
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

A Model-based Graphical Designer for

Engineering Forensic-ready Systems

Relatore: Prof. Luciano BARESI

Correlatore: Dr. Liliana PASQUALE

Tesi di laurea di:

Luigi Marco LATONA Matr. 836568

Anno Accademico 2016–2017

Abstract

Nowadays there is an increasing trend towards embedding computational capab-

ilities into devices to make them effectively communicate and perform useful tasks.

This is the so-called pervasive computing environment and, since software systems

are becoming more pervasive, there is the need of protecting such systems from incid-

ents perpetrated by malicious individuals. Unfortunately, it is not feasible to prevent

all possible incidents because they are increasing in number and complexity and this

is the reason why a digital investigation should be performed to explain how an in-

cident occurred and who was responsible for it. A forensic-ready system would help

in the investigation minimising the costs and using the relevant digital evidence. In

particular, such system is able to monitor data that can be useful to satisfy or refuse

an incident hypothesis before it happens. The objective of the thesis is developing

a graphical designer for engineering forensic-ready system that helps describing the

environment and some incident hypotheses that may occur within the environment.

These descriptions are then used by an external tool that generates rules to pre-

serve the relevant data for the investigation. The graphical designer aims to solve

some limitations of the tool concerning usability, correctness of the descriptions and

reusability of the software. To address these problems, I use the Model-Driven En-

gineering (MDE) approach which allows substituting code with meta-models and

specifically it ensures correction of the models based on the meta-model by design. I

use the frameworks Eclipse Modeling Framework (EMF) for the creation of the meta-

model and Graphical Modeling Framework (GMF) to build a graphical designer that

facilitates the representation of the environment and incident hypotheses addressing

the usability limitation. Finally, to foster reusability, the graphical designer was

implemented as an Eclipse plugin. The approach has been evaluated by describing

the environment and the incident hypotheses of three scenarios inspired by existing

digital forensic corpora.

Sommario

Nella società odierna si sta verificando una crescita verso l’integrazione di capacità

computazionale nei dispositivi elettronici per facilitarne la comunicazione ed eseguire

operazioni utili. Questo tipo di integrazione costituisce l’aspetto caratterizzante dei

sistemi pervasivi. La crescita nell’utilizzo di sistemi pervasivi sta anche rendendo più

necessario proteggere questi sistemi da incidenti a scopo criminale. Sfortunatamente,

prevenire tutti i possibili incidenti non è una soluzione possibile poiché sono sempre

più numerosi e complessi. Per questo motivo, dopo che un incidente avviene in un

sistema software, deve essere eseguita un’investigazione digitale per spiegare come

un incidente è avvenuto e chi ne è il responsabile. Un sistema forensic-ready aiute-

rebbe in tale investigazione, minimizzando i costi e utilizzando solo dati pertinenti

all’incidente. In particolare, tale sistema permetterebbe di monitorare dati che pos-

sono essere utili per dimostrare o rifiutare le ipotesi di un potenziale incidente prima

che questo avvenga. L’obiettivo del lavoro di tesi è sviluppare un designer grafico

per lo sviluppo di sistemi software forensic-ready. L’obiettivo di un designer grafico

e’ quello di facilitare la rappresentazione del sistema in cui un incidente può avve-

nire e delle ipotesi di possibili incidenti. Tali rappresentazioni sono indispensabili

per creare la specifica software che un sistema forensic-ready deve soddisfare. Tale

specifica prescrive quali dati un sistema forensic-ready deve preservare e quando.

Durante una investigazione i dati preservati possono essere utili per dimostrare come

uno degli incidenti rappresentati è avvenuto. Il designer grafico ha come obiettivo la

risoluzione di alcuni limiti che presenta un tool che genera questo tipo di specifiche.

Questi limiti riguardano l’usabilità, la correttezza delle descrizioni e la riusabilità

del software. Per risolvere questi problemi utilizzo un approccio di ingegneria gui-

data dal modello (MDE) che permette la sostituzione di codice con meta-modelli.

Precisamente, assicura la corretta definizione di modelli, dato che si basano sul meta-

modello, che descrivono il sistema e le ipotesi di incidenti che possono avvenire in

quel sistema. Utilizzo i frameworks Eclipse Modeling Framework (EMF) per la crea-

zione del meta-modello e Graphical Modeling Framework (GMF) per sviluppare un

designer grafico che facilita la definizione del sistema e degli incidenti risolvendo co-

sì il problema dell’usabilità. Infine, per affrontare il problema della riusabilità, il

designer grafico è stato implementato come un plugin per Eclipse. L’approccio è

stato testato descrivendo l’ambiente e le ipotesi di incidenti di tre scenari ispirati da

data-sets disponibili online che descrivono scenari di incidente realistici.

Contents

1 Introduction 1

1.1 The context . 1

1.2 The problem . 2

1.3 Thesis objectives . 4

1.4 Thesis structure . 5

2 Forensic-Ready Systems 7

2.1 Related works . 7

2.2 Motivating example . 8

2.3 Description of the tool . 9

2.4 Environment Description . 10

2.4.1 Types and Instances . 11

2.4.2 Context Relations . 11

2.4.3 Events . 11

2.4.4 Composite Definitions . 12

2.4.5 Context Relation triggering conditions 13

2.4.6 Initial States . 14

2.5 Hypothesis Description . 14

2.6 Preservation Specifications . 15

3 Design Choices 17

3.1 Model-Driven Engineering . 17

3.1.1 Why the need of MDE . 18

vii

3.1.2 How I used the Model-Driven Engineering approach 19

3.2 Extensions and Extension Points . 19

3.2.1 How I used Extensions and Extension Points 21

3.3 Eclipse Modeling Framework (EMF) 21

3.3.1 How I used EMF . 23

3.4 Graphical Modeling Framework (GMF) 24

3.4.1 Appearance . 24

3.4.2 Palette . 25

3.4.3 Mapping process . 26

3.4.4 Graphical designer extension 28

3.4.5 How I used GMF . 29

4 Technical Solution 31

4.1 The Meta-Model . 31

4.1.1 Type and Instance . 32

4.1.2 Context Relation . 33

4.1.3 Event . 34

4.1.4 Behavioural Description and Hypothesis 35

4.1.5 Predicates . 36

4.1.6 Initially . 39

4.2 The Graphical Designer . 39

4.2.1 Type and Instance GMF extension 41

4.2.2 Context Relation GMF extension 42

4.2.3 Event GMF extension . 43

4.2.4 Behavioural Description and Hypothesis GMF extension . . . 46

4.2.5 Initially GMF extension . 50

4.3 Encoding extension . 51

5 Evaluation 53

5.1 Case studies . 53

5.1.1 Motivating Example . 54

5.1.2 Exfiltration Scenario . 59

5.1.3 Harassment Scenario . 67

5.2 Discussion . 67

6 State of the Art 71

6.1 Derric Domain-Specific Language . 71

6.2 Forensic Readiness approaches . 73

Conclusion 75

Bibliography 79

A Motivating Example 81

B Exfiltration Scenario 93

List of Figures

2.1 Motivating example environment . 8

2.2 Tool Mechanism . 10

3.1 Extensions and Extension Point . 20

3.2 EMF Code Generation . 22

3.3 Ecore Meta-Model . 23

3.4 Hierarchical visualisation of a .gmfgraph file 25

3.5 Hierarchical visualisation of a .gmftool file 26

3.6 Mapping process graph . 26

3.7 Hierarchical visualisation of a .gmfmap file 27

3.8 Basic graphical designer . 29

4.1 kEEPER Meta-Model . 32

4.2 Type and Instance Class Diagram . 33

4.3 Context Relation Class Diagram . 34

4.4 Event Class Diagram . 35

4.5 Behavioural Description and Hypothesis Class Diagram 36

4.6 Predicates Class Diagram . 38

4.7 Initially Class Diagram . 39

4.8 Type and Instance Diagram and Palette area 41

4.9 Context relation Diagram and Palette area 42

4.10 Context Relation Property area . 43

4.11 Event Graphical Elements . 43

4.12 Event Diagram and Palette area . 44

xi

4.13 Behavioural Description Diagram and Palette area 47

4.14 Initially Diagram and Palette area 51

4.15 Gen Encoding context menu function 52

5.1 Type and Instance Diagram for the Motivating Example 55

5.2 Context Relation Diagram for the Motivating Example 56

5.3 Primitive Event Diagram for the Motivating Example 56

5.4 Complex Event Diagram for the Motivating Example 57

5.5 Behavioural Description Diagram for the Motivating Example 57

5.6 Initially Diagram for the Motivating Example 58

5.7 Hypothesis Diagram for the Motivating Example 58

5.8 Type and Instance Diagram for the Exfiltration Scenario 60

5.9 Context Relation Diagram for the Exfiltration Scenario 61

5.10 Event Diagram for the Exfiltration Scenario 61

5.10 Event Diagram for the Exfiltration Scenario 62

5.10 Event Diagram for the Exfiltration Scenario 63

5.11 Behavioural Description Diagram for the Exfiltration Scenario 64

5.11 Behavioural Description Diagram for the Exfiltration Scenario 65

5.12 Initially Diagram for the Exfiltration Scenario 66

5.13 Hypothesis Diagram for the Exfiltration Scenario 66

Listings

4.1 Command for the creation of a node 41

4.2 Agent creation source code . 44

4.3 Happens predicate creation source code 47

A.1 Event-Calculus description of the environment of the Motivating Ex-

ample . 81

B.1 Event-Calculus description of the environment of the Exfiltration Sce-

nario . 93

xiii

List of Tables

6.1 Comparisons between Derric and my work 73

xv

Chapter 1

Introduction

1.1 The context

Nowadays there is an increasing trend towards embedding computational capab-

ilities into devices to make them effectively communicate and perform useful tasks.

A pervasive computing environment can be defined as one saturated with computing

and communication capabilities, yet so gracefully integrated with users that it becomes

a “technology that disappears” [1]. Pervasive computing applications and devices have

been increasingly adopted to support public services, such as transport or health, as

well as for private use, such as for online payment. With software systems becoming

more pervasive, an increasing number of assets, which are transmitted, manipulated,

or stored digitally, are being compromised by incidents perpetrated by malicious

individuals.

An incident can be defined as an anomalous behaviour of a system that suggests a

violation or imminent threat of a violation of policies (e.g., security or use policies)

or regulations [2]. The German Steel Mill cyber attack is a famous example of a

security incident. More precisely, the attacker(s) infiltrated the steel facility using

phishing emails taking control of the physical equipment and ultimately causing the

furnace to shut down. [3].

1

Introduction

Unfortunately, it is not feasible to prevent all possible incidents because they

are increasing in number and complexity. Moreover when an incident happens it

is important to start a digital investigation to explain how an incident occurred

and who was responsible for it. More precisely, a digital investigation is defined as

“the collection, preservation, analysis, interpretation and presentation of digital data

from digital sources, for proof of incident and ultimately for prosecution of criminal

activity” [4].

However, performing a digital investigation is difficult. For an organisation to

perform a digital investigation there is the need of trained staff to understand what

data should be collected to support the hypotheses of an investigation. They should

also be aware of the companies internal policies and regulations protecting the privacy

of data collected. The digital data that need to be analysed during an investigation

can be volatile and be easily lost or distorted because the collection has not been

planned. Therefore, there is a need to preserve data that might be an evidence during

an investigation before they might be tampered with by an offender or be lost [5].

Although digital forensic investigations are usually performed after an incident

occur, some of their activities can be executed proactively before an incident occurs

to reduce the costs and the time of potential future digital forensic investigations.

Forensic-readiness is indeed the ability of minimise such costs and it has been

defined as “the ability of an organisation to maximise its potential to use digital

evidence whilst minimising the costs of an investigation” [6].

Therefore, building a forensic-ready system that is capable of preserving in ad-

vance data that is important for a future digital investigation can speed-up the entire

investigation process and minimise its costs [7].

1.2 The problem

Existing research has been performed to identifying guidelines for building forensic-

ready systems. For example Rowlingson [6] describes the 10 key activities to build a

forensic-ready software system. These include the identification of available sources

2

1.2. The problem

of digital evidence and the data to be collected during an investigation.

Another approach [8] describes a model to build a framework for an enterprise

that ensures forensic-readiness. The construction of the framework is driven by

the main scope of the model that is “preserving the ability to prosecute malicious

cyber intrusion successfully, while reducing current effort expended on digital forensic

investigations”.

Forensic-readiness aims to develop systems that are prepared to support digital

investigations of major incidents that are classified as such when it is reasonable

to suspect that an incident brings to an intrusion, loss/theft of data or misuse of an

organisation’s ICT system. In particular, since the risk for a major incident to happen

is high and it can cause serious damages, a forensic-ready system should forbid

any activity that could alter or destroy a proof of evidence when a major incident

occurs. [9]. Major incidents could differ depending on the environment they can

happen and they are not the same for all the domains. Some likely scenarios could be:

denial of service attack, loss or theft of a significant amount of personal information,

compromised host resulting in unauthorised programs or processes running on the

host, copy of sensitive or access restricted files.

Unfortunately most of the research performed on the development of forensic-

ready systems only captures operational and infrastructural capabilities for organ-

isations to achieve forensic readiness. Operational capabilities refer to the provision

of training and equipment to the people involved in the investigation. Infrastructural

capabilities instead refer to the collection of all the relevant data for the investiga-

tion [10]. What it lacks here is a methodology capable of defining how a software

system that operates in a specific domain could be forensic-ready.

An existing work [4] in this direction focuses the attention to the data preserva-

tion phase of a digital investigation. In particular, there is a tool called kEEPER (on

EvidEnce PrEservation Requirements for forensic-ready systems) that automatically

generates specifications that satisfy the preservation requirements of forensic-ready

systems. The FR requirements ensure that, if an incident occur, the data to explain

how the incident took place are preserved. A preservation specification is given to a

3

Introduction

software component, the Forensic Readiness (FR) Controller that receives the data

observable from the digital sources in the environment. The preservation specifica-

tion identifies the conditions that enforce the preservation of the data received by the

FR Controller. The tool requires the users (e.g., software engineers, system adminis-

trators) to provide a description of the environment in which incidents may occur and

hypotheses explaining how such incidents can happen and automatically generates

the preservation specification. However, kEEPER, had the following limitations:

• Usability: the tool is based on a command-line interface and it requires the

user to define the environment and the incident hypotheses in a predicate logic

language, such as the Event Calculus. Therefore it is very hard for the final

users, who are not aware of the syntax of the language, to use the kEEPER

tool correctly.

• Correctness: the tool does not provide any guide for the definition of the

environment and incident hypotheses in Event-Calculus. Therefore, it is very

hard to generate correct preservation specifications

• Reusability: the tool does not provide any mechanism to support modifica-

tions in the future. Therefore it would be a complex task if there was the need

of any extension.

1.3 Thesis objectives

The work I have done in this thesis aims to provide an approach to make the

developing of forensic-ready systems more usable. To achieve this objective I want

to develop a graphical designer for engineering forensic-ready systems. In particular,

my work provides kEEPER with a graphical designer for the description of the

environment and incident hypotheses.

The objectives of my thesis are to solve the limitations of kEEPER listed in the

previous paragraph concerning usability, correctness and reusability. In particular, I

use a model-driven approach that allows to substitute code with meta-models and two

important frameworks that are part of the Eclipse Projects: EMF (Eclipse Modeling

4

1.4. Thesis structure

Framework) that I use to build the meta-model and GMF (Graphical Modeling

Framework) that I use to develop the graphical designer.

To address the usability problem, I have provided a graphical interface: all

the entities of the environment and the hypotheses have a graphical representation

associated, each of them can be defined inside specific diagrams. The translation of

the diagrams into Event-Calculus is then automated by an algorithm of the software.

I ensure correctness by design because my graphical designer is based on the

concepts of model-driven engineering. This ensures that all the instances built on

top of the meta-model are correct by design. Moreover, since the user is obliged to

use specific graphical elements and the translation into Event-Calculus is automatic,

it is impossible to make mistakes.

I address the reusability problem by implementing the graphical designer as

an Eclipse plugin. A plugin is defined as: executable program that extends and

strengthens the function of the software without changing the platform [11]. This

allows the graphical designer to be extended and modified easily in the future.

The effective functionality of the graphical user interface has been actually demon-

strated and evaluated through the instantiation of three different incident scenarios

inspired by existing digital forensic corpora [12] [13].

1.4 Thesis structure

This thesis is structured as follows:

• In the second chapter I describe the approach used by kEEPER to generate

the preservation specifications. I analyse the tool in its main aspects and I

provide an explanation of how it works.

• In the third chapter I illustrate the design choices I made to build the graphical

designer. In particular, I describe the frameworks I used to build the meta-

model and its graphical representation.

• In the fourth chapter I describe the technical solution: from the meta-model

5

Introduction

used to the graphical elements of the graphical designer and eventually I de-

scribe the parser that finally outputs the results into Event-Calculus.

• In the fifth chapter I explain the three case studies I performed to evaluate

the effectiveness of the graphical designer. Then I describe the contributions I

made to the project and I discuss some limitations that the graphical designer

has and the possible extensions that could be added to be improved.

• In the sixth chapter I list other works done in this field. I describe a domain-

specific language project and other forensic-readiness approaches.

6

Chapter 2

Forensic-Ready Systems

In this chapter I first illustrate some related works. Then I motivate the use of

the approach using an example and in the last section I describe the approach in

more detail.

2.1 Related works

A lot of research has been done in the field of forensic-readiness but no one at

the moment has defined a systematic approach about how a forensic-ready system

should be designed. In particular, in spite of the existence of the forensic readiness

process standardisation (ISO/EIC 27043:2015 [14]) where the collection of possible

incidents is prescribed, the only approaches that nowadays exist focus the attention

to a high-level definition of a forensic-ready system without implementing it.

Reddy and Venter, for example, present an architecture for a digital forensic-

readiness management system that promises to achieve an optimal level of manage-

ment for digital forensic-readiness [15].

Shield et al. [16] propose continuous data preservation within an organisation but

sometimes it is not a feasible solution because it could be hard to analyse all the data

. Pasquale et al. propose instead an approach where evidence preservation aims to

detect only potential attack scenarios that can lead to the violation of security policies

[17]. However this approach prescribes to preserve any type of event that happen

7

2. Forensic-Ready Systems

and lead to an incident without considering previous events that have occurred or

preserved.

2.2 Motivating example

I use a motivating example to justify the need of using the approach. The example

describes an environment within an enterprise building. There are two employees,

bob and alice, that have two laptops, m2 and m3, respectively. A desktop m1 is

located in the room r01 and it stores a sensitive document doc. Access to the room

r01 is controlled by an NFC reader nfc and it is recorded by a CCTV camera cctv.

Both alice and bob have the authorisations to access the room r01 and to login to

m1. The environment is illustrated in the figure 2.1.

Figure 2.1: Motivating example environment

Supposing that the document doc has been leaked, a digital investigation initiates

and the investigator hypothesises that the document doc has been copied into an

external device that has been mounted in the computer m1. At this point, the

investigator tries to list the possible scenarios that led to the incident hypothesis.

Once the scenarios have been identified, the investigator needs to understand which

8

2.3. Description of the tool

digital device contains the relevant information to support the scenarios. Then, in

this example, the investigator has to search through the logs of the system to look

for a recently mounted device or he/she has to look for the accesses in the room

recorder by nfc1 and cctv devices. Unfortunately, the large number of events that

can happen (a lot of people enter in the room, a lot of devices have been mounted

in the computer recently) and the impossibility of storing all events caused by the

inability of monitoring them all, makes this investigation not feasible. Furthermore,

there is the need of a systematic approach that automates the preservation of the

relevant events.

2.3 Description of the tool

The systematic approach generates specification for software systems that are

forensic-ready. It does not perform all the activities of an investigation process but

it only prescribes which data is relevant and has to be collected.

The approach, described by the figure 2.2, needs a domain expert to give the

description of the environment ε where the incidents can occur, one or more hy-

potheses H describing possible incident scenarios and an initial preservation spe-

cification PS. It automates the synthesis of preservation specifications for systems

to meet the preservation requirements that explicitly prescribe preservation of the

minimum amount of data that are necessary to support the hypotheses of an invest-

igation.

Taken those as inputs, the tool based on a satisfiability solver and a logic-based

learner, generates a preservation specification. In particular the approach provides

as output either:

1. a confirmation that (some) hypotheses are not supported in the environment.

2. a confirmation that the FR controller does not have the capabilities to monitor

data in the preservation specification.

3. a modified preservation specification that guarantees to satisfy its preservation

requirements with respect to the hypotheses in the given environment.

9

2. Forensic-Ready Systems

Regarding the third case, after the preservation specification is generated, the Forensic-

Ready Controller (FR) receives data from the devices in the environment and

eventually it decides whether to store the information in a secure storage. The

information is then used for the investigation by an investigator.

Figure 2.2: Tool Mechanism

2.4 Environment Description

The description of the environment is written in Event-Calculus that is a logic-

based formalism for representing actions and their effects [18]. The definition of

the environment is a set of descriptive statements about: the context in which an

incident may occur, the behaviour that may be exhibited within the environment

and their interactions. It includes a context and a behavioural description.

The first part is a collection of descriptive declarations about the types and in-

stances of the entities present in the environment and about the context relations

that define the state of the environment.

The behavioural description specifies the events that may occur within the en-

vironment. We distinguish between two types of events: primitive events that

represent the occurrence of an atomic action that can be observed by an investigator

from a digital device and complex events that indicate the execution of complex

human activities and that can involve one or more primitive events.

10

2.4. Environment Description

2.4.1 Types and Instances

The description of the environment starts from the definition of all types and

instances. The types can be computers, devices, readers, people. Each instance

instead has a type associated to it and it represents indeed that particular computer,

person.

The correspondent statement in Event-Calculus stating that m1, m2 and m3 are

computers, is:

comp(m1; m2; m3)

2.4.2 Context Relations

What it follows is the definition of the status of the system described by the

context relations or fluents. All the instances need to be somehow correlated to each

other and this is partially achieved with the context relations that tell you which is

the status of the system. A fluent specifies the current state of the system and it

is used in the composite definition section to specify if and when a particular relation

between instances holds. One possible context relation between the types “employee”

and “location” could be for example “in(emp,loc)” and it specifies a relation between

two instances of those types. It states that an employee is in a location.

The statement in Event-Calculus is:

fluent(in(E,L)):-

emp(E), loc(L).

2.4.3 Events

Events describe actions that can be performed within the environment.

Primitive events normally refer to actions that the system performs such as a

system call that mounts an external device. Complex events are instead normally

human actions always performed within the environment.

As for the fluents, events are defined with one or more parameters, each of them

representing a “type”. An example of primitive event could be “sys_mount(dev,

11

2. Forensic-Ready Systems

comp)” where “dev” indicates the type device and “comp” the type computer. An ex-

ample of complex event could be instead “copy(emp, fi, comp)” where “emp” indicates

the type employee, “fi” the type file and “comp” the type computer.

The statements in Event-Calculus for events sys_mount and copy follow:

pe(sys_mount(S, C)):-

st(S), comp(C).

ce(copy(E, F, C)):-

emp(E), fi(F), comp(C).

2.4.4 Composite Definitions

A composite definition is always associated with a complex event. It defines the

preconditions for a complex event to occur. The preconditions are represented in

the description file as a list of events (primitive and complex) and context relations.

Events can only be associated with the predicate “Happens” while context relations

can be associated with the predicates “Holds At” and “Holds At Between” . In

particular, an event can only happen in a specific time instant and a context relation

can hold in one or between more than one time instants. The predicates “Holds

At” and “Holds At Between” can also assume the negative form in which case the

precondition would be satisfied if the context relation is not holding.

In conclusion each predicate represents one precondition and all the predicates

of each composite definition represents all the preconditions that need to be satisfied

for the complex event (associated to the composite definition) to happen.

In a composite definition all the parameters of each event and context relation

are associated to an existing type defined previously and a chronological order to the

time instants is provided.

The following is an example of a composite definition:

happens(login(E,C),T,TR):-

trace(TR),

12

2.4. Environment Description

emp(E),

comp(C),

loc(L),

emp(E2),

time(T),

happens(sys_Login(E,C),T,TR),

holdsAt(in(E2,L),T,TR),

holdsAt(isLocatedIn(C,L),T,TR),

holdsAt(hasPermission(E,C),T,TR).

It is made up by essentially three parts: on the first line the “login(E,C)” indicates

the complex event that is described in this composite definition. In the next six

lines all parameters and time instants are defined and in particular each parameter

is linked to the correspondent type and at the end, on the remaining lines all the

preconditions are expressed. All the precondition statements are in logical AND so

all of them must be true to allow the event “login” to occur.

It is important to notice that in this particular case two different employees

are involved (E and E2) and, consequently two distinct definition statements are

expressed in order to point out the distinction. Also, in this case only one time instant

is defined and it means that all the events and context relations must happen/hold

at the same time as the complex event “login”.

2.4.5 Context Relation triggering conditions

This part of the descriptor file essentially states which complex event turns a

context relation to be true or false. In particular, a complex event can initiates or

terminates a complex event.

The statement below in Event-Calculus says: if an employee enters in a location,

then s/he is in the location. In this case the context relation “in” turns to be true.

initiates(enter(E,L), in(E,L), T):-

emp(E), loc(L), time(T).

13

2. Forensic-Ready Systems

A similar behaviour happens when the event “exit” occurs but in this case the

context relation “in” is not satisfied anymore and it turns to be false. Its Event-

Calculus notation is the following:

terminates(exit(E,L), in(E,L), T):-

emp(E), loc(L), time(T).

2.4.6 Initial States

Each statement tells which context relation is true with which instances. An

example of that is the following:

initially(hasBadge(bob , r01)).

Since Context Relation “hasBadge” has two parameters indicating the types em-

ployee and location, it needs two instances of those types that, in this example are

employee “bob” and room “r01”.

2.5 Hypothesis Description

As for the environment, the hypotheses of an incident should also be provided

as input to the tool to create the preservation specifications. While the environment

describes all the elements that are part of the considered system, the hypotheses

describes a possible incident and it is syntactically defined in the same way as a

composite definition. The tool, given the environment description is able to under-

stand if an hypotheses is feasible (the incident could happen) or it is not, in which

case the hypotheses cannot happen or the definition of the environment needs to be

reviewed.

The following is an example in Event-Calculus of an hypotheses:

hypothesis(h1,T,TR):-

trace(TR),

time(T),

emp(E),

14

2.6. Preservation Specifications

st(S),

holdsAt(mounted(S,m1),T,TR),

happens(copy(E,doc ,m1),T,TR).

The hypotheses is clearly referring to the incident in which:

• A storage device is mounted into the computer m1

• An employee is using the computer m1 to perform a copy of a document doc.

2.6 Preservation Specifications

Preservation specifications (PS) prescribe when an event has to be stored by

the FR controller and under which conditions. In particular, we are interested in

the execution of the operations of the form “preserve(a, ts)” where a indicates the

occurrence of a primitive event and ts represents the time-stamp at which the event

occurs. Taken it into account the PS indicates the pre- and post-conditions that

precede and follow the preservation of that event at the specified time-stamp.

The following is an example of domain pre- and post- conditions expressed in

LTL (Linear Temporal Logic) for the preservation of the occurrence of the event

sys_copy:

∀ts : Timestamp, e : Emp, d : Doc, m : Comp

G(preserved(sys_copy(e,d,m), ts)→¬preserve(sys_copy(e, d,m), ts))

G(preserve(sys_copy(e,d,m), ts)→Xpreserved(sys_copy(e, d,m), ts))

The pre-condition (1) specifies that the preservation of the event cannot take

place if it has already been preserved while the post-condition (2) indicates that,

at the time instant following the occurrence of the event, this one has already been

preserved.

The following instead, is an example of required pre- and trigger-conditions. The

former conditions the execution of preserve(a,ts), it basically says when an event can

be collected. The latter indicates the conditions on the (non-)preservation of related

events or, in other words, it says when an event must be collected.

15

2. Forensic-Ready Systems

Both the conditions are part of the preservation specifications generated by the

tool.

∀ts : Timestamp, e : Emp, d : Doc, m : Comp

G(¬received(sys_copy(e, d,m), ts)→X¬preserve(sys_copy(e, d,m), ts))

∀ts : Timestamp, e : Emp, d : Doc, m : Comp

∃ts1, ts2 : Timestamp.ts1 < ts2 ∧ ts2 < ts

G(received(sys_copy(e,d,m), ts) ∧

preserved(sys_login(e,d,m), ts1)∧preserved(sys_mount(s,m), ts2) ∧

@ts3, ts4 : Timestamp. (ts3 > ts1 ∧ ts3 ≤ ts∧ts4 > ts2 ∧ ts4 ≤ ts∧

preserved(sys_logout(e,m), ts3) ∧

preserved(sys_unmount(s,m), ts4)) →Xpreserve(sys_copy(e,d,m), ts))

16

Chapter 3

Design Choices

In this chapter I describe the design choices I made to develop my software. First I

describe how the Model-Driven Engineering approach works and why I decided to use

it on my application. Later on I give an explanation of how the Eclipse environment is

structured and how all its components interact between each other in order to provide

a stable and fully functional environment where to build a software. Then I describe

the two main frameworks my software is based on (Eclipse Modeling Framework

and Graphical Modeling Framework) that are the main important concepts to be

understood clearly.

3.1 Model-Driven Engineering

Approach to software development where models rather than programs

are the principal outputs of the development process.

I consider the one above a good definition of what a Model-Driven Engineering

(MDE) method signifies. Indeed, using this approach, it is possible to build a meta-

model that can actually be reused afterwards to build various different programs for

distinct aims.

The aim is to provide a meta-model that satisfies the requirements of a specific

domain application and then, develop programs with different features on top of the

meta-model. This results in code cheaper to maintain and adapt to new platforms

17

3. Design Choices

thanks to the generated code provided by an high level of abstraction.

The meta-model needs to “define the relationships among concepts in a domain

and precisely specify the key semantics and constraints associated with these domain

concepts” [19]; the developer can then use the elements of the meta-model building

his/her own application adapted to the needs and being sure that all the constraints

of the domain application are not violated.

3.1.1 Why the need of MDE

In the past, a lot of efforts have been made trying to obtain an higher level of

abstraction while developing software.

The first step has been done by the creation of the so-called computer-aided

software engineering (CASE) that allowed the developers to generate code by the use

of general-purpose graphical programming representations such as state machines

and data-flow diagrams [19]. At the time the current operating systems did not

provide the support for QoS (Quality of Service) properties such as fault tolerance

and security, consequently the generated code needed to face these problems and as a

result it was dramatically increasing in complexity. Of course the objective of these

tools was providing an approach to make the developing of a software easier and

more understandable by using graphical elements. Unfortunately, the use of CASE

implied also difficulty in the debugging and developing phase because the generated

code was too complex for the reason I just explained. Furthermore, CASE was based

on the generation of code starting from very simple graphical elements that began

to be insufficient to build a complex system.

Recently, further important progresses have been made in high-level program-

ming languages such as Java an C++ providing an higher abstraction level to the

developers.

The reuse of the huge amount of class libraries minimises the need to reinvent

middleware services like the ones I mentioned before (security and fault tolerance)

but it brings in the problem of maintenance of big systems. Developers indeed, are

too busy trying to understand APIs and platforms they are using because of their

18

3.2. Extensions and Extension Points

complexity given by the high interaction between all the software components of a

big system and they usually ends up ignoring some important issues such as the

correctness.

An MDE approach solves the problem of correctness thanks to the generated

code based on the meta-model.

3.1.2 How I used the Model-Driven Engineering approach

My project makes heavy use of this approach because the software is based on the

meta-model that ensures the correctness of all entities and constraints between them.

Therefore, thanks to MDE the software is correct by design and no violation in terms

of domain application inconsistency can be done when building an instance of the

environment/hypothesis description. In particular, thanks to the level of abstraction

given by MDE method, it is possible to build a graphical designer that represents

an intermediate step before the environment/hypothesis representation expressed in

Event-Calculus, and that it gives a more user-friendly interface.

All of this is done with the help of two important frameworks that I describe in

the next paragraphs, which work in the Eclipse environment and that heavily use

the concepts of extensions and extension points of Eclipse.

3.2 Extensions and Extension Points

“Eclipse is a good example of a modern component-based complex system that is

designed for long-term evolution, due to its architecture of reusable and extensible

components” [20]. The Eclipse environment works thanks to plugins; all of its com-

ponents are made up of plugins that are called extensions. All the extensions in

Eclipse need to have some features that other extensions can use to modify some-

how the functionalities of the plugin. In particular, within the Eclipse environment,

these features are called extension points and all the extensions need to provide

one or more of them. This is basically the most important characteristic of Eclipse

that gives a very high level of extensibility and maintainability to the software. Fig-

19

3. Design Choices

ure 3.1 shows three different plugins (extensions) using one or more functionalities

provided by the extension point of another plugin.

Figure 3.1: Extensions and Extension Point

Each plugin contains also a file called “plugin.xml” which declaratively states all

the extension points needed for that extension. An example of the case would be the

following:

<plugin >

<extension point="org.eclipse.emf.ecore.generated_

package">

<!-- @generated model -->

<package

uri="https :// github.com/lpasquale/kEEPER"

class="model.ModelPackage"

genModel ="model/model.genmodel"/>

</extension >

</plugin >

Inside the tag <extension> all of the extension points are stated. In the case

above the correspondent extension point to which the plugin is attached is “org.eclipse.emf.ecore.generated_package”.

The other tag <package> is only defining some attributes of the Java package of the

plugin.

20

3.3. Eclipse Modeling Framework (EMF)

3.2.1 How I used Extensions and Extension Points

In my project I created several extensions that interact between each others and

make the software works. In particular some of the extensions are used to make the

meta-model works, other ones are used to make the graphical designer works and

another one for the parsing of the instance of the meta-model into Event-Calculus

representation.

Thanks to this design choice I guarantee reusability within other Eclipse devel-

oping environments and an easy future extensibility.

3.3 Eclipse Modeling Framework (EMF)

The main important decision in terms of design has been made when I chose to

use the model-based framework called Eclipse Modeling Framework (EMF). “EMF

is a powerful framework and code generation facility for building Java applications

based on simple model definitions” [21]. It works within Eclipse and it heavily uses

the concept of extensions and extension points.

EMF generates code automatically based on the definition of the meta-model

which is defined by the developer. The meta-model is described in XMI (XML

Metadata Interchange) which is a proposed use of XML to exchange metadata and

in particular it fits perfectly for describing a model. EMF uses the XMI description

to build Java classes for the meta-model and it provides also adapters for command-

based editing functionalities in fact the creation/editing of an instance of the meta-

model is handled by commands in a stack that are being executed following a FIFO

policy.

In particular the description of the meta-model can be done using the hierarchical

visualisation provided by EMF or writing the code by hand and it is stored in the

*.ecore file. The next step is generating the *.gencode file that handles all the

settings for generating the Java classes of the meta-model.

After the code generation, EMF provides the developer with a total amount

of four plugins, all interacting between each others by extension points. The four

21

3. Design Choices

extensions created are the following:

• Model Plugin: all the Java entities are stored in this project. Here there are

all the classes that need to be instantiated in order to create an instance of the

meta-model.

• Edit Plugin: this plugin contains all the providers that can be used to show

the entities within a UI. They are very useful if used with GMF, the other

framework I use and that is described in the next paragraph.

• Editor Plugin: the editor extension provides basic editing functionalities for

the instance of the meta-model.

• Test Plugin: this fourth plugin provides all classes to easily create tests for

the software.

Figure 3.2: EMF Code Generation

The .ecore file describes the meta-model in XML. The basic more important

elements that is possible to define are EPackage, EClass, EEnum that correspond

to the classic Java Package, Class or Enum. In each EClass it is possible to define an

EAttribute, EReference or EOperation that correspond to the Java Attribute,

other Class Reference data structure, or Method. These are the main features you

can define in the .ecore file that are later translated into Java source code. The .ecore

file basically allows to build an instance of the “root” meta-model also called Ecore

meta-model. The figure 3.3 illustrates the complete Class Diagram of the Ecore

22

3.3. Eclipse Modeling Framework (EMF)

meta-model. The root node EObject basically represents the java.lang.Object class

of Java programming language.

Figure 3.3: Ecore Meta-Model

The .genmodel file instead, describes how the source code has to be generated. It

provides the platform specific information as opposed to the .ecore that is platform

independent. It is possible to configure which packages to use and how to display

the model structure.

3.3.1 How I used EMF

Thanks to EMF it is possible to automate the translation of the instance of the

meta-model into Event-Calculus obtaining a description of the environment with

no errors or violation of the domain application constraints. Down to the details

EMF automatically generates all the classes in Java, one for each element of the

environment and another extension (Editor plugin) that can be used to create an

instance of the meta-model.

23

3. Design Choices

3.4 Graphical Modeling Framework (GMF)

The Graphical Modeling Framework (GMF) is a framework working within Ec-

lipse and on top of EMF and it provides the developer with a graphical designer.

The graphical designer extends the Editor plugin generated by EMF and it builds

a designer based on the use of diagrams that helps the description of an instance of

the meta-model. The use of GMF is important to provide the user administrator

in charge of describing an instance, with a friendly user interface. Furthermore,

GMF uses GEF (Graphical Editing Framework) that is a framework for graphical

visualisation that is based on SWT from org.eclipse. When building a graphical

designer within GMF, it is important being able to manage different files proper of

the framework.

GMF works on different levels: from the definition of each graphical element to

the code generation, each of them is a very important aspect of the designer creation.

3.4.1 Appearance

The first thing to define is the look-and-feel of every element in the diagram.

This is done thanks to the descriptor file *.gmfgraph that, like the *.ecore file, can

be represented in a hierarchical structure.

A gmfgraph file describes the canvas of the diagram: all the figures that can be

dragged and dropped from the palette. In particular we distinguish some important

elements:

• Figure Gallery: it contains all the figure descriptors that can be associated

to images or general shapes.

• Figure Descriptor: it contains one figure that can be a regular shape (rect-

angle, line, circle, etc...), a vectorial image or a label.

• Figure: it describes the figure with all of its characteristics like vertices, edges,

length/width and so on. It can also be of type “Custom” in which case it has

to be modelled writing code by hand in an appropriate Java class.

24

3.4. Graphical Modeling Framework (GMF)

• Label: it describes the text associated to each figure and its relative position-

ing nearby the figure.

• Node: this is probably the most important part. This feature represents the

node in the diagram and it has to be linked to its Figure.

• Connection: it represents the link between nodes in the diagram.

• Diagram Label: the difference between this feature and the “Label” is essen-

tially the same as Figure-Node. The Label represents the text to show while

the Diagram Label specifies the element in the diagram. Besides, the diagram

label is needed to access the Label that is normally a child of Figure.

The figure 3.4 is an easy example with only the node “Person” of how this file can

be visualised and modified.

Figure 3.4: Hierarchical visualisation of a .gmfgraph file

3.4.2 Palette

After the look-and-feel, the palette is the second thing to be defined. The palette

is substantially a portion of the working screen from which it is possible to drag-

and-drop elements into the diagram. It is described by the file *.gmftool and, to be

edited, it can be done from the same hierarchical visualisation of the gmfgraph file.

All the important elements are the following:

• Palette: it is the root node and only one can be created.

• Tool Group: it puts together similar elements. The developer can choose

how to group the elements in the palette with this feature.

25

3. Design Choices

Figure 3.5: Hierarchical visualisation of a .gmftool file

• Creation Tool: it specifies the element that is possible to drop on the dia-

gram.

The figure 3.5 is an easy example of how this file can be visualised and modified.

3.4.3 Mapping process

The third and probably the most important step constitutes in putting together

all the previous elements within a mapping process. The ecore, gmfgraph and gmftool

files are considered together in this phase. This process is performed with the help

of another declarative file called *.gmfmap that considers each entity of the ecore

file together with its appearance specified in the gmfgraph file and its correspondent

element in the palette (gmftool). The mapping process is very important because

the output file is at the basis for the creation of the source code for the designer that

constructs the diagram. Figure 3.6 shows the mapping process schematically.

Figure 3.6: Mapping process graph

26

3.4. Graphical Modeling Framework (GMF)

Figure 3.7: Hierarchical visualisation of a .gmfmap file

For the mapping process to work, the meta-model needs to provide some global

data structures that contain all the entities of a specific type. These data structures

are of type “EList” and they work similar to a more common java list. All the

objects of each class created during the building of the diagram need to be stored in

a specific global EList.

The following are the main features that need to be set in a gmfmap file:

• Top Node Reference: it specifies which is the global EList that the Node

Mapping child element is referring to.

• Node Mapping: it basically puts together an entity from the meta-model in

the ecore file with the look-and-feel of the node in the diagram expressed in

the gmfgraph file and the palette element in the gmftool file. This is the core

of the whole mapping process.

• Feature Label Mapping: it associates the Diagram Label of the gmfgraph

file with a specific Java attribute of the entity mapped to the node in the

diagram (mapping that is done in the Node Mapping feature).

Figure 3.7 illustrates a very basic example of how the gmfmap file appears when

opened with the hierarchical visualisation.

When the mapping process has ended, a new Eclipse extension is automatically

generated that interacts with the other plugins created by EMF and provides the

user with a graphical interface thanks to which it is possible to build an instance of

the meta-model visually expressed by a customisable diagram.

27

3. Design Choices

3.4.4 Graphical designer extension

The final result, as I said before, is the generation of the source code of the

graphical designer. It constitutes another Eclipse extension that uses the meta-model

and the Edit EMF plugins.

The plugins come with ten Java packages, each of them including classes to

perform specific operations on the diagram. The most important are:

• *.diagram.edit.commands: each class of this package handles the command

for the creation of a specific node/connection of the diagram.

• *.diagram.edit.parts: each instance of a class of this package represents

each node/connection that belongs to the diagram. All the elements (node

or connection) in the diagram are always associated to their EditPart objects:

one per each element.

• *.diagram.edit.policies: the classes inside this package are in charge of hand-

ling the requests. All the operations (selection, resizing, moving) performed on

an EditPart object are handled as requests.

• *.diagram.navigator: the classes in this package are responsible for the open-

ing/closing of a diagram

• *.diagram.part: it contains the classes to manage the diagram (creation,

editing, loading of external resources)

• *.diagram.providers: all the classes in this package are useful to handle

the providers (part of the diagram workspace where it is possible to specify

the attributes of the elements in the diagram) of the nodes/connections of the

diagram.

In conclusion, what you obtain from the example I showed, is the most basic graphical

designer that it is possible to build with GMF and it is illustrated in the figure 3.8.

It represents the definition of an instance of the class Person.

28

3.4. Graphical Modeling Framework (GMF)

Figure 3.8: Basic graphical designer

3.4.5 How I used GMF

As it is easy to understand, The Graphical Modeling Framework helped me to

develop a graphical designer that is able to describe the environment and the incident

hypotheses with diagrams providing the user an easy-to-understand interface and

a large range of definition possibilities. The graphical designer, being an Eclipse

extension too, is easy to extend with other functionalities. In this case, as GMF

stores the created diagrams also in XMI, it was easy to create a new plugin that

parses the XMI files into Event-Calculus, providing finally a correct environment

and hypotheses definition to the tool kEEPER.

29

3. Design Choices

30

Chapter 4

Technical Solution

In this chapter I go down to the details of my software. In particular, I describe

the meta-model built within EMF and the plugins generated by GMF with the

manual changes I was obliged to make. At the end I describe the encoding Eclipse

plugin which has the important job of parsing the instances of the meta-model into

Event-Calculus.

4.1 The Meta-Model

The meta-model is at the basis of everything concerning this software and it

needs to be strong enough to provide a fully customisable graphical designer with

GMF.

The solution I propose is summarised by the Class Diagram in figure 4.1.

31

4. Technical Solution

Figure 4.1: kEEPER Meta-Model

The EMF Model Plugin contains all the Java classes of the meta-model and it is

composed by three packages: one for all the Java interfaces, a second one for all the

implementation classes and a last one that handles the adapters for the entities in

the second package. When an object needs to reference a list of other objects of the

meta-model, EMF provides a data structure called EList which functionalities are

similar to the common Java ArrayList.

4.1.1 Type and Instance

The first component of the meta-model surely is the Type-Instance relationship.

Both instance and type have a “name” attribute that needs to be set by the final

user.

Figure 4.2 shows how Type and Instance classes are related, in fact each instance

can have only one type reference. For example, common names for type and instance

could be “loc” and “r01” respectively that stand for “location” and the name of a room.

The Type class is extended by two different kind of Type classes: Agent and

Observer. It is important to have this split here to manage better the parameters of

32

4.1. The Meta-Model

the events later.

The Agent is a kind of type that normally performs an action while an Observer

type is somehow watching the action being performed.

Figure 4.2: Type and Instance Class Diagram

4.1.2 Context Relation

As for the Type and Instance classes, the Context Relation class has its Java

interface and its implementation class (see figure 4.3). In this case the attributes in

the meta-model that need also to be defined by the user are:

• Name: a unique name that identifies the context relation in the diagram.

• InitialComplexEvent: the event responsible of the activation of the context

relation.

• EndingComplexEvent: the event responsible of the deactivation of the con-

text relation.

• Types: an EList of the types that represent the parameters of the context

relation.

33

4. Technical Solution

Figure 4.3: Context Relation Class Diagram

4.1.3 Event

As described before, the events can be Primitive or Complex. Primitive events

are low-level actions like system calls, while complex events are human actions that

originate one or more primitive events. Each event (both primitive and complex)

needs some parameters specified by types, like the ones of a context relation. These

parameters, in the case of events, are classified into three different categories:

• Agent: the agent is who/what performs the action specified by the event.

• Observer: the observer is what/who observes the action (camera, NFC reader,

etc...) and it can be a parameter of only primitive events.

• General Type: all other parameters that have a role in the performance of

the action.

Technically, Primitive and Complex Event are two different classes that extend the

more general abstract class Event. The abstract class contains an EList of Gen-

eral Type storing the parameters of an event (Primitive or Complex), the Primitive

Event class contains a reference to the agent and the observer parameters, while the

Complex Event class contains a reference only to the agent parameter.

Furthermore, since each Complex Event class needs at least a Composite Defin-

ition that describes its behaviour along the time, there is another EList inside the

34

4.1. The Meta-Model

Complex Event class that stores all the Composite Definition objects (from now on

called Behavioural Description objects).

Figure 4.4: Event Class Diagram

4.1.4 Behavioural Description and Hypothesis

Behavioral Description and Hypothesis classes have the same structures because

they need the same attributes and references even though they have a different

semantic as explained in chapter 2.

Both have a name attribute that, for the Behavioural Description class, it needs

to be the same as the name of the complex event is describing and, for the Hypothesis,

it is a string composed by the letter “h” and a progressive number indicating the i-th

hypothesis. For instance: h1, h2, and so on.

Furthermore, they both contain three EList structures to store the three different

lists of predicates Happens, Holds At and Holds At Between objects.

The attribute timeInstants specifies the time window along which the predicate

happens/holds before the complex event.

The remaining attributes help specifying the user if he/she wants to, program-

matically create other behavioural descriptions with the same list of predicates but

with all the possible time combinations. For instance if there are two predicates that

happen/hold at two different time instants T1 and T2, then there are two different

35

4. Technical Solution

possible combinations and the algorithm would create two behavioural descriptions:

the first one with the first predicate happening/holding at the time instant T1 and

the second predicate happening/holding at the time instant T2, then the second

behavioural description with the same time instants but swapped.

In particular the semantic for each of the three remaining attributes is the fol-

lowing:

• any: it is a boolean and it activates the algorithm for the creation of all possible

behavioural descriptions.

• firstTimeInstant: it specifies the starting time instant the “any” algorithm

has to consider to create all the possible combinations.

• secondTimeInstant: it specifies the ending time instant the “any” algorithm

has to consider to create all the possible combinations.

Figures 5a and 5b illustrate the Class Diagram for Behavioural Description and

Hypothesis classes.

(a) Behavioural Description Class
Diagram (b) Hypothesis Class Diagram

Figure 4.5: Behavioural Description and Hypothesis Class Diagram

4.1.5 Predicates

The predicatesHappens, Holds At, Holds At Between have a correspondent

EClass and, consequently a Java Class.

36

4.1. The Meta-Model

To describe the predicates it is necessary that I first introduce how the dynamic

parameters work. The dynamic parameters are those ones that are instantiated

within a predicate and they are linked to a specific Type class object. It is important

to remark here that when an event/context relation is defined, it is associated with

specific types that constitute its parameters. In the events, these parameters can

be of type agent, observer and general type but in the case of context relations,

these parameters can only be of a general type. When a predicate is created, it is

necessary to instantiate the dynamic parameters (of the event/context relation) that

are linked to a type (agent, observer or general) in order to allow the definition of

different instances of parameters of the same type for an event/context relation.

This is the Event-Calculus representation of a Behavioural Description object

that explains better what I mean:

happens(login(E,C),T,TR):-

trace(TR),

emp(E),

comp(C),

loc(L),

emp(E2),

time(T),

happens(sys_Login(E,C),T,TR),

holdsAt(in(E2,L),T,TR),

holdsAt(isLocatedIn(C,L),T,TR),

holdsAt(hasPermission(E,C),T,TR).

What I want to point out from this example is that the user needs to have the

possibility to choose an already used parameter (in another predicate’s event/context

relation) for the predicate is defining or to define a new one. This is the case of the

two first predicates linked to the event “sys_Login” and to the context relation “in”:

they use two different parameters of the same type Employee: E, E2. That is the

reason why I use the concept of dynamic parameters which classes are instantiated

at the moment of the creation of a predicate.

37

4. Technical Solution

The figure 4.6 illustrates the Class Diagram of the predicates and the dynamic

parameters.

Figure 4.6: Predicates Class Diagram

All the predicates have an EList called “parameters” that store all the dynamic

parameters, then there is a reference to the Event/Context Relation object and

one/two integers to specify the time instant or time interval when the predicate is

true. For the “Holds At” and “Holds At Between” predicates there is also a boolean

attribute that specifies whether the predicate is holding at that time instant/interval.

Concerning the Parameter class (dynamic parameter), it is extended by the

three different kind already discussed and it has a reference to the type Agent/Ob-

server/General. Each dynamic parameter has also a name and an integer indicating

the relative position in the event/context relation. For instance in the event “is-

LocatedIn(C,L)” the parameter C has position 1 and the parameter L has position

2.

38

4.2. The Graphical Designer

4.1.6 Initially

Another part of the meta-model regards the Initially class. It has two attributes:

• contextRelation: it stores the Context Relation object that needs to be true

at the initial state.

• instances: it is an EList of instances that are considered as parameters of the

context relation.

Figure 4.7 illustrates the Initially Class Diagram.

Figure 4.7: Initially Class Diagram

4.2 The Graphical Designer

The graphical designer of the entire software is essentially composed by 6 Eclipse

extensions, all of them structured as described in paragraph 3.4.4.

This division into 6 extensions comes from the need of the creation of different

diagrams for describing the entire environment. Each graphical designer (extension)

models the definition of a diagram that describes only a part of the environment.

The division that I propose is the following:

• *.typeInstance.diagram: graphical designer for the definition of types and

instances.

• *.contextRelation.diagram: graphical designer for the definition of context

relations.

39

4. Technical Solution

• *.event.diagram: graphical designer for the definition of events.

• *.behavDesc.diagram: graphical designer for the definition of behavioural

descriptions and its predicates.

• *.hypothesis.diagram: graphical designer for the definition of the incident

hypotheses and its predicates.

• *.initial.diagram: graphical designer for the definition of the initial states.

Each of them collaborates to the total description of the environment. The final user,

in order to describe the whole environment needs to create six different diagrams

and thanks to GMF, it is possible to use elements in a diagram that were defined

previously in another one. This can be the case in the definition of an event when it

is mandatory defining some parameters that need to be associated to a Type object

that has been defined previously in the Type-Instance diagram.

All the diagrams come with a workspace made up of the diagram area, a palette

area and a property setting area at the bottom.

The final user should also start creating the diagrams in the same order I listed

the GMF extensions above because the definition of each diagram requires some

knowledge that only a diagram up on the list can provide.

GMF, as well as EMF, is a command-stack based platform that organises in a

FIFO policy queue all the creation/editing/elimination operations of elements in-

side the diagram. Thanks to the stack it is possible to handle various situations

such as undo and redo operations. GMF uses the abstract class of GEF library

“org.eclipse.gef.commands.Command”.

Several times, I adopted a programmatically creation of nodes into the diagram

to facilitate the user experience avoiding a manual operation. To do so, it was

important understanding how the Command class works within GEF and the result

is the method shown below.

40

4.2. The Graphical Designer

Listing 4.1: Command for the creation of a node

1 public Command createAndExecuteShapeRequestCommand (IElementType type , EditPart

parent) {

2 CreateViewRequest act ionRequest = CreateViewRequestFactory .

getCreateShapeRequest (type ,

3 Pre f e r ence sH int .USE_DEFAULTS) ;

4 org . e c l i p s e . g e f . commands .Command command = parent . getCommand(

act ionRequest) ;

5 command . execute () ;

6 return command ;

7 }

The method takes as input an EditPart object and the element type that refers

to an entity of the meta-model. It then creates a request (2) that is then used to

create a command (4) before the execution (5).

Now I describe all the listed above graphical designer GMF extensions in detail,

one for each paragraph.

4.2.1 Type and Instance GMF extension

The first graphical designer is kind of basic and it represents Type and Instance

objects in a concise way. From the right it is possible to drag-and-drop all the

elements to the diagram: Agent Type, Observer Type, General Type and Instance.

The picture 4.8 illustrates the case of three computers (m1, m2, m3) linked to their

correspondent type «comp» and an employee which name is Alice.

Figure 4.8: Type and Instance Diagram and Palette area

41

4. Technical Solution

4.2.2 Context Relation GMF extension

The second diagram to be defined is the one related to the Context Relation.

Each of them is represented as a unique node with the name attribute and the list of

types (parameters of the C.R.) shown. The only element to be dragged-and-dropped

from the palette is the Context Relation one and the attributes are modifiable from

the Property area after having loaded the resources of the Type-Instance diagram.

As I said before, most of the diagram in order to be created, they need to load

the elements from other diagrams. In this case the XMI file belonging to the Type-

Instance diagram need to be loaded because each Context Relation object needs a list

of parameters that are Type objects. It is possible to accomplish it within an EMF

feature that is activated from the context menu by right clicking on the diagram.

The example in figure 4.9 shows two nodes representing the two Context Relation

objects: “in”, “hasBadge”.

Figure 4.9: Context relation Diagram and Palette area

In the property area (figure 4.10) it is necessary to set a name, a list of parameters

and the activating/deactivating Complex Event object which determines when the

context relation is true. It is clear that it is possible to select the initial and ending

complex event only after having crated the events in the appropriate diagram.

42

4.2. The Graphical Designer

Figure 4.10: Context Relation Property area

4.2.3 Event GMF extension

The events use more complex graphical elements. There is a central node for the

definition of a Primitive Event object or a Complex Event object and a link between

an event node to each of its parameters.

Each parameter, that can be of type Agent, Observer or General has its own

graphical representation as the sub-figures 4.11 show.

(a) Primitive
Event Node

(b) Complex
Event Node

(c) Agent
parameter
Node

(d) Observer
parameter
Node

(e) General
Type para-
meter Node

Figure 4.11: Event Graphical Elements

The standard way to instantiate Event objects expects the user to choose first the

Primitive Event or Complex Event node and then to drag-and-drop the parameters

from the palette and load the Type-Instance external resource by right-clicking again

on the diagram. Then the third step is to link the event node to its parameter nodes

and once it is done, the last thing to set is the Type object for each parameter in the

43

4. Technical Solution

Property area. Putting these elements all together, the result is showed in the figure

4.12 which illustrates the definition of 5 Primitive Event objects and 1 Complex

Event object.

Figure 4.12: Event Diagram and Palette area

However, a better improvement has been done. When the user selects and adds

a Primitive Event node to the diagram, the two mandatory parameter nodes (Agent

and Observer) automatically appear with the two links connecting the parameters

to the event. The user, at this point only has to add other General Type parameters

if necessary and select the appropriate Type object from the property area.

The same thing happens if the user drags-and-drops a Complex Event node with

the exception that only the Agent node automatically appears connected to the event

node because it is the only mandatory one and a complex event does not accept any

observer.

The following is the code snippet related to the automatic creation of the Agent

node after the user drags-and-drops a Primitive Event node. The same holds for the

creation of an observer.

Listing 4.2: Agent creation source code

1 private void agentCreat ion () {

2 // Creat ing AgentReference

3 Command cmd = ed i t o r . createAndExecuteShapeRequestCommand (

44

4.2. The Graphical Designer

4 event . model . diagram . p rov ide r s . ModelElementTypes .

AgentReference_2016 , e d i t o r . getDiagramEditPart ()) ;

5 e d i t o r . getDiagramEditPart () . getDiagramEditDomain () . getDiagramCommandStack

() ;

6 // Creat ing and execu t ing the command to s e t the p r op e r t i e s

7 Co l l e c t i on <?> r e s u l t s = DiagramCommandStack . getReturnValues (cmd) ;

8 I t e r a t o r <?> i t e r = r e s u l t s . i t e r a t o r () ;

9 AgentReference newAgent = new AgentReferenceImpl () ;

10 while (i t e r . hasNext ()) {

11 Object obj = i t e r . next () ;

12 i f (obj instanceof CreateElementRequestAdapter) {

13 CreateElementRequestAdapter cra = (CreateElementRequestAdapter)

obj ;

14 newAgent = (AgentReferenceImpl) cra . r e s o l v e () ;

15 // Se t t i n g the AgentReference EReference o f the Pr imi t i ve Event

16 SetRequest setRequestAgent = new SetRequest (e d i t o r .

getEditingDomain () , view . getElement () ,

17 ModelPackage . eINSTANCE. getPrimitiveEvent_Agent () , newAgent

) ;

18 SetValueCommand agentOperat ion = new SetValueCommand(

setRequestAgent) ;

19 ed i t o r . getDiagramEditDomain () . getDiagramCommandStack () . execute (new

ICommandProxy(agentOperat ion)) ;

20 }

21 }

22 // Refresh the diagram (i t a l l ows to render the connect ion between the

Event and the Parameter)

23 Display . ge tDe fau l t () . asyncExec (new Runnable () {

24 public void run () {

25 ed i t o r . getDiagramEditPart () . addNoti fy () ;

26 }

27 }) ;

28 }

The method calls “createAndExecuteShapeRequestCommand()” that creates the

necessary command to perform the action. The command is then returned and it

is processed (7) to find out the reference to the new object. An instance of the

class “AgentReference” is found and it is stored as a reference in the Primitive Event

attribute “agent” within the execution of a new command (19).

Then, the diagram is refreshed and it automatically creates the link between the

45

4. Technical Solution

two nodes.

4.2.4 Behavioural Description and Hypothesis GMF extension

The user experience for the creation of a Behavioural Description/Hypothesis is

totally different. The Behavioural Description/Hypothesis graphical element aims

to describe the predicates distributed in a timeline, depending on when they hap-

pen/hold.

To create a new element in the diagram the first step to perform is taking the

unique element from the palette and move it into the diagram. Then it is necessary

to give a name to the behavioural description that must be the same as the complex

event that is describing. The other important step is setting the time window of the

object. These two operations must be performed in the property area at the bottom

of the diagram.

When these two preliminary operations are done, it is necessary to list all the

predicates and this is done by double-clicking on the object in the diagram. A guided

procedure will start that allows the user to select the predicate, the event/context

relation associated to it (from the ones he/she has previously defined) and the dy-

namic parameters: the user at this point can create new parameters or he/she can

choose from a list of already used ones if it is not the first predicate is creating.

The picture 4.13 refers to a Behavioural Description object that describes the

Complex Event “enter”. There are 2 “Happens” predicates (swipeCard, cctvAccess),

3 “Holds At” predicates (hasBadge, isAccessControlledBy, isMonitoredBy), 1 “Holds

At Between” predicate (in) distributed in 2 different time instants. The semantic of

this is that the Complex Event “enter” can happen if all those predicates in the two

time instants pictured in the image are true considering the event “enter” happening

at the second time instant. The predicate “Holds At Between” associated to the

context relation “in” must be false in both time instants in order for the event “enter”

to happen. In general, when a context relation associated to the predicates “Holds

At” and “Holds At Between” has be false, it appears with a red square/rectangle in

the image.

46

4.2. The Graphical Designer

Figure 4.13: Behavioural Description Diagram and Palette area

Creating a timeline like the one on the picture is not possible using the standard

GMF elements and that is why I needed to customise the figure that in this case is

described by a different class in a different package where all the custom figures are

stored.

The class (BehaviouralDescriptionFigure.java/HypothesisFigure.java) uses the

library org.eclipse.draw2d and in particular it extends the class org.eclipse.draw2d.Shape

that has the tools that helped me to obtain that result.

The creation of predicates and dynamic parameters is completely done program-

matically and it involves the use of commands and requests of GMF. The code snip-

pet below creates an “Happens” predicate and it handles the graphical windows that

guide the user choosing the predicate and dynamic parameters and all the process

involving the commands.

Listing 4.3: Happens predicate creation source code

1 private Happens happensSe lected () {

2 try {

3 // Parsing event f i l e

4 LoadEvents loadEvents = new LoadEvents (ed i tF i l e sPa th + "/ de f au l t .

eventModel ") ;

5 Display d i sp l ay = PlatformUI . getWorkbench () . ge tDi sp lay () ;

6 Sh e l l s h e l l = new She l l (d i sp l ay) ;

47

4. Technical Solution

7 Event ev = null ;

8 // Creat ing second d i a l o g to show the l i s t o f the a v a i l a b l e event s

9 CustomListDialog showEventsDialog = new CustomListDialog (null , new

LabelProvider ()) ;

10 St r ing [] eventsNameArray = new St r ing [loadEvents . getEnvironment () .

getEvents () . s i z e ()] ;

11 for (int i = 0 ; i < loadEvents . getEnvironment () . getEvents () . s i z e () ; i

++) {

12 eventsNameArray [i] = loadEvents . getEnvironment () . getEvents () . get (i

) . getName () ;

13 }

14 showEventsDialog . setElements (eventsNameArray) ;

15 showEventsDialog . s e tMu l t i p l e S e l e c t i o n (fa l se) ;

16 showEventsDialog . s e tT i t l e (" S e l e c t an event ") ;

17 // User pressed cance l

18 i f (showEventsDialog . open () != Window .OK) {

19 return null ;

20 }

21 St r ing eventSe l e c t ed = (St r ing) showEventsDialog . ge tResu l t () [0] ;

22 int index = 0 ;

23 do {

24 i f (even tSe l e c t ed . equa l s (loadEvents . getEnvironment () . getEvents () .

get (index) . getName ())) {

25 ev = loadEvents . getEnvironment () . getEvents () . get (index) ;

26 }

27 index++;

28 } while ((index < loadEvents . getEnvironment () . getEvents () . s i z e ()) &&

ev == null) ;

29 // Creat ing t h i r d d i a l o g where the user inpu t s the time in s t an t where

to p lace the event

30 int t imeSe l e c t i on = crea t eS ing l eT imeIns tant sD ia l og () ;

31 i f (t imeSe l e c t i on == −1)

32 return null ;

33 // Creat ing Happens

34 Command cmd = ed i t o r . createAndExecuteShapeRequestCommand (

35 behavDesc . model . diagram . p rov ide r s . ModelElementTypes . Happens_2002 ,

e d i t o r . getDiagramEditPart ()) ;

36 ed i t o r . getDiagramEditPart () . getDiagramEditDomain () .

getDiagramCommandStack () ;

37 // Creat ing and execu t ing the command to s e t the p r op e r t i e s

38 Co l l e c t i on <?> r e s u l t s = DiagramCommandStack . getReturnValues (cmd) ;

39 I t e r a t o r <?> i t e r = r e s u l t s . i t e r a t o r () ;

40 Happens newHappens = new HappensImpl () ;

48

4.2. The Graphical Designer

41 while (i t e r . hasNext ()) {

42 Object obj = i t e r . next () ;

43 i f (obj instanceof CreateElementRequestAdapter) {

44 CreateElementRequestAdapter cra = (CreateElementRequestAdapter

) obj ;

45 newHappens = (HappensImpl) cra . r e s o l v e () ;

46 // Se t t i n g the happens EReference o f the Behavioura l

Descr ip t ion

47 SetRequest setRequestHappens = new SetRequest (e d i t o r .

getEditingDomain () , view . getElement () ,

48 ModelPackage . eINSTANCE.

getBehaviouralDescr ipt ion_Happens () , newHappens) ;

49 SetValueCommand behavDescOperation = new SetValueCommand(

setRequestHappens) ;

50 ed i t o r . getDiagramEditDomain () . getDiagramCommandStack ()

51 . execute (new ICommandProxy(behavDescOperation)) ;

52 // Se t t i n g the proper ty o f Happens

53 SetRequest setRequestTimeInstant = new SetRequest (e d i t o r .

getEditingDomain () , newHappens ,

54 ModelPackage . eINSTANCE. getHappens_Time () ,

t imeSe l e c t i on) ;

55 SetValueCommand propertyOperat ion = new SetValueCommand(

setRequestTimeInstant) ;

56 ed i t o r . getDiagramEditDomain () . getDiagramCommandStack ()

57 . execute (new ICommandProxy(propertyOperat ion)) ;

58 }

59 }

60 // Looking f o r the event the user dec ided to a s s o c i a t e with the new ’

happens ’ p r ed i ca t e and s e t t i n g the proper ty

61 for (int i = 0 ; i < loadEvents . getEnvironment () . getEvents () . s i z e () ; i

++) {

62 i f (even tSe l e c t ed . equa l s (loadEvents . getEnvironment () . getEvents () .

get (i) . getName ())) {

63 SetRequest setRequestEvent = new SetRequest (e d i t o r .

getEditingDomain () , newHappens ,

64 ModelPackage . eINSTANCE. getHappens_Event () , loadEvents .

getEnvironment () . getEvents () . get (i)) ;

65 SetValueCommand operat i on = new SetValueCommand(

setRequestEvent) ;

66 ed i t o r . getDiagramEditDomain () . getDiagramCommandStack () . execute

(new ICommandProxy(opera t i on)) ;

67 }

68 }

49

4. Technical Solution

69 DynamicParametersDialog dpd = new DynamicParametersDialog (null , bd ,

newHappens , ed i to r , ed i tF i l e sPath ,

70 diagramFilePath) ;

71 i f (dpd . open () != Window .OK) {

72 DestroyElementRequest destroyRequest = new DestroyElementRequest (

e d i t o r . getEditingDomain () , newHappens ,

73 fa l se) ;

74 DestroyElementCommand dest roy = new DestroyElementCommand (

destroyRequest) ;

75 ed i t o r . getDiagramEditDomain () . getDiagramCommandStack () . execute (new

ICommandProxy(des t roy)) ;

76 return null ;

77 }

78 return newHappens ;

79 } catch (IOException e) {

80 e . pr intStackTrace () ;

81 }

82 return null ;

83 }

From the line 4 to the line 32 I use the library “org.eclipse.ui.dialogs” from Eclipse

API to let the user decides the predicate and the choice of the dynamic parameters

with some customised dialog windows. Then the usual method “createAndExecute-

ShapeRequestCommand()” generates and executes the command to create a new

instance of the predicate; finally the rest of the code sets the attributes of the new

predicate. At the end of this process a refresh on the diagram is performed and the

new element is rendered in the behavioural description node.

4.2.5 Initially GMF extension

The Initially element is described with a simple rectangle containing the name

of the entity at the top and a list of instances below. Figure 4.14 shows 2 Initially

nodes.

The user first needs to give a name writing it in the property area and he/she

has to choose the Context Relation object again from the property area after having

loaded the external resource corresponding to the Context Relation diagram. When

it is done, the last step is choosing the instances that have the same type of the

50

4.3. Encoding extension

Figure 4.14: Initially Diagram and Palette area

parameters of the Context Relation object selected before. This can be done by

double-clicking on the node in the diagram: again here an Eclipse dialog will show

up allowing the user to select only the instances that have the correct type.

4.3 Encoding extension

The encoding plugin is the last to be described. Its job is encoding the information

from the XMI files that describe an instance of the meta-model created thanks to the

graphical designer. As I also specified in the first chapter, kEEPER needs an Event-

Calculus description of the environment and the incident hypotheses so the objective

of this extension is providing a .txt file for the description of the environment in E.C.

and one .txt file per each incident hypothesis again written following the standard

of the Event-Calculus logical language.

It is possible to run this Eclipse plugin from the context menu by right-clicking on

the folder containing the diagram files in the Project Explorer of Eclipse and selecting

the “Gen Encoding” option. The algorithm will first validate some important aspects

of the instance the user created checking whether all the elements in the diagrams

have been set correctly and warning the user if not. If the validation is successful the

algorithm will proceed loading and parsing the files creating the new .txt files ready

to be taken as input from kEEPER that afterwards will generate the specifications.

The figure 4.15 shows the context menu where to run the encoding algorithm

from.

51

4. Technical Solution

Figure 4.15: Gen Encoding context menu function

52

Chapter 5

Evaluation

I divide this chapter into two main sections. In the first part I describe the three

case studies used to evaluate the graphical designer. A part of the first example has

been used in this thesis to motivate the need of a systematic approach that kEEPER

provides. The other two scenarios, as well as the motivating example, are inspired

by two existing digital forensic corpora. The second part is a discussion about what

I have done and which are the limitations of my work.

5.1 Case studies

The tool kEEPER has been tested with three different case studies to evaluate its

effectiveness and in particular to understand whether the synthesised preservation

specification prescribes to preserve the relevant events and the minimal amount

of events. Relevance and minimality are the two metrics of evaluation of the tool:

the former is assessed verifying whether the specification generated prescribes to pre-

serve events that were relevant to satisfy the speculative hypotheses while the latter

is assessed verifying that the approach used prescribes to preserve fewer events than

the ones that can be inferred directly from the data-set that the investigator would

use if the tool did not exist. The three case studies describe different possible en-

vironments where incidents can occur and I used the three of them to evaluate my

graphical designer understanding if it was possible to completely describe the envir-

53

5. Evaluation

onment and the incident hypotheses. It turns out that the graphical designer provides

all the necessary instruments to easily represent the environment and the incident

hypotheses correctly. In particular, I represented graphically the environment and

the hypotheses of the exfiltration scenario and the harassment scenario in 2.5 and 2

hours respectively against the 3.5 and 2 working days required. Screenshots of the

diagrams are provided for the first two examples. The Event-Calculus translation of

the environment and the incident hypotheses of the first two scenarios can be found

in the appendixes A and B.

5.1.1 Motivating Example

This example describes an incident of an environment within an enterprise and

involves a total of 7 types and 10 instances.

The types and the instances of the environment are depicted in the picture 5.1

that shows their graphical representation. They are two employees bob and alice,

a location r01, a camera cctv1, a reader nfc1, a file doc, a storage device usb1 and

three computers m1, m2, m3.

The context relations are 9 in total and they specify particular status of the

environment such as the location of a computer or which device is monitoring a

particular room. All the context relations are shown in figure 5.2.

The primitive events are 9 and they are shown in figure 5.3 while the complex

events are 7 and they are shown in figure 5.4. The primitive events describe some

atomic actions (system calls) from mounting a device in a computer or copying a

sensitive file into a device to the login or logout of an employee. The complex events

describe the more complex actions performed by an employee like entering or going

out of a location.

The events pre-conditions are described by the 8 behavioural descriptions shown

in figure 5.5. In particular, the events “enter” and “exit” need 3 behavioural de-

scriptions each because of the different pre-conditions expressed by the predicates.

For example the first two behavioural descriptions in the figure 5.5 have the same

predicates but holding in different time instants.

54

5.1. Case studies

Finally the description of the environment is concluded with the definition of its

initial state. The initial state of this example is expressed by 10 Initially objects that

are represented in the diagram as figure 5.6 shows. As it is possible to infer from

the picture, bob has permission to access the computers m1 and m2 and alice has

permission to access the computer m3 and m1. Both alice and bob have the badge

to enter the room r01 which access is monitored by the camera cctv1 and controlled

by the nfc device nfc1. The sensitive document doc is stored in the computer m1

that is located in the room r01.

The unique incident hypothesis of this scenario is pictured in figure 5.7 that

describes the copy of a sensitive document while an external device is mounted in a

computer.

Figure 5.1: Type and Instance Diagram for the Motivating Example

55

5. Evaluation

Figure 5.2: Context Relation Diagram for the Motivating Example

Figure 5.3: Primitive Event Diagram for the Motivating Example

56

5.1. Case studies

Figure 5.4: Complex Event Diagram for the Motivating Example

Figure 5.5: Behavioural Description Diagram for the Motivating Example

57

5. Evaluation

Figure 5.6: Initially Diagram for the Motivating Example

Figure 5.7: Hypothesis Diagram for the Motivating Example

58

5.1. Case studies

5.1.2 Exfiltration Scenario

This scenario involves the exfiltration of corporate documents from the laptop

of a senior executive. The company (M57.Biz) is a small start-up organisation and

it was the victim of the leak of sensitive information. These information regarded

names and salaries of the employees and they have been posted in the “comments”

section of the website of a competitor.

Types and instances describe computers, applications and the various email ad-

dresses that have a role in this scenario. They are shown in the sub-figures 5.8. The

context relations aim to describe who can access to the computers, who is in possess

of email addresses and which applications are classified as malware. They are 13

in total and they are shown in figure 5.9. The description of the scenario models

the sending and receiving of emails from/to internal and external email addresses

where internal addresses are to be intended of being corporate addresses and ex-

ternal are email accounts external to the organisation. These actions are described

by the events together with the system calls to the operating system that handle

the mounting of external devices, copying of files and installation of applications.

The complex events describe these actions as performed by the employees of the

organisation while the primitive events describe the accesses to the hard drive to

send/receive the emails. Primitive and complex events together are 32 in total and

they are shown in the sub-figures 5.10. The behavioural descriptions specify the

pre-conditions for the installation of applications, mounting of a device, login and

logout of employees and what need to happen before receiving or sending an email.

They are 20 in total and the correspondent diagram is illustrated in figure 5.11. The

initial state of the environment models the permissions of the employees to access

the computers. For instance, alison can access the computer m2 using her password

pwdAlison. Furthermore, the initial state describes that the application app1 is a

malware and that the sensitive document is m57plan that is stored in the computer

m1. There are 11 total Initially nodes in the diagram that is shown in figure 5.12.

In conclusion, 6 incident hypotheses regarding the sending and receiving of emails

of the sensitive document m57plan and the copying of the same file are described in

59

5. Evaluation

figure 5.13.

(a) Type and Instance Diagram for the Exfiltration Scenario

(b) Type and Instance Diagram for the Exfiltration Scenario

Figure 5.8: Type and Instance Diagram for the Exfiltration Scenario

60

5.1. Case studies

Figure 5.9: Context Relation Diagram for the Exfiltration Scenario

(a) Event Diagram for the Exfiltration Scenario

Figure 5.10: Event Diagram for the Exfiltration Scenario

61

5. Evaluation

(b) Event Diagram for the Exfiltration Scenario

(c) Event Diagram for the Exfiltration Scenario

Figure 5.10: Event Diagram for the Exfiltration Scenario

62

5.1. Case studies

(d) Event Diagram for the Exfiltration Scenario

Figure 5.10: Event Diagram for the Exfiltration Scenario

63

5. Evaluation

(a) Behavioural Description Diagram for the Exfiltration Scenario

(b) Behavioural Description Diagram for the Exfiltration Scenario

Figure 5.11: Behavioural Description Diagram for the Exfiltration Scenario

64

5.1. Case studies

(c) Behavioural Description Diagram for the Exfiltration Scenario

(d) Behavioural Description Diagram for the Exfiltration Scenario

Figure 5.11: Behavioural Description Diagram for the Exfiltration Scenario

65

5. Evaluation

Figure 5.12: Initially Diagram for the Exfiltration Scenario

Figure 5.13: Hypothesis Diagram for the Exfiltration Scenario

66

5.2. Discussion

5.1.3 Harassment Scenario

This scenario involves the Nitroba University and takes place in Summer 2008.

Lily Tuckrige, a teacher in the Chemistry Department of the university has been re-

ceiving harassing emails and she suspects that one student of hers is sending them all.

The environment involves the teacher, her students and a system administrator that

manages the local network of the university. The system administrator is provided

with the header of the emails received by the teacher. The header of the emails

show the sender IP address and thanks to this information, the system adminis-

trator understands that those messages are coming from the university dormitory.

Based on these information it is possible to formulate some incident hypotheses such

as the sending of emails to an academic email address from both internal or external

addresses. The environment and the incident hypotheses have been successfully de-

scribed with diagrams and encoded into Event-Calculus like the other two scenarios.

5.2 Discussion

The development of the graphical designer took exactly 5 months of work which

I did at the University College of Dublin. At my arrival at the beginning of March

I started to study the paper of Prof. Pasquale [4] that has been the main reference

of my work because it describes the approach of kEEPER. Then I made the first

version of the meta-model and I started to study EMF that thankfully was quite

well–documented with tutorials and examples. This first step towards the devel-

opment of the meta-model took a month and a half after which I already had the

generated Java source code that allowed me to start creating some instances of the

meta-model. At this stage I understood which were the modifications to make on the

meta-model before proceeding to develop the graphical designer with GMF. I began

working with the Graphical Modeling Framework at the end of April but the task

was not easy as learning EMF for the lack of documentation. GMF unfortunately

is not well-documented at the moment and the only way to understand it deeply

was browsing the source code and looking for information on the internet in forums

67

5. Evaluation

and blogs. There is also a small tutorial online which is useful to learn the basic

functionalities of the framework but if you want to fully customise your graphical

designer the only way to do that is having patience and a bit of time. The framework

is based on GEF, so learning how to use the Graphical Editing Framework was the

first step I performed. It took me a while to know enough about GMF but at the

end of May there was a first version of the graphical designer ready.

Not much of the generated code of EMF has been changed to accomplish my

purposes. I cannot say the same for GMF: a lot of adjustments have been made on

the source code. This task was time consuming because of the lack of documentation

and because some graphical elements had to be created from scratch since GMF does

not support a full customisation. For instance, I had to use custom figures that imply

writing code by hand and I also had to make the same changes in different classes

because the automatic generation of the code did not provide the customisation I

wanted. The graphical designer was ready at the beginning of August and now

kEEPER can benefit from it.

On my personal opinion EMF and GMF are two very powerful frameworks that

allow the developer to make graphical designers for specific domain applications

saving some time. In particular, it is clear that building meta-models with EMF

saves a lot of time. Regarding GMF, it should have an official documentation and

it should have some improvements on the possible customisations of the generated

source code but I think that writing the code from scratch would have been more

time consuming.

However I achieved the initial goals of my thesis which were solving the previous

limitations of usability, correctness and reusability of kEEPER. At the end of the

project I can also say that there are currently two main limitations that could be

overcome in future works.

When the user has to define the Behavioural Description objects and he/she

wants to define several ones, each one representing a possible combinations in terms

of time instants of the predicates, the graphical designer requires him/her to add to

the diagram a number of nodes equals to the number of those possible combinations.

68

5.2. Discussion

This is quite a long task for the user that needs to create and set all the properties

of the nodes manually but it is easy to overcome with an algorithm that would allow

the user to create and set only one node in the diagram. Currently the graphical

representation of such node exists but the algorithm needs to be implemented.

At the moment, when the user wants to create the Behavioural Description dia-

gram and the Initially diagram, and in particular, when he/she sets the references

to the objects of other diagrams, a guided procedure shows up in a dialog window

and the user needs to follow it. It would be way better if the user had the possibility

to perform such actions directly from the property area of each diagram without the

use of any dialog. This is a challenging improvements because it requires a deep

knowledge of EMF since it is not possible to generate the required source code and

the developer needs to manually change it after the automatic generation.

69

5. Evaluation

70

Chapter 6

State of the Art

In the literature there are no implemented approaches to build forensic-ready sys-

tems. For this reason my State of the Art cannot be based on comparing graphical

designers for engineering forensic-ready systems. I divide this chapter into two sec-

tions. In the first part I describe an approach that aims to define a specific language

format to describe digital evidence files useful for the digital forensic investigation.

Then, I compare the approach to mine describing the common features.

In the second part I describe other forensic readiness approaches that are present

in the literature.

6.1 Derric Domain-Specific Language

Derric is a domain specific language (DSL) for declaratively specifying data struc-

tures. In digital forensics, since a large quantities of data from different sources has

to be analysed, there is the need of declaratively specifying a unique data format

that can be used to model different digital evidences. This allows a separation of

tasks between data description and data analysis.

A Derric description contains information about a particular file that constitutes

the digital evidence. It normally provides some details about the length of a specific

section of the digital evidence file, the version of the file or it indicates what to do

in case of one or more fragments of the file got deleted or destroyed. Evidences

71

6. State of the Art

that have different sources and that are stored in different file formats (for instance

PNG and JPEG files) can now have the same description formats. This is important

because, most of the time, the files that constitute digital evidence are damaged and

fragmented. Therefore, given the description of the files in Derric, it is possible to

recollect the relevant data for the investigation thanks to the guides provided by this

description.

The recollection, referred in the paper as the “Matching” process, is done by

implemented Java classes that also reassemble those files that have been fragmented.

The Java classes are generated automatically starting from the Derric specifications.

The combination of both the use of the domain specific-language Derric and the

code generator can be referred to as Model-Driven Engineering approach that is the

same approach that I use to build my graphical designer. In particular, I use this

approach twice when I build the meta-model to describe environment and hypotheses

and when I build the graphical designer to describe the graphical elements that I use

in the diagrams.

Both Derric and my work fit into the workflow of a digital forensics investigator.

Therefore the two approaches are comparable: kEEPER graphical designer aims to

describe the environment and the incident hypotheses that may occur within the

environment in a standard way, while Derric aims to describe the digital evidence

that comes from different digital sources in a standard way too. kEEPER starts from

the definition of the environment and incident hypotheses done with the graphical

designer and these data is then processed to prescribe the preservation specifica-

tions; the definition of digital evidence with Derric is also then processed for data

recollection.

The table 7.1 summarises the differences between my work and the above de-

scribed DSL Derric.

Both the graphical designer I developed and Derric have a role in the digital

investigation: my work is a graphical designer for kEEPER that aims to prescribe

preservation specifications and Derric aims to recollect data from different digital

sources. They are both based on the Model-Drive Engineering approach: my work is

72

6.2. Forensic Readiness approaches

Fit into the
investigation

process

Model-
Driven

Engineering

What does
it describe? Aims

My work X
DSLs +
Code

Generators

Environment
+

Hypotheses

Preservation
Specifica-

tions

Derric X DSL Digital
Evidence

Data
Recollection

Table 6.1: Comparisons between Derric and my work

based on the use of two different domain-specific languages to describe environment

and incident hypotheses, one for the definition of the meta-model and another one

for the graphical designer, Derric instead is a domain-specific language to describe

digital evidence.

6.2 Forensic Readiness approaches

A lot of different approaches have been described by researchers to achieve

forensic readiness along the lines of implementing policies and processes, aligning

systems wth forensics objectives and the training of employees [22].

Policies indicate what needs to be done to achieve forensic readiness in an organ-

isation. In the paper of Barske et al. [23] it is stated that, to ensure digital forensic

readiness, there is the need of putting in place a minimum of 9 different policies.

These policies describe how the information systems of the organisation have to be

monitored, how and what data needs to be preserved including regulations on the

amount of time that these data will be retained, how and in which circumstances the

digital evidence can be used in the investigation and when it is important to start

an investigation.

Processes are also quite important: Tan in his paper [24] says that the processes

of collecting the logs (what is logged and how) is crucial and they need to be defined.

For instance, an investigation of 80 hours can be done in half hour if the timestamp

of a particular action is logged correctly. Tan also defines the processes of forensic

acquisition (for instance which disk has to be used to store the data) and evidence

73

6. State of the Art

handling (for instance who has access to the evidence).

Grobler and Louwrens, suggest instead the use of a digital evidence management

system that organise all the digital evidence in such a way that the data retained

needs to be accessible and all the meta-data (authors, date) need to be stored together

with the evidence [25].

The employees of an organisation need to be trained so that they understand

the role that they would have in case of an incident happens [6]. Rowlingson says

that all the workers need to note dates, times and signatures of all the tasks being

performed in each working day. He adds that the reports only need to be seen by

the necessary people that are only the involved ones in that particular task.

An important approach that has been proposed by researchers in the past few

years is known as “forensic-by-design” that consists in integrating forensic tools at

design time. For instance Mink et al. [26] discuss the possibility of integrating

forensic-ready principles in a next generation aircraft system. They conclude that,

such principles should be integrated at design time. Another research on a cyber-

physical cloud system has been conducted stating that such a system would benefit

if built using a conceptual forensic-by-design framework discussed in the paper [27].

The framework takes into consideration important aspects regarding the resources

an organisation has to use to face potential threats and risks and the local laws and

regulations on evidence requirements that might change between different places.

74

Conclusion

In this thesis I described the graphical designer that has been developed to sup-

port the development of forensic-ready systems. In particular, the graphical designer

facilitates the description of the environment and the hypotheses of potential in-

cidents. These are taken as input by the kEEPER tool to automatically generate

preservation specifications. These specifications prescribe a designated software com-

ponent, the Forensic Readiness Controller, to preserve data received from the digital

sources available in the environment, because they might be relevant to investigate

potential incidents. I used the approach of Model-Driven Engineering (MDE) that

allowed my software to be built on a meta-model. The graphical designer has been

developed using two frameworks that are part of the Eclipse projects: EMF to create

the meta-model and GMF to associate a graphical representation to the meta-model.

The use of EMF and GMF allowed me to overcome some of the current limitations

of the kEEPER tool. The usability has been improved thanks to the graphical de-

signer that allows the user to create an instance of the meta-model within diagrams.

The presence of the meta-model ensures correctness of the description of the envir-

onment and the incident hypotheses. Eventually, it is possible to adapt the entire

environment description in the future to different circumstances just by changing the

meta-model a bit and it is easy to extend the functionalities of the graphical designer

because it is made up of different plugins.

To evaluate my approach I have used the graphical designer to model the envir-

onment and hypotheses related to two incident scenarios described in existing digital

corpora available publicly. The graphical designer offered a general interface allowing

to model different incident scenarios related to different environmental domains.

75

Conclusion

Future work will be aimed to further improve the "look-and-feel" of the graphical

designer by, for example, using custom figures to represent the elements defined in

the environment and the incident hypotheses.

I will also support the automated generation of all possible orderings of events

and context relations in a composite definition. This will avoid the user to specify

all possible orderings of events and context relations that can trigger a composite

event.

Finally, I will work on the execution of a rigorous user study to assess exper-

imentally the usability of the graphical designer and identify limitations emerging

from the users’ interaction.

76

Bibliography

[1] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges. IEEE

Personal communications, 8(4):10–17, 2001.

[2] Tim Grance, Karen Kent, and Brian Kim. Computer security incident handling

guide. NIST Special Publication, 800:61, 2004.

[3] Robert M Lee, Michael J Assante, and Tim Conway. German steel mill cyber

attack. Industrial Control Systems, 30, 2014.

[4] Dalal Alrajeh, Liliana Pasquale, and Bashar Nuseibeh. On evidence preservation

requirements for forensic-ready systems. In Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, pages 559–569. ACM, 2017.

[5] Dauda Sule. Importance of forensic readiness. 1, 2014.

[6] Robert Rowlingson. A ten step process for forensic readiness. International

Journal of Digital Evidence, 2(3):1–28, 2004.

[7] Simson L Garfinkel. Digital forensics research: The next 10 years. digital inves-

tigation, 7:S64–S73, 2010.

[8] Barbara Endicott-Popovsky, Deborah A Frincke, and Carol A Taylor. A theo-

retical framework for organizational network forensic readiness. JCP, 2(3):1–11,

2007.

[9] Sopra Group/ISID. Forensics readiness guidelines. NICS, 2011.

[10] Brian Carrier, Eugene H Spafford, et al. Getting physical with the digital

investigation process. International Journal of digital evidence, 2(2):1–20, 2003.

77

Bibliography

[11] Zhi-Yan Xu, Yan-Pu Zhang, and Yu-Qiang Chen. The design and implemen-

tation of the mobile facility communication software based on plug-in. In Pro-

ceedings of the 2012 International Conference on Communication, Electronics

and Automation Engineering, pages 821–827. Springer, 2013.

[12] Nitroba university harassment scenario, 2017.

[13] M57-jean, 2017.

[14] C. Falk F.P Buchholz. Design and implementation of zeitline: a forensic timeline

editor. 2005. In Proc. of the Digital Forensics Research Workshop.

[15] Kamil Reddy and Hein S Venter. The architecture of a digital forensic readiness

management system. Computers & security, 32:73–89, 2013.

[16] Clay Shields, Ophir Frieder, and Mark Maloof. A system for the proactive, con-

tinuous, and efficient collection of digital forensic evidence. digital investigation,

8:S3–S13, 2011.

[17] Liliana Pasquale, Sorren Hanvey, Mark Mcgloin, and Bashar Nuseibeh. Adaptive

evidence collection in the cloud using attack scenarios. Computers & Security,

59:236–254, 2016.

[18] Murray Shanahan. The event calculus explained. In Artificial intelligence today,

pages 409–430. Springer, 1999.

[19] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-

PUTER SOCIETY-, 39(2):25, 2006.

[20] Michel Wermelinger and Yijun Yu. Analyzing the evolution of eclipse plugins.

In Proceedings of the 2008 international working conference on Mining software

repositories, pages 133–136. ACM, 2008.

[21] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:

eclipse modeling framework. Pearson Education, 2008.

78

Bibliography

[22] George Grispos, Jesus Garcia-Galan, Liliana Pasquale, and Bashar Nuseibeh.

Are you ready? towards the engineering of forensic-ready systems. arXiv

preprint arXiv:1705.03250, 2017.

[23] David Barske, Adrie Stander, and Jason Jordaan. A digital forensic readiness

framework for south african sme’s. In Information Security for South Africa

(ISSA), 2010, pages 1–6. IEEE, 2010.

[24] John Tan. Forensic readiness. Cambridge, MA:@ Stake, pages 1–23, 2001.

[25] Cornelia P Grobler and CP Louwrens. Digital forensic readiness as a component

of information security best practice. In IFIP International Information Security

Conference, pages 13–24. Springer, 2007.

[26] Dustin Mink, Alec Yasinsac, Kim-Kwang Raymond Choo, and William Glisson.

Next generation aircraft architecture and digital forensic. 2016.

[27] Nurul Hidayah Ab Rahman, William Bradley Glisson, Yanjiang Yang, and Kim-

Kwang Raymond Choo. Forensic-by-design framework for cyber-physical cloud

systems. IEEE Cloud Computing, 3(1):50–59, 2016.

79

Bibliography

80

Appendix A

Motivating Example

Listing A.1: Event-Calculus description of the environment of the Motivating Ex-

ample

1 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Environment Desc r ip t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2

3 % ∗∗∗∗∗∗∗∗∗ Context Desc r ip t i on ∗∗∗∗∗∗∗∗∗

4

5 % ∗∗∗∗∗ Types and In s tance s ∗∗∗∗∗

6

7 % Room r01 i s a l o c a t i o n

8 l o c (r01) .

9

10 % cctv1 i s a cctv camera

11 cam(cctv1) .

12

13 % nfc1 i s a n f s reader

14 read (nfc1) .

15

16 % m1, m2 and m3 are computers

17 comp(m1;m2;m3) .

18

19 % doc i s a f i l e

20 f i (doc) .

21

22 % a l i c e and bob are employees

23 emp(a l i c e ; bob) .

24

25 % usb1 i s an ex t e rna l s t o rage dev i c e

81

A. Motivating Example

26 s t (usb1) .

27

28 % ∗∗∗∗∗ Context Re la t i ons ∗∗∗∗∗

29

30 % A l o c a t i o n i s acces s−c on t r o l l e d by a nfc reader

31

32 f l u e n t (i sAcces sContro l l edBy (L ,R)) :−

33 l o c (L) , read (R) .

34

35 % A l o c a t i o n i s s u r v e i l l e d by a camera

36

37 f l u e n t (isMonitoredBy (L ,C)) :−

38 l o c (L) , cam(C) .

39

40 %A desktop i s in a s p e c i f i c l o c a t i o n

41

42 f l u e n t (i sLocated In (C,L)) :−

43 comp(C) , l o c (L) .

44

45 % An employee i s in a l o c a t i o n

46

47 f l u e n t (in (E,L)) :−

48 emp(E) , l o c (L) .

49

50 % An employee i s logged to a machine

51

52 f l u e n t (logged (E,C)) :−

53 emp(E) , comp(C) .

54

55

56 % An employee has a badge to a c c e s s to a s p e c i f i c l o c a t i o n

57

58 f l u e n t (hasBadge (E,L)) :−

59 emp(E) , l o c (L) .

60

61 % An employee has the permis s ion to log to a machine

62

63 f l u e n t (hasPermiss ion (E,C)) :−

64 emp(E) , comp(C) .

65

66 % A f i l e i s s to r ed on a machine

67

68 f l u e n t (i s S t o r ed In (F ,C)) :−

82

69 f i (F) , comp(C) .

70

71 % A sto rage dev i ce i s mounted on a computer by an employee

72

73 f l u e n t (mounted (S ,C)) :−

74 s t (S) , comp(C) .

75

76

77 % ∗∗∗∗∗∗∗∗∗ Behaviour Desc r ip t i on ∗∗∗∗∗∗∗∗∗

78

79 % ∗∗∗∗∗ Pr imi t ive Events ∗∗∗∗∗

80

81 event (V) :−

82 pe (V) .

83

84 % A sto rage dev i ce i s mounted s e v e r a l t imes on a computer

85

86 pe (highMountCounts (S , C)) :−

87 s t (S) , comp(C) .

88

89 % A system log i n d i c a t e s that a f i l e s to r ed on a computer i s cop ied by an

employee

90

91 pe (sys_copy (E, F , C)) :−

92 emp(E) , f i (F) , comp(C) .

93

94 % A system log i n d i c a t e s that a s to rage dev i c e i s mounted on a computer

95

96 pe (sys_Mount (S , C)) :−

97 s t (S) , comp(C) .

98

99 % A system log i n d i c a t e s that a s to rage dev i c e i s unmounted from a computer

100

101 pe (sys_Unmount (S , C)) :−

102 s t (S) , comp(C) .

103

104 % A system log i n d i c a t e s that an employee performed the l o g i n to a computer

105

106 pe (sys_Login (E, C)) :−

107 emp(E) , comp(C) .

108

109 % A system log i n d i c a t e s that an employee performed the logout from a computer

110

83

A. Motivating Example

111 pe (sys_Logout (E, C)) :−

112 emp(E) , comp(C) .

113

114 % A nfc reader i s read ing a card tag a s s o c i a t ed with an employee

115

116 pe (swipeCard (E, R)) :−

117 emp(E) , read (R) .

118

119 % A camera r e co rd ing i n d i c a t e s an employee a c c e s s i n g a l o c a t i o n

120

121 pe (cctvAccess (E, L , C)) :−

122 emp(E) , l o c (L) , cam(C) .

123

124 % A camera r e co rd ing i n d i c a t e s an employee e x i t i n g a l o c a t i o n

125

126 pe (cctvExi t (E, L , C)) :−

127 emp(E) , l o c (L) , cam(C) .

128

129

130 % ∗∗∗∗∗ Complex Events ∗∗∗∗∗

131

132 event (V) :−

133 ce (V) .

134

135 %An employee en t e r s in a l o c a t i o n

136

137 ce (ente r (E,L)) :−

138 emp(E) , l o c (L) .

139

140 %An employee e x i t s from a l o c a t i o n

141

142 ce (e x i t (E,L)) :−

143 emp(E) , l o c (L) .

144

145

146 %An employee mounts a s to rage dev i c e on a computer

147

148 ce (mount (S ,C)) :−

149 s t (S) , comp(C) .

150

151 %An employee unmounts a s to rage dev i ce from a computer

152

153 ce (unMount(S ,C)) :−

84

154 s t (S) , comp(C) .

155

156 %An employee l o g i n s to a computer

157

158 ce (l o g i n (E,C)) :−

159 emp(E) , comp(C) .

160

161 %An employee l ogout s from a computer

162

163 ce (logout (E,C)) :−

164 emp(E) , comp(C) .

165

166 %An employee cop i e s a f i l e on a computer

167

168 ce (copy (E,F ,C)) :−

169 emp(E) , f i (F) , comp(C) .

170

171

172 % ∗∗∗∗∗ Composite De f i n i t i o n s ∗∗∗∗∗

173

174 % An employee en t e r s a l o c a t i o n i f , while she i s ou t s id e the l o ca t i on ,

175 % she swipes her card on the n fc reader c o n t r o l l i n g a c c e s s to the l o c a t i o n and

subsequent ly

176 % a cctv r e co rd s her a c c e s s to the l o c a t i o n .

177

178 happens (ente r (E,L) ,T2 ,TR) :−

179 t r a c e (TR) ,

180 emp(E) ,

181 l o c (L) ,

182 cam(C) ,

183 read (R) ,

184 time (T1) ,

185 time (T2) ,

186 T1<T2 ,

187 holdsAt (hasBadge (E,L) ,T1 ,TR) ,

188 happens (swipeCard (E,R) ,T1 ,TR) ,

189 holdsAt (i sAcces sContro l l edBy (L ,R) ,T2 ,TR) ,

190 happens (cctvAccess (E,L ,C) ,T2 ,TR) ,

191 holdsAt (isMonitoredBy (L ,C) ,T2 ,TR) ,

192 neg_holdsAt_between (T1 , in (E,L) ,T2 ,TR) .

193

194

195 % An employee en t e r s a l o c a t i o n i f , while she i s ou t s id e the l o ca t i on ,

85

A. Motivating Example

196 % a cctv r e co rd s her a c c e s s to the l o c a t i o n and subsequent ly

197 % she swipes her card on the n fc reader c o n t r o l l i n g a c c e s s to the l o c a t i o n .

198

199 happens (ente r (E,L) ,T2 ,TR) :−

200 t r a c e (TR) ,

201 emp(E) ,

202 l o c (L) ,

203 cam(C) ,

204 read (R) ,

205 time (T1) ,

206 time (T2) ,

207 T1<T2 ,

208 holdsAt (hasBadge (E,L) ,T2 ,TR) ,

209 happens (swipeCard (E,R) ,T2 ,TR) ,

210 holdsAt (i sAcces sContro l l edBy (L ,R) ,T1 ,TR) ,

211 happens (cctvAccess (E,L ,C) ,T1 ,TR) ,

212 holdsAt (isMonitoredBy (L ,C) ,T1 ,TR) ,

213 neg_holdsAt_between (T1 , in (E,L) ,T2 ,TR) .

214

215

216 % An employee en t e r s a l o c a t i o n i f , while she i s ou t s id e the l o ca t i on ,

217 % a cctv r e co rd s her a c c e s s to the l o c a t i o n and at the same time

218 % she swipes her card on the n fc reader c o n t r o l l i n g a c c e s s to the l o c a t i o n .

219

220 happens (ente r (E,L) ,T2 ,TR) :−

221 t r a c e (TR) ,

222 emp(E) ,

223 l o c (L) ,

224 cam(C) ,

225 read (R) ,

226 time (T1) ,

227 time (T2) ,

228 T1==T2 ,

229 holdsAt (hasBadge (E,L) ,T2 ,TR) ,

230 not holdsAt (in (E,L) ,T2 ,TR) ,

231 happens (swipeCard (E,R) ,T2 ,TR) ,

232 holdsAt (i sAcces sContro l l edBy (L ,R) ,T1 ,TR) ,

233 happens (cctvAccess (E,L ,C) ,T1 ,TR) ,

234 holdsAt (isMonitoredBy (L ,C) ,T1 ,TR) .

235

236

237 % An employee e x i t s a l o c a t i o n i f , while she i s i n s i d e the l o ca t i on ,

86

238 % she swipes her card on the n fc reader c o n t r o l l i n g a c c e s s to the l o c a t i o n and

subsequent ly

239 % a cctv r e co rd s her a c c e s s to the l o c a t i o n .

240

241 happens (e x i t (E,L) ,T2 ,TR) :−

242 t r a c e (TR) ,

243 emp(E) ,

244 l o c (L) ,

245 time (T1) ,

246 time (T2) ,

247 read (R) ,

248 cam(C) ,

249 T1<T2 ,

250 holdsAt (hasBadge (E,L) ,T1 ,TR) ,

251 happens (swipeCard (E,R) ,T1 ,TR) ,

252 holdsAt (i sAcces sContro l l edBy (L ,R) ,T2 ,TR) ,

253 happens (cc tvExi t (E,L ,C) ,T2 ,TR) ,

254 holdsAt (isMonitoredBy (L ,C) ,T2 ,TR) ,

255 holdsAt_between (T1 , in (E,L) ,T2 ,TR) .

256

257

258 % An employee e x i t s a l o c a t i o n i f , while she i s i n s i d e the l o ca t i on ,

259 % a cctv r e co rd s her e x i t from the l o c a t i o n and subsequent ly

260 % she swipes her card on the n fc reader c o n t r o l l i n g a c c e s s to the l o c a t i o n .

261

262 happens (e x i t (E,L) ,T2 ,TR) :−

263 t r a c e (TR) ,

264 emp(E) ,

265 l o c (L) ,

266 time (T1) ,

267 time (T2) ,

268 read (R) ,

269 cam(C) ,

270 T1<T2 ,

271 holdsAt (hasBadge (E,L) ,T2 ,TR) ,

272 happens (swipeCard (E,R) ,T2 ,TR) ,

273 holdsAt (i sAcces sContro l l edBy (L ,R) ,T1 ,TR) ,

274 happens (cc tvExi t (E,L ,C) ,T1 ,TR) ,

275 holdsAt (isMonitoredBy (L ,C) ,T1 ,TR) ,

276 holdsAt_between (T1 , in (E,L) ,T2 ,TR) .

277

278

279 % An employee e x i t s a l o c a t i o n i f , while she i s i n s i d e the l o ca t i on ,

87

A. Motivating Example

280 % a cctv r e co rd s her e x i t from the l o c a t i o n and at the same time

281 % she swipes her card on the n fc reader c o n t r o l l i n g a c c e s s to the l o c a t i o n .

282

283 happens (e x i t (E,L) ,T2 ,TR) :−

284 t r a c e (TR) ,

285 emp(E) ,

286 l o c (L) ,

287 time (T1) ,

288 time (T2) ,

289 read (R) ,

290 cam(C) ,

291 T1==T2 ,

292 holdsAt (hasBadge (E,L) ,T2 ,TR) ,

293 holdsAt (in (E,L) ,T2 ,TR) ,

294 happens (swipeCard (E,R) ,T2 ,TR) ,

295 holdsAt (i sAcces sContro l l edBy (L ,R) ,T1 ,TR) ,

296 happens (cc tvExi t (E,L ,C) ,T1 ,TR) ,

297 holdsAt (isMonitoredBy (L ,C) ,T1 ,TR) .

298

299 % An employee l o g i n s to a computer i f the system log o f the computer i n d i c a t e s

that

300 % the employee has performed the l o g i n and she i s author i s ed to a c c e s s the

computer ,

301 % and there i s at l e a s t an employee in the l o c a t i o n where the computer i s

p laced .

302

303 happens (l o g i n (E,C) ,T,TR) :−

304 t r a c e (TR) ,

305 emp(E) ,

306 comp(C) ,

307 l o c (L) ,

308 time (T) ,

309 happens (sys_Login (E,C) ,T,TR) ,

310 emp(E2) ,

311 holdsAt (in (E2 ,L) ,T,TR) ,

312 holdsAt (i sLocated In (C,L) ,T,TR) ,

313 holdsAt (hasPermiss ion (E,C) ,T,TR) .

314

315 % An employee l ogout s from a computer i f she i s logged on the computer and

316 % the system log o f the computer i n d i c a t e s that

317 % the employee has performed the logout

318

319 happens (logout (E,C) ,T,TR) :−

88

320 t r a c e (TR) ,

321 emp(E) ,

322 comp(C) ,

323 time (T) ,

324 happens (sys_Logout (E,C) ,T,TR) ,

325 holdsAt (logged (E,C) ,T,TR) .

326

327 % A sto rage dev i c e i s mounted on a computer i f i t i s c u r r en t l y not mounted ,

328 % the system log o f the computer i n d i c a t e s that the dev i c e i s mounted

329 % and there i s an employee logged on the computer

330

331 happens (mount (S ,C) ,T,TR) :−

332 t r a c e (TR) ,

333 time (T) , comp(C) , s t (S) , emp(E) ,

334 happens (sys_Mount (S ,C) ,T,TR) ,

335 not holdsAt (mounted (S ,C) ,T,TR) ,

336 holdsAt (logged (E,C) ,T,TR) .

337

338 % A sto rage dev i c e i s unmounted from a computer i f i t i s c u r r en t l y mounted ,

339 % and the system log o f the computer i n d i c a t e s that the dev i c e i s unmounted

340

341 happens (unMount(S ,C) ,T,TR) :−

342 t r a c e (TR) ,

343 time (T) , comp(C) , s t (S) ,

344 happens (sys_Unmount (S ,C) ,T,TR) ,

345 holdsAt (mounted (S ,C) ,T,TR) .

346

347 % A f i l e i s cop ied on a computer by an employee i f

348 % the system log o f the computer i n d i c a t e s that the f i l e was copied ,

349 % the f i l e i s s to r ed on the computer ,

350 % and the employee i s logged to the computer .

351

352 happens (copy (E,F ,C) ,T,TR) :−

353 t r a c e (TR) ,

354 time (T) , f i (F) , comp(C) , emp(E) ,

355 happens (sys_copy (E,F ,C) ,T,TR) ,

356 holdsAt (i s S t o r ed In (F ,C) ,T,TR) ,

357 holdsAt (logged (E,C) ,T,TR) .

358

359

360 % +++ Context Re lat ion De f i n i t i o n s +++

361

362 % I f an employee en t e r s in a l o ca t i on , s /he i s the l o c a t i o n

89

A. Motivating Example

363

364 i n i t i a t e s (ente r (E,L) , in (E,L) , T) :−

365 emp(E) , l o c (L) , time (T) .

366

367

368 %I f an employee mounts a s to rage on a computer , the s to rage i s mounted on the

computer by an employee

369

370 i n i t i a t e s (mount (S ,C) ,mounted (S ,C) , T) :−

371 s t (S) , comp(C) , time (T) .

372

373 %I f an employee l o g i n s to a computer , she i s logged to the computer

374

375 i n i t i a t e s (l o g i n (E,C) , logged (E,C) , T) :−

376 emp(E) , comp(C) , time (T) .

377

378 %I f an employee e x i t s a l o ca t i on , she i s no l onge r i n s i d e the l o c a t i o n

379

380 te rminates (e x i t (E,L) , in (E,L) , T) :−

381 emp(E) , l o c (L) , time (T) .

382

383 %I f a s to rage dev i c e i s unmounted from a computer , i t i s no l onge r mounted on

the computer

384

385 te rminates (unMount(S ,C) ,mounted (S ,C) , T) :−

386 s t (S) , comp(C) , time (T) .

387

388 % I f an employee l ogout s from a computer , she i s no l onge r logged to the

computer

389

390 te rminates (logout (E,C) , logged (E,C) , T) :−

391 emp(E) , comp(C) , time (T) .

392

393 % I n i t i a l s t a t e

394

395 i n i t i a l l y (isMonitoredBy (r01 , cctv1)) .

396 i n i t i a l l y (i sAcces sContro l l edBy (r01 , n fc1)) .

397 i n i t i a l l y (i sLocated In (m1, r01)) .

398 i n i t i a l l y (i s S t o r ed In (doc , m1)) .

399 i n i t i a l l y (hasBadge (a l i c e , r01)) .

400 i n i t i a l l y (hasPermiss ion (a l i c e , m1)) .

401 i n i t i a l l y (hasPermiss ion (a l i c e , m3)) .

402 i n i t i a l l y (hasBadge (bob , r01)) .

90

403 i n i t i a l l y (hasPermiss ion (bob , m1)) .

404 i n i t i a l l y (hasPermiss ion (bob , m2)) .

91

A. Motivating Example

92

Appendix B

Exfiltration Scenario

Listing B.1: Event-Calculus description of the environment of the Exfiltration Scen-

ario

1 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Environment Desc r ip t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2

3 % ∗∗∗∗∗∗∗∗∗ Context Desc r ip t i on ∗∗∗∗∗∗∗∗∗

4

5 % ∗∗∗∗∗ Types and In s tance s ∗∗∗∗∗

6

7 % m1 and m2 are computers

8 comp(m1;m2) .

9

10 %employees

11 emp(a l i s o n ; j ean ; bob) .

12

13 % u r l s

14 u r l (u r l 1 ; u r l 2) .

15

16 % browsers

17 browser (b1 ; b2) .

18

19 % employees ’ emai l s

20 addr (a a l i s o n ; a jean) .

21

22 % sender and r e c i p i e n t emai l s

23 sendAddr (a a l i s o n ; a jean) .

24 recAddr (a a l i s o n ; a jean) .

25

26 % ex t e rna l emai l addre s s e s

93

B. Exfiltration Scenario

27 extAddr (abob ; atuck) .

28

29 % ex t e rna l sender and r e c i p i e n t emai l addre s s e s

30 sendExtAddr (abob ; atuck) .

31 recExtAddr (abob ; atuck) .

32

33 % emai l body

34 emai l (e1) .

35

36 % employees ’ r o l e s

37 r o l e (p r e s i d en t ; c f o) .

38

39 % passwords for employees e l e c t r o n i c i d e n t i t i e s

40 pwd(pwdJean ; pwdAlison) .

41

42 % c o n f i d e n t i a l f i l e

43 f i (m57plan) .

44

45 % ex t e rna l s t o rage dev i ce

46 s t (usb1) .

47

48 % app l i c a t i o n s

49 app (app1 ; app2) .

50

51

52 % ∗∗∗∗∗ Context Re la t i ons ∗∗∗∗∗

53

54 % An employee i s logged on a computer

55

56 f l u e n t (logged (E,C)) :−

57 emp(E) , comp(C) .

58

59 %A employee has the permis s ion to ac c e s s to a computer

60

61 f l u e n t (hasPermiss ion (E,C)) :−

62 emp(E) , comp(C) .

63

64

65 %A f i l e i s s t o r ed on a computer

66

67 f l u e n t (i s S t o r ed In (F ,C)) :−

68 f i (F) , comp(C) .

69

94

70 %An employee has an emai l address

71

72 f l u e n t (hasEmail (P,E)) :−

73 emp(P) , addr (E) .

74

75 f l u e n t (hasEmail (P,E)) :−

76 emp(P) , sendAddr (E) .

77

78 f l u e n t (hasEmail (P,E)) :−

79 emp(P) , recAddr (E) .

80

81 %An employee has a password a s s o c i a t ed with h i s / her emai l address

82 f l u e n t (hasPwd(E,P)) :−

83 emp(E) , pwd(P) .

84

85 %An employee has a r o l e

86 f l u e n t (hasRole (E,R)) :−

87 emp(E) , r o l e (R) .

88

89 %A sto rage dev i ce i s mounted on a computer

90 f l u e n t (mounted (S ,C)) :−

91 s t (S) , comp(C) .

92

93

94 % An app l i c a t i on i s a malware

95 f l u e n t (isMalware (A)) :−

96 app (A) .

97

98 % A ur l i s b l a c k l i s t e d

99 f l u e n t (i s B l a c k l i s t e d (U)) :−

100 u r l (U) .

101

102 % An app l i c a t i on i s i n s t a l l e d on a computer

103 f l u e n t (i n s t a l l e d (A,C)) :−

104 app (A) , comp(C) .

105

106 % A browser i s i n s t a l l e d on a computer

107 f l u e n t (i s I n s t a l l e d (B,C)) :−

108 browser (B) , comp(C) .

109

110

111 % ∗∗∗∗∗∗∗∗∗ Behaviour Desc r ip t i on ∗∗∗∗∗∗∗∗∗

112

95

B. Exfiltration Scenario

113 % ∗∗∗∗∗ Pr imi t ive Events ∗∗∗∗∗

114

115 event (V) :−

116 pe (V) .

117

118 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E with an

119 % attachment A i s sent from an i n t e r n a l co rporate address S to an i n t e r n a l

120 % corporate address R

121 pe (send_email_e2e (E,A, S ,R,C)) :−

122 emai l (E) , f i (A) , sendAddr (S) , recAddr (R) , comp(C) .

123

124 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E with an

125 % attachment A i s sent from an i n t e r n a l co rporate address S to an ex t e rna l

126 % address R

127 pe (send_email_e2ext (E,A, S ,R,C)) :−

128 emai l (E) , f i (A) , addr (S) , extAddr (R) , comp(C) .

129

130 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E with an

131 % attachment A i s sent from an ex t e rna l address S to an i n t e r n a l co rporate

132 % address R

133 pe (send_email_ext2e (E,A, S ,R,C)) :−

134 emai l (E) , f i (A) , extAddr (S) , addr (R) , comp(C) .

135

136 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E with an

137 % attachment A i s sent from an ex t e rna l address S to an ex t e rna l address R

138 pe (send_email_ext2ext (E,A, S ,R,C)) :−

139 emai l (E) , f i (A) , sendExtAddr (S) , recExtAddr (R) , comp(C) .

140

141 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E i s

r e c e i v ed

142 % by an i n t e r n a l co rporate address S from an i n t e r n a l co rporate address R

143 pe (rec_email_req_e2e (E, S ,R,C)) :−

144 emai l (E) , sendAddr (S) , recAddr (R) , comp(C) .

145

146 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E i s

r e c e i v ed

147 % by an i n t e r n a l co rporate address S from an ex t e rna l address R

148 pe (rec_email_req_e2ext (E, S ,R,C)) :−

149 emai l (E) , addr (S) , extAddr (R) , comp(C) .

150

151 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E i s

r e c e i v ed

152 % by an ex t e rna l address S from an i n t e r n a l co rporate address R

96

153 pe (rec_email_req_ext2e (E, S ,R,C)) :−

154 emai l (E) , extAddr (S) , addr (R) , comp(C) .

155

156 % From a computer hard dr iv e i t i s p o s s i b l e to i n f e r that an emai l E i s

r e c e i v ed

157 % by an ex t e rna l address S from an ex t e rna l address R

158 pe (rec_email_req_ext2ext (E, S ,R,C)) :−

159 emai l (E) , sendExtAddr (S) , recExtAddr (R) , comp(C) .

160

161

162 % From the system log o f computer C i t i s p o s s i b l e to i n f e r that an employee E

163 % performed the l o g i n us ing her password P

164 pe (sys_log in (E,P, C)) :−

165 emp(E) , pwd(P) , comp(C) .

166

167 % From the system log o f computer C i t i s p o s s i b l e to i n f e r that an employee E

168 % did the logout

169 pe (sys_logout (E, C)) :−

170 emp(E) , comp(C) .

171

172

173 % From the system log o f computer C i t i s p o s s i b l e to i n f e r that a s to rage

dev i ce S

174 % was mounted

175 pe (sys_mount (S ,C)) :−

176 s t (S) , comp(C) .

177

178 % From the system log o f computer C i t i s p o s s i b l e to i n f e r that a s to rage

dev i ce S

179 % was unmounted

180 pe (sys_unmount (S ,C)) :−

181 s t (S) , comp(C) .

182

183 % From the system log o f computer C i t i s p o s s i b l e to i n f e r that employee E

copied

184 % f i l e F

185 pe (sys_copy (E, F , C)) :−

186 emp(E) , f i (F) , comp(C) .

187

188 % From the hard dr i ve o f computer C i t i s p o s s i b l e to i n f e r that app l i c a t i on A

was i n s t a l l e d

189 pe (s y s_ i n s t a l l (A,C)) :−

190 app (A) , comp(C) .

97

B. Exfiltration Scenario

191

192 % From the hard dr i ve o f computer C i t i s p o s s i b l e to i n f e r that app l i c a t i on A

was un i n s t a l l e d

193 pe (sy s_un in s t a l l (A,C)) :−

194 app (A) , comp(C) .

195

196 % From the web h i s t o r y o f computer C i t i s p o s s i b l e to i n f e r that app l i c a t i on

a connect ion to a b l a c k l i s t e d

197 % ur l from browser B was performed

198 pe (web_connection (B,U,C)) :−

199 browser (B) , u r l (U) , comp(C) .

200

201 % ∗∗∗∗∗ Complex Events ∗∗∗∗∗

202

203 event (V) :−

204 ce (V) .

205

206 % An emai l with attachment A i s sent by an employee P1 to employee P2

207 ce (emailSentE2E (E,A,P1 , P2)) :−

208 emai l (E) , f i (A) , emp(P1) , emp(P2) .

209

210 % An emai l with attachment A i s sent by an employee P to an ex t e rna l address R

211 ce (emailSentE2Ext (E,A,P,R)) :−

212 emai l (E) , f i (A) , emp(P) , extAddr (R) .

213

214 % An emai l with attachment A i s sent by an employee P to an ex t e rna l address R

215 % (Sender and r e c i p i e n t addre s s e s are the same)

216 ce (emailSentExt2ExtS (E,A,P,R)) :−

217 emai l (E) , f i (A) , emp(P) , extAddr (R) .

218

219 % An emai l with attachment A i s sent by an employee P to an ex t e rna l address R

220 % (Sender and r e c i p i e n t addre s s e s are the d i f f e r e n t)

221 ce (emailSentExt2ExtD (E,A,P,R)) :−

222 emai l (E) , f i (A) , emp(P) , extAddr (R) .

223

224 % An emai l i s r e c e i v ed by an employee P1 from another employee P2

225 ce (recEmailReqE2E (E,P1 , P2)) :−

226 emai l (E) , emp(P1) , emp(P2) .

227

228 % An emai l i s r e c e i v ed by an employee P from an ex t e rna l address S

229 ce (recEmailReqExt2E (E, S ,P)) :−

230 emai l (E) , extAddr (S) , emp(P) .

231

98

232

233 % An emai l p r ev i ou s l y r e c e i v ed by employee P1 from P2 i s answered by a l s o

i n c l ud ing

234 % an attachment A

235 ce (answerEmailE2E (E1 , E2 ,A, P1 , P2)) :−

236 emai l (E1) , emai l (E2) , f i (A) , emp(P1) , emp(P2) .

237

238 % An emai l p r ev i ou s l y r e c e i v ed by employee P from an ex t e rna l address S i s

answered by a l s o i n c l ud ing

239 % an attachment A

240 ce (answerEmailE2Ext (E1 , E2 ,A,P, S)) :−

241 emai l (E1) , emai l (E2) , f i (A) , emp(P) , extAddr (S) .

242

243

244 % An employee l o g i n s to a computer

245 ce (l o g i n (E,C)) :−

246 emp(E) , comp(C) .

247

248 % An employee l ogout s from a computer

249 ce (logout (E,C)) :−

250 emp(E) , comp(C) .

251

252 % A dev i ce i s mounted on a computer

253 ce (mount (S ,C)) :−

254 s t (S) , comp(C) .

255

256 % A dev i ce i s unmounted from a computer

257 ce (unmount (S ,C)) :−

258 s t (S) , comp(C) .

259

260 % An employee cop i e s a f i l e on a computer

261 ce (copy (E,F ,C)) :−

262 emp(E) , f i (F) , comp(C) .

263

264 % An app l i c a t i on i s i n s t a l l e d on a computer

265 ce (i n s t a l l (A,C)) :−

266 app (A) ,comp(C) .

267

268 % An app l i c a t i on i s un i n s t a l l e d from a computer

269 ce (u n i n s t a l l (A,C)) :−

270 app (A) ,comp(C) .

271

99

B. Exfiltration Scenario

272 % A web connect ion to u r l U i s performed through a browser B i n s t a l l e d on a

computer

273 ce (webConnection (B,U,C)) :−

274 browser (B) , u r l (U) , comp(C) .

275

276

277 % ∗∗∗∗∗ Composite De f i n i t i o n s ∗∗∗∗∗

278

279 % An employee who i s e n t i t l e d to a c c e s s to computer C

280 % performs the l o g i n

281

282 happens (l o g i n (E,C) ,T,TR) :−

283 emp(E) ,

284 comp(C) ,

285 time (T) ,

286 t r a c e (TR) ,

287 emp(E2) ,

288 happens (sys_log in (E,P,C) ,T,TR) ,

289 holdsAt (hasPermiss ion (E,C) ,T,TR) ,

290 holdsAt (hasPwd(E,P) ,T,TR) .

291

292 % An employee who i s e n t i t l e d to a c c e s s to computer C

293 % and i s cu r r en t l y logged to C performs the logout

294

295 happens (logout (E,C) ,T,TR) :−

296 emp(E) ,

297 comp(C) ,

298 time (T) ,

299 t r a c e (TR) ,

300 happens (sys_logout (E,C) ,T,TR) ,

301 holdsAt (logged (E,C) ,T,TR) .

302

303 % An emai l with attachment A i s sent by an employee P1 , who i s cu r r en t l y

logged on computer C,

304 % to an employee P2 by us ing an i n t e r n a l co rporate address

305

306 happens (emailSentE2E (E,A,P1 , P2) ,T,TR) :−

307 t r a c e (TR) ,

308 emai l (E) ,

309 f i (A) ,

310 sendAddr (S) ,

311 recAddr (R) ,

312 time (T) ,

100

313 comp(C) ,

314 emp(P1) , emp(P2) ,

315 happens (send_email_e2e (E,A, S ,R,C) ,T,TR) ,

316 holdsAt (hasEmail (P1 , S) ,T,TR) ,

317 holdsAt (logged (P1 ,C) ,T,TR) ,

318 holdsAt (hasEmail (P2 ,R) ,T,TR) .

319

320 % An emai l with attachment A i s sent by an employee P1 , who i s cu r r en t l y

logged on computer C,

321 % to an employee P2 by us ing an ex t e rna l address

322

323 happens (emailSentE2E (E,A,P1 , P2) ,T,TR) :−

324 t r a c e (TR) ,

325 emai l (E) ,

326 f i (A) ,

327 extAddr (S) ,

328 addr (R) ,

329 time (T) ,

330 comp(C) ,

331 emp(P1) , emp(P2) ,

332 happens (send_email_ext2e (E,A, S ,R,C) ,T,TR) ,

333 holdsAt (hasEmail (P2 ,R) ,T,TR) ,

334 holdsAt (logged (P1 ,C) ,T,TR) .

335

336 % An emai l with attachment A i s sent to an ex t e rna l emai l address R by an

employee

337 % P who i s us ing h i s / her i n t e r n a l co rporate address and i s cu r r en t l y logged

on computer C

338

339 happens (emailSentE2Ext (E,A,P,R) ,T,TR) :−

340 t r a c e (TR) ,

341 emai l (E) ,

342 f i (A) ,

343 addr (S) ,

344 extAddr (R) ,

345 time (T) ,

346 comp(C) ,

347 emp(P) ,

348 happens (send_email_e2ext (E,A, S ,R,C) ,T,TR) ,

349 holdsAt (hasEmail (P, S) ,T,TR) ,

350 holdsAt (logged (P,C) ,T,TR) .

351

101

B. Exfiltration Scenario

352 % An emai l with attachment A i s sent to an ex t e rna l emai l address by an

employee

353 % who i s us ing an ex t e rna l emai l account and i s cu r r en t l y logged on computer

C

354 % (Sender and r e c i p i e n t addre s s e s are the same)

355

356 happens (emailSentExt2ExtS (E,A,P,R) ,T,TR) :−

357 t r a c e (TR) ,

358 emai l (E) ,

359 f i (A) ,

360 sendExtAddr (S) ,

361 recExtAddr (R) ,

362 S == R,

363 time (T) ,

364 comp(C) ,

365 emp(P) ,

366 happens (send_email_ext2ext (E,A, S ,R,C) ,T,TR) ,

367 holdsAt (logged (P,C) ,T,TR) .

368

369

370 % An emai l with attachment A i s sent to an ex t e rna l emai l address by an

employee

371 % who i s us ing an ex t e rna l emai l account and i s cu r r en t l y logged on computer

C

372 % (Sender and r e c i p i e n t addre s s e s are d i f f e r e n t)

373

374 happens (emailSentExt2ExtD (E,A,P,R) ,T,TR) :−

375 emai l (E) ,

376 f i (A) ,

377 sendExtAddr (S) ,

378 recExtAddr (R) ,

379 S != R,

380 time (T) ,

381 comp(C) ,

382 emp(P) ,

383 t r a c e (TR) ,

384 happens (send_email_ext2ext (E,A, S ,R,C) ,T,TR) ,

385 holdsAt (logged (P,C) ,T,TR) .

386

387 %An emai l i s r e c e i v ed by an employee P1 from another employee P2

388 happens (recEmailReqE2E (E,P1 , P2) ,T,TR) :−

389 t r a c e (TR) ,

390 emai l (E) ,

102

391 emp(P1) ,

392 emp(P2) ,

393 comp(C) ,

394 time (T) ,

395 sendAddr (S) ,

396 recAddr (R) ,

397 happens (rec_email_req_e2e (E, S ,R,C) ,T,TR) ,

398 holdsAt (hasEmail (P2 ,R) ,T,TR) ,

399 holdsAt (hasEmail (P1 , S) ,T,TR) ,

400 holdsAt (logged (P2 ,C) ,T,TR) .

401

402 % An emai l i s r e c e i v ed by an employee , who i s cu r r en t l y logged to a computer ,

from another employee .

403 % The emai l was sent to an ex t e rna l emai l account

404

405 happens (recEmailReqE2E (E,P1 , P2) ,T,TR) :−

406 t r a c e (TR) ,

407 emai l (E) ,

408 emp(P1) ,

409 emp(P2) ,

410 comp(C) ,

411 time (T) ,

412 addr (S) ,

413 extAddr (R) ,

414 happens (rec_email_req_e2ext (E, S ,R,C) ,T,TR) ,

415 holdsAt (hasEmail (P1 , S) ,T,TR) ,

416 holdsAt (logged (P2 ,C) ,T,TR) .

417

418 %An emai l i s r e c e i v ed by an employee , who i s cu r r en t l y logged to a computer ,

from an ex t e rna l emai l address

419

420 happens (recEmailReqExt2E (E, S ,P) ,T,TR) :−

421 t r a c e (TR) ,

422 emai l (E) ,

423 emp(P) ,

424 time (T) ,

425 comp(C) ,

426 extAddr (S) ,

427 addr (R) ,

428 happens (rec_email_req_ext2e (E, S ,R,C) ,T,TR) ,

429 holdsAt (hasEmail (P,R) ,T,TR) ,

430 holdsAt (logged (P,C) ,T,TR) .

431

103

B. Exfiltration Scenario

432 % An emai l i s r e c e i v ed by an employee P, who i s cu r r en t l y logged to a computer

, from an ex t e rna l emai l address

433 % to an ex t e rna l emai l account

434 % (Email address o f the sender and r e c i p i e n t are d i f f e r e n t)

435

436 happens (recEmailReqExt2E (E, S ,P) ,T,TR) :−

437 t r a c e (TR) ,

438 emai l (E) ,

439 emp(P) ,

440 time (T) ,

441 comp(C) ,

442 sendExtAddr (S) ,

443 recExtAddr (R) ,

444 S != R,

445 happens (rec_email_req_ext2ext (E, S ,R,C) ,T,TR) ,

446 holdsAt (logged (P,C) ,T,TR) .

447

448

449 % An emai l p r ev i ou s l y r e c e i v ed by employee P1 from P2 i s answered by a l s o

i n c l ud ing

450 % an attachment A

451

452 happens (answerEmailE2E (E1 , E2 ,A,P1 , P2) ,T2 ,TR) :−

453 t r a c e (TR) ,

454 emai l (E1) ,

455 emai l (E2) ,

456 P1 != P2 ,

457 f i (A) ,

458 emp(P1) ,

459 emp(P2) ,

460 time (T1) ,

461 time (T2) ,

462 T2 > T1 ,

463 happens (recEmailReqE2E (E1 , P2 , P1) ,T1 ,TR) ,

464 happens (emailSentE2E (E2 ,A, P1 , P2) ,T2 ,TR) .

465

466

467 % An emai l p r ev i ou s l y r e c e i v ed by employee P from an ex t e rna l address S i s

answered by a l s o i n c l ud ing

468 % an attachment A and us ing an i n t e r n a l co rporate address

469

470 happens (answerEmailE2Ext (E1 , E2 ,A,P, S) ,T2 ,TR) :−

471 t r a c e (TR) ,

104

472 emai l (E1) ,

473 emai l (E2) ,

474 f i (A) ,

475 emp(P) ,

476 extAddr (S) ,

477 time (T2) ,

478 time (T1) ,

479 T2 > T1 ,

480 happens (emailSentE2Ext (E2 ,A, P1 , S) ,T2 ,TR) ,

481 happens (recEmailReqExt2E (E1 , S ,P) ,T1 ,TR) .

482

483 % An emai l p r ev i ou s l y r e c e i v ed by employee P from an ex t e rna l address S i s

answered by a l s o i n c l ud ing

484 % an attachment A us ing an ex t e rna l address

485

486 happens (answerEmailE2Ext (E1 , E2 ,A,P, S) ,T2 ,TR) :−

487 t r a c e (TR) ,

488 emai l (E1) ,

489 emai l (E2) ,

490 f i (A) ,

491 emp(P) ,

492 extAddr (S) ,

493 time (T2) ,

494 time (T1) ,

495 T2 > T1 ,

496 happens (emailSentExt2ExtD (E2 ,A,P1 , S) ,T2 ,TR) ,

497 happens (recEmailReqExt2E (E1 ,A, S ,P) ,T1 ,TR) .

498

499

500 % F i l e F s to r ed in computer C i s copied by an employee who i s logged to C

501

502 happens (copy (E,F ,C) ,T,TR) :−

503 time (T) , f i (F) , comp(C) , emp(E) ,

504 t r a c e (TR) ,

505 happens (sys_copy (E,F ,C) ,T,TR) ,

506 holdsAt (i s S t o r ed In (F ,C) ,T,TR) ,

507 holdsAt (logged (E,C) ,T,TR) .

508

509 % An ex t e rna l s t o rage dev i c e i s mounted on a computer while an employee i s

logged to the computer

510

511 happens (mount (S ,C) ,T, TR) :−

512 time (T) , comp(C) , s t (S) , emp(E) ,

105

B. Exfiltration Scenario

513 t r a c e (TR) ,

514 happens (sys_mount (S ,C) ,T,TR) ,

515 not holdsAt (mounted (S ,C) ,T,TR) ,

516 holdsAt (logged (E,C) ,T,TR) .

517

518 % An ex t e rna l s t o rage dev i c e who i s cu r r en t l y mounted on a computer i s

unmounted

519

520 happens (unmount (S ,C) ,T,TR) :−

521 time (T) , comp(C) , s t (S) ,

522 t r a c e (TR) ,

523 happens (sys_unmount (S ,C) ,T,TR) ,

524 holdsAt (mounted (S ,C) ,T,TR) .

525

526 % An app l i c a t i on A i s i n s t a l l e d on computer C while an employee who i s

e n t i t l e d to a c c e s s

527 % the computer i s logged

528

529 happens (i n s t a l l (A,C) ,T,TR) :−

530 app (A) ,

531 comp(C) ,

532 time (T) ,

533 emp(P) ,

534 t r a c e (TR) ,

535 happens (s y s_ i n s t a l l (A,C) ,T,TR) ,

536 holdsAt (logged (P,C) ,T,TR) ,

537 not holdsAt (i n s t a l l e d (A,C) ,T,TR) ,

538 holdsAt (hasPermiss ion (P,C) ,T,TR) .

539

540 % An app l i c a t i on A that i s cu r r en t l y i n s t a l l e d on computer C i s un i n s t a l l e d

while an employee who i s e n t i t l e d to a c c e s s

541 % the computer i s logged

542 happens (u n i n s t a l l (A,C) ,T,TR) :−

543 t r a c e (TR) ,

544 app (A) ,

545 comp(C) ,

546 time (T) ,

547 emp(P) ,

548 happens (sy s_un in s t a l l (A,C) ,T,TR) ,

549 holdsAt (logged (P,C) ,T,TR) ,

550 holdsAt (i n s t a l l e d (A,C) ,T,TR) ,

551 holdsAt (hasPermiss ion (P,C) ,T,TR) .

552

106

553 % A web connect ion to u r l U i s performed from a browser i n s t a l l e d on a

computer

554 % while an employee e n t i t l e d to a c c e s s the computer i s logged

555

556 happens (webConnection (B,U,C) ,T,TR) :−

557 t r a c e (TR) ,

558 browser (B) ,

559 u r l (U) ,

560 comp(C) ,

561 time (T) ,

562 happens (web_connection (B,U,C) ,T,TR) ,

563 holdsAt (i s I n s t a l l e d (B,C) ,T,TR) ,

564 holdsAt (logged (E,C) ,T,TR) ,

565 holdsAt (hasPermiss ion (E,C) ,T,TR) .

566

567

568 % +++ Context Re lat ion De f i n i t i o n s +++

569

570 % I f an employee performs the l o g i n to a computer , then she i s logged to the

computer

571

572 i n i t i a t e s (l o g i n (E,C) , logged (E,C) , T) :−

573 emp(E) , comp(C) , time (T) .

574

575 % I f an employee performs the logout from a computer , then she i s no l onge r

logged to the computer

576

577 te rminates (logout (E,C) , logged (E,C) , T) :−

578 emp(E) , comp(C) , time (T) .

579

580 % I f a s to rage dev i ce i s be ing mounted on a computer , then i t i s cons ide r ed as

mounted on the computer

581

582 i n i t i a t e s (mount (S ,C) , mounted (S ,C) , T) :−

583 s t (S) , comp(C) , time (T) .

584

585 % I f a s to rage dev i ce i s be ing unmounted from a computer , then i t i s no l onge r

cons ide r ed mounted on the computer

586

587 te rminates (unmount (S ,C) , mounted (S ,C) , T) :−

588 s t (S) , comp(C) , time (T) .

589

107

B. Exfiltration Scenario

590 % I f an app l i c a t i o n i s be ing i n s t a l l e d on a computer , then i t i s cons ide r ed as

i n s t a l l e d on the computer

591

592 i n i t i a t e s (i n s t a l l (A,C) , i n s t a l l e d (A,C) , T) :−

593 app (A) , comp(C) , time (T) .

594

595 % I f an app l i c a t i o n i s be ing un i n s t a l l e d on a computer , then i t i s no l onge r

i n s t a l l e d on the computer

596

597 te rminates (u n i n s t a l l (A,C) , i n s t a l l e d (A,C) , T) :−

598 app (A) , comp(C) , time (T) .

599

600 %;∗∗∗∗∗∗∗∗ I n i t i a l State ∗∗∗∗∗∗∗∗∗

601

602 %Al i son and Jean have permis s ion to l o g i n to M2 and M1, r e s p e c t i v e l y .

603 i n i t i a l l y (hasPermiss ion (jean ,m1)) .

604 i n i t i a l l y (hasPermiss ion (a l i s on ,m2)) .

605

606 i n i t i a l l y (hasEmail (jean , a jean)) .

607 i n i t i a l l y (hasEmail (a l i s on , a a l i s o n)) .

608

609 i n i t i a l l y (hasPwd(jean , pwdJean)) .

610 i n i t i a l l y (hasPwd(a l i s on , pwdAlison)) .

611

612 i n i t i a l l y (i s S t o r ed In (m57plan ,m1)) .

613

614 i n i t i a l l y (isMalware (app1)) .

615

616 i n i t i a l l y (i s I n s t a l l e d (b1 ,m1)) .

617 i n i t i a l l y (i s I n s t a l l e d (b2 ,m2)) .

618

619 i n i t i a l l y (i s B l a c k l i s t e d (u r l 1)) .

620 %

∗∗

108

	Introduction
	The context
	The problem
	Thesis objectives
	Thesis structure

	Forensic-Ready Systems
	Related works
	Motivating example
	Description of the tool
	Environment Description
	Types and Instances
	Context Relations
	Events
	Composite Definitions
	Context Relation triggering conditions
	Initial States

	Hypothesis Description
	Preservation Specifications

	Design Choices
	Model-Driven Engineering
	Why the need of MDE
	How I used the Model-Driven Engineering approach

	Extensions and Extension Points
	How I used Extensions and Extension Points

	Eclipse Modeling Framework (EMF)
	How I used EMF

	Graphical Modeling Framework (GMF)
	Appearance
	Palette
	Mapping process
	Graphical designer extension
	How I used GMF

	Technical Solution
	The Meta-Model
	Type and Instance
	Context Relation
	Event
	Behavioural Description and Hypothesis
	Predicates
	Initially

	The Graphical Designer
	Type and Instance GMF extension
	Context Relation GMF extension
	Event GMF extension
	Behavioural Description and Hypothesis GMF extension
	Initially GMF extension

	Encoding extension

	Evaluation
	Case studies
	Motivating Example
	Exfiltration Scenario
	Harassment Scenario

	Discussion

	State of the Art
	Derric Domain-Specific Language
	Forensic Readiness approaches

	Conclusion
	Bibliography
	Motivating Example
	Exfiltration Scenario

