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Abstract

In this thesis, we address three problems concerning the static anal-
ysis of executable files: the identification of the Instruction Set Architec-
ture (ISA), the discovery of the boundaries of the code section, and the
problem of separating code from data.

To disassemble an executable, we need to know its ISA and the
boundaries of the code section; however, this information is not always
available. We present a classification method to identify the ISA of
header-less executable files and a sequential learning method to locate
the boundaries of its code section. We test the architecture classifier on
a dataset of binaries of 20 different ISAs: the experiments show that our
method has a better performance than the state of the art. We test the
code section identification method on ELF, PE and Mach-O executables
compiled for different sets of architectures, by multiple compilers: the
experiments show that our model is always able to identify, with a high
accuracy, where the code is located inside the binary files.

Data embedded inside the code section represents a major problem
for disassemblers, which may interpret it as valid machine instructions.
In literature, most of the proposed approaches to deal with inline data
are based on recursive traversal disassembly, which presents severe lim-
itations when dealing with indirect control instructions. We follow a
different approach: we train a sequential learning classifier on the bytes
representing code and data in pre-tagged executables, and use it to pre-
dict the boundaries of the instructions in unseen binaries. The results
of our experiments show that our method is capable to distinguish code
from data in unseen binary samples with an accuracy of over 99.9%.



Sommario

In questa tesi, affronteremo tre problemi riguardanti l’analisi statica
degli eseguibili: l’identificazione dell’Instruction Set Architecture (ISA),
l’identificazione della sezione di codice, e la separazione codice-dati.

Per poter disassemblare un file eseguibile, è necessario conoscerne
l’ISA e la posizione della sezione contenente il codice. Come si procede
se queste informazioni non sono disponibili?

Presentiamo un semplice metodo di apprendimento supervisionato
per identificare l’architettura dei file eseguibili e un metodo di apprendi-
mento sequenziale per il riconoscimento dei confini della sezione codice
nei binari privi di intestazione. Le prestazioni del nostro classificatore
di architetture — valutato su più dataset derivanti da programmi reali
e articoli scientifici — superano quelle dell’approccio allo stato dell’ar-
te. Valutiamo il metodo di riconoscimento della sezione di codice su
eseguibili ELF, PE e Mach-O compilati per più architetture, da diversi
compilatori: il nostro modello è sempre in grado di identificare i byte
appartenenti alle sezioni di codice con un’accuratezza elevata (99.8%).

Nell’ambito dell’analisi statica degli eseguibili, i dati inseriti all’in-
terno della sezione di codice da alcuni compilatori rappresentano un pro-
blema per i disassembler, che rischiano di interpretarli come istruzioni
macchina. In letteratura, la gran parte degli approcci proposti per ri-
conoscere i dati inline si basa sul disassembly ricorsivo, che presenta
limiti significativi in presenza di salti indiretti. Seguiamo qui un diver-
so approccio: costruiamo un classificatore sequenziale che apprenda un
modello probabilistico dei byte che compongono le istruzioni di codice
macchina e i dati, in modo da poterli distinguere. I risultati degli espe-
rimenti mostrano che il metodo presentato è in grado di distinguere il
codice dai dati nei binari con un’accuratezza di oltre il 99.9%.



Introduzione1

Ambito

L’analisi statica dei file eseguibili — ossia l’analisi del codice eseguibile eseguita
senza tracciarne l’esecuzione — è un approccio efficace per estrarre informa-
zioni dai programmi eseguibili quando il codice sorgente non è disponibile.
L’analisi statica dei binari fa parte del dominio più ampio dell’ingegneria in-
versa dei programmi eseguibili. Due degli scopi più importanti dell’analisi
statica sono: ottenere un corretto disassembly delle istruzioni macchina, e
costruire un corretto Control Flow Diagram (CFG) del programma.

L’analisi statica dei binari è possibile solo se alcune informazioni sul fi-
le eseguibile da analizzare sono note in precedenza: per poter disassemblare
un eseguibile, è necessario conoscere l’ISA (Instruction Set Architecture) del
binario e i confini della sezione del file che contiene il codice eseguibile. La
conoscenza dell’ISA è necessaria perché l’ISA definisce la codifica binaria delle
istruzioni macchina: la stessa sequenza di byte, infatti, può avere due signifi-
cati totalmente diversi per due CPU diverse. Conoscere i confini delle regioni
contenenti il codice è necessario per assicurarsi che il disassembler lavori sul
codice, e non sugli altri dati contenuti all’interno del file eseguibile.

Le informazioni sull’ISA e sulle sezioni del file eseguibile si trovano di solito
nell’intestazione dell’eseguibile stesso. In alcuni casi, tuttavia, tale intestazio-
ne è assente: questo è il caso di programmi eseguiti direttamente sull’hardware
di un dispositivo (firmware). Inoltre, i file eseguibili possono essere deliberata-
mente offuscati per ostacolare i tentativi di ingegneria inversa: questo è il caso
dei malware. In tutti questi casi dobbiamo estrarre le informazioni necessarie
analizzando il file eseguibile, senza disporre dei relativi metadati.

Anche quando l’ISA ed i confini delle regioni di codice sono noti, il pro-
blema di ottenere un corretto disassembly dell’eseguibile resta comunque non
banale poiché il disassembler rischia di interpretare erroneamente come del-
le istruzioni i dati inseriti all’interno della sezione codice da parte di alcuni
compilatori. Infatti, le intestazioni dei formati eseguibili standard (ad esem-

1Questo ampio estratto in lingua italiana ottempera all’obbligo previsto dall’art. 4.2 del
“Regolamento d’Ateneo degli Esami di Laurea e di Laurea Magistrale con integrazioni della
Scuola di Ingegneria Industriale e dell’Informazione”, approvato dal Senato Accademico del
23.1.2017 e dalla Giunta della Scuola del 9.2.2017.
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pio ELF e PE) non includono le informazioni sulla posizione dei dati inclusi
all’interno della sezione di codice, a meno che non siano disponibili gli ap-
positi simboli di debug. Per la maggior parte dei programmi (soprattutto
commerciali e off-the-shelf ), i simboli di debug non sono disponibili, perché
faciliterebbero l’ingegneria inversa del prodotto.

Definizione del problema e obiettivi

In questo lavoro proponiamo tre nuovi approcci per risolvere tre problemi
aperti nel campo dell’analisi statica dei programmi eseguibili. I tre problemi
di cui ci occuperemo sono:

1. Identificazione dell’Instruction Set Architecture: dedurre l’archi-
tettura della CPU di un file eseguibile privo di intestazione;

2. Identificazione della sezione codice: determinare dove sia collocata
la sezione eseguibile, contenente il codice macchina, all’interno di un file
eseguibile privo di intestazione;

3. Problema della separazione tra codice e dati: all’interno della
sezione eseguibile di un file binario, distinguere accuratamente (a livello
di byte) tra le istruzioni macchina e i dati inline.

Daremo una spiegazione approfondita di questi tre problemi e delle sfide
che li accompagnano nel Capitolo 2.

Stato dell’arte

Nella sezione 2.3, presenteremo una rassegna approfondita dello stato dell’arte
nella letteratura scientifica relativamente ai problemi sopra descritti.

Il problema della classificazione dei file in base al loro tipo è stato am-
piamente affrontato in letteratura (sottosezione 2.3.1), ma solo un lavoro è
specificamente orientato all’identificazione dell’architettura dei file eseguibili:
l’approccio descritto in (Clemens 2015) consiste in un modello di apprendi-
mento supervisionato che usa le frequenze dei byte come feature per clas-
sificare i file binari in base alla loro architettura. Riteniamo che i risultati
di questo lavoro possano essere migliorati introducendo feature aggiuntive ed
ottimizzando i parametri degli algoritmi di apprendimento.

Il problema dell’identificazione del tipo dei segmenti di file — affrontato
ad esempio in (Sportiello e Zanero 2012) — è simile al problema dell’identifi-
cazione della sezione contenente il codice negli eseguibili; tuttavia, nel nostro
caso la frammentazione non è definita “a priori”: necessitiamo di un metodo
che segmenti il file e, contemporaneamente, classifichi i segmenti.
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Le Conditional Random Field (Lafferty, McCallum e Pereira 2001) sono dei
modelli di apprendimento supervisionato e strutturato in grado di predire un
insieme di variabili le cui dipendenze condizionali sono codificate in un grafo.
Le applicazioni delle CRF spaziano nei campi del riconoscimento del linguaggio
naturale, della computer vision e della bioinformatica. In (Rosenblum et al.
2008), un modello basato su CRF è usato per identificare le funzioni nel codice
binario.

Un problema classico nel campo dell’analisi di binari è quello di distin-
guere il codice dai dati all’interno dei file eseguibili (la sezione 2.3 contiene
una rassegna degli approcci esistenti). I disassembler esistenti producono ri-
sultati erronei qualora i dati si trovino inframmezzati con il codice macchina
(analizziamo questo problema nella sottosezione 2.3.3). Gli approcci “clas-
sici” si basano sull’disassembly ricorsivo (ossia, contrassegnare come codice
tutti e soli gli indirizzi raggiungibili dall’esecuzione del programma), e ten-
tano di migliorarne i risultati impiegando diverse euristiche, e l’esecuzione
simbolica; nella sottosezione 2.3.5 descriviamo tre approcci di questo tipo. La
principale sfida legata a questo tipo di approcci è l’identificazione precisa delle
destinazioni dei salti indiretti. (Shoshitaishvili et al. 2016, p. 4)

Un approccio alternativo al problema della separazione tra codice e dati
è quello di sviluppare un modello di apprendimento supervisionato sul codice
macchina (descriviamo questa famiglia di approcci nella sottosezione 2.3.4).
(Wartell et al. 2011) introduce un modello di apprendimento sequenziale (Pre-
diction by Partial Matching) per segmentare il codice x86 in istruzioni valide e
dati. Il modello ottiene un’accuratezza elevata, classificando correttamente co-
me codice o dati più del 99.8% dei byte. La valutazione del modello è eseguita
confrontando manualmente l’output del modello con il disassembly generato
da IDA Pro, poiché non è disponibile un disassembly “perfetto” dei binari a
cui far riferimento; questa limitazione non permette di testare il modello su
un numero elevato di binari. Questo approccio supporta una sola architettura
(x86), e si basa su alcune euristiche specifiche per quell’architettura: adattare
il metodo per supportarne di nuove richiederebbe uno sforzo non trascurabile.

Approccio

Nel Capitolo 3, descriviamo l’approccio che abbiamo sviluppato per risolvere
i problemi sopraelencati.

Per risolvere il problema della classificazione degli eseguibili per architet-
tura, miglioriamo l’approccio descritto in (Clemens 2015) costruendo un clas-
sificatore basato sulla regressione logistica con feature aggiuntive (le frequenze
dei pattern relativi ai prologhi e agli epiloghi delle funzioni); aggiungiamo poi
la regolarizzazione L1 (Lasso) per migliorare le prestazioni del classificatore
e la sua robustezza rispetto al rumore. Il metodo è descritto nel dettaglio
nella sezione 3.2.
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Affrontiamo il problema dell’identificazione della sezione di codice e della
separazione tra codice e dati costruendo un modello di apprendimento sequen-
ziale basato sulle Conditional Random Field (sottosezione 3.3.3). Il nostro
modello esamina la sequenza dei byte nei file binari e apprende, per ciascun
byte, la probabilità che esso rappresenti del codice o dei dati, condizionata
rispetto ai valori delle feature e alla classe assegnata ai byte adiacenti. Il mo-
dello, una volta addestrato sui binari del training set, è in grado di dire se
ciascun byte del binario da analizzare rappresenta del codice o dei dati. Lo
scopo del metodo di identificazione della sezione di codice (sezione 3.3) è quel-
lo di trovare dei segmenti di codice (e di dati) contigui e di grandi dimensioni
all’interno del file, mentre lo scopo del metodo di separazione tra codice e dati
(sezione 3.4) è quello di identificare precisamente ciascuna istruzione macchi-
na. Per questo motivo il modello per l’identificazione della sezione di codice
include anche una fase di postprocessing (sottosezione 3.3.5) per identificare i
piccoli segmenti di codice o dati rilevati dal modello, che vengono interpretati
come rumore e quindi scartati.

Implementazione

Nel Capitolo 4, descriviamo l’implementazione del nostro approccio. Abbia-
mo implementato tutti i metodi di apprendimento usando Python 3 e la li-
breria di machine learning scikit-learn, ad eccezione di alcune operazioni di
preprocessing che sono state eseguite tramite script per Bash e PowerShell.

Il classificatore di architetture — che oltre al modello vero e proprio com-
prende anche le fasi di preprocessing, di regolazione degli iperparametri e di
validazione del modello — è implementato tramite il framework di machine
learning per Python scikit-learn (sezione 4.2).

Per implementare i modelli di apprendimento sequenziale per l’identifi-
cazione della sezione di codice e la separazione tra codice e dati, utilizzia-
mo pystruct, un framework di apprendimento strutturato per Python, che
implementa le Conditional Random Field, apprese tramite SVM strutturali
(l’approccio è descritto nel dettaglio in sezione 4.3).

Abbiamo implementato le fasi di preprocessing e di apprendimento all’in-
terno di classi Python. Le nostre classi sono dei wrapper che incapsulano i
modelli generali di classificazione forniti dalle librerie di machine learning. In
questo modo, esponiamo un’interfaccia semplice e uniforme nascondendo la
complessità non necessaria di tali modelli.

Per implementare il nostro approccio al problema della separazione tra co-
dice e dati, necessitiamo dei dati di training, ossia un insieme di eseguibili per
i quali siano note le posizioni delle istruzioni macchina e dei dati. In letteratu-
ra, questo problema viene spesso affrontato utilizzando un disassembler — che
non sempre forniscono un risultato corretto — per fornire i dati di training.
Noi scegliamo invece di estrarre i dati di training dai simboli di debug gene-
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rati durante la compilazione degli eseguibili, che sono più affidabili. Questo
approccio presenta alcune difficoltà tecniche, che affrontiamo nella sezione 4.5.

Risultati

Nel Capitolo 5, descriviamo la metodologia di valutazione dei metodi proposti
in precedenza, e discutiamo i risultati degli esperimenti.

Per verificare i nostri metodi, utilizziamo l’holdout testing e la cross-va-
lidazione, che sono tecniche standard e consolidate nell’ambito del machine
learning (sezione 5.3).

Abbiamo valutato estesamente il classificatore di architetture su più data-
set di file eseguibili; i risultati mostrano che il nostro metodo ottiene perfor-
mance migliori dello stato dell’arte (Clemens 2015) su eseguibili ottenuti da
articoli scientifici e software reali; ottiene prestazioni soddisfacenti anche sugli
shellcode e su binari sottoposti a packing (sezione 5.4). Il nostro modello è
robusto rispetto al rumore: i risultati mostrano che esso è in grado di identi-
ficare correttamente l’architettura di file eseguibili contenenti sia sezioni con
codice sia sezioni con dati.

Abbiamo valutato il metodo di identificazione delle sezioni di codice su
quattro dataset contenenti file binari in tre formati (ELF, PE e Mach-O)
e di più architetture hardware, compilati con diversi compilatori e livelli di
ottimizzazione (sezione 5.5). I risultati mostrano che il nostro modello ri-
porta sempre ottime prestazioni: la percentuale media di byte correttamente
classificati supera il 99,5%.

Abbiamo valutato il metodo per la separazione tra codice e dati su un
dataset di file binari per Windows (architetture x86 e x86-64) compilati con
i simboli di debug. I risultati mostrano come il nostro metodo raggiunga
un’elevata accuratezza (oltre il 99,9% di byte classificati correttamente) su
questo dataset.

Abbiamo determinato i valori ottimali per gli iperparametri da utilizzare
nei modelli in modo sistematico (sezione 5.7).

Contributi originali

I principali contributi del nostro lavoro di tesi sono i seguenti:

1. un metodo di apprendimento supervisionato, basato su un semplice mo-
dello lineare, per identificare l’architettura hardware e l’endianness dei
file eseguibili (che possono contenere sia codice che dati);

2. un metodo di apprendimento sequenziale per identificare le sezioni di
codice all’interno dei file eseguibili;
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3. un metodo di apprendimento sequenziale per separare i byte che rappre-
sentano istruzioni macchina dai dati inseriti all’interno della sezione di
codice di un eseguibile.

Organizzazione della tesi
Questa tesi è divisa in otto capitoli.

• Nel Capitolo 1, forniamo un’ampia panoramica sui problemi che inten-
diamo affrontare, sugli obiettivi e sull’approccio proposto.

• Nel Capitolo 2, forniamo la definizione dei problemi, gli obiettivi della
nostra tesi e le sfide da affrontare.

• Nel Capitolo 3, descriviamo in dettaglio gli approcci, gli algoritmi e i
modelli che abbiamo scelto di utilizzare per risolvere i problemi descritti
nel Capitolo 2.

• Nel Capitolo 4, spieghiamo come abbiamo implementato gli approcci
descritti nel Capitolo 3 in un prodotto software concreto.

• Nel Capitolo 5, verifichiamo i nostri metodi su dati reali e diamo un’in-
terpretazione dei risultati.

• Nel Capitolo 6, spieghiamo le limitazioni del nostro approccio.

• Nel Capitolo 7, proponiamo alcune direzioni per eventuali sviluppi futuri
basati su questo lavoro.

• Nel Capitolo 8, riassumiamo il lavoro fatto finora e tracciamo le conclu-
sioni.



Chapter 1

Introduction

Domain

Static binary analysis (i.e., analyzing executable code without running it and
tracing its execution) is an effective approach to extract information from
executable files containing computer programs when the source code is not
available. Static binary analysis is part of the wider domain of binary re-
verse engineering. Two of the most important purposes of static analysis are:
obtaining a correct disassembly of the machine code and building a correct
Control Flow Graph (CFG).

Static binary analysis is possible only if some information about the ex-
ecutable file to analyze is available. The static analysis tools must at least
know the ISA (Instruction Set Architecture) of the binary, and the
boundaries of the executable sections of the file (i.e., the parts of the
executable file which contain machine code). The ISA defines the encoding
of the CPU instructions of a program into a byte sequence: static analysis
tools need this information to decode the machine code, because the same
sequence of bytes may have two completely different meanings for two differ-
ent CPUs. Executable files are structured in sections, which include either
code or non-executable bytes (“data”). Without the information about these
sections, static analysis tools can not easily tell where the machine code is
located inside the executable file.

The information about the ISA and about the sections inside the exe-
cutable file is found in the header of the executable, if the file is provided in a
standard format. Sometimes, however, the header is missing, and we do not
have any information at all about an executable file. This is the case of the
programs which run directly on a device’s hardware (firmwares). Also, exe-
cutable files may be obfuscated to thwart the attempts of reverse engineering:
this is the case of malware files. In all these cases, we need to analyze the
executable file without relying on the classical reverse engineering approaches.

Even if the ISA and the boundaries of the executable regions are known,

15
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the problem of obtaining a correct disassembly is still not trivial because some
compilers insert inline data inside the code sections, which may be incorrectly
interpreted as machine code by the disassemblers. Indeed, the header data
found in the standard executable formats (ELF, PE, Mach-O, . . . ) does not
include the information about the location of inline data inside the code sec-
tion, unless the compiler is explicitly instructed to generate the debugging
symbols. In most commercial and off-the-shelf programs, the debugging infor-
mation is never included, because it would facilitate the reverse-engineering
of the software product.

Problem definition and objectives
In this thesis, we will propose three novel approaches to solve three open
problems in the domain of static analysis of executable computer programs.
The three problems we will deal with are:

1. Instruction Set Architecture (ISA) identification: inferring the
CPU architecture of stripped, header-less executable binary files;

2. Code section identification: determining where the executable sec-
tion, containing machine code, is located inside stripped, header-less
executable binary files;

3. Code discovery problem: inside the executable section of a binary
file, accurately distinguish (at the byte level) between valid machine code
instructions and inline data.

We will give a precise definition of these problems and describe the chal-
lenges associated with them in chapter 2.

State of the art
In section 2.3, we will present a thorough literature review about the state of
the art approaches to solve the problems mentioned before.

Generic file type classification is a widely explored problem in literature
(subsection 2.3.1); however, we found only one work specifically targeting the
identification of the CPU architecture of executable files (subsection 2.3.2).
This approach (Clemens 2015) addresses the problem as a machine learning
classification problem, by using the frequencies of the bytes in the files as
features. We feel that the approach of this work can be improved by introduc-
ing additional features and by tuning the parameters of the machine learning
algorithms.

The problem of the classification of file segments by type (Sportiello and
Zanero 2012) is similar to the problem of code section identification. The
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fundamental difference is that in our case we do not have any “a priori” file
fragmentation: we must both segment the file and classify the segments.

Conditional Random Fields (Lafferty, McCallum, and Pereira 2001) are
a supervised, structured classification method to predict a set of variables
whose conditional dependencies are encoded in a graph-like structure. CRFs
are popular in the domains of natural language processing, computer vision
and bioinformatics. In (Rosenblum et al. 2008), the authors build a CRF-
based model to identify functions in binary code.

The problem of separating code and data inside executable files (“code
discovery problem”) is a classical problem in static binary analysis. Existing
disassemblers fail to produce a correct disassembly when data is mixed to-
gether with machine code (subsection 2.3.3). The classical approaches rely on
recursive disassembly (i.e., labeling as code all and only the locations reach-
able by the control flow of the program), and try to improve it by employing
heuristics and symbolic execution; in subsection 2.3.5 we review three such ap-
proaches. The main challenge for these techniques is the precise identification
of the targets of indirect jumps. (Shoshitaishvili et al. 2016, p. 4)

An alternative approach to the problem of code-data separation is to train
a supervised model on the machine code, learning from the features found
in code and data (we review this family of approaches in subsection 2.3.4).
(Wartell et al. 2011) proposes a sequential learning model (Prediction by Par-
tial Matching) to segment x86 machine code into valid instructions and data.
The model obtains a high accuracy, being able to correctly classify more than
99.8% of the bytes as code or data. The model evaluation is done by manu-
ally comparing the output of the model with the disassembly from IDA Pro,
because precise ground truth for the binaries in the training set is not avail-
able. This limitation does not allow to test the method on a large number
of binaries. This approach supports a single architecture (x86), and relies on
architecture-specific heuristics: it would need some effort to be adapted for
new architectures.

Proposed Approach

In chapter 3, we propose an approach to solve the aforementioned problems.
To solve the CPU architecture identification problem, we improve the ap-

proach described in (Clemens 2015) by building a Logistic Regression classifier
with additional features (i.e., patterns matching the function prologues and
epilogues), and by adding Lasso (L1) regularization to make the classifier more
robust to noise. We describe our approach in section 3.2.

We address the code section identification and the code discovery problems
by building a sequential learning model based on Conditional Random Fields
(subsection 3.3.3). Our model looks at the sequence of bytes in the binary
files: for each byte, it learns the probability that it represents code or data,
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conditioned on its value and on the class labels assigned to itself and to a
fixed number of adjacent bytes. The model, trained on pre-tagged binaries,
can identify the code-data boundaries (at the byte level) in unseen samples.
The purpose of the code section identification method (section 3.3) is to find
large, contiguous segments of code inside the file, while the purpose of the
code discovery method (section 3.4) is to find the boundaries of each machine-
code instruction. For this reason, the code section identification approach
also includes a postprocessing phase (subsection 3.3.5) to delete small, noisy
segments of code or data.

Implementation

In chapter 4, we describe the concrete implementation of our approach. We im-
plemented all our learning methods using Python 3 and the machine learning
framework scikit-learn; we implemented the preprocessing and data collection
phases which required the usage of external tools with shell scripts.

We implemented the architecture classifier with the LogisticRegression
class of scikit-learn (section 4.2). We wrote shell scripts to facilitate the col-
lection and the transformation of some datasets. We implemented the pre-
processing, hyperparameter tuning and model evaluation phases by taking
advantage of the rich software library provided by scikit-learn.

To implement the sequential classification models for the code section
identification and the code discovery methods, we used pystruct, a struc-
tured learning framework for Python, which implements Conditional Random
Fields learned with structural SVMs (the mathematical model is described
in section 4.3).

We built the preprocessing and the learning phases as Python classes. We
designed our classes as wrappers for the general-purpose classification models
provided by the libraries. In this way, we expose a simple, uniform interface
by hiding the complexity beneath the general-purpose tools.

To train the code discovery model, we need accurate ground truth for the
executables in the training set, i.e., the locations of the machine instructions
and of the inline data inside the code section. In literature, the majority of the
works we found addresses this problem by using existing disassemblers to pro-
duce an evaluation baseline; however, this approach may lead to inaccuracies.
We choose to extract the ground truth directly from the debugging symbols
generated by the compiler, which are more reliable. This approach presents
some technical difficulties, which we describe and address in section 4.5.

Results Summary

In chapter 5, we describe the evaluation methodology for our approaches, the
datasets, the experiments we ran and their results.
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To validate our approaches, we use cross-validation and holdout testing,
which are standard, well-established techniques in the machine learning do-
main (section 5.3).

We extensively evaluate the architecture classifier over multiple datasets of
executables; the results show that our method performs better than the state-
of-the-art approach (Clemens 2015) on executables obtained from research
papers’ datasets and real-world software; it obtains satisfactory performances
even on shellcodes and packed binaries, by recognizing the Byte Frequency
Distribution of the stub code (section 5.4). Our architecture classifier is robust
to noise: the results show that it can correctly identify the architecture of
executable files containing both code and data sections.

We evaluate the code section identification method on four datasets, con-
taining binaries of different formats (ELF, PE and Mach-O), of different CPU
architectures, compiled with different compilers and multiple levels of opti-
mization (section 5.5). The results show that the performance of our model
is consistently high: on average, the percentage of correctly classified bytes
exceeds 99.5%.

We evaluate the code discovery method over a dataset of x86 and x86-64
Windows binaries compiled with full debugging symbols to obtain the ground
truth. The results show that our method reaches a high accuracy (over 99.9%)
on this dataset, correctly classifying nearly all the bytes.

We determine the optimal values for the hyperparameters of the models
in a systematic way (section 5.7).

Original Contributions

The main contributions of our work are the following:

1. a supervised classification method to identify the Instruction Set Archi-
tecture and the endianness of executable files;

• our method is robust to noise: it works on executables containing
pure machine code, as well as on samples containing code and data,
and packed code;

• our method supports, but does not require, architecture-specific
signatures: more architectures can be supported by simply extend-
ing the training set;

2. a novel application of a sequential learning model (CRF) to reliably
locate the boundaries of the executable regions inside binary files;

3. a novel, simple and reasonably fast approach, based on a sequential
learning model (CRF) to distinguish code from data in stripped and



20 CHAPTER 1. INTRODUCTION

header-less binaries, for two architectures with variable-length instruc-
tions (x86, x86-64) and an architecture with fixed-length instructions
(ARM);

• an automated technique to generate a training set of Windows ex-
ecutables for the code discovery method, by extracting the ground
truth from the debugging symbols generated by the compiler.

Thesis Organization
This work is structured in eight chapters.

• In chapter 1, we give a broad overview about the problems we will be
dealing with, the goals of our work, the proposed approach and the
results.

• In chapter 2, we precisely state the definition of the problems, the state-
of-the-art solutions to such problems, the goals of our thesis and the
challenges we will be facing.

• In chapter 3, we describe in detail the approaches, the algorithms and
the models we choose to use to solve the problems stated in chapter 2.

• In chapter 4, we explain how we implemented the approaches described
in chapter 3 in a concrete software product.

• In chapter 5, we evaluate our methods on real data and give an inter-
pretation of the results.

• In chapter 6, we analyze the limitations of our approach.

• In chapter 7, we give some suggestions for future research, starting from
what we developed in this work.

• In chapter 8, we summarize the work done so far and draw the conclu-
sions.



Chapter 2

Motivation

In this chapter, we will give some background information to contextualize
the domain of binary reverse-engineering (section 2.1). After this necessary
step, we will precisely define the problems which we are going to address
(section 2.2). Then, we will describe the state of the art approaches in the
literature (section 2.3). We will conclude by listing the goals and the challenges
(section 2.4) associated with the problems mentioned before.

2.1 Background

An executable file contains a computer program, in a format suitable for the
operating system to load it in memory and run it. Executable files are gener-
ated as the result of the compilation of the source code of computer programs.
While the source code of a program is written in a high-level, understandable
programming language, the machine code present inside the executable (“bi-
nary file”) is a set of hardware-dependent, low-level instructions executed by
the Central Processing Unit (CPU) of the computer. Machine code in ex-
ecutable files lacks the constructs, the structures and the semantics of the
source code; therefore, extracting useful information from the executable file
alone, without having the source code available, is a challenging task (Kruegel
et al. 2004, p. 1). Moreover, compilers often transform and optimize the code,
to reduce the size of the code and to make it run faster. These optimizations
make static analysis harder (Andriesse, X. Chen, et al. 2016, p. 8).

Reverse-engineering an executable file means extracting useful information
from the binary file, without the source code being available. Static analysis
of executable files is a branch of binary reverse-engineering which consists in
analyzing the executable file without running it, nor tracing its execution.
A typical task in binary reverse engineering is the disassembly of the pro-
gram, i.e., “the extraction of the symbolic representation of the instructions
(assembly code) from the program’s binary image”. (Kruegel et al. 2004, p. 1)

21
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2.1.1 Executable file formats

The software applications running on the most popular desktop and mobile
operating systems are shipped into standard executable file formats. In this
work, we will focus on three of these formats:

Executable and Linkable Format (ELF) The standard format (Tool In-
terface Standard (TIS) Executable and Linking Format (ELF) Specifi-
cation, Version 1.2 1995) for executable files in Linux-based operating
systems.

Portable Executable (PE) The standard format (Microsoft 2017[f]) for ex-
ecutable files in the Windows family of operating systems.

Mach-O The standard format (Mac OS X ABI Mach-O File Format Ref-
erence 2007) for executable files in the operating systems running the
Mach kernel (including Apple’s macOS).

The standard ELF, PE and Mach-O executable formats include a header
which provides metadata such as:

• the Instruction Set Architecture (ISA) of the executable;

• the endianness;

• the number, offsets and lengths of the sections (code, static data, relo-
cations, . . . );

• the base address of the executable, i.e., where the operating system
loader will place the code in main memory;

• the imported and exported functions;

• the relocations, if present;

• (optionally) the debug symbols;

The executable files in the ELF, PE and Mach-O formats are structured
in sections; a set of flags in the header determines the role of each section
(e.g., executable, writable, read-only data, . . . ). In particular, some sections
are executable, and others are not. Executable sections contain machine code
and (sometimes) inline data mixed with the instructions. Non-executable
or “data” sections may contain statically initialized variables, padding bytes,
strings, relocations and other information needed by the program.
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2.1.2 Disassemblers

Disassemblers are computer programs which take an executable file containing
machine code as input and decode it into readable assembly code. Disassem-
blers are a class of widely used tools in the binary reverse-engineering domain.

Machine code may follow non-linear execution paths: a class of CPU in-
structions allows to jump or conditionally branch to any arbitrary code ad-
dress, or to a relative offset. This means that some regions of the binary file
are never reached by the execution. Those unreachable regions may contain
valid but “dead” code, or data.

The problem of statically (i.e., without executing the program) determin-
ing whether the execution flow will reach a generic location in machine code
is an undecidable problem, since it reduces to the halting problem (Wartell
et al. 2011, p. 11). This means that also the correct disassembly of binary
files is undecidable.

One of the tasks disassemblers must deal with is determining which bytes
in the byte stream correspond to valid machine code instructions. Some ISAs
have a dense opcode space (Rosenblum et al. 2008): every byte can be inter-
preted as the beginning of a valid CPU instruction, so it is not possible to tell
apart code from data by only looking at the bytes themselves.

There are two families of disassemblers, which deal with this problem in
different ways:

Linear disassemblers start from the first byte in the file and decode all the
valid instructions sequentially. They may react to the presence of inline
data between the instructions in different ways:

• if the data can be decoded as a valid instruction, the disassembler
decodes it, even if those bytes do not represent a CPU instruction
(false positive);
• if the data cannot be decoded as a valid instruction, the disassem-
bler marks it as invalid (best case);

Some CPU architectures have instructions of variable length: it is not
trivial to tell where an instruction starts, because the incorrect decoding
of some data as code may “dis-align” the disassembly and lead to the
incorrect decoding of the next instructions. x86 disassembly errors tends
to “repair” themselves after few instructions: this property is known as
self-repairing disassembly. (Linn and Debray 2003)

Recursive traversal disassemblers start from the entry point(s) of the ex-
ecutable and start disassembling until they find a control flow instruction
(jump or branch). When a control flow instruction is reached, the disas-
sembler attempts to determine all the successors, i.e., all the addresses
the CPU may jump to. This disassembling procedure is recursively
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restarted from each of the jump targets. The problem of statically de-
termining the set of successors of a branch instruction is, once again,
undecidable; the jump target for a branch instruction may be dynam-
ically computed by the program itself and stored in a registry, or in
memory. This leads to two classes of errors in recursive disassembly:

• if some jump targets are missed, the disassembler will miss valid
code (false negatives);

• if more jump targets than the true ones are detected, the disassem-
bler may decode portions of data as instructions (false positive).

In all the cases where the set of jump targets is precisely determined,
recursive traversal disassemblers are able to avoid inline data and disas-
semble all and only the reachable instructions.

Not all the compilers insert inline data into the instruction stream: for
example, the most recent versions of GCC and clang place all the data in
the .rodata section. Microsoft Visual Studio inserts data and padding bytes
directly into the instruction stream, when compiling for the x86 and x86-64
architectures (Andriesse, X. Chen, et al. 2016). ARM code often contains
jump tables embedded into the instruction stream (J.-Y. Chen et al. 2013).

The presence of data interleaved with instructions into the executable re-
gions of binary files hinders the correct disassembly by both linear-sweep and
recursive disassemblers.

2.2 Problem Statement

In this work, we present a supervised learning approach to solve three tasks
relative to the reverse engineering of executable files:

1. CPU architecture identification: inferring the CPU architecture of
stripped, header-less executable files;

2. Code section identification: determining where the code section is
located inside stripped, header-less executable files;

3. Code discovery problem: inside the executable sections, accurately
distinguish (at the byte level) between valid CPU instructions and inline
data inserted between instructions.

We will analyze each of these problems in depth in the following sections.
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2.2.1 CPU architecture identification

One of the first steps in the analysis of an executable file is to precisely deter-
mine the Instruction Set Architecture (ISA) of the executable, together with
its endianness.

The Instruction Set Architecture (ISA) defines the syntax of the
machine code of a processor (CPU). In particular, the ISA defines the allowed
data types, the instruction set (e.g., the set of all the allowed instructions and
their semantics), the encoding of the instructions into binary machine code
and the state of the machine (the registers).

Different models of CPUs have different ISAs; a program compiled for an
ISA can not run on a CPU with a different ISA.

The endianness of a binary file is defined as the order in which the bytes
are stored in a CPU register (Blanc and Maaraoui 2005). There are two main
endianness conventions:

• Big-endian: the Most-Significant-Byte is stored at the lowest address;

• Little-endian: the Least-Significant-Byte is stored at the lowest ad-
dress.

Other orderings of the bytes are possible: they are generically called
middle-endian.

If the program to analyze is shipped in a standard format, the information
about the ISA and the endianness is present in the header of the executable
file (see subsection 2.1.1 for details).

In some cases, however, the analyst may have no information at all about
an executable. This often happens with binary blobs, or firmwares extracted
directly from the hardware of a device. We assume to be in this situation:
no header information is given; we only have a sequence of bytes, and no
information to interpret it.

It is impossible to disassemble an executable file if the ISA or the endian-
ness are not known, because without this information the machine code inside
the executable file is just a sequence of bytes which can not be decoded.

The first problem that we will face in this work is to label any unknown
binary file with the correct architecture and endianness.

2.2.2 Code section identification

To accurately disassemble an executable file, the disassembler needs to know
where the code section is located inside the file.

The information about the starting offset, the length and the type of each
section of the executable file is usually stored into the header. In some cases,
however, the header may be missing, and there is no trivial way to know where
the machine code is located.
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We assume that the ISA of the binary file is known, and no further informa-
tion about it is available. The problem consists in finding where the sections
containing valid executable code are located into the unlabeled binary files.

2.2.3 Code discovery problem

Even inside the code section of an executable, not all the bytes represent valid,
executable CPU instructions.

Indeed, some compilers (e.g., Visual Studio) insert small sequences of data
inside the code section (Andriesse, Slowinska, and Bos 2017). These small
pieces of data are typically strings, jump tables, or padding bytes between
functions.

Clearly, when data is present in the instruction stream, the compiler makes
sure that the execution flow never reaches it: otherwise, the program would
crash or behave incorrectly.

The presence of data inside the code section of executables is one of the
major issues preventing the correct disassembly of binary files. In fact, the
problem of correct disassembly is undecidable (Wartell et al. 2011, p. 11).

The problem we want to solve is the code discovery problem (J.-Y. Chen
et al. 2013): given a sequence of bytes containing executable machine code and
data, label each byte as code or as data with the highest accuracy possible.

2.3 State of the Art

2.3.1 Generic file type classification

The classification of files by their type is a common problem in computer foren-
sics. Most of the works dealing with file type identification are not specifically
targeted toward the CPU architecture identification problem: all the exe-
cutable files are put in the same class, because a fine-grained classification is
beyond the scope of these works. In this research area, we find some useful
techniques aimed at classifying binary files by only looking at their contents.

The first publication to propose a machine learning approach to classify
computer files by their type, and to extract the features from the Byte Fre-
quency Distribution of files, is (McDaniel and Heydari 2003). The algo-
rithm based on the BFD achieved a modest 27.50% accuracy over 30 classes.

(Li et al. 2005) improves on the same idea by clustering the files by
their BFD and representing each file type with a set of centroids. On six
classes, the best method achieves an average accuracy of 93.8%. The authors
observe that the features can be extended by adding the frequency of N-grams,
i.e., the count of the number of occurrences (even overlapping) of any N-byte
sequence. The authors observe that 1-grams offer the best tradeoff between
accuracy and computational complexity, which is the same result reported
by (Clemens 2015).
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In (Sportiello and Zanero 2012), Support Vector Machines (a super-
vised learning model) are used to classify the type of 512-byte file segments, a
recurring task in forensic analysis (e.g., when recovering files from a damaged
hard drive). In addition to the features extracted from the Byte Frequency
Distribution, additional features like Rate of Change, Mean Byte Value, En-
tropy and Lempel-Ziv complexity are also computed. The average classifica-
tion performance is 90.4% for the True Positive Rate and 12.4% for the False
Positive Rate, on 9 file classes. The authors observe that any attempt to work
with a set reduced or compressed features derived from the BFD produces
worse results than the model trained on the full BFD. Another important
observation, supported by an experiment carried out in the paper, is that by
increasing the size of the blocks, the classification performance also increases.
The methods described in this paper can be used to classify the executable
files by their ISA. This approach is not suitable to solve the code section
identification problem, because the segmentation of the executable files is not
known a priori: we need to solve both the segmentation and the classification
problems.

(Penrose, Macfarlane, and Buchanan 2013) contains an extensive
literature review about the classification of high-entropy file fragments and
claims that existing techniques are insufficient to classify compressed or en-
crypted file segments (which are beyond the scope of our work).

2.3.2 Classification of executable files

(Clemens 2015) addresses the problem of the identification of the CPU
architecture of executable files as a classification task: 9 different machine
learning models are trained over a dataset of 20 different CPU architectures.

The features are extracted from the Byte Frequency Distribution (BFD)
of the files, i.e., there are 256 features and the i-th feature represents the
frequency of occurrence of byte i in the file:

freq(i) = count(i)
N

(2.1)

In addition to these features, four bi-gram features are added to detect of
the endianness of the binary files. Those are the frequencies of the bi-grams
0x0001, 0x0100, 0xfffe, 0xfeff. They represent – in both the big endian
and little endian encodings – the frequency of the positive integer number
“1,” and the frequency of the two-byte sequence 0xfffe which is the prefix of
“high” memory addresses.

The paper evaluates and compares 10 different machine learning models
(1-NN, 3-NN, Decision Tree, Random Tree, Random Forest, Naïve Bayes,
Bayesian Networks, Logistic Regression, SVM, Neural Network) on the same
dataset. The best performing algorithm (SVM) reports an accuracy of 98.35%,
but all the models perform well, even without hyperparameter tuning.
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If we look at the disaggregated data reported for the Logistic Regression
model, however, we find that some classes perform worse than others. MIPS
(big endian) and MIPS (little endian) have a F-measure of 88.4% and 88.6%
respectively; CUDA performs quite bad at 51.6% and AVR stops at 93.6%.
All the other architectures have a F-measure greater than 99%.

In the case of CUDA, the poor performance is simply explained by the low
number of samples in the dataset (17). The two MIPS architectures differ only
for their endianness; we suspect that this may confuse the classifier, even with
the bi-gram features. Unfortunately, the paper does not provide a confusion
matrix to check which couples of classes are more likely to confuse the model.

The dataset is obtained by extracting the code section of binaries coming
from 20 different architectures. The assumption here is that we know where
the code section is located in each binary, and that we can isolate it from other
data present in the original binary file. This assumption limits the practical
applications of this work: if the location of the code section is known, it is
likely that a header is present and that we also know the CPU architecture.

All the models were trained with their default parameters (except for the
Neural Network classifier): hyperparameter tuning may increase their per-
formances. Indeed, for some models, the choice of the parameters (e.g., the
pruning criterion for Decision Trees, or the regularization strength for Logis-
tic Regression and SVMs) is critical to obtain a correct bias-variance trade-
off. (Bishop 2006, p. 665)

angr’s Boyscout

The binary analysis framework angr (Shoshitaishvili et al. 2016) provides
a tool (Boyscout) to identify the CPU architecture of an executable. The tool
implements this simple algorithm: for each architecture-endianness couple
there is a set of regular expressions matching the byte patterns corresponding
to the function prologues and epilogues. One match for a pattern is a “vote”
for the corresponding architecture. The architecture-endianness couple with
the most votes is returned.

We evaluated Boyscout on a dataset of binaries of different architectures,
downloaded from the Debian package repository (we refer to subsection 5.2.3
for a detailed description of this dataset).

To evaluate Boyscout, we loaded each binary of the dataset into angr.
Since the binaries in our dataset are regular ELF files, angr can detect the
architecture and the endianness of each file by looking at its header. This
provides our ground truth, i.e., the “true” architecture of the binary in the
angr’s naming scheme. We manually filled in the class label of the binaries
which were not recognized by angr. Then, we reloaded each file as a “blob”
into angr and ran the Boyscout architecture detection algorithm. The confu-
sion matrix which compares Boyscout’s predictions with the true architecture
of the binaries is shown in Figure 2.1.
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Figure 2.1: Confusion matrix of Boyscout on the Debian dataset.

The accuracy of the Boyscout detection algorithm, computed as the per-
centage of samples for which Boyscout correctly detects both the architecture
and the endianness, is 86.6%.

Some of the amd64 binaries are erroneously classified as x86: this is ex-
pected since the two architectures are similar. Boyscout is unable to recognize
any of the aarch64 (ARM 64-bit) binaries. This happens because, although
the architecture is supported by angr, its patterns are missing. If we remove
these binaries from the dataset, the accuracy becomes 98.9%.

Boyscout’s approach is simple and precise (for a subset of architectures);
however, it has the following shortcomings:

1. the tool must include a signature database of function prologues and epi-
logues for each architecture, which requires constant maintenance (An-
driesse, Slowinska, and Bos 2017);

2. no feature selection: every regex match carries the same weight;

3. shorter matches are more likely to occur in random data: architectures
with shorter prologues and epilogues are favored;

4. prologues and epilogues can be missing in heavily optimized or obfus-
cated code.
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2.3.3 Real-world disassembler accuracy

Before investigating novel research methods to distinguish code from data in
executable files, we will now describe how existing disassembler frameworks
behave on real-world binaries.

(Andriesse, X. Chen, et al. 2016) provides an in-depth analysis about
how state-of-the-art disassemblers perform on x86 and x86-64 binaries, and
reveals a notable mismatch between the true capabilities of the disassemblers
and the overly pessimistic expectations reported in 30 academic papers.

The first experiment evaluates the accuracy of the detection of instruction
boundaries, evaluating both linear sweep and recursive traversal disassemblers.
As mentioned in subsection 2.1.2, linear disassemblers and recursive traversal
disassemblers differ about how they discover the instructions inside the binary
stream, and these differences affect the behavior of such disassemblers when
inline data is mixed into the instruction stream. Linear sweep disassemblers
yield the best performance on the most difficult dataset (binaries compiled by
Visual Studio), finding 99.92% of the real instructions, with a false positive
rate of 0.56% of the decoded instructions. The false negatives are much less,
at 0.09%. By comparison, the best recursive traversal disassembler, IDA Pro,
has an accuracy between 99% and 96% depending on the optimization level
of the binaries.

The performance of linear-sweep disassemblers depends on the amount of
non-padding data that is inserted by the compiler into the instruction stream.
If more data were present, the performance would decrease. For example,
(Linn and Debray 2003) reports that, by inserting “junk” into the instruction
stream, they can make linear disassemblers classify 26%-30% of the instruc-
tions incorrectly. The same paper explains more sophisticated obfuscation
techniques to confuse recursive disassemblers.

So, the comparison among disassemblers and code discovery approaches
must be done carefully, since the amount of data inserted in the instruction
stream can dramatically change the performance of the approach.

2.3.4 Statistical code discovery methods

In this section, we will review some of the works which address the problem of
code discovery as a supervised classification problem. The general idea is to
solve the code discovery problem by classifying every byte in the executable
file either as “code” or “data”. This is done by learning a probabilistic language
model of the code and data bytes and then compute the most likely class for
each byte, by using the values of the surrounding bytes (often referred as
context) as features.

An important contribution in this field is (Wartell et al. 2011). The
algorithm described in the paper follows these high-level steps:
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1. the bytes are divided into segments by using an instruction reference
array and a utility function;

2. Predication by Partial Matching (PPM), a model similar to a kth order
Markov model, classifies each segment as code or as data;

3. additional heuristics are used to improve the classification accuracy (e.g.,
data is more likely to appear after an unconditional jump).

PPM is an algorithm that performs a dynamic context match, i.e., predicts
the probability of appearance of a symbol in a sequence, conditioned on the
previous k symbols. If no match is found for a prefix of length k, an escape
event is recorded and the model considers a prefix of length k − 1. Two
language models are built, one for code and another for data. Each segment
is then classified with the class that gives the highest likelihood.

The paper does not explain precisely how the outcomes of the heuristic
criteria are merged with the classification result from the PPM model.

The experimental method, evaluated over 11 real-world Windows binaries,
correctly classifies the segments with high accuracy (the worst being 99.893%),
overcoming the performance of IDA Pro which is recognized as one of the top-
performing recursive disassemblers.

The ground truth data is obtained by manually comparing the disassembly
given by IDA Pro with the results of the proposed method. This evaluation
methodology has the following drawbacks:

1. the quality of the ground truth depends on the skills of the human
analyst;

2. if the classification of a segment is mistaken by both the experimental
method and IDA Pro, the error is not considered;

3. the need for manual checking does not allow to test the method on a
large dataset of binaries;

4. whenever the method changes, the ground truth must be regenerated.

Indeed, the author acknowledges that the development of an automated
ground truth generation process is still an open problem.

(J.-Y. Chen et al. 2013) addresses the code discovery problem in ARM
binaries. The final objective of this work is to perform a correct static bi-
nary translation, i.e., the conversion of an executable from an ISA to another
without recompiling from source. ARM is a 32-bit RISC1 architecture with
fixed-length instructions; however, the same executable may contain ARM
code (32-bit) mixed with Thumb code (16-bit). This means that the instruc-
tions can be 4-byte or 2-byte aligned in different regions of the executable:

1RISC: Reduced Instruction Set Computer
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the segmentation is not trivial as in pure ARM code where all the instructions
are aligned at the addresses multiples of 4 bytes.

The proposed approach starts by analyzing the binary with a conservative
recursive traversal, following jumps only when possible. The regions found
in this way can be safely classified as ARM or Thumb by their address. The
algorithm identifies embedded data by looking at PC-relative addressing in
load instructions. Anything that was not classified either as ARM, Thumb
or data is translated twice into the resulting executable: first as ARM code,
and then as Thumb code. At run-time, the correct version will be chosen (or
never reached, in the case of inline data). This approach increases the size of
the binary but ensures its correctness.

The algorithm is interesting for the analysis of ARM code, but it is specifi-
cally targeted for that architecture. It can not be extended to “true” variable-
length instruction ISAs like x86. Also, this algorithm is unable to classify all
the bytes as code or data: some are left undecided.

(Karampatziakis 2010) presents the code discovery problem in x86 bi-
naries as a supervised learning problem over a graph. x86 is a CISC2 variable-
length instruction architecture: it represents the most general and difficult
case (Andriesse, X. Chen, et al. 2016, p. 3). The proposed approach uses
structural SVMs to classify bytes as code or data. A trellis graph is used as
a data structure to express constraints over the classification outcome. The
vertices of the graph represent the bytes of the binary file. For example, if
the classifier decides that the byte in position i is the start of an instruction
having length 7, this implies that no data is present from i to i + 6, and no
other instruction can start in that interval. This ensures that the classification
outcome is consistent.

The author claims that this model is the most convenient tradeoff between
simpler models like linear-chain Conditional Random Fields and more expres-
sive, complex and slower models like semi-CRFs and semi-Markov SVMs.

The ground truth is extracted by disassembling 200 programs for Windows
XP with OllyDbg and checking the results against IDA Pro. This may prove
problematic because, as we explained in subsection 2.1.2, no disassembler
yields a perfect disassembly.

Two types of features are associated with each edge in the graph: byte-level
features and instruction-level features. Byte-level features are extracted from
an 11-byte window centered around the source of the edge; instruction-level
features are obtained from the histograms of instructions in the candidate
code blocks. The total number of features is 2.3 million. Three loss functions
are defined: Hamming loss, block loss and instruction loss. The Hamming loss
expresses the fraction of the bytes correctly classified by the model.

The original paper reports the normalized losses multiplied for the average
number of bytes, blocks and instructions. To allow comparisons with the other

2CISC: Complex Instruction Set Computer



2.3. STATE OF THE ART 33

L̄ ·∆NH L̄ ∆NH

Greedy 1916.6 16712 0.1147
SVMhmm 201.3 16712 0.0120
SVMwis∆I 115.6 16712 0.0069
SVMwis∆NI 103.7 16712 0.0062
SVMwis∆B 98.2 16712 0.0059
SVMwis∆NB 87.2 16712 0.0052

Table 2.1: Normalized Hamming losses for the models in (Karampatziakis
2010)

methods, we report in Table 2.1 the normalized Hamming losses (∆NH) for all
the models evaluated in the paper, by dividing the de-normalized Hamming
loss (L̄ ·∆NH) by the average number of bytes (L̄).

(Rosenblum et al. 2008) addresses the problem of Function Entry Point
(FEP) identification in stripped binaries (i.e., those not including debug in-
formation) for the Intel IA-32 architecture, which is a CISC architecture with
variable-length instructions. More specifically, for each byte xi in the binary,
the task is to predict whether xi is the first byte of a function (the Function
Entry Point), or not.

The paper states that simple heuristics such as pattern matching on func-
tion prologues are not sufficient to successfully perform this task. Also, it
observes that recursive disassembly fails to identify approximately 40% of
functions in binary code because of indirect control flow transfers, i.e., jump
targets which are resolved at run-time. There are gaps between discovered
functions, which contain undiscovered code as well as data like constants,
padding bytes and jump tables.

The proposed method to identify Function Entry Points employs a linear-
chain Conditional Random Field (CRF) (Lafferty, McCallum, and Pereira
2001) for structured classification in sequences. Linear-chain CRFs are a su-
pervised, structured, probabilistic learning method able to predict a label for
each item in a sequence.

The authors propose two classes of features:

1. Idioms are patterns of assembly instructions; feature selection is used
to select the most significant ones;

2. Structural features express two properties of the binary code:

a) Binary call-consistency: if we assume that byte xi is a FEP, and
the function starting at xi performs a call to the location xj , then
xj is likely to be a FEP.

b) Binary overlap: if the functions starting at two candidate FEPs xi

and xj overlap, is unlikely that both xi and xj are actually FEPs.
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The dataset is composed of 616 binaries compiled with GCC on Linux, 443
Windows XP system binaries, and 112 binaries compiled with ICC on Linux.
The ground truth is obtained by parsing the debug symbols generated by the
compiler, which contain accurate information about FEPs.

The feature selection and training phases for this method are expensive:
the authors use a distributed computing environment to reduce the processing
time by parallelizing the computations. The feature selection phase took “less
than two days” in real time, which translates in 150 compute-days on the
cluster.

The performances of the model are superior to the state of the art of the
available disassemblers. The F0.5 measure for GCC binaries is 98.9%, while in
the worst case it is 85.9% for binaries compiled with ICC.

The code discovery problem is in some respects similar to the FEP identifi-
cation problem, so a structured learning model may be a promising candidate
solution; however, simpler and more straightforward features should be used,
to avoid the expensive feature-selection phase which has to be repeated for
each different dataset.

The purpose of the work presented in (Shin, Song, and Moazzezi 2015)
is to identify function boundaries, i.e., the first and the last byte of each func-
tion. The approach considers directly the bytes as features, with minimal
preprocessing. The proposed model is a single-layer bi-directional recurrent
neural network which works similarly to a linear-chain CRF. Each byte corre-
sponds to one hidden state, which is a node in the neural network. Each node
is connected to the previous and to the next node. The model has no concept
of “instruction”; instead, it directly associates the bytes with the functions.

This method consistently improves over the results of ByteWeight (Bao
et al. 2014), obtaining a F1 measure in the range of 98%-99%, with a shorter
prediction time than ByteWeight. The training time is also shorter than
ByteWeight’s, but still high: cross-validation on the neural network took 80
compute-hours, vs. the 586.44 compute-hours needed by ByteWeight.

The authors evaluated the model on the same dataset used in the Byte-
Weight paper, consisting in ELF and PE executables, compiled for x86 and
x86-64. ELF executables were compiled with both GCC and ICC, at four
different levels of optimization.

The good results obtained in this work suggest that statistical techniques
represent a promising research direction in binary analysis, and can be suc-
cessfully applied to the code discovery problem.

2.3.5 Improving recursive traversal disassembly

(Bao et al. 2014) introduces an analysis framework, called ByteWeight,
which solves three problems, described as follows:
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1. Function Start Identification consists in finding the address of the
first byte of each function, as in (Rosenblum et al. 2008).

2. Function Boundary Identification consists in finding the starting
and ending addresses of each function; it is equivalent to the code dis-
covery problem, if we assume that inline data is only located outside the
function body.

3. Function identification consists in finding the set of bytes correspond-
ing to each function in the binary code: a solution to this problem would
also solve the code discovery problem.

For each of these problems, the paper defines an “oracle” providing the
ground truth data. Obtaining accurate ground truth is paramount for sta-
tistical and machine learning methods. The Boundary Oracle is obtained by
parsing debugging symbols derived from the compilation process.

The proposed approach for the function start identification problem con-
sists in a weighted prefix tree which learns the function start patterns and
their associated likelihood (weights) from the training set, in a compact form.
The model accepts as features either byte patterns, or instruction patterns,
obtained by disassembling an instruction starting from each byte (exhaustive
disassembly).

After recovering the function starting points, ByteWeight infers all the
instructions and the bytes belonging to each instruction with a recursive dis-
assembly augmented with Value Set Analysis (VSA) to resolve indirect jumps.
VSA over-approximates the destinations of indirect jumps. For a detailed de-
scription of VSA, we refer to (Shoshitaishvili et al. 2016). ByteWeight builds
the Control Flow Graph (CFG) of the binary and recovers the function end
addresses by using recursive disassembly, VSA and some heuristics.

ByteWeight is a hybrid approach: first, it employs a machine learning
approach to infer the function start addresses, then it uses binary analysis
techniques to construct the Control Flow Graph.

The authors evaluate their method over a dataset of 2,064 binaries for
Linux and Windows, compiled with debug information. Linux binaries are
ELF files, compiled for the x86 and x86-64 architectures, with the GCC and
ICC compilers, using 4 different levels of optimizations, with debug symbols.
Windows binaries are PE files, compiled for the x86 and x86-64 architec-
tures, with three versions of Visual Studio, with debug symbols (contained
in separate PDB files). The ground truth for the dataset is extracted from
the symbol tables (for the Linux binaries) and from the PDB files (for the
Windows binaries).

The performance of the function start identification algorithm is consis-
tently higher than (Rosenblum et al. 2008) and commonly used disassemblers
(Dyninst, BAP, IDA Pro).
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The main drawback of ByteWeight’s approach is that it requires long train-
ing and prediction times. The author claim that the training phase executed
on 2,064 binaries took 586.4 compute-hours, while testing took 256 compute-
hours for the function boundary recovery algorithm. The most expensive
phase of the computation is Value Set Analysis, which resolves the targets of
the indirect jumps.

(Kruegel et al. 2004) addresses the code discovery problem in obfuscated
binaries, and proposes a hybrid approach which combines control-flow based
and statistical techniques. The purpose of this method is to deal with the
obfuscation techniques presented in (Linn and Debray 2003), specifically:

1. the insertion of junk bytes in unreachable locations;

2. the replacement of function calls and returns with indirect branch in-
structions.

The first phase of the algorithm extracts the Control Flow Graph (CFG) of
the program by using a variant of the recursive disassembly algorithm. This
method provides an algorithm to resolve the conflicts between overlapping
basic blocks.

The second phase is aimed at “filling the gaps” between the basic blocks
discovered so far, which may contain either data or valid instructions. Inside
these gaps, all the possible valid sequences of instructions are identified; the
method assigns a sequence score to each of them, which reflects the likeli-
hood that the instruction sequence appears in the executable and represents
valid, executable code. The gap completion method computes the likelihood
of the single opcodes and of the couples of opcodes present in binary code,
and stores the results in probability tables. The score for an instruction is
computed as the sum of the probabilities of occurrence of the current opcode,
and of the current opcode followed by the next one in the observed sequence.
Architecture-specific heuristics are also used to improve the probability ta-
bles, ruling out “improbable” instructions by setting to zero their probability
whenever the instruction sequence matches a certain rule.

A recursive disassembler with speculative linear disassembly and aug-
mented with external information about function starts and ends provides
the ground truth for evaluation.

The paper divides the disassembly techniques into general techniques and
tool-specific techniques; the latter are tailored for the obfuscation methods
in (Linn and Debray 2003).

The average disassembler accuracy, without using tool-specific techniques,
is 90.10% as reported in the paper; by using tool-specific techniques, the
average accuracy improves to 96.92%. Disassembler accuracy is defined as
1− |V−O|

V , where V is the set of valid program instructions and O are the set
of instruction that the disassembler discovers.
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According to (Rosenblum et al. 2008) a limitation of this approach is that
“these heuristics and simple statistical methods cannot adapt to variations in
compiler, optimization level, and post-compilation optimization tools”. For
instance, one of the assumptions is that the function prologues are easily
identifiable by looking for common patterns. Extending the function identi-
fication algorithm to overcome the obfuscation of function prologues would
require tool-specific knowledge and other heuristics.

angr (Shoshitaishvili et al. 2016) is a binary analysis framework which
performs CFG recovery by recursive disassembly, augmented by advanced,
state-of-the-art techniques to solve indirect jumps. Specifically, angr imple-
ments symbolic execution, backward slicing and Value Set Analysis with the
help of an algebraic solver. Retrieving the full CFG with these techniques
is expensive in terms of computation time. Also, it is impractical to an-
alyze header-less binary because these techniques require the executable to
be correctly loaded in angr; the base address and the entry point must be
provided for the CFG recovery algorithms to work. angr provides an analy-
sis (Girlscout) which should be able to identify the base address, but at the
current time the code is broken.3

2.4 Goals

The first goal of this thesis is to build a system able to identify the CPU
architecture of an arbitrary executable file. The system must accept any
sequence of bytes (corresponding to an executable file) as input and return the
predicted CPU architecture, or an ordered list of the most likely architectures.
If an architecture has both the little-endian and the big-endian variants, those
are considered as separate architectures.

The goals that we want to achieve are the following:

Speed The classifier must give the prediction results quickly. Training should
also be reasonably fast.

Simplicity The classifier should use a simple, straightforward model, with
few parameters to tune.

Domain knowledge The analyst must be able to integrate his knowledge of
the domain by adding new features to the model; the features should be
sufficiently expressive.

Automatic feature selection The system must be able to tell which fea-
tures are the most useful to discriminate between architectures.

3GitHub issue: https://github.com/angr/angr/issues/447

https://github.com/angr/angr/issues/447
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Zero knowledge about the binary The prediction must depend only on
the byte sequence of the executable file, without relying on any meta-
data. Headers, debug info and symbols are always assumed to be miss-
ing.

Robustness Noise in binary files should not confuse the classifier. In partic-
ular, we do not assume to know where the code section of the executable
is located: the classifier should be able to take the whole binary as input
and output the correct classification outcome.

Extensibility The analyst must be able to extend the set of supported ar-
chitectures simply by extending the training set.

The second goal of this work is to build a system to identify the boundaries
of the executable sections of unknown, header-less binaries. More precisely,
the input of the problem is a binary file which consists of one or more code
sections containing machine code, and other sections containing data. We
assume to know the CPU architecture of the executable file. The output of
the system is a set of ranges corresponding to the predicted locations of the
executable sections.

The requirements for this system are:

No external knowledge The only information available is the sequence of
bytes and the CPU architecture of the binary file.

Extensibility The analyst must be able to extend the set of supported ar-
chitectures simply by extending the training set.

Speed Prediction should be done in real time, and training should be rea-
sonably fast.

The third goal of this work is to solve the code discovery problem, i.e., to
build a system to classify each byte in the executable section of a binary as
code or inline data. The system accepts as an input any arbitrary sequence
of bytes; we assume to know the CPU architecture of the binary. The model
must classify each byte either as a part of a machine instruction, or as data.

The requirements for this system are:

Very high accuracy State-of-the-art tools perform very well (Andriesse, X.
Chen, et al. 2016) in this task, and we want to further improve the
performance.

Simplicity and generality We want to build a straightforward, general model
which is easily adaptable to new architectures. The model must not rely
on architecture-specific heuristics and must use general features.

Speed the model should return its prediction quickly.
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Automated generation of ground truth data The ground truth for the
training set must be reliable and automatically generated. The gener-
ation of the ground truth must not require the manual inspection and
disassembly of the binaries.

Variable length instructions The model must be able to deal with the
most difficult and general case: variable-length CPU instructions, mixed
with data.

Context-sensitiveness To classify the bytes as code or data, their context
(preceding and following bytes) must be considered, otherwise some am-
biguities cannot be solved.

2.4.1 Challenges

(Clemens 2015) obtains the dataset used for the evaluation of the architecture
identification method by extracting the code section from a set of executables.
We want to assess whether this method will also work with real-world, “spuri-
ous” binaries, i.e., full executables containing not only executable instructions
but also data, which is seen as noise by the classifier. We want to challenge
the method on some more difficult sets of binaries, e.g., packed binaries or
shellcodes.

We also want to add more complex features to the model, without resorting
to byte n-grams which would produce too many features (256n).

The main challenge associated with the code section identification problem
is that we must design an integrated approach to segment a binary file and
classify the segments at the same time. Indeed, the segmentation and the clas-
sification phases are inter-dependent and can not be performed sequentially.
This means that the file fragment classification approaches we cited before
(e.g., (Sportiello and Zanero 2012)) are not suitable for this task, because
they assume that the segmentation of the file is given a priori.

The code discovery problem is challenging per se because it is known to
be theoretically undecidable. In practice, however, there are approaches in
literature that yield approximate, but acceptable, results.

Traditional models based on recursive disassembly require complex and
advanced techniques to precisely retrieve the targets of indirect jumps. As
shown in (Andriesse, X. Chen, et al. 2016), recursive disassemblers perform
worse on this task than simple linear disassemblers. Also, they are slow and
require that the binary is correctly loaded. The base address must be always
provided, otherwise the disassembler will not resolve the jumps to absolute
addresses.

Among the works we cited in the literature review, we are particularly in-
spired by the machine-learning based approaches like those presented in (Wartell
et al. 2011), (Shin, Song, and Moazzezi 2015), (Karampatziakis 2010), and
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(Bao et al. 2014). These approaches avoid the pitfalls of recursive disassem-
blers and do not need to recover the targets of indirect jumps; they do not
require the knowledge of the entry point or of the base address). The only
requirement is to know the ISA of the binary and to have a proper training
set for it.

The main problems with the machine-learning approaches we cited before
are the long training time and the memory requirements. Indeed, these meth-
ods must output a classification for each byte in the binary: for a 1 MB binary,
this means that one million variables must be predicted. The problem becomes
worse if we consider the feature space, which is often high-dimensional. Even
considering only the bytes as features, the natural choice (Shin, Song, and
Moazzezi 2015) is to generate 256 features by one-hot encoding. This means
that for a 1 MB binary, we have a matrix with 256 million elements. If we
use instruction-level features, the feature space becomes even larger: (Karam-
patziakis 2010) claims to have 2.3 million features; the feature selection phase
in (Rosenblum et al. 2008) takes about two compute-days.

If the training phase takes too long, the analyst would need to either have
all the necessary models computed beforehand, or to equip himself with a
consistent amount of computing power. We seek to avoid either, since we
want to be able to experiment with different training sets and we want our
solution to be practical for binary analysis.

Sometimes (Bao et al. 2014), not only the training, but also the predic-
tion phase can be slow, too. Instead, we want a system which can be used
interactively: at least the prediction phase must run quickly.

Supervised machine-learning approaches carry the issue of the generation
and the collection of ground truth data, i.e., the pre-labeled binaries whose
bytes are labeled either as code or as data. In (Wartell et al. 2011), the bi-
naries are pre-tagged with IDA Pro (which introduces mistakes, as any other
disassembler does) and the evaluation of the approach was done by manually
comparing the results of the experimental approach with the disassembly re-
sulting by IDA Pro. This approach is tedious, error-prone, and allows to eval-
uate the method only on a limited number of binaries. We already discussed
its limitations in subsection 2.3.4. In (Karampatziakis 2010), the ground truth
is still obtained by using a disassembler (OllyDbg). In both cases, erroneous
ground truth may lead to errors both in the training of the model, and in an
overly optimistic evaluation of the performance of the model (e.g., when both
the model and the ground truth make the same error, the result is evaluated
as correct). (Andriesse, X. Chen, et al. 2016) and (Bao et al. 2014) extract
the ground truth directly from the debugging symbols. This is the most pre-
cise approach, because the ground truth is provided by the compiler itself;
however, executable files already compiled with complete debugging symbols
are not easy to find (Andriesse, X. Chen, et al. 2016, p. 17), so it is necessary
to generate the executables together with the debugging symbols by compil-
ing from source. Parsing the debugging symbols presents technical difficulties
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when they are not stored in a standardized format: this is the case of PDB
files, generated by Microsoft Visual Studio, which require a platform-specific
API. (Křoustek et al. 2012)





Chapter 3

Approach

In this chapter, we will describe in detail the approaches we developed to solve
the problems defined in chapter 2. First, we will give a broad overview, and
then we will discuss each approach in detail.

3.1 Approach Overview
The architecture classification problem consists in predicting the CPU
architecture and the endianness of an executable file without relying on any
header information. To solve this problem, we follow an approach similar
to (Clemens 2015), which faces the problem as a machine learning classification
task. We assume not to have any metadata about the executables to classify.

We collect a training set of binaries (“samples”) compiled for multiple ar-
chitectures, from which we extract the byte-level features, i.e., the frequencies
of occurrence of single bytes and of selected multi-byte patterns. We then
train a logistic regression model to predict the ISA and the endianness of
unseen binaries from these features.

The logical steps of the architecture identification approach, illustrated
in Figure 3.1, are the following:

1. Data collection

2. Feature engineering and preprocessing

3. Training

4. Prediction

The code section identification problem consists in predicting whether
each byte in an executable file belongs to an executable section or not. Our
approach works as follows. We collect a training set of labeled binaries of the
same architecture of the executables that we want to analyze; then we train
a probabilistic sequence learning model (linear-chain CRF) on such training

43
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Figure 3.1: Diagram of the logical steps of the architecture classification
method.

set. The trained model can identify the code-to-data and the data-to-code
transitions in any unlabeled executable. The sequential learner classifies each
byte as code or data: as we want to identify one single, contiguous, code
section inside the binary file, we develop a postprocessing step to eliminate
small blocks of code or data, by merging them with the surrounding region.
As we will show in subsection 5.5.1, the postprocessing phase improves the
performance of our model by eliminating the noise in the prediction output.

Figure 3.2a describes the data collection and preprocessing steps; Fig-
ure 3.2b describes the model learning, prediction and postprocessing steps.

The logical steps of the code section identification approach are the fol-
lowing:

1. Data collection

2. Preprocessing

3. Learning the model

4. Prediction

5. Postprocessing

The code discovery problem consists in predicting whether each byte
inside the code section of an executable file belongs to a valid CPU instruction,
or should be considered inline data. We solve this problem with the same
model used to solve the code section identification problem. First, we collect
a training set of executables in which the code/data tagging is known, by
compiling some programs with full debug information. We train a probabilistic
sequence learning model (linear-chain CRF) on such training set. The trained
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model will predict, for an unknown binary, which bytes belong to a valid CPU
instruction and which ones are to be considered as data.

The logical steps of the code discovery approach are the following:

1. Data collection and preprocessing

2. Training

3. Prediction

Figure 3.3a illustrates the data collection and preprocessing phases; Fig-
ure 3.3b illustrates the model learning and prediction phases.
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(a) Preprocessing steps to generate the training dataset.

(b) Model learning and prediction phases.

Figure 3.2: Diagrams for the code section identification approach.
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(a) Steps for the generation of the dataset.

(b) Model learning and prediction phases.

Figure 3.3: Diagrams for the code discovery approach.
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3.2 Architecture classification

3.2.1 Preprocessing and feature engineering

We train our model on a set of executable files, labeled with the correct CPU
architecture. The executables can be in any format (e.g., PE or ELF), as we
do not rely on any header information.

Since we assume to have no metadata about the executable files (no dis-
assembly is possible at this time), the only choice is to extract the features
from the bytes in the files.

We obtain the Byte Frequency Distribution (BFD) of each file by comput-
ing the frequencies of the 256 possible bytes. The frequency of a byte having
integer value i is defined as:

fi = count(i)∑255
i=0 count(i)

∀i ∈ [0, 255] (3.1)

where count(i) is the number of times that the byte i appears in the exe-
cutable. We choose the BFD as the initial feature set for our model since it is
a common and effective choice in literature (subsection 2.3.2). The underlying
assumption which supports the choice of the BFD as a set of features is that
executables compiled for different architectures have different BFDs.

In Figure 3.4, we show a graphical representation of the Byte Frequency
Distribution computed for the same program, compiled for four CPU archi-
tectures. The differences between the three diagrams are evident, and can
be spotted even by manual inspection. Two architectures (mips and mipsel)
share the same BFD diagram, which we reported only once in Figure 3.4b.
The reason these two architectures have an identical BFD is that they differ
only by their endianness.

The second set of features is conceptually similar to the BFD: it consists
in the frequencies of some specific byte patterns, which are more frequently
found in some architectures than in others. These multi-byte patterns are
encoded as regular expressions, which in our opinion represent a fair tradeoff
between expressive power and matching speed.1 The choice of the patterns
to include in this set of features fell on the patterns of function prologues and
epilogues, available in the angr’s archinfo project (angr 2017).

We included in this set of features the four two-byte patterns used in (Clemens
2015), which help to recognize the endianness of the binary, i.e., the byte bi-
grams 0x0001, 0x0100, 0xfffe, 0xfeff. A model using only the Byte Fre-
quency Distribution (i.e., the frequency of the single bytes) would be unable
to distinguish two binaries of the same CPU architecture differing only by
their endianness, because the two files would differ only in the ordering of the
bytes, not in their frequency.

1Regular expressions can recognize regular languages, a task which requires linear time
w.r.t. the length of the input string. (Reghizzi, Breveglieri, and Morzenti 2013, p. 91)
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(a) bison (amd64)
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(b) bison (mips, mipsel)
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(c) bison (armel)

Figure 3.4: Byte Frequency Distributions of the bison executable compiled
for four different architectures (amd64, mips, mipsel, armel). Note that the
BFDs for the mips and mipsel architectures are identical, since they differ
only for the endianness which is not reflected into the BFD.
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The number of matches of these patterns are normalized by the length of
the file (number of bytes), to account for executable files of different sizes.
Thus, the multi-byte-pattern features are computed as follows:

freq(pattern) = matches(pattern, file)
len(file) (3.2)

In the preprocessing phase, each file is transformed into a numeric vec-
tor containing the values of the features. The preprocessing phase can be
parallelized over the files.

3.2.2 Training

In this section, we describe the classification model which learns the parame-
ters of the model from the training set and, once trained, can predict the class
(architecture) of any unknown sample.

We choose to use Logistic Regression (LR) with L1 regularization (lasso
regularization), a linear classification model which learns a vector of parame-
ters w by solving the following minimization problem over the feature matrix
X and the vector of labels y:

min
w,c
‖w‖1 + C

n∑
i=1

log
(
exp

(
−yi

(
XT

i w + c
))

+ 1
)

(3.3)

The cost function minimized by Equation 3.3 is composed of two terms:
the first is the regularization term, which assigns a penalty to “complex”
models with large coefficients; the second term is the logistic loss. The C
parameter is the inverse of the regularization strength: higher values of C
assign more importance to the second term in Equation 3.3, while lower values
of C give more importance to the regularization term. Regularization is a
technique used in machine learning to avoid overfitting, i.e., to learn models
which are accurate on the training set but generalize poorly on unseen samples.
We choose L1 regularization because Lasso can generate compact models, by
setting to zero the coefficients in w corresponding to less relevant features. In
this way, our model performs feature selection as part of the learning phase.
For a more thorough explanation of the Logistic Regression model and of the
usefulness of regularization in classification models, we refer to (Bishop 2006).

Logistic Regression, as described in Equation 3.3, is only able to discrim-
inate between two classes. We obtain a multi-class classifier by using the
one-vs-the-rest (OvR) strategy. The OvR strategy consists in fitting one clas-
sifier for each class c ∈ C, to distinguish the samples of c (“positive” class)
against all the other classes C \ {c} (considered together as the “negative”
class).

Each Logistic Regression classifier outputs a confidence score for each sam-
ple, i.e., an estimate of the probability that the sample belongs to the positive
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class. The class label predicted for a sample is the class with the highest
confidence score returned by the corresponding classifier.

We chose the Logistic Regression (LR) model for the following reasons:

• LR is a simple, linear model, less prone to overfitting than more complex
models;

• the only hyperparameter to tune is the regularization strength;

• LR is a popular model for classification tasks and it is available as an
off-the-shelf component from several machine learning libraries;

• training and prediction are fast;

• the model is compact: it can be represented with (num_features ×
num_classes) parameters;

• when classifying an unknown sample, LR not only returns the predicted
class, but also a confidence score for each class;

• L1-regularization can produce a compact model, by putting to zero the
weights of less important features;

• the model weights can give an estimate of the relative importance of the
features;

• LR is one of the best-performing models in (Clemens 2015).

3.2.3 Prediction

After fitting the model with the training data, it can predict the CPU archi-
tecture of any unseen executable. The preprocessing phase for the binaries to
analyze is the same used for the training set.

For any sample x to predict, the model returns, for each class C, a confi-
dence score: this score can be interpreted as the probability p(C|x) that the
sample belongs to that class. The class predicted by the model is:

C∗ = arg max
C

p(C|x) (3.4)

3.3 Code section identification

3.3.1 Data collection

The training dataset consists in a collection of ELF, PE or Mach-O exe-
cutable files, whose CPU architecture and location of the executable section
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are known. These files, according to their specifications, are divided in sec-
tions. Each section has a different purpose: there are sections containing
executable code, static data, debug information and metadata, etc.

The executable file header contains information about the sections of the
executable file: we are interested in the starting offset, the length, and the
flag telling whether the section is executable or not.

3.3.2 Preprocessing

Since we assume that the binary files to analyze can contain both code and
data, we can not disassemble the executable to generate instruction-level fea-
tures. Instead, we derive the features directly from the byte sequence of the
binary file.

For each byte in the file, we take the one-hot representation of its value
(from 0 to 255) as a feature vector. For example, for the byte bi = 4, the
resulting 256-vector is: xi = (0, 0, 0, 0, 1, 0, 0, . . . , 0). This choice derives from
the observation that the byte value itself has little meaning for the purposes
of our approach, and any ordering among byte values would be meaning-
less (Shin, Song, and Moazzezi 2015, p. 8), because we are only interested in
distinguishing one byte from the others. In other words, the byte values are
treated as categorical features. One-hot encoding is a typical approach to deal
with categorical features in machine learning. One-hot encoding of the bytes
turns each binary file in our dataset to a (N × 256) matrix of ones and zeros,
where N is the number of bytes in the file.

We extend the preprocessing phase to also consider, for each byte, the
values of the m preceding bytes (lookbehind) and of the n following bytes
(lookahead). m and n are parameters of the model and can be optimized
by hyperparameter tuning. These extended features are one-hot encoded as
well, and appended to the vector corresponding to each byte. So, from an
executable file of N bytes, we derive a matrix of N × (256 · (n+m)) elements.

The remaining part of the preprocessing phase consists in extracting the
ground truth, i.e., the location information of the sections of the executable
files. The offset and the size of each section containing executable code are
found in the file header: from this information, we derive the ground truth
in the form of a binary vector (“mask”), of the same length of the number
of bytes in the executable file. In this vector, the ones correspond to the
bytes belonging to executable sections, while the zeros correspond to the bytes
belonging to non-executable sections.

For example, if we have a file of 16 bytes and the executable section spans
from 6 to 13, the vector would be:

y = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0)
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Executable files may have more than one executable section: the ones in
the vector correspond to all the bytes belonging to any section which is marked
as “executable” in the file header.

3.3.3 Learning the model

We translate the code section identification problem to a classification problem
over a sequence of bytes.

The problem can be formalized as follows: for each training sample, we
have a sequence of observed bytes (X) and a sequence of labels (Y):

X = (x1, x2, . . . , xn) xi ∈ [0, 255]
Y = (y1, y2, . . . , yn) yi ∈ {0, 1}

(3.5)

We want to learn a model able to predict the label sequence Y correspond-
ing to any unlabeled input sequence X.

The model of choice is a linear-chain Conditional Random Field (Laf-
ferty, McCallum, and Pereira 2001); the learning is performed by structural
SVMs (Taskar, Guestrin, and Koller 2004). All the explanation below follows
the steps of the two works cited before.

Conditional Random Fields (CRFs) are probabilistic models to segment
and label data structured over a graph. In the simple case of linear-chain
CRFs, the graph reduces to an undirected sequence. CRFs are a structured
learning model, i.e., they do not simply classify each item (byte) in the se-
quence separately, but consider the structure of the problem. Classifying each
byte separately would inevitably lead to a poor model, since in some archi-
tectures every byte can be interpreted as a part of a valid instruction, or as
data: we must take the context into account.

In a structured learning setting, X is a set of random variables representing
the sequence of observations, and Y is a set of random variables over the
corresponding labels. We assume that some variables in Y are conditionally
dependent: the dependencies are encoded in a graph in which the vertices are
the elements of Y and an edge between two nodes Yv and Yw represent a
conditional dependence between the two variables v and w.

CRFs can be seen as an extension of Hidden Markov Models, with a fun-
damental difference: while HMMs are generative models and model the joint
probability p(X,Y), CRF do not model the distribution of X (which in gen-
eral can be complex): instead, they model p(X | Y), i.e., the probability of X
conditioned on Y. This allows to relax the independence assumptions on the
observations, which are a limitation of Hidden Markov Models.

We report the definition of a Conditional Random Field from (Lafferty,
McCallum, and Pereira 2001, p. 5):

Let G = (V,E) be a graph such that Y = (Yv)v∈V , so that Y is
indexed by the vertices of G.
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Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences.
An open circle indicates that the variable is not generated by the model.

sequence. In addition, the features do not need to specify
completely a state or observation, so one might expect that
the model can be estimated from less training data. Another
attractive property is the convexity of the loss function; in-
deed, CRFs share all of the convexity properties of general
maximum entropy models.

For the remainder of the paper we assume that the depen-
dencies of Y, conditioned on X, form a chain. To sim-
plify some expressions, we add special start and stop states
Y0 = start and Yn+1 = stop. Thus, we will be using the
graphical structure shown in Figure 2. For a chain struc-
ture, the conditional probability of a label sequence can be
expressed concisely in matrix form, which will be useful
in describing the parameter estimation and inference al-
gorithms in Section 4. Suppose that p✓(Y |X) is a CRF
given by (1). For each position i in the observation se-
quence x, we define the |Y| ⇥ |Y| matrix random variable
Mi(x) = [Mi(y

0, y |x)] by

Mi(y
0, y |x) = exp (⇤i(y

0, y |x))

⇤i(y
0, y |x) =

P
k �k fk(ei,Y|ei

= (y0, y),x) +P
k µk gk(vi,Y|vi

= y,x) ,

where ei is the edge with labels (Yi�1,Yi) and vi is the
vertex with labelYi. In contrast to generative models, con-
ditional models like CRFs do not need to enumerate over
all possible observation sequences x, and therefore these
matrices can be computed directly as needed from a given
training or test observation sequence x and the parameter
vector ✓. Then the normalization (partition function)Z✓(x)
is the (start, stop) entry of the product of these matrices:

Z✓(x) = (M1(x) M2(x) · · ·Mn+1(x))start,stop .

Using this notation, the conditional probability of a label
sequence y is written as

p✓(y |x) =

Qn+1
i=1 Mi(yi�1,yi |x)⇣Qn+1

i=1 Mi(x)
⌘

start,stop

,

where y0 = start and yn+1 = stop.

4. Parameter Estimation for CRFs
We now describe two iterative scaling algorithms to find
the parameter vector ✓ that maximizes the log-likelihood

of the training data. Both algorithms are based on the im-
proved iterative scaling (IIS) algorithm of Della Pietra et al.
(1997); the proof technique based on auxiliary functions
can be extended to show convergence of the algorithms for
CRFs.

Iterative scaling algorithms update the weights as �k  
�k + ��k and µk  µk + �µk for appropriately chosen
��k and �µk. In particular, the IIS update ��k for an edge
feature fk is the solution of

eE[fk]
def
=

X

x,y

ep(x,y)
n+1X

i=1

fk(ei,y|ei
,x)

=
X

x,y

ep(x) p(y |x)
n+1X

i=1

fk(ei,y|ei
,x) e ��kT (x,y) .

where T (x,y) is the total feature count

T (x,y)
def
=

X

i,k

fk(ei,y|ei ,x) +
X

i,k

gk(vi,y|vi ,x) .

The equations for vertex feature updates �µk have similar
form.

However, efficiently computing the exponential sums on
the right-hand sides of these equations is problematic, be-
cause T (x,y) is a global property of (x,y), and dynamic
programming will sum over sequences with potentially
varying T . To deal with this, the first algorithm, Algorithm
S, uses a “slack feature.” The second, Algorithm T, keeps
track of partial T totals.

For Algorithm S, we define the slack feature by

s(x,y)
def
=

S �
X

i

X

k

fk(ei,y|ei ,x)�
X

i

X

k

gk(vi,y|vi ,x) ,

where S is a constant chosen so that s(x(i),y) � 0 for all
y and all observation vectors x(i) in the training set, thus
making T (x,y) = S. Feature s is “global,” that is, it does
not correspond to any particular edge or vertex.

For each index i = 0, . . . , n+1 we now define the forward
vectors ↵i(x) with base case

↵0(y |x) =
n

1 if y = start

0 otherwise

Figure 3.5: Graphical structure of a linear-chain CRF (Lafferty, McCallum,
and Pereira 2001, p. 6).

Then (X,Y) is a conditional random field in case, when condi-
tioned on X, the random variables Yv obey the Markov prop-
erty with respect to the graph: p(Yv | X,Yw, w 6= v) = p(Yv |
X,Yw, w ∼ v), where w ∼ v means that w and v are neighbors in
G.

Put in simpler words, a CRF is a graph of random variables; each variable
is conditionally dependent on all its neighbors, and conditionally independent
from all the other variables.

In the case of linear-chain CRFs (Figure 3.5), the graph structure is an
undirected linear sequence, meaning that the variable associated with each
element (Yv) depends on the observations and on the classification of the
previous (Yv−1) and the following (Yv+1) element. The dependencies between
the variables in Y obey the Markov property on the graph, i.e., each variable
is conditionally independent from all non-neighbor variables.

To compute the conditional probabilities in each node, we define a set of
feature functions; they can be defined on the vertices, or on the edges:

fh(X,Y) =
∑
i∈V

fh(X,Yi)

gk(X,Y) =
∑

(i,j)∈E

gk(X,Yi,Yj)
(3.6)

In our approach, the feature function associated to each vertex Yi is the
one-hot encoded byte value bi; the feature function associated to each edge is
always constant and equal to 1.

Then, we associate unary and binary potential functions φ respectively to
each vertex i and to each edge (i, j) in G. The Markov network model is
log-linear, so we can compute the network potentials as the exponential of the
weighted sum of the features on the vertices and on the edges:
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φi(X,Yi) = exp
[∑

h

whfh(X,Yi)
]

∀ i ∈ V

φi,j(X,Yi,Yj) = exp
[∑

k

wkgk(X,Yi,Yj)
]

∀ (i, j) ∈ E
(3.7)

where the weights wi are the parameters learned by the model.
Finally, we compute the conditional probability distributions as:

P (Y | X) ∝
∏
i∈V

φi(X,Yi)
∏

(i,j)∈E

φi,j(X,Yi,Yj) (3.8)

To learn the CRF model, we use Structural Support Vector Machines
(SSVMs) (Taskar, Guestrin, and Koller 2004). SSVMs are soft-margin SVMs (Bishop
2006, p. 325) with a loss function designed for multi-label classification.

We report the original primal problem formulation for soft-margin SSVMs
from (Taskar, Guestrin, and Koller 2004, p. 4).

min 1
2 ‖w‖

2 + C
∑

x
ξx

s.t. w>∆fx(y) ≥ ∆tx(y)− ξx ∀x,y
(3.9)

where:

• w is the vector of weights learned by the model;

• t(x) is the predicted y for the input sequence x;

• f(x,y) are the features or basis functions;

• ∆fx(y) = f(x, t(x))− f(x,y);

• ∆tx(y) =
∑l

i=1 I(yi 6= (t(x))i) is the number of wrong labels predicted
by the model for the input x;

• ξx is a slack variable to allow the violation of some constraints when the
data is not linearly separable;

• C is the inverse of the regularization strength (the higher it is, the less
the model is regularized).

To efficiently solve this optimization problem, we use the Block-Coordinate
Frank-Wolfe algorithm for structural SVMs (Lacoste-Julien et al. 2013). The
Frank-Wolfe algorithm is an iterative optimization algorithm. Asymptotically,
it converges to the solution; it can be stopped after a fixed number of itera-
tions, or when the loss function becomes smaller than a threshold.

This ends the description of the general sequence learning model.
In our case, we train a linear-chain CRF model by using the training data

obtained from the preprocessing phase.
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3.3.4 Prediction

The fitted model can now be used to detect the location of the code section in-
side unseen binaries. The features for the binary files to predict are generated
with the same preprocessing steps used for the training set.

The output of the model is a prediction for each byte (“code” or “data”).
More formally, the model outputs a binary vector of the same format of the
ground truth data, i.e., a sequence of ones and zeros of the same length of the
input file. The ones correspond to the bytes predicted to be in an executable
section, while the zeros correspond to the bytes predicted to be in a non-
executable section.

3.3.5 Postprocessing

The code section identification model includes a postprocessing phase to im-
prove the results given by the sequential classification model. The objective
of this phase is to ignore the small sequences of code inside the data sections
(or vice versa), to return only few contiguous, large sequences of code or data.

The postprocessing phase is needed because, as explained in subsection 2.2.3,
code sections may contain small pieces of data which are indistinguishable from
the data found in data sections.

The postprocessing phase (Algorithm 1) iteratively removes the smallest
contiguous sequence of predictions (“chunk”) of code or data, merging it with
the surrounding data or code (respectively).

The algorithm takes two parameters:

1. MinSections: the minimum number of chunks to keep;

2. Cutoff : the maximum size of the chunk that can be eliminated, as a
fraction of the biggest chunk.

Algorithm 1 always terminates: at each iteration, either a chunk can be
eliminated and the loop iterates again, or no chunk can be eliminated and the
procedure returns.
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Algorithm 1 Postprocessing algorithm
Require: C: list of chunks (start, end, tag), MinSections, Cutoff
loop
M ← maxc∈C length(c) {size of largest chunk}
cmin ← arg minc∈C length(c) {smallest chunk}
if |C| > MinSections and length(cmin) < Cutoff ·M then
invert tag of cmin and merge with surrounding chunks
C ← updated list of chunks

else
return C

end if
end loop

3.4 Code discovery

In this section, we explain our approach to solve the code discovery problem.
We developed two different approaches for the architectures with variable-
length instructions (x86, x86-64) and for an architecture with fixed-length
instructions (ARM). The two approaches share the same sequential learning
model; however, they use different features.

3.4.1 Preprocessing (Windows x86)

The generation of a good dataset to train a learner to distinguish code from
inline data is not a trivial task. We already discussed the challenges that we
have to face and the shortcomings of existing solutions in subsection 2.4.1.

The choice of the binary files to include in the training dataset is limited
by some requirements:

1. the executable must have a non-negligible amount of inline data inside
the code section;

2. the architecture must have variable-length instructions;

3. ground truth information (i.e., whether each byte is code or data) must
be available;

4. ground truth information must be precise; for this reason, we do not
want to rely on any disassembler.

To our knowledge (Andriesse, X. Chen, et al. 2016), the only compiler that
inserts inline data in the code section of executables is Microsoft Visual Stu-
dio; this satisfies the first requirement. To satisfy the second requirement, we
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consider the x86 and x86-64 architectures, which have variable-length instruc-
tions. To satisfy the last two requirements, we choose to use the debugging
symbols generated by the compiler to extract the ground truth.

Debugging symbols are generated by the compiler when the developer
chooses to build a program with the debug configuration. Debugging symbols
help developers to debug their programs, by providing a wealth of information
about the structures found in the executable files: functions, variables, line
number information, exported symbols, data types, and information about
the original source files the program was compiled from. For instance, debug
symbols allow to match machine instructions with source lines in the original
source code.

Debugging symbols can be found in different formats, depending on the
architecture, on the executable format and on the compiler support. (Křoustek
et al. 2012) describes which structures can be found in symbol files, and the
technical difficulties involved in parsing them.

The symbols in ELF executables are usually stored in the DWARF for-
mat, which is well-documented (Eager and Consulting 2012) and supported
by static analysis tools and disassemblers. DWARF symbols can be embedded
in specific sections of the ELF, or they may be distributed in separate files.

On Windows platforms, the executables are shipped in the PE (Portable
Executable) format, and the compiler (Visual Studio) exports the debug
symbols into separate files in the PDB (Program Database) format, which
is a proprietary format developed by Microsoft. PDB is not standardized
(“source code is the ultimate documentation” (Microsoft 2016)) and all the
tools needing the information contained in PDBs must rely on Microsoft’s
APIs, because the PDB file format is subject to change and there is no pub-
lished standard to rely on. The LLVM Project published a partial documen-
tation about the information contained in PDB files (The PDB File Format
2017).

Microsoft provides PDB files for the Windows system executables to help
developers debug their code. The idea of including Windows system executa-
bles in the training set is attractive; however, the PDB files for the Microsoft
binaries are stripped (Microsoft 2017[a]) and do not contain private symbols.
This means that the information about the functions in the binary code is not
available and that we can not extract the ground truth. Indeed, the availabil-
ity of private symbols would simplify the reverse-engineering of Microsoft’s
software, which is understandably not in the best interests of the company.
The impossibility of extracting ground truth from Windows binaries is also
reported by (Bao et al. 2014).

Since we need full debug symbols (including function information) for
each binary to extract the ground truth, and those symbols are not gener-
ally shipped with the executables, we have to compile some programs from
source with Microsoft Visual Studio, enabling the generation of complete sym-
bol files.
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dia2dump is a tool provided by Microsoft (Microsoft 2017[b]) whose pur-
pose is to parse a PDB file and to extract a textual representation of it.
By using dia2dump on the PDB files and by parsing, in turn, the output of
dia2dump, we extract the starting and ending offset of each function in the
executables, together with the locations of inline data.

We developed Algorithm 2, to tag each byte inside the code section of an
executable as code or data starting from the information extracted from the
PDB file.

Algorithm 2 Code/data tagging algorithm
tag[i]← DATA ∀i
for every function f do

tag[f .begin : f .end]← CODE
for d ∈ f .data do

tag[d.addr : f .end]← DATA
end for

end for
for each thunk t do

tag[t.begin : t.end]← CODE
end for
return tag

The rationale for tagging all bytes as data by default is that the information
contained in the PDB file does not cover all the bytes in the code section.
Indeed, between functions, there is a variable amount of padding bytes (0xCC),
not reported in the PDB file.

The rationale for the data tagging step is that the PDB file reports the
starting address of each data block, but not its length, which is variable. By
manual analysis of the binary files using IDA Pro, we found out that static
data inside the functions is always located at the end of the function.

As suggested in (Bao et al. 2014), thunks (short callbacks to addresses in
the code) are tagged as code.

By manual inspection, we found out that in each binary there are some
functions for which there is no information in the PDB file. They are repetitive
and short blocks of code; they appear to be exception handlers and polymor-
phic call handlers. We suspect that the reason there is no function information
for these blocks of binary code is that they do not correspond to any function
in the original source code. This code is always located in a specific sub-section
of the .text section, identified as .text$x in the PDB file. Since we were
unable to find further information about these code blocks, there is no ground
truth for them, and they are isolated in a known sub-section of the file, we
excluded these blocks from the training set. This choice should not lead to
any overestimation of the performance of our method, because the excluded
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code is very repetitive and would be easy to spot in an automated way.
Eventually, we obtain the training set, which consists in two files for each

sample:

1. program.bin: the sequence of byte we want to analyze (i.e., the contents
of the .text section of the executable, after excluding the .text$x sub-
section);

2. program.mask: a sequence of zeros and ones, of the same length of the
.bin files, which tells whether each byte is code or data.

3.4.2 Preprocessing (ARM)

ARM is a RISC architecture with fixed-length instructions. This means that
every instruction and every data block starts at an address which is a multiple
of 4 bytes. The code discovery problem for architectures with fixed instruction
length is simpler, because the instructions and the data are already segmented
in fixed-size blocks.

The problem of code discovery for ARM executables can be stated as
follows: to tell whether each 4-byte word in the executable section is an ARM
machine code instruction, or data.

The ground truth for the training of the model is extracted from ARM
executables compiled with debugging symbols. Indeed, ARM debugging sym-
bols contain mapping information which tells where code and data are located
inside the executable sections (ELF for the ARM R© Architecture 2015, p. 24).
We do not consider the case in which Thumb code (which is 2-byte aligned)
is also present; that problem is addressed in (J.-Y. Chen et al. 2013).

To obtain the features from the binaries, we strip them (i.e., remove the
symbols) and pass them to a linear disassembler. The linear disassembler, if
no mapping symbols are present, tries to interpret each word as an instruction
and returns an opcode, or outputs the string INVALID if the 4 bytes can not
be decoded into a valid ARM instruction.

We take as features, for each 4-byte word, the opcode returned from
the disassembler and the first byte of the word. These two features are
one-hot encoded before being passed to the model.

The ground truth is simply obtained by passing the binaries, complete
with the mapping symbols, to the linear disassembler. If the binaries are
not stripped, the linear disassembler can use the symbols to identify inline
data, returning a perfect disassembly of the executable file (Andriesse 2016).
The disassembler outputs the string .word whenever it encounters a word
corresponding to data: from there, the ground truth is easily obtained.

Figure 3.6 shows an example of the differences in the output of objdump
(the linear disassembler in the GNU binutils library) when the debugging
symbols are missing.
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9214: add r3, pc, r3
9218: ldr r2, [r3, r2]
921c: cmp r2, #0
9220: bxeq lr
9224: b 9050
9228: .word 0x0000f1a8
922c: .word 0x00000118

(a) With symbols

9214: add r3, pc, r3
9218: ldr r2, [r3, r2]
921c: cmp r2, #0
9220: bxeq lr
9224: b 9050
9228: andeq pc, r0, r8, lsr #3
922c: andeq r0, r0, r8, lsl r1

(b) Without symbols

Figure 3.6: Disassembly of a portion of an ARM executable, with and without
the debugging symbols. In Figure 3.6a, the disassembler correctly identifies
the inline data because the debugging symbols are present. In Figure 3.6b,
the symbols are not present and the disassembler interprets the last two data
words as instructions.

3.4.3 Training and prediction

Starting from the features described in the previous sections, we generate the
lookahead and the lookbehind features as explained in subsection 3.3.2.

We train a linear-chain Conditional Random Field (CRF) (Lafferty, Mc-
Callum, and Pereira 2001), which we described above in subsection 3.3.3 for
the code section identification phase.

The executables to analyze are preprocessed in the same way of the training
data (with the obvious exception of the ground truth extraction phase). The
trained model reads, as an input, the sequence of items (bytes or words) to
classify as code or data; it gives back a sequence of code/data labels, one for
each item (byte or word).

Differently from the code section identification approach, we do not apply
the postprocessing phase since we are also interested in very small subse-
quences of code and data.





Chapter 4

Implementation

In this chapter, we will explain how we implemented the approaches described
in chapter 3 into concrete software tools. In the first section, we will list all
the tools that we used; then, we will describe in detail the implementation of
our methods.

4.1 Tools
We used the following software tools and libraries to implement our methods:

• Python 3.6.1 was used as the main programming language to write all
our models; the following packages were also used:

– Scikit-learn 0.19.0 for the machine learning tasks (except the CRFs),
feature transformation and model evaluation;

– NumPy 1.13.1 for efficient operations with vectors
– SciPy 0.19.1 for the sparse matrix operations;
– filebytes 0.9.13 for reading ELF, PE and Mach-O headers;
– python-magic 0.4.13 to determine the type of files;
– jupyter 1.0.0 for interactive data visualization;
– matplotlib 2.0.2 for graph plotting;
– pandas 0.20.3 to preprocess, load and store data;
– pystruct 0.2.4 for the machine learning tasks involving Conditional

Random Fields (CRFs).

• bash 3.2.57 for some of the data collection and preprocessing tasks;

• binutils 2.28 to extract information from ELF files and manipulate them;

• UPX 3.94 to pack executable files;

63
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• macOS 10.12.5 as the primary OS to run all the experiments;

• VirtualBox 5.1.22 as the Virtual Machine Manager to run other operat-
ing systems as needed;

• Windows 10 (Evaluation version), inside a VirtualBox virtual machine,
to compile the Windows binaries and to extract information from the
debugging symbols;

– Visual Studio 2017 was used to build the Windows programs;
– PowerShell was used to automate the build process and the extrac-

tion of data from the symbol files;

• Debian Linux 8 (“jessie”) was used inside a VirtualBox VM to download
the Debian binaries to populate our dataset.

4.2 Architecture classifier
In this section, we will explain how we implemented the architecture classifier
described in section 3.2.

4.2.1 Dataset collection

In this section, we will describe the tools that we developed to collect the
datasets to train and test our CPU architecture classifier. The composition
and the characteristics of each dataset are detailed in section 5.2.

The datasets come from different sources:

• package repositories of Linux distributions;

• datasets from research papers;

• manually collected executables;

• datasets derived from the transformation of other datasets.

We developed two Bash scripts to automate the download and the un-
packing of the software archives from the Debian Linux distribution. For each
architecture, and for each package, our script attempts to locate and down-
load the corresponding archive. If this step is successful, the script extracts
the archive and saves all the executable files in a separate location; all the
other files are discarded.

We wrote two Bash scripts to obtain new datasets by transforming existing
ones:

• a script to extract the code section from a dataset containing full binary
files;
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• a script to pack all the executables in a dataset with the UPX packer.

We wrote a Bash script calling arduino-builder1 to compile the Arduino
samples (Arduino 2017) to acquire more samples for the avr architecture.

4.2.2 Preprocessing

In this section, we will explain how we implemented the feature extraction
phase to prepare the data for our classifier.

We implemented the preprocessing step in a method of the Python class
of the learner model. The preprocessing step extracts the following features
from a sample:

1. the frequency of each byte;

2. the frequency of each multi-byte pattern;

3. the label (i.e., the true architecture of the binary).

The multi-byte patterns are encoded into regular expressions. Regular
expression matching is done by the Python Standard Library re module. To
improve the performance, the regular expressions are pre-compiled beforehand
using the re.compile() method.

To process an entire dataset, we developed a Python script (dataset-
_loader.py) which spawns a pool of workers in multiple processes by using
the multiprocessing module of the Python Standard Library. The number
of workers is a parameter of the script. The workers execute the preprocessing
step on the files in parallel, using multiple CPU cores.

The features extracted from the executable files are stored into a CSV
file (one row per sample). CSV is not the most compact format for storing
this kind of information; however, we choose to use it because it is a de facto
standard: data in the CSV format can be inspected, loaded and converted by
a multitude of software tools.

The preprocessing step is done once, before the model training phase: it
would be too slow to recompute all the features on the fly whenever the model
needs to be trained. Also, once the preprocessing phase is completed, we do
not need to have the original binaries at hand to train the classifier; only the
file with the features needs to be distributed.

4.2.3 Model training

In this section, we will describe the implementation of the classification model.
We choose to use the Python machine learning framework Scikit-learn

to implement our model. Scikit-learn is a well-known, established machine
1https://github.com/arduino/arduino-builder

https://github.com/arduino/arduino-builder
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learning framework which offers many off-the-shelf supervised and unsuper-
vised machine learning methods, as well as model evaluation facilities (cross
validation, holdout, random sampling, computation of common performance
metrics) and preprocessing functions. It also supports, for some of the models,
parallel execution on multiple CPU cores. Scikit-learn relies on NumPy for
numeric computation. NumPy is a Python library, implemented in C, which
offers fast, vectorized operations on matrices and vectors.

We implement our classification model in a class (BinaryClassifier),
written in Python, which internally uses the Scikit-learn’s LogisticRegression
classifier. By implementing a wrapper class for the learner, we isolate all
the code related to the model in the same class and hide all the unneces-
sary complexity of the Scikit-learn LogisticRegression class, which is a
general-purpose model and exposes a multitude of options and parameters.
The LogisticRegression already supports one-vs-the-rest models, so we do
not have to implement it from scratch.

We follow the Scikit-learn classifier interface (scikit-learn 2017) for our
class to be able to use the model evaluation features of Scikit-learn. In par-
ticular, we implement the following methods in our learner class:

• fit(X, y): fit the model on the features in X and on the true labels in
y;

• predict(X): returns the predicted class for each of the samples repre-
sented by the features in X;

• predict_proba(X): similar to predict(X), but instead of returning a
single prediction for each sample, it returns a vector containing the prob-
abilities for that sample to belong to each class.

Our wrapper class also implements the methods to preprocess a single
sample, and to save and load the trained model.

Our learner is initialized with the following parameters:

• penalty: whether to use L1 (lasso) or L2 (ridge) regularization for the
Logistic Regression;

• C : the inverse of the regularization strength (if C is smaller, more reg-
ularization is applied);

• num_jobs: how many parallel jobs to use for model training.

To determine the optimal value for the regularization strength parameter,
we use the GridSearchCV class of Scikit-learn. GridSearchCV performs an
exhaustive search in the parameter space, evaluating the model (with cross-
validation) on each combination of the parameter values. The user specifies
the domain of each parameter.
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In our case, we only optimize for the regularization strength (C), in the
experiment described in subsection 5.7.1.

4.2.4 Model evaluation

We wrote a Python script to evaluate the model on each dataset, and to store
into a JSON file the performance measures, the information about the dataset
and the parameters of the evaluated model. We compute the cross-validation
prediction for each sample by using the cross_val_predict function in Scikit-
learn.

We describe our evaluation methodology in greater detail in section 5.3.

4.3 General sequential learning model

In this section, we explain how we developed a sequential learning classifier to
implement the code section identification and the code discovery methods.

Both the problems of code section identification and code discovery can
be stated as sequence learning and prediction problems; the only things that
change are: how an element in the sequence is defined, and which features are
used to describe each element.

The classifier we implemented is based on linear-chain Conditional Ran-
dom Fields, described in section 3.3. We decided to use the models provided by
pystruct (Müller and Behnke 2014), an open-source and ready-to-use struc-
tured learning library implementing CRF-like models with Structural SVMs
learners (SSVMs). We chose this framework because of the quality of the
documentation, the simplicity of use, and the good classification performance.

We wrap the general-purpose CRF model of pystruct into a Python class
(CRFModel) to hide the complexity of the general-purpose models in pystruct,
to expose a clear and simple API to the end user, and to ensure the compat-
ibility with the Scikit-learn APIs. Our class wraps the ChainCRF and the
FrankWolfeSSVM classes of pystruct, which provide the core learning algo-
rithms; in addition, we implement our postprocessing algorithm (described
in subsection 3.3.5).

Table 4.1 shows the format of the input data of our model. Each sample
(i.e., sequence) i is represented by a feature matrix (Xi) containing the one-hot
encoded features for each element of the sequence, as described in our approach
(subsection 3.3.2); the ground truth for a training sample (containing a label
for each element in the sequence) is represented by the ground truth vector
yi.

For performance reasons (explained in subsection 4.4.1) our model needs
to work with sparse feature matrices. The current version of pystruct does
not support sparse matrices as an input for its models; however, it is easy
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yi
Xi

0x01 0x02 0x03 · · · 0xFE 0xFF

A
dd

re
ss

0x0001 0 0 1 0 · · · 0 0
0x0002 0 1 0 0 · · · 0 0
0x0003 1 0 0 1 · · · 0 0
0x0004 1 0 0 0 · · · 0 1

...
...

...
...

... . . . ...
...

0xFFFE 1 0 1 0 · · · 0 0
0xFFFF 0 0 0 0 · · · 1 0

Table 4.1: Exemplification of the input format for our sequential learning
model. Xi is the feature matrix for the sample i (a binary file, i.e., a sequence
of bytes to classify), containing the one-hot encoded features (columns) for
each byte (row) to classify; yi is the ground truth vector for the sample i,
containing one label for each element.

to overcome this problem by applying a simple patch in the code that has
already been proposed as a pull request2 on GitHub.

The interface of CRFModel (our class) follows the Scikit-learn classifica-
tion API and can be used with the model evaluation functions. CRFModel
implements the following methods:

• fit(X, y): fit the model on the list of feature matrices X and the list
of ground truth vectors (true labels) y;

• predict(X): return, for each of the samples in X, the vector of predic-
tions;

• score(X, y): called on a fitted model, computes the average accuracy
for the samples;

• save(filename): saves the trained model into a file;

• load(filename): loads the trained model from a file.

Our classifier takes the following initialization parameters:

• C: the regularization strength as defined by the FrankWolfeSSVM learner
of pystruct;

• max_iter: the maximum number of iterations of the learner;

• lookahead and lookbehind: how many lookahead or lookbehind bytes
to include in the feature matrix.

2https://github.com/pystruct/pystruct/pull/4

https://github.com/pystruct/pystruct/pull/4
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Figure 4.1: Class diagram of our CRF models and of the pystruct API.

Our learner automatically generates the lookahead and the lookbehind fea-
tures (subsection 3.3.2) in the fit() and predict() methods. The lookahead
and lookbehind features for all the elements in the sequence are generated by
vertically shifting a copy of the feature matrix and joining it (horizontally)
with the original one. All these operations are performed efficiently, without
leaving the sparse matrix format.

Our code section identification method also includes the postprocessing
phase (subsection 3.3.5), to be applied to the results of the prediction of
the CRF model. We implemented the postprocessing algorithm by subclass-
ing our CRFModel and overriding the predict method. The subclass (CRF-
PostprocessModel) takes three additional initialization parameters:

1. post_process: whether to activate the postprocessing step or not;

2. postprocessing_cutoff and postprocessing_min_sections: the pa-
rameters to be given to Algorithm 1;

The class diagram of our model is shown in Figure 4.1.

4.4 Code section identification

In this section, we will explain how we implemented the code section identi-
fication method described in section 3.3. The core learning algorithm is the
same described before, in section 4.3.
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4.4.1 Preprocessing

In this subsection, we will explain how we extract the features from the binary
files in the dataset.

The initial dataset for the code section identification task consists in a
collection of ELF, PE or Mach-O executables, all belonging to the same CPU
architecture. As explained in subsection 2.1.1, each executable file is divided
into “sections,” containing either executable code or data; the sections are
listed in the file header. The header of the executable file also specifies, for
each section, whether it contains executable code or not.

We recall that the purpose of this analysis is to identify the boundaries of
the executable sections. We see the binary file as a sequence of bytes, and we
want to classify each byte either as belonging to an executable section, or to
a non-executable section. We associate a set of features to each byte of the
executable file. As described in the approach (section 3.3), for each byte we
use its one-hot encoded value (0–255) as a feature.

By one-hot encoding the value of each byte, for a binary file of N bytes
we produce a feature matrix of (N × 256) elements. Each element of the
feature matrix is an unsigned 8-bit integer, which is the smallest data type
supported by NumPy. A representation encoding each element of the matrix
in a single bit would be 8 times more space-efficient, but we did not find a
practical way to implement it within the NumPy stack. This representation
of the features introduces a performance problem: if we had 100 executables
of size 1 MB each in our dataset, we would be using 25.6 GB of main memory
for the feature matrices!

These feature matrices are, by their nature, sparse: since the bytes are
one-hot encoded, each row of the matrix contains a single “one” and 254 ze-
roes. Thus, we can save a significant amount of memory by using a compressed
representation of the feature matrix. We use the CSR (Compressed Sparse
Row) sparse matrix representation (Buluç et al. 2009), which is natively im-
plemented by SciPy. To keep the memory usage as low as possible at all times
and to avoid spikes in the memory usage, we generate the feature matrix from
the original file directly in the CSR format, without passing from the “dense,”
standard matrix representation.

More formally, SciPy’s CSR matrix creation function requires three vec-
tors:

1. data: data(k) is the value of the k-th non-zero element in the matrix, in
row-major order;

2. rows: rows(k) is the row coordinate of the k-th non-zero element;

3. cols: cols(k) is the column coordinate of the k-th non-zero element.

The relationship between the above vectors and the original matrix A is
the following:
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A(i, j) =
{
data(k) if ∃ k s.t. i = rows(k) ∧ j = cols(k)
0 elsewhere

(4.1)

We initialize the CSR matrix by specifying the three vectors as follows:
the data vector is filled with ones; the rows vector is the sequence of integer
numbers ranging from 1 to N (the number of bytes); the cols vector is the list
of the integer values vi of the bytes in the file (vi ∈ [0, 255]).

In the preprocessing phase, we do not generate the lookahead or lookbehind
features: those are generated internally by the common sequential learning
models described in section 4.3.

Finally, we need to extract the ground truth from the executable files in the
training set: this is easy because the ELF, PE and Mach-O headers provide the
information about which sections of the binary file are executable. First, we
use the Python module python-magic which uses the standard UNIX interface
(the so-called “magic file”3) to determine the file type of the sample (ELF,
PE or Mach-O). To parse the header information, we use filebytes (Schirra
2017), which is a library written in Python capable of parsing the ELF, PE,
and Mach-O headers. The ground truth generation method tags as code (“1”)
all the bytes belonging to any executable section which (according to the file
header), and tags as data (“0”) all the remaining bytes in the file. The final
result is a binary vector of the same length of the executable file.

To summarize, the final output of the preprocessing phase, for each sample
i of length N bytes, is:

• the (N×256) feature matrix Xi, containing the one-encoded byte values
of the file;

• the ground truth vector yi, of lengthN , telling whether each byte belongs
to an executable section or not.

4.4.2 Model training

For the code section identification problem, we train the CRFPostprocessModel
illustrated in Figure 4.1 and described in section 4.3. The model is fitted with
the data generated from the preprocessing phase; the executables to analyze
follow the same pipeline.

To determine the optimal values for the lookahead and lookbehind lengths,
we use the GridSearchCV class of Scikit-learn to perform an exhaustive search
over the parameter space.

The number of iterations of the Frank-Wolfe block-coordinate SSVM learner
also needs to be tuned. In general, more iterations lead to a better accuracy.
We manually tuned the maximum number of iterations to obtain a fair tradeoff
between the training time and the accuracy of the model.

3https://linux.die.net/man/5/magic

https://linux.die.net/man/5/magic
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Figure 4.2: Visualization of the results of the code section identification
method on a binary file. From top to bottom: the ground truth, the predic-
tion of our model before postprocessing, the prediction errors, the prediction
of our model after postprocessing, and the prediction errors after the postpro-
cessing. Precision and recall are computed on the bytes, considering “code”
as the positive class.

4.4.3 Model evaluation

To visualize the results of our method, we developed a Jupyter notebook which
uses matplotlib to compare the ground truth data and the prediction output
of our model, by means of a “barcode plot” (Figure 4.2). We mark with two
different colors the bytes corresponding to code and data, and we provide the
results before and after the postprocessing phase.

We developed a script to evaluate the code section identification model over
multiple datasets and save the results in the JSON format. The script uses
the model evaluation functions in Scikit-learn. The evaluation methodology
is described in detail in section 5.3.

4.5 Code discovery

The purpose of the code discovery method is to predict, within the code sec-
tion of an executable file, which bytes correspond to valid CPU instructions
and which bytes are inline data inserted by the compiler between CPU instruc-
tions. In this section, we will explain how we implemented the code discovery
approach described in section 3.4.
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4.5.1 Preprocessing (Windows x86)

In this section, we will explain how we implemented the automated collection
of a dataset for the code discovery method, how we extract the ground truth
for the debugging symbols, and how we generate the features for our model.

Dataset collection

The choice of a dataset for our supervised code discovery model is constrained
by the need for precise ground truth, i.e., the knowledge about which bytes
correspond to valid, executable machine code and which others do not. Specif-
ically, we want to extract such ground truth from the symbol files generated
during the compilation process. So, we have to compile from source some Win-
dows programs, and to configure the compiler to generate the symbol files. To
do this, we need a set of programs to compile and a configured compilation
environment.

Microsoft makes available to developers the Universal Windows Platform
(UWP) app samples (Microsoft 2017[d]), a set of code samples demonstrating
the usage of the Windows APIs. These samples are shipped as ready-to-use
Visual Studio projects (“solutions”), so they are a convenient choice for our
dataset.

Microsoft makes available to developers a Windows 10 Virtual Machine,
with Visual Studio 2017 already pre-installed (Microsoft 2017[c]). We start
from this system to configure our compilation environment. MSBuild (Mi-
crosoft 2017[e]) — the official Microsoft command-line build automation tool
— allows to compile a Visual Studio project with the correct options without
interaction, i.e., without having to manually open the project in Visual Studio.

We were not able to automate the build of the C# projects with MSBuild,
so we resorted to compile all the C++ projects available in the samples. C++
compilation requires the installation of additional packages in Visual Studio:
this is easily done by opening a C++ project in Visual Studio and following
the instructions.

We faced another problem with MSBuild: even by specifying the option
/p:DebugType=full, the resulting debug symbol file lacked the private sym-
bols, i.e., the function information which provides the ground truth. From a
verbose run of MSBuild, we identified the problem: MSBuild does not pass the
correct flag to the linker. As a workaround, we replaced all the occurrences
of DebugFastLink with DebugFull in the file:

C:\ Program Files (x86)\ Microsoft Visual Studio \2017\
Community \ Common7 \IDE\VC\ VCTargets \ Microsoft .Link.
Common .props

which is one of the configuration files of the linker. In this way, the linker
always generates full (public and private) debug symbols.
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We wrote a simple PowerShell script to iterate the execution of MSBuild
over all the C++ code samples. PowerShell is a shell scripting language de-
signed by Microsoft to provide a more powerful interface than the traditional
DOS prompt language. After figuring out the correct combination of options
to provide to MSBuild, we compiled the samples for both the x86 and the
x86-64 architectures.

After the compilation process, we ran a script to collect all the .exe, .sys
and .dll files together with their associated symbol files (PDB files), and
move them to a separate location.

Features and ground truth extraction

To parse the PDB files, we used the dia2dump (Microsoft 2017[b]) tool by
Microsoft. dia2dump uses Microsoft’s APIs to parse a PDB file and dumps
all the information into a plain text file. The sources of dia2dump (C++)
need to be compiled in Visual Studio, for the x86-64 architecture, with the
“Debug” configuration. We discovered that compiling it with the “Release”
configuration causes the program to crash at runtime. To run dia2dump with-
out errors, we also had to register a DLL provided by Microsoft in the DIA
SDK, by using the command:

\ windows \ syswow64 \ regsvr32 .exe "C:\ Program Files (x86
)\ Microsoft Visual Studio \2017\ Community \DIA SDK\
bin\amd64\ msdia140 .dll"

After completing these steps, the dia2dump executable is ready to run. We
developed another PowerShell script to automate the execution of dia2dump
on all the PDB files in our dataset and save the output into plain text files.

Finally, we convert the textual representation of each PDB file into the
final ground truth format, i.e., a binary vector telling, for each byte in the
executable file, whether it corresponds to a valid machine instruction or to
data. We implemented this step in a Python program, following Algorithm 2
in section 3.4.

We extract the byte-level features from the executable files exactly as we
did for the code section identification method (subsection 4.4.1). For each
executable file, we only generate the features and the ground truth relative to
the code section, discarding all the other sections of the file.

4.5.2 Preprocessing (ARM)

In this section, we will explain how we obtained the training set for an ar-
chitecture with fixed instruction length (ARM), and how we extracted the
features and the ground truth from the executable files.
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We gathered the coreutils compiled for ARM4 with debugging symbols.
The debugging symbols are embedded into each ELF executable, in the stan-
dard DWARF format (Eager and Consulting 2012).

We use the objdump linear disassembler from the GNU binutils library,5
which is able to yield a perfect disassembly of these executables if the DWARF
symbols are present.

To generate the features (subsection 3.4.2) from each file in the training set,
we first strip the debugging symbols with the strip utility from the binutils,
and then we run objdump on the stripped file. In this way, our model learns on
the same features objdump would generate for the executable files to analyze,
which miss the debugging symbols.

To extract the ground truth, we run objdump on the original ELF files,
without stripping the DWARF symbols: in this way, the disassembler knows
for certain which 4-byte words are instructions and which words are data. For
the latter, the disassembler outputs the string .word in place of the opcode.

We implemented the ground truth and feature extraction phases in a
Python class, which calls objdump on each file and parses the disassembly
output.

4.5.3 Model training and prediction

The model training and prediction phases for the code discovery method are
similar to the analogous phases for the code section identification method
(subsection 4.4.2).

We train the CRFModel class (Figure 4.1), which implements the CRF
sequential learning model described in section 4.3. Unlike the code section
identification approach, this model does not perform any postprocessing on
the prediction outputs.

Since we implemented the preprocessing and the learning phases in sepa-
rate classes, we can use the same learner for both the Windows and the ARM
datasets, even if the features used for classification are different.

To determine the optimal values for the lookahead and lookbehind lengths,
we use the GridSearchCV class of Scikit-learn to perform an exhaustive search
over the parameter space.

4https://github.com/BinaryAnalysisPlatform/arm-binaries
5https://sourceware.org/binutils/docs/binutils/objdump.html

https://github.com/BinaryAnalysisPlatform/arm-binaries
https://sourceware.org/binutils/docs/binutils/objdump.html




Chapter 5

Experimental Validation

In this chapter, we will state the goals of our experiments, describe our
datasets, explain the evaluation methodology and show the results of our
experiments.

5.1 Goals

In this section, we will enumerate all the goals of our experiments.
For the experiments about the architecture classifier, we set the follow-

ing goals:

1. improve the performance of the classifier described in (Clemens 2015);

2. try the model on “complete” binaries containing both code and data
(noise), rather than pure machine code, easier to classify;

3. prove that simple features, directly extracted from the bytes, are suffi-
cient to reliably identify the architecture of an executable file;

4. show that our method also works on more challenging datasets, i.e.,
packed executables, shellcodes and short file fragments;

5. find the optimal value for the regularization parameter (C).

For the experiments about the code section identification method, we
set the following goals:

1. prove that our method can correctly segment ELF, PE and Mach-O files
into executable and non-executable sections;

2. show that the postprocessing algorithm to eliminate noise (Algorithm 1)
improves the quality of the predictions;

77
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3. show that our method does not require an excessive amount of resources,
i.e., memory and computation time;

4. find the optimal lookahead and lookbehind lengths.

For the experiments about the code discovery method, we set the fol-
lowing goals:

1. show that a machine learning approach based on simple features can
yield performances which are comparable or superior to the methods
based on recursive disassembly;

2. confirm the hypothesis that the sequence of bytes in the instruction flow
of an executable program follows a probabilistic language model, which
can be learned;

3. show that our method does not require an excessive amount of resources,
i.e., memory and computation time;

4. show that our method works with architectures having both fixed-length
and variable-length instructions;

5. find the optimal lookahead and lookbehind lengths.

5.2 Datasets

In this section, we will describe the origin, the composition and the charac-
teristics of each dataset that we will use in the experiments.

5.2.1 Clemens’ dataset

The author of (Clemens 2015) kindly sent to us the dataset of binaries used in
the paper, consisting in 16,642 executable files from 20 different architectures.
The files in this dataset only contain executable code: the author generated
them by extracting the code section from the full binaries.

Of these 16,642 files, 3 files are empty and 622 files appear more than one
time, for a total of 1,557 copies. We removed the duplicate and the empty
files from the dataset. The number of samples by class in the dataset is shown
in Table 5.1, in the first column.

The AVR (Arduino) and CUDA architectures have a small number of
samples, which may need to be increased if the performance turns out to be
poor for those two classes.
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Architecture Original dataset Extended dataset
alpha 1295 1295
amd64 897 897
arm64 1074 1074
armel 903 903
armhf 904 904
avr 292 365
cLEMENCy 0 20
cuda 20 133
hppa 472 472
i386 901 901
ia64 590 590
m68k 1089 1089
mips 903 903
mipsel 903 903
powerpc 900 900
ppc64 766 766
s390 603 603
s390x 604 604
sh4 775 775
sparc 495 495
sparc64 698 698
Total 15084 15290

Table 5.1: Composition of the original Clemens’ dataset and of the extended
multi-architecture dataset.

5.2.2 Extended multi-architecture dataset

We built a new dataset by adding more executables for the AVR, cLEMENCy
and CUDA architectures to the dataset from (Clemens 2015) (subsection 5.2.1).

We compiled the Arduino built-in examples (Arduino 2017) for AVR, and
the NVIDIA CUDA 8.0 samples (NVIDIA 2017). Both compilation processes
gave a set of ELF files. Following the procedure described in (Clemens 2015),
we extracted the code section (.text) from each ELF file and added it to the
dataset.

cLEMENCy (The cLEMENCy Architecture 2017) is a 9-bit middle-endian
architecture introduced during the DEF CON 25 (2017) conference. cLEMENCy
is a challenging architecture since the 9-bit bytes could break our model, which
is based on the frequency of (8-bit) bytes. We took 20 cLEMENCy binaries
from the DEFCON challenges and added them to our dataset.

The composition of the updated dataset is shown in the second column
of Table 5.1.



80 CHAPTER 5. EXPERIMENTAL VALIDATION

Architecture Samples
amd64 386
arm64 382
armel 385
armhf 385
i386 386
mips 384
mipsel 384
ppc64el 380
Total 3072

Table 5.2: Composition of the Debian dataset.

5.2.3 Debian dataset

We collected a set of ELF binaries, for 8 different architectures, from the
Debian package repository. To collect the dataset, we wrote a Bash script
executing the following steps:

1. randomly choose 300 packages from the full list of Debian packages;1

2. for each package, download the corresponding archive for each architec-
ture;

3. unpack the .deb archive and extract all the ELF files;

4. insert the ELFs into the dataset, and discard all the other files.

We executed the script inside a Debian virtual machine to take advantage
of the package managing tools (apt and dpkg). Not all the packages were
available for all the architectures, hence the number of binaries for each archi-
tecture is not the identical. The composition of the Debian dataset is shown
in Table 5.2.

5.2.4 Packed Debian dataset

This dataset is derived from the Debian dataset described in subsection 5.2.3.
We ran the UPX packer (Oberhumer, Molnár, and Reiser 2004) on all

the binaries in the Debian dataset, with the default configuration. For some
binaries, the packing failed, so we discarded them. We removed the arm64
architecture because packing failed for most of the binaries.

The composition of the resulting dataset is shown in Table 5.3.
1https://packages.debian.org/stable/allpackages

https://packages.debian.org/stable/allpackages
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Architecture Samples
amd64 277
armel 237
armhf 192
i386 249
mips 255
mipsel 257
ppc64el 278
Total 1745

Table 5.3: Composition of the packed Debian dataset.

5.2.5 Shellcodes

Shellcodes are small pieces of executable code which are used to exploit a
vulnerable program. When an attacker is able to gain control of the execution
of a program, e.g., by exploiting a buffer overflow vulnerability, they will try
to inject a machine code payload into the executable memory area of the
program and to redirect the execution of the program to such payload. This
payload is called shellcode, because one of the typical tasks performed by such
code is to open a shell with the same privileges of the vulnerable program.
Shellcodes, however, may perform other operations: open a socket, launch
another program, execute system calls, read and write in memory, etc.

Shellcodes are typically very small in size (tens or hundreds of bytes). In
fact, smaller shellcodes are more practical to use from the point of view of the
attacker, because in some scenarios the shellcode must fit into a buffer of lim-
ited size for the attack to succeed. Shellcodes consist in handwritten machine
code; shellcode authors employ a number of tricks to keep the shellcodes as
short as possible and to escape the input validation routines of the vulnerable
program (e.g., sometimes it is necessary to write a shellcode without the 0x00
byte, the C string terminator). Shellcodes may exhibit “strange” byte pat-
terns which are different from the ones which can be found in the previously
described datasets. The small size of the shellcodes is also a challenge for our
method, since the Byte Frequency Distribution becomes noisy on short byte
sequences.

We collected a dataset of shellcodes for 6 different architectures, from the
websites shell-storm.org2 and Exploit Database3. The main problem with this
dataset is the small number of samples per architecture. Indeed, it is difficult
to collect a large number of non-repetitive shellcodes, because the number of
tasks performed in practice by real-world shellcodes is limited. Also, most
shellcodes are written for the x86/x86-64 architectures.

2http://shell-storm.org/shellcode/
3https://www.exploit-db.com/shellcode/

http://shell-storm.org/shellcode/
https://www.exploit-db.com/shellcode/
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Architecture Samples
amd64 20
arm 21
i386 19
mipsel 10
ppc 9
sparc 10
Total 89

Table 5.4: Composition of the shellcode dataset.

Architecture Samples
x64 1097
x86 1100
Total 2197

Table 5.5: Composition of the ByteWeight dataset.

The composition of the dataset is shown in Table 5.4.

5.2.6 ByteWeight dataset

The authors of (Bao et al. 2014) made their dataset of executable files publicly
available.4

The dataset contains Linux ELF binaries compiled from GNU coreutils,
binutils and findutils with a combination of the following:

1. compilers: GNU GCC and Intel ICC;

2. levels of optimization: O0, O1, O2, O3;

3. architectures: x86 and x86-64.

The dataset also contains a smaller number of Windows PE executables
compiled for the same two architectures, with four levels of optimization,
with the Visual Studio compiler. The composition of the dataset is shown
in Table 5.5.

This dataset contains binaries from two similar architectures (x86 and
x86-64), which may pose a challenge for the architecture classifier; also, the
executables are obtained by a variety of compilers, operating systems, and
optimization levels.

4http://security.ece.cmu.edu/byteweight/

http://security.ece.cmu.edu/byteweight/
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Architecture Samples
x64 151
x86 141
Total 292

Table 5.6: Composition of the Windows dataset.

5.2.7 Mach-O dataset

We collected 165 binaries, in the Mach-O executable format, from the /bin
and /usr/bin system directories of an Apple macOS 10.12 installation. These
binaries are provided by Apple as part of the operating system, which is based
on the Mach kernel.

5.2.8 Arduino (AVR) dataset

We built a dataset of 73 binaries for the AVR architecture by compiling the
Arduino samples (Arduino 2017) for the Arduino UNO5 hardware.

We automated the build with a shell script; the resulting executables are
in the ELF format.

5.2.9 Windows dataset

To evaluate our code discovery method, we needed a dataset of binaries with
inline data in the code section, belonging to an architecture with variable-
length instructions. So, we compiled the Universal Windows Platform (UWP)
app samples (Microsoft 2017[d]) for the x86 and x86-64 architectures, with
full debugging symbols. In section 4.5, we explain in detail the compilation
process, and the preprocessing steps to extract the features and the ground
truth. Table 5.6 shows the composition of the dataset.

5.2.10 ARM coreutils dataset

To test our code discovery method on an architecture with fixed instruction
length, we obtained the binaries of the GNU coreutils6 compiled for ARM
with full debugging symbols and four different levels of optimization: -O0,
-O1, -O2, -O3.

This dataset consists in 103 binaries for each level of optimization, for a
total of 412 executable files.

The code section of the binaries, on average, contains more than 90% of
code. By manually inspecting the binaries (using both objdump and radare2),

5http://www.arduino.org/products/boards/arduino-uno
6Source: https://github.com/BinaryAnalysisPlatform/arm-binaries

http://www.arduino.org/products/boards/arduino-uno
https://github.com/BinaryAnalysisPlatform/arm-binaries
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we found that the majority of data in these ARM binaries consists in jump
tables, as we expected after reading (Andriesse 2016).

5.3 Experimental Setup

In this section, we will explain the evaluation methodology we followed for our
experiments.

All the experiments were run on a laptop with a 2.9 GHz Intel Core i7
CPU (4 virtual cores) and 8 GB of RAM, running macOS 10.12.6.

5.3.1 Architecture classifier

In the machine learning domain, the simplest way to evaluate the performance
of a supervised machine learning algorithm is holdout testing, i.e., splitting the
dataset in two parts: a training set and a test set. The model is fitted on the
training set and evaluated on the test set. The main disadvantage of holdout
testing is that the test set can not be used for the training of the model: so,
the quality of the fitted model may decrease. For this reason, the test set can
not be too large; but a reduction of the size of the test set leads to a greater
uncertainty of the performance estimate.

A smarter way to use the data for model evaluation is k-fold cross-validation.
k-fold cross-validation is a model evaluation technique consisting in randomly
splitting the dataset into k non-overlapping folds. For k times we train the
model on k − 1 folds and evaluate it on the remaining fold.

For the architecture classifier, we evaluate the predictions given by 5-fold
cross-validation on the dataset, i.e., for each sample, we take the predic-
tion returned when it was in the test fold. In this way, we can evaluate the
model on the whole dataset, avoiding the issues of holdout testing on small
datasets. Once the predictions for all the samples are obtained, we compute
the performance metrics for each class and for the whole dataset.

We consider the following metrics, expressed in terms of True Positives
(TP), True Negatives (TN), False Positives (FP) and False Negatives (FN):

1. Accuracy is the fraction of correctly predicted samples:

accuracy = 1
N

N∑
i=1

I(ŷi = yi) = TP + TN

TP + TN + FP + FN
(5.1)

2. Precision for a class c ∈ C is defined as the fraction of the samples that
truly belong to class c among those that are predicted to belong to class
c by the model:

precision(c) = TP (c)
TP (c) + FP (c) (5.2)
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3. Recall for a class c ∈ C is defined as the fraction of the samples that
are predicted to belong to class c among those truly belonging to class
c:

recall(c) = TP (c)
TP (c) + FN(c) (5.3)

4. F-measure for a class c ∈ C is the harmonic mean of precision and
recall:

F1(c) = 2 · precision(c) · recall(c)
precision+ recall

= 2TP (c)
2TP (c) + FN(c) + FP (c) (5.4)

To report meaningful “global” values for these metrics, we choose to macro-
average them over the classes. By averaging over the classes (instead that over
the samples), we give to each class the same importance. Indeed, we do not
want to under-estimate the errors on the classes with fewer samples.

For example, macro-averaged precision is defined as follows:

precisionmacro = 1
|C|

∑
c∈C

precision(c) (5.5)

5.3.2 Code section identification and code discovery

We evaluate the code section identification method and the code discovery
method by computing the fraction of correctly classified bytes with relation
to the ground truth.

Unless specified, we kept the regularization strength parameter C of our
CRF model at the default value of 1; the choice of this parameter does not
seem to influence the prediction if we stop the model after a fixed number of
iterations (and not at the convergence point).

The reported metrics (accuracy, precision, recall, F-measure) are computed
for each sample over its bytes, and then averaged among the samples to obtain
global figures. We decided to average the metrics over the binary files with
the same weight in order to give to each executable file the same importance.
For precision and recall, we assume that the positive class is “code” and that
the negative class is “data”.

We also report, for each dataset, the percentage of bytes which are labeled
as code in the ground truth. This number is useful to interpret the accuracy
metric (e.g., if the code percentage was 99%, it would be trivial to obtain 99%
accuracy with a model that always predicts “code,” and that score would have
little meaning).

Figure 5.1 visualizes the ground truth and the prediction output of our
code discovery method applied to a single executable file. Performance metrics
are also reported.
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Figure 5.1: Visualization of the code discovery model applied on an ARM
binary.

5.3.3 Hyperparameter tuning

Most supervised learning models require the analyst to specify some hyperpa-
rameters. These hyperparameters are not the same of the parameters of the
model learned from the training data: they need to be specified a priori.

In our case, the parameters we have to choose are the regularization
strength (C) for the architecture classifier and the lookahead/lookbehind lengths
for the code section identification and the code discovery methods.

In some cases, the hyperparameters of a model do not have any intuitive
meaning and cannot be derived from the domain knowledge. A widely em-
ployed approach to determine the optimal value for these hyperparameters is
to select the values maximizing a certain performance measure of the model
(e.g., accuracy).

We select the values of our hyperparameters by performing a grid search.
The grid search algorithm trains and evaluates (possibly, in parallel) the model
with all the possible combinations of the hyperparameters. The analyst has to
provide the domain of the values of each hyperparameter. The grid search al-
gorithm estimates (via cross-validation testing) the performance of the model
for each choice of the parameters.

The values of the hyperparameters associated with the highest perfor-
mance are chosen. The model is finally re-trained over all the training sam-
ples with these optimal hyperparameters, and tested again on a test set which
was never used for hyperparameter tuning, to avoid overfitting and get an
unbiased performance estimate.

5.4 Experiments: Architecture classifier

In this section, we will describe the experiments we performed on the archi-
tecture classification method, described in section 3.2 and in section 4.2.
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5.4.1 Clemens’ dataset, basic features

The purpose of this experiment is to replicate the results in (Clemens 2015)
with a model which is as similar as possible to the one proposed in the original
paper. We ran the classifier on the original dataset (Table 5.1), considering
only the original features, namely: the Byte Frequency Distribution and the
4 bi-grams for the endianness detection. We disabled the extended features,
i.e., the regular expressions matching the function prologues and epilogues.

Table 5.7 shows the performances computed via 5-fold cross-validation
over the entire dataset; we also report the performance of the Logistic Regres-
sion model in (Clemens 2015). The global accuracy obtained by our model is
99.8%, higher than the accuracy reported in (Clemens 2015) for the Logistic
Regression model (97.94%), and also higher than SVMs, the best-performing
model in the paper (98.35%). The F-measures for the single classes are similar
to the ones reported in the paper, except for MIPS and MIPSEL, which per-
form better (we obtained 99.06%, 98.95% vs. 88.4%, 88.6%). For the CUDA
architecture, the original paper reports an accuracy of 51.6%: we got a better
figure of 95%, but we think that any comparison on this architecture makes
little sense because of the very small number of samples.

The original paper uses the SimpleLogistic implementation by Weka,7
which does not perform any regularization; all the parameters are set to their
default values and no hyperparameter tuning is attempted. As explained
in section 3.2, we employed L1 regularization to avoid overfitting with the
Logistic Regression model: this may explain the higher performance achieved
on the same dataset. See subsection 5.7.1 for the details about the tuning of
the regularization parameter.

5.4.2 Clemens’ dataset, extended features

This experiment uses the same dataset and the same model as the previous
one; the only difference is that we added the extended features, i.e., the regexes
matching the prologues and the epilogues of the functions in the binary code.
The goal of this experiment is to determine whether the addition of those
features improves the performance of the model.

The results (Table 5.8) show that the extended features do not improve
significantly the performance of the classifier, which already performs well
without them. The global F-measure is 99.36% vs. 99.18% of the model with-
out extended features.

7http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/
SimpleLogistic.html

http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SimpleLogistic.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SimpleLogistic.html


88 CHAPTER 5. EXPERIMENTAL VALIDATION

Class Support Precision Recall AUC F1 F1 (Clemens)
alpha 1295 0.9977 0.9992 0.9995 0.9985 0.997
amd64 897 1.0 0.9967 0.9983 0.9983 0.990
arm64 1074 0.9981 0.9991 0.9995 0.9986 0.994
armel 903 1.0 1.0 1.0 1.0 0.998
armhf 904 0.9978 0.9989 0.9994 0.9983 0.996
avr 292 1.0 0.9623 0.9812 0.9808 0.936
cuda 20 0.9 0.9 0.9499 0.9 0.516
hppa 472 1.0 1.0 1.0 1.0 0.993
i386 901 1.0 1.0 1.0 1.0 0.998
ia64 590 1.0 1.0 1.0 1.0 0.995
m68k 1089 0.9982 0.9991 0.9995 0.9986 0.993
mips 903 0.99 0.9911 0.9953 0.9906 0.884
mipsel 903 0.9879 0.9911 0.9952 0.9895 0.886
powerpc 900 0.9989 0.9989 0.9994 0.9989 0.989
ppc64 766 0.9961 1.0 0.9999 0.998 0.996
s390 603 0.9983 0.9983 0.9991 0.9983 0.998
s390x 604 1.0 0.9983 0.9992 0.9992 0.998
sh4 775 0.9949 0.9987 0.9992 0.9968 0.993
sparc 495 0.9939 0.9939 0.9969 0.9939 0.988
sparc64 698 0.9986 0.9986 0.9992 0.9986 0.993
Total 15084 0.9925 0.9912 0.9955 0.9918 0.9566

Table 5.7: Performance of the architecture classifier on the dataset of (Clemens
2015), without the extended features. In the last column, we report the per-
class F-measure of the Logistic Regression model in (Clemens 2015).

5.4.3 Extended multi-architecture dataset

In this experiment, we evaluate the classifier on the extended multi-architecture
dataset (subsection 5.2.2), with all the features enabled.

The results (Table 5.9) show that the cLEMENCy architecture performs
worse than the other classes, but still obtains a F-measure of 92%. This
reduced performance could be explained by the very low number of samples
(20). The Byte Frequency Distribution of cLEMENCy binaries does not have
any apparent meaning, since the bytes are aligned on a 9-bit basis: however,
our classifier is still able to correctly classify the majority of the samples.

The addition of further CUDA samples improved the performance on that
class, confirming our hypothesis that the lower performance was simply due
to the lower number of samples.
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Class Support Precision Recall AUC F1
alpha 1295 0.9992 0.9992 0.9996 0.9992
amd64 897 0.9989 0.9978 0.9988 0.9983
arm64 1074 0.9991 0.9991 0.9995 0.9991
armel 903 1.0 1.0 1.0 1.0
armhf 904 0.9989 0.9989 0.9994 0.9989
avr 292 1.0 0.9623 0.9812 0.9808
cuda 20 0.9474 0.9 0.95 0.9231
hppa 472 1.0 1.0 1.0 1.0
i386 901 1.0 1.0 1.0 1.0
ia64 590 1.0 1.0 1.0 1.0
m68k 1089 0.9991 0.9991 0.9995 0.9991
mips 903 0.9978 0.9989 0.9994 0.9983
mipsel 903 0.9956 0.9978 0.9988 0.9967
powerpc 900 0.9978 0.9989 0.9994 0.9983
ppc64 766 0.9987 1.0 1.0 0.9993
s390 603 0.9967 0.9983 0.9991 0.9975
s390x 604 1.0 0.9983 0.9992 0.9992
sh4 775 0.9949 0.9987 0.9992 0.9968
sparc 495 0.986 0.996 0.9977 0.991
sparc64 698 0.9971 0.9971 0.9985 0.9971
Total 15084 0.9954 0.992 0.996 0.9936

Table 5.8: Performance of the architecture classifier on the dataset of (Clemens
2015), with the extended features.

Execution time

For this dataset, we measured the execution time of the preprocessing and
of the cross-validation phases, which were run in parallel on 4 cores on our
system:

• the preprocessing script (one-time execution) processed 784 MB of exe-
cutable files in 112 minutes, resulting in an average throughput of 0.12
MB/s;

• the 5-fold cross-validation took 30.6 s.

5.4.4 Debian dataset

In this experiment, we tested the model on the Debian dataset (subsec-
tion 5.2.3). This dataset includes full ELF files, not only their code section
isolated from all the other contents of the binary file. The classification of full
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Class Support Precision Recall AUC F1
alpha 1295 0.9985 0.9992 0.9995 0.9988
amd64 897 1.0 0.9978 0.9989 0.9989
arm64 1074 0.9972 0.9991 0.9994 0.9981
armel 903 1.0 1.0 1.0 1.0
armhf 904 0.9967 0.9989 0.9993 0.9978
avr 365 1.0 0.9726 0.9863 0.9861
clemency 20 0.9048 0.95 0.9749 0.9268
cuda 133 0.9773 0.9699 0.9849 0.9736
hppa 472 1.0 0.9979 0.9989 0.9989
i386 901 1.0 1.0 1.0 1.0
ia64 590 1.0 1.0 1.0 1.0
m68k 1089 1.0 0.9991 0.9995 0.9995
mips 903 0.9989 0.9989 0.9994 0.9989
mipsel 903 0.9945 0.9989 0.9993 0.9967
powerpc 900 1.0 0.9989 0.9994 0.9994
ppc64 766 0.9974 1.0 0.9999 0.9987
s390 603 1.0 0.9983 0.9992 0.9992
s390x 604 1.0 1.0 1.0 1.0
sh4 775 0.9949 0.9987 0.9992 0.9968
sparc 495 0.992 0.996 0.9978 0.994
sparc64 698 0.9971 0.9971 0.9985 0.9971
Total 15290 0.9928 0.9939 0.9969 0.9933

Table 5.9: Performance of the architecture classifier on the extended multi-
architecture dataset.

binaries is more challenging because the data contained in the non-executable
sections is noise and may confuse the classifier.

The results of the experiment (Table 5.10) show that our classifier achieves
high performances even when dealing with binaries containing both code and
data sections. There are no significant differences in performance among the
classes.

5.4.5 Packed Debian dataset

In this experiment, we test our classifier on the dataset described in subsec-
tion 5.2.4, which is composed by the binaries in the Debian dataset, packed
with UPX. Packed code is indistinguishable from random data; however,
packed binaries include a “stub,” i.e., a small unencrypted routine to load
and decrypt the payload containing the rest of the program.

The results — reported in Table 5.11 — show that our model achieves
good performances (F-measure = 99%) even on this dataset of packed binaries,
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Class Support Precision Recall AUC F1
amd64 386 0.9922 0.9922 0.9956 0.9922
arm64 382 1.0 0.9974 0.9987 0.9987
armel 385 0.9948 0.9974 0.9983 0.9961
armhf 385 0.9974 0.9974 0.9985 0.9974
i386 386 0.9948 0.9948 0.997 0.9948
mips 384 1.0 1.0 1.0 1.0
mipsel 384 0.9974 0.9948 0.9972 0.9961
ppc64el 380 0.9974 1.0 0.9998 0.9987
Total 3072 0.9968 0.9968 0.9981 0.9968

Table 5.10: Performance of the architecture classifier on the Debian dataset.

Class Support Precision Recall AUC F1
amd64 277 0.9964 0.9928 0.996 0.9946
armel 237 0.9958 0.9916 0.9954 0.9937
armhf 192 0.9844 0.9844 0.9912 0.9844
i386 249 0.9762 0.988 0.992 0.982
mips 255 0.9961 0.9922 0.9957 0.9941
mipsel 257 0.9961 0.9883 0.9938 0.9922
ppc64el 278 0.9857 0.9928 0.995 0.9892
Total 1745 0.9901 0.99 0.9942 0.99

Table 5.11: Performance of the architecture classifier on the packed Debian
dataset.

containing only a small portion of unencrypted code.

5.4.6 Shellcodes

In this experiment, we evaluate our classifier over the shellcode dataset sub-
section 5.2.5, composed by short sequences of handwritten machine code.

The results, obtained by 5-fold cross-validation, are reported in Table 5.12.
As expected, the performance is lower than in other datasets, but the re-
sults show that our classifier achieves acceptable performances even on small
amounts of binary code.

5.4.7 ByteWeight dataset

In this experiment, we test the model on the dataset from the ByteWeight
paper (subsection 5.2.6). The results — reported in Table 5.13 — show that
our method works well on this dataset composed of binaries derived from
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Class Support Precision Recall AUC F1
amd64 20 1.0 0.95 0.975 0.9744
arm 21 1.0 0.9524 0.9762 0.9756
i386 19 0.9 0.9474 0.9594 0.9231
mipsel 10 1.0 1.0 1.0 1.0
ppc 9 1.0 1.0 1.0 1.0
sparc 10 0.9091 1.0 0.9937 0.9524
Total 89 0.9682 0.975 0.9841 0.9709

Table 5.12: Performance of the architecture classifier on the shellcode dataset.

Class Support Precision Recall AUC F1
x64 1097 0.9821 1.0 0.9909 0.991
x86 1100 1.0 0.9818 0.9909 0.9908
Total 2197 0.991 0.9909 0.9909 0.9909

Table 5.13: Performance of the architecture classifier on the ByteWeight
dataset.

multiple compilers with different optimization levels. Also, our method can
reliably distinguish two architectures having an overlapping instruction set
(x86 and x86-64).

5.4.8 Size analysis

The goal of this experiment is to study the performance of our classifier on
file fragments of varying sizes.

At first, we tried to filter our datasets to extract only the samples smaller
than a certain size threshold, but this resulted in an extreme imbalance in the
number of samples per class, and in an unreliable performance estimate of the
model. So, we followed a different approach to generate samples of arbitrary
sizes.

We extract the code section from each ELF file in the Debian dataset
(subsection 5.2.3). Then, for each fragment size s between 8 bytes and 64
KiB, we take a sub-sequence of s bytes from each file, starting at a random
position between 0 and length(file)− s. If length(file) ≤ s, we take the entire
file. In this way, we generate sets of fragments of different sizes.

We evaluate the classifier on each set of fragments via 10-fold cross-vali-
dation, considering the macro-averaged F-measure as the performance metric.
All the features (byte frequencies and regexes) are enabled; the regularization
parameter is C = 10000.

The results — reported in Figure 5.2 — show that even for small code
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Figure 5.2: The classifier performance (macro-averaged F-measure) depending
on the fragment size.

fragments (128 bytes), our classifier reaches a F-measure of 90%. For 512-
byte fragments, the F-measure is over 95%.

5.5 Experiments: Code section identification
In this section, we will describe the experiments we performed on the code
section identification method, described in section 3.3 and section 4.4.

5.5.1 Debian dataset

In this experiment, we evaluate the code section identification method on a
subset of the Debian dataset (subsection 5.2.3). The algorithm is trained and
tested separately on the binaries of each CPU architecture. The results are
obtained with 5-fold cross-validation.

We used the following parameters of the model (their meaning is described
in subsection 4.4.2):

• lookahead and lookbehind length: 1;

• 20 iterations;

• C = 1 (regularization strength);

• postprocessing cutoff: 0.1;
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Arch Support Code % Accuracy Precision Recall F1 Time (s)
amd64-post 41 40.69 0.9995 0.9984 1.0 0.9992 9.6
amd64-pre 41 40.69 0.9984 0.9969 0.9992 0.998 9.5
arm64-post 33 47.83 0.9995 0.9989 1.0 0.9995 7.8
arm64-pre 33 47.83 0.9931 0.9934 0.9922 0.9927 7.3
armel-post 33 59.22 0.9983 0.9997 0.9977 0.9987 6.5
armel-pre 33 59.22 0.981 0.992 0.9749 0.9832 6.8
armhf-post 46 46.32 0.9997 0.9995 0.9999 0.9997 8.1
armhf-pre 46 46.32 0.9847 0.9881 0.9753 0.9813 8.1
i386-post 40 44.17 0.9995 0.9985 1.0 0.9992 16.3
i386-pre 40 44.17 0.9946 0.9914 0.9966 0.9939 16.2
mips-post 40 41.51 0.9995 0.9983 0.9999 0.9991 21.1
mips-pre 40 41.51 0.9958 0.9926 0.9955 0.994 20.7
mipsel-post 40 43.64 0.9919 0.9901 1.0 0.9941 8.1
mipsel-pre 40 43.64 0.9873 0.9807 0.9943 0.9866 8.1
powerpc-post 19 57.69 0.9992 0.9976 0.9999 0.9988 21.7
powerpc-pre 19 57.69 0.9911 0.9858 0.9962 0.9908 17.9
ppc64el-post 40 41.66 0.9985 0.9951 1.0 0.9975 15.7
ppc64el-pre 40 41.66 0.9916 0.9904 0.9924 0.9912 15.4

Table 5.14: Performance of the code section identification method over the
different architectures of the Debian dataset, with and without postprocessing.
The last column reports the average time spent on each cross-validation fold.

• minimum number of sections for postprocessing: 3.

Table 5.14 reports the results for each architecture, before and after apply-
ing the postprocessing phase described in subsection 3.3.5. The results show
that the F-measure is over 99% for all the architectures with the postprocess-
ing enabled.

The postprocessing algorithm consistently improves the performances of
our model by removing the “noisy,” small segments returned by the CRF. If we
decrease the number of iterations of the SSVM learner, the contribution of the
postprocessing algorithm becomes even more important. Figure 5.3 shows how
the postprocessing algorithm compensates for the errors of a model trained
with a low number of iterations. Thus, our postprocessing algorithm allows
to reduce the training time of the model without sacrificing the quality of the
predictions.

5.5.2 ByteWeight dataset

In this experiment, we test the code section identification method on the
ByteWeight dataset we used before for the architecture classifier (subsec-
tion 5.2.6). This dataset is heterogeneous: it includes executables compiled
with three different compilers, with four levels of optimization and for two
operating systems.
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Figure 5.3: Visualization of the results of the code section identification
method with a low number of iterations (10). The prediction — before post-
processing — is inaccurate; however, after the preprocessing phase, there are
no false negatives and the false positives are significantly reduced.

Dataset Support Code % Accuracy Precision Recall F1 Time (s)
ByteWeight (x64) 40 27.13 0.9992 0.9994 0.9987 0.999 174.8
ByteWeight (x86) 40 27.14 0.9998 0.9997 0.9996 0.9996 162.5
Mach-O 165 27.59 1.0 0.9998 1.0 0.9999 82.0
Arduino 73 9.56 0.9999 0.9993 1.0 0.9997 8.6

Table 5.15: Performances of the code section identification method on the
ByteWeight, Mach-O and Arduino datasets. The last column reports the
average time spent on each cross-validation fold.

We perform the experiment separately for the x86 and the x86-64 archi-
tectures. From the original dataset, we sample 40 executables for each archi-
tecture, and we compute the metrics by 5-fold cross-validation. We enable the
postprocessing algorithm; set a lookahead and a lookbehind length of 1 byte;
set the number of iteration of the SSVM learner to 20.

The results — reported in Table 5.15 — show that our model performs
well even on this heterogeneous dataset.

5.5.3 Mach-O dataset

In this experiment, we test the code section identification method over the
Mach-O dataset described in subsection 5.2.7. The evaluation procedure and
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the hyperparameters are identical to those used for the experiment over the
Debian dataset (subsection 5.5.1).

The results — reported in Table 5.15 — show that our method works
correctly with real-world Mach-O binaries.

5.5.4 Arduino dataset

In this experiment, we test the code section identification method over the
Arduino (AVR) dataset described in subsection 5.2.8. The evaluation proce-
dure and the hyperparameters are identical to those used for the experiment
over the Debian dataset (subsection 5.5.1).

The results — reported in Table 5.15 — show that our method works
correctly also with Arduino binaries compiled for the AVR architecture.

5.6 Experiments: code discovery
In this section, we will describe the experiments we performed to evaluate the
code discovery method described in section 3.4 and section 4.5.

5.6.1 Windows dataset

In this experiment, we evaluate the code discovery method (section 3.4) over
the dataset of Windows binaries (subsection 5.2.9) compiled with full debug
symbols. In section 4.5, we explain in detail how this dataset has been gener-
ated.

We configured the model with the following parameters:

• C = 1

• lookahead = lookbehind = 4

• max_iter = 30

The lookahead and the lookbehind lengths were determined by grid search
(subsection 5.7.3).

For performance reasons, we trained and evaluated our model on a ran-
domly chosen subset of the binaries in the dataset: since the binaries are large
(the median size of the binaries is 1.68 MB), the model can be trained on a
small number of samples without any problem. We performed holdout testing,
reserving (for each architecture) 10 executables for training and 40 for testing.

The results — reported in Table 5.16 — show that the accuracy and the
F-measure of our method on this dataset are over 99.9% for both the x86
and the x86-64 architectures. The accuracy of our model is in line with the
mean accuracy (99.98%) of the approach in (Wartell et al. 2011), evaluated on
11 test binaries; however, to perform a proper comparison, the two methods
should be evaluated on the same test set.
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Arch Support Code % Accuracy Precision Recall F1 Time (s)
Windows (x64) 50 72.84 0.9997 0.9997 0.9999 0.9998 470.9
Windows (x86) 50 69.06 0.9996 0.9997 0.9997 0.9997 467.1

Table 5.16: Performance of the code discovery method on the Windows
dataset. The last column reports the running time of the training and testing
phases.

This experiment shows that a sequential learning model, trained on simple
byte-level features, is able to effectively separate code from data in Windows
binaries.

5.6.2 ARM dataset

We evaluate the code discovery method for fixed-length instruction architec-
tures (subsection 3.4.2) over the dataset containing the GNU coreutils bina-
ries compiled for ARM with full debugging symbols (the dataset is described
in subsection 5.2.10).

We expect the performance to be higher than the variable-length case,
because these binaries are easier to predict, indeed:

1. the segmentation of each “atom” of code and data is fixed and known
(4-byte words), so the model can work directly on these blocks, and not
on the bytes;

2. the features are generated by a linear disassembler (objdump) which
can detect the 4-byte words which cannot be decoded into valid ARM
instructions.

The number of iterations of the SSVM learner is 20; the lookahead and
lookbehind parameters are set to 1 instruction (i.e., 4 bytes). We evaluate the
model separately for each level of optimization of the binaries in the dataset, to
avoid overfitting: we do not want to train and test the model on two binaries of
the same program, differing only for the level of optimization of the compiler.
We performed 5-fold cross-validation to compute the performance metrics.

The results — reported in Table 5.17 — show that the predictions of our
model are almost perfect (accuracy of over 99.9%) for the binaries of any
optimization level. These results show that the problem of code discovery
for ARM executables can be solved by a probabilistic language model using
simple features derived from a linear sweep disassembler.
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Dataset Support Code % Accuracy Precision Recall F1 Time (s)
coreutils (-O0) 103 94.64 1.0 1.0 1.0 1.0 9.6
coreutils (-O1) 103 92.41 0.9998 0.9998 1.0 0.9999 6.6
coreutils (-O2) 103 92.12 0.9998 0.9998 1.0 0.9999 6.3
coreutils (-O3) 103 92.86 0.9998 0.9998 1.0 0.9999 7.5

Table 5.17: Performance of the code discovery method on the ARM core-
utils dataset. The last column reports the average time spent on each cross-
validation fold.

5.7 Hyperparameter tuning

In this section, we will describe the experiments we executed to determine
the optimal hyperparameters for our models (subsection 5.3.3), and we will
comment the results.

5.7.1 Hyperparameter tuning on the architecture classifier

The purpose of this experiment is to determine the optimal value for the C
parameter (i.e., the inverse of the regularization strength) for the L1 (Lasso)
regularization of the Logistic Regression classifier.

To find the optimal value for C, we proceed as follows. First, we randomly
split the dataset into a training set (75%) and a test set (25%). We run a grid
search with cross-validation on the training set: the grid search algorithm, for
each provided value of C, performs a 10-fold cross-validation and computes
the estimate of the mean performance metric and the standard error of the
estimate of that mean. We choose the macro-averaged F-measure as the per-
formance metric to optimize, to give the same importance to all the classes, as
explained in section 5.3. At the end, the grid search returns the performance
metrics associated with each value of C. We select the value of C which gives
the highest performance.

Finally, we test the model with the “best” value of C on the test set —
which was not used for the grid search — to check whether the performance is
still good. This step is needed because it is possible for the grid search algo-
rithm to choose a hyperparameter giving a high performance on the training
set, but a poor performance on unseen samples. In other words, we risk to
overfit on the choice of the hyperparameters.

In Figure 5.4, we show the average F-measure together with its standard
error for the Debian dataset, evaluated for different values of C. The results
show that a correct selection of the regularization parameter gives a slightly
better result than no regularization (high values of C). We checked that the
model does not lose performance on the test set.

We also tested our method with a higher regularization strength (C < 10):
in this case, the model underfits and the performance is poor.
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Figure 5.4: The average performance of the classifier on the Debian dataset
for different values of C. The upper and lower bounds show the standard error
of the measure.

5.7.2 Hyperparameter tuning for code section identification

The purposes of this experiment are to determine the optimal lookahead/look-
behind lengths for the code section identification method, and to compare the
performances of the model with and without applying the postprocessing al-
gorithm. For simplicity, we set the lookahead length to be always equal to the
lookbehind length; however, our model allows to specify different lengths.

We used the binaries from the amd64 architecture of the Debian dataset;
we randomly select two thirds of them to perform the grid search, and one
third to perform the final testing. We execute a grid search with 5-fold cross-
validation, by evaluating all the possible choices in the following parameter
space:

1. lookahead/lookbehind lengths from 0 to 8;

2. postprocessing enabled or disabled.

The number of iterations for the training of the SSVM learner is 10. For the
postprocessing phase, we used the following parameters (see subsection 3.3.5
for an explanation):

• postprocessing_cutoff=0.1
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Figure 5.5: Accuracy of the code section identification method, with and
without postprocessing, depending on the lookahead-lookbehind length.

• postprocessing_min_sections=4

The results — reported in Figure 5.5 — show that, for any choice of
the lookahead length, the model with the postprocessing step enabled always
outperforms the model without it. The accuracy in the model with postpro-
cessing is consistently high: it does not change depending on the choice of the
hyperparameter.

According to this data, we decided to set a minimal lookahead and look-
behind length of 1 byte for our experiments, and to enable the postprocessing
phase.

5.7.3 Hyperparameter tuning for code discovery on the
Windows dataset

The goal of this experiment is to select the optimal values of the lookahead and
lookbehind lengths for the code discovery method. As before, for simplicity,
we only consider equal lookahead and lookbehind lengths. By increasing the
lookahead length, we expect to increase the model accuracy at the expense of a
longer training time and of an increased memory utilization for the additional
features.
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Figure 5.6: The accuracy of the model and the training time vs. the lookahead-
lookbehind length, for the Windows dataset.

We run a grid search over the lookahead/lookbehind parameters, ranging
from 0 (no lookahead/lookbehind) to 8 (for each byte, 16 surrounding bytes
are considered).

We randomly pick 9 binaries from the Windows dataset and perform a 3-
fold cross-validation for each value of the hyperparameter. We set the number
of the iterations of the SSVM learner to 10.

The results — reported in Figure 5.6 — show that there is no signifi-
cant performance improvement when the lookahead length is higher than 3
bytes. This means that a third-order Markov model (Bishop 2006, p. 608)
approximates our data well enough. The model without any lookahead and
lookbehind obtains an acceptable accuracy (99.0%).

For the experiments, we choose a lookahead/lookbehind length of 4 bytes
as a reasonable tradeoff between model accuracy and training time.

5.7.4 Hyperparameter tuning for code discovery on the
ARM dataset

The purpose of this experiment is to select the optimal lookahead/lookbehind
lengths for the code discovery method for ARM (an ISA with fixed instruction
length). Once again, for simplicity we set the lookbehind length equal to the
lookahead length.
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Figure 5.7: The accuracy of the model and the training time vs. the lookahead-
lookbehind length, for the ARM dataset.

We execute a grid search testing the lookahead lengths from 0 to 8. For
each choice of the parameter, we evaluate the accuracy of the model with a 10-
fold cross-validation. We use the ARM coreutils dataset (subsection 5.2.10),
considering the binaries with optimization level -O1. We use 75% of the
dataset for the grid search and the 25% for the final testing. We fixed the
number of iterations of the SSVM learner to 10.

The results — reported in Figure 5.7 — show that the model without
lookahead nor lookbehind scores well; a slight performance improvement can
be obtained by setting a lookahead/lookbehind length equal to 1 word. No
benefits are obtained by employing longer lookahead lengths. As expected,
the training time increases linearly with the lookahead length.



Chapter 6

Limitations

In this chapter, we will analyze the limitations of our approaches, as well
as some ideas about how to overcome them. As usual, we will address the
limitations concerning the three analyses separately.

6.1 Architecture classifier

The first limitation of our CPU architecture classifier is intrinsic to all the
supervised learning methods: the approach is only as good as the training
set. If the training set used to train the model is not sufficiently rich, or it
is not representative of the executable files to be analyzed, our method will
inevitably fail.

Our classifier works by considering the frequencies of the bytes and of
the patterns of function prologues and epilogues. An adversary could actively
confuse our classifier by including the patterns typical of the “wrong” architec-
ture in the data sections of an executable, or by employing advanced packing
techniques. A simple obfuscation technique would be to include a fabricated
“data” section containing a large amount of code of another architecture into
the binary file. Resisting to such attacks is beyond the scope of our work.

Our method may fail to recognize binaries generated by a compiler not
represented in the training set, if it produces different byte patterns.

Our model relies on a fixed list of patterns, and it is not able to derive
the features on its own. A valuable contribution would be to implement an
automated feature engineering phase, i.e., a component which would automat-
ically select the most useful patterns. As we will explain in section 7.1, such
extension is not trivial, and it would introduce further problems which would
need to be addressed. We decided to develop a simpler model, which runs
fast, has a good performance and requires tuning a single parameter.
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6.2 Code section identification

We were not able to evaluate our approach on real-world firmwares because
of the lack of ground truth data, i.e., the precise location of the code and the
data sections.

The approach we presented suffers from the typical limitations of super-
vised learning methods: if the training set is not representative of the samples
that the analyst wants to predict, the model will fail. In our case, different
compilers, or compiler settings (e.g., optimization levels), may produce differ-
ent patterns. If the byte patterns in the binary to analyze are significantly
different from those present in the training set, the model will fail to identify
the code and data segments.

Our model is not able to recognize code contained in compressed or en-
crypted files. Indeed, the outputs of ideal compression and encryption algo-
rithms are indistinguishable from random data; otherwise, respectively, the
file could be compressed further or it may leak information (Penrose, Macfar-
lane, and Buchanan 2013, p. 2). Such files do not exhibit any recognizable
byte pattern that our model can learn.

Our analysis may be actively defeated by putting in the executables’ data
sections some executable code, or by interleaving a large amount of data with
code in the executable section. Defending against these kinds of obfuscation
is beyond the scope of our work.

We recall that the aim of this analysis is to retrieve the boundaries of
the code section, not to determine which bytes correspond to correct machine
code (that is the purpose of the code discovery method). Sometimes the code
section of executable files contains inline data, which may be similar to the
data located outside the code section; our model could classify such small
data sequences as data even if they belong to the code section. This explains
the need for a postprocessing step to obtain few, contiguous data and code
sequences. For this reason, the tuning of the parameters of the postprocessing
step (Algorithm 1) is critical if the code section contains many inline data
sequences.

Thus, the analyst needs to select the parameters of the postprocessing
phase, and this makes the analysis less easy to perform. The optimal values
may be determined by hyperparameter tuning on the training set (i.e., select
the parameters maximizing the performance metric).

6.3 Code discovery

A significant issue which emerged in all the attempts to solve the code dis-
covery problem in literature (subsection 2.3.4) is the reliability of the ground
truth data. As we discussed in subsection 2.4.1, some works in this field
choose to use existing disassemblers to provide ground truth data; others rely
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on manual analysis. Our approach — like (Bao et al. 2014; Rosenblum et al.
2008; Andriesse, Slowinska, and Bos 2017) — uses the debugging symbols
generated by the linker to get precise ground truth data; however, the debug
symbols are not always complete: there are some functions in the executable
code which are not covered by the symbols, and the sizes of the data items
are not provided (section 3.4).

This problem could be partially overcome by using state-of-the-art disas-
semblers in conjunction with the debugging symbols. We followed this ap-
proach to generate the ground truth for the ARM binaries (section 4.5) by
letting objdump parse the DWARF symbols, but we were not able to do the
same for the Windows binaries because of the technical difficulties involved in
getting the disassemblers to work with Microsoft’s DIA API.

As we saw in the implementation details, extracting the ground truth data
from the PDB files present technical difficulties and requires a working Win-
dows environment. We were not able to find any tool able to correctly parse
PDB files on its own without resorting to Microsoft’s implementation. Also,
the ground truth can only be extracted at compile time from the programs
whose source code is available; in other words, it is not possible to extract the
ground truth from a program which had already been compiled, and whose
debugging symbols are not available.

Our model for variable-length instruction (section 3.4) has no notion of “in-
struction”: we train and evaluate the sequential learner over plain sequences
of bytes, and define the accuracy of our model as the fraction of correctly clas-
sified bytes in each sample. This byte-level accuracy does not correspond to
the disassembler accuracy: if the disassembler starts disassembling even one
byte off, it may incorrectly decode a whole block of instructions. Different loss
functions — like the “instruction loss” and the “block loss” (Karampatziakis
2010) — can be used to evaluate disassembly errors at the instruction and at
the block level; however, computing them requires more precise ground truth.

Another limitation of this approach is that the training set must be repre-
sentative of the binaries to analyze; hence, it is necessary to collect a dataset of
executables with the corresponding symbol files for the correct architecture.





Chapter 7

Future Works

In this chapter, we will discuss some possible future research directions, start-
ing from the ideas described in this work.

7.1 Architecture classifier

Our supervised learning approach to classify the CPU architecture of exe-
cutable files may be extended by introducing an automated feature engineer-
ing phase, to automatically identify the most relevant byte patterns instead
of relying on a fixed set of patterns, as we do in the current approach. This
improved feature engineering phase would identify the “best” patterns, i.e.,
those which discriminate the most between the architectures. These patterns
could be either simple multi-byte sequences, or regular expressions.

This idea, however, would add significant complexity to the model, in-
troducing additional problems. Sequential pattern mining is computationally
expensive, because the number of patterns to test increases exponentially with
their length. Moreover, such a model could overfit on features extraneous to
the code (e.g., padding sequences or common data patterns). In (Rosenblum
et al. 2008), the authors performed automated pattern mining to generate the
features for their function identification approach; the feature selection phase
consumed over 150 compute-days (2 days in real time) in a highly parallel and
distributed environment.

7.2 Code section identification

Our code section identification approach could be used to solve the more gen-
eral problem of type identification of file fragments, a recurring task in forensic
analysis. Also, our model could be applied to classify the sub-components of
a compound file, i.e., a file which contains segments of heterogeneous types
(e.g., a PDF file containing text, bitmap images, and vector graphics).
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Our approach can also be used to find the executable sections inside
firmware blobs. Unfortunately, it would not be easy to evaluate such an
approach on firmwares because of the lack of ground truth data.

Our method could be further extended to identify other kinds of sections
inside executable files (jump tables, headers, the GOT, relocations, . . . ).

7.3 Code discovery

The quality and the coverage of the ground truth provided by the debugging
symbols may be further improved. As we explained in section 3.4, the debug-
ging symbols do not cover some portions of the binaries. In our experiments,
we discarded those portions since we already had plenty of training data.

The information from the debugging symbols could be combined with those
coming from a disassembler. This hybrid approach would help to cover a wider
portion of the code, and would provide other useful features to use in the
model. In (Andriesse, X. Chen, et al. 2016), the authors follow an alternative
approach: a linear disassembly is started at each byte corresponding to the
beginning of every line of code. This approach does not give a complete disas-
sembly, because not every machine instruction has a corresponding line in the
source code; however, it could be used in combination with other techniques
(as the paper does).

The model we use (linear-chain CRF) is a flexible and general-purpose
sequence classification model: in principle, any feature can be assigned to
the items of the sequence. In our implementation, we only used the one-hot
encoded byte values, but other features may be inserted, e.g., those resulting
from a disassembler or from the knowledge of the opcodes of the ISA.

Our current model does not have any notion of “instruction”: the Con-
ditional Random Field simply labels each byte as “code” or “data,” without
hard constraints over the classification results. This means that our approach
could potentially tag as “code” some subsequences which are not valid instruc-
tions in the ISA. This risk is balanced by the advantages of a simple approach:
learning is fast and no external knowledge is needed.

A more advanced model could include the knowledge about the ISA, e.g.,
by allowing only valid instructions to be classified as code. Introducing this
constraint is not trivial: the model would need to perform structured learning
on two different levels of abstraction, simultaneously: bytes and instructions.
The improved model would have to label each byte either as code or data, and
to group the bytes corresponding to code into valid instructions.

In (Wartell et al. 2011) the instruction set is taken into account, but the
segmentation algorithm only considers byte-level features. In (Karampatziakis
2010), the constraints given by the instruction set are encoded in a graph
structure in which each byte is a node.
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A further step forward would be to learn also over the sequence of instruc-
tions identified by the model itself, in the case of variable length instructions.
New instruction-level features would be introduced (e.g., the opcodes). We
were able to assign features to the instructions only in the fixed-length case,
where the instructions are trivially segmented in 4-byte words and can be
directly labeled (subsection 3.4.2); the linear-chain CRF model is not power-
ful enough to assign features to subsequences of bytes in the variable-length
instruction case.

Semi-CRFs (Sarawagi and Cohen 2005) are an extension of Conditional
Random Fields, which allow to assign features and labels to subsequences (i.e.,
instructions) of elements (i.e., bytes). Training semi-CRFs is computationally
more complex than “plain” CRFs; nevertheless, they may represent a valid
approach to build a more advanced model to solve the code discovery problem
in executable files.

Our code discovery approach for ARM binaries may be used to improve
the results of the code discovery method for ARM/Thumb mixed ISA bina-
ries (J.-Y. Chen et al. 2013), or extended to directly support Thumb (16-bit
instructions) code.





Chapter 8

Conclusions

In the Introduction (chapter 1), we stated the following goals:

1. develop a supervised learning method to identify the CPU architecture
(ISA) and the endianness of header-less executable files;

2. develop a sequential learning method to identify the boundaries of the
code sections in a header-less binary file;

3. develop a sequential learning method to solve the code discovery prob-
lem, i.e., distinguish the machine code from data inside the code section
of stripped, header-less executable files.

In chapter 3, we presented the approach we chose to follow.
We faced the architecture identification problem as a supervised classifi-

cation problem. We collected the training sets for the classifier from multiple
sources (packages from a Linux distribution, datasets from scientific papers,
shellcodes, packed binaries). We derived the features from the Byte Frequency
Distribution and from the frequencies of multi-byte patterns representing func-
tion prologues and epilogues; developed the classifier using Logistic Regression
with Lasso regularization; performed hyperparameter tuning to determine the
optimal regularization strength.

To solve the code section identification problem, we developed a sequential
learning model based on Conditional Random Fields learned via Structural
SVMs. We used the one-hot encoded byte values as features. The model
learns the conditional probabilities of the sequences of bytes in the code and
data sections of the binaries in the training set. We adapted the sequential
learning library (pystruct) to support sparse feature matrices, to reduce the
memory and CPU requirements of our method. We developed a postprocess-
ing algorithm, whose purpose is to reduce the noise in the prediction output,
by coalescing the predictions for each byte into large, contiguous sections of
the file. Once it has been trained, our model can divide any binary file into
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code and data sections. The strength of our approach, compared to the exist-
ing file fragment classification methods (subsection 2.3.1), is that our model,
by predicting the class of each byte, solves both the segmentation and the
classification problems at the same time.

We developed a similar sequential learning approach to solve the code
discovery problem, i.e., distinguish the bytes corresponding to machine code
instructions from the bytes corresponding to inline data inside the executable
section of a binary file. We considered the most difficult case: a dataset of
binaries for two architectures with variable-length instructions (x86 and x86-
64). We built our training set by compiling a set of Windows programs with
full debugging symbols, which include the offsets of the functions and of the
inline data; we extracted the ground truth by parsing the debugging symbols.
We trained the same sequential learning model described for the code section
identification method (linear-chain CRF) on the training set, using the byte
values as features. The trained model predicts whether each byte of an unseen
executable file is part of a valid machine instruction, or if it is inline data.

We also built a variant of this method to detect inline data inside binaries
compiled for a fixed-instruction-length architecture (ARM). This model is
simpler and faster, because in ARM binaries the instructions and the data
blocks are always aligned to 4-byte words inside the file. We obtained the
features by running a linear disassembler over the binary files and by collecting
the opcodes decoded from each 4-byte word. The DWARF debugging symbols
inside the executables provide the ground truth. We used the same CRF-based
classifier as before; the only difference is that the sequential learner classifies
4-byte words instead of bytes.

In chapter 5, we tested our methods on real data and evaluated the per-
formance of our models.

We evaluated the architecture classifier on 20 different architectures; our
model scored well with an averaged F-measure over 99%. The datasets in-
clude both files containing exclusively machine code, and complete binaries
containing code and data sections. We also tested our classifier on more chal-
lenging datasets (shellcodes and packed binaries): we still obtained a more
than satisfactory performance.

We evaluated the code section identification method on binaries coming
from: Debian packages for multiple architectures, a dataset of ELF and PE
files from (Bao et al. 2014), and a macOS system. Our method scored well
on all the datasets: on average, it classified correctly over 99.5% of the bytes
of the test samples. The results of the experiments show that the postpro-
cessing algorithm we developed consistently improves the performance of the
model. We determined the optimal values of the parameters of the model by
hyperparameter tuning.

We evaluated the code discovery method on a dataset of Windows binaries
compiled with full debugging symbols. The model correctly classified over
99.9% of the bytes in the binaries. We also tested the code discovery method
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on a dataset of ARM binaries. In this case, we obtained an accuracy of
99.98%. We determined the optimal values of the parameters of the model by
hyperparameter tuning.

An interesting development for the architecture classifier would be to add
an automated feature engineering phase, i.e., an algorithm to autonomously
generate and select the most relevant patterns for the classification task. We
decided not to implement such method, to keep our classifier simple and fast;
our implementation, instead, relies on a fixed set of patterns. The approach
could be also extended to classify non-executable files by their types. We do
not expect our model to be resistant to deliberate obfuscation efforts specifi-
cally aimed to conceal the CPU architecture of executable files.

The code section identification method is not able to detect code inside
compressed or encrypted files, and can be defeated by obfuscation techniques
explicitly targeted to confuse our model (e.g., by putting large amounts of
dead code in the data sections of the file). Our approach may be extended to
detect not only the executable regions of a binary files, but also other sections
which exhibit peculiar patterns (e.g., jump tables, relocations, headers. . . ).
An approach similar to ours can be used, in general, to divide a file into
segments and classify the segments by their type (this may be useful, for
example, in the computer forensics domain, when file carving is not a suitable
option).

The code discovery method can be improved by integrating the sequential
learning model with a disassembler, e.g., by encoding the disassembler out-
put into additional features. Our model works at the byte level and has no
knowledge of the notion of “instruction”: the approach may be extended by
introducing additional constraints — derived from the knowledge of the ISA
— to enforce the consistency of the prediction output.

Previous works (subsection 2.3.5) widely explored the strengths and the
limitations of the static analysis approaches based on the recursive traversal of
the code, and proposed increasingly sophisticated analyses over the instruction
flow. While some of these approaches have obtained remarkable results, they
fall short whenever the execution flow cannot be statically traced with cer-
tainty (e.g., when complex indirect jumps are present). The main limitation
of this kind of approaches is that statically discovering all the reachable code
regions in an executable file is an undecidable problem in computer science;
the problem can not be resolved in the general case once and for all.

In this work, we address the problem of code/data separation by looking
at the machine code from a purely syntactical, probabilistic point of view: our
method consists in learning a language model to compute the likelihood of a
byte to be code (or data).

We feel that the application of machine learning and statistical techniques
to the static analysis of executable files will give substantial contributions in
this research field.
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