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Sommario

L'epilessia è un disordine cerebrale caratterizzato dalla predisposizione alle generazione

di attacchi convulsivi dovuti ad una attività cerebrale eccessiva o sincrona, provocando

cambiamenti nell'attenzione e nel comportamento del paziente. Una volta classi�cata,

la malattia è solitamente trattata con farmaci anti-epilettici. Tuttavia, tra il 20% e il

40% dei pazienti che so�rono di epilessia focale sono farmaco-resistenti [20]. I pazienti

di questa categoria sono possibili candidati per una cura chirurgica, che ha lo scopo di

rimuovere la zona epilettogena (EZ) responsabile delle crisi.

Metodi non invasivi, come la video-EEG ed altre indagini neuro-radiologiche, aiu-

tano a localizzare la EZ in fase di piani�cazione chirurgica pre-operatoria. Tuttavia,

la EZ può non essere identi�cata con metodi non invasivi in circa il 25% dei pazienti,

rendendo necessaria un analisi tramite elettroencefalogra�a (EEG) intracranica [12].

La stereo-EEG (SEEG) è una tecnica mini-invasiva guidata da immagini per la lo-

calizzazione della EZ. Si basa sull'impianto percutaneo di molti elettrodi intracerebrali

per l'ispezione di strutture cerbrali sia super�ciali che profonde.

In una procedura SEEG, le traiettorie d'impianto degli elettrodi richiedono una piani-

�cazione complessa che richiede molto tempo. Inoltre, devono essere presi in consider-

azione diversi vincoli: l'assenza di vasi sanguigni nell'area di ingresso (EP) dell'elettrodo,

devono essere evitati i solchi e prevenire l'incrocio delle traiettorie.

Gli algoritmi di piani�cazione computerizzati riducono i rischi derivati dall'impianto

degli elettrodi e riducono i tempi computazionali tenendo conto delle restrizioni sopra

descritte. Uno dei vincoli più importanti è la distanza tra gli elettrodi e i vasi sanguigni,

che deve essere massimizata per ridurre al minimo i rischi di emorragia. Il software

considera questa restrizione analizzando le segmentazioni vascolari di immagini come

Cone Beam Computed Tomography - Digital Subtracted Angiography (CBCT-DSA) o
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Contrast Enhanced - Magnetic Resonance Angiography (e.g. CE-MRA con Gadolinio).

L'identi�cazione manuale della vascolatura cerebrale richiede molto tempo ed è dipen-

dente dal chirugo e, nonché, dalla sua esperienza. L'implementazione di algoritmi auto-

matici o semi-automatici sono una soluzione per ottenere una segmentazione vascolare

più accurata e riproducibile e in meno tempo. L'attuale metodo di segmentazione si

basa sul thresholding manuale: è una tecnica molto rapida, ma è molto soggettiva e

può portare a problemi di piani�cazione, soprattutto in caso di dataset rumorosi.

L'obiettivo di questo lavoro è l'estensione dei metodi di segmentazione descritti in

[10] per la segmentazione 3D, in modo da essere applicata ad immagini CBCT-DSA

ed essere poi inclusa nel software di piani�cazione descritto in [36]. In particolare, si è

focalizzato sull'implementazione di diversi algoritmi di segmentazione automatica già

presenti in letteratura e sulla loro validazione per l'applicazione nel planner SEEG.

In�ne, il metodo migliore è stato inserito nel work�ow del planner automatico.

Per migliorare la segmentazione, sono stati implementati 3 diverse tecniche auto-

matiche di classi�cazione basate sul modello a gaussiane miste:

� Modello a gaussiane miste semplice (GMM)

� GMM con Markov Random Field (GMM-MRF)

� GMM-MRF basata su Maximum Intensity Projections (MIPs) iterative

Per valutare l'e�cacia degli algoritmi di segmentazione implementati, sono stati

fatti due esperimenti:

1. Tuning dei parametri: entrambi i metodi GMM e GMM-MRF necessitano di

un'inizializione dei corrispondenti parametri, i quali sono stati calibrati per ot-

tenere i risultati migliori per ogni metodo di segmentazione.

2. Confronto degli algoritmi: i metodi di segmentazione sviluppati sono stati com-

parati in modo da de�nire quale conduca ad una segmentazione vascolare migliore.

Sono stati inoltre confrontati con l'attuale metodo di thresholding manuale.

Gli esperimenti sono stati fatti su un dataset composto da volumi CBCT-DSA di 6

diversi pazienti comparati con un dataset di riferimento composto da 4 diversi sotto-

volumi per ogni paziente manualmente segmentati da un esperto chirurgo. Gli indici
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di misura valutati sono: Sensitività, Speci�cità, Precisione, Accuratezza e l'indice Dice

(DSC).

Riguardo la calibrazione dei parametri, entrambi i metodi dimostrano alti valori di

Sensitività ed Accuratezza con 3 cluster e un log-likelihood threshold settato a 10; per

il GMM-MRF, i parametri beta e neighbourhood mostrano risultati simili per tutti gli

indici, quindi sono stati considerati rispettivamente beta = 1.5 e neighbourhood = 26

voxels. Il threshold per la binarizzazione delle immagini è stato settato rispettivamente

sul cluster 2 per il GMM e sul cluster 1 per il GMM-MRF. Confrontando gli algoritmi

con le combinazioni di parametri così calibrate, si evince che il GMM-MRF ha indici

di Sensitività (0.90) e DSC (0.80) più alti rispetto agli altri metodi di segmentazione;

questi indici sono importanti in quanto dimostrano quanto il metodo sia in grado

di identi�care i vasi sanguigni. Inoltre, il GMM-MRF ha mostrato qualitativamente

performance migliori rispetto sia al thresholding che il GMM, riproducendo la naturale

connessione dei vasi sanguigni anche in presenza di rumore, portando ad una corretta

classi�cazione di vasi sia di grosso che piccolo calibro.
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Summary

Epilepsy is a brain disorder characterized by an enduring predisposition to generate

epileptic seizures due to abnormal excessive or synchronous neuronal activity, thus

causing changes in attention or behaviour. Once the seizure is classi�ed, the disease

is usually treated with anti-epileptic drugs. However, between 20% and 40% of focal

epilepsy patients are refractory to antiepileptic medications[20]. Such patients are pos-

sible candidates for curative surgery, which aims to resect the epileptogenic zone (EZ)

that generates seizures.

To plan the surgery, pre-operative non-invasive methods, such as video-EEG and neuro-

radiological investigations, help to localize the EZ. However, in about 25% of surgical

candidates, the EZ cannot be inferred from non-invasive imaging data, and intracranial

electroencephalography (EEG) is needed to identify the EZ[12].

The Stereo-ElectroEncephaloGraphy (SEEG) is a minimally invasive image-guided sur-

gical procedure used to localize the EZ. It relies on percutaneous implantation of nu-

merous intracerebral electrodes surveying super�cial and deep structures. In SEEG

procedure the electrodes trajectory planning is very challenging and time consuming.

Various constraints have to be taken into account simultaneously: the absence of vessels

at the electrode Entry Point (EP), sulci avoidance and prevent the crossing between

two or more trajectories.

Computer-assisted planning algorithms can reduce implantation risk and time by

computing the trajectories taking into account the previously described constraints.

One of the most important constraint is the distance between electrodes and brain

vessels that has to be maximized to reduce any risk of damage. This is taken into

account by the planner algorithm that analyzes the vessel segmentation of biomedical

images of the patient such as Cone Beam Computed Tomography - Digital Subtracted
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Angiography (CBCT-DSA) or Contrast Enhanced-Magnetic Resonance Angiography

(e.g. CE-MRA with Gadolinium). Manual vessels identi�cation is time consuming,

subjective and needs experienced surgeons. A solution to this problem is the imple-

mentation of automatic or semi-automatic algorithms to perform a more accurate and

reproducible vessel segmentation in less time. The actual segmentation method is based

on manual thresholding; it is a very fast but user-dependant technique that leads to

plani�cation problems, especially in case of noised dataset.

The aim of this work is the extension of the vessel segmentation method described in

[10] for 3D volumetric segmentation, to be applied to CBCT DSA images and included

in the planning work�ow described in [36]. In particular, we focused on the imple-

mentation of di�erent segmentation algorithms presented in literature and on their

validation for the SEEG planner. The best method was then added in the planner

work�ow.

In order to optimize the segmentation, three di�erent automatic clustering tech-

niques based on Gaussian mixture model has been implemented:

� Simple Gaussian mixture model (GMM)

� GMM with Markov Random Field (GMM-MRF)

� GMM-MRF based on Maximum Intensity Projections (MIPs)

In order to evaluate the e�ectiveness of the implemented segmentation algorithms,

two di�erent experiments were done:

1. Parameters tuning: the GMM and GMM-MRF need a set of initialization pa-

rameters that have been tuned to achieve the best results for each segmentation

method.

2. Algorithms comparison: the developed segmentation methods has been compared

to identify which technique leads to the best vessel segmentation. The algorithms

were also compared with the manual thresholding.

The experiments were done on a dataset composed by CBCT-DSA volumes from

6 di�erent patients and a ground truth dataset composed by 4 di�erent subvolumes
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from each patient manually segmented by an expert surgeon. Five indices were used:

Sensitivity, Speci�city, Precision, Accuracy and Dice similarity coe�cient (DSC).

With respect to the parameter tuning, both the methods have higher Sensitivity

and Accuracy with 3 clusters and a log-likelihood threshold set to 10; for GMM-MRF

the beta and neighbourhood value show similar results for all the indices, thus it was

set a medium value of beta=1.5 and a neighbourhood of 26 voxels. The binarization

thresholds were set on the cluster 2 and the cluster 1, respectively for the GMM and

GMM-MRF methods.

Referring to the algorithm comparison, the GMM-MRF shows higher Sensitivity (0.90)

and DSC (0.80) with respect all the other segmentation methods; it is very important

because these indices show how good the algorithm is at detecting a vessel and are a

measures of unique correspondence. GMM-MRF qualitatively showed better perfor-

mance over manual thresholding and GMM in reproducing the connected nature of

brain vessels also in presence of noise, thus leading to a correct classi�cation of vessel

of both small and big caliber.
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Chapter 1

Introduction

Epileptic seizures are among the most common neurologic symptoms in all human

populations and there are descriptions of seizure types date back at least to the time of

Hippocrates. The International League Against Epilepsy (ILAE) conceptually de�ned

epilepsy in 2005 as a "disorder of the brain characterized by an enduring predisposition

to generate epileptic seizures and by the neurobiologic, cognitive, psychological, and

social consequences of this condition" (an epileptic seizure is a transient occurrence of

signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in

the brain)[35][13].

The Paroxysmal Depolarization Shift (PDS) is the pathophysiological cellular phe-

nomenon that underlies all types of epileptic seizures and interictal epileptiform elec-

troencephalography (EEG) abnormalities (�spikes�)[17][24]. As shown in Figure 1.1,

PDSs are cellular events in which rapidly repetitive action potentials are not followed

by the usual refractory period, thereby generating a prolonged membrane depolariza-

tion (which is more prolonged than typically occurs in response to normal excitatory

postsynaptic potentials [EPSPs]). An interictal spike is caused by PDSs in large num-

bers of neurons that are synchronized such that each involved neuron generates one

PDS at the same time. An electroclinical seizure occurs when large numbers of neurons

in one or more brain regions are repeatedly generating PDSs, in sustained repetitive

�ring with synchronization.
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Figure 1.1: The Paroxysmal Depolarization Shift. The prolonged depolarization results in

action potentials and propagation of electrical discharges to other cells. The PDS is largely

dependent on glutamate excitation and activation of voltage-gated calcium and sodium chan-

nels. An electroencephalogram (EEG) recorded during this time would show a spike and a

subsequent slow wave. When the balance of excitation and inhibition is further disturbed,

there will be a breakdown in containment of the epileptic focus and a seizure will occur.

The �rst step to diagnose epilepsy is to classify the seizure type. The last operational

classi�cation of seizure types proposed by ILAE in 2017 [13](Figure 1.2) de�nes three

major groups based on the location of the epileptic discharges in the cerebral cortex

and the extent and pattern of the propagation of the epileptic discharge in the brain:

� Focal onset : the origin of the epileptic discharge is limited to one hemisphere. It

may be discretely localized or more widely distributed. Therefore, focal seizures

have features that allow to identify the involved area.

� Generalized onset : it may originate at some point within bilaterally distributed

networks. Such bilateral networks can include both cortical and subcortical

structures, therefore, individual seizure onsets can appear localized. General-

ized seizures can be asymmetrical, thus causing the distinction from focal onsets

harder.
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� Unknown onset : seizures are broadly categorized as either generalized or focal,

but there are some cases that cannot be categorized in this manner.

Figure 1.2: ILAE 2017 seizure classi�cation[13].

Once the seizure is classi�ed, the disease is treated with anti-epileptic drugs. How-

ever, between 20% and 40% of focal epilepsy patients are refractory to antiepileptic

medications[20]. Such patients are candidates for curative surgery, which aims to re-

sect the epileptogenic zone (EZ) that generates seizures. This is an invasive procedure

and, before proceeding, it's important to investigate where the EZ is located. Non-

invasive methods such as video-EEG, MRI, Flair, PET and neuropsychological tests

are used, however, they don't always lead to the desired results and cannot provide

de�nitive information for a good surgery planning[47]. In about 25% of surgical can-

didates, the EZ cannot be inferred from non-invasive imaging data, and intracranial

electroencephalography (EEG) is needed to identify the EZ[12]. Thus, the accuracy in

�nding the EZ is mandatory to avoid post-operative permanent neurological de�cits.

One of the invasive procedures for localizing the seizure foci is the intracranial EEG

with cortical grid. It requires the placing of a large array of electrodes called a subdu-

ral grid on the surface of the brain[31]. To expose the brain's surface, patients need

to undergo a larger surgery called craniotomy. This method is invasive, risky and can

only record cortical activity. In contrast to intracranial electrode studies with subdural
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grid and strip electrodes with sparse depth electrodes for less accessible structures, the

Stereo-ElectroEncephaloGraphy (SEEG) is a minimally invasive image-guided surgical

procedure used to localize the EZ. It relies on percutaneous implantation of numerous

intracerebral electrodes surveying super�cial and deep structures. Thus, it requires a

more accurate and precise surgery planning because of the large number of implanted

electrodes (trajectory planning is the most signi�cant part in order to avoid important

brain structures) but it gives information about deeper structures and it reduces the

hospitalization time of the patient.

1.1 Stereo-ElectroEncephaloGraphy

The Stereo-Electroencephalography (SEEG) is a minimally invasive surgical practice

introduced in the second half of the twentieth century by Bancaud and Talairach at

the S. Anne Hospital, Paris, France. In Italy however it was introduced by Munari et

al. in the mid-1990s[29].

It consists in implanting intracranial electrodes in the brain through small open-

ings in the skull (Figure 1.3) when the non-invasive data are insu�cient to de�ne the

epileptogenic zone (EZ).

Figure 1.3: Example of SEEG electrodes. This example show the high number of electrodes

necessary for SEEG and the importance of their distribution.
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Sophisticated software and imaging technology are needed to monitor the placement

of the intracranial electrodes, and only a handful of institutions like Niguarda Ca'

Granda Hospital in Milan uses this approach.

In recent years, thanks to the advances in robotic surgery and biomedical imaging,

there have been many improvements in SEEG procedure, both for the accuracy and

for the safety of the patients[7][29].

The electrodes can precisely record the electrical activity of brain structures, de-

tecting patterns of electrical abnormalities that can de�ne the seizure foci, or �nd

the functional cortical areas which are responsible for seizures. This technique avoids

open surgery, and many argue that it provides superior coverage of medial and deep

structures, as well as certain common epileptogenic networks[6].

The minimally invasive nature of SEEG makes it safer [4][7][41] and patients are

likely to have less pain and better wound healing. Candidates for this methodology are

determined by radiological investigations, type of seizures, and other patient-speci�c

factors.

SEEG procedure can be divided into four major blocks(Figure 1.4):

1. Images fusion: all the biomedical images acquired are properly treated and

merged to obtain a brain image as clear as possible.

2. Planning electrodes trajectories : surgeons, using the available images, plan elec-

trodes trajectories respecting various constraints (avoid blood vessels, sulci and

trajectories crossing).

3. Intracranial electrodes placement : electrodes are placed following the trajectories

previously planned.

4. Signal record and analysis : the EEG captured from the electrodes is analysed to

localize the EZ.
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Figure 1.4: SEEG typical work�ow. Multiple failures of the anti-epileptic drug treatment

and the impossibility of identifying the EZ with non-invasive procedures lead to the application

of the SEEG procedure to recognize the epileptogenic area to be resected. This scheme

highlights the four main steps of the SEEG: image fusion, electrodes trajectory planning,

electrodes placement and signal recording and analysis.

Image fusion

The acquired biomedical images are co-registered and merged in order to be used by

the team of neurosurgeons and neurologists to do a �rst image analysis. The di�erent

acquisitions enhance the most important structures to be identi�ed (such as vessels

or brain sulci) and the co-registration with intra-operative images allow the surgical

navigation with Computed Aided Systems (CAS) during the surgery. The EEG record-

ing can be also co-registered and synchronized with a video source that registers the

behaviour of the patient during the entire SEEG procedure (only important parts of

the video, such as the scenes correspondent to the seizure events, are stored).

Planning

Intracranial electrode placement step is very delicate during the SEEG procedure be-

cause a small error in the calculation of a trajectory may cause serious harm to the
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patient. Thus, the pre-operative planning of the electrodes trajectories is the most

important part of the SEEG procedure.

Preoperative planning of electrodes trajectories reduces implantation risk by en-

suring the avoidance of dangerous structures (e.g. arteries, veins, sulci) and con�icts

between electrodes.

The safe implantation of intracerebral electrodes for SEEG critically depends on accu-

rate surgical planning and stereotactic technique, with an incidence rate of hemorrhage

under 0.2% per electrode and 3% per patient[16][7]. Several skull holes (∼ 2.1mm in

diameter) are percutaneously drilled and, due to the dense vasculature of some targets

such as the operculo-insular region, many centers make use of angiography datasets in

the planning procedure[27]. SEEG planning is traditionally based on the stereotaxic

angiographic study of the vascular anatomy[18]. In recent years, researches on elec-

trode trajectory planning to assist clinicians are becoming largely spread[10][38]. This

procedure can be used to select the best trajectory (automated planning) or inform

manual trajectory selection (assisted planning).

The planning of the stereotactic trajectories is performed by a neurosurgeon, fol-

lowing the results of a multidisciplinary meeting with the epileptologists, who manually

selects the target and the entry points (TP and EP respectively)[7] by visually inspect-

ing multimodal anatomical and functional 3D images. The 3D images commonly used

for the pre-operative planning are Magnetic Resonance Images (MRI), 3D rotational

angiographies and Cone-Beam Computed Tomographies (CBCT)[10][46]. As stated in

the previous paragraph, such kind of images allow to enhance critical structures, such

as vessels and important brain areas, to be avoided in order to reduce the implantation

risks.

To enable a faster planning process and ensure safety of the resulting implantation

plan, the correct positioning of intracerebral electrodes must address some essential

requirements:

� Critical structures have to be clearly identi�able;

� All of the trajectories must not intersect any critical tissue (e.g. vessels and sulci)

to avoid harm to the patient;
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� Minimizing the risk of complications such as intracranial bleeding, infections and

cerebrospinal �uid leakage;

� Accurate targeting of desired intracerebral structures;

� The trajectories should be further from any critical tissue by a speci�ed safety

distance: this margin is based on the wanted accuracy of the surgical procedure

of electrodes implantation;

� The trajectory should be as short as possible;

� The entry angle of the trajectories should be as close to 90 degrees as possible:

to allow robust implementation of the planned entry angle during the surgical

procedure.

Usually, up to 20 electrode shafts are planned, making the manual planning a hard

and time consuming procedure.

Computer-assisted planning algorithms can reduce implantation risk and time by

computing the trajectories taking into account the previously described constraints.

One of the most important constraint is the distance between electrodes and brain

vessels. The recommended minimum distance between the entry point and the near-

est vessel is 3 − 4mm to ensure the absence of complications during the implantation

phase for the patient. In deeper brain regions the distance between electrode and ves-

sels could become even smaller (up to 1mm)[27].

Manual vessels identi�cation is time consuming, subjective and needs experienced sur-

geons. A solution to this problem is the implementation of automatic or semi-automatic

algorithms to perform a more accurate and reproducible vessel segmentation in less

time.

This is taken into account by the planner algorithm that analyzes the vessel segmen-

tation of biomedical images of the patient such as CBCT-DSA (Cone Beam Computed

Tomography - Digital Subtracted Angiography) or Contrast Enhanced-MRA (e.g. CE-

MRA with Gadolinium). There are several algorithms to segment images but the

precision and the accuracy in brain vessel segmentation is still a problem.
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Electrodes placement

To surgically place the electrodes following the planned trajectories, it is necessary to

�x the head of the patient and register its position with the images used in the pre-

operative planning. Electrodes can then be surgically positioned by using frameless

or frame-based stereotactic techniques or a robotic assistant, such as Neuromate®

(Renishaw May�eld, Nyon, Switzerland) or ROSA® (Medtech, Montpellier, France),

which automatically aligns the tool holder along the planned trajectories[9].

Signal record and analysis

Each single electrode is tested before the recording of the signal in order to reduce

the risk of SEEG failure. Then, the patient is asked to perform speci�c tasks (e.g.

reaching tasks, visual stimuli, ...) so that the neurologist, based on these trials, decides

the contacts that have to be recorded and displayed. After these trials the patient un-

dergoes to electrical stimuli such as electric pulses, to evaluate brain's areas activation,

or electrical train of pulses (to provoke an epileptic seizure and to identify the EZ).

The recorded responses to the stimuli are recorded (Figure 1.5) and further analyzed

by the neurologist.

Figure 1.5: Example of a SEEG record.
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All the informations from the SEEG, the acquired biomedical images and the pa-

tient's clinical and family history are merged in order to be analyzed and to de�ne

the possibility of the EZ resection. Thus, when it is possible the brain area resection

proposal is discussed with the neurosurgeon.
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Chapter 2

State of the art

As introduced in chapter 1 medical images have a foundamental role in various medical

�elds, especially in early disease diagnostic and for pre-operative planning. Analysis of

medical images �rst requires the identi�cation of the regions of interest (ROIs). Image

segmentation is the procedure to extract ROIs. Accurate visualization and quanti�-

cation of blood vessels play a signi�cant role in a number of clinical procedures. For

various medical diagnostic tasks, it is necessary to measure the vessel width, re�ec-

tivity, tortuosity, and abnormal branching. Planning and performing neurosurgical

procedures require an exact insight into blood vessels and their branches, which ex-

hibit great variability. In planning, they provide information on where the blood is

drawn and drained, to di�erentiate between the feeding and transgressing vessel. Dur-

ing surgery the vessels serve to provide landmarks and guidelines to the lesion. In

short, accuracy in the navigation and localization of clinical procedures is determined

by how minute and subtle the vascular information is[11]. In particular, during the

pre-operative planning for SEEG procedures, the vessels have to be precisely identi�ed

in order to be avoided. In fact, vessels identi�cation is the most important constraint

to prevent brain damages and risky situations. In case of automatic planning the

vessel segmentation plays a signi�cant role, because it directly and heavily in�uen-

cies the trajectory planning. Thus, image segmentation is the most important part of

the processing of medical images in pre-operative planning of brain surgery applica-

tions and requires high accuracy and precision. Manual segmentation is subjective and

time-consuming, so it needs improvements to make it faster and operator independent.
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The implementation of automatic or semi-automatic processes may lead to better and

objective results in less time.

This section describes in details the actual state of the art about segmentation

algorithms and, especially, their developments in vascular detection for brain surgery

applications.

2.1 Image segmentation

Image segmentation methods relies on the principle of labeling structures with speci�c

characteristics. Thus, the result of a segmentation is usually a binary mask where the

enlightened structures are the regions of interest. Image segmentation methods can be

divided into two major groups:

� Edge-based : edge-based methods are based on discontinuities of ROIs contours.

The �nal segmented structure is described by the separation contour/surface from

the rest of the image.

� Region-based : these methods are based on homogeneity of the regions of inter-

est. Intensity of voxels is the main characteristic considered for region-based

algorithms. The �nal segmented structure is described as an occupied region.

2.1.1 Edge-based segmentation methods

(a) Ideal step (b) Ramp (c) Noised step

Figure 2.1: Possible typologies of edges

Edge-based segmentation techniques relies on the principle of abrupt intensity changes

in correspondence of the edges and contours of the objects (Figure 2.1). In reality the
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intensity di�erence along boundaries are not so rapid because of the noise.

Derivative operators

This approach is based on the searching for discontinuity using derivative operators.

The �rst order derivative operator is the gradient operator (∆f):

∆f = [Gx, Gy, Gz]
−1 =

[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]−1
(2.1)

The second order derivative operator is the Laplacian:

∇2f(x, y, z) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(2.2)

It is not commonly used by itself as edge detector, as it is very sensitive to noise.

Moreover, it results in a double contour (Figure 2.2) and it is not able to indicate the

edge direction. However, it is utilized together with other edge detectors, to localize

potential edges.

Figure 2.2: This �gure represents the �rst and the second order derivative operator applied

on edges.
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The image is a discrete function with two variables which we can approximate to

the sum of conveniently delayed and weighted impulses.

I(m,n) =
∑
i

∑
j

I(i,j)δ(m−i)δ(m−j) (2.3)

The derivative operation equals to the convolution between the image I(M×N) and

a kernel K(m×n), being this latter de�ned to be sensitive to the intensity variations:

O(i,j) =
m∑
k=1

n∑
l=1

I(i+k−1,j+l−1) ·Kk,l (2.4)

with i = 1 . . .M −m+ 1 and j = 1 . . . N − n+ 1.

Derivative operation is very sensitive to noise, thus it needs to combine a smoothing

procedure. Examples of gradient operator kernels are shown in �gure 2.3.

Figure 2.3: Prewitt and Sobel gradient operator kernel are used to estimate the gradient of

the image intensity at each point of a 2D image.

Dynamic programming

Dynamic programming is an edge-based segmentation method that works with de-

formable contours (snakes) or surfaces (balloon). Conceptually, the dynamic contour

attempts to shrink a boundary to image features. The algorithm's major advantage is

that it is able to bridge discontinuities in the image feature being located[19]. First,

the contour is manually initialized, then it is attracted by edges in the 2D image and

deformed accounting for speci�c mechanical features initially attributed to the contour.

The contour is shrunk with length and sti�ness constraints; shrinking is opposed by

constraints derived from the image data which are dependent on the type of boundary

being located. For example, if a local maximum was being traced, the constraint could
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be derived as a weighted sum of the local gray values; if a contour was being followed,

the constraint would be derived from the image gradient. The algorithm allows the

relative in�uences of these three factors (length, sti�ness, image feature) to be varied

and thus allows the user to tune the snake to a particular shape of boundary[28].

The snake algorithm works on a cost function interpreting the internal (elastic) en-

ergy of the contour and on the presence of attracting elements (discontinuities, edges):

E∗snake =

∫ b

a

(Eint[v(s)] + Eext[v(s)])ds (2.5)

with Eint interpreting the elasticity of the contour and Eext which interprets the at-

traction energy exherted by edges.

The desired contour is then de�ned by the minization of the cost function:

B∗N = {BN | min(EBN )} (2.6)

Isosurfacing methods

Isosurfacing techniques looks for homogeneity 3D. The algorithms are directly applied

to the gray-level volume and they combine segmentation with boundary surfaces gen-

eration and their representation. There are two principal techniques:

� Cuberille model : it requires an initial gray-level volume binarization (so, a speci�c

threshold is de�ned) or a criteria to classify voxels as belonging or not belonging

to a speci�c structure.

� Marching cubes : it requires the initial de�nition af a threshold for voxel classi�-

cation and exploits intensity for boundary data.

Cuberille model The Cuberille model search for surface of separation between vox-

els previously binarized[33]. This method consider each voxel vi as a cube, so that the

surface of separation between the voxel vi and its neighbours is de�ned by their binary

classi�cation.
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Figure 2.4: Example of Cuberille model application with four voxels.

As in Figure 2.4, the separating voxel surface is identi�ed as the voxel face between

a voxel below threshold and one of its neighbours above the threshold:

g(v1) ≥ T & g(v2) < T (2.7)

with g(v1) and g(v2) are the intensities of the voxel 1 and voxel 2 respectively. The other

separating voxel faces are identi�ed according to the intensity values of the surrounding

voxels:

v2 − v4 if g(v3) ≥ T & g(v4) ≥ T (2.8)

v1 − v3 if g(v3) < T & g(v4) ≥ T (2.9)

v3 − v4 in other cases (for continuity) (2.10)

Marching Cubes This method consider eight voxels as the vertices of a voxel cube

(Figure 2.5) and their intensity level are assessed as a function of the prede�ned thresh-

old T[23].
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Figure 2.5: Marching cubes. The marching cubes technique consider eight neighbouring

voxels as the vertices of a voxel cube.

Let v1 the voxel that belongs to the considered object:

g(v1) ≥ T & g(vi) < T (with i=2,3,. . . ,8) (2.11)

Figure 2.6: The separating surface is de�ned by the points that represent the points along

the lines connecting above versus below threshold voxels at which the intensity level equals

the predifened threshold T by means of linear interpolation.

Along the lines connecting the above-threshold versus below-threshold voxels, the

points at which the intensity level equals the prede�ned threshold T by means of linear

interpolation are considere. The identi�ed points are the vertex of a surface element

which will de�ne the separating surface. There could be 256 possible cases, but they

are reduced to 15 because of simmetry. However there are ambiguities as shown in

Figure 2.7.
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Figure 2.7: Example of an ambiguity with marching cubes.

To resolve the ambiguities manual re�nement or an analytical resolver are needed.

The marching cubes technique requires optimization and has high computional cost.

2.1.2 Region-based segmentation methods

As introduced in the previous paragraph region-based algorithms are based on homo-

geneities of the image, so these methods recognize ROIs with similar characteristics

(e.g. intensities, colors, textures, ecc).

Threshold-based techniques

Global thresholding method is the easiest but practical and e�cient approach for vas-

cular segmentation. As vessels are enhanced by the use of a contrast agent or others

imaging techniques, global threshold is good enough for several clinical applications.

It is based on the assumption that speci�c ROIs have a speci�c range of intensities.

Thus, the separation of the objective pixels/voxels from the background is accom-

plished by the selection of a gray-level θ. This is a process that classi�es pixels/voxels

as under/over threshold (binarization) so that:

g(x, y) =

1, if f(x, y) ≥ θ

0, otherwise
(2.12)

where f(x, y) is the intensity value of the pixel (x, y).

Threshold selection is crucial, especially for important structures such as vessels.

Threshold can be selected in many di�erent ways:

� Trial error : it is chosen after several trials to �t the best result. It is a trivial
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and subjective way to select it for vascular segmentation, but could be an initial

step to �nd out the gross intensity interval where it leads to nice results.

� Function of gray level histogram: the gray level histogram is a key-point in thresh-

old selection; it can be unimodal (binarization) or multimodal (clustering).

� Variable threshold on di�erent image regions : the image is subdivided in di�erent

regions and each region has a speci�c threshold.

� Band/bi-level thresholding : the threshold is set as an interval of interest, so it is

bounded between two values;

g(x, y) =

1, if f(x, y) ∈ D

0, otherwise
(2.13)

with D a speci�c gray level interval.

The threshold selection as a function of gray level histogram requires the analysis of

frequencies distribution. In case of multimodal histogram (as shown in Figure 2.8),

thresholds are usually selected in correspondence of minima between local adjacent

maxima.

Figure 2.8: Example of threshold selection in case of bimodal histogram. In this example the

histogram shows two high peaks that correspond to two di�erent structures, so the threshold

is selected in correspondence of the minumum between the two adjacent maxima.
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Region growing techniques

Region growing methods are clustering techniques of pixels/voxels with similar fea-

tures. Homogeneity is the main selection criteria (e.g. homogeneity of gray-levels,

colors/texture, ...). In 1994 Adams and Bischof proposed the so called Seeded Region

Growing (SRG) algorithm. It is fast, robust and parameter free. As the name suggests,

it needs a set A of n seeds (individual points or connected components) as inputs. The

seeds play the same role as the markers used in watershed segmentation[26]. Let T be

the set of all unallocated pixels/voxels that border at least one of the A:

T = x /∈ A : N(x) ∩ A 6= ∅ (2.14)

where N(x) represents the set of immediate neighbours (6, 18 or 26) of the pixel/voxel

x. A single step of the algorithm involves examining the neighbours of each x ∈ T in

turn[2]. For each element the similarity measure δ(x) between x and the intersected

region is calculated as:

δ(x) =| g(x)−meany∈A{g(y)} | (2.15)

where g(x) is the intensity (gray value) of the pixel x. If N(x) intersects more than

one region then A is taken to be that region for which δ(x) is a minimum. In this way

a δ value is determined for each x ∈ T . The pixel x ∈ T that satis�es

δ(z) = minx∈T{δ(x)} (2.16)

is appended to the region corresponding to δ(z)[25]. The process continues until all the

pixels/voxels have been connected to the correspondent region.

Clustering techniques

Clustering is a method to divide a set of data into a speci�c number of groups called

clusters. One of the popular method is k-means clustering [macqueen1967]. K-Means

algorithm is an unsupervised clustering algorithm that classi�es the input data points

into multiple classes based on their inherent distance from each other. It takes as

inputs the number of cluster (K), the initial centroids of the clusters and a distance
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function dist(xi, xk) that expresses the disomogeneity between each pair of input data

(xi, xk). Let Ch, h = 1, 2, ..., K, be a cluster and zh its centroid:

zhj =

∑
xi∈Ch xij

cardCh
(2.17)

Afterwards, for each pixel the distance between the current pixel and the center of

each cluster is computed. The pixel is then classi�ed according to the distance: it will

belong to the cluster with shorter distance. The process is iterative and it will continue

until no reassignment is operated or the maximum number of iterations is reached. The

K-means algorithm can be summarized in four easy steps:

1. Initialization: �rst it is necessary to initialize the number of cluster and the

initial centroids of the clusters (randomly selected among the input data); in

addition it needs the de�nition of the distance function.

2. Data classi�cation: iteratively each observation is associated to the cluster that

has the nearest centroid, so that minimizes the distance from the observation.

3. Centroid update: each time an observation is assigned to a cluster, the centroid

of each cluster is updated.

4. Convergence: the step 2 and 3 are repeated until the convergence has been

reached, so when none of the points has been reallocated with respect to the

previous iteration.
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(a) 1st iteration (b) 2nd iteration (c) 3rd iteration

(d) 4th iteration (e) 5th iteration (f) 6th iteration

Figure 2.9: Example of K-means algorithm application.

A more sophisticated clustering technique relies on the Gaussian Mixture Model

(GMM). It is a parametric probability density function represented as a weighted sum

of Gaussian component densities. Thus, the posterior probability of each observation

at the i-th pixel xi, with i = 1, 2, ..., N , belonging to the class Ωj, with j = 1, 2, ..., K,

the density function at an observation xi is given by:

p(xi) =
K∑
j=1

πjp(xi|Ωj) (2.18)

where p(xi|Ωj) is a Gaussian distribution called component of the mixture, πj is the

prior distribution of the pixel xi that belongs to the class Ωj and satis�es the constraint:

K∑
j=1

πj = 1 (2.19)

It is commonly used as a parametric model of the probability distribution of con-

tinuous measurements or features in several applications such as biometric systems

(e.g. vocal-tract related spectral features in a speaker recognition system) or image

segmentation. GMM parameters are estimated from training data using the iterative

Expectation-Maximization (EM) algorithm or Maximum A Posteriori (MAP) estima-

tion from a well-trained prior model[32]. The complete Gaussian mixture model is
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parameterized by the mean vectors, covariance matrices and mixture weights from all

component densities.

R. Gan et al. in [15] propose an automatic statistical vascular segmentation on

three-dimensional rotational angiography (3D-RA). The implemented iterative ap-

proach to segment the 3D vascular structure is based on segmentations of MIP im-

ages across iterations and then followed by a re�nement technique. Each one of the

classi�cation groups are estimated with the GMM with Markov Random Field (MRF)

modi�cation to estimate the a-priori probability based on neighbouring pixels/voxels.

This method takes advantage of the MIP as it decreases the standard deviation of each

class. A detailed explanation of this segmentation method is presented in the next

section.

2.2 Vessel segmentation techniques

The segmentation techniques exposed in section 2.1 are general methods for image

segmentation but vessel segmentation needs more vessel-oriented approaches in order

to identify the vascular tree in the most precise way.

A group of techniques that performs vessel segmentation, independently from the

analyzed body district, are the methods that perform vessels enhancement, through

�ltering, followed by a thresholding step. Di�erent vessels enhancement techniques

are presented in literature, and a classi�cation can be done according to the �ltering

approach designed to enhance the structures of interest.

2.2.1 Matched �ltering

Matched �lters (MF), which were originally applied in one dimensional signal processing

applications [21], are commonly adopted in image processing. MF are designed as to

extract features of interest in the image. The �lter is therefore convolved with the input

image and the output will have higher intensities where those features are present. Two

main assumptions are made to extract vessels:

� Vessels are piecewise linear: this assumption follow the hypotesis that vessels are

elongated structures with limited bandnig (for healthy vessels).
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� Vessel cross-section is shaped as a Gaussian with standard deviation (σ) equal to

the vessel radius.

Chaudhuri et al. in [8] �rst introduced vessels segmentation with MFs, where a 2D

�lter is build to segment retinal vessels. The MF kernel with the orientation angle θ

is:

KMF (x, y; θn) =
1√
2πσ

e−
x′2
2σ2 −m (2.20)

where m is a constant introduced to normalized the �lter mean value to 0 and x′ is

given by the relation:

x′ = x cos(θn) + y sin(θn) (2.21)

It holds the constraint:

| − y sin(θn) + x cos(θn)| ≤ L

2
(2.22)

where L is the length of the considered linear tract of the vessel. The �nal binary

mask is obtained using an automatic, non-parametric and unsupervised thresholding

algorithm that maximizes the separability of the resultant classes basing on the MF

output histogram. This approach has been modi�ed by [44] to overcome the MF

limit of responding to non-vessel edges because of the strong response of both the

vessels and the edges. The �rst order derivative of Gaussian (FODG) is used because

of its low response in correspondence of vessel structures, while it has a high one in

correspondence of the edges.

KMF (x, y; θn) =
1√
2πσ

e−
x′2
2σ2 (2.23)

2.2.2 Vesselness approaches

Such kind of approaches are inspired by the work of Sato et al. [34] that de�ne a

measure of the likelihood for a vessel to be present analyzing the Hessian (H) of the

image I(x, y):

H =

∣∣∣∣∣∣
∂2I(x,y)
∂x2

∂2I(x,y)
∂x∂y

∂2I(x,y)
∂x∂y

∂2I(x,y)
∂y2

∣∣∣∣∣∣ (2.24)

H is chosen because it describes the second-order structures present in the image as

vessels in the analyzed context and, moreover, since it is anisotropic, it describes also
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the vessels orientation. The vesselness measure is exctracted from the eigenvalues of

the H matrix (λ1, λ2, λ3 with |λ1| ≤ |λ2| ≤ |λ3|). The vesselness measure assumes

di�eret values according to the pattern of the structures to be extracted (Figure 2.10).

Figure 2.10: Hessian matrix eigenvalues for di�erent orientation pattern. (H = high value,

L = low value)

Considering elongated vessels, λ1 is signi�cantly smaller than the other eigenvalues.

This is why it is associated with the direction of minimum intensity variation (the one

parallel to the vessel axis). Furthermore, following the assumption that the intensity

of the vessels cross-section is Gaussian-shaped, λ1 and λ2 are almost equal because

the intensity variation is more or less the same. Image partial second derivatives are

computed convolving the image with partial derivative of Gaussian. Then, a multi-scale

integration is commonly made to take in account for vessels with di�erent thickness,

varying the standard deviation of the Gaussians. Not all the eigenvalues are included

in the vesselness measure, thus implies losing meaningful information in the image

analysis. Frangi et al. [14] introduce a di�erent vesselness measure that takes in account

all the eigenvalues of the H matrix to enhance tubular-like, plate-like and bloblike

structures. A measure based on the Frobenius Hessian norm is also introduced in the

vesselness computation to distinguish non-informative background from structures of

interest.

||A||Frobenius =

√√√√ n∑
i=1

λ2i (2.25)

In noisy regions the Frobenius norm is small because the eigenvalues are negligible.

Eigenvalues contribution is weighted by three parameters that control the sensitivity

of the �lter, allowing slightly modify the �lter response in relation with the analyzed
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context. The analysis is still developed in a scale-space framework. However the

Frangi's vesselnes method is not suitable for detecting vessels with complex architec-

tures such as vessel bifurcation. Vesselness-based approaches do not lead to binary

masks thus other thresholding or classi�cation techniques have to be adopted.

(a)

(b)

Figure 2.11: (a): Second order derivative of a Gaussian kernel (inverse Mexican Hat) probes

inside/outside contrast of the range (−σ, σ). In this example σ = 1. (b): The second order

ellipsoid describes the local principal directions of curvature.

2.2.3 Di�usion �ltering

Di�usion �ltering concept was introduced in [40] and further developed in [25]. The

di�usion formulation is:

∂I(r, s)

∂s
= ∇(D(I, r)∇I(r, s)) (2.26)
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where I(r, s) is the image at coordinate r and scale s (for scale is intended a scalar

related to the degree of resolution in the image, thus bigger is the scale, lower are the

details we are able to discriminate and vice versa), and D(I, r) is the di�usion tensor.

If D is constant and equal to the identity matrix, the di�usion �ltering is equivalent

to the linear isotropic Gaussian �ltering. In this case, the solution of (2.26), with the

original image as initial condition, is a family of images convolved with Gaussians of

di�erent standard deviation s:

∂I(r, s)

∂s
= ∇2I(r, s) (2.27)

with:

I(r, s) = I(r)⊗G(r, s) (2.28)

Thus, the biggest is the standard deviation s, the more blurred is the image.

Weickert et al. [42] in 1997 introduced the edge-enhanced di�usion (EED) and the

coherence-enhanced di�usion (CED) �ltering techniques. These are two approaches

based on anisotropic non-linear di�usion:

∂I

∂t
= ∇ · (D · ∇I) (2.29)

where ∇· is the divergence operator, ∇I is the gradient of the image and D is the dif-

fusion tensor. The eigenvectors of the di�usion tensor de�ne the principal directions of

smoothing and the corresponding eigenvalues de�ne the amount of smoothing. There-

fore, the principal directions of smoothing are based on the structure tensor de�ned

as:

Js(∇Iσ) = Ks ∗ (∇Iσ∇ITσ ) (2.30)

where Ks is the Gaussian kernel with standard deviation s and ∇σ is the gradient of the

image I at scale σ. Three-dimensional EED preserves plate-like structures and �lters

noise from homogeneous areas, while CED �lters tubular structures and preserves

small spherical structures. Di�usion decreases if the gradient magnitude increases

compared to the contrast parameter (λe), indicating a plate-like structure. If the

gradient magnitude is much smaller than λe, isotropic di�usion is performed. Let the

eigenvalues of the structure tensor be set in order of decreasing magnitude (µ1 > µ2 >
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µ3). The eigenvalues of the 3-D EED di�usion tensor are de�ned as:

λe1 =

1, if |∇Iσ|2 = 0

1− e(|∇Iσ |2/λ2e)4 , if |∇Iσ|2 > 0

λe2 = 1

λe3 = 1

(2.31)

with C a threshold parameter set to 3.31488. The eigenvalues of the 3-D CED di�usion

tensor are de�ned as:

λc1 = α

λc2 = α

λc3 =


1, if µ2 = 0 or µ3 = 0

α + (1− α)e
− ln(2)·λ2c

k , otherwise

(2.32)

where k = (µ2/(α + µ3))
4, α = 0.001 and λc is the CED contrast parameter.

To be able to deal with intermediate geometries of the vessel structures, M. Men-

drick et al. [1] in 2009 proposed an hybrid di�usion �lter with a continuous switch

(HDCS) that combines EED and CED continuously. Thus the eigenvalues of the hy-

brid di�usion tensor are set to be a linear combination of the eigenvalues of the EED

and CED di�usion tensors:

λhi = (1− ε) · λci + ε · λei (2.33)

where ε is the EED fraction that performs the switch between using the eigenvalues

of the CED (ε → 0) or the eigenvaluea of the EED (ε → 1) di�usion tensor. As the

vesselness-based method, the di�usion �ltering based methods do not lead to a binary

mask, thus other thresholding or classi�cation techniques have to be adopted.

2.2.4 Deep-learning method

In recent years, the researchers focused their studies on vessel segmentation of 2D and

3D biomedical images with deep learning approaches. In particular, the actual state of

the art proposes research on deep learning approaches for fundus oculi images vessel

segmentation. Such kind of technique is a class of a broader family of machine learning
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algorithms. Neural Networks (NNs) architectures are designed to work with image

data, in particular convolutional neural networks (CNNs), and were built already in

1970's (e.g. for pattern recognition). A CNN is a composite of multiple elementary

processing units, each featuring several weighted inputs and one output, performing

convolution of input signals with weights and transforming the outcome with some

form of non-linearity. The units are arranged in rectangular layers (grids), and their

locations in a layer correspond to the pixels of the input image (Figure 2.12b).

(a) CNN

(b) Neural unit

Figure 2.12: Left: A CNN arranges its neurons in three dimensions. Every layer of a

CNN transforms the 3D input volume to a 3D output volume of neuron activations. In

this example, the red input layer holds the image, so its width and height would be the

dimensions of the image, and the depth would be the number of the channels (e.g. 3 in case

of RGB channels). Right: the neurons of a CNN are simple neurons that �res if the weights

combination computed by the activation function overcomes a threshold: they compute a dot

product of their weights with the input followed by a non-linearity, but their connectivity is

restricted to the RF.(Images from http://cs231n.github.io/convolutional-networks/ )

In addition to this characteristic, CNNs have other features:

� Local Connectivity : the output of a given unit is proportional to the behaviour of

the units inside a Recepteive Field (RF) around it. Local connectivity reduces the

number of weights for example in comparison to the fully-connected conventional

NNs.

� Parameter Sharing : units in the same layer share their weigths, thus forming a

feature map and moreover reducing the number of parameters.
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� Pooling : it consists in aggregating outputs of multiple units by di�erent means

with respect to convolution. This is a kind of subsampling, thus reducing the

resolution with respect to the previous layer.

In [22] Liskowski et al. proposed a blood vessel segmentation algorithm for retinal

images based on a supervised segmentation with deep-learning NN trained on a large

dataset. In supervised methods, segmentation algorithms acquire the necessary knowl-

edge by learning from image patches annotated by ground truth. Training consists in

an iterative propagation of examples (e.g. images with ground truth) through a NN and

the modi�cation of its weights, which are initialized with small signed random values.

The backpropagattion of the errors committed by particular units are accumulated

and translated into weight updates when a batch (one iteration of the training cycle)

is complete. In this paper, they used the error backpropagation algorithm extended

with dropout to train the deep-learning NN. This means that with dropout, a subset

of network units is drawn at random and temporally `switched o�' during the training.

This makes the deep-learning approach more robust and increases its generalization

ability.

2.2.5 Vessel segmentation in automated planners for neuro-

surgery

As introduced in chapter 1.1, the brain vessels segmentation for automated planner

in epilepsy surgery is one of the most important steps because its results have direct

impact on the trajectory planning. In literature there are many di�erent segmentation

approaches for automated planners. Shamir et al. in [3] and [37] present a preoperative

straight trajectory planning method for image-guided keyhole neurosurgery. They use

Computed Tompgraphy and Magentic Resonance images to identify risky regions. In

particular, for brain vessel segmentation, they use T1 MRI scans. Their approach is

based on a vesselness-based enhancement method followed by a skeletonization of the

segmented structures; this method is also usually integrated with manual segmentation

performed by neurologists in case of misidenti�cation of relevant structures.

In 2014, Zellman et al. [43] proposed an automatic trajectory planning of depth
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electrodes for SEEG applications in epilepsy surgery. They used angiographic data (T1-

weighted with Gadolinium contrast agent) rescaled to 0.5 mm isotropic resolution and

preprocessed with a non local means denoising �lter. After the image preprocessing,

the vasculature is segmented with Frangi's 3D multi-scale vesselness �lter. This �lter is

sensitive to tubular structures and returns a voxel likelihood of blood vessel presence.

As explained in 2.2.2, Frangi 3D �lter is an Hessian-based approach. The major draw-

back of this method is that it tends to underestimate the vessels width, thus, leading

to use correction factors during the trajectory planning and causing misidenti�cation

of the best trajectories for electrodes placement.

In [45] Zombori et al. used Computed Tomography Angiography (CTA), 3D Phase

Contrast MR imaging (3D PC-MRI) and in some cases Time of Flight MRI (ToF

MRI) images for extracting the vasculature with a customized tool for SEEG auto-

matic trajectory planner. In [39] they specify that "veins and arteries are segmented

from CT angiography or T1 weighted MRI with gadolinium enhancement using multi-

scale, multimodal tensor voting". The tensor voting approach is a robust technique for

extracting structures from a cloud of points. It is based on the assumption that a set of

unconnected tokens (which are the primary characteristics of the image such as edges

or �gural components that stand out from the background; e.g. points) can exchange

information within a neighbourhood that allows one to infer the geometric structure

in which a token lies. In 3D, it provides a way to classify tokens, thus to estimate the

likelihood that a token lies on a surface, curve or junction [46]. Tensor voting consists

of three stages:

� Token initialisation

� Tensor voting

� Analysis of voting results

Token initialization Information contained into token p is encoded in a tensor T,

which can be expressed as linear combination of three tensors:

T = (λ1 − λ2)(e1eT1 ) + (λ2 − λ3)
2∑
i=1

eie
T
i (2.34)
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where λi are the eigenvalues of the tensor ordered by decreasing values and ei the

corresponding eigenvectors. The �rst term shows the eccentricity with orientation e1;

the second term has the tangent e3 which represent a disk-shaped structure; the last

term represents a ball tensor (a structure without orientation preferences).

Tensor voting After the decomposition of T in the 3 basic tensors, each token p

propagates information to its neighbours in the form of a vote. The vote is a tensor

that encode the direction of the normal at a neighbouring point.

Analysis of the voting results The result of a voting is another tensor which, for

(2.34), can be decomposed to obtain 3 vector maps: the surface map (S-Map), the

curve map (C-Map) and the junction map (J-Map). In addition to the tensor voting

technique, the authors added a further data fusion step; they formulated the tensor

voting approach into a multi-scale framework by evaluating the response of di�erent

scales at the data fusion stage and retaining the maximum response through scales.

Finally, a vascular probability map is obtained and it is then used to identify the

trajectories with a computer assisted automated planner.

In 2012 De Momi et al. [27] proposed a new automated planner for SEEG elec-

trodes trajectory planning based on MRI and 3D Cone Beam CT Digital Subtracted

Angiography (3D CBCT DSA).

In 2014 [10] they improved the planner introducing a multi-planner (MP) concept;

with respect the previous work, in which the trajectories were computed depending

only on the previous ones, the MP takes in account the spatial relationship of all the

trajectories (independently on their insertion order) and then it computes best con-

�guration of trajectories. The major drawback of this method was the computational

ine�ciency and the requested time to obtain the planning.

In 2017 Scorza et al. [36] continued the development of the planner described by

De Momi et al. introducing two innovations:

� The use of an atlas to limit the searching space for the trajectories to the anatom-

ical structures that surround the selected Entry Points and Target Points.

� The implementation of a brute force approach to overcome the previous problems
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related to the electrode con�icts.

The planning procedure (Figure 2.13) is initialized by the loading of the patient

images in order to generate available data used for trajectory optimization.

Figure 2.13: Example of automated planner work�ow for SEEG electrodes implantation.

MRI T1 images are processed through Freesurfer pipeline in order to provide in-

formations about cortex surface, sulcality and curvature of the brain areas. Then, 3D

CBCT DSA (Figure 2.14) are used for vessel segmentation. DSA images are obtained

into two phases[6]:

� �rst a CBCT volume of the patient (CT-bone) is preliminarly acquired in order

to extract the bone-mask; then, another CBCT volume is acquired after the

injection of a contrast medium.

� The two volumes are co-registerd, then, the �nal volume is obtained as a digital

subtraction of the bone mask (preliminar volume) from the enhanced dataset

(contrast enhanced volume). Thus, it allows to keep only the enhanced vascular

tree.
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(a) Skull mask (b) Enhanced dataset

(c) DSA

Figure 2.14: Digital Subtracted Angiography (DSA). (a): the preliminar CT-bone is used

to extract the binary mask of the skull. (b): the enhanced CT is acquired after the injection

of the contrast medium. (c): the digital subtraction of the skull from the enhanced dataset

produce the DSA.

Thanks to the DSA image, the segmentation can be achieved with a mono-modal

threshold approach. Thus, the vessel binary mask is computed using a simple manual

thresholding. So the user interactively selects the global threshold for the vessel seg-

mentation based only a visual guidance of rendered volume.

The thresholding method resulted easy to use and very fast in comparison to other

segmentation techniques. However, it presents some drawbacks such as:
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� it is user-dependent;

� it does not include any morphological information;

� it could lead to noisy results or too skinny vessels (dangerous), especially in case

of noised dataset.

2.3 Aim of the work

The brain vessels avoidance for automated planner in epilepsy surgery is one of the most

important constraint. The manual segmentation of the 3D images is cumbersome, time

consuming and subjective. Actually there are several automatic image segmentation

methods, but the required accuracy and precision in minimally invasive brain surgery

needs continuous improvements.

The aim of this work consists in the implementation of an automatic algorithm for

vessel segmentation, based on GMM. The method proposed in [10] has been extended

for 3D vascular segmentation in order to be included has an automatic segmentation

step in the automated planning work�ow [36].

Di�erent methods have been developed and compared. Additionally, we performed

experiments to de�ne the best tuning of the algorithm parameters.

This work has been realized at Nearlab, Politecnico di Milano, under the supervion

of the professor Elena De Momi through the collaboration with the team working at

�Claudio Munari� Center for Epilepsy and Parkinson Surgery, Niguarda Ca' Granda

Hospital, Milan, Italy, in particular the M.D. Francesco Cardinale, who made available

data and clinical competences, and Davide Scorza, PhD candidate at Politecnico di

Milano and Research Assistant at e-Health and Biomedical Applications Department,

Vicomtech-IK4, Donostia-San Sebastian, Spain who has greatly contributed to the

development of the project.
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Chapter 3

Materials and methods

As introduced in chapter 1, vessels avoidance is one of the most important constraint

to guarantee safety during SEEG. Thus, this work focuses on the development of three

di�erent fully-automatic algorithms for vessels segmentation of 3D CBCT DSA brain

images and their performance evaluation.

The methods proposed are based on GMM approach, with an extension including

neighbourhood through MRF and an additional implementation reproducing the work

of R. Gan [15]. Finally, the methods are compared and they will be integrated in the

automated planner work�ow which is being developed in collaboration with �Claudio

Munari� Center for Epilepsy and Parkinson Surgery (Niguarda Ca' Granda Hospital,

Milan, Italy).

3.1 Proposed vessel segmentation methods

The clustering techniques can be e�ective to distinguish the structures of interest (ves-

sels) from the rest of the image.

We used 3D CBCT DSA based on contrast medium enhanced images, so that the back-

ground is much darker than the enhanced vessel structures. However, the implemented

GMM-based algorithms can be applied on other types of images (e.g. CE-MRI). The

only constraint to be considered in changing type of images is to tune correctly the

initialization parameter of the algorithm.

As stated in the actual state of the art (Chapter 2), among the clustering segmen-
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tation methods there is a group of techniques based on the estimation of the data

distribution with prede�ned models. A model-based approach consists in using cer-

tain models for clusters and attempting to optimize the �t between the data and the

model. In practice, each cluster can be mathematically represented by a parametric

distribution, like a Gaussian (continuous) or a Poisson (discrete). The entire data set

is therefore modelled by a mixture of these distributions. An individual distribution

used to model a speci�c cluster is often referred to as a component distribution.

3.1.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric probability density function rep-

resented as a weighted sum of Gaussian component densities. it is commonly used as

a parametric model of the probability distribution of continuous measurements or fea-

tures in several applications such as biometric systems (e.g. vocal-tract related spectral

features in a speaker recognition system) or image segmentation. GMM parameters are

estimated from training data using the iterative Expectation-Maximization (EM) algo-

rithm or Maximum A Posteriori (MAP) estimation from a well-trained prior model[32].

Considering the problem of estimating the posterior probability of each observation

at the i-th pixel xi, with i = 1, 2, ..., N , belonging to the class Ωj, with j = 1, 2, ..., K,

the density function at an observation xi is given by:

p(xi) =
K∑
j=1

πjp(xi|Ωj) (3.1)

where p(xi|Ωj) is a Gaussian distribution called component of the mixture, πj is the

prior distribution of the pixel xi that belongs to the class Ωj and satis�es the constraint:

K∑
j=1

πj = 1 (3.2)

Each mixture component has its own mean µj and covariance σj and is given by:

p(xi|Ωj) =
1√

2πσ2
j

exp

(
− (xi − µj)2

2σ2
j

)
(3.3)

The mean vectors, variance matrices and mixture weights are the main parameters

that complete the GMM from all the component densities and are represented by the
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notation:

Θ = {Ωj, µj, σj} j = 1, ..., K (3.4)

The log-likelihood function of the GMM can be computed from the density function

as:

L(Θ) =
N∑
i=1

log

( K∑
j=1

πjp(xi|Ωj)

)
(3.5)

Figure 3.1: Example of GMM density distribution estimation using three Gaussian compo-

nents.

As can be seen from the likelihood function in (3.5), one of the biggest advantages

of the standard GMM is that it has a simple form and requires a small number of

parameters (the number of cluster to estimate the intensity distribution and the log-

likelihood threshold as the stopping criterion). However, the main drawback is that

the pixel xi is considered to be an independent sample. Therefore, it does not take

into account the spatial correlation between the neighbouring pixels in the decision

process[30]. In order to maximize the log-likelihood function, it is estimated with the

iterative Expectation Maximization algorithm.
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Expectation-Maximization algorithm

Maximum Likelihood Expectation-Maximization (ML-EM) algorithm can be used to

estimate GMM parameters from training data. Suppose to have a data set of observa-

tions {x1, ..., xN} and to wish to model this data using a mixture of Gaussians. If we

assume that the data points are drawn independently from the distribution, then we can

express the Gaussian mixture model for this independent and identically distributed

data set. Thus, given the GMM, the goal is to maximize the likelihood function with

respect to the parameters (comprising the means and covariances of the components

and the mixing coe�cients).

The ML-EM algorithm can be summarized in four major steps:

1. Parameters initialization : �rst the means µj, the covariance σj and the mix-

ing coe�cients Ωj are initialized and the initial value of the log-likelihood is set.

2. Expectation step (E-step): during this step, the so called posterior probability

is computed using the current parameter values (λ).

p(t)(Ωj|xi) =
π
(t)
j p

(t)(xi|Ωj)∑K
l=1 π

(t)
l p

(t)(xi|Ωl)
(3.6)

3. Maximization step (M-step): this step re-estimates the parameters using the

current responsibilities computed in E-step.

π
(t+1)
j =

1

N

N∑
i=1

p(t)(Ωj|xi) (3.7)

[σ2
j ]

(t+1) =

∑N
i=1 p

(t)(Ωj|xi)[xi − µ(t+1)
j ]2∑N

i=1 p
(t)(Ωj|xi)

(3.8)

µ
(t+1)
j =

∑N
i=1 p

(t)(Ωj|xi)xi∑N
i=1 p

(t)(Ωj|xi)
(3.9)

where t is the iteration step.

4. Log-likelihood evaluation : The log of the likelihood is computed with equation

(3.5). If the log-likelihood reached the convergence the algorithm stops, other-

wise, if the convergence criterion is not satis�ed, it returns to step 2 until the

convergence or the maximum number of iterations is reached.
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There is a signi�cant problem associated with the maximum likelihood framework

applied to GMMs, due to the presence of singularities. For simplicity, consider a GMM

whose components have covariance matrices given by σi = σiI, where I is the unit

matrix, although the conclusions will hold for general variance matrices. Suppose that

one of the components of the mixture model has its mean µj exactly equal to one of the

data points so that µj = xi for some value of i. This data point will then contribute a

term in the likelihood function of the form:

p(xi|xi, σjI) =
1√

2πσ2
j

(3.10)

If we consider the limit σj → 0, then this term goes to inf and so the log-likelihood

function will also go to inf. Thus the maximization of the log-likelihood function

is not a well posed problem because such singularities will always be present and

will occur whenever one of the Gaussian components "collapses" onto a speci�c data

point[5]. The singularities problem can be avoided by using suitable heuristics (e.g.

by detecting when a component is collapsing and reset its mean to a random value

and its variance to a large value) or using Maximum A Posteriori (MAP) solutions

for GMM in which a prior is de�ned over the parameters. One of the main drawback

of this method is that the prior distribution πj does not depend on the pixel index

i and thus, not on the spatial relationship between the labels of neighbouring pixels.

Thus, the segmentation is extremely noise prone and illumination dependent[40]. To

overcome this disadvantage, mixture models with Markov Random Field (MRF) have

been employed for pixel/voxel labeling.

3.1.2 Gaussian Mixture Models with Markov Random Field

Generally, in images, the neighbouring pixels are highly correlated if they belong to

the same object. If the correlation is not used, the segmentation can be very sensitive

to noise, varying illumination and other environmental factors. Markov Random Field

(MRF) was introduced for GMM segmentation in order to use this spatial information.

The density function at an observation xi is given by:

p(xi) =
K∑
j=1

πijp(xi|Ωj) (3.11)
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where the prior distribution πij of the pixel xi that belongs to the class Ωj satis�es the

constraints:

πij = p(Ωi|ΩNi , β) &
K∑
j=1

πij = 1 (3.12)

Thus the prior πij is di�erent for each pixel/voxel i and depends on its neighbours

and the parameter β that expresses the importance of the neighbourhood intensities

(the parameters beta and neighbourhood are initialized by the user with the number of

cluster and the log-likelihood threshold).

The log-likelihood can be re-written as:

L(Θ) =
N∑
i=1

log

( K∑
j=1

p(xi|Ωj)p(Ωi|ΩNi , β)

)
(3.13)

With respect to the standard GMM, the log-likelihood function has a simpler form.

The main advantage of this technique is that it embodies spatial dependencies between

pixels/voxels that allows to take into account the characteristics of the whole object

and not only of the single pixel/voxel. The main drawback is the time needed for the

algorithm to reach the convergence that is much more longer than the standard GMM.

3.1.3 GMM with MRF based on Maximum Intensity Projec-

tion

In 2005 R. Gan et al. [15] proposed a novel vessel segmentation approach based on

Maximum Intensity Projections (MIP). They observed that the volume occupied by the

vessels in clinical 3D-Rotational Angiography (3D-RA) typically is very small. Thus,

the imbalance between proportions of two classes (vessel and non-vessel/background)

makes the estimation of the intensity distribution very di�cult. In fact, the Gaussian

component that corresponds to the vessels may shift to lower intensity range because of

the EM algorithm. Thus causes a relatively low threshold selection and it produces an

oversegmented image as result. To deal with this problem they proposed an iterative

approach to segment 3D-RA images progressively with the segmentation of the MIP

images along the three principal axes and the �nal result is a combination of the

results obtained along the individual axes using a winner-takes-all strategy. In order

to improve the parameter estimation of Finite Mixture Model (FMM) with the EM
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algorithm, they suggest that the parameters of FMM should not be estimated with the

whole 3D volume. Instead, the parameter estimation is performed with MIP images

of the volume. The MIP image is a 2D projection of a 3D volume, where the intensity

value assigned to a pixel is the highest one found in the 3D volume along the projection

line. Because of the nature of the MIP image formation, it is an e�ective visualization

tool if the objects of interest are brighter than the unwanted structures in the volume.

Such property of MIP allows to estimate the parameters of the FMM more robustly.

Moreover, they assert that "because of the increase in the proportion of vessels in MIP

images, the intensity distribution of vessels can be approximated more accurately" [15].

The method can be summarized in few steps:

1. The algorithm starts with the generation of a MIP image from the original 3D

volume along one of the three principal and orthogonal axes to avoid intensity

interpolation.

2. The obtained MIP is then segmented using the ML-EM method explained in

section 3.1.2 with a double-Gaussian mixture modelto approximate the MIP in-

tensity distribution.

3. At each iteration, the 3D position of the voxel that contributed to the MIP is

recorded and the voxels corresponding to the MIP pixel classi�ed as a vessel, is

saved to the segmented 3D volume and then the original voxel is removed from

the original 3D volume to not contribute more to the MIP image generation at

the following iteration.

4. During the next iteration a new MIP is generated from the 3D volume (with the

exclusion of the voxels used at the previous iteration) and then the point 2 and

3 are repeated until the convergence or the maximum number of iteration are

reached.

5. The algorithm is applied along the three di�erent principal axes so that, at the

end, it gives three di�erent segmented volumes. The �nal result is the fusion of

these three di�erent volumes using a winner-takes-all strategy.
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The stopping criterion

As the intensity distribution of the MIP image is evolving through the iterations and

the number of high-intensity voxels decreases as the algorithm proceeds, a stopping

criterion is needed.

Gan et al. proposed an automatic mechanism to detect the left-shift of the Gaussian

component with a higher mean to the lower-intensity region. Let hBk be the estimated

background instensity distribution at the iteration k obtained using the threshold com-

puted at the previous iteration (tk−1):

hBk (i) =

hk(i), if i < tk−1

0, otherwise
(3.14)

where hk is the observed intensity distribution of the MIP at iteration k and i is the

intensity value. Let hGk be the estimated Gaussian component with the lower mean

in the GMM and hGkG be the overall distribution of the double-Gaussian mixture

model. The proposed automatic mechanism computes the Sum of Absolute Di�erences

(SAD) between hBk and the other two distributions hGk and hGkG. So the results can

be summarized as SAD (hBk ,h
G
k ) and SAD(hBk ,h

G
kG) respectively. Then, the di�erences

between the two SADs are evaluated. Thus, the algorithm stops when the Gaussian

component with higher mean left-shifts below the Gaussian component with lower

mean, so that when:

SAD(hBk , h
G
k ) > SAD(hBk , h

G
kG) (3.15)

According to the proposed stopping criterion, "the only condition that makes the algo-

rithm fail to converge and terminate is that the left-shift of the Gaussian distribution

with a higher mean never occurs. In other words, a severe imbalance between the pro-

portions of the vessels and the background never occurs for the MIP image" [15].

The proposed algorithm was then extended to multiple projections along the three

principal orthogonal axes. Thus the process is used to obtain three di�erent segmented

volumes and then the Iterated Conditional Model (ICM) is used to minimize an energy

function E(x):

E(x) =
∑
v∈V

(
L(Xv|Iv) + λ

∑
v′∈N(v)

P (Xv, Xv′)

)
(3.16)
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whereXv is the classi�cation of a voxel v inX as vessel or background, Iv is the observed

intensity value of v, λ controls the degree of spatial smoothness and P (Xv, Xv′) is:

P (Xv, Xv′) =

−1, if Xv = Xv′

0, if Xv 6= Xv′

(3.17)

and L(Xv|Iv) is:

L(Xv|Iv) =
1

χD

∑
x∈χD

Lx(Xv|Iv) (3.18)

where Lx(Xv|Iv) is the negative log-likelihood energy of classi�cation Xv to intensity

value Iv in segmentation x ∈ χD

Figure 3.2: Work�ow of the GMM based on MIP segmentation of R. Gan 2005 [15]

3.1.4 Image preprocessing

Before the segmentation, the images are pre-processed in order to reduce the timing

and the computational cost and to increase the signal to noise ratio (SNR).

First a cropping on the region of interest (ROI) (Figure: 3.3) is applied in order

to reduce the processed data. The volume is automatically cut in order to obtain the

minimum parallelepiped that contains the brain.

When the surgery regards only one hemysphere (mono-lateral surgery), the ROI

cropping, after a correction of the volume orientation, is done into two phases:
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1. Separate the volume into two parts: the volume is divided into two halfs with

respect to the sagittal plane of the patient head, thus dividing the brain into the

two hemispheres.

2. Cut the ROI: the weighted intensity means of the two volumes are calculated.

Because the ROI contains enhanced vessels, the intensities in that ROI are higher

with respect to the rest of the volume. So, the hemisphere with the highest mean

is selected because it corresponds to the part containing the ROI. The selected

half is then cut in order to obtain the minimum parallelepiped that contains the

brain hemisphere.

(a) Image (b) ROI

Figure 3.3: Left: usual CBCT DSA image that contains the whole head of the patient with

a hemisphere with enhanced vessels. Right: ROI considered for the segmentation

Then, an intensity threshold is applied; because of the contrast medium, vessel

structures present intensity values considerably higher with respect the background.

Additionally, looking to the image histogram (Figure 3.4), it is possible to notice a

high peak in correspondence of 0-value. The peak is caused by the substraction of co-

registered images when obtaining the DSA. Moreover, such a high spike could lead the

GMM-based segmentation methods to an erroneous estimation and then to diverge.

Consequently, we decide to apply a threshold which eliminates all voxel values ≤ 0,

since we assume that all the vascular information is represented by higher intensities.
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(a) Before Thresholding (b) After Thresholding

Figure 3.4: Left: The intensity histogram of the patient volume shows the highest peak

at the zero intensity value. It corresponds to the number of voxels that represent the air

surrounding the patient's head. Right: After threshold application the distribution is more

likely Gaussian-shaped, thus can be better estimated by GMM.

Then the intensities are rescaled basing on the range of the intensities. Thus, it

allows to estimate the Gaussian in a faster way.

3.2 Experimental setup

We performed two di�erent experiments: the �rst to de�ne the optimum parameters

to apply to GMM and GMM-MRF algorithms in order to obtain the vascular segmen-

tation; then, we select the parameters which provided the best results, and used them

to compare the di�erent methods. We used a manual segmentation performed by an

expert as ground truth. For each segmentation method, we computed the following

indices against that ground truth: Sensitivy, Speci�city, Precision, Accuracy and Dice

smilarity coe�cient (DSC).

3.2.1 Image dataset

Patient dataset This study involved an anonymized dataset of six patients pro-

vided by the team working at the �Claudio Munari� Center for Epilepsy and Parkinson

Surgery, Niguarda Ca' Granda Hospital in Milan. The dataset included 3D CBCT
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DSA acquired with the mobile CBCT device O-arm® 1000 System (Medtronic Inc.,

Minneapolis, Minnesota, US, matrix 512 Ö 512 Ö 192, voxel 0.4mm Ö 0.4mm Ö

0.8mm). The baseline dataset for the DSA was acquired after the injection of the

iodinate contrast medium.

Segmented dataset All the patients had a mono-lateral injection of contrast medium,

hence we automatically estimated the ROI and performed the thresholding considering

only one hemisphere.

The implemented segmentation methods have been applied to all the images of the

dataset using all the di�erent combinations of initialization parameters. The considered

parameters are:

� Number of cluster: it initializes the number of cluster in which the voxel are

classi�ed;

� Log-likelihood threshold: it sets the threshold for the convergence of the segmen-

tation methods;

� Beta: it expresses the importance of the neighbour voxels for the segmentation

with GMM-MRF;

� Neighbourhood: it sets the number of considered neighbouring voxels for the

segmentation with GMM-MRF.

Ground truth dataset The ground truth dataset was then created manually seg-

menting the six volumes of the provided patient dataset. Because the manual seg-

mentation is highly time-consuming (8 ÷ 10 hours per volume), for each patient, four

di�erent subvolumes were manually segmented by an expert surgeon:

� Three subvolumes with dimensions 20 x 20 x 10: one near the temporal lobe

(called "Temporal"), one near the occipital lobe (called "Occipital") and one

near the frontal lobe (called "Frontal"); these volumes contains short branches of

vessels of small-medium width, thus to evaluate the capability of the segmentation

method to identify the smallest vessels.
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� One subvolume with dimensions 70 x 70 x 70: this volume (called "Combined")

contains vessels with di�erent calibers.

Even though it requested ∼ 2 hours per patient, segmenting di�erent anatomical areas

allowed us to avoid errors due to peculiarities of each volume. Moreover, build subvol-

umes respecting anatomical areas for each patient allowed to compare and to generalize

the results.

Figure 3.5: The segmented dataset contains the volumes segmented with all the developed

algorithms. The ground truth dataset contains manually segmented volumes (four for each

patient).

3.2.2 Algorithm evaluation

To evaluate the three di�erent vessel segmentation algorithms, two di�erent experi-

ments were done:

1. Parameters tuning: each one of the segmentation method has di�erent param-

eters to be set for the algorithm initialization. The tuning of each parameter is

done in order to select the best parameter combination for each single technique.

2. Algorithm comparison: once the best parameter combination of each algo-

rithm has been found, the algorithm can be compared in order to identify the
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best segmenttion method.

3.2.3 De�nition of optimal parameters

Because di�erent combinations of parameters lead to very di�erent segmentation re-

sults, it is necessary to identify the optimal parameters to reach the best result. The pa-

rameters tuning experiments were done on volumes segmented with GMM and GMM-

MRF algorithms. The segmentation method based on MIP was not tuned because it

relies on the GMM or the GMM-MRF technique. Thus, the best method and combi-

nation of parameters will be used also for the method based on MIP.

The beta and neighbourhood parameters are only for GMM-MRF segmentation algo-

rithm, thus the dataset of images segmented with GMM was excluded from the tuning

of these parameters. Each dataset was then compared with the ground truth dataset to

obtain the confusion matrix and compute the evaluation indices described in paragraph

3.2.5.

We did the tuning experiments testing one parameter at a time with the di�erent

selected values. We tested all the combination of parameters, but only the relevant

ones will be presented.

Number of cluster

The number of cluster de�nes the number of the Gaussian components which estimates

the intensity distribution, so the classes in which the voxels are classi�ed. Looking at

the di�erent volumes 2 clusters can be su�cient to identify what is "vessel" and what

is "background". However, a higher number could help to classify darker or smaller

vessels. Thus we consider also segmentation with 3 and 4 clusters.

Binarization cluster threshold

The segmented data for automated planners must be binarized in order to be used for

the planning optimization. Because the dataset contains data segmented with more

than two classes, we identi�ed the threshold on the number of cluster to make sure

that the binarization is best performed.
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Log-likelihood threshold

Because the implemented segmentation algorithms are based on iterative techniques,

the log-likelihood threshold sets the limit for the convergence. When the di�erence

of the log-likelihood between two iterations is lower than the selected threshold the

method reached the convergence (it is a measure of goodness of the gaussian �tting

of the data). The lower the threshold, the better the �tting is, but the longer the

segmentation time is. Because of the volume dimension, we considered a log-likelihood

threshold of 10 and 100 (lower thresholds need higher computational timing).

Beta

This parameter expresses the importance of the neighbouring voxels for the segmenta-

tion methods with GMM-MRF. Looking at the segmented images we selected the beta

values of 1.2, 1.5 and 1.8.

Neighbourhood

This parameter sets the number of neighbouring voxels to be considered to compute

the energy function that optimizes the classi�cation of the condered voxel with the

GMM-MRF method. The considered neighbouring voxels are 18 and 26.

3.2.4 Algorithm comparison

Once the combination of parameters of each vessel segmentation algorithm has been

selected, the developed methods were compared to evaluate the one that gives the

best segmentation. In addition, the patient volumes were segmented with a manual

threshold by an expert in order to compare the developed algorithms with respect to

the actual method used by De Momi et al. in their planner.

The segmented dataset was then compared with the ground truth dataset to obtain

the confusion matrix and to compute the evaluation indices described in paragraph

3.2.5. The comparison was also done with respect to the time requested for each

segmentation method. The timing of the segmentation methods must be less then 5

hours to be considered as acceptable.
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3.2.5 Evaluation indices

To evaluate the obtained confusion matrices, �ve indices were used: Sensitivity (Sens),

Speci�city (Spec), Precision (Prec), Accuracy (Acc) and Dice similarity coe�cient

(DSC). These indices were computed after the calculation of the confusion matrix

obtained by comparing the segmented volumes with the implemented methods with

respect to the gold standard given by the manual segmentation performed by an expert.

Figure 3.6: The confusion matrix show the performance of the classi�cation algorithms.

A true positive (TP) is a pixel belonging to the vessels' class which is properly

classi�ed in the segmented image. A true negative (TN) is a pixel belonging to the

background's class which is properly classi�ed in the segmented image. A false positive

(FP) is a pixel belonging to the background's class which is wrongly classi�ed as a vessel

in the segmented image. A false negative (FN) is a pixel belonging to the vessels' class

which is wrongly classi�ed as a background in the segmented image. Once obtained

the confusion matrix (Figure 3.6), the above described indices are then computed to

assess the quality of the segmentation.

Sensitivity It is the proportion of true positives that are correctly identi�ed (it is also

known as the True Positive Rate). It shows how good the algorithm is at detecting

vessels. The higher the numerical value of sensitivity, the less likely segmentation

returns false-positive results.

Sens =
TP

TP + FN
(3.19)
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Speci�city It is the proportion of the true negatives correctly identi�ed (it is also

known as the True Negative Rate). It suggests how good the algorithm is at identifying

the background. A segmentation can be very speci�c without being sensitive, or it can

be very sensitive without being speci�c. Both factors are equally important. A good

segmentation has both high sensitivity and speci�city.

Spec =
TN

TN + FP
(3.20)

Precision It is the proportion of positive results that are true positive (it is also

known as Positive Predictive Value). The higher the precision value, the better the

vessel boundaries are segmented.

Prec =
TP

TP + FP
(3.21)

Accuracy It is the proportion of true results, either true positive or true negative,

in a population. It measures the degree of veracity of a segmentation. The higher the

accuracy value, the better thinner vessel are segmented.

Acc =
TP + TN

TP + FP + TN + FN
(3.22)

DSC Dice coe�cient is often used to quantitavely describe the capability of a seg-

mentation algorithm to identify the regions with particular shapes and dimensions. In

particular the value of a DSC ranges from 0, indicating no spatial overlap between two

sets of binary segmentation results, to 1, indicating complete overlap.

DSC =
2|Ω1 ∩ Ω2|
|Ω1|+ |Ω2|

(3.23)

To simplify the expression, it can be rewritten as:

DSC =
2TP

2TP + FP + FN
(3.24)

It gives more weight to true positives, thus, in case of the vessel segmentation images

analysis, to the pixels/voxels properly classi�ed as vessels.

Because of the small number of available clinical data for our experiments, we can't

prove the results with a statistical analysis. So, the �nal conclusions are based on a

summarized evaluation of the results supported by the opinion of an expert surgeon.
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Chapter 4

Results

In this chapter the results achieved with the di�erent segmentation methods are pre-

sented.

The confusion matrix are computed comparing the dataset segmented with the

developed algorithms and the ground truth manually segmented. Thus, for each seg-

mented data, four confusion matrix were built (one for each ground truth). Then,

to summarize the data, the total confusion matrix was computed as the sum of the

four previously described. Finally, the evaluation indices were computed on the total

confusion matrix.

The �rst section reports the indices relative to the parameters tuning experiments.

The second section summarizes the results of the comparison between the di�erent

vessel segmentation algorithms with the best combination of parameters.

4.1 Parameters tuning results

This paragraph reports the results for the tuning of the parameters for both the GMM

and GMM-MRF segmentation methods.
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4.1.1 Results GMM

Results GMM: cluster binarization threshold

3 cluster The �gure 4.1 shows the boxplots of the evualuation indices computed on

the images segmented with GMM initialized with 3 clusters.

The Sensitivity shows a higher median on the threshold set on the cluster 1 (0.99)

with respect to the threshold on the cluster 2 (median 0.68) that has a higher in-

terquantile range (IQR). However, the threshold on the cluster 2 has higher median

with a comparable IQR for all the other indices. Thus, because of the presence of a

very high number of FP and TP with respect the number of FN.

(a) Sensitivity (b) Speci�city

(c) Precision (d) Accuracy
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(e) DSC

Figure 4.1: GMM results: 3 cluster binarization threshold. Box plots of (a) Sensitivity, (b)

Speci�city, (c) Precision, (d) Accuracy and (e) DSC for the binarization threshold.

4 cluster The �gure 4.2 shows the boxplots of the evualuation indices computed on

the images segmented with GMM initialized with 4 clusters.

(a) Sensitivity (b) Speci�city
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(c) Precision (d) Accuracy

(e) DSC

Figure 4.2: GMM results: 4 cluster binarization threshold. Box plots of (a) Sensitivity, (b)

Speci�city, (c) Precision, (d) Accuracy and (e) DSC for the binarization threshold.

The Sensitivity has higher values for the binarization threshold set to 1 for each

patient (with a median value of ∼ 0.99), but the other coe�cients have very low values

with respect to the other thresholds; in fact, with threshold 1, the segmentations have

a very high number of FP. Speci�city, Precision and Accuracy are higher with the

threshold set to 3, but with a low value of Sensitivity because of a little number of TP

with respect to the FN. The threshold 2 shows medium values of Precision and DSC

(median values of 0.47 and 0.56 respectively) with respect the other thresholds, but

it still has high values of Sensitivity, Speci�city and Accuracy (median values of 0.96,
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0.91 and 0.92 respectively) with a very small IQR.

Results GMM: number of cluster

The �gure 4.3 shows the boxplots of the evualuation indices computed on the images

segmented with GMM for the tuning of the number of cluster.

(a) Sensitivity (b) Speci�city

(c) Precision (d) Accuracy
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(e) DSC

Figure 4.3: GMM results: number of cluster. Box plots of (a) Sensitivity, (b) Speci�city,

(c) Precision, (d) Accuracy and (e) DSC for the tuning of the number of cluster.

The Sensitivity has high and comparable median and IQR for 2 and 4 clusters, but

a slightly smaller value for 3 cluster with a larger IQR. Despite the high sensitivity,

the segmentation with 4 cluster shows lower medians for all the other indices with a

comparable IQR with respect to the 2 and 3 clusters. In fact, despite the high number

of TP and TN, the FP are high. Speci�city, precision, accuracy and DSC have higher

medians for the segmentations with 3 cluster (with values of ∼1, 0.94, 0.96 and 0.77

respectively), but with a lower value of Sensitivity because of a higher number of FN.

Results GMM: log-likelihood threshold

The �gure 4.4 shows the boxplots of the evualuation indices computed on the images

segmented with GMM for the tuning of the log-likelihood threshold.

All the indices shows a IQR similar for the tested log-likelihood threshold, but

Sensitivity, Accuracy and DSC show higher median values for the segmentations with a

log-likelihood threshold of 10 with a value of 0.72, 0.97 and 0.78 respectively. Speci�city

and Precision have a slightly higher median for the threshold set to 100 (∼1 and 0.94

respectively).
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(a) Sensitivity (b) Speci�city

(c) Precision (d) Accuracy

(e) DSC

Figure 4.4: GMM results: log-likelihood threshold. Box plots of (a) Speci�city, (b) Sensi-

tivity, (c) Precision, (d) Accuracy and () DSC for the tuning of the log-likelihood threshold.
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4.1.2 Results GMM-MRF

Results GMM-MRF: binarization cluster threshold

3 cluster The �gure 4.5 shows the boxplots of the evualuation indices computed on

the images segmented with GMM-MRF initialized with 3 clusters.

(a) Sensitivity (b) Speci�city

(c) Precision (d) Accuracy
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(e) DSC

Figure 4.5: GMM-MRF results: 3 cluster binarization threshold. Box plots of (a) Sensitiv-

ity, (b) Speci�city, (c) Precision, (d) Accuracy and (e) DSC for the binarization threshold.

Sensitivity, accuracy and DSC show similar IQRs for both the binarization thresh-

olds, but the threshold on the cluster 1 has a much higher median with respect the

cluster 2 (0.89, 0.96 and 0.80 respectively). Speci�city and Precision have slightly

higher median values for the threshold 2 than the threshold 1, thus because of a high

number of TN and TP with respect of FP.

4 cluster The �gure 4.6 shows the boxplots of the evualuation indices computed on

the images segmented with GMM-MRF initialized with 4 clusters.

(a) Sensitivity (b) Speci�city
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(c) Precision (d) Accuracy

(e) DSC

Figure 4.6: GMM-MRF results: 4 cluster binarization threshold. Box plots of (a) Sensitiv-

ity, (b) Speci�city, (c) Precision, (d) Accuracy and (e) DSC for the binarization threshold.

All the indices reported comparable IQRs for all the tested binarization thresholds;

however, Sensitivity, Accuracy and DSC show very high median values for the threshold

set on the cluster 1 (0.94, 0.96 and 0.78 respectively) with respect the other thresholds.

The presence of a very high number of FN with respect the number of TP with a

threshold on the cluster 3 cause the Sensitivity and the DSC to drop. The Speci�city

show all the thresholds with very high medians (∼ 1). The Precision shows an outlier

on all the thresholds, but the outlier of the threshold on cluster 1 causes a decreased

median value with respect the other two.
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Results GMM-MRF: number of cluster

The �gure 4.7 shows the boxplots of the evualuation indices computed on the images

segmented with GMM-MRF for the tuning of the number of cluster.

In all the indices the tested parameters show similar IQRs and high median values.

With a number of cluster set to 2, the Speci�city, Precision, Accuracy and DSC evalu-

ation indices shows higher (but similar) median values with respect to the other tested

parameter (median: 0.99, 0.91, 0.97 and 0.84 respectively). The lower values are with

4 clusters. However, with 2 clusters, the Sensitivity has a big IQR and a lower median

with respect the other segmentations, showing a high number of FN with respect the

TP. With 3 clusters the segmentations have pretty high median values for all the in-

dices: Sensitivity 0.89, Speci�city 0.98, Precision 0.77, Accuracy 0.96 and DSC 0.80,

showing a low number of FN and FP with respect to the high number of TP and TN.

(a) Sensitivity (b) Speci�city
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(c) Precision (d) Accuracy

(e) DSC

Figure 4.7: GMM-MRF results: number of cluster. Box plots of (a) Sensitivity, (b) Speci-

�city, (c) Precision, (d) Accuracy and (e) DSC for the tuning of the number of cluster.

Results GMM-MRF: log-likelihood threshold

The �gure 4.8 shows the boxplots of the evualuation indices computed on the images

segmented with GMM-MRF for the tuning of the log-likelihood threshold.
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All the indices have similar IQRs and median values for each one of the tested

log-likelihood thresholds. The log-likelihood threshold set to 10 shows higher median

value in Sensitivity and DSC (0.90 and 0.80 respectively). Speci�city, Precision and

Accuracy show almost equal median values for the tested parameters (0.98, 0.77 and

0.96 respectively).

(a) Sensitivity (b) Speci�city

(c) Precision (d) Accuracy
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(e) DSC

Figure 4.8: GMM-MRF results: log-likelihood threshold. Box plots of (a) Sensitivity, (b)

Speci�city, (c) Precision, (d) Accuracy and (e) DSC for the tuning of the log-likelihood

threshold.

Results GMM-MRF: beta

The �gure 4.9 shows the boxplots of the evualuation indices computed on the images

segmented with GMM-MRF for the tuning of the beta value.

(a) Sensitivity (b) Speci�city
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(c) Precision (d) Accuracy

(e) DSC

Figure 4.9: GMM-MRF results: beta. Box plots of (a) Sensitivity, (b) Speci�city, (c)

Precision, (d) Accuracy and (e) DSC for the tuning of the beta value.

It does not show signi�cant di�erences in all the indices even though changing

the values of beta. All the indices have a very small IQR with a median value of

Sensitivity, Speci�city, Precision, Accuracy and DSC equal to 0.90, 0.98, 0.77, 0.96 and

0.80 respectively.
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Results GMM-MRF: neighbourhood

The �gure 4.10 shows the boxplots of the evualuation indices computed on the images

segmented with GMM-MRF for the tuning of the neighbourhood value.

All the evaluation indices show slightly similar IQR and median values for both of

the tested values of neighbourhood. However, Speci�city, Precision and DSC have a

higher median value with a neighbourhood of 26. Sensitivity and Accuracy have almost

equal median values with 18 and 26 neighbouring voxels.

(a) Sensitivity (b) Speci�city

(c) Precision (d) Accuracy
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(e) DSC

Figure 4.10: GMM-MRF results: neighbourhood. Box plots of (a) Sensitivity, (b) Speci-

�city, (c) Precision, (d) Accuracy and (e) DSC for neighbourhood tuning.

4.2 Algorithm comparison results

This paragraph reports the results of the developed segmentation algorithms, using the

parameter combinations tuned with the experiment described in section 3.2.4, and of

the manual thresholding segmentation, in terms of Sensitivity, Speci�city, Precision,

Accuracy and DSC with respect to the ground truth dataset. It also reports the mean

timing values of each segmentation method and a qualitative analysis of the di�erent

segmentation methods applied to a clinical volume.

The �gure 4.11 shows the boxplots of the evualuation indices computed on the

images segmented with manual threshold, GMM, GMM-MRF and GMM-MRF based

on MIP methods with respect to the ground truth dataset.

The MIP segmentation has larger IQR with respect to the other methods in all

the indices. The manual thresholding has very low values of Sensitivity, Precision and

DSC, with a median value of 0.29, 0.12 and 0.16 respectively because of a high number

and FN and FP with respect to the TP.

The GMM and GMM-MRF methods show similar IQRs, but the GMM has higher

median values of Speci�city and Precision (∼ 1 and 0.92 respectively).
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The GMM-MRF has the highest Sensitivity and DSC, with a median value of 0.90

and 0.80 respectively. It also has high values of Speci�city and Accuracy (0.98 and 96

respectively), with an acceptable Precision (median 0.77).

(a) Sensitivity (b) Speci�city

(c) Precision (d) Accuracy
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(e) DSC

Figure 4.11: Algorithm comparison: evaluation indices. Box plots of a Speci�city, b Sensi-

tivity, c Precision, d Accuracy and e DSC computed on the images segmented with manual

threshold, GMM, GMM-MRF and GMM-MRF based on MIP with respect to the ground

truth dataset.

With respect to the timing of each method, the table 4.12 show the results.

Figure 4.12: The table shows the timing of manual threshold, GMM, GMM-MRF and

GMM-MRF based on MIP methods.

The manual thresholding requires at most few minutes (less than 5 minutes). On

average, the GMM method requires 100± 12min and the GMM-MRF requires 140±

10min The GMM-MRF based on MIP requires 56± 37min.
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The �gure 4.13 shows the di�erent segmentation methods applied to a clinical

image.

(a) Original image (b) Manual threshold (c) GMM

(d) GMM-MRF (e) MIP

Figure 4.13: (a): Original image. (b): Manual thresholding segmentation. (c): GMM

segmentation. (d): GMM-MRF segmentation. (e): GMM-MRF based on MIP segmentation.
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We can see that, with respect the original slice (a):

� The manual threshold (b) in this example identi�es correctly the larger vessels

but it can't classify correctly the borders of the smallest vessels. A lower threshold

results in increasing the number of FP and classifying noised areas as a whole

vessel. Moreover it depends on the user.

� The GMM (c) over-estimates the vessels adding a lot of FP, especially in noised

areas near vessels (Figure: 4.14).

Figure 4.14: The �gure shows a noised area that as been identi�ed as a vessel structure by

the GMM segmentation method.

� The GMM-MRF (d) classi�es correctly both the large and small vessels with a

high Accuracy also near branches diramations.

� The GMM-MRF based on MIP (e) under-estimates the vessel voxels. Thus, be-

cause the MIP are computed on the whole volume; this means that the projections

along a direction where there is a high intricated vasculature, results in an image

with high intensities distributed on the whole region of interest (Figure: 4.15),

making harder the �nding of vessel boundaries by the GMM-MRF algorithm and

then resulting in a under-estimation of vessel structures.
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Figure 4.15: The �gure shows a MIP on the whole volume along the axial direction.
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Chapter 5

Discussion

This chapter will discuss the results of the experiments described in the previous sec-

tions and is divided into to parts:

� Discussion of the results of the tuning of the initialization parameters of both the

GMM and GMM-MRF segmentation methods.

� Discussion of the results about the di�erent segmentation algorithms with the

correspondent tuned parameters.

5.1 Discussion: parameters tuning

The results of the experiments to tune the parameters of the GMM segmentation

method reported in section 4.1 show that for 3 clusters, with the threshold on the

cluster 1 (where 0 is the lowest mean cluster and 2 the highest), we have the highest

Sensitivity (median value 0.99); thus, it means that, with respect to the ground truth

data, it can recognize correctly the 99% of the voxel that belongs to the vessels; in fact

the number of FN (so the voxels that belong to vessel structure but that are classi�ed as

background) is very low with respect to the TP. Despite that, with this threshold, the

Precision and DSC indices dropped to very low values (0.25 and 0.40 respectively) be-

cause of a large amount of FP (voxels that are considered as "vessel" but that actually

are "background"). Thus means that with such a threshold we classify too much voxels

as vessels; so, for example, in a SEEG electrodes planning application, a lot of possible
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trajectories will be rejected, thus reducing the e�ectiveness of the exam. Instead, the

threshold on the cluster 2 has high values of Speci�city (0.99), Precision (0.94), Accu-

racy (0.96) and DSC (0.77); the Sensitivity is a bit lower (median value 0.68) because

a slightly higher number of FN that reduce the capability of the segmentation method

to �nd the vessel with low intensities (that often correspond to the vessels of little

diameter). For this reasons, for 3 clusters, the selected threshold is on the cluster 2 , so

the segmented images will consider the voxels that belongs to the cluster 2 as "vessel"

and the cluster 0 and 1 as "background".

The experiments with 4 cluster show that, as the results for 3 clusters, the seg-

mentations with the GMM method binarized with a threshold on the cluster 1 have

a high overall Sensitivity because of the reduced FN, but very low values for all the

other evaluation indices because the huge amount of FP voxels. Despite that, re-

ducing the threshold on the cluster 3 results in the decreasing of the Sensitivity to a

median value of 0.46, because of an increased number of FN. The threshold on the

cluster 2 gives good results in terms of Sensitivity and Speci�city (with median val-

ues of 0.96 and 0.91 respectively) with an overall accuracy of 0.92. For these reasons

we selected the threshold on the cluster 2 for 4 clusters. Thus, the selected threshold

leads to a segmentation with a high number of FP but a reduced number of FN that

means an overestimation of the voxels that belongs to vessel structures but at, the

same time, the ability to identify correctly small vessels.

With the selected threshold for image binarization we tested the GMM segmentation

method with a di�erent number of cluster (2, 3 and 4). The results presented in

paragraph 4.1.1 show that the segmentation with 3 clusters has higher Speci�city,

Precision, Accuracy and DSC (with the median values of 0.99, 0.94, 0.96 and 0.77

respectively) but with a lower Sensitivity with respect the segmentations with 2 and

4 clusters. The lower Sensitivity is caused by the high number of FN of two patients

(patient 3 and patient 4). Despite that, looking at the vasculature models of a patient

volume segmented with GMM with 2, 3 and 4 cluster (Figure 5.1), we can see that with

3 clusters we are able to identify more vessels. Thus, we set the number of cluster to 3 .
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(a) 2 Clusters (b) 3 Clusters

(c) 4 clusters

Figure 5.1: Vasculature models obtained in Slicer from the segmentation with (a): 2 clusters,

(b): 3 clusters and (c): 4 clusters.

Analyzing the results reported in �gure 4.4, we can see that setting the log-likelihood

threshold to 10 the GMM segmentation method as the highest Sensitivity (median value

0.72), Accuracy (median value 0.97) and DSC (median value 0.78) with Speci�city and

Precision higher with a threshold set to 100.

We selected 10 as the log-likelihood threshold because it leads to a segmentation with a

lower number of FN and a general high Accuracy in �nding the vessel structures, even

though it requires more time to converge.

In summary, the best combination of initialization parameters for the segmentation

with the GMM technique is achieved with 3 cluster (binarized with a threshold on the

cluster 2) and a log-likelihood threshold set to 10 (Figure: 5.2).
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The results of the experiments to tune the parameters of the GMM-MRF seg-

mentation method reported in section 4.1 show that, for 3 clusters, it is better to

select the binarization threshold on the cluster 1 ; thus because it leads to high values

of Sensitivity, Speci�city, Accuracy and DSC (with a median value of 0.89, 0.98, 0.96

and 0.80 respectively) with respect the cluster 2 that has very low values of Sensitivity

and DSC (0.19 and 0.32 respectively). It means a better identi�cation of small vessels,

due to few FN and a high number of TP and FP.

The experiments with 4 clusters have very low Sensitivity and DSC values for the

binarization threshold set on the clusters 2 and 3. Thus, it means that with such

thresholds the segmentation leads to very high numbers of FN, so a huge number

of voxels, that belongs to vessel structures, are classi�ed as background. Therefore,

the selected threshold is on the cluster 1 . It leads to the highest Sensitivity and DSC

values (median values 0.94 and 0.78 respectively), with high Speci�city and Accuracy

but a lower Precision (with an acceptable median value though). Thus, it means that

the algorithm tends to over-classify the voxels as vessel. For the automatic trajectory

planning purpose, it is better to have more FP than FN to not damage important brain

structures and to not harm the patients.

Looking at the �gure 4.7 we can see that setting the number of cluster to 2, the

segmetation has the highest values of Speci�city, Precision, Accuracy and DSC (with

median values of 0.99, 0.91, 0.97 and 0.84 respectively) but the lowest Sensitivity with

a value of 0.82. Thus, it leads to an underestimation of the voxels that belong to

vessels structure. Nevertheless, 4 clusters reduce the number of FN but increase the

FP, thus leading to an over-segmentation. So, we select 3 clusters in order to have high

Sensitivity (with a median value of 0.89) and high Speci�city (with a median value of

0.98), reducing the number of FN and FP.

Looking at the �gure 4.8, we can see that the results of each evaluation index are

similar for all the patients. We set the log-likelihood threshold to 10 because it has the

highest Sensitivity (with a median value of 0.90) with the other indices comparable to

the results with a threshold of 100. Thus, it means that the lower is the log-likelihood

threshold, the better is the segmentation.

Analyzing the results reported in the �gure 4.9, we can see that there is no signi�cant
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di�erence between the tested beta values (except for the Sensitivity and the Precision

median values that are respectively slightly lower and slighlty higher with a beta of 1.8

with respect to the other tested values). Thus, we set beta to 1.5 in order to have the

highest values for all the indices.

The last tested parameter, the neighbourhood, has similar results for both the

tested values (18 and 26). We set the neighbourhood to 26 because it leads to a high

Sensitivity value (almost equal to the resulting Sensitivity achieved with 18 neighbours)

and to the highest values of each index, with very high Speci�city and Accuracy values

(0.98 and 0.97 respectively).

In summary, the best parameters con�guration for the segmentation with the GMM-

MRF method is achieved with 3 cluster (binarized with a threshold on the cluster 1),

log-likelihood threshold set to 10, beta value of 1.5 and neighbourhood 26 (Figure:

5.2).

Figure 5.2: The table shows best con�guration of parameters for both the GMM and the

GMM-MRF methods.

5.2 Discussion: algorithms comparison

The �gure 4.11 shows that the GMM-MRF based on MIP has smaller values of Sensi-

tivity, Speci�city, Precision and Accuracy with respect the GMM and the GMM-MRF.

Nevertheless it has better results with respect the manual thresholding.

Despite the GMM has high values of Speci�city, Precision and Accuracy, the GMM-

MRF has pretty similar indices (median values of 0.98, 0.77 and 0.96 respectively).

The GMM-MRF has the highest Sensitivity and DSC (median values of 0.90 and 0.80

respectively) because of a small number of FN and FP with respect the TP; thus, the

segmentation does identify correctly also the vessels with a small caliber and classify
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better the voxel on vessels boundaries.

In addition, in vessel segmentation for electrodes trajectroy planning, the higher

the number of FN, the worse the e�ectiveness of the segmentation will be.

Looking at the timing results shown in table 4.12 we can see that the GMM-MRF

based on MIP is the fastest segmentation method among the developed techniques.

The GMM-MRF is the slowest method and it takes more than two hours, but the

obtained segmentation images worth the timing.

In conclusion we can assert that the GMM-MRF segmentation methods shows the

best results in terms of Sensitivity, Speci�city and Accuracy with the con�guration of

parameters summarized in the table 5.2. It can classify correctly both large and small

vessels as can be seen in �gure 4.13. In addition, the timing respects the speci�cations.

Figure 5.3: The �gure shows the vasculature model obtained after the segmentation with

the GMM-MRF.
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Chapter 6

Conclusions

For patients with medically refractory focal epilepsy, that can't be treated with anti-

epileptical drugs and are considered to have a reasonable chance of progressing to

potentially curative surgery, the stereo-electroencephalography (SEEG) is a solution

to localize the epileptogenic zone when the non-invasive methods fails. The SEEG

is a diagnostic procedure in which multiple intracranial depth electrodes are placed

to record electrical activity in selected cortical and subcortical structures. Thus, the

planning of the trajectories is a very risky and complicated procedure because it has

to �nd the shortest trajectory between the entry points and the target points while

avoiding important brain structures such as vessel.

The vessel avoidance is one of the most important constraint and, to compute the

distance between the electrode trajectories and the vessels, the �rst step is to segment

the vasculature inside the volume of interest.

This work focused on the development and comparison of di�erent completely au-

tomatic methods based on the Gaussian mixture model (GMM) to improve the auto-

mated planning work�ow described in [36]. In particular, we developed the GMM and

the GMM with Markov Random Fields (MRF) that introduces a classi�cation correc-

tion of the voxel basing on their neighbouring voxels. Furthermore, we developed the

GMM-MRF applied on iterative Maximum Intensity Projections (MIPs) of the whole

volume as described in [15], to test its performance on real brain vessel segmentation.

This work is able to improve the planning work�ow described in section 2.2.5: the

brain vessel segmentation of 3D CBCT DSA images was done only with a manual
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intensity-based thresholding, but this method is user-dependant and, despite the ra-

pidity, it leads to plani�cation problems, especially in case of noised dataset.

After the tuning of the initialization parameters of all the developed segmentation

methods, the results show that the GMM-MRF algorithm leads to better segmenta-

tions than the manual thresholding and the other developed methods. This technique

has high Sensitivity and Accuracy thanks to the analysis of the neighbouring voxels,

that ensures the correct classi�cation of vessels with both small and large diameter.

Therefore, it is precise also near branching diramations, where the manual threshold

tends to fail.
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Chapter 7

Actual limits and future developments

The limited dataset weakens the signi�cance of the results that are not supported by

a statistical analysis. A future development can be the increasing of available dataset

images with the correspondent ground truth in order to support the results with a

statistical signi�cance.

The GMM-MRF based on MIP has shown a great potential in terms of timing and

�ne classi�cation of vessels, but the MIP images on the whole volume decrease the

performance of this method.

The method can improve if the MIP are generated on smaller volumes; a solution can

be to iterate the method on MIPs created with little portion of the volume (such as

slab of 10 to 15 slices) in order to reduce the super-imposition of the voxels with highest

intensities and improving the ability of GMM-MRF classi�cation.

The implemented segmentation methods could be tested also with MR images in

order to verify which clinical data lead to the best results with the automated planner.
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