nonrestrictive time window (note that our algorithms can easily be adapted to restrictive time

9

CHAPTER 2. PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION

windows). The arc set A contains all arcs (o,j) and (j,d) with j ∈ N ∪R and all arcs (i, j) ∈ (N ∪R)2

with i 6= j. With each arc (i, j) ∈ A, we associate the cost ci j , the travel time ti j that includes the

service time at i if i ∈ N . Given these parameters, some arcs can be removed from A because they

cannot be part of a feasible route, namely, the arcs (i,j) with qi + q j >Q, or e i + ti j > l j . In the

case of single recharge (SR) we can also filter each arc going from a recharging station to another

recharging station.

Even though we achieve to filter some arcs, the resulting graph is almost complete and there are

no efficient filtering strategies due to the fact that is (almost) always possible to find a feasible

path including the generic arc (i,j).

We assume that the cost, travel time, and required recharging time matrices satisfy the triangle

inequality. These hypothesis are important when we will check the reachability/unreachability of

some nodes from an existing label. More detail on that in paragraph (3.1.1).

A feasible route in Ω corresponds to a path in G starting and ending at the depot node, in which

any vertex i ∈ N is visited at most once, i.e., elementarity is respected for the customer vertices.

However, not all elementary depot-depot paths in G correspond to feasible routes as they may

violate the time windows, the vehicle capacity, or the battery capacity. Additional constraints on

the paths are therefore required to ensure that they represent feasible routes. We will define

such resource constraints in section (3).

Subproblem (2.4) aims at finding a feasible route with minimum reduced cost. To compute the

reduced cost of each depot-depot path in G, we replace the arc cost ci j for each arc (i,j) ∈ A by

a modified cost ci j = ci j −πi , where we set πi = 0 if i ∈ R∪ {o,d}. Then, the sum of the modified

costs ci j of the arcs (i,j) of a path p is equal to its reduced cost cp. In this setting, the subproblem

corresponds to an ESPPRC, in which elementarity is imposed only on the customer vertices and

the path length is measured with respect to the modified arc costs ci j, (i, j) ∈ A. Each EVRPTW

variant induces a specific subproblem. The two single-recharge variants require a resource

constraint to ensure that at most one vertex in R is visited in a path. Furthermore, because full

battery recharges are more restrictive than partial battery recharges, these two recharge types

must be handled differently. In consequence, we consider three variants of the subproblem called

ESPPRC-SF, ESPPRC-MF and ESPPRC-SP hereafter.

The ESPPRC on graph G will be solved by dynamic programming using a labeling algorithm. In

this algorithm, labels are used to represent partial paths that start at the origin vertex o. Starting

from an initial label associated with vertex o, paths are constructed iteratively by extending this

label and its descendants forwardly in G. The extension of a label along an arc is performed using

REFs (resource extension function). Each generated label is checked for feasibility with respect

to the resource constraints and infeasible labels are discarded.

Furthermore, to avoid enumerating all feasible complete and partial paths, a dominance criterion

is applied to eliminate partial paths for which no completion to full path could possibly lead to

any improvement. These dominance rules are likely to be the most interesting (from a conceptual

10

2.3. BRANCH-PRICE-AND-CUT ALGORITHM

point of view) contributions of this thesis. In the following, we propose monodirectional forward

labeling algorithms for all subproblem variants. We will focus on the label components, the REFs,

and the dominance rules.

11

C
H

A
P

T
E

R

3
LABELING ALGORITHM

3.1 Single Recharge - Full Recharge

A
partial path p from depot to generic node i is associated with the following label:

L i = (T cost
i ,T load

i ,Trch
i ,T time

i , (T custn
i)n∈N ,Tbattery

i) where the label components are de-

fined as follows:

T cost
i : reduced cost of path p.

T load
i : total load delivered along path p.

Trch
i : number of recharges performed along path p.

T time
i : earliest service time at vertex i.

(T custn
i)n∈N : number of times that customer n ∈ N is visited along path p. Also set to 1 if customer

n is not visited but it’s unreachable from p.

Tbattery
i : battery consumption

In the initial label at vertex o, the depot node, all components are set to 0 except for T time
i

which is set to e0. All the component are set to 0 because we could prove that, given an optimal

solution in which the label at the depot has not all the components set to zero1, there exist at

least another optimal solution with equal or smaller objective function if all the components of

the initial label have been set to zero. This is straightforward if we think of the actual meaning

of the resource. There is no case where starting a route with an already consumed battery could

be more performing that starting a route with a fully load battery.

1note that, due to the meaning of the labelling component/resource no quantity could go below zero.

13

CHAPTER 3. LABELING ALGORITHM

3.1.1 Single Recharge - Full Recharge: REFs

The extension of a label L i along an arc (i, j) is done according to the following extension functions.

Note that we considered a variable ratecost
j equal to the cost of the recharging rate if j ∈ R or

equal to zero otherwise and a variable ratetime
j that represent the time dynamic associated with

the recharging station.

T cost
j = T cost

i + ci j +Tbattery
j ratecost

j

Tbattery
j =

Tbattery
i +bi j i ∉ R,

bi j i ∈ R

T load
j = T load

i + q j

Trch
j = Trch

i +
1 j ∈ R

0 otherwise

T time
j = max(e j,T time

i + ti j +Tbattery
i ratetime

i)

T custn
j =

T custn
i +1 n = j

max(T custn
i ,U f w

n (T load
j ,T time

j)) otherwise
∀ n ∈ N.

Please note that the function U f w
n is defined as follow

U f w
n (T load

j ,T time
j)=

1 if T load
j + qn >Q∨T time

j + t j,n > `n,

0 otherwise

Actually it could be specified with more details adding the following conditions:

U f w
n =


1 if Trch

j = 1
∧

j ∉ R
∧

Tbattery
j +b j,n > B

1 if Trch
j = 0

∧
Tbattery

j +b j,n > B
∧

[(Tbattery
j +b j,r > B,∀r ∈ R)∨

∨(min
∀r∈R

((Tbattery
j +b j,r)ratespeed

r +T time
j + t j, r+ tr,n)> ln)]

Considering that we are in the case single recharge - full recharge, the first condition ensures

us that if the vehicle has already recharged, thus it can’t recharge anymore, and the travel from j

to n exceeds its battery capacity, costumer n is considered unreachable.

The second condition instead ensures that if the vehicle hasn’t recharged yet, but its battery isn’t

enough to reach the nth costumer nor it’s enough to reach the nearest recharging station, or it’s

just enough to reach it but recharging would mean to spend too much time, thus it would lead to

a violation of the time window, then the nth costumer is considered unreachable.

These considerations could be expanded considering that after visiting the nth costumer the

vehicle has to be able to at least reach the depot, however I’m not sure if this more complicated

14

3.1. SINGLE RECHARGE - FULL RECHARGE

U f w
n (T load

j ,T time
j ,Trch

j ,Tbattery
j) function would lead to any concrete improvement of the labelling

algorithm.

In our simulations we considered only the following condition to check unreachability:

U f w
n (T load

j ,T time
j)=1 if T load

j + qn >Q∨T time
j + t j,n > `n ∨ (Trch

j = 1
∧

j ∉ R
∧

Tbattery
j +b j,n > B)

0 otherwise

We can see how the triangular assumption on the arcs is fundamental. If that didn’t hold we

could not check unreachability in this simple way, but we should check it resolving a shortest

path problem for each couple of nodes and that would be way more time-consuming.

3.1.2 Single Recharge - Full Recharge: Label Feasibility

A Label L i = (T cost
i ,T load

i ,Trch
i ,T time

i ,Tbattery
i ,T custn

i) is considered feasible if all the following

conditions hold:

T load
i ≤Q

Trch
i ≤ 1

T time
i ≤ l i

Tbattery
i ≤ B

T custn
i ≤ 1∀n ∈ N

3.1.3 Single Recharge - Full Recharge: Dominance Rule

In order to demonstrate that the following dominance rule holds true:

Given two labels Li
1, Li

2 such that both point to the very same node i 2 both structured as

Li
k = (T cost

i,k ,T load
i,k ,Trch

i,k ,Tbattery
i,k ,T time

i,k ,T cust
i,k) for k=1,2 ;

if Tany
i,1 ≤ Tany

i,2 for any∈(cost,load,rch,battery,time,cust), and Li
1 different form Li

2 then we can say

that Li
1 dominates Li

2, we will write it Li
1 4 Li

2, and thus discard Li
2

we have firstly to show that the REFs are non-decreasing functions, and then to prove that any

possible extension of path2 is also a possible extension of path2.

2this should be more specified. With very same node we mean the actual node i, for i ∉ R.
If i ∈ R then the dominance rule is applied to all the dummy nodes simultaneously considered as one

15

CHAPTER 3. LABELING ALGORITHM

3.1.4 Proof that REFs are non-decreasing functions

In order to demonstrate that the REFs are non-decreasing functions we examine every REF one

by one.

Remember that our initial hypothesis is that Tany
i,1 ≤ Tany

i,2 for any∈(cost,load,rch,battery,time,cust)

and our thesis is that Tany
j,1 ≤ Tany

j,2 for any∈(cost,load,rch,battery,time,cust).

Note that T j is the expansion of Ti through arc (i,j).

Let’s now examine our first REF:

1. We know that:

T cost
j = T cost

i + ci j +Tbattery
j ratecost

j

since ci j and ratecost
j are equal for both labels, it’s straightforward to notice that a sufficient

condition to verify T cost
j,1 ≤ T cost

j,2 is that Tbattery
j,1 ≤ Tbattery

j,2

Now we check if the latter holds.

2. The REFs referred to the battery is:

Tbattery
j =

Tbattery
i +bi j i ∉ R,

bi j i ∈ R

It’s easy to note that condition

Tbattery
i,1 ≤ Tbattery

i,2 implies Tbattery
j,1 ≤ Tbattery

j,2 , leading to

Tbattery
i,1 ≤ Tbattery

i,2
∧

T cost
i,1 ≤ T cost

i,2 → T cost
j,1 ≤ T cost

j,2 , which fulfills our former REF.

3. the load REF is

T load
j = T load

i + q j

it’s obvious that T load
i,1 ≤ T load

i,2 → T load
j,1 ≤ T load

j,2

4. Another obvious non-decreasing extension is the following

Trch
j = Trch

i +
1 j ∈ R

0 otherwise

5. while the time REF is:

T time
j = max(e j,T time

i + ti j +Tbattery
i ratetime

i)

since Tbattery
i,1 ≤ Tbattery

i,2
∧

T time
i,1 ≤ T time

i,2 → T time
j,1 ≤ T time

j,2

16

3.1. SINGLE RECHARGE - FULL RECHARGE

6. the last REF is , for any n∈N

T custn
j =

T custn
i +1 n = j

max(T custn
i ,U f w

n (T load
j ,T time

j)) otherwise

Please note that the function U f w
n is defined as follow

U f w
n (T load

j ,T time
j)=1 if T load

j + qn >Q∨T time
j + t j,n > `n ∨ (Trch

j = 1
∧

j ∉ R
∧

Tbattery
j +b j,n > B)

0 otherwise

This ensure the non-decreasing property of this last label.

Thus we proved that the set Tany
i,1 ≤ Tany

i,2 for any ∈(cost,load,rch,battery,time,cust) is a sufficient

set of hypothesis to guarantee the REFs function to be non-decreasing; the next step is to demon-

strate that every possible expansion of path1 is also a possible extension of path2 as well.

3.1.5 Proof on possible extensions

In order to prove this we begin considering that an extensions is unfeasible if and only if it

violates at least one of the following constraints:

T load
i 6Q,

Trch
i 6 1,

T time
i 6 `i ,

T custn
i 6 1 ,

Tbattery
i 6B

but given our hypothesis that Tany
i,1 ≤ Tany

i,2 for any ∈(cost,load,rch,battery,time,cust) and the

non-decreasing property of the REFs, it follows that Tany
j,1 ≤ Tany

j,2 . Thus if label L j,1 violates any

of the previously constraints L j,2 must violate them as well.

Thus we can infer that any non unfeasible expansion L j,2 entails the non unfeasibility of L j,1,

hence every feasible extension of the second path is feasible as well for the first path.

In a more formal logical language (with intuitive meaning of the variables) we may write:

¬L i,1 →¬L i,2

¬¬L i,2 →¬¬L i,1

L i,2 → L i,1

17

CHAPTER 3. LABELING ALGORITHM

3.1.6 conclusion

Since we were able to demonstrate that the REFs are non-decreasing functions and that given a

proper set of hypothesis the possible extensions of path2 are included in the possible extensions

of path1, we can safely state that the following dominance rule apply:

Given two labels Li
1, Li

2 such that both point to the very same node i and both structured as

Li
k = (T cost

i,k ,T load
i,k ,Trch

i,k ,Tbattery
i,k ,T time

i,k ,T cust
i,k) for k=1,2 ;

if Tany
i,1 ≤ Tany

i,2 for any∈(cost,load,rch,battery,time,cust), and Li
1 different form Li

2 then we can say

that Li
1 dominates Li

2, we will write it Li
1 4 Li

2, and thus discard Li
2

What said (but for the possible modification on U f w
n) holds true even for the multiple recharge

case, once we properly remove the conditions on Trch
i .

Finally we would like to specify that in our simulation we took in consideration a depot

without cost of recharging (ratecost = 0), this is reasonable if we consider that a green logistic

company is likely to have a "flat" cost rate for electricity.

3.2 Single Recharge - Partial Recharge

3.2.1 Formal Model for the SR-PR

For the partial recharge case the main difficulty to overcome is that the amount of energy to be

recharged has to be determined a posteriori. Therefore the earliest service start time at a given

vertex j following a recharge station becomes a linear function of the amount of energy recharged.

To overcome this issue we may use the following label algorithm, whose main idea is to keep track

of the earliest and latest time for the service to start and of the "slack time", then progressively

modify them in order to ensure feasibility without violating the battery capacity constraint.

Another important difference with respect to the homogeneous case is that in the latter, every

time we had some "slack time" (formal definition in the following) we supposed to use that time

to recharge our vehicle while in the heterogeneous case we can’t. A way to avoid this issue is to

formulate the problem in terms of cumulative quantities, as we shall see in the following.

To overcome these problems we adopt the following label to describe a path p, starting from

vertex o and ending in vertex i:

L i = (T cost
i ,T load

i ,Trch
i ,T timeMin

i ,T timeMAX
i ,Tslack

i ,TToBeR
i ,Tbattery

i ,T custn
i)

18

3.2. SINGLE RECHARGE - PARTIAL RECHARGE

3.2.2 Label Definitions

The definitions and the REFs of components: T load
i ,Trch

i ,T custn
i are identical to the previous ones,

while T cost
i ,Tbattery

i keep the same definition but change their REFs.

Now we provide definitions for the remaining components:

T timeMin
i : Earliest service Time at Vertex i assuming that, if a recharging station has been visited

prior i, a minimum recharge, just to ensure battery feasibility up to i has been performed.

T timeMAX
i : Earliest service Time at Vertex i assuming that, if a recharging station has been

visited prior i, a maximum recharge that still ensure time window feasibility up to i has been

performed.

Tslack
i : this variable represents the (cumulative) amount of time the vehicle has to wait, if any,

from when it arrives at a costumer until its time window starts, considering only the costumers

visited after a recharge.

TToBeR
i : this variable instead represents the (cumulative) amount of battery capacity the vehicle

has to have recharged in order to ensure battery feasibility up to i

Note that if no recharging station has been visited along path p

Trch
i = 0→ T timeMAX

i = T timeMin
i

∧
Tslack

i = 0.

And it’s also true that Trch
i = 0

∧
p is feasible → TToBeR

i = 0

The initial label at root node will be composed by all components set to 0 but for T timeMAX
i =

T timeMin
i = eo.

3.2.3 REFs

The following REFs are then applied:

For T load
i ,Trch

i ,T custn
i the REFs are identical to the previous ones, while:

Tbattery
j =

Tbattery
i +bi, j i f Trch

i = 0

min(Tbattery
i +bi, j,B)) otherwise

Please note that the cases are defined if Trch
i = 0, not Trch

j . Also this definition takes advantage

that being in the single partial recharge case visiting a recharging station doesn’t ensure that we

will actually recharge anything. In fact it’s most likely that after we reach the maximum capacity

of the battery at a generic node i all labels forward will have Tbattery
j = B, since we will recharge

just enough to arrive at node j.

It is possible to create examples in which we visit a recharge station with no actual need to

recharge, and discover that we had to had performed a recharge only when we visit the last node,

the depot. That’s why we need to consider also the cases where we visit a recharging station even

19

CHAPTER 3. LABELING ALGORITHM

if there is no urgent need to recharge.

The REF of TToBeR
i is defined as follows:

TToBeR
j = TToBeR

i +max(0,Tbattery
i +bi, j −B)

Note that this variable will assume value 0 until there is no need for a recharge, then it will

assume the (cumulative) value of how much energy we shall have recharged in order to arrive

up to j. Also note that, with an improper but intuitive language we can say that, thanks to the

previous consideration we know that once our battery will be empty at a given generic node i,

Tbattery
i is likely to assume value B for all nodes j following i , so TToBeR

j is likely to increase by

bi, j each time.

All in all, we can say that Tbattery
i detects the battery consumption up to B value, and TToBeR

detects it afterwards. Indeed if Tbattery
i < B → TToBeR = 0 and the quantity Tbattery

i +TToBeR

indicates the total amount of battery consumed in the route up to costumer i.

T timeMin
j =

max(e j,T
timeMin
i + ti, j) i f Trch

i = 0

max(e j,T
timeMin
i + ti, j +max(0,TToBeR

j ∗ ratetime
r −Tslack

j)) otherwise

note that since we are in the single recharge case there is only one possible recharging station

where we could have been recharging our battery at, we called it r.

T timeMAX
j =

min(l j,max(e j,T
timeMAX
i + ti, j)) i f i ∉ R

min(l j, (max(e j,T
timeMAX
i + ti, j)+max(0,Tbattery

i ratetime
i −TSlack

j))) i f i ∈ R

Note that if Trch
i = 0 then T timeMAX

i = T timeMin
i , and T timeMAX

i carries within itself the information

about the most restrictive lower bound of each visited time window.

The slack time REF instead is defined as follows:

Tslack
j =

0 i f Trch
i = 0

min(Tslack
i +max(0, e j − (T timeMin

i + ti, j)),T
battery
r ratetime

r) otherwise

Again note that since we are in the single recharge case, we have only one possible station

where we can recharge at, I denote it by r, and the maximum admissible slack time is defined by

the maximum quantity of energy I can recharge when I’m at that particular station, in fact the

upper bound on the slack time is Tbattery
r ratetime

r .

The so defined cumulative slack time is also equal to:

Tslack
j = T timemin

j − (T timemin
r +

j−1∑
r+1

ti,i+1)

20

3.2. SINGLE RECHARGE - PARTIAL RECHARGE

So the slack time equals the minimum arrival time at node j, minus the minimum arrival time at

node r, minus the time taken to transit through all the arcs of the path from r to j. This formula

will be helpful later on.

Note that we expressed every variable in terms of "cumulative" quantities, so no incompatibility

problem shall rise.

Last label: T cost
j .

T cost
j =

T cost
i + ci, j j 6= depot

T cost
i + ci, j +ToBeR jratecost

r otherwise

Unluckily this model has some problem in the cost label because it doesn’t exploit at best our

knowledge about the variable TToBeR
j .

The formulation below is more performing, it’s not based on the "structure" of the label but on

the following considerations.

T cost
j =


T cost

i + ci, j Tbattery
j < B

T cost
i + ci, j + [bi, j − (B−Tbattery

i)]ratecost
r Tbattery

i < B
∧

Tbattery
j = B

T cost
i + ci, j +bi, jratecost

r Tbattery
i = B

Independently of the fact that the vehicle has visited a recharging station or not, if the path’s

battery consumption is lower than the total battery capacity, it’s reasonable to suppose that the

vehicle didn’t actually recharge at the station (because it would imply to pay an extra cost, with

no actual improvement), that’s why in the first case we only add up the arc costs.

Instead if the vehicle has already reached its maximum battery capacity at node i and it moves

to j, the cost to be added on what it already costed up to i is the cost of the arc plus the cost of the

extra recharging to ensure battery feasibility up to j, so bi, jratecost
r .

Last case, if the battery consumption up to node i is less than the total admissible battery con-

sumption, while the battery consumption at node j is equal or greater than the total admissible

battery consumption this means that during this arc we reached our maximum consumption

thus our battery is now empty. The cost we had to pay to move on this arc is then the sum of the

arc cost itself ci, j plus the amount of battery we had to recharge in order to arrive with a battery

consumption up to B at node j (arriving with battery consumption lower than B would imply to

pay an extra cost with no actual improvement on the path). Note that since this is a minimum

problem we will always recharge just enough to arrive at the following node, not more, that’s why

in this latter case we additionally have to pay only [bi, j − (B−Tbattery
i)]ratecost

r .

Once we have done all these considerations we can re-write this last label in the follow-

ing compact but less readable form (note that if Trch
i = 0 then ratecost

r is undefined but or

max(0, [bi, j − (B−Tbattery
i)]) is zero or the path is unfeasible):

21

CHAPTER 3. LABELING ALGORITHM

T cost
j = T cost

i + ci, j +max(0, [bi, j − (B−Tbattery
i)])ratecost

r

Another way to express this last REF may be the following:

T cost
j = T cost

i + ci, j + (TToBeR
j −TToBeR

i)ratecost
r

Where we add and subtract the cumulative amount of battery to be recharged at the head and the

tail of each arc because their difference is the incremental (non-cumulative) amount of battery

needed to cross that particular arc.

With this formulation we should have properly defined every aspect of our problem and avoid

every "loop" between variable, like defining the T timeMin label depending on the Tslack and the

latter depending on the former.

The value of any of these labels becomes meaningless (and maybe even undefined) in case of

battery infeasibility or violation of any other constraints.

3.2.4 Label Feasibility

Given the previously defined labels and REFs we now define the conditions under which a label

can be considered feasible or unfeasible.

A Label L i = (T cost
i ,T load

i ,Trch
i ,T timeMin

i ,T timeMAX
i ,Tslack

i ,TToBeR
i ,Tbattery

i ,T custn
i) is considered

feasible if all the following conditions hold:

T load
i ≤Q(3.1)

Trch
i ≤ 1(3.2)

T timeMax
i ≤ l i(3.3)

T timeMin
i ≤ T timeMAX

i(3.4)

TToBeR
i ≤ Trch

i Tbattery
r(3.5)

Tbattery
i ≤ B(3.6)

T custn
i ≤ 1∀n ∈ N(3.7)

Some of these formulas deserve a deeper explanation.

For instance note that the constraint on the battery (3.6) can be violated if and only if Trch
i = 0,

otherwise this value will always be upper bounded by B (see the corresponding REF formula). So

it seems to be no control on the battery constraint once we perform a visit to a recharge station.

Indeed there is and it’s modeled by (3.5). Firstly note that until no visit at a recharging station

has been performed the value of TToBeR
i and Trch

i are fixed to 0, actually if Trch
i = 0,Tbattery

r is

22

3.3. DOMINANCE RULE

not even defined. Only once Trch
i = 1,Tbattery

r is finally defined, and this constraint models the

fact that in the single recharge case, I can recharge up to the amount of battery I had consumed

when I visited the recharging station.

Constraints (3.1),(3.2),(3.3),(3.7) simply model the limits on the maximum possible load carried

by any vehicle and the maximum times a vehicle can visit a recharging station or a costumer

without violating any time window.

In the end we analyze constraint (3.4). This constraint apparently only models the mandatory

chronic order between T timeMin
i and T timeMAX

i ; while actually it entails even an "hidden" condition

on the slack time. In fact this constrain can be violated only if an additional recharging time

yields to a time windows violation, while non-violating constraint (3.4) imply that:

Tslack
j = T timemin

j − (T timemin
r +

j−1∑
r+1

ti,i+1)≤ T timeMAX
j − (T timemin

r +
j−1∑
r+1

ti,i+1)

So ensuring that, if at the recharging station I recharged up to Tslack
j units of time this would

not lead to any time window violation.

Another condition that must be met in order to have a feasible label is the following:

Tslack +TMAX −Tmin ≤ TBatteryratetime
r

this condition ensures us that there is no way in which we could ask the vehicle to recharge more

time than how much it actually could. Luckily this condition is entailed with the others so we

don’t have to check it.

3.3 Dominance Rule

A label L i,1 dominates L i,2, both structured as:

L i,k = (T cost
i,k ,T load

i,k ,Trch
i,k ,T timeMin

i,k ,T timeMAX
i,k ,Tslack

i,k ,TToBeR
i,k ,Tbattery

i,k ,T custn
i,k), with k ∈ (1,2)

if both the associated paths end at the very same vertex i, Tany
i,1 ≤ Tany

i,2 with any ∈ (load, rch,

timeMin,(custn)n∈N) and for every start service time T2 ∈ [T timeMin
i,2 ,T timeMAX

i,2], there exists a

service start time T1 ∈ [T timeMin
i,1 ,T2] such that the associated path p1 has a battery more charged

and still it costs less with respect to the associated path p2.

Note that the above definition implies that every possible extensions of path p2 is feasible as well

for path p1. The condition p1 has a battery more charged than p2 can be translate into "p1 has a

battery capacity less consumed than p2".

Firstly we treat two "special" cases where Trch
1 = 0, then the most general one, Trch

1 = 1.

3.3.1 Dominance Rule when Trch
1 = 0

If Trch
i,1 = 0

∧
Trch

i,2 = 0 then the dominance conditions simply translate in:

23

CHAPTER 3. LABELING ALGORITHM

Tbattery
i,1 ≤ Tbattery

i,2 and T cost
i,1 ≤ T cost

i,2

If Trch
i,1 = 0

∧
Trch

i,2 = 1 instead I need to ensure that even in the most critical case, when vehicle2

recharges all of what it can recharge, vehicle1 still has more battery available, and when vehcle2

doesn’t recharge at all, vehicle1 is still cost convenient. Satisfying this two condition ensure that

path1 is always a better choice with respect to path2. In formulas we need to satisfy the two

following conditions:

Tbattery
i,1 ≤ Tbattery

i,2 +TToBeR
i,2 − (Tslack

i,2 +T timeMAX
2 −T timeMin

i,2)ratetime
i,2

T cost
i,1 ≤ T cost

i,2

The previous formula can be further specified considering that: if TToBeR
i,2 > 0 then there is an

other "hidden" cost to be paid in the second route. In fact the second route should at least pay

b j,depotratecost
r more than path1. Thus:

If Trch
i,1 = 0

∧
Trch

i,2 = 1
∧

TToBeR
i,2 > 0 then the second condition become:

T cost
i,1 ≤ T cost

i,2 +b j,depotratecost
r

We didn’t consider this particular case in our computation because if we consider this extra cost

on vehicle2, then we should also consider that vehicle1 may incur in the same extra cost if

its battery capacity left it’s not enough to go back to the depot. This only complicate the model

without any real advantage.

Note that a case where Trch
i,1 = 1

∧
Trch

i,2 = 0 is meaningless because it violates one of the initial

hypothesis, Trch
i,1 ≤ Trch

i,2 .

Last case, the most general one, is when Trch
i,1 = 1

∧
Trch

i,2 = 1.

3.3.2 Battery&Cost Dominance Rule when Trch
1 = 1

Let’s start with some consideration on the Battery-time graph. Given a generic label L i the

battery consumption in i, from now on called Battery, always follows the same trend as we can

see in figure (3.1).

Initially a straight line from up to down when time = T timemin
i and then with continuity an

oblique line with slope −ratetime
r until time = T timeMAX

i .

The vertical line is due to the fact that initially, if our accumulated slack time is more than what

needed to recharge TToBeR ,we can use it to recharge the battery, and the oblique line shows that

we can start our service later in order to recharge more our battery.

Remember that label Tbattery tells us information on the maximum level of battery consumption,

but in a given point a vehicle may have a set of possible Battery values.

This trend is described by the following formula:

In order to be as clear as possible and because it has a vertical component that can’t be expressed

24

3.3. DOMINANCE RULE

Figure 3.1: Curve of a generic Battery level

as y=f(x) we use a notation like x=f(y) for the vertical part, and we use a more clear notation

y=f(x) for the oblique part.

time= T timeMin if Tbattery −max[0,
Tslack

ratetime
r

−TToBeR]< Battery≤ Tbattery

Battery=Tbattery −max[0,
Tslack

ratetime
r

−TToBeR]− (time−T timeMin)
ratetime

r
if T timeMin < time ≤ T timeMAX

Note that max[0,
Tslack

ratetime
r

−TToBeR] indicates the amount of battery I may recharge during

the accumulated slack time taking in consideration that a part of it it’s used to recharge the

quantity TToBeR .

We start the following analysis considering that if TToBeR ratetime
r −Tslack ≥ 0 the trend becomes

just an oblique line, easier to treat, as we can see in figures (3.2) and (3.3).

In this case we can say that L1 dominates L2 if and only if the followings apply:

Battery1(min[T timeMAX
1 ,T timeMin

2])≤ Battery2(T timeMin
2)

Battery1(min[T timeMAX
1 ,T timeMAX

2])≤ Battery2(T timeMAX
2)

Price1(min[T timeMAX
1 ,T timeMin

2])≤ Price2(T timeMin
2)

Price1(min[T timeMAX
1 ,T timeMAX

2])≤ Price2(max[T timeMin
2 ,min[T timeMAX

1 ,T timeMAX
2]])

Where Pricek(t) is a function such that given a time t, it returns the value of the cost function

as if I had been recharging up to time t. In this case it will be the following:

25

CHAPTER 3. LABELING ALGORITHM

Figure 3.2: Battery curve with no slack time

Price(t)= T cost + (t−T timeMin)ratecost

Graphically we can see it in figure (3.3),

The first two inequalities ensure us that for every time t2, Battery2(t2) can’t be more charged

with respect to Battery1(t1)where t1 is the maximum time such that t1 ≤ t2
∧

Battery1(t1) is a

defined function .

The last two inequalities ensure us that for every time t2, Price2(t2) is higher with respect to

Price1(t1) where t1 is the maximum time such that t1 ≤ t2
∧

Price1(t1) is a defined function .

When TToBeR ratetime −TSlack > 0 we need to pay more attention.

Now we have to consider even the vertical line. Note that this carries some problems because we

are no more dealing with functions. Now for each value of x, it may correspond more values of y.

Also note that there is no case where it would be more convenient to postpone the service start

time without using previously all the available slack time.

First thing to check is that, for any given time, there can’t be a case where path2 has more battery

than path1; otherwise we could always created an example where path2 has an extension not

feasible for path1. Secondly we have to compare values of prices for all possible battery levels. To

check if there is a case where path2 has more battery than path1 we divide the problem in three

subcases: T timeMAX
1 ≤ T timeMin

2 ,T timeMin
2 ≤ T timeMAX

1 ≤ T timeMAX
2 and T timeMAX

1 ≥ T timeMAX
2 .

For the first subcase (figure (3.4)) a sufficient condition is that the minimum battery consump-

26

3.3. DOMINANCE RULE

Figure 3.3: Cost curve with no slack time

Figure 3.4: Battery curve first subcase

27

CHAPTER 3. LABELING ALGORITHM

Figure 3.5: Battery curve second subcase

tion of path1 is lower than the minimum battery consumption in path2, in formulas:

Tbattery
1 +TToBeR

1 − (Tslack
1 +T timeMAX

1 −T timeMin
1)

ratetime
r1

≤

Tbattery
2 +TToBeR

2 − (Tslack
2 +T timeMAX

2 −T timeMin
2)

ratetime
r2

Note that since we are in the case where TToBeR ratetime −TSlack > 0 holds the previous formula

is equal to the following:

Tbattery
1 −max[0,

Tslack
1

ratetime
r,1

−TToBeR
1]− (T timeMAX

1 −T timeMin
1)

ratetime
r1

≤

Tbattery
2 −max[0,

Tslack
2

ratetime
r,2

−TToBeR
2]− (T timeMAX

2 −T timeMin
2)

ratetime
r2

For the second case (figure (3.5)) instead sufficient conditions are the following: the battery

consumption of the first vehicle evaluated in S1
1 is lower than the battery consumption of the

second vehicle at S2 and the battery consumption of the first vehicle evaluated in E1 is lower than

the battery consumption of the second vehicle at E2, where with S2 we denoted the point at the

bottom end of the vertical line, E i the lowest point of the line and with S1
1 the point determined

by the first battery function when time = T timeMin
2 , in formulas:

28

3.3. DOMINANCE RULE

Figure 3.6: Battery curve third subcase

Tbattery
1 +TToBeR

1 − (Tslack
1 +T timeMin

2 −T timeMin
1)

ratetime
r1

≤ Tbattery
2 +TToBeR

2 − Tslack
2

ratetime
r2

and..

Tbattery
1 +TToBeR

1 − (Tslack
1 +T timeMAX

1 −T timeMin
1)

ratetime
r1

≤

Tbattery
2 +TToBeR

2 − (Tslack
2 +T timeMAX

2 −T timeMin
2)

ratetime
r2

Finally for the last subcase (figure (3.6)) necessary and sufficient conditions are the following:

the battery consumption of the first vehicle evaluated in S1
1 is lower than the battery consumption

of the second vehicle at S2 and the battery consumption of the first vehicle evaluated in E1
1 is

lower than the battery consumption of the second vehicle at E2,where with E1
1 I mean the point

determined by the first battery function when time = T timeMAX
2 , in formulas:

Tbattery
1 +TToBeR

1 − (Tslack
1 +T timeMin

2 −T timeMin
1)

ratetime
r1

≤ Tbattery
2 +TToBeR

2 − Tslack
2

ratetime
r2

and..

29

CHAPTER 3. LABELING ALGORITHM

Figure 3.7: Price curve

Tbattery
1 +TToBeR

1 − (Tslack
1 +T timeMAX

2 −T timeMin
1)

ratetime
r1

≤

Tbattery
2 +TToBeR

2 − (Tslack
2 +T timeMAX

2 −T timeMin
2)

ratetime
r2

In the unlucky case where T timemin
1 = T timemin

2 we should also check the following condition:

Tbattery
1 ≤ Tbattery

2 .

This formulation may seems to not take into account that the maximum amount of energy I

may recharge at a given station are upperbounded by Tbattery
r,i , indeed this constraint is propa-

gated thanks to a proper formulation of T timeMAX
i .

Another interesting point is that we considered variable TToBeR only when TToBeR ratetime −
TSlack > 0. That’s because when TToBeR ratetime −TSlack < 0 the effect of variable TToBeR is

entailed within variable T timeMin .

Once we checked that there exists no configuration where, at the same time, path2 can have less

battery consumed than path1, we have to confront the costs for each given battery level.

But first we take a look at how it’s structured the Price function, figure (3.7).

As we can see in the (time,Price) graph, the trend is again one vertical segment when

time = T timeMin
i , this time oriented from the bottom to the top, and then with continuity an

30

3.3. DOMINANCE RULE

oblique segment with slope +ratecost
r i

until time = T timeMAX
i . As before the vertical line shows as

at the same time we may have different costs due to how much slack time we spend recharging

our vehicle, while the oblique line represents the cost increasing if we postpone our minimum

service start time to additionally spend more moments recharging.

In formulas that function is described by (for the same previous reasons we use again a mixed

notation):

time= T timeMin if T cost < Price < T cost +max[0,
Tslack

ratetime
r

−TToBeR]ratecost
r

Price=T cost +max[0,
Tslack

ratetime
r

−TToBeR]ratecost
r + (time−T timeMin)

ratetime
r

ratecost
r if

T timeMin < time < T timeMAX

To check dominance we build another graph, a Battery-Price graph.

Building this graph is pretty simple, for each curve we need three pair (Battery, Price) of values

to determine each point and to find them we can use the information in the graphs we have

already seen. The three pairs of data we need are the following:

• Price and Battery at time T timeMin when no available slack time is used, point Q.

• Price and Battery at time T timeMin when all the available slack time is used, point W.

• Price and Battery at time T timeMAX , point E.

Note that Price and Battery linearly (piecewise) depend on time, and it’s straightforward that

they linearly (piecewise) depend on each other. So we just need to connect points Q-W and W-E to

obtain the Battery-Price function, shown in figure (3.8).

We can notice how these curves are always straight segments with slope −ratecost!

This simplify a lot our analysis, in fact we now need only point Q and E to fully determine

our line, and we can use procedures similar to the ones seen in Battery&Cost Dominance when

TToBeR ratetime −TSlack > 0 to determine the dominance.

In fact with this function we can directly confront the price for every possible battery level. In

particular, since it’s a linear function, we can avoid checking all possible levels but just a few

"meaningful" ones.

In particular we have to check (see figure (3.9)):

Price1(Battery(Q2))≤ Price2(Battery(Q2))

Price1(Battery(E2))≤ Price2(Battery(E2))

where Battery(P) is just a function that returns the Battery at point P, while function Price

works like this:

31

CHAPTER 3. LABELING ALGORITHM

Figure 3.8: Price Battery curve

Figure 3.9: Battery Price Comparison

32

3.3. DOMINANCE RULE

Price(B)=



Price(Q) B > Battery(Q)

Price(Q)+
(Price(E)−Price(Q))(Battery(Q)−B)

Battery(Q)−Battery(E)
Battery(E)≤ B ≤ Battery(Q)

∞ B < Battery(E)

Last case has ∞ because if we are trying to look at a value not comprehended by our function

it means there is a point where path2 has more battery then path1.

Ensuring the "Battery" conditions means that for every possible battery level reached by vehicle2,

vehicle1 can reach the same level (or lower), in the same time (or lower).

Ensuring the previous "Price" conditions means that for every possible battery level reached by

vehicle2, the corresponding cost for that battery level for vehicle1 is cost-convenient.

This end what we will call in the next paragraph the Battery&Cost Dominance rule.

3.3.3 Dominance Rule: Conclusion

With the so-defined Battery&Cost Dominance we may say:

A label L i,1 dominates L i,2, both structured as:

L i,k = (T cost
i,k ,T load

i,k ,Trch
i,k ,T timeMin

i,k ,T timeMAX
i,k ,Tslack

i,k ,TToBeR
i,k ,Tbattery

i,k ,T custn
i,k), with k ∈ (1,2) if

L i,1 6= L i,2, both the associated paths end at the very same vertex i, Tany
i,1 ≤ Tany

i,2 with

any ∈ (load, rch, timeMin, (custn)n∈N) and L1 Battery&Cost dominates L2.

The above definition implies that every possible extensions of path p2 is feasible as well for path

p1, but p1 cost equal or less.

3.3.4 Dominance Rule: Addendum

The previous considerations about the case Trch
1 = Trch

2 = 1 can be extended considering the

following two subcases:

If TToBeR
2 > 0

∧
TToBeR

1 = 0 whenever we wrote T cost
2 we can substitute it with: T cost

2 +bi,depotratecost
r2

considering that the vehicle has at least to come back to the depot, and it will have to pay an extra

bi,depotratecost
r2 . Whenever we see T cost

1 instead we should substitute with T cost
1 +max[0,Tbattery+

bi,depot−B]ratecost
r1 which represents the additional cost we should pay if our battery runs empty

when we’re trying to reach the depot.

Similarly If TToBeR
1 > 0 (note that this implies that TToBeR

2 > 0 with probability one)

Whenever we wrote T cost
k we should substitute it with: T cost

k +bi,depotratecost
rk .

This could be done with a modification of the cost REF, from:

33

CHAPTER 3. LABELING ALGORITHM

T cost
j =


T cost

i + ci, j Tbattery
j < B

T cost
i + ci, j + [bi, j − (B−Tbattery

i)]ratecost
r Tbattery

i < B
∧

Tbattery
j = B

T cost
i + ci, j +bi, jratecost

r Tbattery
i = B

To:

T cost
j =

T cost
i + ci, j +max[0,Tbattery

j +b j,depot −B]ratecost
r +

−max[0,Tbattery
i +bi,depot −B]ratecost

r Tbattery
j < B

T cost
i + ci, j + [bi, j − (B−Tbattery

i)]ratecost
r +b j,depotratecost

r +
−max[0,Tbattery

i +bi,depot −B]ratecost
r Tbattery

i < B
∧

Tbattery
j = B

T cost
i + ci, j +bi, jratecost

r −bi,depotratecost
r +b j,depotratecost

r Tbattery
i = B

Actually the previous formulation can be reduced to:

T cost
j = T cost

i + ci, j +max[0,Tbattery
j +b j,depot −B]ratecost

r −max[0,Tbattery
i +bi,depot −B]ratecost

r

where for each cases we add the extra quantity to be paid, if any, to go from node j to the

depot and subtract the extra quantity to be paid, if any, to go from node i to the depot.

Anyway we didn’t use the rules described in this section in our computational studies.

34

C
H

A
P

T
E

R

4
ACCELERATION AND BRANCHING

In this chapter we will see the acceleration strategy and the branching techniques.

4.1 Acceleration strategy

The use of the following strategies aim at accelerating the time spent solving the subproblem,

which is NP-hard for all EVRPTW variants due to the elementarity requirements on the customers

and as we will see in the computational studies (chapter 5) it’s the real bottleneck of the whole

problem.

The first acceleration strategy is the most widely used in column generation. Instead of looking

for the minimal reduced column and add only that particular one to the master problem, we

look for any the first κ negative reduced cost columns we find and add all of them to the master

problem.

The other acceleration strategy consist in rapidly generating negative reduced cost columns using

a graph of reduced size. More precisely, at each iteration of the column generation, the labeling

algorithm is executed first on a simplified graph G that contains only a subset A1 of the arcs in

A. If it fails to find negative reduced cost columns, then the algorithm is executed again on a

larger subset of arcs A2 with A2 ⊇ A1, and if again no negative reduced cost column is found the

algorithm is executed again on the complete graph G.

As in Desaulniers et al. (2008), the subset A i, i ∈ (1,2) varies in each iteration: the arcs in

A i, i ∈ (1,2) are selected based on the arc reduced costs ci j , which depend on the current value of

the dual variables in the restricted master problem. First, for every vertex i ∈ R
⋃

N , we sort

separately all incoming arcs and all outgoing arcs in increasing order of their reduced cost and

35

CHAPTER 4. ACCELERATION AND BRANCHING

put them in separate ordered lists denoted I i and Oi, respectively. An arc (i, j) is removed from A

if:

• i, j ∈ R
⋃

N, so no outgoing arcs from/to the depot are removed

• the rank of (i, j) in list I j is greater than a predefined parameter µi

• the rank of (i, j) in list O j is also greater than µi

Thus A i, i ∈ (1,2) contains all arcs leaving or entering the depot and, for every vertex, at least µi

incoming and µi outgoing arcs (unless initially there exist less than µi of these arcs).

In our numerical studies, we used κ= 50 for the reduced graphs, κ= 10 for the complete graph,

µ1 = 3 and µ2 = 4.

4.2 Branching

To derive integer solutions, we impose the following types of branching decisions in the branch-

and-bound search tree:

• on the total number of routes

• on the total number of recharges

• on the total number of recharges at a given recharging station

• on the total flow on an arc

Given a fractional-valued solution, these types of decisions are evaluated in the given order

and the first type that can be imposed is selected. If the total number of recharges is fractional for

several stations, we choose to branch on a station for which the fractional part of its total number

of recharges is closest to 0.5. Similarly, if the arc flow is fractional for several arcs, we choose

an arc for which the fractional part of its flow is closest to 0.5. For every decision, two branches

are created. The previous decisions are imposed by adding inequalities to the restricted master

problem. The dual variable of these inequalities alter the reduced cost of certain route variables.

Moreover, all routes in the master problem incompatible with the fourth branching rule are

removed. The Branch-and-Bound three is explored with a Depth-first strategy, exploring always

the more promising node every time it generates a pair of them. With the more promising we

simply mean the node with the lowest objective function.

A last clarification about branching it’s needed.

There exists pathological case where the previous branching decisions are not enough. Take for

example the following situation.

36

4.2. BRANCHING

Depot-D

C2 C3C1

Depot-P

p11

p12

p13

p21

p22

p23

p24

p31

p32

p33

p41

p42

p43

p51

p52p53

p54

p61

p62

p63

In this case there are six paths;

• Path1 is composed by arcs: p11,p12,p13

• Path2 is composed by arcs: p21,p22,p23,p24

• Path3 is composed by arcs: p31,p32,p33

• Path4 is composed by arcs: p41,p42,p43

• Path5 is composed by arcs: p51,p52,p53,p54

• Path6 is composed by arcs: p61,p62,p63

If solving the linear problem we end up having each variable set as 0.5, the total number of

paths is 3 and each arc has a total flow on itself of 1. In such cases we should also branch on the

variables themselves.

However this is a extremely unlikely situation and never happened in our instances.

37

C
H

A
P

T
E

R

5
COMPUTATIONAL STUDIES

In this section, we present computational experiments to analyze the effectiveness of the

proposed branch-price-and-cut algorithms assessing the benefits of allowing multiple and

partial recharges, i.e., we compare the three EVRPTW problem variants. Section (5.1)

describes the the instance sets used in the experiments while section (5.2) show the computational

results. All algorithms were implemented in Python 2.7, using Gurobi 7.0.2 for solving linear

programs. The experiments were performed on a MacBook Pro, 2,9 Ghz Intel Core i7, RAM 8Gb

1600 Mhz DDR3, running macOS Sierra 10.12.

5.1 Benchmark Instances

For our experiment we used the very same instances used in Desaulniers et al. ((2016)), which

in turn were introduced in Schneider et al. (2014). Those instances are based on the VRPTW

benchmark set of Solomon (1987) and modified as follows: to each of the Solomon instances,

Schneider et al. (2014) applied the following modifications to obtain an EVRPTW instance:

• 21 randomly generated recharging stations are added;

• the battery capacity is suitably set depending on the average route length of the corre-

sponding VRPTW instance; and

• the time windows of some customers are enlarged to ensure feasibility.

The energy consumption bi, j along an arc (i, j) ∈ A is set equal to the arc cost ci, j and the

proportionality factor α is chosen such that a complete battery recharge requires three times the

average customer service time of the considered instance. From those 100-costumers instances

we generate a set of smaller instances, which are obtained by randomly extracting 25 customers

39

CHAPTER 5. COMPUTATIONAL STUDIES

from each 100-customer instance and keeping the 21 recharging stations, obtaining doing so 9

instances. This was necessary because, as we will see, the algorithm is quite slow due to the

Python implementation (C/C++ would have been more performing) and the absence of cutting

planes, thus it won’t be able to solve in reasonable time big instances. Those instances were

modified equipping each recharging station in R with two different technologies: one slower

but cheaper and one faster but more expansive1. The recharging station at the depot was not

equipped with such technologies, instead it was equipped with only one technology, slow and

"for free", to mimic the behaviour of a flat cost rate. Additionally, since the algorithm variant for

multiple recharges is considerably slow, from each of the 25-costumer, 21-recharges, 2-technology

instances, a 20-costumers, 11-recharges, 2-technology instance has been extracted. That was

done by randomly eliminating 5 costumers from the bigger instance and subsequently removing

randomly 10 recharging stations considering only a subset of removable recharging station

so composed: all the recharging stations but the depot and the closest recharging stations to

costumers unreachable with a path with no recharge. Please note that it’s more convenient to

reduce the number of recharging stations that the number of costumer in order to obtain "easier"

instances. From now on we will call the 25-costumers instances the complete ones and the 20-

costumers instances the reduced ones. Finally, the single full (SRFR) and partial recharge (SRPR)

algorithm was tested both on the reduced and complete instances while the multi recharge case

(MRFR) was tested only on the reduced instances. In the next section we show the computational

results.

5.2 Algorithmic Performances

In this section we will highlight the performances of our algorithm trough summary tables and

some comparison between them. Each table is composed by seven columns indicating (in order):

name of the instance, total cost of the solution, number of nodes explored, total time took to solve

it, number of routes, number of visits to the fast recharging station and number of visits to the

cheaper recharging station. We firstly analyze the reduced instances and afterwards the complete

ones. A time limit of 6 hours was set for the reduced instances and 12 hours for the complete

ones.

5.2.1 Reduced Instances

The following three tables (5.1)(5.2)(5.3) show the results of the three algorithms (SRFR,SRPR,MRFR)

on the very same reduced instances, called c10i with i ∈ {1,2,3,4,5,6,7,8,9}.

As we can better see from the following computations introducing partial and multiple

recharge can only improve our solution. Indeed quantifying what above, we have on average

1This was done to emulate the behaviour of traditional recharging and supercharging stations

40

5.2. ALGORITHMIC PERFORMANCES

Single Recharge Full Recharge
Name Cost #nodes Time #paths #Visit Fast #Visit Cheap
c101 584.39 1 1267.96 6 2 2
c102 563.65 1 308.15 5 3 0
c103 369.46 6 18525 3 1 1
c104 520.33 3 1003 4 0 4
c105 515.2 1 617.17 6 1 3
c106 531.4 2 1356.82 5 0 4
c107 451.42 1 635.29 5 1 3
c108 428.32 2 1108.03 4 1 1
c109 494.38 2 2948.8 4 2 1

Table 5.1: Test: SRFR - Reduced Instances

Multiple Recharge Full Recharge
Name Cost #nodes Time #paths #Visit Fast #Visit Cheap
c101 584.39 0 2337,204 5 2 2
c102 540.35 2 15830,17 5 4 1
c103 N/A N/A N/A N/A N/A N/A
c104 509.89 4 3214.42 5 1 3
c105 503.37 0 647.83 5 1 3
c106 531.4 2 1388 5 1 5
c107 451.43 1 525.25 5 1 4
c108 401.34 1 1104.99 4 2 2
c109 474.41 1 2345.99 4 0 3

Table 5.2: Test: MRFR - Reduced Instances

Single Recharge Partial Recharge
Name Cost #nodes Time #paths #Visit Fast #Visit Cheap
c101 583.687 8 1947.67 6 1 3
c102 513.55 1 2777.08 7 0 3
c103 344.24 10 9841.91 4 1 1
c104 483.2 2 6866.39 5 1 3
c105 512.45 1 164.41 6 0 4
c106 516.32 8 1100.34 5 0 4
c107 440.94 1 233.00 5 2 2
c108 407.44 2 891.45 5 0 2
c109 452.69 4 2260.52 5 2 2

Table 5.3: Test: SRPR - Reduced Instances

the performances illustrated in table (5.4). Please note that the average is computed on all the

instances’ results but c103’s one, because it could not be solved whit-in the time limit in the

multiple recharge case.

41

CHAPTER 5. COMPUTATIONAL STUDIES

Average Results for the Reduced Instances
Variant Cost #nodes Time #paths #Visit Fast #Visit Cheap
SRFR 511,14 1,625 1155,65 4,88 1,25 2,25
MRFR 499,57 1,875 3424,23 4,75 1,5 2,88
SRPR 488,78 3,38 2030,11 5,5 0,75 2,86

Table 5.4: Test: Comparison - Reduced Instances

It’s clear how introducing multiple and partial recharge improve our solution; numerically,

on average, introducing multiple recharge improves the solution of the 2,26%, increasing the

resolution time by 196%, while introducing partial recharge improves the solution of the 4,37%,

increasing the resolution time by 75,67%.

5.2.2 Complete Instances

Tables (5.5),(5.6) show the results of the SRFR and SRPR algorithm for each complete instances

while table (5.7) show the aggregate average result of both for comparison purposes. Again

instance c103 was not solved in twelve hours computation time, hence the average results are

computed disregarding that particular instance.

Single Recharge Full Recharge
Name Cost #nodes Time #paths #Visit Fast #Visit Cheap
c101 648,24 1 1372,968 7 4 1
c102 574,85 2 13357,136 5 2 2
c103 352,19 2 556219 4 1 0
c104 525,29 2 13968,3 4 1 3
c105 558,03 3 6703 7 1 3
c106 602,41 4 11979 5 4 0
c107 545,22 10 2735,4 6 2 2
c108 565,65 18 24167,3 5 4 0
c109 506,06 14 14843,95 4 3 1

Table 5.5: Test: SRFR - Complete Instances

We can clearly notice how introducing partial recharges increase the problem difficulties,

resolution time increased by 105%, yet it allows for more economic results, saving about 4,20%.

42

5.3. GENERAL COMMENT

Single Recharge Partial Recharge
Name Cost #nodes Time #paths #Visit Fast #Visit Cheap
c101 639,90 1 1716,21 7 0 5
c102 547,19 6 16696,42 7 0 4
c103 N/A N/A N/A N/A N/A N/A
c104 479,76 12 42980,49 5 1 4
c105 556,39 14 14.660 7 2 2
c106 578,31 26 27061,06 6 3 3
c107 523,48 2 2227,34 6 1 3
c108 525,54 22 34829,08 7 1 2
c109 485,32 14 42697,67 5 2 2

Table 5.6: Test: SRPR - Complete Instances

Average Results for the Reduced Instances
Variant Cost #nodes Time #paths #Visit Fast #Visit Cheap
SRFR 565,72 6,75 11140,88 5,375 2,625 1,5
SRPR 541,99 12,125 22858,57 6,25 1,25 3,125

Table 5.7: Test: Comparison - Complete Instances

5.3 General Comment

It’s interesting to notice how the improving variants do not guarantee at all the reduction on

the number of vehicles used. This is a substantial difference with the homogeneous case where,

minimizing the routing cost somehow imply minimizing the travelled distance hence the number

of vehicle used, on the other hand in the heterogeneous case we lose this proportionality between

cost and travelled distance.

The measured average improvement from full to partial are comparable both in reduced and

complete instances, yet we can see how the average number of nodes generated increase rapidly

(F: from 1.625 to 6,75; P: from 3.38 to 12.125). This is the reason why even adding only 5 costumers

and 10 recharging stations made the resolution time arise exponentially (more than 10 times),

this much bigger three take more time to be explored.

43

C
H

A
P

T
E

R

6
CONCLUSION

In this thesis, we present effective branch-price-and-cut algorithms for three variants of

the EVRPTW with Heterogeneous Recharging Stations, which are defined according to the

maximal number of recharges per route (single versus multiple) and the type of recharge

(partial versus full). For each problem variant a labeling algorithm for generating feasible

routes is presented. Their efficiency results from complex REFs, that allow for constant time

feasibility checking, and strong dominance rules. In numerical studies, we demonstrate that the

algorithms are capable of solving instances with up to 30 customers, 21 recharging stations and

two technologies for each of the problem variants. Finally, we find that allowing multiple, but

especially partial recharges help to reduce routing costs and the number of employed vehicles in

comparison to the variant with single and full recharge.

Column generation is almost needed in situations like this one, where the total number of possible

variables is too huge to be solved by explicitly considering every variable in the problem. In fact

the number of variables is almost in the order of 25!∗21∗2∼= 6,5126 (almost 700 septilion alias

million billion billion). Adopting CG allows us to work only on a subset of these variables. Our

final condition to stop the column generation procedure with its dominance is basically to find

a subset (hopefully the smallest one) of columns (variables) such that if they have reduced cost

greater than zero then for sure all the other variables have reduced cost greater than zero as

well! The effectiveness of the dominance rule rely on that, we only need to check the reduced

cost of a subset of variables to make sure that all the other unconsidered variables have for sure

reduced cost greater than zero, thus no improving effect in our problem.

45

A
P

P
E

N
D

I
X

A
APPENDIX: DIRECTION TO GROW

In this appendix we would like to highlight some bloopers in the model and the directions

to grow of this project.

A.1 Bloopers

Since we decided to minimize only the cost, not the travelled distance or the number of vehicle

used, having a recharge station situated at the depot with zero cost rate is basically useless. In

fact since there is no penalty in routing another vehicle there is no reason why the algorithm

should choose to use the very same vehicle to perform a path, recharge at the depot, and then

perform another path, it’s easier to route two different vehicles. The absence of cutting planes

makes the algorithm explore quite big subthrees, especially on bigger instances (computational

studies not shown in this thesis).

A.2 Future Challenges

This thesis deals with some variants introduced in the traditional vehicle routing problem by the

use of electrical vehicle, with all the pros and cons they provide.

Future challenges certainly will consist in allowing multiple and partial recharges 1, different

types of vehicles (in terms of battery and load capacity), considering non-linear recharge function,

battery degradation but especially non-deterministic travel time.

1we didn’t treat this particular case in our project because we would had to deal with confront of areas, not
segments, in the dominance rule making the subproblem extremely more difficult to solve

47

A
P

P
E

N
D

I
X

B
APPENDIX PYTHON

In this appendix I would like to sketch the implementation I coded in the Python scripts

to comment on some feature.

The main script reads almost as the following:

for instance in SetOfInstances :

(Net , Arcs , Ini t ia lLabel , In i t ia lPaths) = F i r s t I n i z i a l i z a t i o n (instance)

(ObjectiveFunction , Variables , DualVariables , problem) = LP(Paths , Net)

(Paths , Cost , Variables)=ColumnGeneration (Arcs , DualVariables)

(UpperBound)=MILP(Paths)

(Solution , Cost , UpperBound)= RecursiveStep (Paths , Arcs , UpperBound , problem)

As we can see for each instances I repeat the following procedure.

From the file having the costumers’ and stations’ positions I extract the Net (set of nodes) and the

Arcs. I initialize the column generation heuristically creating some initial feasible paths (warm

start). Additionally I used a so called big-M approach, meaning that I create a dummy variable

(big-M) with extremely high cost but such that it visits every costumer and it’s considered feasible.

Doing so we avoid the problem of entering in some branch where we didn’t already generate the

variables needed in order for that particular problem to be feasible.

For example think at a situation where you have three costumers and three different path each

visiting only two of them (namely, path1 will visit costumer 1 and 2, path2 will visit costumer 2

and 3 and path3 will visit costumer 3 ans 1). The only feasible solution at that problem is that

each variable assumes value 0.5. Our branching rule will then impose to branch on the total

number of routes, imposing to have two or more routes in one case and less than one in the other.

This latter linear problem would be unfeasible without a big-M approach because you haven’t

already generate a route passing through all the costumers.

49

APPENDIX B. APPENDIX PYTHON

After the initialization we solve the first linear problem extracting information about the dual

variables, these ones are necessary in the following step of column generation in order to de-

termine the reduced cost of the arcs. In the ColumnGeneration function we generate columns

and reoptimize the linear problem with the newly added column as long as no negative reduced

cost column is found. Once it’s the case we solve a mixed integer linear problem to return a

valid upper bound for the following depth-first branching three exploration. In the last function,

RecursiveStep, the tree is finally explored, as we shall see just below:

def RecursiveStep (Paths , Arcs , UpperBound , problem) :

i f Integer (Variables (Paths)) :

i f Cost (Variables)<UpperBound :

[Solution]= SolutionPaths (Paths)

return (Solution , Cost (Variables) , Cost (Variables))

else :

return (null , Cost (Variables) , UpperBound)

else :

i f Cost (Variables)>UpperBound :

return (null , Cost (Variables) , UpperBound)

else :

[UpperBoundMILP]=MILP(Paths)

i f UpperBoundMILP<UpperBound :

UpperBound=UpperBoundMILP

[probl1 , probl2]=Branch (problema)

(ObjectiveFunction , Variables , DualVariables) = LP(Paths , Net , probl1)

(Paths1 , Cost1 , Variables1)=ColumnGeneration (Arcs , DualVariables)

i f Cost1>UpperBound :

. . do nothing . .

else :

(Solution1 , Cost1 , UpperBound)= RecursiveStep (Paths1 , Arcs , UpperBound , probl1)

(ObjectiveFunction , Variables , DualVariables) = LP(Paths , Net , probl2)

(Paths2 , Cost2 , Variables2)=ColumnGeneration (Arcs , DualVariables)

i f Cost2>UpperBound :

. . do nothing . .

else :

(Solution2 , Cost2 , UpperBound)= RecursiveStep (Paths2 , Arcs , UpperBound , probl2)

[SolutionBest , CostBest]= Best (Solution1 , Cost1 , Solution2 , Cost2)

return (SolutionBest , CostBest , UpperBound)

We can see how each time after the column generation process we try to update the upper

bound at the best of our knowledge solving a mixed integer problem. Updating as soon as possible

50

the upper bound is crucial because the most time-consuming action is to generate new nodes and

one of the main drawbacks of the algorithm is the absence of cutting planes, this causes the three

to propagate deeply because of this relatively big integrality gap.

51

BIBLIOGRAPHY

A. Ceselli, A. Felipe, M. T. Ortuño, G. Righini, and G. Tirado.

A branch-and-cut-and-price algorithm for the green vehicle routing problem with partial

recharge and multiple technologies, 2015.

G. Desaulniers, F. Errico, S. Irnich, and M. Schneider.

Exact algorithms for electric vehicle-routing problems with time windows.

Operations Research, 64(6), 2016.

Á. Felipe, M. T. Ortuño, G. Righini, and G. Tirado.

A heuristic approach for the green vehicle routing problem with multiple technologies and

partial recharges.

Transportation Research Part E: Logistics and Transportation Review, 71:111 – 128, 2014.

ISSN 1366-5545.

doi: https://doi.org/10.1016/j.tre.2014.09.003.

URL http://www.sciencedirect.com/science/article/pii/S1366554514001574.

D. Goeke, J. Hof, and M. Schneider.

Adaptive variable neighborhood search for the battery swap station location-routing problem

with capacitated electric vehicles.

In Darmstadt Technical University, Department of Business Administration, Economics and

Law, Institute for Business Studies (BWL) Working paper. 2015.

S. Gualandi and F. Malucelli.

Resource Constrained Shortest Paths with a Super Additive Objective Function, pages 299–315.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

ISBN 978-3-642-33558-7.

doi: 10.1007/978-3-642-33558-7_24.

URL http://dx.doi.org/10.1007/978-3-642-33558-7_24.

G. Hiermann, J. Puchinger, S. Ropke, and R. F. Hartl.

The electric fleet size and mix vehicle routing problem with time windows and recharging

stations.

European Journal of Operational Research, 252(3):995 – 1018, 2016.

53

http://www.sciencedirect.com/science/article/pii/S1366554514001574
http://dx.doi.org/10.1007/978-3-642-33558-7_24

BIBLIOGRAPHY

ISSN 0377-2217.

doi: https://doi.org/10.1016/j.ejor.2016.01.038.

URL http://www.sciencedirect.com/science/article/pii/S0377221716000837.

M. Keskin and B. Çatay.

Partial recharge strategies for the electric vehicle routing problem with time windows.

Transportation Research Part C: Emerging Technologies, 65:111 – 127, 2016.

ISSN 0968-090X.

doi: https://doi.org/10.1016/j.trc.2016.01.013.

URL http://www.sciencedirect.com/science/article/pii/S0968090X16000322.

F. Malucelli.

Lectures’ notes.

2016.

D. Margaritis, A. Anagnostopoulou, A. Tromaras, and M. Boile.

Electric commercial vehicles: Practical perspectives and future research directions.

Research in Transportation Business & Management, 18:4–10, 3 2016.

doi: https://doi.org/10.1016/j.rtbm.2016.01.005.

URL http://www.sciencedirect.com/science/article/pii/S2210539516000067.

A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas.

The electric vehicle routing problem with nonlinear charging function.

Transportation Research Part B: Methodological, pages –.

doi: https://doi.org/10.1016/j.trb.2017.02.004.

URL http://www.sciencedirect.com/science/article/pii/S0191261516304556.

S. Pelletier, O. Jabali, and G. Laporte.

Goods distribution with electric vehicles: Review and research perspectives.

In Technical Report CIRRELT-2014-44. CIRRELT, Montréal, Canada, 2014.

R. Roberti and M. Wen.

The electric traveling salesman problem with time windows.

Transportation Research Part E: Logistics and Transportation Review, 89:32 – 52, 2016.

ISSN 1366-5545.

doi: https://doi.org/10.1016/j.tre.2016.01.010.

URL http://www.sciencedirect.com/science/article/pii/S1366554516000181.

S. Savaresi.

Lectures’ notes.

2016.

54

http://www.sciencedirect.com/science/article/pii/S0377221716000837
http://www.sciencedirect.com/science/article/pii/S0968090X16000322
http://www.sciencedirect.com/science/article/pii/S2210539516000067
http://www.sciencedirect.com/science/article/pii/S0191261516304556
http://www.sciencedirect.com/science/article/pii/S1366554516000181

BIBLIOGRAPHY

M. Schiffer and G. Walther.

The electric location routing problem with time windows and partial recharging.

European Journal of Operational Research, 260(3):995 – 1013, 2017.

ISSN 0377-2217.

doi: https://doi.org/10.1016/j.ejor.2017.01.011.

URL http://www.sciencedirect.com/science/article/pii/S0377221717300346.

T. M. Sweda, I. S. Dolinskaya, and D. Klabjan.

Optimal recharging policies for electric vehicles.

Transportation Science, 0(0):null, 0a.

doi: 10.1287/trsc.2015.0638.

URL http://dx.doi.org/10.1287/trsc.2015.0638.

T. M. Sweda, I. S. Dolinskaya, and D. Klabjan.

Adaptive routing and recharging policies for electric vehicles.

Transportation Science, 0(0):null, 0b.

doi: 10.1287/trsc.2016.0724.

URL http://dx.doi.org/10.1287/trsc.2016.0724.

55

http://www.sciencedirect.com/science/article/pii/S0377221717300346
http://dx.doi.org/10.1287/trsc.2015.0638
http://dx.doi.org/10.1287/trsc.2016.0724

	List of Tables
	List of Figures
	Introduction
	Overview
	Literature Review
	General Comment

	Problem Description and Mathematical Formulation
	Network Structure
	Master Problem
	Branch-Price-and-Cut Algorithm
	Column Generation

	Labeling Algorithm
	Single Recharge - Full Recharge
	Single Recharge - Full Recharge: REFs
	Single Recharge - Full Recharge: Label Feasibility
	Single Recharge - Full Recharge: Dominance Rule
	Proof that REFs are non-decreasing functions
	Proof on possible extensions
	conclusion

	Single Recharge - Partial Recharge
	Formal Model for the SR-PR
	Label Definitions
	REFs
	Label Feasibility

	Dominance Rule
	Dominance Rule when Trch1=0
	Battery&Cost Dominance Rule when Trch1=1
	Dominance Rule: Conclusion
	Dominance Rule: Addendum

	Acceleration and Branching
	Acceleration strategy
	Branching

	Computational Studies
	Benchmark Instances
	Algorithmic Performances
	Reduced Instances
	Complete Instances

	General Comment

	Conclusion
	Appendix: Direction to Grow
	Bloopers
	Future Challenges

	Appendix Python
	Bibliography

