
POLITECNICO DI MILANO

Master of Science in Engineering of Computing Systems

Department of Electronics, Informatics and Bioengineering

Heuristic-based Optimizations for

Genomic Computing

Bioinformatics Group

Politecnico di Milano

Advisors:

Prof. Stefano Ceri

Dr. Abdulrahman Kaitoua

Master Thesis of :

Andrea Gulino - 836681

Academic Year 2016-2017

To my parents and my beloved friends.

Acknowledgements

This experience would not have been possible without the support of my

family, professors, mentors, and friends. To my parents, Gianni and Daniela,

thank you for your love and financial support and for motivating me through-

out all these years. To prof. Stefano Ceri, for giving me the great opportu-

nity to join his group and for his wise advises. To the guys of the Genomic

Computing group at Politecnico for your help and for being more than just

co-workers. A special thanks to Abdo, for his contribution to this work, for

his inspiring passion for research, and for being a good friend. Thanks to

Eirini, for making me smile whenever I need it .

Thanks to Andrea, Chiara, Davide, Fabrizia, Gloria, Marianna, for being the

friends I can always count on. Thanks to my colleague and friend Alessan-

dro for helping me and standing me over the last 5 years, especially during

the year we spent together in Shanghai. Thanks to my High School teachers

for giving me an high quality education. Thanks to my grandmother and to

all the other members of my family. Thanks to Danilo, Chris and to all the

people who have enjoyed a piece of their life with me but I did not mention

by name.

Finally, a special thanks to my little brother, Matteo, and to my younger

sister, Francesca. I wish you all the best.

I

Abstract

Next Generation Sequencing (NGS), a high-throughput, massively parallel

technology for reading the DNA, is changing biological research and medi-

cal practice, thanks to the low-cost availability of millions of whole genome

sequences of a variety of species, and most important of humans. So far,

the bio-informatics research community has been mostly challenged by pri-

mary and secondary analysis (data alignment and feature calling), but the

emerging problem today is the so-called tertiary analysis, responsible of ex-

ploring, querying and integrating processed data, so as to give answers to

complex biological and clinical questions, ultimately yielding to personalized

medicine.

A new holistic approach for tertiary data analysis has been developed

by the Genomic Computing team at Politecnico di Milano. The approach,

based on the notion of Genomic Data Model (GDM) and on a new high-

level language, called GenoMetric Query Language (GMQL), combines data

modeling and management, big data, cloud computing, systems architecture

and parallel algorithms into the new Genomic Data Management System

(GDMS). Together with the system, new abstractions for parallelism have

been introduced; the parallelism of massive operations on the genome is

based on binning, i.e. the partitioning of the genome into portions so that

operations are performed in parallel at each bin.

Even though much efforts have been made to develop an efficient sys-

tem, there are still cases in which query performance remains problematic.

The main reason behind those performance issues is the lack of high level

optimizations that, by reasoning on data and query characteristics, are able

to put in place smart optimization strategies.

This thesis focuses on the development on one such optimization; opti-

mal binning. Since experiments demonstrated that the bin size is a critical

parameter for the overall performance of domain-specific operations, we de-

veloped a mathematical model that, taking into account query and data

characteristics, allows to predict a bin size that makes binning efficient.

III

In order to perform optimal binning, we also introduce Genomic Pro-

filing, which, taking into account the specificity of genomic data model-

ing, quantitatively defines the properties that better characterize a genomic

dataset from the point of view of query optimization.

Genomic Profiling and bin optimization become part of the Optimizer,

a new module designed to collect the optimizations developed in this thesis

and those optimizations that will come in the future.

Abstract

La Next Generation Sequencing (NGS) è nuova tecnologia per il sequenzia-

mento del DNA che sta cambiando la ricerca biologica e la pratica medica,

supportata dalla disponibilità a basso costo di un grande quantità di DNA

sequenziato di varie specie, tra cui quella umana. Finora, la comunità di

ricerca bio-informatica si è concentrata sull’analisi primaria e secondaria

(allineamento e correlazione), ma il problema emergente, negli ultimi anni,

è la cosiddetta analisi terziaria, orientata all’esplorazione, interrogazione e

integrazione dei dati sperimentali, per dare risposta a complessi quesiti bi-

ologici e clinici e per favorire lo sviluppo della medicina personalizzata.

Un nuovo approccio all’analisi terziaria è stato sviluppato al Politec-

nico di Milano dal team di Genomic Computing. L’approccio, basato sulla

nozione di Genomic Data Model (GDM) e su un nuovo linguaggio di in-

terrogazione, chiamato GenoMetric Query Language (GMQL), combina le

tradizionali teorie sulla modellazione e gestione dei dati alle moderne tec-

nologie impiegate per l’analisi dei big data, dando vita ad un moderno sis-

tema chiamato Genomic Data Management System (GDMS).

Con il sistema, sono state introdotte nuove astrazioni per rendere pos-

sibile il processamento in parallelo di grandi quantità di dati rappresentati

DNA; tra queste il binning, ovvero il partizionamento del genoma in in-

tervalli di eguale misura, chiamati bin, che permettono di decomporre una

singola operazione sul genoma in un certo numero di operazioni da eseguire

in parallelo su ciascun bin.

Nonostante l’impegno speso per sviluppare algoritmi efficienti, ci sono

ancora casi in cui l’esecuzione di query complesse risulta problematica in

termini di performance. Queste problematiche sono in generale riconducibili

ad una carenza di ottimizzazioni di alto livello in grado di tener conto delle

caratteristiche dei dati e delle query sottoposte dall’utente.

Questa tesi sviluppa una di queste ottimizzazioni; l’ottimizzazione del

binning. Diversi esperimenti, infatti, hanno dimostrato che la dimensione di

ogni bin è un parametro che influenza molto la performance complessiva degli

V

operatori di dominio. Pertanto, abbiamo sviluppato un modello matematico

che ci consente di calcolare, caso per caso, la dimensione ottimale di questo

parametro.

Per poter implementare questa ottimizzazione, abbiamo anche svilup-

pato un Profilatore, che, tenendo conto della specificità dei dati genomici,

definisce quantitativamente le caratteristiche che meglio descrivono un dataset

ai fini dell’ottimizzazione delle query. Il Profilatore e le euristiche per il

binning ottimale diventano parte dell’Ottimizzatore, un nuovo modulo del

GDMS progettato per contenere e supportare le ottimizzazioni sviluppate

in questa tesi e quelle che verranno sviluppate in un prossimo futuro.

Contents

1 Introduction 1

2 Model and Language 5

2.1 Genomic Data Model . 5

2.1.1 Motivation . 5

2.1.2 Definition . 6

2.1.3 Examples . 7

2.2 Genometric Query Language 8

2.2.1 General Properties . 8

2.2.2 Predicates Evaluation 9

2.2.3 Relational GMQL operations 10

2.2.4 Domain-specific GMQL operations 11

2.3 Utility Operations . 19

2.3.1 Materialize . 19

3 Binning Algorithms 21

3.1 Join . 21

3.1.1 Evaluation Steps . 22

3.1.2 Binning and Search Space 22

3.1.3 Evaluation of Distal Clauses in Step 1 24

3.1.4 Join Execution Strategy in Spark 26

3.2 Map . 29

4 Optimal Binning 33

4.1 Motivation . 33

4.2 Features for Optimal Binning 35

4.3 Modeling the execution time 37

4.4 Join . 38

4.4.1 Estimating replication 38

4.4.2 Modeling the cost function 47

VII

4.4.3 Behavior of the cost function and optimality 49

4.4.4 Model validation . 53

4.5 Map . 60

4.5.1 Estimating replication 60

4.5.2 Modeling the cost function 61

4.5.3 Behavior of the cost function and optimality 62

4.5.4 Model validation . 63

5 GDMS Optimizer 69

5.1 Query Translation . 69

5.2 Architecture . 70

5.3 Genomic Profiler . 72

5.4 Optimizer . 74

5.4.1 Optimization Controller 77

6 Conclusions and Future Work 79

Bibliography 81

VIII

Chapter 1

Introduction

Next Generation Sequencing (NGS), also known as high-throughput se-

quencing, is a family of technologies for reading the DNA and RNA precisely,

quickly and cheaply [1], [2]; in the next decade, it will offer fast (few hours)

and inexpensive (hundreds of dollars) readings of the whole human genome

[3]1. Large-scale sequencing projects are spreading, and huge amounts of

sequencing data are continuously collected by a growing number of research

laboratories, often organized through world-wide consortia (such as EN-

CODE [4], TCGA [5], 1000 Genomes Project [6], or Roadmap Epigenomics

[7]). Google recently provided an API to store, process, explore and share

DNA sequence reads, alignments, and variant calls, using Google’s cloud

infrastructure 2. Answers to fundamental questions for biological and clin-

ical research are hidden in these data, e.g., how protein-DNA interactions

and DNA three-dimensional conformation affect gene activity, how cancer

develops, how driving mutations occur, how much complex diseases, such

as cancer, are dependent on personal genomic traits or environmental fac-

tors. Personalized and precision medicine based on genomic information is

becoming a reality; the potential for data querying, analysis and sharing

may be considered as the biggest and most important big data problem of

mankind.

So far, the bioinformatics research community has been mostly chal-

lenged by the so-called NGS primary analysis (production of ”reads”, i.e.,

nucleotide sequences representing short DNA or RNA segments) and sec-

ondary analysis (alignment of reads to a reference genome and search for

specific features on the reads, such as variants/mutations and peaks of ex-

pression); but the most important emerging problem is the NGS tertiary

1http://www.genome.gov/sequencingcosts/
2https://cloud.google.com/genomics/

1

Figure 1.1: Phases of genomic data analysis.

analysis, concerned with multi-sample processing of heterogeneous informa-

tion, annotation and filtering of variants, and integration of genomic features

(e.g., specific DNA variants, or signals and peaks of expression, i.e., DNA

regions with higher density of reads). While secondary analysis targets raw

data in output from NGS machines by using specialized methods, tertiary

analysis targets processed data in output from secondary analysis, and it

is responsible of sense making, e.g., discovering how heterogeneous regions

interact with each other (Fig. 1.1).

NGS data are managed by a variety of tools focused on ad-hoc process-

ing targeted to specific tasks, data extractions and transformations (e.g.,

alignment to a reference, mutation and peak calling, reading of gene expres-

sion); each tool manages data in specific technology-driven formats, with

no emphasis on interoperability, format-independent representations, pow-

erful abstractions, and out-of-the-box thinking and scaling. Cloud-based

approaches to genomics have been targeted to speed up specific data extrac-

tion, transformation and analysis processes, but not to combine results from

different data processes.

A new holistic approach for tertiary data analysis has been developed

by the Genomic Computing team at Politecnico di Milano 3. The project,

lead by prof. Stefano Ceri and winner of an ERC Advanced Grant, is the

continuation of the work that has been developed as part of the GenData

2020 project 4, founded at Politecnico di Milano in joint with the European

Institute for Oncology and the Italian Institute for Technology

The project’s main result, so far, is the proposal of a new approach to

genomic data modeling and querying that takes advantage of cloud-based

3http://www.bioinformatics.deib.polimi.it/geco/
4http://gendata.weebly.com/participants.html

2

computing to manage heterogeneous data produced by NGS technology.

What has been proposed in [18] is the Genomic Data Model (GDM), which

encodes processed data in terms of their regions and metadata, and the novel

GenoMetric Query Language (GMQL) for extracting regions of interest from

experiments and for computing their properties, with high-level operations

for manipulating regions and for measuring their distances.

One of the original aspects of the project is the targeting towards hetero-

geneous processed data rather than raw data. World-wide genomic repos-

itories already contain huge amounts of processed data, and actually their

value stems from the certification of high-quality processing. Even if pro-

cessed data are much smaller than raw data, they can still be considered

as ”big data”, because each processed file can contain thousands or even

millions of genomic regions.

Several scalable algorithms for genomic data processing have been de-

veloped during the last years within the project. The last implementation

of the system, called Genomic Data Management System (GDMS), is based

on Spark and Hadoop. The system can be easily deployed locally, on a

user’s machine, or on a cluster of machines, and provides interfaces for Scala,

Python and R. Moreover, queries can be submitted through a Web Interface

to run on a cluster provided by CINECA 5.

Together with the system, new abstractions for parallelism have been

introduced [19]; the parallelism of massive operations on the genome is based

on binning, i.e. the partitioning of the genome into equally-sized portions so

that operations are performed in parallel at each bin. Therefore, instead of

solving the problem chromosome-wide, each operation is computed solving

several small problems in parallel, each problem involving only those regions

belonging to the same bin.

Even though much efforts have been made to develop an efficient sys-

tem, there are still cases in which query performance remains problematic.

The main reason behind those performance issues is the lack of high level

optimizations that, by reasoning on data and query characteristics, are able

to put in place smart optimization strategies.

This thesis focuses on the development on one such optimization; Opti-

mal Binning. Since experiments demonstrated that the bin size is a criti-

cal parameter for the overall performance of domain-specific operations, we

developed a mathematical model that, taking into account query and data

characteristics, allows to predict a bin size that makes binning efficient. The

optimization is designed for JOIN and MAP, the most important domain-

5GMQL-V2, http://www.bioinformatics.deib.polimi.it/GMQL/interfaces/

3

specific GMQL operations: together with Selection and Projection, they

allow defining a particular class of GMQL programs, denoted as conjunctive

GMQL programs, which constitute the core of the language and are used

by most applications.

In order to perform Optimal Binning, we also introduce Genomic Pro-

filing, which, taking into account the specificity of genomic data model-

ing, quantitatively defines the properties that better characterize a genomic

dataset from the point of view of query optimization.

In order to understand the work, it is necessary to give an introduction

on the biological model and on the operations allowed by the query language;

Section 2.1 presents the region-based Genomic Data Model (GDM) defined

in the GenData 2020 project. Then, Section 2.2 presents the Genometric

Query Language, the language used by biologists to query the data. Chapter

3 describes binning for JOIN and MAP operations. In Chapter 4 we present

the analytical models for computing the optimal bin size of JOIN and MAP,

together with the model validation using both synthesized and real datasets.

Finally, Chapter 5 presents Genomic Profiling and the Optimizer module.

4

Chapter 2

Model and Language

2.1 Genomic Data Model

The Genomic Data Model (GDM) is based on the notions of datasets and

samples; a dataset is a collection of samples and each sample is composed

of two parts, the metadata, describing general properties of the sample, and

the region data, describing portions of the DNA.

2.1.1 Motivation

Genomic processed data is typically characterized by a variety of file formats

and by the lack of an attribute-based organization. As advocated by Jim

Gray [8], the Genomic Data Model makes data self-describing, providing

regions with a schema. However, since biologists are used to work with file-

based tools, data is not included into a database; loaders are used to copy

data files to a distributed file system on the cloud at their first use.

The schema is made of a fixed part, that ensures the comparability of

regions coming from different kinds of processing, and of a variable part

describing the features related to the specific kind of processing. Although

DNA regions are strings of nucleotides1, GDM regions are described by a

list of features, where each feature derives from secondary data analysis.

Since there is no agreed standard for the representation of metadata,

GDM represents them as attribute-value pairs; metadata should contain at

least the experiment type, the sequencing and analysis method used for data

production, the cell line, tissue, experimental condition (e.g., antibody tar-

get) and organism sequenced; in case of clinical studies, individual’s descrip-

1DNA is made of strings of billions of nucleotides (represented by the letters T,C,G,A)

enclosed within chromosomes (23 in humans), which are disconnected intervals of the

string.

tions including phenotypes. Metadata attributes may have multiple values

(e.g., the ”Disease” attribute can have both values ”Cancer” and ”Dia-

betes”). Hundreds of datasets and thousands of samples 2 can be queried

thanks to the GDM model.

2.1.2 Definition

A genomic region r is a portion of the genome defined by the quadruple of

values 〈chr, left, right, strand〉, called region coordinates, where chr is the

chromosome, left and right are the two ends of the region along the DNA

coordinates3; strand represents the direction of DNA reading4 encoded as

either + or −, and can be missing (encoded as ∗)5. Formally, a sample s is

a triple 〈id,R,M〉 where:

• id is the sample identifier of type long.

• R is the set of regions of the sample, built as pairs 〈c, f〉 of coordinates c

and features f ; coordinates are arrays of four fixed attributes chr, left,

right, strand which are respectively typed string, long, long, string ;

features are arrays of typed attributes; we assume attribute names of

features to be different, and their types to be any of string, int, long,

double, boolean (GDM types are available both in Java, Scala, and in

the Flink, Spark, SciDB and Pig frameworks). The region schema of

s is the list of attribute names used for the identifier, the coordinates

and the features.

• M is the set of metadata of the sample, built as attribute-value pairs

〈a, v〉, where we assume the type of each value v to be string. The same

attribute name a can appear in multiple pairs of the same sample (in

which case, we say that a is multi-valued).

A dataset is a collection of samples with the same region schema and

with features having the same types; sample identifiers are unique within

each dataset. Each dataset is typically produced within the same project

2We currently store most of ENCODE [4] and TCGA [5] processed data.
3Species are associated with their reference genome; DNA samples are aligned to these

references, hence referred to the same system of coordinates; for humans, several references

were progressively defined, the latest reference is h19.
4DNA is made of two strands rolled-up together in anti-parallel directions, i.e., they

are read in opposite directions by the biomolecular machinery of the cell.
5According to the UCSC notation, we use 0-based, half-open inter-base coordinates,

i.e., the considered genomic sequence is [left, right). Left and right ends can be identical

(e.g., when the region represents a single nucleotide polymorphism)

6

Figure 2.1: Regions and metadata of a dataset consisting of two samples.

(either at a genomic research center or within an international consortium)

by using the same technology and tools, but with different experimental

conditions, described by metadata.

2.1.3 Examples

A dataset can be seen as a couple of tables, one for regions and one for

metadata; an example of the two tables for representing a particular exper-

iment, called ChIP-seq, is shown in Fig.2.1. Note that the region value has

an attribute P VALUE of type float (representing how significant is the call-

ing of the peak of expression in that genomic region); note also that the ID

attribute is present in both tables; it provides a many-to-many connection

between regions and metadata of a sample; e.g., sample 1 has 3 regions and

4 metadata attributes, sample 2 has 2 regions and 3 metadata attributes6.

The regions of the two samples are within chromosomes 1 and 2 of the DNA,

and both are not stranded.

While the above example is simple, GDM supports the schema encoding

of any processed data type, e.g., files for mutations, ChIP-seq, DNA-seq,

RNA-seq, ChIA-PET, VCF, and SAM/BAM formats. We use GDM also

for modeling annotations, i.e. regions of the genome with known properties

6Note that the quadruple 〈id, chr, left, right〉 is not a key of the region table (because

a sample can have multiple regions with the same coordinates), and similarly the pair

〈id, attribute〉 is not a key of the metadata table (because metadata attributes can be

multi-valued).

7

Figure 2.2: Examples of schema with one instance for two different types of processed

data; coordinates and features are enclosed within two records.

(such as genes, with their exons and introns). Schema encodings and one

exemplar instance of mutations and RNA-seq data samples are decribed in

Fig.2.2.

2.2 Genometric Query Language

A GMQL query (or program) is expressed as a sequence of GMQL operations

with the following structure:

<variable> = OPERATION(<params>) <variables>

where each variable stands for a GDM dataset. Operations have associated

parameters, are either unary (with one input variable) or binary (with two

input variables), and construct one result variable.

2.2.1 General Properties

GMQL operations form a closed algebra: results are expressed as new

datasets derived from their operands. All operations produce a result dataset

consisting of several samples, whose identifiers are either inherited by the

operands or generated by the operation. Each operation separately applies

to metadata and to regions; the region-based part of an operation computes

the resulting regions, the metadata part of the operation computes the as-

sociated metadata so as to trace the provenance of each resulting sample;

identifiers preserve the many-to-many mapping of regions and metadata as

discussed in section 2.1.3. Most GMQL operations, although defined upon

two connected data structures, are extension of classic relational algebra

8

operations, twisted to the needs of genomics; they are denoted as relational.

Three domain-specific operations, called COVER, (distal) JOIN and MAP, sig-

nificantly extend the expressive power of classic relational algebra.

The main design principles of GMQL are relational completeness and or-

thogonality. Completeness is guaranteed by the fact that classical algebraic

manipulations are all supported, suitably extended and adapted to comply

with region-based calculus. Orthogonality is achieved because no operator

can be defined as a suitable expression of all other operators; note that the

classic abstractions of grouping is supported, with the same semantics, in the

unary operations GROUP and COVER, and similarly joining is supported, with

the same semantics, in the binary operations JOIN, MAP and DIFFERENCE.

Compared with languages which are currently in use by the bio-informatic

community, GMQL is declarative (it specifies the structure of the results,

leaving its computation to each operation’s implementation) and high-level

(one GMQL query typically substitutes for a long program which embeds

calls to region manipulation libraries); the progressive computation of vari-

ables resembles other algebraic languages (e.g. Pig Latin7). Recently, thanks

to the development of Scala, Python and R libraries, GMQL operators can

be used following the procedural paradigm.

2.2.2 Predicates Evaluation

Several operations include predicates as their parameters. Predicates are

used to select and join samples and are made of arbitrary boolean expres-

sions, as it is customary in relational algebra. Within the predicate, region

attributes can be referenced positionally with respect to the schema, i.e., $0

denotes the first attribute $1 to the second, and so on. Predicates may be

defined either over region attributes or over metadata attributes, as follows:

• Predicates on metadata have an existential interpretation over sam-

ples: they select the entire sample if it contains some metadata at-

tributes such that the predicate evaluation on their values is true. For-

mally, for each sample, a simple predicate p expressed as (A comp V)

on metadata M is defined as:

p ⇐⇒ ∃ (ai, vi) ∈M : (ai = A) ∧ (vi comp V)

If an attribute referenced in the predicate is missing, the predicate

is unknown; we use three-value (i.e. true, false, unknown) logic for

7http://pig.apache.org/

9

metadata predicates p, and we select samples s for which p(s) is true

given the above interpretation. The special predicate missing(A) is

true if the attribute A is not present in M .

• Predicates on regions have a classic interpretation: they select the

regions where the predicate is true. Legal predicates must use the at-

tributes in the region’s schema; when a predicate is illegal, the query

is also illegal, and compilation fails.8 The evaluation of predicates in-

volving two or more regions (essentially join predicates) is defined only

when regions have compatible strands; positive and negative strands

are incompatible, but they are both compatible with a missing strand.

2.2.3 Relational GMQL operations

We briefly describe relational operations; they include six unary operations

(SELECT, PROJECT, EXTEND, MERGE, GROUP and SORT) and two binary opera-

tions (UNION and DIFFERENCE).

The standard GMQL unary operations are:

• SELECT: keeps in the result the input dataset samples which satisfy

a metadata predicate, and then their regions which satisfy a region

predicate.

• PROJECT: keeps in the result the input metadata and region attributes

expressed as parameters. It can also be used to build new metadata

attributes as scalar expressions of metadata attributes (e.g., the age

from the birthdate) or as aggregate expressions of region attributes

(e.g., the average p value of a sample); it can also build new region

attributes as scalar expressions of region attributes (e.g., the length

of a region as the difference between its right and left ends).

• DISTINCT: applies to regions, sample by sample; if two or more regions

of a given sample have identical coordinates, it produces in output only

one region of them. New attribute values can be computed as aggre-

gate expressions of attributes of the regions with identical coordinates

(e.g., the average p value of regions with identical coordinates).

• MERGE: applies to a single dataset and builds a single sample having

as regions all the regions of the dataset samples and as metadata the

union of all the attributes-values of the dataset samples.

8Region predicates may include metadata attributes, but in such case they are legal iff

the metadata attribute is single-valued and not null, and invalid otherwise; in such case,

for a given sample, metadata attributes are equivalent to constant values.

10

• AGGREGATE: computes aggregate functions over region values of each

sample of a dataset and adds the result as new metadata attributes of

the sample.

• GROUP: applies to a single dataset and generates new metadata at-

tributes by computing aggregate functions over the metadata of the

dataset samples that share the same value for a specific metadata at-

tribute, called grouping attribute (e.g., the average age of patients

classified as cases or controls).

• ORDER: uses metadata attributes to order the samples of a dataset, by

adding to each sample an order metadata attribute with the sample

ranking value, and possibly to filter the top samples based upon the

ordering.

Two GMQL binary operations allow building unions or differences of datasets

and samples.

• UNION: applies to two datasets and builds their union, so that each

sample of each operand contributes exactly to one sample of the result;

if datasets have different schemas, these are merged, and missing values

are set to null.

• DIFFERENCE: applies to two datasets and preserves the regions of the

first dataset which do not intersect with any region of the second

dataset; only the metadata of the first dataset are maintained, un-

changed.

2.2.4 Domain-specific GMQL operations

We next focus on domain-specific operations, which are more specifically re-

sponding to genomic management requirements: the unary operation COVER

and the binary operations MAP and JOIN.

Cover

<S2> = COVER/FLAT/SUMMIT/HISTOGRAM (<minAcc>, <maxAcc>

[; groupby: <Am1>, .., <Amn>]

[; aggregate: <Ar1> AS <g1>, .., <Arn> AS <gn>]) <S1>;

The COVER operation responds to the need of computing properties that

reflect region’s intersections, for example to compute a single sample from

several samples which are replicas of the same experiment, or for dealing with

11

Figure 2.3: Accumulation index and COVER results with three different minAcc and

maxAcc values.

overlapping regions (as, by construction, resulting regions are not overlap-

ping.)

Let us initially consider the COVER operation with no grouping; in such

case, the operation produces a single output sample, and all the metadata

attributes of the contributing input samples in S1 are assigned to the re-

sulting single sample s in S2. Regions of the result sample are built from

the regions of samples in S1 according to the following condition:

• Each resulting region r in S2 is the contiguous intersection of at least

minAcc and at most maxAcc contributing regions ri in the samples of

S1 9; minAcc and maxAcc are called accumulation indexes10.

Resulting regions may have new attributes Ar, calculated by means of ag-

gregate expressions over the attributes of the contributing regions. Jaccard

Indexes11 are standard measures of similarity of the contributing regions

ri, added as default region attributes. When a GROUPBY clause is present,

9When regions are stranded, cover is separately applied to positive and negative

strands; in such case, unstranded regions are accounted both as positive and negative.
10The keyword ANY can be used as maxAcc, and in this case no maximum is set (it is

equivalent to omitting the maxAcc option); the keyword ALL stands for the number of

samples in the operand, and can be used both for minAcc and maxAcc. Cases when maxAcc

is greater than ALL are relevant when the input samples include overlapping regions.
11The JaccardIntersect index is calculated as the ratio between the lengths of the

intersection and of the union of the contributing regions; the JaccardResult index is

calculated as the ratio between the lengths of the result and of the union of the contributing

regions.

12

Figure 2.4: Accumulation index and COVER variants results.

the samples are partitioned by groups, each with distinct values of group-

ing metadata attributes (i.e., homonym attributes in the operand schemas)

and the cover operation is separately applied to each group, yielding to one

sample in the result for each group.

For what concerns variants:

• FLAT returns the union of all the regions which contribute to the COVER

(more precisely, it returns the contiguous region that starts from the

first end and stops at the last end of the regions which would contribute

to each region of the COVER).

• SUMMIT returns only those portions of the result regions of the COVER

where the maximum number of regions intersect (more precisely, it

returns regions that start from a position where the number of in-

tersecting regions is not increasing afterwards and stops at a position

where either the number of intersecting regions decreases, or it violates

the max accumulation index).

• HISTOGRAM returns the nonoverlapping regions contributing to the

cover, each with its accumulation index value, which is assigned to

the AccIndex region attribute.

Example. Fig. 2.3 shows three applications of the COVER operation on three

samples, represented on a small portion of the genome; the figure shows the

values of the accumulation index and then the regions resulting from setting

13

the minAcc and maxAcc parameters respectively to (2, 2), (1, 2), and (2, 3).

Fig. 2.4 shows an example with variants.

The following COVER operation produces output regions where at least 2

and at most 3 regions of EXP overlap, having as resulting region attributes

the min pValue of the overlapping regions and their Jaccard indexes; the

result has one sample for each input cell.

RES = COVER(2, 3; groupby: cell; aggregate:

pValue AS MIN(pValue)) EXP;

Map

<S3> = MAP([<Ar1> AS <g1>, .., <Arn> AS <gn>]

[;][joinby: <Am1>, .., <Amn>]) <S1> <S2>;

MAP is a binary operation over two datasets, respectively called reference

and experiment. Let us consider one reference sample, with a set of ref-

erence regions; the operation computes, for each sample in the experiment,

aggregates over the values of the experiment regions that intersect with each

reference region; we say that experiment regions are mapped to reference re-

gions. The operation produces a matrix structure, called genomic space,

where each experiment sample is associated with a row, each reference re-

gion with a column, and each matrix row is a vector of numbers12. Thus, a

MAP operation allows a quantitative reading of experiments with respect to

the reference regions; when the biological function of the reference regions

is not known, the MAP helps in extracting the most interesting regions out

of many candidates.

We first consider the basic MAP operation, without JOINBY clause. For

a given reference sample s1, let R1 be the set of its regions; for each sam-

ple s2 of the second operand, with s2 =< id2, R2,M2 > (according to the

GDM notation), the new sample s3 =< id3, R3,M3 > is constructed; id3
is generated from id1 and id2

13, the metadata M3 are obtained by merging

metadata M1 and M2, and the regions R3 = {< c3, f3 >} are created such

that, for each region r1 ∈ R1, there is exactly one region r3 ∈ R3, having the

same coordinates (i.e., c3 = c1) and having as features f3 obtained as the

concatenation of the features f1 and the new attributes computed by the

12Biologists typically consider the transposed matrix, because there are fewer exper-

iments (on columns) than regions (on rows). Such matrix can be observed using heat

maps, and its rows and/or columns can be clustered to show patterns.
13The implementation generates identifiers for the result by applying hash functions to

the identifiers of operands, so that resulting identifiers are unique; they are identical if

generated multiple times for the same input samples.

14

aggregate functions g specified in the operation; such aggregate functions

are applied to the attributes of all the regions r2 ∈ R2 having a non-empty

intersection with r1. A default aggregate Count counts the number of re-

gions r2 ∈ R2 having a non-empty intersection with r1. For each region, a

field named count LeftDSName RighDSName is added, storing the result of

Count aggregate. The operation is iterated for each reference sample, and

generates a sample-specific genomic space at each iteration.

When the JOINBY clause is present, for each sample s1 of the first dataset

S1 we consider the regions of the samples s2 of S2 that satisfy the join

condition. Syntactically, the clause consists of a list of attribute names,

which are homonyms from the schemas of S1 and of S2; the strings LEFT or

RIGHT that may be present as prefixes of attribute names as result of binary

operators are not considered for detecting homonyms.

Figure 2.5: Example of map using one sample as reference and three samples as exper-

iment, using the Count aggregate function.

Example. Fig. 2.5 shows the effect of this MAP operation on a small portion

of the genome; the input consists of one reference sample with 3 regions and

three mutation experiment samples, the output consists of three samples,

each with the same regions as the reference sample, whose features corre-

sponds to the number of mutations which intersect with those regions. The

result can be interpreted as a (3× 3) genome space.

In the example below, the MAP operation counts how many mutations

occur in known genes, where the dataset EXP contains DNA mutation regions

and GENES contains the genes.

RES = MAP() GENES EXP;

15

Join

<S3> = JOIN([<genometric-pred>][;] [output: <coord-gen>]

[;] [joinby: <Am1>, .., <Amn>]) <S1> <S2>;

The JOIN operation applies to two datasets, respectively called anchor

(the first one) and experiment (the second one), and acts in two phases

(each of them can be missing). In the first phase, pairs of samples which

satisfy the joinby predicate (also called meta-join predicate) are identified;

in the second phase, regions that satisfy the genometric predicate are

selected. The meta-join predicate allows selecting sample pairs with appro-

priate biological conditions (e.g., regarding the same cell line or antibody);

syntactically, it is expressed as a list of homonym attributes from the schemes

of S1 and S2, as previously. The genometric join predicate allows expressing

a variety of distal conditions, needed by biologists. The anchor is used as

startpoint in evaluating genometric predicates (which are not symmetric).

The join result is constructed as follows:

• The meta-join predicates initially selects pairs s1 of S1 and s2 of S2

that satisfy the joinby condition. If the clause is omitted, then the

Cartesian product of all pairs s1 of S1 and s2 of S2 are selected. For

each such pair, a new sample s12 is generated in the result, having an

identifier id12, generated from id1 and id2, and metadata given by the

union of metadata of s1 and s2.

• Then, the genometric predicate is tested for all the pairs < ri, rj >

of regions, with r1 ∈ s1 and rj ∈ s2, by assigning the role of anchor

region, in turn, to all the regions of s1, and then evaluating the geno-

metric predicate condition with all the regions of s2. From every pair

< ri, rj > that satisfies the join condition, a new region is generated

in s12.

From this description, it follows that the join operation yields results that

can grow quadratically both in the number of samples and of regions; hence,

it is the most critical GMQL operation from a computational point of view.

Genometric predicates are based on the genomic distance, defined as

the number of bases (i.e., nucleotides) between the closest opposite ends of

two regions, measured from the right end of the region with left end lower

coordinate.14 A genometric predicate is a sequence of distal conditions,

defined as follows:
14Note that with our choice of interbase coordinates, intersecting regions have distance

less than 0 and adjacent regions have distance equal to 0; if two regions belong to different

chromosomes, their distance is undefined (and predicates based on distance fail).

16

• UP/DOWN denotes the upstream and downstream directions of the genome.

They are interpreted as predicates that must hold on the region s2 of

the experiment; UP is true when s2 is in the upstream genome of the

anchor region15. When this clause is not present, distal conditions

apply to both the directions of the genome.

• MD(K)16 denotes the minimum distance clause; it selects the K regions

of the experiment at minimal distance from the anchor region. When

there are ties (i.e., regions at the same distance from the anchor re-

gion), regions of the experiment are kept in the result even if they

exceed the K limit.

• DLE(N) denotes the less-equal distance clause; it selects all the regions

of the experiment such that their distance from the anchor region is

less than or equal to N bases17.

• DGE(N) denotes the greater-equal distance clause; it selects all the re-

gions of the experiment such that their distance from the anchor region

is greater than or equal to N bases.

Genometric clauses are composed by strings of distal conditions; we say that

a genometric clause is well-formed iff it includes the less-equal distance

clause; we expect all clauses to be well formed, possibly because the clause

DLE(Max) is automatically added at the end of the string, where Max is a

problem-specific maximum distance.

Example. The following strings are legal genometric predicates:

DGE(500), UP, DLE(1000), MD(1)

DGE(50000), UP, DLE(100000)

DLE(2000), MD(1), DOWN

MD(100), DLE(3000)

15Upstream and downstream are technical terms in genomics, and they are applied to

regions on the basis of their strand. For regions of the positive strand (or for unstranded

regions), UP is true for those regions of the experiment whose right end is lower than the

left end of the anchor, and DOWN is true for those regions of the experiment whose left

end is higher than the right end of the anchor. (Remaining regions of the experiment are

overlapping with the anchor region). For the negative strand, ends and disequations are

exchanged.
16Also: MINDIST, MINDISTANCE.
17DLE(-1) is true when the region of the experiment overlaps with the anchor region;

DLE(0) is true when the region of the experiment is adjacent to or overlapping with the

anchor region.

17

Figure 2.6: Different semantics of genometric clauses due to the ordering of distal

conditions; excluded regions are gray.

Note that different orderings of the same distal clauses may produce different

results; this aspect has been designed in order to provide all the required

biological meanings.

Examples. In Fig. 2.6 we show an evaluation of the following two clauses

relative to an anchor region: A: MD(1), DGE(100); B: DGE(100), MD(1).

In case A, the MD(1) clause is computed first, producing one region which

is next excluded by computing the DGE(100) clause; therefore, no region is

produced. In case B, the DGE(100) clause is computed first, producing two

regions, and then the MD(1) clause is computed, producing as result one

region18.

Similarly, the clauses A: MD(1), UP and B: UP, MD(1) may produce

different results, as in case A the minimum distance region is selected re-

gardless of streams and then retained iff it belongs to the upstream of the

anchor, while in case B only upstream regions are considered, and the one

at minimum distance is selected.

Next, we discuss the structure of resulting samples. Assume that regions

ri of si and rj of sj satisfy the genometric predicate, then a new region rij is

created, having merged features obtained by concatenating the feature at-

tributes of the first dataset with the feature attributes of the second dataset.

The coordinates cij are generated according to the coord-gen clause, which

has four options 19:

1. LEFT assigns to rij the coordinates ci of the anchor region.

2. RIGHT assigns to rij the coordinates cj of the experiment region.

18The two queries can be expressed as: produce the minimum distance region iff its

distance is less than 100 bases and produce the minimum distance region after 100 bases.
19If the operation applies to regions with the same strand, the result is also stranded in

the same way; if it applies to regions with different strands, the result is not stranded.

18

3. INT assigns to rij the coordinates of the intersection of ri and rj ; if

the intersection is empty then no region is produced.

4. CAT (also: CONTIG) assigns to rij the coordinates of the concatenation

of ri and rj (i.e., the region from the lower left end between those of

ri and rj to the upper right end between those of ri and rj).

Example. The following join searches for those regions of particular ChIP-

seq experiments, called histone modifications (HM), that are at a minimal

distance from the transcription start sites of genes (TSS), provided that

such distance is greater than 120K bases20. Note that the result uses the

coordinates of the experiment.

RES = JOIN(MD(1), DGE(120000); output: RIGHT) TSS HM;

2.3 Utility Operations

2.3.1 Materialize

MATERIALIZE <S1> INTO file_name;

The MATERIALIZE operation saves the content of a dataset S1 in a file,

whose name is specified, and registers the saved dataset in the system to

make it seamlessly usable in other GMQL queries. All datasets defined in

a GMQL query are, by default, temporary; to see and preserve the content

of any dataset generated during a GMQL query, the dataset must be ma-

terialized. Any dataset can be materialized, however the operation is time

expensive; for best performance, only relevant data should be materialized.

20This query is used in the search of enhancers, i.e., parts of the genome which have an

important role in gene activation.

19

20

Chapter 3

Binning Algorithms

In this chapter we describe the functioning of binning algorithms for JOIN

and MAP operations. The early implementations of the system used to trans-

late GMQL into PIG1. Simple user-defined Java functions, that took ad-

vantage of the ordering of regions along the reference genome, allowed to

produce the results, but with limited parallelism. In order to make an im-

plementation that was more suitable for a big data problem, methods devel-

oped for temporal databases were adapted and new binning algorithms were

introduced. Binning Algorithms make the implementations of domain spe-

cific operators highly parallel by partitioning the genome into much smaller,

identical partitions called bins. Then, each operation, instead of being

computed along the whole chromosome, is computed within each bin. High

parallelism is achieved since every bin can be processed in parallel inde-

pendently from the others. Something similar to our binning is used by

databases of annotations of the UCSC Genome Browser [10] in order to

speed up the search for portions of the genome that must be loaded within

the same browser window. To the best of our knowledge, binning has not

been used for parallelizing genomic operations; the use of time portions of

equal size for temporal interval joins is studied in [11] in the context of map-

reduce. We next focus on the implementation of domain-specific operations.

3.1 Join

Before going into the details of Join implementation, we discuss clause eval-

uation order, Join binning strategy, and the relation between binning and

the query-specific search space.

1Apache Pig https://pig.apache.org/

3.1.1 Evaluation Steps

As discussed in Section 2.2.4, the result of a Join operation is influenced by

the order of execution of the distal conditions specified in the query; the

reason is that the min distance clause (MD) clause is not commutative with

the greater distance clause (GTE) and with the stream clause (UP/DOWN);

instead less distance clause DLE is commutative with all other clauses, and

stream and greater distal clauses are commutative with each other. Thus,

the evaluation of a genometric predicate is performed in 3 steps, where

clauses within each step are commutative and each step can be missing:

• Step 1 evaluates the DLE clause, the DGE and the stream clauses pre-

ceding the MD clause; if a query-specific DLE clause is not present, then

DLE(Max) is added, where Max denotes the maximum biological dis-

tance.

• Step 2 evaluates the MD clause.

• Step 3 evaluates the stream and greater distal clauses after the MD

clause.

Examples. The genometric predicate:

DGE(300), MD(3), DOWN

produces the following three steps:

Step 1: DGE(300), DLE(Max)

Step 2: MD(3)

Step 3: DOWN

The genometric predicate: DOWN, MD(10), DGE(1000), DLE(2500) pro-

duces the following three steps:

Step 1: DOWN, DLE(2500)

Step 2: MD(10)

Step 3: DGE(1000)

Simpler predicates may be evaluated into a single step, e.g. DGE(1000),

UP, DLE(5000).

3.1.2 Binning and Search Space

Efficient executon, in cloud computing, is achieved by means of parallelism;

in genomic computing, such parallelism is achieved by means of binning,

22

Figure 3.1: Search spaces for three distal clauses, Step 1.

i.e., splitting the genome into disjoint sections (bins) so that large compu-

tations can be distributed among them. The process of binning splits every

chromosome of the genome into several bins of equal size S; for each chro-

mosome, bins are progressively numbered starting from 0 up to the i-th bin,

that spans from S × i to S × (i + 1) − 1 . For a given bin size S, a point

placed at i bases from the chromosome start is assigned to bin b(i) = bi/Sc.
Intervals between a left end li and a right end ri are assigned to the bins

between b(li) and b(ri).

In order to effectively evaluate distal clauses, each anchor region is asso-

ciated with its search space, consisting of intervals of bins that may include

matching regions of the experiment; search spaces are built according to the

distal conditions of Step 1; it includes all potential matches, as Steps 2 and

Step 3 are filters of the regions produced by Step 1. Consider an anchor

region with left end l and right end r; let M be the maximum distance and

let Bc denote the last bin of each chromosome c 2. Then:

• If the clause is LTE(d), then the search space is the interval of bins

between b(l − d) (excluding bins with i < 0) and b(r + d) (excluding

bins with i > Bc).

2Given that chromosomes have different sizes, Bc is a specific number for each chro-

mosome.

23

• If the clause is LTE(d1) and GTE(d2), with d1 > d2, then the search

space is the two intervals of bins between b(l − d1) and b(l − d2) (ex-

cluding bins with i < 0) and between b(r+d2) and b(r+d1) (excluding

bins with i > Bc).

• If the clause is GTE(d1), then the search space is the two intervals of

bins between b(l −M) and b(l − d1) (excluding bins with i < 0) and

between b(r + d1) and b(r +M) (excluding bins with i > Bc).

When the UP/DOWN clause is present, the search space is limited to the up-

stream/downstream directions of the genome. A representation of the search

space for the anchor region as effect of the DLE and DGE clauses is shown in

Fig. 3.1 (cases 1 and 2); the third case shows the effects of combining the

DLE, DGE and DOWN clauses.

3.1.3 Evaluation of Distal Clauses in Step 1

This construction allows a parallel evaluation of join predicates. In partic-

ular, the following theorem holds due to the way in which search spaces are

constructed:

Theorem 1. The join predicate between an anchor region and any experi-

ment region falling outside of its search space is false.

In addition, we would like to evaluate the Step 1 join predicate between given

regions of the anchor and experiment in a given bin only, so as to generate

the corresponding result region only once, avoiding duplicates. The following

theorem provides a solution of this problem.

Theorem 2. If the Step 1 predicate between an anchor region and an ex-

periment region is true, it can be tested in a given bin, denoted as testing

bin.

Proof. We build the proof by considering four cases which exhaustively cover

the relationships between anchor and experiment regions, and defining the

testing bin for each of them.

• Assume that the experiment is at the left of the anchor, i.e. the ex-

periment’s left end is strictly less than the anchor’s left end and the

experiment’s right end is less than or equal to the anchor’s right end.

Then, the testing bin is the experiment bin with greatest number (the

one at the smallest distance from the anchor); the predicate can be

true only if the portion of experiment region within the testing bin

24

Figure 3.2: Experiment regions at the left of the search space.

intersects with the search space. Some examples are shown in Fig.

3.2, where the testing bin is denoted by a thicker trait. The predicate

can be true in case (a) (when the testing bin falls within the search

space) and is false in case (b) (as the region is too close to the anchor)

and (c) (as the region is too distant from the anchor).

• The case when the experiment is at the right of the anchor is symmet-

ric; in such case, the experiment’s right end is strictly greater than

the anchor’s right end and the experiment’s left end is greater than or

equal to the anchor’s left end. Then, the testing bin is the experiment

bin with the smallest number; also in such case, the predicate can be

true only if the portion of experiment region within the testing bin

intersects with the search space.

• Assume that the experiment is included within the anchor. Recall that

by construction the search space either properly includes the anchor

region or does not overlap with it. Thus, the experiment can satisfy

the join predicate only if it intersects with the search space in anyone

of its bins; conventionally, we may use as testing bin the experiment

bin with the smallest number. This case is illustrated in Fig. 3.3.

• Finally, assume that the anchor is included in the experiment. Then,

the anchor is at negative distance from the experiment, and again the

search space either properly includes the anchor region or does not

overlap with it; it follows that the join predicate between the region

and the anchor can be true only if the search space includes the anchor.

Conventionally, we may use as testing bin the anchor bin with the

smallest number. This case is illustrated in Fig. 3.4.

Thanks to Theorem 2, at each bin B we evaluate Step 1 conditions just for

those pairs of experiment and anchor regions such that B is their testing bin;

thus, we either discard the pair of regions, or produce the resulting regions

exactly once. This result is used by the parallel execution strategy which is

next discussed.

25

Figure 3.3: Experiment regions enclosed within the anchor region.

Figure 3.4: Anchor region enclosed within the experiment region.

3.1.4 Join Execution Strategy in Spark

Fig. 3.5 illustrates the flow of Spark operators for implementing a join

operation. We recall that joins require first to select the pairs of samples

that need to be joined, using a metadata predicate, and then to compute the

result regions, using a genometric predicate. The operation applies to two

datasets, respectively called anchor and experiment; as a running example

we consider the join with:

Step 1: DGE(140), DLE(500)

Step 2: MD(1)

Step 3: DOWN

computed on:

Anchor: Id, chromosome, start, stop

1 C1 150 160

1 C1 285 390

Experiment: Id, chromosome, start, stop

2 C1 10 20

2 C1 430 550

2 C1 750 780

Throughout the examples of this section, we do not consider strands; in

reality, join predicates evaluation is defined only between regions with com-

patible strand3. We also do not consider region values, they are carried

along with each region and concatenated in the result4.

3Positive and negative strands are not compatible, and they are both compatible with

undefined strands.
4With big value sizes, it is convenient to project the values prior to Block 1 and then

join them to resulting regions within Block 5.

26

Figure 3.5: Operators for encoding the Join algorithm in Spark.

• Block 1 (Metajoin) produces in output, for each anchor sample, the

join list of the experiment samples that must be joined to it.

Example. The join list of sample 1 is [2].

• Block 2 (FlatMap) is responsible of copying regions to the bins:

– For every anchor region and bin b intersecting with the search

space, it generates a copy of the anchor region and assigns it to

bin b, by adding the attribute Bin (b) and the attribute SBin (the

bin in which the anchor region starts.)

– For every sample of the join list and for every bin b intersecting

with each experiment region, it generates a copy of the experi-

ment region, adding to it the attribute Bin (b) and the attributes

SBin (the bin where the experiment region starts) and EBin (the

bin where the experiment region ends.)

Note that anchor regions are replicated at the bins intersecting their

search space, computed in this block, and experiment regions are repli-

cated at the bins which intersect with them. The added attributes

allow to test with a simple predicate if the current bin b is the testing

bin of a given pair of anchor and experiment regions, based on the four

cases of Theorem 2.

Example. With a bin size B = 100, the first anchor region is copied

to the bins 0, 2−6, the second anchor region is copied to the bins 0−8;

the experiment regions is copied to the bins 0, 4− 5, and 7.

• Block 3 (Join) joins the anchor and experiments by chrom and bin. In

this way, for any pair of anchor and experiment samples to be joined

and for any of their anchor and experiment regions, all the relevant

27

data are available at all bins, hence also at their testing bin. This

operation is the most expensive, as it may join millions of regions to

millions of regions; it is effectively computed by the Join operator,

available in Spark.

Example. The following pairs are produced:

Bin Chr Id1 SB1 L1 R1 Id2 L2 R2

B0 C1 1 B1 150 160 2 10 20

B4 C1 1 B1 150 160 2 430 550

B5 C1 1 B1 150 160 2 430 550

B7 C1 1 B1 150 160 2 750 780

B0 C1 1 B3 285 390 2 10 20

B4 C1 1 B3 285 390 2 430 550

B5 C1 1 B3 285 390 2 430 550

B7 C1 1 B3 285 390 2 750 780

• Block 4.1 (FlatMap in Spark) performs Step 1, by computing the dis-

tance between the regions in each row and then selecting only the rows

of the testing bins where the distal conditions hold; testing bins are

determined as indicated in the four cases of the proof of Theorem 2.

This step is computed in parallel in each bin; in Spark is a FlatMap.

Example. The following pairs are produced:

Bin Chr Id1 SB1 L1 R1 Id2 SB2 EB2 L2 R2 D

B4 C1 1 B1 150 160 2 B4 B5 430 550 270

B0 C1 1 B3 285 390 2 B0 B0 10 20 265

B7 C1 1 Bin3 285 390 2 B7 B7 750 780 360

• Block 4.2 (GroupBy, Sort, GroupReduce) performs Step 2, by selecting

experiment regions based upon their minimal distance from anchor

regions; it is implemented by the GroupBy, Sort and GroupReduce

operators, but it requires data shuffling for collecting the experiment

regions at nodes where sorting by distance and top−k selection can be

performed. The latest implementation reduces data shuffling with an

alternative implementation, which adds a sort operation at each bin,

producing at each bin the top − k regions; these need to be moved,

while all other regions can be discarded.

Example. The following pairs are produced:

Bin Chr Id1 SB1 L1 R1 Id2 SB2 EB2 L2 R2 D

B4 C1 1 B1 150 160 2 B4 B5 430 550 270

B0 C1 1 B3 285 390 2 B0 B0 10 20 265

28

Figure 3.6: Operators for encoding the Map algorithm in Spark.

• Block 4.3 (FlatMap) performs Step 3, by further reducing the filtered

regions according to the distal conditions of Step 3. It uses the FlatMap

operator.

Example. In the example, the condition DOWN filters one pair, pro-
ducing:

Bin Chr Id1 SB1 L1 R1 Id2 SB2 EB2 L2 R2 D

B4 C1 1 B1 150 160 2 B4 B5 430 550 270

• Block 5 (FlatMap) is responsible of outputing the resulting pairs, by

computing their sample identifier and their region coordinates accord-

ing to the coordinate composition option and is executed together with

block 4.3

Example. We finally obtain the following result, where a new sample
identifier is generated as a hash function of the identifiers of the two
operands, and the resulting region is obtained by concatenating the
operand regions:

Id Chr Start Stop

Hash(1,2) C1 150 550

3.2 Map

The encoding of this problem as a sequence of operations for Spark is shown

in Fig. 3.6. The algorithm requires to bin the two datasets, then group them

29

by sample pair, chromosome and binning. The cogrouped datasets are used

to compute intersections within the bins. The resulting intersecting regions

then are used as input for the aggregate functions.
The following example is to describe Map algorithm operation shown in

3.6, here we count the experiment regions intersecting with reference regions;
The input is:

Anchor: Id, chromosome, start, stop

1 C1 150 235

Experiment: Id, chromosome, start, stop

2 C1 10 230

• Block 1 (Metajoin) produces in output, for each reference sample, the

map list of the experiment samples that must be mapped to it based

on the metadata condition for joining samples.

• Block 2 (Experiment Binning) is responsible of copying experiment

regions to the bins. For every experiment region and bin b intersecting

with the experiment, it generates a copy of the region for every bin b;

only the attributes which are used by aggregate functions are copied.

Example. With bins of size 100, the following copies are generated:

Id Chr Bin Start Stop

2 C1 0 10 230

2 C1 1 10 230

2 C1 2 10 230

Note that a list of attribute values are generated, but no attribute

value is needed for computing the COUNT.

• Block 2 (Reference Binning) is responsible of copying reference regions

to the bins. For every reference region of a given sample, for every bin b

intersecting with the reference, and for every experiment sample in its

map list, a copy of the reference region is built, having as attributes the

concatenation of Id, Chr, Bin, Start, Stop of the reference with

the Eid of the experiment and with a new attribute H obtained by

hashing all the attributes except the bin; this attribute is later used

for assembling all copies relative to the same reference and experiment

regions.

Example. The following copies are generated:

Id Chr Bin Start Stop Eid H

1 C1 1 150 235 2 567

1 C1 2 150 235 2 567

30

• Block 3-a (CoGroup) is responsible of computing a partial map within

each bin. It joins references and experiment by Eid, Chr and Bin; if

the join succeeds, it further selects resulting tuples by considering only

the bins where either the reference region or the experiment region

starts (note that this bin exists and is unique by construction). At

each selected pair, a portion of the aggregate function is computed.

A new region is built, having as attributes the concatenation of Chr,

Bin with Rid, Start, Stop, H of the reference and EId, EStart,

EStop, V of the experiment; V stores the experiment values to be used

by the aggregate functions (in the case of Count, it stores 1.) If the join

fails, thanks to the CoGroup constructor, all the reference information

is stored to the result, with null values stored for the experiment; in

this way, all reference regions are correctly accounted.

Example. The following copies are generated, and the second one is
then filtered:

Chr Bin RId Start Stop H EId EB EStart Estop V

C1 1 1 150 235 567 2 c1 1 10 230 [1]

C1 2 1 150 235 567 2 c1 2 10 230 [1]

• Block 4 (Assembling) is responsible of assembling all copies corre-

sponding to the same reference and experiment at one node, through

data shuffling; the operation is performed thanks to a reduce phase

which uses the Hash attribute. Partial sums are performed for com-

puting COUNT, and lists of attribute values are concatenated within a

bag.

Example. In the example, the two regions are reduced to one, as
they have the same hash attribute. The following region is generated:

Rid Chr Start Stop Val

567 C1 150 235 1

• Block 5 (Aggregating) is responsible of computing aggregate functions,

by applying them to the bag of values built at block 4. This step does

not apply to the running example.

31

32

Chapter 4

Optimal Binning

In the previous chapter we discussed how binning algorithms work concep-

tually and how they have been implemented in Spark. We also anticipated

that the choice of the bin size can become critical for the performance of

GMQL operations.

This chapter starts pointing out the importance of the choice of a good

bin size and discussing the current solution adopted by GMQL. Then, the

most important factors affecting the choice of a good bin size are discussed

and optimal binning, the optimization at the core of this thesis, is presented.

In contrast with unoptimized binning, where the bin size was chosen stat-

ically for each operator, optimal binning enables the choice of the bin size

at runtime, based on the characteristics of the input data and query. In

sections 4.4 and 4.5 we present simple heuristics that allow to determine an

optimal bin size for JOIN and MAP operators and we evaluate the goodness

of those heuristics through some experiments on both synthesized and real

data.

4.1 Motivation

As discussed in Chapter 3, the rationale of binning is to reduce the number of

regions to be considered within each bin, instead of computing chromosome-

wide cross products; however, regions that cross bin borders must be repli-

cated. Large bins reduce replication of regions, but they lead to the produc-

tion and matching of many pairs of regions within each bin; conversely, small

bins increase replication and therefore the generation of matching regions

that should not be produced in output. In Fig.4.1., we show the execution

time of some Join operations as a function of the bin size. In these exper-

iments we can see how the bin size is affecting the execution time. The

Figure 4.1: Execution time of Join as a function of bin size in logarithmic scale (Spark).

execution time functions clearly show the existence of some bin sizes that

are better than the others; too small and too big bin sizes make the execu-

tion time increase significantly, coherently with what said before. In these

cases, bin sizes between 0.5 · 10K and 5 · 10K can be considered optimal.

The existence of an optimality range for the bin size was already clear

when binning algorithms were designed, as discussed in [19]. It was also clear

the dependence of the optimal bin size on the characteristics of the input

data and query. The solution that was adopted at that time, was choosing

the bin size statically (once for all) for each domain-specific operator of the

language.

Table 4.1: Static bin sizes for Jon and Map operators.

Operation Bin Size [bases]

Join 5K

Map 7K

The static bin sizes, listed in Table 4.1, represent a good compromise

between several experiments made on the datasets available in the GMQL

Repository in 2015. This means that the choice of those bin sizes fits,

somehow, the characteristics of a specific collection of datasets. However,

as the system evolves and more users get involved, we expect our repository

to be more heterogeneous in terms of the characteristics of the datasets it

contains. Indeed, users can upload their own datasets and generate new

datasets as result of a query execution.

Since we do not make any assumption on the characteristics of the

34

datasets in our repository, we must ensure that our system performs well

independently of those characteristics. With unoptimized binning, the risk

of long execution times or non-terminating executions, due to the saturation

of cluster resources, is very high and gets higher as the datasets and query

characteristics become different from those we have always been used to.

Therefore, the implementation of optimal binning is a key aspect for the

efficiency and scalability of the system.

4.2 Features for Optimal Binning

The way we find an optimal bin size is based on the minimization of a

mathematical function that models the execution time of domain-specific

operators as a function of the bin size; e.g., considering one of the executions

in Fig.4.1, we find the optimal bin size minimizing a function that suitably

fits the execution time curve.

Before going into execution time modeling, we tried to understand which

factors affected the behavior of the execution time function. Input data size

is typically one of the most important factors to be taken into account when

one tries to estimate the execution time of a generic application. However,

binning algorithms strictly depend on a specific data model and query lan-

guage, and data size is not enough to model the execution time of operations.

Indeed, the execution time of the operations performed at each bin depends

on the amount of region replicates generated for that bin, that, on its turn

depends on some features, e.g. region length, not related to the input data

size. In addition to data and query characteristics, the execution time is

also dependent on the computing infrastructure running the system. A list

of the main factors influencing the execution time, and consequently the

optimal bin size, is here presented:

• Number of regions contained in each sample. Intuitively, when regions

increase in number, smaller bins are needed in order to avoid lots of

comparisons within each bin.

• Number of samples contained in each input dataset. Having more sam-

ples implies more regions in each bin; again, smaller bins are needed

in order to avoid lots of comparisons.

• Regions length: when regions are longer than bins, they are going to

produce many replicates, increasing the cost of data processing and

the number of useless tests; bigger bins are needed.

35

Table 4.2: Symbols used to describe data and query features.

Symbol Meaning

S Number of samples in a dataset

N Number of regions

w Average region length

m Minimum left coordinate

M Maximum right coordinate

LT Less than clause argument

GT Greater than clause argument

str 1 if stream clause defined , 0 if missing

• The distribution of regions along the chromosome affects the load of

each bin and with it the overall number of regions to be compared.

• Physical characteristics of the cluster : the amount of memory and the

computational power of the cluster affect the shape of the execution

time function and, consequently, the range of optimality.

• Query : operator arguments affect the optimality range; e.g. increasing

the search space, defined by the genometric predicate of the JOIN

operation, more replicates are produced for the same anchor region;

larger bins are needed to reduce the number of replicates.

The extraction of data and query properties is discussed in Chapter 5, where

we describe the Optimizer and Genomic Profiling. Table 4.2 lists the prop-

erties required by the heuristics defined in the following sections. Note that

N , w, m and M are computed for each sample of a dataset.

In order to have faster profiling and to keep our heuristics adequately

simple, we took the following decisions:

• We opted for a single parameter per sample instead of chromosome-

specific parameters, e.g. we compute the average region length for

each sample without discriminating between chromosomes.

• We did not consider the distribution of regions. We assume that, in

every sample, regions are uniformly distributed along a single chromo-

some that spans from m to M .

• Physical characteristics of the cluster are not explicitly taken into ac-

count. As discussed in the next session, we retune some parameters

whenever the cluster configuration changes.

36

4.3 Modeling the execution time

In this section we describe the methodology that has been used to build the

heuristics for optimal binning of JOIN and MAP.

The methodology is based on the modeling of the execution time as a

function of the bin size. From now on, we will refer to this function as

the cost function. What we expect, is to find a curve similar to those we

showed in Fig. 4.1. Once we come up with a good approximation of the

cost function, all we need to do is to take the bin size that minimizes the

curve and consider it as the optimal bin size.

We model the cost function of an operator as a linear combination of

the dominant time complexities associated to the operations involved in the

algorithm implementing the operator. If an algorithm has time complexity

f(n) = n2 + n+ log(n)

we may discard the logarithm and consider only two (dominant) time com-

plexities, the quadratic and the linear, and then model the execution time

as a linear combination of the two.

Usually, time complexity is expressed as a function of the variable input

size n; in our case we are interested in modeling the execution time as a

function of the bin size b.

Formally, the cost function associated to an operator is expressed as:

c(b) =
∑
i

ai · τi(b) + k (4.1)

where b is the bin size, c(b) the cost function, τi(b) is the i-th dominant time

complexity of the algorithm implementing the operator, ai a scale factor for

the i-th time complexity and k is a quantity that does not depend on b.

Note that it must be b > 0, since negative or null bin sizes make no sense.

If this function has a local minimum it is possible to find the optimal bin

size (b∗) as:

b∗ = argminb c(b)

i.e. the bin size that minimizes the cost function.

Scale factors can be thought as the amount of time required to process

each input entry (e.g. a region), so they depend on the availability of com-

putational resources. For this reason, we retune scale factors whenever we

change the cluster configuration. Moreover, in the following sections we will

discard any term of the cost function expression that does not depend on

37

b. Discarding constants does not change the position of the minimum and

preserves the ”shape” of the curve. In other words, our cost function does

not estimate the real execution time, but we are still able to say which bin

corresponds to the minimal execution time and know the gain in time we

get by using a bin size instead of another.

4.4 Join

The Join operation produces results that can grow quadratically both in the

number of input samples and in the number of regions, and is the most criti-

cal GMQL operation from a computational point of view. In this section, we

present and motivate the heuristics used to predict the optimal bin size for

this operation. Before building the final cost function, using the methodol-

ogy described in the previous section, it is necessary to understand how data

are replicated by binning algorithms. For this purpose, in section 4.4.1 we

build some heuristics that allow to estimate the amount of regions available

at each bin after binning. Then, in section 4.4.2, we analyze the complexity

of the Join implementation and we use replication estimates to define the

cost function and the optimal bin size heuristics. Finally, we validate the

heuristics through some tests performed on both synthesized and real data.

We assume that reader already knows how the Join operation works (sec.

2.2.4) and how the binning of its input dataset is performed (sec. 3.1).

4.4.1 Estimating replication

As explained in sec. 3.1, binning algorithms replicate regions of a datasets

in each bin overlapping with the region, when binning is performed on the

experiment dataset, or overlapping with the search space1, when binning

is performed on the anchor dataset. Estimating the number of generated

replicates 2 with a given bin size is fundamental to know how many com-

putations, e.g. comparisons, are performed at each bin. In the following,

we build the heuristics that allow us to compute the number of replicates

generated by the binning of Join input datasets.

1Differently from the previous chapters and from its original definition, in this chapter

we don’t refer to ”search space” as an interval of bins but as an interval of coordinates;

e.g. the search space associated to a reference region of coordinates [100, 200], given a

genometric predicate DGE(100), DLE(200), DOWN, is the interval [300, 400]
2We use the term replicates to refer to all the region instances, each one associated to

one bin, produced as a consequence of binning.

38

Binning the Experiment Dataset

The heuristic defined in this section is the simplest and most recurrent

heuristic in this work; it will be the core of upper level heuristics and will

be extended later to define more complex estimates.

As already said in Chapter 3, a region of the experiment dataset is

replicated in those bins intersecting with the region.

Theorem 3. The average number of replicates generated by the binning of

a single region of the experiment dataset is given by:

rsingle(b) =
l − 1

b
+ 1 (4.2)

where l is the region length and b is the bin size. The average is intended

over all the possible positionings of the region within the chromosome, as-

suming that every position is equally probable.

Proof. To prove this theorem we start defining the concept of minimum

frame.

Definition 1. The Minimum Frame µ for a generic region of length l is the

mimum number of bins, of fixed size b, that can contain that region.

The minimum frame can be computed as the least succeeding integer

(ceiling) of the fraction between the region length and the bin size:

µ =

⌈
l

b

⌉
Example. The minimum number of bins of size 2 that can contain a region

of length 3 can be computed as

µ =

⌈
3

2

⌉
= 2

In most cases, the region will simply overlap with a number of bins corre-

sponding to its minimum frame. However, depending on how the region is

positioned w.r.t. the bin borders, the region may overlap with an additional

bin (generating also a new replicate). Therefore, the number of generated

replicates for a single region of the experiment can either be µ or µ+ 1.

Example. In figure Fig.4.2, both examples use the same region length (50

bases) and the same bin size (80 bases). The minimum frame is computed

as µ =
⌈
50
80

⌉
= 1. In EX1, the number of generated replicates equals the

39

Figure 4.2: Two regions having the same length generating different numbers of repli-

cates depending on their position w.r.t. the bin borders.

minimum frame. In EX2, due to the particular positioning of the region

w.r.t. the bin borders, one additional replicate is generated.

Now, we could simply choose to estimate the number of replicates of a

binned experiment region either with µ (underestimating) or µ+ 1 (overes-

timating). However, even if the error in the estimation of the replicates for

a single region could be considered accceptable, when we try to estimate the

replicates for all the regions in a datasets, this error becomes relevant and

cannot be neglected.

The solution we use is to take a weighted average that considers how

frequently the region is fully contained in a minimum frame and how fre-

quently it ”crosses” the borders of a minumum frame, overlapping with an

additional bin, assuming that a region can be located at any position with

equal probability. If we think to move a region along the chromosome from

left to right, one base at time, the relative position of the region w.r.t. the

bin borders becomes the same after b moves. This implies that the number

of bins it overlaps, depending on how it is positioned, repeats with period

b. Considering b possible positions, the number of times the region over-

laps with µ bins equals the number of times the region remains within the

borders of a minimum frame, i.e.:

nµ = µ · b− l + 1 (4.3)

where µ · b is the length (in bases) of the minimum frame. The number of

times the region overlpas with µ+1 bins is instead the number of remaining

positions, i.e.:

nµ+1 = b− nµ = b ·
(

1− µ
)

+ l − 1 (4.4)

40

Figure 4.3: Moving the same region along the chromosome one base at time generates

different number of replicates that are periodic with period 2 (bin size).

Note that (4.4) can equal zero, for example when l = 3 and b = 2.

Finally, the weighted average is given by:

nµ ·
(
µ
)

+ nµ+1 ·
(
µ+ 1

)
b

=
l − 1

b
+ 1

i.e. (4.2).

Example. In Fig.4.3, we show how moving a region one base at time from

left to right, the number of replicates is periodic with period that equals the

bin size (2 bases). The number of possible positions we have to consider is

then 2. The number of replicates that are generated after binning can either

be µ = 2 or µ + 1 = 3. The number of positions in which the generated

replicates are 2 can be computed with (4.3), i.e.

n2 = µ · b− l + 1 = 4− 4 + 1 = 1

The number of positions in which one more bin is intersected is computed

with (4.4), i.e.

n2+1 = b ·
(

1− µ
)

+ l − 1 = −2 + 4− 1 = 1

Then, the average number of replicates can be computed with (4.2), i.e.

rsingle(b) =
l − 1

b
+ 1 = 1.5 + 1 = 2.5

.

Now, we would like to estimate the number of replicates generated by

the binning of a whole sample. If a sample contains N regions, and li is the

41

length of the i-th region in the sample, i = 1...N , the number of replicates

generated by the whole sample can be computed as:

ρEi(b) =
N∑
i=1

(li − 1

b
+ 1
)

The previous sum, can be written as:

ρEi(b) =

∑N
i=1 li −N

b
+N

taking out N we can write the previous expression as:

ρEi(b) = N ·
(∑N

i=1 li
N − 1

b
+ 1

)
where

∑N
i=1 li
N is the average length of the regions in the sample. From now

on we refer to the average region length as w:

w =

∑N
i=1 li
N

Finally, the total number of replications ρEi(b) generated by the binning

of the i-th sample of the experiment dataset can be estimated by:

ρEi(b) = Ni ·
(
wi − 1

b
+ 1

)
(4.5)

where Ni and wi are, respectively, the number of regions and the average

length of the regions in the i-th sample.

Binning the Anchor Dataset

As already said in Chapter 3, a region of the anchor dataset is replicated

in those bins that overlap with the search space associated to that region.

The search space is defined by the distal clauses DLE(n) (distance ≤ n) and

DGE(n) (distance ≥ n), and by the stream clause UP (upstream) or DOWN

(downstream) in the genometric predicate. In the following, we refer to the

argument of the DGE clause as LT and to the argument of the DLE clause as

GT.

To keep our presentation simple we do not discuss the cases in which the

distal clauses have a negative argument, so, from now on we assume that

LT ≥ 0 and GT ≥ 0.

We start considering the simple case in which only the DLE clause is

defined in the genometric predicate. In this case, the search space, like a

42

Figure 4.4: Anchor binning with two different queries on the same anchor region with

no DGE clause.

region, is a contiguous interval defined over the chromosome space and its

length can be computed as:

2 · LT + l

where LT is the argument of the DLE clause (in bases) and l the region

length. Since it is a contiguous interval, we can still use the expression (4.2)

to compute the number of replicates, but, instead of using the length of the

experiment region, we consider the length of the search space, i.e..

rsingle(b) =
(2 · LT + l)− 1

b
+ 1

If the stream clause (either UP or DOWN) is defined , the length of the search

space becomes simply LT, and, since the search space is still contiguous, we

can exploit again (4.2) to compute the number of replicates:

rsingle(b) =
(LT)− 1

b
+ 1

To generalize the two cases, we introduce the term str, that equals 1 if the

stream clause is defined, 0 if the stream clause is missing from the genometric

predicate, and we estimate the number of replicates with:

rsingle(b) =
(2 · LT + l)− str · (LT + l)− 1

b
+ 1

We can estimate the total number of replicates generated by the binning

of the i-th sample of the anchor dataset, when no DGE is present in the

genometric predicate, with:

ρ
(1)
Ai

(b) = Ni ·
(

2 · LT + wi − str · (LT + wi)− 1

b
+ 1

)
(4.6)

43

Figure 4.5: Anchor binning with two different queries on the same anchor region with

DGE clause.

where Ni is the number of regions in the i-th sample.

When the DGE clause is present in the genometric predicate, we can

distinguish two main cases:

• stream clause is present : corresponding to the second example in

Fig.4.5, the search space is a single contiguous interval.

• no stream clause: corresponding to the first example in Fig.4.5, the

search space is made of two distinct contiguous intervals having the

same length.

In the first case, the search space is still a single contiguous interval

having length LT −GT . Again, we exploit (4.2) to estimate the number of

replicates generated by a single anchor region:

rsingle(b) =
(LT −GT)− 1

b
+ 1

The estimation of the number of replicates for the i-th sample of the reference

dataset is then given by:

ρ
(2)
Ai

(b) = Ni ·
(

(LT −GT)− 1

b
+ 1

)
(4.7)

In the second case, the search space is no more contiguous but is made of

two distinct contiguous intervals, each having length LT − GT . We can

44

estimate the number of intersected bins as double the number of bins that

are intersected by one of the two intervals of the search space, i.e.:

2 ·
(

(LT −GT)− 1

b
+ 1

)
(4.8)

However, when the bin size is larger than the gap between the two intervals,

i.e. b > 2 · GT + l, the number of intersected bins may not correspond

to the number of generated replicates. This happens because, when the

bin size exceeds the gap, the two intervals may be overlapping with the

same bin. In this case, (4.8) would consider the overlappings separetely,

wrongly estimating one more replicate of the anchor region. Therefore,

when b > 2 · GT + l we need to use another estimation that takes into

account this difference. Instead of reasoning on ’how much’ to subtract to

(4.8) in order to get the correct estimate, we can make a simple observation:

if the bin size exceeds the gap between the two intervals of the search space,

there is no possibility to encounter empty bins between the leftmost and

rightmost ends of the search space, because every bin overlapping with the

gap will also overlap with at least one base of the search space preceding or

succeeding the gap itself. In other words, when b > 2 ·GT + l, the presence

of the gap can be neglected and the search space can be considered as a

single contiguous interval of length 2 · LT + l, as if the DGE was not defined

at all. Therefore, when the DGE clause is present in the genometric predicate

but the stream clause is not, we can estimate the replicates generated by

the binning of a single anchor region as:

rsingle(b) =


2 ·
((LT−GT)−1

b + 1
)

b ≤ 2 ·GT + l

(2·LT+l)−1
b + 1 b > 2 ·GT + l

That is, a piecewise function with a derivative discontinuity in b = 2 ·GT + l.

The behavior of the function is shown in Fig.4.6.

In order to formalize the estimation of the number of replicates for the

whole anchor dataset, we define:

ri(b) =


2 ·
((LT−GT)−1

b + 1
)

b ≤ 2 ·GT + wi

(2·LT+wi)−1
b + 1 b > 2 ·GT + wi

(4.9)

Then, the estimation of the number of replicates generated by the binning

of the i-th sample of the reference dataset when the DGE clause is present in

the genometric predicate but the stream clause is not, is given by:

ρ
(3)
Ai

(b) = Ni · ri(b) (4.10)

45

Figure 4.6: Behavior of the function estimating the number of replicates generated by

the binning of an anchor region with DGE defined and without stream clause.

Finally, the number of replicates generated by the binning of the i-th

sample of the reference dataset is given, by (4.6), (4.10) and (4.7), depending

on the case. All the cases are summarised by the following:

ρAi(b) =


Ni ·

(
2·LT+wi−str·(LT+wi)−1

b + 1

)
no DGE

Ni ·
(

(LT−GT)−1
b + 1

)
DGE, stream

Ni · ri(b) DGE , no stream

(4.11)

where ri(b) is defined in (4.9).

Estimating the number of replicates in each bin

Now, we would like to estimate, for each binned sample of the anchor (exper-

iment) dataset, the number of replicates that ends up into a single bin. Here

we care only of those bins that, after binning, contain at least one replicate;

we call them useful bins and we use U(b) to refer to their cardinality as a

function of the bin size.

In order to compute the number of per-bin replicates δi(b), of a sample

i, we take the total number of replicates generated by that sample and we

divide it by the number of useful bins:

δi(b) =
ρi(b)

Ui(b)

46

Figure 4.7: Example of estimation of the number of replicates in each useful bin of an

experiment sample.

A precise estimation of U(b) would require the knowledge of some charac-

teristics of the dataset, such as the distribution of region distances and a

measure of the number of regions overlapping within the same sample, that

we do not take into account for the reasons provided in 4.2.

We estimate the number of useful bins for the i-th sample of a dataset as:

Ui(b) =
M −m

b
=
Li
b

(4.12)

where Li is difference between the stop coordinate of the rightmost region

(M) an the start coordinate of the leftmost region (m) in the sample. This

estimate tends to overestimate the number of useful bins when the bin size is

smaller than the distance between regions, which, in most cases, corresponds

to an unoptimal situation.

Finally, the number of per-bin replicates for the i-th anchor sample is given

by:

δAi(b) = b · ρAi(b)

Li
(4.13)

and for the experiment dataset:

δEi(b) = b · ρEi(b)

Li
(4.14)

An example is provided in Fig. 4.7.

4.4.2 Modeling the cost function

In order to build a model of the cost function, using the approach described

in 4.3, it is necessary to identify, within the algorithm implementing the Join

47

operation, the dominant time complexities that depend on the bin size. We

can neglect every other time complexity that is not dependent on the bin

size, because, as discussed in 4.3, constants do not change the ”shape” of

the cost function and the position of optimal bin size.

For all the operations preceding the Join (Spark Join, see Fig. 3.5), that

performs the cross product between the anchor regions and the experiment

regions in each bin, the dominant time complexity can be assumed linear in

the number of replicates, i.e. :

τ1(b) =

SA∑
i=1

ρAi(b) +

SE∑
i=1

ρEi(b) (4.15)

For the Join (Spark Join), if β(b) is the number of bins generated with

a bin size b, the time complexity can be expressed as:

τ2(b) = β(b) ·
(SA∑
i=1

δAi(b) ·
SE∑
i=1

δEi(b)

)
(4.16)

where
∑SA

i=1 δAi(b) is the total number of anchor regions replicates in each

bin,
∑SE

i=1 δEi(b) is the total number of experiment regions replicates in each

bin, and β(b) estimates the number of bins having at least one reference

region and at least one anchor region, i.e. the number of bins in which

anchor and experiment regions can be joined.

We estimate β(b) as:

β(b) = min

(
maxi=1..SA

(
Ui(b)

)
,maxi=1..SE

(
Ui(b)

))
That is, we estimate the number of bins having both anchor and experiment

regions as the minimum between the maximum number of useful bins among

the anchor samples and the maximum number of useful bins among the

experiment samples. Replacing the definition of Ui(b), given by (4.12), it is

possible to write β(b) as:

β(b) =
1

b
·min

(
maxi=1..SA

(
Li
)
,maxi=1..SE

(
Li
))

We define L∗ as

L∗ = min

(
maxi=1..SA

(
Li
)
,maxi=1..SE

(
Li
))

and simplify the expression of β(b) as follows:

β(b) =
L∗
b

48

Finally, the cost function, according to the representation given by (4.1), in

which we neglect the term k, can be expressed as:

c(b) = a1 · τ1(b) + a2 · τ2(b)

Replacing (4.15) and (4.16), the cost function becomes

c(b) = a1·
(SA∑
i=1

ρAi(b)+

SE∑
i=1

ρEi(b)

)
+a2·

L∗
b
·
(SA∑
i=1

δAi(b)·
SE∑
i=1

δEi(b)

)
(4.17)

4.4.3 Behavior of the cost function and optimality

Replacing every term with its definition and arranging the equation in a

different way, so that the dependence on b is clear, (4.17) can be expressed

as:

c(b) =
1

b
· (a1 · P + a2 ·Q) + b · a2 ·R+ (a1 · T + a2 · V)

where a1 and a2 are parameters to be tuned , while P , Q, R, T , and V are

constants3 introduced to make the equation more readable and will defined

soon for each specific case.

We use this definition of the cost function to describe all the cases except the

one in which the DGE is present in the genometric predicate but the stream

clause is not present; that case is treated separately.

Dropping constant terms from the equation, the cost function becomes:

c(b) =
1

b
· (a1 · P + a2 ·Q) + b · a2 ·R

Case 1: DGE not present

In this case the cost function is defined as:

c1(b) =
1

b
· (a1 · P1 + a2 ·Q1) + b · a2 ·R (4.18)

where:

P1 =

SA∑
i=1

NAi · (2 · LT + wAi − str · (LT + wAi)− 1) +

SE∑
i=1

NEi · (wEi − 1)

Q1 = L∗·
SA∑
i=1

NAi · (2 · LT + wAi − str · (LT + wAi)− 1)

LAi

·
SE∑
i=1

NEi · (wEi − 1)

LEi

3not depending on b; can be computed as a combination of features.

49

Figure 4.8: Behavior of the cost function for all the cases except the case in which the

DGE is present in the genometric predicate without stream clause.

and:

R = L∗ ·
SA∑
i=1

NAi

LAi

·
SE∑
i=1

NEi

LEi

(4.19)

The behavior of the cost function is depicted in Fig.4.8. In this case, the cost

function is a strictly convex function that admits a single global minimum.

The minimum, i.e. the optimal bin size is given by:

b∗1 =

√
a1
a2
· P1 +Q1

R
(4.20)

Case 2: DGE and stream clause present

In this case the cost function is defined as:

c2(b) =
1

b
· (a1 · P2 + a2 ·Q2) + b · a2 ·R (4.21)

where:

P2 =

SA∑
i=1

NAi · (LT −GT − 1) +

SE∑
i=1

NEi · (wEi − 1)

Q2 = L∗ ·
SA∑
i=1

NAi · (LT −GT − 1)

LAi

·
SE∑
i=1

NEi · (wEi − 1)

LEi

while R is still defined by 4.19.

50

The behavior of the cost function is still the same as in the previous case,

i.e. the one depicted in Fig.4.8. In this case, the cost function is a strictly

convex function that admits a single global minimum.

The minimum, i.e. the optimal bin size is given by:

b∗2 =

√
a1
a2
· P2 +Q2

R
(4.22)

Case 3: DGE present without stream clause

In this case the cost function is a piecewise function defined as:

c3(b) =

{
c(b)left b ≤ 2 ·GT + wr
c(b)right b > 2 ·GT + wr

where wr is the average region length of the anchor dataset and:

c(b)left =
1

b
· (a1 · Pleft + a2 ·Qleft) + a2 · b ·Rleft

c(b)right =
1

b
· (a1 · Pright + a2 ·Qright) + a2 · b ·Rright

and:

Rright = L∗ ·
SA∑
i=1

NAi

LAi

·
SE∑
i=1

NEi

LEi

Pright =

SA∑
i=1

NAi · (2 · LT + wAi − 1) +

SE∑
i=1

NEi · (wEi − 1)

Qright = L∗ ·
SA∑
i=1

NAi · (2 · LT + wAi − 1)

LAi

·
SE∑
i=1

NEi · (wEi − 1)

LEi

Rleft = 2 ·Rright

Pleft =

SR∑
i=1

NAi · 2 · (LT −GT − 1) +

SE∑
i=1

NEi · (wEi − 1)

Qleft = L∗ ·
SA∑
i=1

NAi · 2 · (LT −GT − 1)

LAi

·
SE∑
i=1

NEi · (wEi − 1)

LEi

51

Figure 4.9: Behavior of the cost function in the case in which the DGE is present in the

genometric predicate without stream clause.

The behavior of the cost function is depicted in Fig.4.9. In this case

the function may have local minima. The global minimum is evaluated

considering the global minimum of c(b)left and c(b)right:

b∗left =

√
a1
a2
· Pleft +Qleft

Rleft

b∗right =

√
a1
a2
· Pright +Qright

Rright

The global minimum b∗3 depends on the position of these two minima w.r.t.

the critical point c = 2 ·GT + wr:

• if b∗left ≤ c and b∗right ≥ c : the minimum is:

b∗3 =


b∗left if c(b∗left)left = min

(
c(b∗left)left, c(b

∗
right)right

)
b∗right if c(b∗right)right = min

(
c(b∗left)left, c(b

∗
right)right

)
• if b∗left > c and b∗right ≥ c : the minimum is:

b∗3 = b∗right

• if b∗left ≤ c and b∗right < c : the minimum is:

b∗3 = b∗left

52

• if b∗left > c and b∗right < c : this is a limit case since the minimum

equals the critical point:

b∗3 = 2 ·GT + wr

4.4.4 Model validation

Each of the following tests compares the behavior of a real execution of

the Join operation with the behavior predicted by the model built in the

previous subsections. In order to validate the model, the implementation

has been extended with some scripts that are able to generate synthesized

datasets according to some predefined characteristics, run the query with

different bin sizes and measure the execution time associated to each bin

size. Each bin size has been tested several times and the minimum value (in

seconds) has been taken at the end. Each plot shows two tests that differ

only for one characteristic, either of the datasets or of the query. For each

test the real execution is represented as a set of markers (round or diamond)

connected by a straight dashed line. A marker at coordinate (b, t) represents

the execution time t measured binning with bin size b. The model of the

execution time is represented as a continuos line close to the dashed line rep-

resenting the real execution. Since the model does not include the prediction

of constant terms, that do not affect the minimization problem, the straight

line would always be positioned close to the x-axis. To improve the visual-

ization, the straight lines representing the prediction have been horizontally

aligned to the respective dashed lines representing the real execution. Syn-

thesized data are close to the assumptions made for our heuristics: regions

are almost uniformly distributed and belong to the same chromosome. Vari-

ations shown in each test are made w.r.t. to a default set of dataset features

reported in Table 4.3. Last test is instead performed on real datasets, where

Table 4.3: Default synthesized data features.

Feature Value

SA 1

SE 5

N 25 · 104

w 100

M −m 5 · 107

the assumptions do not hold anymore.

53

Anchor Samples

Fig. 4.10. shows the execution of the same query first on an anchor dataset

made of 1 sample and then on a anchor dataset of 50 samples. As the

number of anchor samples increases the optimality range shrinks and the

curve becomes more steep. Moreover the optimal bin size becomes smaller,

as expected.

Figure 4.10: Real behavior and prediction of the same query on two datasets with

different number of anchor samples.

54

Experiment Samples

Fig. 4.11. shows the execution of the same query first on a experiment

dataset made of 5 samples and then on a experiment dataset of 20 samples.

As the number of experiment samples increases the optimality range shrinks

and the curve becomes more steep. Moreover the optimal bin size becomes

smaller, as expected.

Figure 4.11: Real behavior and prediction of the same query on two datasets with

different number of experiment samples.

55

Number of Regions

Fig. 4.12. shows the execution of the same query first on datasets made

of 10k regions per sample and then on datasets made of 250k regions per

sample. As the number of regions increases the optimality range shrinks

and the curve becomes more steep. The optimal bin size becomes smaller.

Figure 4.12: Real behavior and prediction of the same query on datasets with different

number of regions.

56

Region length

Fig. 4.13. shows the execution of the same query first on a dataset with

average region length of 10 base pairs and then on a dataset with average

region length of 1000 base pairs. As the region length increases the optimal

bin size becomes bigger.

Figure 4.13: Real behavior and prediction of the same query on datasets with different

average region length.

57

Search Space

Fig. 4.14. shows the execution of two different queries on the same datasets.

Bigger search space requires bigger bins in order to avoid the production of

many replicates.

Figure 4.14: Real behavior and prediction of two different queries on the same datasets.

58

Real Data

This test was made on some samples taken from two real dataset available

in our Repository, known as Bed Annotations (Anchor) and Narrow Peaks

(Experiment), joined with a search space of length 106 bases. Datasets’

features are summarized in Table 4.4. Tests were executed on an Amazon

EMR Cluster made of 1+5 instances of type m3.2xlarge.

In this case we wanted to check how much our model was robust to violations

of the assumptions we made in sec. 4.4.1. Note that the execution time is

expressed in minutes.

Figure 4.15: Prediction and real execution of a Join operation on real datasets.

Table 4.4: Datasets’ Features . S, N and w are averaged over the number of samples.

Anchor Experiment

S 15 30

N 6.7 · 104 1.8 · 105

w 6.1 · 104 2.3 · 103

L = M −m 2.49 · 108 2.49 · 108

59

4.5 Map

4.5.1 Estimating replication

Binning algorithm for Map operation works in the same way for both the

reference and the experiment datasets and is similar to the binning of the

experiment dataset in the Join operation. The main difference is in the

binning of the reference dataset, because the binning algorithm replicates

each binned reference sample as many times as the number of experiment

samples. Therefore, the total number of replicates ρRi(b) generated by the

binning of the i-th sample of the reference dataset can be estimated by:

ρRi(b) = Se ·NRi ·
(
wRi − 1

b
+ 1

)
(4.23)

where NRi ind wRi are, respectively, the number of regions and the average

length of the regions in the i-th sample and Se is the number of samples

in the experiment dataset. Instead, the total number of replications ρEi(b)

generated by the binning of the i-th sample of the experiment dataset can

be estimated in the same way as we did for the Join operation, i.e.:

ρEi(b) = NEi ·
(
wEi − 1

b
+ 1

)
(4.24)

where NEi ind wEi are, respectively, the number of regions and the average

length of the regions in the i-th sample.

Estimating the number of replicates in each bin

The number of per-bin replicates for the i-th reference sample is given by:

δRi(b) = b · ρRi(b)

Li
(4.25)

and for the experiment dataset:

δEi(b) = b · ρEi(b)

Li
(4.26)

where, in both cases

Li = Mi −mi

as already discussed in 4.4.1

60

4.5.2 Modeling the cost function

As for the Join operation, in order to build a model of the cost function,

using the approach described in 4.3, it is necessary to identify, within the

algorithm implementing the Map operation, the dominant time complexities

that depend on the bin size.

For all the operations preceding the comparisons between binned regions,

the dominant time complexity is assumed to be linear in the number of

replicates, i.e. :

τ1(b) =

SR∑
i=1

ρRi(b) +

SE∑
i=1

ρEi(b) (4.27)

Differently from the Join operation, in which regions within each bin are

compared after they are joined (spark join), comparisons among regions for

the Map operation are performed using a more efficient algorithm that sorts

binned regions with a time complexity of O(n log n). If β(b) is the number

of bins generated with a bin size b, the dominant time complexity related to

comparisons can be expressed as :

τ2(b) = β(b)·
(SR∑
i=1

δRi(b)·log2
(SR∑
j=1

δRj (b)
)
+

SE∑
i=1

δEi(b)·log2(δRi(b))

)
(4.28)

where
∑SR

i=1 δRi(b) · log2
(∑SR

j=1 δRj (b)
)

and
∑SE

i=1 δEi(b) · log2(δRi(b)) are,

respectively, the complexity of sorting reference regions and experiment re-

gions in each bin. The difference in the two expressions is due to the differ-

ent way binned regions are sorted for the reference and for the experiment.

While experiment regions in each bin are sorted sample by sample, all refer-

ence regions are sorted in each bin independently on the sample they belong

to.

As seen for the Join, β(b) estimates the number of bins having at least one

reference region and at least one experiment region in it, i.e. the number

of bins in which reference and experiment regions can be compared. The

estimation of β(b) is the same as for the Join operation, i.e.:

β(b) =
L∗
b

where L∗ was estimated as:

L∗ = min

(
maxi=1..SR

(
Li
)
,maxi=1..SE

(
Li
))

61

Finally, the cost function, according to the representation (4.1) in which we

neglect the term k, can be expressed as:

c(b) = a1 · τ1(b) + a2 · τ2(b) (4.29)

4.5.3 Behavior of the cost function and optimality

Replacing every term with its definition, removing everything that does not

depend on b and introducing some approximation for the logarithm, the cost

function (4.29) can be expressed as:

c(b) =
1

b
· (a1 · P + a2 ·Q) + a2 ·

log2(b)

b
·R+ a2 · S · log2(b)

where a1 and a2 are parameters to be tuned , while P , Q, R and S, are

constants4 introduced to make the equation more readable and are defined

as follows:

P =

SR∑
i=1

NRi · (wRi − 1) +

SE∑
i=1

NEi · (wEi − 1)

Q = SE ·L∗·
SR∑
i=1

NRi · (wRi − 1)

LRi

·log2
(SR∑
j=1

NRi

LRi

)
+

SE∑
i=1

NEi · (wEi − 1)

LEi

·log2
(NEi

LEi

)

R = L∗ ·
(
SE ·

SR∑
i=1

NRi · (wRi − 1)

LRi

+

SE∑
i=1

NEi · (wEi − 1)

LEi

)

S = L∗ ·
(
SE ·

SR∑
i=1

NRi

LRi

+

SE∑
i=1

NEi

LEi

)
The behavior of the cost function is depicted in Fig.4.16. Differently

from the cost function defined for the Join operation, the cost function here

is more critical on its left part than in its right part, where now the growth

is not so steep. This means that taking bigger bins is typically a safe choice,

and that a prediction that overestimates the optimal bin size does not create

big performance issues.

4not depending on b; can be computed as a combination of features.

62

Figure 4.16: Behavior of the cost function for the Map operator.

The minimum is still found nullifying the first derivative, but only an

approximate solution can be found due to the nature of the equation. Our

solution is computed by:

b∗ = −R
S
·W
(
− S · 2−

a1·p+a2·Q−a2·R
a2·R

R

)
(4.30)

where W is the Lambert-W function.

4.5.4 Model validation

Tests are presented in the same way they have been presented for the Join.

63

Reference Samples

Fig. 4.17. shows the execution of the same query first on a reference dataset

made of 1 sample and then on a reference dataset of 10 samples.

Figure 4.17: Real behavior and prediction of the same query on two datasets with

different number of reference samples.

64

Experiment Samples

Fig. 4.18. shows the execution of the same query first on a experiment

dataset made of 2 samples and then on a experiment dataset of 40 samples.

Figure 4.18: Real behavior and prediction of the same query on two datasets with

different number of experiment samples.

65

Number of Regions

Fig. 4.19. shows the execution of the same query first on datasets made

of 10k regions per sample and then on datasets made of 250k regions per

sample.

Figure 4.19: Real behavior and prediction of the same query on datasets with different

number of regions.

66

Region length

Fig. 4.20. shows the execution of the same query first on a dataset with

average region length of 10 base pairs and then on a dataset with average

region length of 500 base pairs. As the region length increases the optimal

bin size becomes bigger.

Figure 4.20: Real behavior and prediction of the same query on datasets with different

average region length.

67

Real Data

This test was made on some samples taken from two real dataset avail-

able in our Repository, known as Bed Annotations (Anchor) and Narrow

Peaks (Experiment). Datasets’ features are summarized in Table 4.5. Tests

were executed on an Amazon EMR Cluster made of 1+5 instances of type

m3.2xlarge.

Even in this case we wanted to check how much our model was robust to

violations of the assumptions we made in sec. 4.4.1.

Figure 4.21: Prediction and real execution of a Map operation on real datasets.

Table 4.5: Datasets’ Features . S, N and w are averaged over the number of samples.

Reference Experiment

S 1 2034

N 4.9 · 104 9.4 · 104

w 3 · 104 4 · 106

L = M −m 2.49 · 108 2.49 · 108

68

Chapter 5

GDMS Optimizer

In the previous chapter we developed and tested the optimal bin size estima-

tors for two diverse domain specific operations. Optimal bin size estimators

take in input a set of simple features extracted from the datasets, from the

query, and from the results of the operations on metadata to produce as

output an optimal bin size.

In this chapter we present the Optimizer, the module in charge of imple-

menting optimal binning, and the Genomic Profiler, which, taking into ac-

count the specificity of genomic data modeling, quantitatively defines the

features that better characterize a genomic dataset from the point of view

of query optimization. Moreover, we discuss Profile Estimation, required to

quickly compute profiles of intermediate results. At the end we describe the

functioning of the Optimizer Controller, which detects operations requiring

binning optimization and computes the features of their input dataset, even-

tually providing and optimal size for binning. Before going into details, we

briefly describe the system architecture and introduce the DAG (Directed

Acyclic Graph) of Operators, a way to represent the dependencies among

the operations of GMQL queries.

5.1 Query Translation

A GMQL script is made of a set of operations, each acting on two different

data structures: region data and metadata.

The following is an example of a GMQL script:

GENES = SELECT() ANNOTATIONS;

PEAKS = SELECT() BED_PEAKS;

MAPPED = MAP() PEAKS GENES;

SELECTED = SELECT(Count_PEAKS_GENES>0) MAPPED;

RELEVANT = COVER(1,2) SELECTED;

MATERIALIZE RELEVANT INTO OUTPUT;

The script above is compiled using the GMQL compiler (a syntax-directed

translator), producing a Directed Acyclic Graph (DAG), whose nodes rep-

resent operations and arcs represent the data flow among the operations;

each query in the above script will produce at least two nodes in the DAG

(region and meta operations) while others are translated into even more

than two operations, e.g. SELECT operation that generates nodes IRReadRD,

IRSelectRD,IRReadMD, and IRSelectMD. The DAG corresponding to the

above query is show in Fig.5.1. The dependencies between the regions DAG

from/to the meta DAG are shown as dashed arrows.

All the parameters in the DAG except BIN SIZE are extracted from the

GMQL script. For the domain-specific operators, highlighted in light blue,

BIN SIZE is calculated by the Optimizer and injected in the DAG nodes.

This parameter will tell the implementation of the DAG nodes the size that

has to be used to bin the input datasets. The Optimizer, soon described

in details, parses the DAG to identify the presence of one or more domain-

specific operators and enables a set of tasks, like profiles estimation, to

accomplish the optimization strategy that was decided for that case.

5.2 Architecture

The architecture of the GDMS (Genomic Data Management System), shown

in Fig.5.2, is a four layered architecture:

• An Access Layer, supporting:

– An Intermediate Representation API (Scala)

– Python and R interfaces

– Command line interface

– Web Services and Web Interface

• The Engine Components, including:

– GMQL Compiler, for compiling a GMQL query into a DAG

(which embodies execution plans).

– DAG Manager, for supporting the creation and dispatching of

DAG operations to other components.

– Server Manager, for managing multi-user execution and their ac-

cess capabilities.

70

Figure 5.1: Example of operator DAG for a GMQL query.

Figure 5.2: GDMS architecture.

71

– Launcher Manager, for launching the execution of different im-

plementations with different deployment modes.

• The Implementation Components (or executors), including three

different implementations.

• The Repository Manager APIs, to manage the repository depend-

ing on the deployment mode.

What was listed so far were the components of the system before the

development of the work discussed in this thesis. With the introduction of

Optimal Binning two new components were added to the system:

• The Genomic Profiler: performs datasets profiling, extracting a set

of features that are useful both for optimization (dynamic binning)

and for data visualization (on the web interface).

• The Optimizer: in charge of deciding the best optimization strategies

and putting them in place. This module will include also other types

of optimizations that may be developed in the future and that are not

directly related to optimal binning (e.g. dynamic resource allocation).

5.3 Genomic Profiler

In Chapter 4, we defined some heuristics that, given some input features,

are able to output an estimate of the optimal bin size for binning. A list

of features required for optimizations is shown in Table 5.1. Note that that

the size of a dataset can be computed as:

size(DS) =
∑
i=1...S

Ni · Ci

The last column shows from where these features are extracted. In particu-

lar, the features can be extracted:

• From the DAG: the extraction of query parameters is easy since it is

performed parsing the DAG.

• From the results of meta operations

• From dataset profiles

While extracting features from the DAG and from meta results is im-

mediate, extracting features from the dataset requires more efforts. For this

72

Table 5.1: Features computed for Optimizations

Feature Description Origin

S Number of samples in a dataset Meta Operations

N Number of regions in a sample Data Profiling

w Average region length Data Profiling

m Minimum left coordinate Data Profiling

M Maximum right coordinate Data Profiling

C Size of the region schema Data Profiling

LT Less than condition argument DAG

GT Greater than condition argument DAG

str Stream clause present / missing DAG

purpose a new Profiler module has been added to the system. The Profiler

consists of a Spark Application that can be submitted at any time to pro-

duce an XML file containing the desired features. The XML file is stored

within the dataset folder with the name profile.xml and is intended to be

used by the Optimizer, for optimal binning and future optimizations, and by

the Web Interface for visualization. By default, a profiling task runs when

a new dataset is added to the repository, either as a result of a query execu-

tion or when a new dataset gets imported by the Importer module. Local,

HDFS and remote executions are supported. The default level of profiling

granularity to compute data features is set to be on the sample level re-

gardless of the chromosome and of the strand, since this level of granularity

is enough for producing the details required by our estimators. Moreover,

the code is easily extensible to support additional features extraction and

different levels of granularity. Reaching chromosome granularity may be too

expensive and is used only if requested by the user. An example of the XML

file generated by the Profiler is shown in Fig.5.3

73

Figure 5.3: Real example of XML file generated by the Profiler.

5.4 Optimizer

The Optimizer, whose structure is depicted in Figure. 5.4, is the module

of the system in charge of controlling and implementing the available opti-

mization strategies. The module is composed by:

• A Heuristics Provider: is a collection of all the heuristics used for

optimization, including the mathematical models and optimal solu-

tions defined in Chapter 4 for Optimal Binning.

• A Profile Estimator: used to estimate the features of intermediate

results. The Profile Estimator is used to produce data profiles with

higher performance than scanning the data for building a real profile,

but on the expense of the accuracy. We choose to use the data profile

estimator to avoid profiling big data on the fly, thus reducing the

optimization process overhead and gain higher overall performance.

• A Controller: parses the DAG to detect the possibility of putting in

place an optimization strategy. Depending on the DAG, it selects the

proper heuristics from the Heuristics Provider.

Now we go into the details of the two main components, the Data Profiler

Estimator and the Controller.

Profile Estimator

In order to compute an optimal bin size for a given domain-specific operator,

the Optimizer requires the profile of the operator’s input datasets. Most of

the times, those input datasets are the results of a sequence of operations

74

Figure 5.4: Structure of the Optimizer Module

previously applied to the original datasets loaded from the Repository. For

this reason, profiles of the operator’s input datasets may significantly differ

from profiles of the original datasets computed by the Profiler module.

A possible solution to the problem may consist in re-profiling the results

of every operation preceding the domain specific operations. However, re-

profiling every time might be quite expensive and the total time spent in

re-profiling may overcome the gain in time we get from performing optimal

binning instead of unoptimal binning.

Another solution consists in defining a set of heuristics, ideally one for

each DAG node, that allow to quickly estimate how the profile changes at

the output of an operator.

The approach we use is mixed; we defined a set of simple heuristics for a

subset of the language operators and we left the cases in which the output

of an operator is hard to be estimated with good approximation. In that

case, re-profiling is performed. Notice that re-profiling is made on datasets

that are already loaded in memory, therefore there is no disk reads overhead.

Table 5.2 shows the availability of profile estimation heuristics for all

GMQL operators. In case the operator is a PROJECT or an EXTEND, the

output profile does not differ from the input profile . Another simple case

is UNION; the profile of the result is built merging the two input profiles.

When no region predicate is contained, the output profile of the SELECT

is built dropping from the input profile the descriptions of those samples

not satisfying the predicate on metadata. Other cases in which profiles are

estimated are the following:

• MERGE: the output profile consists of a single sample in which:

– number of regions equals the total number of regions contained

75

Table 5.2: Overview of the available heuristics for dataset profile estimation.

Operator Condition Comment

SELECT no region predicate see detailed descr.

PROJECT pout = pin
EXTEND pout = pin
UNION pout =

⋃
pin

MERGE no grouping see detailed descr.

GROUP pout = pin
ORDER no regions top-k pout = pin

DIFFERENCE re-profiled

MAP see detailed descr.

JOIN no INT or CAT in coord-gen see detailed descr.

COVER re-profiled

in all the samples of the input profile; formally:

N =
∑
i=1..S

Ni

– average region length is computed as the weighted average over all

the samples of the input profile (weight is the number of regions);

formally:

w =

∑
i=1..S Ni · wi

N

– min left coordinate and max right coordinate are computed re-

spectively as the minimum left coordinate and the maximum right

coordinate over all the samples of the input profile; formally:

(m,M) = (min(m1, ...,mS),max(M1, ...,MS))

• MAP: the result of a MAP operator produces samples that have the

same characteristics of samples in the reference dataset. Output profile

is then built by replicating input samples’ profiles depending on the

result of the joinby condition; formally:

(N,w,m,M)ij = (N,w,m,M)i

where sample ij is the sample generated mapping experiment j to

reference i.

76

• JOIN: The output profile of a Join operation is estimated with the

heuristics here presented. The notation i on j is used to denote the

sample of the output dataset generated by joining the i-th sample of

the anchor dataset with the j-th sample of the experiment dataset.

The number of samples in the output dataset depends on the input

samples satisfying the meta-join condition and has as upper bound

Sref · Sexp.. The number of regions in output is estimated as:

Nionj = Ni · s · δj

where s is the length of the search space, while δj is an estimation for

the region density of the j-th experiment sample:

δj =
Nj

Mj −mj

Other features are estimated depending on the coord-gen option, as

follows:

If coord-gen = RIGHT, then:

(w,m,M)ionj = (w,m,M)i

If coord-gen = LEFT, then:

(w,m,M)ionj = (w,m,M)j

Otherwise, if If coord-gen = INT | CAT reprofiling is performed.

5.4.1 Optimization Controller

The job of the Controller starts right after the DAG is submitted for execu-

tion and before the operations start being executed. The controller parses

the DAG looking for the domain-specific operators for which optimal binning

is defined, i.e. MAP and JOIN. If one or more domain-specific operators are

found, the Controller enables the Profile Estimator component and sets a

flag on every node of the DAG that requires its output profile to be estimated

or computed.

Once the execution starts, the Controller orders profile prediction or

computation of the output of every GMQL operation that finishes its exe-

cution, according to the flag set on the corresponding DAG node. Note that

estimation is always made at runtime, either because it may depend on a

77

profile that has to be computed or because it may depend on the result of

a meta-operation affecting the cardinality of the samples in output.

When the execution reaches a domain-specific operation the profiles of its

input datasets are combined with the operation parameters and, depending

on the case, the proper heuristic is selected to compute an optimal size for

binning.

78

Chapter 6

Conclusions and Future

Work

In this thesis we developed a set of heuristics used to optimize genomic

binning, an approach for parallelizing massive operations on the genome.

Heuristics were derived from a mathematical model of the execution time

that takes into account simple features extracted from the data, through an

ad-hoc Profiler, and from a graph-based representation of the query (DAG).

Moreover, in order to cut re-profiling times, we developed additional heuris-

tics to estimate the profile of intermediate results. Even though the pro-

posed models are quite simple and based on some assumptions, that usually

do not hold in reality, we proved their robustness through some experiments

on real data. Thanks to optimal binning we improved the efficiency of our

system, reduced the execution time of complex queries and the consumption

of computational resources.

We believe that the optimizations developed in this thesis can be ex-

tended outside the specific domain of genomics. In fact, our DNA regions

are just geometric intervals in a two-dimensional space that may have a

different semantics; e.g. they may represent time intervals.

Our plans for the future involve a systematic study of binning optimiza-

tions over multiple operations. Indeed, when multiple domain specific oper-

ations occur in the same query, binning of some datasets could be avoided;

e.g. when two operations share the same input dataset, we may choose to

bin it only once with a bin size that is acceptably good for both, or we may

think to keep a result binned if some other domain-specific operation is us-

ing it as input. These kind of optimizations require the introduction of new

heuristics, changes in the implementation, and a theoretical study of the de-

pendencies among operations in the DAG. Moreover, the developed models

and the information provided by the Profiler could be combined to imple-

ment dynamic resource allocation, so that a proper quantity of resources,

e.g. number of executors and amount of memory, is assigned to each query.

In conclusion, we improved the performance of our system and laid the bases

for future research on similar optimizations that will make processing of ge-

nomic data faster, hoping it will help the bioinformatics community achieve

new goals in the near future.

80

Bibliography

[1] J. Shendure, and H. Ji, ”Next-generation DNA sequencing,” Nat.

Biotechnol., vol. 26, no. 10, pp. 1135-1145, 2008.

[2] S. C. Schuster, ”Next-generation sequencing transforms today’s biol-

ogy,” Nat. Methods., vol. 5, no. 1, pp. 16-18, 2008.

[3] NIH National Human Genome Research Institute, ”DNA Sequencing

Costs.” http://www.genome.gov/sequencingcosts/

[4] ENCODE Project Consortium, ”An integrated encyclopedia of DNA

elements in the human genome,” Nature, vol. 489, no. 7414, pp. 57-74,

2012.

[5] Cancer Genome Atlas Research Network, J. N. Weinstein, E. A. Collis-

son, G. B. Mills, K. R. Shaw, B. A. Ozenberger, K. Ellrott, I. Shmule-

vich, C. Sander, and J. M. Stuart, ”The Cancer Genome Atlas pan-

cancer analysis project,” Nat. Genet., vol. 45, no. 10, pp. 1113-1120,

2013.

[6] 1000 Genomes Project Consortium, G. R. Abecasis, D. Altshuler, A.

Auton, L. D. Brooks, R. M. Durbin, R. A. Gibbs, M. E. Hurles, and G.

A. McVean, ”A map of human genome variation from population-scale

sequencing,” Nature, vol. 467, no. 7319, pp. 1061-1073, 2010.

[7] C. E. Romanoski, C. K. Glass, H. G. Stunnenberg, L. Wilson, and G.

Almouzni, ”Epigenomics: Roadmap for regulation,” Nature, vol. 518,

no. 7539, pp. 314-316, 2015.

[8] Jim Gray. Jim gray on escience: A transformed scientific method. The

fourth paradigm: Data-intensive scientific discovery, pages xvii-xxxi,

2009.

[9] H. Gunadhi and A. Segev, ”Query processing algorithms for temporal

intersection joins,” in Proc. IEEE ICDE, 1991, pp. 336-344.

81

[10] W.J. Kent, The human genome browser at UCSC. Genome Res., 2002

Jun;12(6):996-1006.

[11] F. Afrati and J. Ullman, Bounds for Overlapping Interval Join of Map

Reduce. Workshop Proceedings, EDBT/ICDT, 2015.

[12] Kaitoua Abdulrahman, 2017, ”Scalable data management and pro-

cessing for genomic computing”, Politesi, http://hdl.handle.net/

10589/132065

[13] Pinoli Pietro, 2017, ”Modeling and querying genomic data”, Politesi,

http://hdl.handle.net/10589/132099

[14] Cattani Simone, 2016, ”Genomic Computing with SciDB, a Data Man-

agement System for Scientific Applications”, IEEE/ACM Trans Com-

put Biol Bioinform. 2016 , Politesi, http://hdl.handle.net/10589/

123101

[15] Bertoni Michele, 2015, ”Querying the DNA : genomic computing with

Apache flink”, Politesi, http://hdl.handle.net/10589/112545

[16] Ceri S, Kaitoua A, Masseroli M, Pinoli P, Venco F., ”Data Management

for Heterogeneous Genomic Datasets.”

[17] Bio-Informatics Group, DEIB, Politecnico di Milano, ”Specification of

GMQL Version 2”, http://www.bioinformatics.deib.polimi.it/

genomic_computing/GMQL/doc/GMQL_V2_manual.pdf

[18] Marco Masseroli, Pietro Pinoli, Francesco Venco, Abdulrahman

Kaitoua, Vahid Jalili, Fernando Palluzzi, Heiko Muller, and Stefano

Ceri. Genometric query language: a novel approach to large-scale ge-

nomic data management. Bioinformatics 31(12):1881-1888,2015.

[19] A. Kaitoua, P. Pinoli, M. Bertoni and S. Ceri, ”Framework for Support-

ing Genomic Operations,” in IEEE Transactions on Computers, vol. 66,

no. 3, pp. 443-457, March 1 2017.

[20] Masseroli M, Kaitoua A, Pinoli P, Ceri S., ”Modeling and interoper-

ability of heterogeneous genomic big data for integrative processing and

querying.” Methods, 2016.

[21] Ceri S, Kaitoua A, Masseroli M, Pinoli P, Venco F., ”Data manage-

ment for heterogeneous genomic datasets.”, IEEE/ACM Transactions

on Computational Biology and Bioinformatics 2016.

82

[22] Fernandez JD, Lenzerini M, Masseroli M, Venco F, Ceri S., ”Ontology-

based search of genomic metadata”.

[23] Montanari P, Bartolini I, Ciaccia P, Patella M, Ceri S, Masseroli M.,

”IEEE Transactions on Knowledge and Data Engineering 2016”

[24] Bertoni M, Ceri S, Kaitoua A, Pinoli P., ”Evaluating Cloud Frameworks

on Genomic Applications.”

[25] Cattani S, Ceri S, Kaitoua A, Pinoli P., ”Bi-Dimensional Binning for

Big Genomic Datasets.” Proc. Beyond Map Reduce Workshop, co-

located with ACM-Sigmod, May 2017; Boston.

[26] Kaitoua A, Gulino A, Masseroli M, Pinoli P, Ceri S, ”Scalable Genomic

Data Management System on the Cloud. Int. Symp. Big Data Princi-

ples, Architectures and Applications (BDAA), July 2017; Genova.”

83

