POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

CHORD SEQUENCES: EVALUATING THE EFFECT OF
COMPLEXITY ON PREFERENCE

Master graduation thesis by :
Francesco Foscarin

Supervisor:

Prof. Prof. Augusto Sarti

Assistant supervisor:

Prof. Dr. Bruno Di Giorgi

Academic Year 2016-2017






Abstract

HAT is the level of complexity that we like most when we listen to music? This
is the fundamental question that motivates this work. It is not easy to give
an answer; yet, music recommendation systems would benefit enormously

from an algorithm that could use a currently unused musical property, such as com-
plexity, to predict which music the users prefer. In order to answer this question, we
exploit the subdivision of music in multiple aspects, such as chords, rhythm, melody,
orchestration, etc. and we proceed by using the "divide et conquer" strategy, addressing
specifically the task of understanding the relation between preference and complexity
of chord sequences.

We know from previous research that some properties, e.g. complexity, tend to increase
the amount of activity in the listener’s brain (a.k.a. arousal potential) and we know
that this parameter influences the listener’s preference for a certain piece of music. In
particular, there is an optimal arousal potential that causes maximum liking, while a too
low as well as a too high arousal potential results in a decrease of liking.

We hypothesize that the the level of the optimal arousal potential depends on the mu-
sic expertise of a person. Therefore, we design a listening test in order to prove the
existence of a relation between these two values. As a measure of complexity, we
use a set of state of the art models of harmonic complexity, based on chord sequence
probability. Our results, analyzed using robust regression techniques, show a positive
correlation between the musical expertise of the subjects who participated in the test
and the complexity of the chord sequences that they chose as the one they prefer.






Summary

UAL ¢ il livello di complessita che preferiamo durante I’ascolto di musica?
Questa ¢ la domanda fondamentale che motiva il nostro lavoro. Nonostante sia
complicato trovare una risposta adeguata, i sistemi di raccomandazione in am-

bit sicale trarrebbero grandi benefici da un algoritmo in grado di usare una propri-
eta musicale attualmente inutilizzata (la complessita) per suggerire la musica preferita
dagli utenti. Per rispondere a questa domanda, sfruttiamo la suddivisione della mu-
sica in molteplici aspetti, come gli accordi, il ritmo, la melodia, I’orchestrazione, ecc...
e utilizziano la strategia "divide et impera", considerando solamente la relazione tra
preferenza e complessita delle sequenze di accordi.

Sappiamo da precedenti ricerche che alcune proprieta, tra cui la complessita, tendono
ad aumentare la quantita di attivita cerebrale dell’ascoltatore (il cosidetto "arousal po-
tential"). Inoltre sappiamo che questo parametro influenza la preferenza dell’ascoltatore.
In particolare ¢ possibile individuare un "arousal potential" ottimale che produce il mas-
simo gradimento, mentre livelli troppo alti e troppo bassi di questo fattore determinano
un minor apprezzamento del brano.

In questo lavoro ipotizziamo che il livello ottimale di "arousal potential" dipendenda
dall’esperienza musicale di ogni individuo. Pertanto, progettiamo un test di ascolto
che punta a verificare 1’esistenza di una relazione tra questi due valori. Come misura
della complessita usiamo un insieme di modelli di complessita allo stato dell’arte, che si
basa sulla probabilita delle sequenze di accordi. Analizzando i nostri risultati attraverso
tecniche di regressione robusta, proviamo 1’esistenza di una correlazione positiva tra
I’esperienza musicale del soggetto e la complessita delle sequenze di accordi da lui
preferite.

III






Contents

1_Introductionl
(I.1 Complexity| . . . . . . . . ... .
(1.1.1 Musical Complexity| . . . . . . ... .. ... ... .......
(1.2 Complexity and Preference| . . . . . . .. ... ... ... .......
(L.3_Music Information Retrieval -MIR| . . . ... ... ... .......

[2 Background|
2.1 Tonal Harmony| . . . . . . . . ... ... .. ... ... .. ......
2. 1.1 Pitchl . . . . . .o

[2.1.5 Harmonic Progression| . . . . . .. ... ... ... ... ...
[2.2 Mathematical Background| . . . . . ... ... ... .. ... ...,
[2.2.1 Probability Theory|. . . . . . .. ... .. ... ... ......
[2.2.2 Information Theory| . . . . . .. ... ... ... ... .....
[2.2.3 Graphical models| . . . .. .. ... ... ... .........
[2.2.4 Machine Learning Basics| . . . . . ... ... ... .......

[2.3.1 Complexity and preference] . . . . . . .. .. ... ... ....
[2.3.2 Model-Based Symbolic analysis of Chord Progressions| . . . . .
[2.3.3 Data-based Symbolic Analysis of Chord Progressions| . . . . . .
[2.3.4 Mixed Symbolic Analysis of Chord Progressions|. . . . . . . ..
[2.3.5 Harmonic Complexity from Audio| . . . . ... ... ... ...
[2.3.6 Cognitive Approach to Music Analysis| . . . . . ... ... ...

3 Modeling Chord Progressions|

N 3 DN B QN = -



Contents

[3.3.4 Compound Modell . . . . ... ... ... ... ... ....

4 Experimental Results|
.1 Setup of the Listening Test| . . . . . . ... ... ... .. .......
4. 1.1 SubjectProfiling|. . . . . ... ... ... ... 0.
@.1.2 Chord Progressions Generation| . . . . . ... ... .......
“1.3 WebAppl. . . .. . . . . .
4.2 Result Analysis| . . . . .. ... ...
4.2.1 DataCleaning| . . . . . .. .. .. .. ... .. .. ......
@.2.2 Polynomial Regression| . . . . ... ... ... .. ... ...
4.2.3 RobustRegression|. . . . ... ... ... ... .........

VI



List of Figures

(1.1 Complete order (left), chaos (center) and complete disorder (right) [Fig-

| ure taken from [18[].| . . . . . . . . . . ... 2
[1.2 Inverted U-shape curve of complexity and preference| . . . . . . . . .. 4
2.1 Most used scale in Westernmusic| . . . . .. ... ... ... 9
2.2 Melodic Interval vs. Harmonic Intervall . . . . .. ... ..... ... 9
[2.3 The common names used for the intervals between the starting note of a |

[ major scale and the othernotes.| . . . . .. ... .. ... ....... 10
[2.4 The harmonic inversion of a major sixth. This operation can change the |

[ nameoftheintervall . . .. ... ... ... ... ... ....... 11
[2.5 The three possible inversions of a triads. It 1s possible to still uniquely |

| 1dentify the note generated by the superposition if third, using the names |

[ "root", "third" adn "fifth"|. . . . ... ..o o oo 11
[2.6 Harmonization of major and minor (harmonic) scale.| . . . . . . .. .. 12
[2.7 A dominant seventh chord built on the 1" degree of the C major scale.| . 12
[2.8 The two marginal probabilities of a joint probability distribution of two |

[ wvariables] . . . . . ... . 15
[2.9 A graphical model representing the probability distribution defined 1n |

| the equation [2.16 The node represents the random variables and the |

| arrows represent a variable conditioning another variable| . . . . . . . . 18
[2.10 Two different graphical models. The shadowed node 1n (b) represents an |

rvednode) . . ... oo 19
[2.11T A probabilistic graphical model for chord progressions. Numbers in |
| level 1 and 2 nodes indicate a particular form of parameter sharing [Fig- |

[ ure taken from [SOf]| . . . . .. . . . ... .. 25
[2.12 The result of the probe tone experiment for C major and A minor keys. |

| Listeners rated how well the specific tone sounds conclusive| . . . . . . 26
[3.1 A first order Markov Model. Each variable z; 1s conditioned only on the |

| value on the previous variable x; | . . ... .. ... ... ... ... 28

VII



List of Figures

3.2 A second order Markov Model. Each variable x; 1s conditioned on the |

| value of the two previous observations x; ;andz; o.|. . . . . ... .. 29
[3.3 A graphical representation of a Hidden Markov Model: a Markov chain [

| of latent variables where the probability of each observation 1s condi- [
| tioned on the state of the corresponding latent variable.| . . . . . . . .. 31
[3.4 A simple feedforward neural network with a single hidden layer. The |

| mput layer has 3 nodes, the hidden layer has 4 nodes and the output |
layer has 2 nodes. This network can be used to perform a classification |
taskwithk =2classes.). . . . . ... ... ... ... ... .. .. 33

[3.5 A graphical representation of a ssmple RNN with a single hidden layer.| 35
[3.6 The unfolded graphical representation of a simple RNN with a single [

[ hidden layer|. . . . . . . . .. ... .. ... 36
[3.7 A graphical representation of a deep RNN where the hidden recurrent [

| state 1s broken down 1nto many layers organized hierarchically.|. . . . . 37
[3.8 The three gates are nonlinear summation units that collect activations |

| from 1nside and outside the block, and control the activation of the cell |
[ via multiplications| . . . . ... ... oL L 38
[3.9 A comparison between the five smoothing methods of Table [3.2] with [

| Backoft Smoothing (a) and Interpolated Smoothing (b). Both figures [
| use Exclusion. Error bars computed by 5-fold cross validation are not [
| visible, being two orders of magnitude smaller than the data.| . . . . . . 40
[3.10 The cross-entropy of the HMM model with different hidden node al- [

| phabet sizes /V. Error bars are computed using 5-fold cross validation [
[ [Figure taken from [17]]. . . . . . . ... .. ... .. ... ...... 42
[3.11 The cross-entropy of the model, varying the number of the units and the |

[ depth of the hidden layer [Taken from [17]] . . . . ... ... ... .. 43
.1 The user interface (Ul) for the selection of the preferred complexity.| . . 46
4.2 'The number of users that participated 1n the test, grouped by musical |

| expertise using the General Musical Sophistication Index (GMSI).|. . . 47
4.3 The evolution of the temperature-modified probability mass function, [

[ changing the temperature parameter 7.|. . . . . . . . .. ... ... .. 48
4.4 Mean and variance of the log-probability of a set of 5 progressions gen- [

| erated with different temperature value. | . . . . . . . .. ... oL 49
4.5 'The number of generated progressions that end with tonic for each model, [

| distributed 1n 30 non overlapping bins according to their log probability | 51
4.6 IFML model of the Web App|. . . . . . . . ... ... ... ... .. 54
4./ Raw test result representation.| . . . . . ... ... ... ... ... 56
4.8 Expected patternof choice.|. . . . . . .. ... ... L. 58
4.9 Cleaned result representation.| . . . . .. ... ... ... ....... 59
.10 Number of meaningful results against user GMSL|. . . . . . . . .. .. 60
.11 Number of meaningful results foreachtest| . . . . .. ... ... ... 60
.12 Evaluation of polynomial regression with different metrics.|. . . . . . . 61
(.13 Evaluation of polynomial regression with Huber estimator.| . . . . . . . 62
{4.14 2nd degree polynomial Huber regression for each test.| . . . . . .. .. 63
.15 MAD of the variability of each user choices.|. . . . . . ... ... ... 64

VIII



List of Tables

[2.1 The scientific pitch notation (SPN) for pitches, assigns a frequency to

each pitch 1n a specificoctave. |. . . . . .. ... ..., 8

[2.2 "The most used interval labels 1n music theory with the corresponding

23 Thefourkindsoftriadsl. . . . . . . . ... ... ... ... .. .... 12

[3.1 Mapping from "rare" chord types to more frequent types in order to re-

duce the number of symbols inthe model| . . . . ... ... ... ... 39
[3.2 List of escape methods tried during the training phase of PPM model

[Table taken from [[17]].] . . . . . . . . .. .. .. ... ... ..... 40
[4.1 A subset of the chord progression generated by the Compound model] . 50
{4.2 Pearson and Spearman correlation between each test results and the user

GMSLI. . . 58

IX






CHAPTER

Introduction

The goal of this thesis is to give an answer to the question: "What is the level of
complexity that we like most when we listen to music?". As we will see, an answer
is not easy to give, although the human intuition is able to classify two comparable
objects in more and less complex, and more and less pleasing. In order to have a
complete overview of this topic, we start by defining the meaning of complexity and,
in particular, musical complexity. We then deal with the relation between complexity
and pleasure that has been found by researchers and, finally, we discuss how this thesis
will help give an answer to the question that we presented at the beginning.

1.1 Complexity

Complexity is a property that can be attributed to a vast set of stimuli. One of the ear-
liest attempts to define it was made by Birkhoff in his book "Aesthetic Measures" [6],
where he writes that complexity can measure the extent to which an object calls for an
"effort of attention" and a "feeling of a tension". This definition well delineates what
is the human intuition of complexity, but it provides little, if any, guidance toward an
actual measure of it. Without doubt, the term complexity is understood differently in
different contexts and lacks a clear and unified definition. Streich ironically grasps the
difficulty of its definition by considering it an autological term, since in a way it can be
applied to itself: the term complexity is complex [60]. He distinguishes between two
different perspectives, that he calls the formal view and the informal view. The former
is related to scientific fields, where a precise expression was necessary. In computa-

1



Chapter 1. Introduction

Figure 1.1: Complete order (left), chaos (center) and complete disorder (right) [ Figure taken from [18]].

tional theory, complexity indicates the amount of resources required for the execution
of algorithms; for example, the time complexity of a problem is equal to the number of
steps that it takes to solve an instance of the problem using the most efficient algorithm.
In information theory, instead, it is a measure of the total amount of information trans-
mitted by a source with every symbol. In network theory complexity is the product of
richness in the connections between the components of a system. The informal view
is more interesting for us because it covers the everyday, non-scientific understanding
of this property and therefore can be related directly to cognitive problems. We could
say that something is considered complex not only if we have difficulties describing it,
but even if we don’t really understand it. However, this is only the case as long as we
still have the impression or the feeling that there is something to understand. Opposed
to this, if we do not see any possible sense in something and we have the feeling that
it is completely random, we would not attribute it as complex [60]. A very clear ex-
ample of this behavior is given by Edmonds [18] in an perception experiment with the
three pictures of Figure [[18]]. While the figure representing order (left) was indicated as
not complex and the central figure was indicated as complex, some people hesitated be-
tween the middle and right panels when being asked to point out the most complex one.
But once told that the right one was created by means of a (pseudo-) random number
generator, the right panel was usually no longer considered as complex.

1.1.1 Musical Complexity

To define a meaning of complexity for music we must first of all emphasize the concept
of music as composed by an highly structured hierarchy of different layers. Taking as
example a generic pop song, at the base of the hierarchy we find single frequencies,
that can be grouped in a more structured way (pitches) or in a more chaotic way (noisy
sounds). Every sound then, can have a different temporal envelope. Another higher
layer is rhythm, i.e. the exact pattern of disposition of the sounds in the time axis.
The pitches can then be grouped in chords and chords can be combined sequentially to
form chord progressions. If we keep going up in the hierarchy, after many other layers
such as chord voicings, arrangement, orchestration and lyrics, we will finally have the
complete songs.

Complexity in music can be generated by each single layer of this hierarchy and by any
combination of them. To address the complete musical complexity, it is therefore con-
venient to use the "divide and conquer" strategy, by working separately with different

2



1.2. Complexity and Preference

layers. Fortunately, this division is a common practice of musical theory and musi-
cal analysis, so we have an already well developed framework to address each facet
separately.

In this thesis we will deal with the complexity generated by sequences of chords (we
provide a complete definition of this term in Section 2.1.5)). Looking back at the ex-
periment of Edmonds, we can predict that chord sequencees with a defined structure
will sound not complex and that the complexity will increase while the sequences be-
come more "chaotic". However, not every combination is possible, since progressions
generated randomly, with no rules at all, will have a complexity level that is hard to
compare and define. A translation in the musical field for the terms "defined structure"
and "chaotic" will be proposed later.

1.2 Complexity and Preference

Let us reconsider our initial question about the correlation between the complexity level
and the preference rating. It is a common knowledge that a too simple stimulus will
result as banal and boring, but we also know that a too complex one will be perceived as
strange and unpleasant. Therefore, a first approximation of the answer would be that we
like a level of complexity that stands in between. Many psychologists tried to arrive to
a more precise answer but they demonstrated that sometimes more and sometimes less
complex stimulus patterns are more attractive [3|]. This random behavior suggest that
maybe the research of the optimal level of complexity cannot be performed, without
taking into accounts the dependency from other factors. Some studies were made about
the relation between complexity and novelty. Berlyne [2] repetitively proposes to a sub-
ject black and white reproductions paintings with different level of complexity: more
complex paintings (crowded canvases with many human figures), less complex paint-
ings (portraits of a single person), more complex nonrepresentational patterns (contain-
ing many elements), and less complex nonrepresentational patterns. He observes that,
with repeated exposition, the less complex pictures were rated significantly more and
more displeasing, while the ratings for the more complex pictures did not change sig-
nificantly. Moving to the music field, similar results where achieved by Skaife in [59]].
He shows that preference tends, when "simple" popular music is presented, to decline
with increasing familiarity. But with repetitive hearing of jazz, classical, or contempo-
rary music that violates traditional conventions, there is normally a rise followed by a
decline. Similar results were reached by Alpert [1]] with rhythmic patterns.

A summary of these and others related works was made by Berline in [3]. He used all
these results to provide a confirmation of his theory that an individual’s preference for
a certain piece of music is related to the amount of activity it produces in the listener’s
brain, which he refers to as the arousal potential. In particular, there is an optimal
arousal potential that causes the maximum liking, while a too low as well as a too high
arousal potential result in a decrease of liking. He illustrates this behavior by an inverted
U-shaped curve (Figure [I.2)). Moreover he identifies as the most significant variables
affecting the arousal property as complexity, novelty/familiarity and surprise.

3



Chapter 1. Introduction

P - PLEASINGNESS

6 | - INTERESTINGNESS
L - LIKING
SI - simultoneous
5 SU - successive
O
<
— al : < A
s .
1
Z 3 -
<
W
=
2
| -
[ — 11 L1 T —— ] 1
! 4
s 11k 11
PRESENTATION su H s:lu snlsuw su s: 51
No of DIFFERENCES o c') ) 12 I?":f‘ 3o
No of SIMILARITIES o a3 32 120 10

MEAN COMPLEXITY RATING

Figure 1.2: The inverted U-shape curve generated by complexity and preference [Figure from [3]].

1.3 Music Information Retrieval - MIR

Extracting the degree of complexity and the preference rating from a song is a task that
belongs to the field of Music Information Retrieval (MIR). MIR is a branch of infor-
mation retrieval that deals with the research of strategies for enabling access to digital
music collections, both new and historical. On-line music portals like last.fm, iTunes,
Pandora, Spotify and Amazon disclose millions of songs to millions of users around
the world and thus the shift in the music industry from physical media formats towards
online products and services is almost completed. This has put a big amount of inter-
est in the development of methods to keep up with expectations of search and browse
functionality. In a similar context the "old" approach of making experts manually an-
notate audio with metadata is not a feasible solution anymore, since the cost to prepare
a database to contain all the information necessary to perform similarity-based search
is enormous. It has been estimated that it would take approximately 50 person-years to
enter the metadata for one million tracks [9]]. On the contrary, an approach that could
deal with the continuous growth of musical content is to automatically extract from low
level information (audio or the symbolic representation of musical content) some high
level features such as genre, melody, attitude of the listener (e.g. if a song sounds happy
or depressing), etc.

As alow level information to start with, we will use a particular form of music symbolic
representation: chord labels. They are a flexible and abstract representation of musical

4



1.4. A Measure of Preference for Chord Sequences Complexity

harmony that developed with the emergence of jazz, improvised, and popular music.
They can be considered as a rather informal map that guides the performers, instead of
describing in high detail how a piece of music should be performed. However, also in
music theory, music education, composition and harmony analysis, chord labels have
proved to be a convenient way of abstracting from individual notes in a score [16].

It is clear that MIR systems would benefit enormously from an algorithm that could use
a currently unused musical property (i.e. complexity), to suggest what music the user
will prefer. In particular, that would improve music classification and recommendation
systems.

1.4 A Measure of Preference for Chord Sequences Complexity

In order to classify the correlation between the preference and the complexity of the
chord progressions, we need to find a reliable measure of their complexity.

For this task we will use the results obtained by Di Giorgi in [|17]. He considered three
different machine learning models: prediction by partial matching, Hidden Markov
Model and Recurrent Neural Network. These models were then trained using a very
large dataset containing the chords annotation of half a million songs, and a new model,
a weighted combination of the three, was created in order to maximize the model per-
formances over the dataset. With a listening test he showed the existence of a strong
positive and statistically significant correlation between the log probability of the chord
sequences, computed by the model, and their complexity ratings.

We will start by using the same models trained by Di Giorgi but we propose a different
technique for the generation of chord sequences that will avoid them to become too
"randomic" and not understandable. We also propose a different listening test, tuned
to give the user the possibility of actively choosing the preferred chord sequence. The
goal is to investigate if there is a correlation between the musical expertise of a person
and the degree of chord sequences complexity that he or she prefers.

1.5 Thesis Outline

The remainder of this thesis is structured as follows.

In Chapter 2] we provide some basic concepts of music harmony and mathematics that
are necessary for the understanding of the next chapters. Then, we briefly illustrate
a series of works that are related to this thesis, such as the state of the art for prefer-
ence estimation from chords progression complexity, and other works that inspired the
methodology that we used for our experiment.

In Chapter 3| we present the machine learning models that we will use in our experiment
focusing on their structure and explaining the different approach that they use in order
to "learn" from data. We also provide a short description of the training techniques and
the dataset used by Di Giorgi in [17]].



Chapter 1. Introduction

In Chapter | we describe how we used the machine learning models in order to generate
harmonic progressions. Then we deal with the design of the experiment, as well as the
specific technology that we used to implement it efficiently. Finally we present the
results of our experiment.

In Chapter [5| we summarize the main contributions of our work and we propose some
future research that could follow from this work.



CHAPTER

Background

N this chapter we define the concepts necessary for the understanding of the dis-
cussions in the next chapters. We introduce in Section [2.1] some notation about
Tonal Harmony, focusing on scale, interval and chord. In Section [2.2] we resume

the basics of probability and machine learning. Afterwards, in Section [2.3] we explore
the related works and we give an overview of the state of art for the computation of an

harmonic complexity index.

2.1 Tonal Harmony

In music, harmony considers the process by which the composition of individual sounds,
or superpositions of sounds, is analyzed by hearing. The word Tonal, instead refers to
music where one sound (the tonic) has more importance than other sounds and this
definition includes the majority of music produced in western culture from approxima-
tively 1600. In this thesis we leave aside other traditions of music, since they are based
on different concepts and would require a different approach.

2.1.1 Pitch

Pitch is a perceptual property of sounds that allows their ordering on a frequency-
related scale [31].



Chapter 2. Background

Table 2.1: The scientific pitch notation (SPN) for pitches, assigns a frequency to each pitch in a specific
octave.

Octave O | Octave 1 | Octave 2 | Octave 3 | Octave 4 | Octave 5 | Octave 6 | Octave 7 | Octave 8
C 16.35 32.70 65.41 130.81 261.63 523.25 1046.50 | 2093.00 | 4186.01
C# | 17.32 34.65 69.30 138.59 277.18 554.37 1108.73 | 2217.46 | 4434.92
D 18.35 36.71 73.42 146.83 293.66 587.33 1174.66 | 2349.32 | 4698.64
D# | 19.45 38.89 77.78 155.56 311.13 622.25 1244.51 | 2489.02 | 4978.03
E 20.60 41.20 82.41 164.81 329.63 659.26 1318.51 | 2637.02 | 5274.04
F 21.83 43.65 87.31 174.61 349.23 698.46 1396.91 | 2793.83 | 5587.65
F# | 23.12 46.25 92.50 185.00 369.99 739.99 1479.98 | 2959.96 | 5919.91
G 24.50 49.00 98.00 196.00 392.00 783.99 1567.98 | 3135.96 | 6271.93
G# | 25.96 51.91 103.83 207.65 415.30 830.61 1661.22 | 3322.44 | 6644.88
A 27.50 55.00 110.00 220.00 440.00 880.00 1760.00 | 3520.00 | 7040.00
A# | 29.14 58.27 116.54 233.08 466.16 932.33 1864.66 | 3729.31 | 7458.62
B 30.87 61.74 123.47 246.94 493.88 987.77 1975.53 | 3951.07 | 7902.13

An octave is the distance between a musical pitch and another with half or double its
frequency. The octave relationship is important for our perception of music, because
the human ear tends to hear two pitches at distance of one or more octaves, as being
essentially the same pitch.

The equal temperament system divides each octave in 12 pitches, with the formula:

fr=2"Y"2F 2.1)

Pitches can be labeled using a combination of letters and numbers, as in scientific pitch
notation, that assigns a frequency to each pitch in a specific octave (Table [2.1)).

The terms pitch, tone and note are used as synonyms throughout this thesis.

2.1.2 Scale and Intervals

A sequence of ordered pitches is called a scale. Two scales are used as the basis of
Western music: major scale and minor scale (with its harmonic and melodic forms)
[S3]. Another important scale is the chromatic scale, characterized by the fact that it
is an ordered sequence of all the pitches. When the utilization of a particular scale is
defined (or implicitly given from the context), it is common to refer to each step of the
scale with the term degree. For example, in the major scale of Figure [2.1] the F note
is called "fourth degree", since it is the forth note of the scale from the tonic. Scale
degrees are often notated using roman numbers.

The basis of harmony is the interval. This name is used to describe the "distance"
between the two tones, measured by their difference in pitch. If the two tones are not
heard at the same time, but are consecutive tones of a melody, the interval is called a
melodic interval, as distinguished from the harmonic interval in which the two tones
are sounded together (Figure [2.2)).

The smallest music interval is called semitone (a.k.a. half step or half tone) and it is
defined as the interval between two adjacent notes in a chromatic scale. Two semitones
form a fone. The bigger intervals can be defined using the ones founding the major scale

8



2.1. Tonal Harmony

Major Scale

® o o

Minor (melodic) Scale

5 P>
’

N

1 1 + ]
g q q! g be 1 |
] e ]
\
- -

3 Minor (harmonic) Scale

g

’
’

1 N ]
1P~y |
= ]

4 Chromatic Scale

Figure 2.1: The most used scales in Western music: major scale, minor scale (with its harmonic and
melodic forms), and chromatic scale.

Melodic Interval Harmonic Interval

4)

). g

N | |
) I |

Figure 2.2: Melodic Interval (consecutive tones) and Harmonic Interval (simultaneous tones).



Chapter 2. Background

5 perf. maj maj perf. perf. maj maj perf. maj

f  unison second third fourth fifth sixth seventh octave ninth

74 T T T T T T T e n
(S | | | o fo e — | i
&) I e o e I I I I i
¢ oo o © =Y o =Y P=Y P=Y P=Y

Figure 2.3: The common names used for the intervals between the starting note of a major scale and the
other notes.

Table 2.2: The most used interval labels in music theory with the corresponding number of semitones.

Interval Name | Note Example | # of Semitones
unison c-C 0
aug. unison C-C# 1
min. 2nd C-Db 1
maj. 2nd C-D 2
aug. 2nd C-D# 3
min. 3rd C-Eb 3
maj. 3rd C-E 4
aug. 3rd C-E# 5
perf. 4th C-F 5
aug. 4th C-F# 6
dim. 5th C-Gb 6
perf. 5th C-G 7
aug. S5th C-G# 8
min. 6th C-Ab 8
maj. 6th C-A 9
aug. 6th C-A# 10
min. 7th C-Bb 10
maj. 7th C-B 11
octave C-C 12

as a reference; they can be defined in term of semitones or tones, but it is common in
music theory to refer to them with another notation (Figure [2.3). Among the intervals
from the major scale, the second, the third, the sixth and the seventh are said major;
Octave, fifth, fourth and unison are instead defined with the term perfect. If the upper
tone does not coincide with a note of the scale, the following considerations are to be
applied:

e An interval a half-tone smaller than a major interval is minor.
e An interval a half-tone larger than a major or perfect interval is augmented.
e An interval a half-tone smaller than a minor or a perfect interval is diminished.

From the Table it is possible to see that it often happens that two intervals with
a different name correspond to the same number of semitones. A good example is
the augmented second, which cannot be distinguished from the minor third, without
further evidence than the sound of the two tones. In this situation, one interval is called
the enharmonic equivalent of the other. Explaining the reason why different names are
necessary for the enharmonic equivalent intervals is beyond the purpose of this small
introduction.

A common operation regarding intervals is the harmonic inversion or simply inversion.

10



2.1. Tonal Harmony

A\3)) —© i
maj. 6th minor 3rd

Figure 2.4: The harmonic inversion of a major sixth. This operation can change the name of the interval.

Root Position First Inversion Second Inversion

third

root
FOOt

-

[4) |

7 4 } T -

A I Tifth = toot
i

T
P 11
fifth i .
P g 1P fifth
unra thlrd

root

Figure 2.5: The three possible inversions of a triads. It is possible to still uniquely identify the note
generated by the superposition if third, using the names "root", "third" adn "fifth".

In this procedure the names of the notes remain the same, but the lower of the two
becomes the upper (or vice versa) with the consequence that there is usually a change
in the name of the interval (Figure [2.4).

2.1.3 Triads

A Chord is the superposition of two or more intervals. The simplest chord is the triad,
a chord of three tones obtained by the superposition of two thirds. The triad is the
basis of the Western harmonic system. The names root (or fundamental), third and
fifth are given to the three tones of the triad. These terms allow to identify the tones
even if the notes can be duplicated at different octaves or rearranged in a different order
(Figure [2.5).

A triad with its root as its lowest tone is said to be in root position. A triad with its third
as its lowest tone is said to be in the first inversion. A triad with its fifth as its lowest
tone is said to be in the second inversion. Changing the lowest note is an operation
that can change the way it is perceived. There are other possible operations that can be
performed on the notes of a triad; for example it is possible to move notes or duplicate
them at different octaves, giving us a lot of possible ways of playing the same chord.The
specific way the notes of a chord are assembled is called voicing.

Taking the scales, major and minor and using only the notes of these scales, superpo-
sition of third gives triads that differ depending on the kind of third in their make-up
(Figure[2.6). This process is called harmonization of the scale. There are four kinds of
triads, classified according to the nature of the intervals formed between the root and
the third and between the third and the fifth. In the Table we specify the intervals
for each triad and we give an example of the scale and the degree that generate each
type of triad.

Roman numbers identify not only the scale degree, but also the chord constructed
upon that scale degree as a root. More details on the chord notation are in the Sub-
section 2.1.3]

11



Chapter 2. Background

Table 2.3: The four kinds of triads, classified according to the nature of the intervals formed between
the root and the third and between the third and the fifth.

Triad Name ‘ Lower Interval ‘ Upper Interval ‘ Degree and Scale that produce the triad
Major Triad maj 3rd min 3rd I of major scale
Minor Triad min 3rd maj 3rd II of major scale
Diminished Triad | min 3rd min 3rd VII of major scale
Augmented Triad | maj 3rd maj 3rd III of minor (melodic) scale
A Major Scale Minor Scale

Figure 2.6: Harmonization of major and minor (harmonic) scale.

2.1.4 Chords with 4 or more notes

Once a triad is built, it is easy to extend it by superimposing another third. This is the
most used way of creating chords with 4 notes. The chord so produced is called seventh
chord, and the added note is called seventh. This kind of chord is widely used in jazz
music, along with chords of 5, 6 and 7 notes. The number of possible combinations of
thirds explodes while we add notes. However, since in this thesis we deal mainly with
pop music, we consider a single seventh chord, called dominant seventh chord. It is
built on the V degree of the major or minor scale and it is composed by the superposition
of a major third and two minor thirds (Figure [2.7).

The operations on the triads (inversion of the chords and duplication of some notes) can
be performed in the same way on the chords with 4 or more notes. In case of seventh
chords, there are 3 possible inversions.

2.1.5 Harmonic Progression

Music can be considered as a temporal evolution of many musical parameters. It is
common to refer to sequences of chords during a song as harmonic progressions. There
are two common notations for chord progressions:

1. Sequences of pairs (root name, chord type). For example D - E:min - G - A:min.

2. Sequences of scale degrees, indicated by roman numbers (where the current scale
must be defined explicitly). For example I-1I-V-VI in the scale of D major.

Dominant Seventh

0000

> Ses
-

Figure 2.7: A dominant seventh chord built on the V degree of the C major scale.

12



2.2. Mathematical Background

The two notations have different advantages. The first notation allows to absolutely
define a chord without needing further information about the musical context. It is
the most simple notation and for this reason is widely adopted for jazz and modern
music. The second notation, on the contrary, requires some experience in music theory,
to understand exactly the kind of chord (minor, major, etc.) that is built on the specific
root using the notes of the scale. This notation is useful for the analysis, since it is
"pitch independent", i.e. it can be transposed to higher or lower pitches, by simply
changing the scale of reference.

In tonal harmony different chords have different degrees of perceived stability. [ is the
most stable chord and V is the most unstable. Consequently each chord in a progression
is invested with a particular role, called harmonic function. The basic chord progres-
sion is built starting from a stable chord, evolving towards more unstable chords and
returning in the end to the stable chord.

There are many guidelines about how to manage harmonic progressions. For a com-
plete discussion on this subject, we suggest [53] for classical/pop music and [38]] for
jazz music.

We saw in section [2.1.3] that there are many possible voicings for a chord. The way
the different notes of chord voicings are connected in a progression is an import task in
music composition, because it has a big impact on the way harmonic progressions are
perceived. The study of this field is called counterpoint.

2.2 Mathematical Background

In this section we give some basic concepts of probability theory, information theory
and machine learning that will be useful to understand the techniques that we will use
for the generation of harmonic progressions.

2.2.1 Probability Theory

Probability theory is a mathematical framework for representing uncertain statements.
It provides a mean for quantifying uncertainty, and axioms for deriving new uncer-
tain statements. Nearly all activities require some ability to reason in the presence of
uncertainty. In fact, beyond mathematical statements that are true by definition, it is
difficult to think of any proposition that is absolutely true or any event that is absolutely
guaranteed to occur.

There are three possible sources of uncertainty [20]:

1. Inherent stochasticity in the system being modeled. For example most interpreta-
tions of quantum mechanics describe the dynamics of subatomic particles as being
probabilistic. It is also possible to create theoretical scenarios that we postulate to
have random dynamics, such as a hypothetical card game where we assume that
the cards are truly shuffled into a random order.

2. Incomplete observability. Even deterministic systems can appear stochastic when
we cannot observe all of the variables that drive the behavior of the system. For

13



Chapter 2. Background

example, the behavior of a person who chooses to go outside or to stay at home
depending on the weather, would seem stochastic, if it is not possible to observe
the weather.

3. Incomplete modeling. When one uses a model that must discard some of the in-
formation observed, the discarded information results in uncertainty in the model
prediction. For example, let us consider a robot that can exactly observe the lo-
cation of every object around it. Since it has to discretize the space to save the
information, the position of the objects for the robot become uncertain within the
discrete cell.

A random variable is a variable that can take on different values randomly. It can be
discrete or continuous. A discrete random variable is one that has a finite or countably
infinite number of states. A continuous random variable is associated with a real value.
In this thesis we will work with discrete random variables, since the events that we
consider (chords, voicing, etc...) have a countable number of possibilities.

A probability distribution is a description of how likely a random variable or set of ran-
dom variables is to take on each of its possible states. A probability distribution over
discrete variables may be described using a probability mass function (PMF). Specifi-
cally, a PMF maps from a state of a random variable to the probability of that random
variable taking on that state. For example p(z = x) defines the probability for the ran-
dom value z to be equal to the value x. If the random value =z we are referring to can be
deduced from the context, we will write p(x) to simplify the notation. Probability mass
functions can act on many variables at the same time. Such a probability distributon
over many value is known as a joint probability distribution p(z = x,v = y). Again
we will write p(z, y) for brevity when the dependency on z and v is evident from the
context. An example of PMF that we will use frequently is the uniform distribution
over a discrete random variable z with k different states x1, xo, ..., T}:

1
p(z =x;) = p(x;) = o for i from 1 to k (2.2)

Sometimes it is known the probability distribution over a set of variables and one wants
to know the probability distribution over just a subset of them (Figure [2.8)). This value
is known as the marginal probability distribution. For example, if there are discrete
random variables z and v that can take values respectively from X = x1, x5, ... and
Y = y1,ys, ... and p(x, y) is known, it is possible to find p(x) with the sum rule:

V:UEX,p(z:x):ZyEYp(z:x,v:y) (2.3)

In many cases it is interesting to to know the conditionl probability, i.e. the probability
of an event x, given that another event y has happened. It is denoted as p(x|y). A useful
formula that relates conditional and joint probability is:

plyla) = ;ﬁ;j), if p(x) > 0 4

An extension of the equation [2.4] is the so called chain rule. It considers a probabil-
ity distribution over n random variables and explains how it can be decomposed into

14



2.2. Mathematical Background

X2

Figure 2.8: The two marginal probabilities of a joint probability distribution of two variables p( X1, X2),
obtained with the sum rule.

conditional distributions over only one variable:

n

p(1, .y ) = p(21) Hp(:z:,-|a:1, ey Ti1) (2.5)

=2

Two random variables x and y are independent if their probability distribution can be
expressed as a product of two factors, one involving only  and one involving only

Y
p(x,y) = p(z)p(y) (2.6)

Two random variables = and y are conditionally independent given a random variable z
if the conditional probability distribution over z and y can be factorize as follows:

p(x,yl2) = p(x|2)p(yl2) (2.7)

The expectation or expected value of a function f(z) with respect to a probability dis-
tribution p(x) is the average value that f takes on when z is drawn from p(x). For
discrete variables this can be computed with a summation:

E(f(z)] =) plx)f(z) (2.8)

The variance gives a measure of how much the values of a function of a random variable
x vary, as different values of x from its probability distribution are sampled:

Var(f(z)) = E[(f(z) — E[f(2)])’] (2.9)

15



Chapter 2. Background

When the variance is low, the values of f(z) cluster near their expected value.

The covariance gives some sense of how much two values are linearly related to each
other, as different values of = from its probability distribution are sampled:

Cov(f(x), 9(x)) = E[(f(x) — E[f(2)])(9(y) — Elg(»)])] (2.10)

High absolute values of the covariance mean that the values greatly change and are both
far from their respective means simultaneously. If the sign of the covariance is positive,
then both variables tend to take on relatively high values simultaneously. If the sign of
the covariance is negative, then one variable tends to take on a relatively high value and
the other takes on a relative low value.

Correlation is another measure that normalizes w.r.t. the scale of both variables, re-
sulting in a bounded coefficient [—1,1]. Two kinds of correlation used in statistics
are Pearson Correlation and Spearman Correlation. Pearson correlation evaluates the
linear relationship between two variables, while Spearman correlation assesses how
well an arbitrary monotonic function can describe a relationship between two vari-
ables [26]].

2.2.2 Information Theory

Information theory is a branch of applied mathematics that revolves around quantifying
how much information is present in a signal . It was originally invented to study send-
ing messages with a discrete alphabet over a noisy channel, such as communication via
radio transmission. The basic intuition behind information theory is that learning that
an unlikely event has occurred is more informative than learning that a likely event has
occurred. For example a message saying "the sun rose this morning" is so uninforma-
tive as to be unnecessary to send, but a message saying "there was a solar eclipse this
morning" is very informative [20]]. Information theory quantifies information in a way
that formalizes this intuition. Specifically:

e Likely events should have low information content (or no information content if
the events are guaranteed to happen)

e Less likely events should have higher information content.

e Independent events should have addictive information. For example, if finding out
that a tossed coin has come up as heads conveys a certain information z, finding
out that it has come up as head twice should convey an information 2z.

The self-information of an event x is defined with a formulation that satisfies all these
properties:
I(z) = —logp(x) (2.11)

The choice of the base of the logarithm is not really important, however a common
choice is to use base 2 logarithm. In this case information I (x) is measured in bits.

Self-information deals only with a single outcome. It is possible to quantify the amount
of uncertainty in an entire probability distribution using the Shannon Entropy:

H(z) = E[I(x)] = —Ellog p(z)] (2.12)

16



2.2. Mathematical Background

Distributions that are nearly deterministic have a low entropy, while distributions that
are closer to the uniform have high entropy.

If one has two separated probability distributions p(x) and ¢(z) over the same random
variable z, it is possible to measure how different these two distributions are, using the
Kullback-Leibler (KL) divergence:

p(x
Dict(p | @) = Ellog 1] = Bllog (o)  og ()] e.13)
The KL divergence is non-negative and it is O if and only if p and ¢ are the same
distribution.

A quantity that is closely related is the cross-entropy. For two distributions ¢ and p, it
measures the average number of bits needed to identify an event drawn from the set, if
a coding scheme is used that is optimized for the distribution p, rather than the "true"
distribution ¢. For discrete p and ¢ it can be written as:

H(g,p) ==Y q(z)logp(x) (2.14)

T

Unfortunately for many applications, like the estimation of the regularity of the models
used in this thesis, the distribution ¢ is unknown. In these cases, a typical approach is
to use a Monte Carlo estimation of the true cross entropy [14]:

1
H,(T) = i ZT log p() (2.15)
xre

2.2.3 Graphical models

Machine learning algorithms often involve probability distributions over a very large
number of random variables. In order to reduce the complexity it is possible to split a
probability distribution into a product of many factors. For example, let us suppose we
have three random variables: a, b and c; let us suppose also that a influences the value
of b and b influences the value of ¢, but a and c are independent given b. It is possible to
represent the probability distribution over all three variables as a product of probability
distributions over two variables:

p(a, b, c) = p(a)p(bla)p(c|b) (2.16)

This kind of factorization can greatly reduce the number of parameters needed to de-
scribe the distribution. Since each factor uses a number of parameters that is expo-
nential in the number of variables in the factor, one can greatly reduce the cost of
representing a distribution if one is able to find a factorization into distributions over
fewer variables [14]]. It is possible to describe this kinds of factorizations using directed
acyclic graphs. The factorization of a probability distribution, represented with a graph,
is called Graphical Models (Figure [2.9).

When one applies a graphical model to a problem in machine learning or pattern recog-
nition, one will typically set some of the random variables to specific observed values,

17



Chapter 2. Background

O/O
O

Figure 2.9: A graphical model representing the probability distribution defined in the equation
The node represents the random variables and the arrows represent a variable conditioning another
variable

i.e. variables whose value is known. We denote such variables by shadowing the cor-
responding note.

Let us study the particular case of Figure [2.10] in order to derive some results that we
will use later. By applying twice the chain rule 2.5 we obtain:

p(a, b, c) = p(a)p(cla)p(blc) (2.17)

In the model (a), where none of the nodes is observed, if we test if @ and b are indepen-
dent, we obtain (marginalizing over c):

pla,b) = p(a) > p(cla)p(blc) = p(a)p(bla) = p(a)p(bla) (2.18)

which in general does not factorize into p(a)p(b), so a and b are not independent. If
instead we consider the model (b), where the node c is observed, we obtain:

p(a,b,c)
p(c)
_ pla)p(cla)p(blc) (2.19)
N p(c)
= plale)p(blc)
from which we obtain the conditional independence property of a and b given c. The
path from a to b is said to be blocked by the observed node c.

p(a,ble) =

2.2.4 Machine Learning Basics

The field of machine learning is concerned with the question of how to construct com-
puter programs that automatically learn from experience [45]. Mitchell suggests also a
more precise definition for the concept of learning.

Definition 2.1. A computer program is said to learn from experience E with respect to
some class of tasks T' and performance measure P, if its performance at task in T, as
measured by P, improves with experience E.

18



2.2. Mathematical Background

b

b
Figure 2.10: Two different graphical models. The shadowed node in (b) represents an observed node.
For example, it can be considered a machine learning system for handwriting recogni-
tion. In this case, the task 7" would be of recognizing and classifying handwritten words
within images; the performance measure P would be the percentage of word correctly

classified; the training experience ¥ would come from a database of handwritten words
with given labels.

The following sections provide an intuitive description and some examples of the differ-
ent kinds of tasks, performance measures and experiences that can be used to construct
a machine learning algorithm.

The Task, 7. Machine learning allows us to tackle tasks that are difficult to solve with
fixed programs written by human beings. Tasks are usually described in terms of how
the machine learning system should process an input, i.e. a collection of features that
have been quantitatively measured from some objects or events. We typically represent
the input as a vector x € R", where each element z; is a feature. The machine learning
tasks can be clustered into three big groups:

e Classification: the computer is asked to specify which of £ categories some inputs
belongs to. This is usually accomplished by assigning to each input feature vector
x a class from the £ possible output classes (or a probability distribution over the
output classes). A typical example is the handwriting recognition, where the input
are the pixel of an image and the output is a letter from the alphabet.

e Regression: the computer is asked to predict a numerical value given some inputs.
To solve this task, the learning algorithm is asked to output a function f : R" — R.
An example of a regression task is the prediction of the value of a house, given a
set of features such as the location, the number of rooms, the age and other factors.

e Clustering: the computer is asked to find a structure in a collection of unlabeled
inputs. In other words, the task consists in organizing inputs into groups whose
members are similar in some way. The exact meaning of "similar" or "dissimilar"
inputs can change between different clustering algorithms. An example of clus-
tering task can be to find similar groups of pixel in an image, in order to better
perform image compression.

The Experience, E. The machine learning algorithms need a dataset of elements to be
used as input. We call these elements data points. Usually, the bigger the dataset is,

19



Chapter 2. Background

the better the algorithm will accomplish its task; however there are algorithms that are
made on purpose to work properly with bigger or smaller datasets. Machine learning
algorithms can be broadly categorized a supervised and unsupervised by what kind of
experience they are allowed to have during the learning process. "Supervised" means
that both input and output are given, and the algorithm must learn the rules that relate
an input with the corresponding output. In unsupervised learning only the inputs are
given and the algorithm uses them to build an high-level representation of the data. For
the purpose of this thesis, we will consider only supervised learning.

Performance Measure, P. In order to evaluate the abilities of a machine learning algo-
rithm, quantitative measure of its performance must be designed. For the classification
tasks, it is often measured the proportion of the input data for which the model pro-
duces the correct output. It is possible also to obtain similar results by measuring the
proportion of input data that generates an incorrect output. The choice of performance
measure is not straightforward. For example [14]], when performing a transcription
task, should we measure the accuracy of the system at transcribing entire sequences,
or should we use a more fine-grained performance measure that gives partial credit for
getting some elements of the sequence correct? When performing a regression task,
should we penalize the system more if it frequently makes medium-sized mistakes or
if it rarely makes very large mistakes? These kinds of design choices depend on the
application.

Underfitting and Overfitting

In order for a machine learning algorithm to give meaningful results, it must perform
well on previously unseen inputs, different from the inputs used to train the algorithm.
Typically, a training set is available, and the training error can be reduced as an op-
timization process over the model parameters. What separates machine learning from
simple optimization is that the error, generated by test data (data not used for train-
ing) must be low as well. The test error of a machine learning model is estimated
by measuring its performance on a test set of inputs that were kept separate from the
training set. The problem of improving the performances on the test set, if only the
training set is observed, requires more assumptions to be solved: the train and test data
must be considered as independent and identically distributed, generated by the same
probability distribution (i.i.d. assumption).

With this notions it is possible to define the two central problems of machine learning:
underfitting and overfitting. Underfitting occurs when the model is not able to obtain a
sufficiently low error value on the training set. Overfitting occurs when the gap between
the training error and the test error is too large. It is possible control whether a model is
more likely to overfit or underfit by altering its flexibility, i.e. its ability to fit a variety
of functions. Models with low flexibility may struggle to fit the training set and are
not able to solve complex tasks. Models with high flexibility are prone to model noise
and errors in the dataset that should not be part of the model. So we must carefully
choose the right model flexibility. Unfortunately there is not a right choice for every
dataset. The No Free Lunch Theorem [64] states that, averaged over all possible data

20



2.2. Mathematical Background

generating distributions, every classification algorithm has the same error rate when
classifying previously unobserved data points. In other words, the most sophisticated
algorithm that can be conceived has the same average performance (over all possible
tasks) as a toy predictor that assigns all data points to the same class. This means
that the goal of machine learning research is not to seek a universal learning algorithm
or the absolute best learning algorithm. Instead, its goal is to understand what kind
of distributions are relevant to the "real work" and what kinds of machine learning
algorithms perform well on data drawn from the kinds of data generating distributions
that are considered [20]].

Regression Analysis

Regression analysis is one of the three tasks mentioned above. We provide here further
details, since we will extensively use it in Chapter

Suppose that for each value of a quantity x, another quantity y has a probability distri-
bution p(y|x). The mean value of this distribution, alternatively called the expectation
of y, given z, and written E(y|x), is a function of = and is called the regression of y
on z. The regression provides information about how y depends on « [39]. The quanti-
ties x and y are respectively called independent variable and dependent variable. The
simplest case is linear regression, where E(y|x) = wiz + wy for parameters w; and
wp. In case of polynomial regressions, the relationship between x and y is modeled as
a nth degree polynomial in x. This can be seen in an informal way as a problem of
curve fitting. In particular, one shall fit the data by using a polynomial function of the
form:

M
Y(z,w) = wo + w1z + wox? + ... +wpa™ = ijxj (2.20)
=0

The values of the coefficients are determined by fitting the polynomial to the training
set. This can be done by minimizing an error function that measures the misfit between
the function y(x, w), for any given values of omega and the training set data points [7].
One simple choice of error function is given by the sum of squares of the errors between
the predictions y(x,,,w) for each data point z,, and the corresponding target values ,,

so that we minimize
N

E(w) = Z(y(xnaw) - tn)2 (2.21)

n=1

This technique is called least-square estimation.

Robust Regression

Least-square estimation has bad performances when the error distribution is not nor-
mal, particularly when the errors are heavy-tailed [[19]. In these situations there is the
necessity to use another fitting criterion that is not as vulnerable as least-squares to
outliers.

A possibility is to use the Huber function as error function. In contrast to the least-
square function, Huber function assigns a weight to each observation, that declines

21



Chapter 2. Background

when |e| > k. The value k affects the performances of the regression: smaller values
produce more resistance to outliers, but at the expenses of lower efficiency when the
errors are normally distributed. Usually % is chosen as k£ = 1.3450 (where o is the
standard deviation of the errors), since it produces 95-percent efficiency when the errors
are normal, but still offers protection against outliers.

2.3 Related Work

The analysis of the relation between complexity and preference rating is not a particu-
larly investigated field within the MIR community. Some works in this direction came
from the field of psychology, and we present them in Section [2.3.1]

Then, we propose studies about the analysis of harmonic complexity and studies that

" " n "

consider perceptual descriptors such as "stability", "degree of completeness", "experi-

enced tension", "music expectation", that can be considered related to our definition of
harmonic complexity.

Lastly, we present also works that inspired the methodology for modeling of chord
sequences, the analysis of the results and the design of the listening test.

2.3.1 Complexity and preference

In [2], Berlyne repetitively proposes to a subject black and white reproductions paint-
ings with different levels of complexity: more complex paintings (crowded canvases
with many human figures), less complex paintings (portraits of a single person), more
complex nonrepresentational patterns (containing many elements), and less complex
nonrepresentational patterns. He observes that, with repeated exposition, the less com-
plex pictures were rated significantly more and more displeasing, while the ratings for
the more complex pictures did not change significantly.

In [59], Skaife shows that preference tends, when "simple" popular music is presented,
to decline with increasing familiarity. But with repetitive hearing of jazz, classical,
or contemporary music that violates traditional conventions, there is normally a rise
followed by a decline. Similar results were reached by Alpert [[1] with rhythmic pat-
terns.

In [3], Berlyne proves that the individual’s preference for a certain piece of music is
related to the amount of activity it produces in the listener’s brain, which he refers
to as arousal potential. In particular, there is an optimal arousal potential that causes
the maximum liking, while a too low as well as a too high arousal potential results
in a decrease of liking. He illustrates this behavior by an inverted U-shaped curve

(Figure [I.2)).

In [8]], two groups of twenty college students, one with fewer than two years of musical
training and the other with extensive musical backgrounds, rated their preferences for
piano recordings of J.S. Bach’s "Prelude and Fugue in C Major", Claude Debussy’s
"The Maid With the Flaxen Hair", Edvard Grieg’s "Wedding Day at Troldhaugen", and

22



2.3. Related Work

Pierre Boulez’s "Piano Sonata No.1, 2nd Movement". Each piece had been ranked ac-
cording to perceived complexity by seven music professors. When personal preference
was plotted against complexity, an inverted U-shape curve was obtained.

2.3.2 Model-Based Symbolic analysis of Chord Progressions

One of the most intuitive approach is to analyze chord progressions, by trying to define
explicitly the instinctive steps that a trained musician would perform. Therefore these
techniques exploit knowledges and rules from music theory and propose algorithms to
evaluate human perception of complexity and similarity.

In [41] [42], the authors propose a mathematical model based on Tonal Harmony (TH),
in order to be able to use high level harmonic features in computer systems applications.
In particular, they consider the harmony like a formal grammar, with some transforma-
tion rules between chords taken from music theory. If music obeys simple TH rules,
they assign it a lower value, whereas if the rules are complex, or the harmony does not
obey any known rules, they assign it higher values. The values of each chord transition
are then combined and they define a new term, harmonic complexity. This feature is
then tested on a music classification problem, proving that it is useful for Music Infor-
mation Retrieval tasks.

Hanna et al. [25] in his Chord Sequence Alignment System (CSAS), compute the sim-
ilarity value between two different chord sequences with an algorithm based on align-
ment. The similarity is computed with the recursive application of only three transfor-
mation rules: deletion of a symbol, insertion of a symbol, and substitution of a symbol
by another. Each transformation has its own cost and, while the insertion and deletion
costs are equal and constant, different functions for the substitution score (related to
the roots, the basses, the types, the modes of the two chords) are proposed and com-
pared.

De Haas [40] [[16] presents a formalization of the rules of harmony as a Haskell (gener-
alized) algebraic datatype. The Haskell advanced type system features make it possible
to use datatype-generic programming to derive a parser automatically. Thus, given a
sequence of chord labels, it is possible to derive a tree structure, which explains the har-
monic function of the chords in the piece. The number of errors in creating the tree or
the tree depth can be considered as a possible way to calculate the harmonic complexity
by using tonal harmony, even though it was not the aim of the work. This system is then
used on a corpus of 217 Beatles, Queen, and Zweieck songs, yielding to a statistically
significant improvement for the task of machine chord transcription [[15].

An interesting MIR system is the one developed by Pickens and Crawford [52] in order
to retrieve polyphonic music documents by polyphonic music queries. The idea can be
summarized in two steps. In the first part they preprocess the music score of each docu-
ment in the collection in order to obtain a probability distributions over all chords, one
for each music segment. In other words, instead of extracting chord labels from each
score segment, they extract a 24 dimensional vector describing the similarity between
the segment and every major and minor triad. In the second part they apply Markov
modeling techniques, and store each document as a sequence of transitions (computed

23



Chapter 2. Background

with a fixed-order Markov Model) between these 24 dimensional vectors. Queries are
then modeled using the same modeling technique of the documents and the Kullback-
Leibler divergence is used as a ranking system to obtain the most similar document for
the query.

2.3.3 Data-based Symbolic Analysis of Chord Progressions

Another possible approach is to put aside the prior knowledge from music theory and
instead working with big dataset of annotated symbols (e.g. chords sequence or scores)
in order to extract the rules that control music perception. This way of acting is sup-
ported by some psychology research [335] that pointed out that listeners appear to build
on a set of basic perceptual principles that may adapt to different styles, depending on
the kind of music they are exposed to.

In [63]], the authors use multiple viewpoint systems and Prediction by Partial Match-
ing to solve the problem of automatic four-part harmonization in accordance with the
compositional practices of a particular musical era.

In [55]], Rohrmeier et al. compare the predictive performance of n-gram, HMM, autore-
gressive HMMs, feature-based (or multiple-viewpoint) n-gram and Dynamic Bayesian
Network Models of harmony. All this models use a basic set of duration and mode
features. The evaluation is performed by using a hand-selected corpus of Jazz stan-
dards.

In [49], the authors propose to use a statistical-based data compression approach to infer
recurring patterns from the corpus and show that the extracted patterns provide a satis-
fying notion of expectation and surprise. After this unsupervised step, they exploit the
underlying algebra of Jazz harmony, represented as chord substitution rules, but they
extract those rules from the dataset. The results prove that data-inferred rules corre-
spond, in general, to the usual chord substitution rules of music theory textbooks.

In [58], the authors model chord sequences by probabilistic N-grams and use model
smoothing and selection techniques, initially designed for spoken language modeling.
They train this model with a dataset composed by 14194 chords from the 180 songs
making up the 13 studio albums of The Beatles.

2.3.4 Mixed Symbolic Analysis of Chord Progressions

Paiement et al. [S0] propose a work that use both the data-based and the model-based
approach. They define a distributed representation for chords that gives a measure of
the relative strength of each pitch class, taking into account not only the chord notes, but
also the perceived strength of the harmonics related to every note (where the amplitude
of the harmonics is approximated with a geometric decaying variable. This representa-
tion has the effect that the Euclidean distance between chords can be used as a rough
measure of psychoacoustic similarity. In the second part of the paper the authors present
a probabilistic "three shaped" graphical model of discrete variable, with three layers of
hidden nodes and one of observed nodes (Figure [2.1T)). This structure can model chord
progressions by considering different levels of context: variables in level 1 model the

24



2.3. Related Work

Figure 2.11: A probabilistic graphical model for chord progressions. Numbers in level 1 and 2 nodes
indicate a particular form of parameter sharing [Figure taken from [50]]

contextual dependencies related to the meter, in level 2 local dependencies are taken
into account and in level 3 it is used the distributed chord representation in order to
substitute chords with "similar" chords. This last step gives a solution to the problem
of unseen chords, since it just considers the "similar" chords to redistribute efficiently
a certain amount of probability mass to those new events. This model is trained by
using a dataset of 52 jazz standards; from the results it is possible to see that the three
model performed better, compared with a standard HMM model trained on the same
data.

2.3.5 Harmonic Complexity from Audio

Instead of starting from a symbolic representation, another approach is to use directly
audio features.

In [44], the authors define a new meta-feature, Structural Change, that can be calculated
from an arbitrary frame-wise basis feature, with each element in the structural change
feature vector representing the change of the basis feature at a different time scale.
Then they conducted a web-based experiment whose results suggest that the proposed
feature correlates with the human perception of change in music. The relationship of
structural change with complexity is hypothesized but left for future work.

In [62], the authors consider Beethoven’s Sonatas and proceed to analyze harmonic
complexity on different levels: chord level, fine structure, coarse structure, cross-work
and cross-composer. Three different features are taken into account: Shannon entropy
of the chroma vector, the quotient between the geometric and the arithmetic mean of the
chroma vector, and harmonic similarity of the pitch classes computed on a reordered
chroma vector to a perfect fifth ordering.

25



Chapter 2. Background

U ~—G MAJOR PROFILE
- -A MINOR PROFILE |
o 6
2
by
1 4 S
& 4~
-
(.'3
3-
2
2=
1 4 vty oyt
c ¢ 0 D' E F F1' 6 6" Ao &A' B
PROBE TONE

Figure 2.12: The result of the probe tone experiment for C major and A minor keys. Listeners rated how
much the specific tone sounds conclusive [Figure taken from [36]]].

2.3.6 Cognitive Approach to Music Analysis

Different contributions on how tonal organization affects the way music is remembered
come from the field of psychology.

One of the first experiments is the probe tone technique, proposed by Krumhansl and
Shepard [33]], in order to quantify the hierarchy of tonal stability. In this study, an in-
complete C major scale (without the final tonic, C) is sounded in either ascending or
descending form in order to fix in the listener the perception of the C major key. The
scale is then followed by one of the tones of the next octave (the probe tone). This
experiment is repeated for every tone of the chromatic scale and the listener has to rate
how well each tone completed the scale. The more musically trained listeners pro-
duced a pattern that is expected from music theory: the tonic was the most rated tone,
followed by the fifth, third, the remaining scale tones, and finally the nondiatonic tones
(Figure [2.12). In [36], Krumhansl and Kessler extend this method by using chord ca-
dences and both major and minor scales as a context. A similar experiment [34]] was
conducted with the first movement of Mozart’s piano Sonata K.282. The listeners had
to adjust an indicator on the computer display to show the degree of experienced ten-
sion. The task was designed to probe three aspects of music perception: segmentation
into hierarchically organized units, variations over time in the degree of experienced
tension, and identification of distinct musical ideas as they are introduced in the piece.
A deepening in this field can be found in [34].

In [5], the authors perform three listening tests to investigate the effect of global har-
monic context on expectancy formation. Among the other results they demonstrate
that global harmonic context governs harmonic expectancy and that neither an explicit
knowledge of the Western harmonic hierarchy nor extensive practice of music are re-
quired to perceive small changes in chord function.

26



CHAPTER

Modeling Chord Progressions

HE easiest way to treat chord progressions would be simply to ignore the sequen-
tial aspects and to treat the observations as independent identically distributed
(i.i.d.). The only information we could glean from data would be, then just the

relative frequency of every single chord. However, if we consider tonal harmony rules,
we can find out, for example, that after a dominant chord it is highly probable to find
a tonic chord; or that after the sequence I — /1 we can expect a dominant chord. Ob-
serving the previous chords is therefore of significant help in predicting the following
chord.

We call this kind of data sequential data [7]. These are often produced through mea-
surement of time series, for example the rainfall measurement on successive days at
a particular location, the acoustic features at successive time frames used for speech
recognition or, in this thesis, the chord sequence in a song.

It 1s useful to distinguish between stationary and non-stationary sequential distribu-
tions. In the stationary case, the data evolves in time, but the distribution from which
it is generated remains the same. For the more complex non-stationary situation, the
generative distribution itself is evolving with time. However, we will model the the
rules for chord sequences generation as stationary, so here we consider only stationary
sequential distributions.

To model the probability of a chord given the sequence of the previous chords
p(i|xi_1, ¢ia..., ;_p), we choose to use three different models: Prediction by Partial
Matching (section [3.1.2)), Hidden Markov Model (section [3.1.3)), and Recurrent Neural

27



Chapter 3. Modeling Chord Progressions

Figure 3.1: A first order Markov Model. Each variable x; is conditioned only on the value on the
previous variable x;_1.

Network (section [3.1.5)). Every model that we use can be considered as an extension of
a single basic model for modeling sequential data: the so called Markov Model. So we
dedicate the section to explain it, in order to clarify the analysis of the more ad-
vanced models. Analogously we choose to illustrate the Feed Forward Neural Network
(Section[3.1.4) for a better understanding of Recurrent Neural Networks.

The choice of using three different models has been done in order to use each model
unique benefits. Specifically, it has been argued that the PPM model works really good
with frequent sequences in the dataset, while the RNN model can "capture" rare be-
haviors and thus be more "creative" at sequence generation. The HMM stands on a
middle-ground, since it models a hidden state, but in a non-distributed fashion. RNN
and HMM model an hidden state that depends on all the precedent states (unbounded
memory) while PPM has bounded memory [17]].

3.1 Model Definition

3.1.1 Markov Model

It is possible use equation [2.5]to write a generic joint distribution for a sequence of 7'
observations:

T
p(xl,...,xT) :p<l‘1)Hp<£L’i’{E1,...,l'i,1) (31)
=2

Then, assuming that each of the observations is independent of all the previous ob-
servation, except the most recent, it is possible to simplify the equation [3.1] as follow-
ing:

T
plar, - wr) = [ [ pladdwi 1) (32)
=2

This is what is called a first order Markov Model, a type of probabilistic language model
for predicting the next item a sequence. It is possible to draw it by using the notation
introduced for graphical model in section [2.2.3| (Figure [3.T)).

Since we are dealing with stationary sequential distribution, we constraints the transi-
tion probability distribution p(z;|x;_1) to be equal for each node of the network. For
example, if that conditional distribution depends on adjustable parameters, then all of
the conditional distributions in the chain will share the same values of those parame-
ters.

Although this model has many possible uses, it is not generic enough to model se-
quences of events that depends on many event in the past. We introduce then the n-

28



3.1. Model Definition

Figure 3.2: A second order Markov Model. Each variable x; is conditioned on the value of the two
previous observations x;_1 and x;_s.

gram model, a model in the form of a (n-1)-order Markov model, i.e. the next element
in a sequence depends on the previous n — 1 elements.

p<xi’$i717 Ti—2, ..y 350) = P($¢|$i71, ey xifn+1> (3.3)

By considering a song S consisting of a sequence of 7" chords labeled x1,xs,...,x 1, the
likelihood of S is defined as:

T

p(S) = p(SUl, T2y -eny $n71) : Hp(xifﬂizel, ---vxifnJrl) (3.4)

i=n

In order to compare the likelihood of chord sequences of different lengths and to sim-
plify computations, the normalized negative log-likelihood is often used instead:

logp(S
p(S) = — Og|g(| ) (3.5)

and this quantity is expressed in bits per symbol. The perplexity of a set of songs H is

then computed as:
~ Xsen logp(9)
2sen |9

Maximum likelihood training aims to estimate the set of model probabilities such that
p(H) is minimum over some training set H (distinct from the test set). This is achieved
[S8]] by setting the transition probabilities to:

p(H) = (3.6)

C(xi—n—i-la ooy fL“z)

sneX A(Tp_ni1y - T

(T3] Ti1s ooy i) = 5 (3.7)

where ¢(g) is the number of occurrences of the sequence ¢ in the training set.

Such models have been used for many types of data, such as melody [13]] and spoken
language [[10]]. The first attempts to model chord sequences via this approach [61] [43]]
achieved limited success, due to fixed model inputs and parameters and to overfitting
issues. Better results have been obtained using smoothing techniques [58]] originally
designed for spoken language modeling.

3.1.2 Prediction by Partial Matching - PPM

Prediction by Partial Matching is an extension of the N-gram model that defines a more
sensible behavior in case of unobserved sequences (zero frequency problem).

29



Chapter 3. Modeling Chord Progressions

When the training set is small compared to the number of possible N-grams, it is likely
to find, in the test set, sequences that were never observed. By using the equation
we should assign to those sequences a probability 0, but this will then conflict with
observation of the sequence in the test set. In order to solve this problem, it is possible
to start from the idea that, even if we have never observed the sequence .S, we may have
observed the last part part of .S, and this could suggest something about the sequence
probability. This may appear clearer by reasoning with a language example: we may
have never seen the sequences "John likes to drink water" and "John likes to eat water",
but we may have observed the sequence "like to drink water"; so given the observed
shorter sentence, we would like to assign an higher probability to "John likes to drink
water" with respect to "John likes to eat water". This is called "Prediction by Partial
matching” and, starting from this idea, it is possible to rewrite the equation [3.7]by tak-
ing into account also lower order n-grams [32] in order to perform a sort of smoothing
of the probability distribution:

p($i|$i—17 ey Iz‘—n+1) =
B {Ot(%,xz‘—h oo Timp1) if e(2inyr, .o 25) >0 (3.8)

V(@i oy Timpg1 ) P(T4| Ti1, oy Timny2), Otherwise

where a(z;|x;_1, ..., T;_n11) 1S an estimate of the probability of an already seen n-gram
and the escape probability y(z;_,1, ..., ;) represents the probability mass assigned to
all symbols that have not been observed in the training set.

PPM optimizations

There are many optimization designed to improve the performances of PPM models.
We present here two common techniques to improve the probabilities estimated by
PPM:

e Exclusion: a technique that excludes predictions found at a higher order when
calculating the probabilities for lower-order contexts [12]. Let us explain it with
a short example: suppose we trained our model on the progression (C', Dmin, G,
Dmin, F', C', Dmin) with a 2-gram model. If we then encounter the chord F’ after
this progression, it is not predicted by the current £ = 2 context, because we have
never encountered the triple (C, Dmin, F'). So we go back to the £ = 1 context
and we find two occurrence of Dmin followed by another chord. However, we
can exclude the sequence (Dmin, ) from our computations, because the chord
G cannot possibly occur, since if it did, it would have been encoded at the k = 2
level.

e [nterpolated Smoothing: a technique that proposes an improvement of the qua-

tion 3.8t
p(l’i‘ﬂfifl’ '--7xifn+1) =

= Inax (04(%, Lj—1y ey l’z’—n+1), 0) + 7(%‘7 ooy xz’-n+1)p($z‘|$z‘—1, ooy xi—n+2)
3.9)

30



3.1. Model Definition

Z4 Zs Z3 Z4
/ \ e \ /
| | | | \: | | |
\ : y N ) / \ \ ) / \ : y
Xq X2 X3 X4

Figure 3.3: A graphical representation of a Hidden Markov Model: a Markov chain of latent variables
where the probability of each observation is conditioned on the state of the corresponding latent
variable.

With this technique [51]], the probability of an n-gram is always estimated by
recursively computing a weighted combination of the (n — 1)th order distribution
with the (n — 2)th.

3.1.3 Hidden Markov Model - HMM

Suppose that we want to model a sequence of events, whose next event depends on
many events in the past. We saw in section [3.1.1|that we can use a n-gram for this kind
of problems, and increase the value of n. However we must pay a price for the increased
flexibility, because the number of parameters grows exponentially with n. In particular,
with K possible states, a model that looks for the past n events will have K"~ 1 (K — 1)
parameters [[/]. So, for larger values of n, this approach can be impractical.

If we want to build a model for sequences that is not limited by the Markov assumption
to any order, and yet can be specified using a limited number of free parameters, a better
approach is to use a Markov chain of latent variables, with each observation conditioned
on the state of the corresponding latent variable (Figure 3.3)). If the latent variables are
discrete, we call this Hidden Markov Model (HMM).

An HMM is characterized by the following: [54]:

1. N, the number of states in the model. Although the states are hidden, for many
applications there is often some physical significance attached to the states or to
sets of states of the model. For example in our work, hidden states could be related
to some specific tonal context [17] (although for a high number of hidden state,
this intuition can be not significant), like dominant chords, sub-dominant chords,
etc... We denote the hidden variable alphabet as ¢ = {qi, g2, ..., g } and the state
at time t as z;.

2. M, the number of distinct observation symbols per state, i.e. the discrete al-
phabet size. The observation symbols correspond to the physical output of the
system being modeled. In our work, the observation symbols are all the chords
that are present in the database of songs. We denote the individual symbols as
v = {v1, v, ..., vps } and the symbol at time ¢ as z;

31



Chapter 3. Modeling Chord Progressions

3. A = a,j, the state transition probability distribution, where:
aij = plzer = gl =q;), 1<4,j<N (3.10)

Since a;; are probabilities, they satisfy the equation: 0 < a;; < 1with ). a;; =1,
so the matrix A has N(N — 1) independent parameters.

4. B = b;(k), the emission symbol probability distribution, where:
bi(k) =play =v]ze=1¢q;), 1<j<NAL<k<M (3.11)

The same properties written for transition probabilities are valid also for emission
probabilities.

5. ™ = m;, the initial state distribution, where:
T=pla=q), 1<i<N (3.12)
where > m;, = 1.

Again we focus our attention on homogeneous models, for which all the conditional
distributions governing the latent variables are encoded in the same matrix A and all
the emission distributions are described by the same matrix B. The joint distribution
over both latent and observed variables is then given by [7]]:

T
P(X, Z;0) = p(z|m) [Hp@m_l; A) (3.13)
t=2

T
| J ECERTZ)
T=1

where X = {xy,...,2r}, Z = {z1,...,2r}, and 0 = {¢, A, B} denotes the set of
parameters governing the model.

We can gain a better understanding of the Hidden Markov Model by considering it
from a generative point of view [7|]. We first choose the initial latent variable z; with
probabilities governed by the parameter 7 and then sample the corresponding observa-
tion 27 from v, using the observation probability b;(1). Then we choose the state of
the variable 2, according to the transition probabilities a;; = p(23|z;) since we already
know the value of z;. From the value of the hidden state z, we sample the symbol x5.
From z, we can generate z3 and so on.

A useful property of HMM is that, when we use it to model an already existing se-
quence (during the training phase) the hidden node probability z; will depend on all
the previous hidden state z; 1, z;_», ... since there are no observed nodes that block the
path. In our work this means that the model will "have memory" of all the past events.
Instead, when we use the model as a generator, as explained above, we will know the
past hidden nodes, so we have a blocked path (Equation [2.19). This allow us to gen-
erate the next hidden state 2;,; relatively easily, taking in account just the current state
2y, since zpyq AL 2z | 2.

It is important to emphasize that the application of HMM in this thesis, for modeling
chord progression, is different from the use of HMM for chord recognition (e.g. from
audio). In chord recognition, the hidden nodes are the actual chords and the observed
nodes are the audio feature. Here the observed nodes are the actual chords from the
input score and the hidden nodes can be related to some abstract harmonic context, as
stated before.

32



3.1. Model Definition

Input Layer Output

Inputs
Outputs

Figure 3.4: A simple feedforward neural network with a single hidden layer. The input layer has 3
nodes, the hidden layer has 4 nodes and the output layer has 2 nodes. This network can be used to
perform a classification task with k = 2 classes.

3.1.4 Feedforward Neural Network

Feedforward neural networks are of extreme importance to machine learning practition-
ers. They form the basis of many important commercial applications. For example, the
convolutional networks used for object recognition from photos are a specialized kind
of feedforward network. The term neural network has its origins in attempts to find
mathematical representations of information processing in biological systems. Even if
the claim of their biological plausibility may have been exaggerated, the term network
is still meaningful, since we compose together many different functions with a structure
that can be represented with a direct acyclic graph.

To understand the idea at the base of feedforward neural networks, we can start by
thinking about the limitations of linear models, such as logistic regression and linear
regression. How can we overcame the defect that the model capacity is only limited
to linear functions? The idea is to apply the linear model not to the input x itself, but
to a transformed input ¢(z), where ¢ is a non-linear transformation. The question is
then how to choose the mapping ¢. Until the advent of what is called deep learning,
the typical approach was to manually engineer ¢. Unfortunately this approach requires
a lot of human effort for each single task. The strategy of deep learning is, instead
to decide just the general function family of ¢ and to learn its exact parameters using
machine learning techniques.

For example, consider the task of approximate a function f*, for instance the classifi-
cation function y = f*(z) that maps an input x to a distribution y. A FNN defines a

mapping:
y=f(2:0,w) =¢(x:0)'w (3.14)

where there are parameters 6 that are used during the training phase to learn ¢ from a
broad class of functions, and parameters w that map from ¢(x) to the desired output
[20].

For a more practical understanding, we now describe the functioning of the simple

33



Chapter 3. Modeling Chord Progressions

FNN of Figure 3.4] First we construct M linear combinations of the input variables
xr =, ...,xp (D = 3 in the example)in the form:

D
aj = wila + bV (3.15)
i=1

where j = 1,...,M (M = 4 in the example). We shall refer to the parameter wj(ll )
as weights and the parameter b§-1) as biases. The quantities a; are known as activa-
tions. Each of them is then transformed by using a differentiable, nonlinear activation
function f(-) to give:

These quantities are again linearly combined with the equation:
M
a =Y wiz+ b (3.17)
=1

and, finally, the output unit activations are transformed using an appropriate activation
function to give a set of network outputs yj.

This chain structure is the most commonly used in neural networks. It is possible to
generalize this model adding multiple layers in the chain. The overall length of the
chain gives the depth of the model. A common denomination for the generic model
is to call input layer and output layer respectively the first and the last layers, and
hidden layers all the layers in between. This name is due to the fact that the training
data does not show the desired output for each of these layers, but instead it is the
training algorithm that must decide how to use them to produce the correct final output.
Another generalization is to change the number of nodes for each layer (the width of
the model). Rather than thinking of the layer as representing a single vector-to-vector
function, it is also possible to think of the layer as consisting of many units that act in
parallel, each representing a vector-to-scalar function: each unit receives inputs from
many other units and computes its own activation value. The propagation of inputs up
to the hidden units and then to the output layer is called forward propagation.

The choice of the family of the activation function is determined by the nature of the
data and the assumed distribution of target variables. For example, for standard regres-
sion, the activation function is the identity (y; = ay), for binary classification it is used
the sigmoid function, while for multiclass classification, with K > 2 output classes, is
used a softmax (nonlinear) activation function in the form:

exp(ag)

>_; exp(a;)
log softmax :  logp(Ck|z) = ap — log Z exp(a;)

J

softmaz : p(Cklz) =
(3.18)

The training algorithm when working with NN is the so-called backpropagation. Dur-
ing training, the forward propagation produces a scalar prediction, which is compared

34



3.1. Model Definition

Hidden
Input Layer Output
Layer

y2

O
O

Inputs
Outputs

h

Figure 3.5: A graphical representation of a simple RNN with a single hidden layer. The black square
indicates a delay of a single timestep. We can see that both the input and the previous hidden state
participate at the computation of the current hidden layer. In the bottom part, a compact representa-
tion, where all the nodes are represented in a single node for each layer.

to the target value in orded to obtain a cost J(6). The back-propagation algorithm al-
lows the information from the cost to flow backwards through the network, in order to
compute the gradient to use for the optimization of the parameters. Computing an ana-
lytical expression for the gradient is straightforward, but numerically evaluating such an
expression can be computationally expensive. The strength of the back-propagation al-
gorithm is that it can do this task by using a simple and inexpensive procedure [20]. The
work presented in [57]] was one of the first successful experiments with this algorithm
and contributed in initiating a very active period of research in multi-layer neural net-
work. The other big improvement, that made neural network a competitive model, was
presented in [28] [27]. Hinton et al. showed how a many-layered feedforward neural
network could be effectively pre-trained, one layer at time as an unsupervised restricted
Boltzmann machine, and then fine-tuned by using supervised back-propagation.

3.1.5 Recurrent Neural Network - RNN

Recurrent Neural Networks extend standard feed-forward deep neural networks, by
making them scale to much longer sequences than would be practical for "standard"
neural networks.

The basic idea is to share parameters across different part of the model, thus allowing
a "memory" of previous inputs to persist in the network’s internal state, and thereby in-
fluence the network output. This makes it possible to extend and apply the model to se-
quences of different length and to generalize across them. In order to achieve that, cycli-
cal connections are allowed (Figure3.5)), thus making the model auto-regressive.

A useful way to visualize RNNs is to consider the update graph formed by "unfold-
ing" the network along the input sequence (Figure [3.6). Viewing RNNs as unfolded

35



Chapter 3. Modeling Chord Progressions

Outputs

Output
Layer

Hidden
Layer

Input
Layer

X(t+1)

Inputs

Figure 3.6: The unfolded graphical representation of a simple RNN with a single hidden layer where it
is clear that the current hidden state h(t) is participating in the computation of the next hidden state
h(t + 1). Note that the unfolded graph contains no cycles.

graphs makes it easier to generalize to networks with more complex update dependen-
cies.

Using RNN it is possible to overcame the limitation of FNN of accepting only fixed-
length sequences as input. Since RNN models the concept of time, sequences of ar-
bitrary length can be used as a context, similarly to HMM. However, differently from
HMM, RNNs have a distributed state and therefore have significantly larger and richer
memory [23]].

Allowing cyclical connections can be translated in mathematical formulas by modify-
ing the equation [3.15]as follows [24]:

D

M
a;(t) =Y wi(thvj + Yt —i)uj + b, (3.19)

1=1 =1

where v;; are the weights from the input layer to the hidden layer and u; are the weights
from the previous hidden layer to the current hiddent layer. The equation [3.17]is still
valid for RNN.

Deep Recurrent Network

The computation in the RNNs that we analyzed can be decomposed into three stages
[20]:

1. from the input to the hidden state;
2. from the previous hidden state to the next hidden state;

3. from the hidden state to the output.

36



3.2. Dataset

o B/ o

Figure 3.7: A graphical representation of a deep RNN where the hidden recurrent state is broken down
into many layers organized hierarchically.

Inputs
Outputs

Would it be advantageous to increase the number of hidden layers? Experimental evi-
dence ( [22]) suggest so, in agreement with the idea that we often need enough depth
in order to perform the mapping that we need for our applications. From the many
possibilities to increase the depth of a RNN, we choose the simple method exposed in
Figure We can think of the hidden layers lower in the hierarchy as playing a role
of transforming the input into a representation that is more suited to be processed by
hidden layers at higher levels.

Long Short-Term Memory

As discussed in the previous section, an important benefit of recurrent neural networks
is their ability to use contextual information when mapping between input and output
sequences. Unfortunately, for standard RNN architectures, the range of contexts that
can be accessed in practice is quite limited. The problem is that the influence of a given
input on the hidden layer, and therefore on the network output, either decays or blows
up exponentially as it cycles around the network recurrent connections. This effect is
often referred to in the literature as the vanishing gradient problem [21]. Numerous
attempts were made in the 1990s to address the problem of vanishing gradients for
RNNs. We choose to use one of the most common architectures, named Long-Short-
Term Memory (LSTM) architecture [29].

The LSTM architecture consists of a set of recurrently connected subnets, known as
memory blocks. These blocks can be thought of as a differentiable version of the mem-
ory chips in a digital computer. Each block contains one or more self-connected mem-
ory cells and three multiplicative units: the input, the output and forget gates. They
provide continuous analogues of write, read and reset operations for the cells (Fig-
ure [3.8). An LSTM network works in the same way as a standard RNN, except that the
summation units in the hidden layer are replaced by memory blocks. The multiplicative
gates allow LSTM memory cells to store and access information over long periods of
time. For example, as long as the input gate remains closed (i.e. has an activation near
0), the activation of the cell will not be overwritten by the new inputs arriving in the
network, and can therefore be made available to the net much later in the sequence, by
opening the output gate.

3.2 Dataset

The dataset was obtained and processed in [17]]. We report here the salient details, for
reading convenience.

37



Chapter 3. Modeling Chord Progressions

Input Gate

Block

Figure 3.8: The three gates are nonlinear summation units that collect activations from inside and
outside the block, and control the activation of the cell via multiplications (small black circles). The

input and output gates multiply the input and output of the cell while the forget gate multiplies the
cell previous state. Note that the block has four inputs but only one output [Figure taken from [23]].

The dataset was obtained from ultimate-guitar.com, a website that presents itself as
"Your #1 source for chords, guitar tabs, bass tabs, ukulele chords, guitar pro and power
tabs". Basically the website allow everyone to upload chord annotations, and contains
a huge collection of user annotated songs. Overall the dataset contains 26,545,277
chord occurrences stemming from 441,2924 songs by 41,562 authors. Style tags show
a significant prevalence of Rock, Pop and Alternative. Since the songs are not annotated
by fields-experts, the dataset is quite noisy, but the authors argued that the benefits of
such a large data set outweighs any effect of the noise in the data [17].

In order to make the parsed chords sequences usable for the models, it was necessary
to make them pass through a cleaning process:

1. Map the equivalent chord type labels to the same label. This step was necessary
since the original annotations did not provide a consistent syntax, e.g. the chord
composed by the pitches C-E-G-B can be annotated as Cmaj7, C7+, C' A 7,
C A.

2. Map harmonic equivalent chords to the same label. E.g. from the rules of Tonal
Harmony, we know that considering its harmonic function, the chord D13 can, in
a first approximation, be consider equivalent to D9, and D7 .

3. Ignore the bass annotations. Approximately 2% of the chords were annotated
with a bass note different from the root (e.g. C/FE), so the authors decided to
remove it since the complexity introduced by a much larger alphabet was not
enough compared with the information contained in this annotation.

4. Map some rare chord types to "similar" frequent types. This was the most sub-
jective decision of the entire process, but, again, it was necessary to reduce the

38



3.3. Model Implementation and Training

Table 3.1: Mapping from "rare" chord types to more frequent types in order to reduce the number of
symbols in the model

source target
Z:aug Z:maj

Z:dim Z:min
Z:sus4 Z:(5)
Z:sus2 Z:(5)
Z:7susd | 7.7

Z:hdim7 | Z:min

complexity of the model. In the table [3.T we show the mapping of these labels.

5. Decouple the harmonic function from the specific pitch. Keeping the exact chord
fundamental pitch is redundant; what it is really meaningful is the interval from
the chord fundamental to the local tonic. In order to perform this step it was
necessary to perform the tonic identification of each song and then translate every
song chord so that every song tonic corresponds to the same pitch. To do that it
was used the tonic identification system developer by Di Giorgi [17]].

After this process, our dataset is composed by 4 chord types (maj,min,7,5) and 12
tonic-fundamental intervals (overall 48 symbols). The first three types were chosen
because they are, as expected, the most frequently occurring in the dataset (89% of all
occurrences after step 3), while (5) was retained because the mapping to one of the
other three types is not possible without prior information about the tonality.

3.3 Model Implementation and Training

In this section we explain how each model is implemented in order to better accomplish
the task of modeling chord progressions. Then we discuss some theoretical problems
regarding the training phase and we briefly present the training phase performed by
Di Giorgi [[17]. A detailed explanation about the training phase can be found in his

paper.

The training of the models is basically an optimization problem over a specific evalua-
tion function. A simple and efficient evaluation function is the cross-entropy (Eq.[2.14).
In this thesis, ¢ is the distribution of chords in any corpus, and p is the distribution of
chords as predicted by the models. So the lower the cross-entropy, the better we can
expect the language model to predict the next chord. Unfortunately, the distribution ¢
is unknown, so we will use its Monte Carlo estimation (Eq. [2.15) where the training
(and test set) set is treated as samples from ¢(z). The sequence used for training are
sequences of chords symbols (or, using the musical notation of section [2.1.5] harmonic
progressions) whose specific format is described in section[3.2]

In order to give an insight on how the models will generalize to an independent dataset
and limit overfitting problems, it was evaluated the variability of the cross-entropy esti-
mates using a k-fold cross-validation [20], with £ = 5. This method consists in partition
the original data set into £ non overlapping, equal sized subset. A single subset is re-
tained as the validation data for testing the model and the remaining &£ — 1 are used

39



Chapter 3. Modeling Chord Progressions

backoff smoothing interpolated smoothing

3.2

3.0

2.8
method
—8&— a

2.6 = b
—8— C
o d

24 ax

2.2

2 4 6 8 10 2 4 6 8 10
order order

Figure 3.9: A comparison between the five smoothing methods of Table with Backoff Smoothing (a)
and Interpolated Smoothing (b). Both figures use Exclusion. Error bars computed by 5-fold cross
validation are not visible, being two orders of magnitude smaller than the data.

as training data. This step is then repeated % times, with each of the k subset used
only once for validation. The k results are then averaged to produce a single estima-
tion.

3.3.1 Prediction by Partial Matching - PPM

With reference to Eq. for each context, one must allocate a probability v(z;, ..., T;_pn11)

to the event that a novel sequence occurs, but it is difficult to image a rationale for op-
timal choice of this probability [[11]]. Some solutions in the context of Markov models
have been proposed by [11]], [46]], [47]. As noted by all these authors, in absence of a
priori knowledge, there seems to be no theoretical basis for choosing one solution over
another. So it is necessary to take a pragmatic approach and test the many solutions in
the particular context of use.

The different methods to obtain ¢(z) and £ are listed in the Table For more infor-
mation about this process, we refer to [17]].

Table 3.2: List of escape methods tried during the training phase of PPM model [Table taken from [|17]].

method | escapeif | & é(x) SuM e x &(x)
A [L1] clx)=0 11 c(x) N

B [11] e(x) <1 | Nay c(x) —1 N — Ny — Noy
C [46] c(r) =0 | Niy c(x) N

DBO] | c(z)=0 | 056Ny, | c(z) —0.5 | N —0.5N,
AX[47] | e(x)=0| Ny +1 | c(x) N

The cross-entropy results achieved by the methods in Table[3.2]are shown in Figure [3.9]
All the methods used the Exclusion technique. The variations on /1, caused by 5-fold

40



3.3. Model Implementation and Training

cross validation are two orders of magnitude smaller than the data, meaning that the
risk of overfitting is very low.

3.3.2 Hidden Markov Model

The problem of training an Hidden Markov Model, can be explicitly defined as the
problem of adjusting the model parameters §# = (A, B, ), given the observation se-
quence z = {x1,22, ..., zr}. The goal is to maximize the likelihood function (obtained
by marginalizing the equation [3.13|over the latent variable):

p(X;0) => p(X, Z;6) (3.20)
Z

Unfortunately it is possible to simply treat each of the summations over 2, indepen-
dently, because the joint distribution does not factorize over ¢. Nor can we perform the
summation explicitly, because there are 7' variables to be summed over, each of which
has NV states (notation of section , resulting in a total of N7 terms [7].

An efficient technique to solve this optimization problem is the Expectation-Maximization
(EM) algorithm. It start with some initial selection for the model parameters, which are
denoted by 6°'?. The algorithm proceeds in two steps applied iteratively to each obser-
vation in the dataset until convergence of the parameters:

1. E step: it takes the values of the parameters and evaluates the posterior distribution
of the latent variables p(Z| X, 6°'¢). It then use it to evaluate the expectation of the
logarithm of the complete-data likelihood, as a function of the parameters 6, to
give the function:

Q0,67 =Y p(Z|X,0°) log p(X, Z,0) (321)
Z

2. M step: it finds the new value of 6 that maximizes Q (6, 6°'9).

The EM algorithm must be initialized by choosing starting values for 7 and A. But
elements of 7 and A that are set to zero initially, will remain zero in subsequent EM
updates [7]. A typical initialization procedure is to select random numbers, making
sure that they respect the summation and the non negative constraints associated with
their probabilistic interpretation.

The number of possible hidden nodes V (i.e. the size of the alphabet), is a parameter
that sensibly affects the performance of the model. A low number will lead to poor
data fitting and to a reduction of the importance of the context (in the extreme case of
n = 1 the model will become an 1-gram model, with no memory). On the other side,
choosing too high a number may cause problems of overfitting and a degradation of the
performances with the real world-applications.

The size of the alphabet () was varied logarithmically from 1 to 1000, and to use 100
iterations of EM algorithm. The number of parameters A used by the model, can be
calculated as:

A=(N—-1)+NM—-1)+ N(N —-1) (3.22)

41



Chapter 3. Modeling Chord Progressions

4.0
3.8
3.6
3.4

3.2

°
3.0
2.8
2.
22
1 2 5 10 20 50 100 200 500
2]

(o2}

~

1000

Figure 3.10: The cross-entropy of the HMM model with different hidden node alphabet sizes N. Error
bars are computed using 5-fold cross validation [Figure taken from ].

The Figure [3.11] shows the cross-entropy of the trained models. As we can expect, it
decreases while increasing /N. No overfitting problems are found with the used alphabet
sizes (N < 1000).

3.3.3 Recurrent Neural Network

In order to model harmonic progressions with RNNs, each chord was transformed in a
binary vector of 48 entries (48 is the dimension of the alphabet of chords) where just the
corresponding entry is equal to 1. The LSTM technique is used to enable the model to
consider a longer context and the gradients are computed with backpropagation. Since
this is a problem of multi-class classification with £ > 2, the output layer function f is
a softmax.

In his paper [17], Di Giorgi experimented with different configurations, by varying
the number of hidden layers and the number of units. The results are in the Fig-

ure 3.111

Once the model is trained, the estimation of the next chord after a specific chord pro-
gression can be done giving to the RNN the single chords as input and considering only
the output after the last chord of the sequence. The sequential structure of the model
will ensure that the probability of the last chord will depend on all the chords given as

input p(z;|x;_1, ..., o).

42



3.3. Model Implementation and Training

units
32
64
128
256
512

2.0

» M

1 2 3
hidden layers

Figure 3.11: The cross-entropy of the model, varying the number of the units and the depth of the hidden
layer [Taken from [|I7|]]

3.3.4 Compound Model

We saw that the three proposed models have different advantages and disadvantages.
In order to include as much good features as possible from each model, Di Giorgi [[17]
created a compound model, i.e. a weighted average of the three models:

p(xilwiy, ..., w0) = Z TomPm (24| Ti—1, ..., To) (3.23)
meM
where 7, is the weight parameter for each model mand ), 7, = L.

The set M is composed by the best performing models for each model type (PPM,
HMM and RNN). In particular, the following settings were used:

e model C with backoff smoothing for PPM;
e |Z| = 1000 for HMM;
e the network with 3 layers of 128 units for RNN.

In order to find the best values for m,,, he performed a grid search aimed at the min-
imization of the cross-entropy. The results of this computation point the lower cross-
entropy (2.33 bit/sample) in the average (0.5/0.5) between the PPM and the RNN
models. This means that the information added from the HMM, given the PPM and the
RNN is equal to zero.

43






CHAPTER

Experimental Results

N this chapter we present the design and the results of the listening test. The goal
is to give an answer to the question: "Can we predict which level of harmonic
complexity will suit best the taste of a specific user?" Our hypothesis is that this

value could be related to the level of music expertise of the user. We know from the
work of Di Giorgi [[17] that the perceived complexity of a chord progression has a
strong correlation with the probability of the sequence. So we will use the terms "more
complex progressions" and "easier progressions” to identify respectively more and less
probable chord sequences.

4.1 Setup of the Listening Test

We developed an experiment that is organized in two sections. In the first section we
profile the level of "musical expertise" of the subject through a survey (Section {.1.1).
The second section is subdivided in 8 small tests where we consider the harmonic
progressions produced by the different generative models presented in Chapter[3|and we
ask the subject to select the harmonic complexity that he likes most. In order to reduce
the cognitive load, we designed a particular interface which allows people of diverse
musical expertise to make this choice and provides the result in a format that could be
easily analyzed. The subject is provided with a big horizontal slider that he can move
in order to generate a progression with a specific probability (details in Section 4.1.2)).
When dragging it to the left, the subject will listen to simpler progressions, whereas by
dragging it on the right, more complex progressions are played. The subject can keep

45



Chapter 4. Experimental Results

Choose your favourite complexity value! (Testn. 3)

Every position of the slider is associated with sequences of chords that you will find less or more complex. Press the
"play” button and move the slider below until you find the set of chord progressions that you like most. Then click the
button "Next Test" and wait for the new test to load.

When you move the slider the progression will stop and you need to press "play” to listen to the next progression.

>

simple . complex

o o : ‘ |
Next Test

Figure 4.1: The user interface (UI) for the selection of the preferred complexity.

listening to chord sequences, moving the slider until he finds the complexity value that
he prefers.

As said before, this test is repeated 8 times, in order to evaluate the results obtained
with the different models (Compound, HMM, RNN, PPM) and different music modes
(major, minor).

We ask the user to focus on the complexity of the current progression, but there is the

risk that previous progressions would still affect the perception of the current progres-
sion. To minimize this risk, we used the following precautions:

e displaying a step graph with 5 circles, corresponding to the 5 chords of the se-
quences, to make evident which chord of the progression is currently played and
when a new progression starts;

e inserting a pause of 1 second between progressions;

e separating the minor and the major modes in different tests.

4.1.1 Subject Profiling

Musical skills and expertise may vary a lot among different people. Also the concept
of music expertise is a really wide concept, ranging from performance of an instrument
and listening expertise, to the ability to employ music in functional settings or to com-
municate about music. We chose to use the Goldsmiths Musical Sophistication Index

46



4.1. Setup of the Listening Test

= = = =
o N S o
| | | |

# of users
©
1

O A
I I I I I I I I

50 60 70 80 90 100 110 120
gmsi

Figure 4.2: The number of users that participated in the test, grouped by musical expertise using the
General Musical Sophistication Index (GMSI).

(GMS]) [48] because it can give an evaluation of "musical skills" for both musicians
and non-musicians. The computation of the GMSI is performed through a survey with
38 questions and 7 answers for each question. The answers are then combined into 5
sub-factors (active engagement, perceptual abilities, musical training, singing abilities,
emotions) and one general factor (general music sophistication).

The GMSI distribution of the people that participated to the test is shown in Figure 4.2]

4.1.2 Chord Progressions Generation

In this section we explain how we generated the chord progressions from our model.
As stated before, sampling chord sequences with different complexity is equivalent to
sampling chord sequences with different probability. In this task we use the capability
of our models to output the probability of having a particular chord, given the previous
chords (i.e. the probability of observing a particular chord transition). Di Giorgi [|17]]
identified three techniques that can be used for sampling:

1. Range Sampling, i.e. dividing the probability interval [0, 1] in K non overlapping
sub-intervals T}, = [ay, (%) and sampling every chord z; of the sequence from a
subset of the alphabet X containing chords with a probability (given the context)
that belongs to the interval 7}:

A

Xi(zi1, ..., x0) = {z|p(x|z; — 1, ...,20) € Ty} 4.1)

The complexity can then be controlled by choosing the interval k. A lower value
of k generates less probable chords while a bigger value of k generates more
probable chords.

2. Uniform Sampling, i.e. sampling each chord of the progression from an uniform

47



Chapter 4. Experimental Results

0.6

probability
IS o
w »

=3
N

0.1

C5
c7
Cm
C#
A#
A#5
A#7
A#m
B5
B7
Bm
C#5
C#7
C#m
F#5
F#7
F#m
G5
G7
Gm
G#
G#5
G#7
G#m

Figure 4.3: The evolution of the temperature-modified probability mass function, changing the temper-
ature parameter T. In particular this is the probability after the first major tonic (Cmaj). With a
temperature T < 1, the model will probably generate the chord F') or G, while for an higher value of
temperature many chords can be generated.

distribution over the set of chords X and then dividing the generated progressions
in different bins, according to the progression probability.

3. Temperature Sampling, i.e. modifying the probability of the next chord (given the
context) p(z|x; — 1, ..., x¢) with a Temperature Function and then sampling each
chord of the sequence from the modified distribution. We choose as temperature
function the following:

f@)tr
2 wex [T

The purpose of the temperature function is to flatten or unflatten the probability
distribution. We can better understand it by considering some values of the pa-
rameter 7. For 7 = 1, the temperature function is just the identity function so
the distribution is unaltered. For 7 — 0 the temperature function moves all the
probability of the distribution on the most likely outputs, turning the sampling pro-
cess into the argmax function. For 7 — oo the the distribution tends to become
uniform over all the symbols (Figure §.3)).

f(x) = (4.2)

We decided to use a combination between temperature sampling and uniform sam-
pling. Uniform sampling allows to have the sequences split into non-overlapping bins,
while sampling from the temperature modified distribution allows to produce more eas-
ily chord progressions of all possible probabilities. Range sampling was instead dis-
carded because a progression with the same transition probability between each chord
is not what we usually find in music. In fact, basic composition rules suggest to mix
complex chord transitions with simpler chord transitions in order to keep the harmony
understandable. We assume that making a sequence of complex transition without
an harmonic release, would instead make the user forget the harmonic context; and
without an harmonic context all the perceptual effects of tonal harmony would not be

48



4.1. Setup of the Listening Test

-15

progression logp mean

< ®

o

progression logp dev
o Rk N W & u

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
temperature

Figure 4.4: Mean and variance of the log-probability of a set of 5 progressions generated with different
temperature value.

perceived.

In order to understand which temperature to use for our sampling, we proceed with a
simple heuristic where we evaluate the mean and variance of a group of 5 progressions
generated with a certain temperature 7. The temperature parameter was changed from
0 to 20, with a step of 0.1. From the results (Figure 4.4) we can observe that 7 = 7.5
can be a good upper bound for the temperature parameter, since progressions generated
with an higher temperature are likely to have the same probability.

In order to avoid another possible source of bias in the results, we decided to force the
last chord of the progression to be the tonic. This is due to the fact that the ending
chord of a progression could influence its perceived complexity in a way that is not
considered by our model. For example, if we compare the progressions C' — Dmin —
G — C and C — Dmin — G, their (normalized) log-probability (computed with the
compound model) is very similar (~ —7.3). But from a perceptive perspective, the first
progression will sound more "stable" and "conclusive" than the second [53|], and that
could influence an user evaluation of perceived complexity. Since in tonal harmony
we expect a song to start and end with the tonic, forcing it at the end had the side
effect of making the progressions sound more realistic. In particular, with this method
we reduce the possibility that a progression with a low probability would be perceived
as "random". We have already discusses in Section [I.1] that for random stimuli the
perceived complexity level can be difficult to evaluate. This is what we want to avoid,
otherwise low probability sequences would be difficult to compare by people. Since all
the language models that we use consider the generation of the next symbol depending
only on the past symbols, it is not easy to constrain the ending symbol analytically. So
we decided to adopt a "brute-force" by producing a big set of chord progressions and

49



Chapter 4. Experimental Results

by filtering out those that were not ending with the tonic chord.

Table 4.1: A subset of the progressions generated by the Compound model, grouped in different bins,
depending on their log probability.

Major Progressions Minor Progressions
bin | log probability | progression bin | log probability | progression
1 -5.667693 | CAmFGC | -7.026709 | Cm Fm A# D# Cm
-6.460180 | CGFGC -6.826959 | CGFGC
) -7.064298 | CGCGC ) -8.208561 | Cm G# Fm A# Cm
-6.650036 | CGCFC -8.432002 | CGCFC
3 -8.380957 | CDmCDmC 3 -8.801180 | Cm Fm G# A# Cm
-8.129084 | CFDm GC -9.296664 | CFDm G C
5 -10.431535 | CE7AmFC 5 -10.956227 | Cm G Fm G Cm
-10.087513 | CDCDC -11.122792 | CDCDC
10 -16.131764 | CB A#AC 10 -16.763926 | Cm Dm G# Dm Cm
-15.890421 | C D#m Dm G7 C -16.659720 | C D#m Dm G7 C
20 -26.125212 | C A7 A#7D#C 20 -27.258201 | Cm C#m G7 G# Cm
-26.681781 | CGF#7AC -27.445176 | CGF#7AC

After the temperature sampling (and the deletion of the progressions not ending with
tonic), we computed the probability of each progression and we distributed them over
30 non overlapping probability bins. In the Table 4.1 a subset of the generated pro-
gression is shown. The classification of the chord sequences in bins of different proba-
bility performed by our model reflects quite well the complexity that would have been
assigned using the rules of music theory. For example, considering the major progres-
sions, we notice that the progressions inside bins 1 and 2 contains only 7, [V, V, V I; in
the bin 3 is introduced the chord /7; in the bin 5 we can find a secondary dominant of
the V' I; in the bin 10 are introduced out-of-key chords, that resolve chromatically on
chords of the tonality.

Voicings. Since we need to obtain audio excerpts from our progressions, we need to
deal with the choice of the voicings. This is a factor that greatly influences the percep-
tion of a harmonic progression. The easiest example is to listen to chords played only in
the fundamental position. The absence of a melodic interconnection between the chord
notes will make every progression sound "artificial" and not enjoyable. Therefore, we
use the simple voice leading model presented by Di Giorgi [17], in order to obtain a
more "musical” result, without characterizing too much the harmonic progressions with
strong melodic lines that could alter the perception of the complexity. Every progres-
sion generated by the model was thus processed by this "voice leading model" in order
to obtain a list of voicings from a list of chords, where each voicing is described by a
list of MIDI note numbers.

4.1.3 Web App

To make the test easily reachable by many people, we decided to implement it as a web
app. As hosting service, we chose Heroku, a cloud platform as a service (PaaS) sup-
porting several languages. Using a Service-Oriented Architecture is really convenient

50



4.1. Setup of the Listening Test

Major Minor

300

250

Compound
- ~
I 3
o o

...
>
o

suolssaiboud pajesauab Jo saquinu

250

200

HMM
g

suolssaiboud pajesauab Jo saqunu

300

250

200

PPM
-
3
suoissaiboud pajesauab Jo saquinu

200

RNN
-
g
suoissaibouid pajesauab Jo saquinu

-40 -35 -30 -25 -20 -15 -10 -5 -40 -35 -30 -25 -20 -15 -10 -5
logprob logprob

Figure 4.5: The number of generated progressions that end with tonic for each model, distributed in 30
non overlapping bins according to their log probability

51



Chapter 4. Experimental Results

for this kind of "lightweight" applications, since it allows the programmer to easily de-
ploy on the web a local app with a simple git commit, without working on a server and
database configuration. The free plan of Heroku was perfectly suited for the technical
specification of this app.

Server side architecture

The server side architecture was developed in NodeJS, an open source server frame-
work that allows the use of JavaScript on the server. We chose it because it enables
non-blocking, asynchronous programming, which is very resource efficient; a single
thread was enough to allow multiple people to execute the test simultaneously.

The Server Side of this application is just a set of REST API. In particular the exposed
endpoints are:

e GET /api/auth to have the unique user id.

e GET /api/:table to have the set of progressions (major or minor) generated
by a specific model (Compound, NGram, HMM, RNN).

e POST /api/result to save the survey answers and the choosen complexities.
e POST /api/comment to save the email and comment of the user.

There is also another set of endpoints that is used for the result analysis in order to
retrieve the experimental results from the server.

To store the progressions and the results and to perform conflict resolution in case of
simultaneously access to them, it was used a PostgreSQL, an open source database. In
particular we used Heroku Postgres, a SQL Database-as-a-Service. We stored for each
chord of our progressions, the array of note-numbers that was played during the test.
For the entire listening test, the content of the database can be summarized as:

e 4 generation models (compound, HMM, RNN, n-Gram).
e 2 modes for each model (major and minor).

e 30 probability bins for each mode. We chose this number to give the user the
feeling of a continuous slider, to obtain higher resolution data for the regression.

e 10 progression (at most) for each probability bin. We chose to put multiple pro-
gressions in each bin not to make the user focused on a single chord progression,
but rather on the complexity of a set of chord progressions. Anyway we capped
this number at 10, since the user would never listen to more progressions before
changing bin.

e 5 chords for each progression (the last chord and the first are the tonic, but are
saved separately because they can have different voicings).

e 5 notes for each chord.

52



4.1. Setup of the Listening Test

Client side architecture

The client-side was developed using Knockout, a JavaScript library that makes it easier
to create rich and interactive interfaces. It is based on the MVVM (Model View View-
Model) architectural pattern that facilitates the writing of a clean and reusable code.
From a practical point of view, most of the user interactions in our web app are handled
locally, avoiding resource wasting calls to the server. The server API are only called
to obtain the set of progressions and to send back the results of the experiment and the
user’s comments.

The structure of the client-side of our web app was designed using IFML (Interaction
Flow Modeling Language), a modeling language made for expressing the content, user
interaction and control behaviour of the front-end of software applications. In particular
an IFML model allows developers to specify the following aspects of an interactive
application [4]]:

e The view structure and content: the general organization of the interface is ex-
pressed in terms of ViewElements, along with their containment relationships,
visibility, and activation. Two classes of ViewElements exist: ViewContainers,
i.e., elements for representing the nested structure of the interface, and View-
Components, i.e., elements for content display and data entry. ViewComponents
that display content have a ContentBinding, which expresses the link to the data
source.

e The events: the occurrences that affect the state of the user interface, which can
be produced by the users interaction, the application, or an external system.

e The event transitions: the consequences of an event on the user interface, which
can be the change of the ViewContainer, the update of the content on display, the
triggering of an action, or a mix of these effects. Actions are represented as black
boxes.

e The parameter binding: the input-output dependencies between ViewElements
and Actions

The IFML model of our application (Figure {.6)) is is quite simple, since the user is
supposed to navigate in just one direction through the test. There is just one loop in
the Test View Model, in order to perform the test with the different progression sets
reusing the same code.

To implement the IFML model, we used IFMLEdit[] a web-based open source tool
developed by Bernaschina [4]]. This tool allows the specification of IFML models,
the investigation of their properties with an easy to access web representation, and the
generation of code for web and mobile architecture.

To play the note numbers we used the package soundfont-player, a soundfont
loader/player to play MIDL.js sounds using WebAudio API. The sound generation part
is completely up to the client. This is a lightweight solution that allows to avoid the
downloading of heavy audio-files from the server.

Uhttp://info.ifmledit.org/

53



Chapter 4. Experimental Results

[D]Home Page

Start Survey

ok Get Id
‘error event
Survey
error event -
. Error View
Begin Test Get chords
«Form» N
Survey _D_’
Begin Test
Test
error event
«Form» W [ i
Test Form 0 Send Preferences
[ P
Send Preference. /|
Final Page
Final Page
end mail
«Form» [ —/—psend Mail
Email N )
‘Close Page

Closing Page

Figure 4.6: The IFML model of the client side of the Web App developed for the test.

54



4.2. Result Analysis

4.2 Result Analysis

N this section we analyze the results of the listening test in order to evaluate if there
is any correlation between the music sophistication of subjects and the degree of
complexity that they prefer.

In Figure we can see the distribution of the choices of the different people. Every
single point represents the complexity level (measured with the log probability of the
sequence) chosen by the subject.

The kind of knowledge that we are trying to extract from this test can be classified
by using a classification proposed by Law et al. [37], as cultural truth, i.e. some sort
of perceptual judgment refers to the shared beliefs amongst the set of people that we
sample. Examples include mapping a piece of music to the emotions that it evokes, de-
termining whether a particular website contains pornographic content or not, and rating
the attractiveness of a celebrity. In these cases, it is difficult to derive an objective, true
answer. This is because "serenity", "pornography" and "attractiveness" are perceptual
concepts that are difficult to define precisely, and their interpretation can vary greatly
from individuals to individuals. We rely on the wisdom of the crowd to establish what
is truth, i.e. we assume that there is a cultural consensus among the subjects that can be

identified even if some workers may deviate from the norm.

The development of the test as a public web application allowed to collect data very
fast, but it allows the occurring of some possible "bad situations" which produce noise
in the results. In the following list we enumerate these possible problems, along with
the solution that we adopted in order to minimize their occurrence or mitigate their
effect.

1. People not understanding exactly the test instructions. To reduce the risk of this
problem, we carefully design the user interface, in order to make it very intuitive.
For the same reason, we decided to ask a single task to the user.

2. People failing the test on purpose: the separation between the subject and the test
manager can reduce the social responsibility from the subject, that can behave
in unpredictable ways without any reason in particular. We tried to avoid this
problem by proposing the test only to people that could relate to us in some way.
This included friends on social network, private messages and mailing list of field-
related people (e.g. the International Society for Music Information Retrieval -
ISMIR mailing list). Moreover, the user was encouraged to write his email or
some comments on the test in the final page, with the effect of increasing his
perception of responsibility on the result of the test. Advertising the test on public
pages of big websites would have dramatically increased the pool of participants,
but the risk of this kind of "bad" behavior was too high.

3. People getting tired of the test and completing it with random answers. We tried
to minimize this behavior by using a game-like interface, however the incidence
of this behavior may still be quite high. In the following section we propose
a heuristic method to discriminate between "meaningful" and "non-meaningful"
results.

55



Chapter 4. Experimental Results

Major Minor
_5 eeee o:. ’.. e o o oas - .
_10 Of % (OO ° } oo ®
° e o o o " °
- -5 ° 8 % e® © % . ° .
2 °
° ° ° eoe o
3.0 ® ° e A ) e, 2
Q e 0sce o e 5 PUo Y ° 2
c e e ®e ° ®
-25 o ® E]
5]
O L4 e ® 4 a 5
o (] S
-30
] * ®,e b
-35 ° ° ° e o
—40
-5 eee gpe o we o — 00qt @ o o
L TR X
-0 - ° % e -
° ° ° °
e _ . % . o e o
-15 (] L] o ® e
fee Ll .
s 20 ° ° S e s
- e o ° °
& e o ° oo r ° §
-25 Py e o [ ] =]
(] (] e o o
e (]
~30 - 0~ e L .‘o O B
o o° O
-35 o
a0 ° ° ° ° %
5 eee sogo o emo o R
o B e e °
e o ) .
-0 e % = e a®0®
e® o ° % ¢ °
-15 oo o o ° o ¢ "n
. ° ° [Pt 4 LA
>
% -20 e 3 '.* ) ®au®e 2
T - > e 8
s ° il .. oo . ° g
e °® (] 8
-30 Ud °
°
° ®
-35 — —
—40
-5 &8 ".. ..... 00 o o000 00 & °
o & o S o 0% § C
-10 SN e qeed® ® & A
% ) e qe’ o
-5 ® o L Y J
P o o,0
° @ e e O
Z -2 o & . ° ° e o” 3
° U . S q ®, o <3
Z . ° o® 2
_25 (] ooq = (] % «® o
eeo ° ° b 1) g
~30 ©
e [ ) .. .
° ° 'S
-35
—40
40 60 80 100 120 40 60 80 100 120
GMSI GMSI

Figure 4.7: Graphical representation of the "raw" results of the eight different tests. Each plot represent
a single test and every point is the complexity chosen by a subject with a certain GMSI.

56



4.2. Result Analysis

We have a big amount of variables to analyze, since every subject performed 8 tests
and each test output one final level of complexity. Moreover we choose to save also all
the progressions that the user heard, before making the final decision. Let us introduce
some notation to make the analysis easier to understand:

e N is the total number of subjects that participated in the experiment.

e a is the single final answer of the user n for the test . To have an intuitive no-
tation we use 7 € {"CM’,’Cm’,’PM’,’Pm, "HM’, "Hm’, "RM’, "Rm’ } where, for
example, Cm indicates the compound model with minor tonic and RM indicates
the RNN model with major tonic. This value can be measured with the com-
plexity bin number that the user chooses (from 0 to 29 in an increasing level of
complexity) or with the log probability of the bin chosen. These two measures are
completely equivalent for the experiments and we will use one or another depend-
ing on what is convenient for the situation.

e d' is the vector of the progressions listened by the user n for the test 7. The last
item of this vector, corresponds to a;'.

o t; = {a},a?,...,a)} indicates the vector of final results for the test i.

o ¢, = {al,, aty,, ---» A, } indicates the vector of the final answers of the user n
for all the tests.

e adding the tilde on top of all the previous definitions x, means that the value
is "valid" or that the vector is composed only by "valid" values. We consider
as "valid" the values that are not discarded by the cleaning function defined in

Sectiond.2.11

4.2.1 Data Cleaning

In order to detect non-meaningful selections, we propose a heuristic method that ex-
ploits our knowledge of the process of "preferred complexity selection". If the user
could glean information only from the listening of the audio, he would have to listen
every single bin of complexity before doing his choice (not feasible). However we are
providing another piece of information: that the complexity will increase monotoni-
cally moving the slider from left to right. We thus expect the user to perform a sort of
bisection method to find the best complexity. In other words, we do not expect a subject
to truthfully choose the preferred complexity, if he did not listen to at least one more
complex progression and one simpler progression (Figure .8). An easy algorithm that
implements this idea is: looking at the discrete derivate of the "listening path" A (a)
and considering the result valid only if it is positive and negative at least once.

We can see from the Figure 4.9] that we removed a lot of non-meaningful points, such
as all the minimum values generated by people listening to just the first progression
and proceeding to the next test. On the other side, this method reduced drastically the
useful data-points for the analysis (Figure {.10). We can notice from Figure @.11] that
the number of meaningful results tend to decrease, when the number of test already
done by the user increases. This can be explained by the user getting tired of the test,
predicting what he will like and listening only to one final progression.

57



Chapter 4. Experimental Results

14

12

10

IS

complexity bin of the current progression
N

0 1 2 3 4 0 2 4 6 8
# of progressions listened # of progressions listened

Figure 4.8: Example of a meaningful pattern of choice (left) and non-meaningful pattern of choice
(right).

Table 4.2: Pearson and Spearman correlation between each test results and the user GMSI.

Entire Dataset Cleaned Dataset

Pearson  Pear p-value Spearman  Spear p-value Pearson  Pear p-value Spearman Spear p-value
Comp. (maj) | -0.181473 0.121768  -0.178210 0.128734 | -0.120718 0.398770  -0.141527 0.321859
Comp. (min) | -0.172435 0.141800 -0.224383 0.054613 | -0.231388 0.121805 -0.312348 0.034572
PPM (maj) -0.299217 0.009604  -0.309269 0.007336 | -0.314285 0.037739  -0.374572 0.012244
PPM (min) -0.210335 0.072059 -0.231151 0.047534 | -0.279783 0.080378  -0.314933 0.047778
HMM (maj) | -0.206847 0.079115 -0.218115 0.063768 | -0.456597 0.007563  -0.506102 0.002656
HMM (min) | -0.113838 0.334175  -0.166785 0.155526 | -0.330472 0.049004 -0.398774 0.015992
RNN (maj) -0.248327 0.032895  -0.272805 0.018693 | -0.462175 0.008855  -0.522799 0.002549
RNN (min) -0.083592 0.481986  -0.129051 0.276533 | 0.221028 0.232124  0.156595 0.400200

By examining the correlation between GMSI and the log probability ¢, (Table4.2)) we
can generally confirm the existence of a relationship between the user music expertise
and the complexity that he prefers. We can notice that, generally, the cleaned dataset ,,
gives higher correlation values. The first test (Compound maj) and the last test (RNN
min), instead, behave in an unpredicted way, but this can be explained by the noise
sources described in the previous section. We can also notice that Spearman correlation
performs always better than Pearson correlation. This could mean that the correlation
between the two variables is monotonic, but not linear (Section [2.2.1)). Therefore we
try to fit the data with different polynomial regression models.

4.2.2 Polynomial Regression

We choose to fit the results with 5 different polynomial models, from degree 1 to degree
5. In order to mitigate the risk of overfitting, we evaluate every polynomial model using
300 steps of cross-validation where at each step the 80% of the dataset is used for the
training while the remaining 20% is used for testing. As metrics to evaluate the quality
of the fitting, we used R?, mean squared error, explained variance score and median ab-
solute error. We notice that, for the compound model with minor chords, (Figure

58



4.2. Result Analysis

Major Minor
_5 o0 .o & . ‘e R ¢ % e .
° eeg 0 0 ]
-10 “ e g o0
e o o _o
o ] O 4
- -15 ' [ ) ° [ ] o e [ ]
c e
> (] (] e O ee %o £
o -20 e % e o
Q -4 - " ] oo ¢« ® 2
€ ° o o0 o
& -25 P 1
O o e ® e O 5
o Q
-30 0 o
e o @ ° ®
-35 ] °
—40
- ° e ® e {
> % % EEeN o9 -~
° 4
-10 ] ° e )
(] ° (]
15 e (] .: .o. e e £
- ece
«e % o
s -20 ° ° Ey
[n O U ®ee e ° e 2
a : o
-25 — —— e E
[ ] [] o
Q
~30 ° L] = (] -~ .‘. bS]
o o a
-35
-40 Y
e
-5 oe o® . - 00 ¢ G0 @ge® oOm
10 e o % 0" e®® o
e o e e e
[ e
-15 (X} o o ° ° -.‘
[ ] o e O
=
_ e e em
= 20 o o o 2® ¢ 3
(] o L o
T _ ] oo A ] o
Pt ] =
e ° ° 8
-30 ° k]
(]
-35
-40
° !
=5 (] o w
°
4, .° DS
-10 (¥ o
° 000
% ‘. ) e ac% o
-15 = o0 L4 ° °
o ® ) o e O
Z 20 o ® ° o " 3
Z ° e o 2
x O g
-2 % e ° =
30 e S
. .
Ll
-35
—40
40 60 80 100 120 40 60 80 100 120
GSMI GSMI

Figure 4.9: Graphical representation of the "cleaned" results of the eight different tests. Each plot
represent a single test and every point is the complexity chosen by a subject with a certain GMSI. The
green color marks the accepted point, while the red color marks the non-significant points, according
with the cleaning function that we defined.

59



Chapter 4. Experimental Results

total users
© valid users
10

# of users

50 60 70 80 90 100 110 120
gmsi

Figure 4.10: Number of meaningful results against users GMSI, for the test about the compound model
with major tonic.

pound Maj

pound min

Ngram Maj

Agram min

Hmm Maj

Hmm min

Rnn Maj

Rnn min

T T T T T
0 10 20 30 40 50
Number of valid results

Figure 4.11: Number of meaningful results for each test.



4.2. Result Analysis

7.5
0.2
7.0
0.0
é 6.5 N
6.0 -0.2
5.5 -0.4
1 2 3 4 5 1 2 3 4 5
degree degree
70
0.2
60
a 2
€ v 0.0
50
-0.2
40
1 2 3 4 5 1 2 3 4 5
degree degree

Figure 4.12: Evaluation of polynomial regression with different metrics: R?, mean squared error (MSE),
explained variance score (EVS) and median absolute error(MAE).

the model with the best performances is the 3rd order polynomial. However the R?
values is always very low and often negative. This can be explained by considering
that, due to the nature of this test, we have a high probability of having outliers in the
results. As pointed out in and , the Mean Squared Error (and thus the R?) can
behave badly when the error distribution is not normal, particularly when the errors are
heavy-tailed.

4.2.3 Robust Regression

In order to mitigate the effect of the outliers during the regression, we decided to use the
Huber estimator with £ = 3450 since it produces 95-percent efficiency when the errors
are normal, and still offers protection against outliers. We train the Huber estimator
for different polynomial models, similar to what we did in section[d.2.2] by using cross
validation and computing Median Average Error (MAE) on the portion of data that was
not using for training. We used the Median Average Error, since it is a metric that we
can trust also in presence of outliers. The regression model with the best performances
in term of Median Average Error is the 2nd degree polynomial. In Figure d.13| we can
see the results for the Compound model with minor chords ¢¢,.

In the Figure .14 we can see the regression line generated by the Huber for each test ¢;.
All the tests behave similarly (except for the RNN with minor chords, that we already
pointed out as having very noisy results).

61



Chapter 4. Experimental Results

6.4

6.3

6.2

mae

6.1

6.0

5.9

1 2 3 4 5
degree

Figure 4.13: The MAE of the regression using polynomial models of different degrees and the Huber
estimator. The fitted data are the data generated by the Compound model with minor chords.

4.2.4 Inter Model Statistics

We are also interested in comparing how every single subject considered the chords
produced by the different generative models, i.e. to study the disposition of the values
of the vector ¢;.

We decided to use the same technique presented in Section .2.1|to know which data to
discard. In particular we created two new subsets of our dataset, were each entry e, is
assigned under the following conditions:

e all valid: contains the results relative to the subjects that complete each one
of the 8 test with valid results, according to the cleaning function, i.e. the collec-
tion of what we denoted previously as ¢,,.. This dataset contains 8 entries and we
denote it as F.

e any valid: contains the results relative to the subjects that completed at least
one of the 8 test with a valid result. This dataset is a a superset of £ and contains
62 entries. We denote the entries asé,, and the dataset as F.

The remaining 4 entries were completely discarded.

We computed the mean absolute deviation (MAD) of the chosen complexity bin for
every entries e,,, obtaining a vector of MADs for each dataset. The choice of MAD
instead of standard deviation was made for two reasons: having a measure less sensible
to outliers, and having a measure with a more intuitive meaning. The analysis of these
vectors reveals that people tend to be stable in the choice of their preferred complexity,
moving the final result of 3.73 bins in average, along the different tests. This result
is valid for both datasets (Figure @]}, since the mean of these vector is almost the
same: 3.74 for FE and 3.73 for E£. However, E achieved better results sincc; the standard
variation of its vector is 1.20, against the 1.88 of the vector relative to F. Taking off
the first test oy, from the statistic improves the mean of the vector related to £ by 0.2,

62



4.2. Result Analysis

Compound
dbo| uasooyd

PPM
dbo| uasooyd

HMM

dbo| ussooyd

RNN

dbo| ussooyd

40 60 80 100 120 40 60 80 100 120
GMSI GMSI

Figure 4.14: The 2nd degree polynomial Huber regression line plotted for each test.

63



Chapter 4. Experimental Results

E E
0.25 A
0.35 o
0.20 0.30 A
0.25 o
0.15 o
0.20 o
0.10 A 0.15 o
0.10 o
0.05 A
0.05 o
0.00 - 0.00 T l. T T T
0 2 4 6 8 10 0 2 4 6 8
mean average deviation mean average deviation

Figure 4.15: The mean absolute deviation in the choice of the different subjects for the test (M AD(E’ )
on the left and (M AD(E) on the right).

and the one related to £ by 0.1. Instead, by ignoring the results of the last test ¢z,
we do not observe any significant change. This could confirm the idea that the unique
behavior of ¢t M in the fitting task was due to people not properly understanding the
instructions, while the unique behavior of ¢{zpm was instead given by people getting
tired of the test and predicting their favorite progression depending on the previous
tests, without listening to the needing number of progressions.

No correlation where found in both datasets between the variability of the selections
and the GMSI of the subjects, since the p-value of the correlation between these two
vectors gave a p-value > 0.7.

64



CHAPTER

Conclusion

N this thesis we analyzed the relation between the music expertise of a person and
the level of complexity that he or she prefers for chord sequences. We used as a
measure of music expertise the General Music Sophistication Index (GMSI) and as

a measure of the complexity, the probability of the sequence of chords generated by a
machine learning language model.

A special attention was given to the chord sequences generation, by forcing the first
and the last chords to be the tonic, in order to enforce the Tonal behavior and avoid the
generation of sequences that would have been perceived as random sequences. This
guaranteed a good level of discernment also between sequences with a low probabil-

ity.
In order to prove the correlation, we designed a listening test were the subjects had the
possibility of intuitively choosing the progression with the preferred level of complex-

ity, among other progressions with different complexities. We developed this test as a
web application in order to reach a sufficient number of subjects for the test.

Due to the high level of freedom left to the subject during the test and the consequent
high probability of having outliers, we decided to analyze the data with robust regres-
sion techniques. The results, by using an Huber estimator, confirm the existence of
a positive correlation between the subject music expertise and the complexity of the
progression chosen. That means, in other words, that people with an higher music
expertise tend to prefer more complex chords.

We also detected no difference between the user preference for chord sequences gen-

65



Chapter 5. Conclusion

erated with different machine learning models. That means that, from a perceptive
point of view, all the models that we tested generate similar chord sequences with a
comparable complexity.

5.0.1 Future Work

We obtained good results about chords sequences, however this is just a minimal part
of the elements that compose a musical piece. For the future it would be interesting
to repeat a similar procedure, by working with other important musical aspects such
as rthythm, melody, chord voicings and orchestration. This would allow to arrive to a
global model of prediction of the user preference that would not only greatly improve
MIR classification and recommendation tasks, but would also give useful insight in the
field of music composition and musical analysis.

66



Bibliography

(1]
[2]

(3]

(4]

(5]

[6]
(7]
[8]

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(7]

R Alpert. Perceptual determinants of aftect. Unpublished master’s thesis, Wesleyan University, page 51, 1953.

Daniel E Berlyne. Novelty, complexity, and hedonic value. Attention, Perception, & Psychophysics, 8(5):279—
286, 1970.

Daniel E Berlyne. Aesthetics and psychobiology, volume 336. JSTOR, 1971.

Carlo Bernaschina, Sara Comai, and Piero Fraternali. Ifmledit. org: model driven rapid prototyping of mobile
apps. In Proceedings of the 4th International Conference on Mobile Software Engineering and Systems, pages
207-208. IEEE Press, 2017.

Emmanuel Bigand and Marion Pineau. Global context effects on musical expectancy. Attention, Perception,
& Psychophysics, 59(7):1098-1107, 1997.

George David Birkhoff. Aesthetic measure, volume 9. Harvard University Press Cambridge, 1933.
Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

Michael J Burke and Mark C Gridley. Musical preferences as a function of stimulus complexity and listeners’
sophistication. Perceptual and Motor Skills, 71(2):687-690, 1990.

Michael A Casey, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe Rhodes, and Malcolm Slaney.
Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE,
96(4):668-696, 2008.

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling.
In Proceedings of the 34th annual meeting on Association for Computational Linguistics, pages 310-318.
Association for Computational Linguistics, 1996.

John Cleary and lan Witten. Data compression using adaptive coding and partial string matching. [EEE
transactions on Communications, 32(4):396-402, 1984.

John G Cleary and William J Teahan. Unbounded length contexts for ppm. The Computer Journal,
40(2_and_3):67-75, 1997.

Pedro P Cruz-Alcazar and Enrique Vidal-Ruiz. Modeling musical style using grammatical inference tech-
niques: a tool for classifying and generating melodies. In Web Delivering of Music, 2003. 2003 WEDELMU-
SIC. Proceedings. Third International Conference on, pages 77-84. IEEE, 2003.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the cross-entropy
method. Annals of operations research, 134(1):19-67, 2005.

W Bas De Haas, José Pedro Magalhaes, and Frans Wiering. Improving audio chord transcription by exploiting
harmonic and metric knowledge. In ISMIR, pages 295-300, 2012.

WB De Haas. Music information retrieval based on tonal harmony. PhD thesis, Utrecht University, 2012.

B. Di Giorgi, S. Dixon, M. Zanoni, and A. Sarti. A data-driven model of tonal chord sequence complexity.
2017.

67



Bibliography

(18]

[19]
[20]

[21]

(22]

(23]
(24]
[25]

[26]

(27]

(28]

[29]

(30]
[31]

(32]

(33]

[34]
[35]

[36]

[37]

(38]
[39]
[40]

[41]
[42]

[43]

[44]

[45]
[46]

Bruce Edmonds. What is complexity ?-the philosophy of complexity per se with application to some examples
in evolution. In The evolution of complexity. Kluwer, Dordrecht, 1995.

John Fox. Robust regression. An R and S-Plus companion to applied regression, 2002.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Alex Graves et al. Supervised sequence labelling with recurrent neural networks, volume 385. Springer, 2012.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent neural
networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference on, pages
6645-6649. IEEE, 2013.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.
Jiang Guo. Backpropagation through time. Unpubl. ms., Harbin Institute of Technology, 2013.

Pierre Hanna, Matthias Robine, and Thomas Rocher. An alignment based system for chord sequence retrieval.
In Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries, pages 101-104. ACM, 2009.

Jan Hauke and Tomasz Kossowski. Comparison of values of pearson’s and spearman’s correlation coefficients
on the same sets of data. Quaestiones geographicae, 30(2):87, 2011.

Geoffrey E Hinton. Learning multiple layers of representation. Trends in cognitive sciences, 11(10):428-434,
2007.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
science, 313(5786):504-507, 2006.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780,
1997.

Paul Glor Howard. The design and analysis of efficient lossless data compression systems. 1993.

Anssi Klapuri. Introduction to music transcription. Signal Processing Methods for Music Transcription, pages
3-20, 2006.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language modeling. In Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on, volume 1, pages 181—
184. IEEE, 1995.

Carol L Krumhansl. The psychological representation of musical pitch in a tonal context. Cognitive psychol-
ogy, 11(3):346-374, 1979.

Carol L Krumbhansl. Cognitive foundations of musical pitch. Oxford University Press, 2001.

Carol L Krumhansl. The cognition of tonality—as we know it today. Journal of New Music Research,
33(3):253-268, 2004.

Carol L Krumhansl and Edward J Kessler. Tracing the dynamic changes in perceived tonal organization in a
spatial representation of musical keys. Psychological review, 89(4):334, 1982.

Edith Law and Luis von Ahn. Human computation. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 5(3):1-121, 2011.

Mark Levine. The jazz theory book. " O’Reilly Media, Inc.", 2011.
DV Lindley. Regression and correlation analysis. In Time Series and Statistics, pages 237-243. Springer, 1990.

José Pedro Magalhaes and W Bas de Haas. Functional modelling of musical harmony: an experience report.
In ACM SIGPLAN Notices, volume 46, pages 156—-162. ACM, 2011.

Ladislav Marsik, Jaroslav Pokorny, and Martin Ilcik. Towards a harmonic complexity of musical pieces.

Ladislav Marsik, Jaroslav Pokorny, and Martin Il¢ik. Improving music classification using harmonic complex-
ity. 2014.

Matthias Mauch, Simon Dixon, Christopher Harte, et al. Discovering chord idioms through beatles and real
book songs. 2007.

Matthias Mauch and Mark Levy. Structural change on multiple time scales as a correlate of musical complexity.
In ISMIR, pages 489-494, 2011.

Tom M Mitchell. Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37):870-877, 1997.

Alistair Moffat. Implementing the ppm data compression scheme. IEEE Transactions on communications,
38(11):1917-1921, 1990.

68


http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[47]

(48]

[49]

[50]

[51]

[52]

(53]
[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

Alistair Moffat, Radford M Neal, and Ian H Witten. Arithmetic coding revisited. ACM Transactions on
Information Systems (TOIS), 16(3):256-294, 1998.

Daniel Miillensiefen, Bruno Gingras, Jason Musil, and Lauren Stewart. The musicality of non-musicians: an
index for assessing musical sophistication in the general population. PloS one, 9(2):e89642, 2014.

Frangois Pachet. Surprising harmonies. International Journal of Computing Anticipatory Systems, 4:139-161,
1999.

Jean-Franc¢ois Paiement, Douglas Eck, and Samy Bengio. A probabilistic model for chord progressions. In
Proceedings of the Sixth International Conference on Music Information Retrieval (ISMIR), number EPFL-
CONF-83178, 2005.

Marcus Pearce and Geraint Wiggins. An empirical comparison of the performance of ppm variants on a pre-
diction task with monophonic music. In Artificial Intelligence and Creativity in Arts and Science Symposium,
2003.

Jeremy Pickens and Tim Crawford. Harmonic models for polyphonic music retrieval. In Proceedings of the
eleventh international conference on Information and knowledge management, pages 430-437. ACM, 2002.

Walter Piston. Harmony. Norton, 1948.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257-286, 1989.

Martin Rohrmeier and Thore Graepel. Comparing feature-based models of harmony. In Proceedings of the
9th International Symposium on Computer Music Modelling and Retrieval, pages 357-370. Springer London,
2012.

Peter ] Rousseeuw and Annick M Leroy. Robust regression and outlier detection, volume 589. John wiley &
sons, 2005.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science, 1985.

Ricardo Scholz, Emmanuel Vincent, and Frédéric Bimbot. Robust modeling of musical chord sequences using
probabilistic n-grams. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International
Conference on, pages 53-56. IEEE, 2009.

Audrey Mae Skaife. The role of complexity and deviation in changing musical taste. 1967.

Sebastian Streich et al. Music complexity: a multi-faceted description of audio content. Universitat Pompeu
Fabra, 2006.

Erdem Unal, Panayiotis G Georgiou, Shrikanth S Narayanan, and Elaine Chew. Statistical modeling and
retrieval of polyphonic music. In Multimedia Signal Processing, 2007. MMSP 2007. IEEE 9th Workshop on,
pages 405-409. IEEE, 2007.

Christof Weiss and Meinard Miiller. Quantifying and visualizing tonal complexity. In Proceedings of the 9th
Conference on Interdisciplinary Musicology (CIM 2014). Berlin, Deutschland, 2014.

Raymond P Whorley, Geraint A Wiggins, Christophe Rhodes, and Marcus T Pearce. Multiple viewpoint sys-
tems: Time complexity and the construction of domains for complex musical viewpoints in the harmonization
problem. Journal of New Music Research, 42(3):237-266, 2013.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE transactions on
evolutionary computation, 1(1):67-82, 1997.

69



	Introduction
	Complexity
	Musical Complexity

	Complexity and Preference
	Music Information Retrieval - MIR
	A Measure of Preference for Chord Sequences Complexity
	Thesis Outline

	Background
	Tonal Harmony
	Pitch
	Scale and Intervals
	Triads
	Chords with 4 or more notes
	Harmonic Progression

	Mathematical Background
	Probability Theory
	Information Theory
	Graphical models
	Machine Learning Basics

	Related Work
	Complexity and preference
	Model-Based Symbolic analysis of Chord Progressions
	Data-based Symbolic Analysis of Chord Progressions
	Mixed Symbolic Analysis of Chord Progressions
	Harmonic Complexity from Audio
	Cognitive Approach to Music Analysis


	Modeling Chord Progressions
	Model Definition
	Markov Model
	Prediction by Partial Matching - PPM
	Hidden Markov Model - HMM
	Feedforward Neural Network
	Recurrent Neural Network - RNN

	Dataset
	Model Implementation and Training
	Prediction by Partial Matching - PPM
	Hidden Markov Model
	Recurrent Neural Network
	Compound Model


	Experimental Results
	Setup of the Listening Test
	Subject Profiling
	Chord Progressions Generation
	Web App

	Result Analysis
	Data Cleaning
	Polynomial Regression
	Robust Regression
	Inter Model Statistics


	Conclusion
	Future Work

	Bibliography

