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A B S T R A C T

X-Ray Free Electron Lasers (XFELs) are the next generation of X-rays
sources delivering dramatical improvements over synchrotron radi-
ation in terms of brilliance, pulse length and coherence. The laser-
like properties of XFEL radiation allow experiments not possible be-
fore in numerous research fields such as plasma physics, condensed
matter physics, material science, femtochemistry and structural biol-
ogy. To obtain the X-ray radiation, accelerated electronic beams are
propagated in undulators, where X-rays are emitted according to a
Self-Amplified Spontaneous Emission (SASE) process. The high gra-
dients of the accelerating electromagnetic field, external vibrations
and pressure fluctuations cause deformations of the cavities where
the electrons are accelerated. This lowers the efficiency of the Linear
Accelerator (LINAC) and degrades the beam quality. To contrast this
phenomenon, indicated with the term detuning, tuners capable of me-
chanical compensation of cavity deformations have been developed
and successfully employed in LINACs.
In the present work we look at the challenges in the control of these
tuners during cavity operations, and we propose an offline data-driven
approach for the synthesis of the controllers. This approach is pre-
sented as an alternative to the on-line iterative methods currently in
use. Iterative methods, by adjusting the controller parameters dur-
ing operation, are able to respond to shifts of the system parameters
but the obtained controlled system is nonlinear and its convergence
to a stable system depends on manually tuned parameters. The di-
rect offline methods proposed, the Virtual Reference Feedback Tuning
(VRFT) and the Correlation Approach, offer instead an overall linear
device free of convergence issues. These methods are tested on a
simulated system and their performance are discussed in presence of
noise.
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S O M M A R I O

I laser ad elettroni liberi nei raggi X (XFELs) rappresentano una nuova
generazione di sorgenti di radiazione, capace di fornire migliora-
menti rispetto alla radiazione di sincrotrone sia in termini di bril-
lanza sia in termini di coerenza e durata temporale dell’impulso.
Le proprietà della radiazione da sorgenti XFEL consentono esperi-
menti prima non realizzabili in numerosi campi di ricerca. Appli-
cazioni sono state proposte in fisica dei plasmi, fisica della materia
condensata, scienza dei materiali, femtochimica, biologia strutturale
e altri numerosi campi. La generazione di radiazione nei raggi X
sfrutta un processo di emissione spontanea auto amplificata (SASE)
da parte di fasci elettronici propaganti in un undulatore. Gli elettroni
sono precedentemente accelerati in un acceleratore lineare (LINAC)
dove il forte campo elettromagnetico accelerante, vibrazioni esterne e
fluttuazioni di pressione causano deformazioni nelle cavità risonanti
dell’acceleratore stesso. Queste deformazioni causano un abbassa-
mento dell’efficienza e una degradazione della qualità del fascio. Per
contrastare questo fenomeno, indicato con il termine detuning, sono
stati sviluppati dispositivi capaci di compensare meccanicamente le
deformazioni delle cavità dell’acceleratore durante il suo funziona-
mento.
In questo lavoro verranno discusse le difficoltà nel controllo di questi
dispositivi, proponendo un approccio data-driven e offline per la sin-
tesi di un sistema di controllo capace di compensare il detuning. Nei
LINAC attualmente in operazione sono impiegati metodi diretti iter-
ativi. Questi metodi, aggiornando i parametri di controllo durante
il funzionamento dell’acceleratore, sono in grado di rispondere a
cambiamenti del sistema ma forniscono un dispositivo di controllo
complessivamente non lineare la cui stabilità e capacità nel converg-
ere a un sistema stabile dipende da parametri scelti manualmente. I
metodi offline proposti, il Virtual Reference Feedback Tuning (VRFT)
e l’Approccio a Correlazione, mantengono la linearità del sistema e
sono privi di iterazioni, perciò privi di problemi legati alla conver-
genza. Il controllore è direttamente sintetizzato da dati provenienti
da esperimenti ingresso/uscita, senza il passo intermedio di stima del
modello del sistema da controllare che caratterizza le tecniche Model
Based, ottenedo una soluzione al problema del controllo definita one-
shot.
Questi metodi verranno testati su un sistema simulato verificandone
le prestazioni in presenza di rumore.
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1
I N T R O D U C T I O N

X-Ray radiation has long been proven to be a versatile tool in many
research fields. Discovered at the end of the 19th century by Wilhelm
Conrad Roentgen, it has found immediate application in medicine
starting the field of diagnostic radiography. The study of X-rays
diffraction by Max von Laue, awarderd a Nobel prize in physics,
opened the study of the structure of crystals, notably including crys-
tals obtained from organic molecules. The analysis of the structure of
proteins, viruses and the DNA was made possible by X-ray radiation
[11]. The increasing popularity of X-rays has led to a continuous de-
velopment of radiation sources satisfying the increasing needs of the
scientific community. Until a decade ago the state of the art of X-rays
was represented by synchrotron radiation, obtained by electrons ac-
celerated in a storage ring configuration. The inability of these radia-
tion sources to fulfill increasing research requirements either in terms
of average brilliance, pulse length, coherence or collimation has led
the development of a new generation of X-ray sources representing
an evolutionary improvement. X-Ray Free Electron Lasers (XFELs),
based on the Self Amplified Spontaneous Emission (SASE)1 principle,
were constructed to produce X-ray radiation with laser light proper-
ties.
The Free Electron Laser in Hamburg (FLASH) is the first operating
FEL facility, delivering, in the soft X-rays, an increase of more than 8

orders of magnitude in peak brilliance compared to the state of the
art of synchrotron radiation such as the one emitted by the BESSY II,
operated by the Berlin Electron Storage Ring Society for Synchrotron
Radiation, and the Swiss Synchrotron Light Source SLS. The Linac
Coherent Light Source (LCLS) is the first operating FEL source in the
hard X-Rays delivering similar improvements over the European Syn-
chrotron Radiation Facility. The European XFEL currently represents
the state of the art in the generation of hard X-rays, targeting pulse du-
rations shorter then 100 fs (compared to 100 ps for the ESRF) and peak
brilliance in the order of 1033 photons/s ·mm2 ·mrad2 · 0.1%BW
(compared to 1024 for the ESRF). In light of this improvements FEL
are considered the fourth generation of X-Ray sources, offering dra-

1 A linearly accelerated electronic beam is propagated in an undulator. An electron,
interacting with the undulator’s sinusoidally modulated magnetic field, emits an
electromagnetic wave-train with a wavelength function of its energy and the undu-
lator’s period. In a beam the electrons do not only interact with the modulated
magnetic field but also with each other. The combined interaction leads to a spa-
tial distribution of the electrons along the propagating axis at a wavelength apart,
emitting an in-phase wave-train with the properties of laser radiation [18].
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2 introduction

matical improvements over synchrotron radiation making possible
new applications of X-ray radiation.
The availability of femtoseconds X-ray pulses makes possible, via
diffraction, the study of the structure and dynamics of molecules and
clusters as well as the study of electron dynamics of X-ray irradi-
ated targets. The pulse duration is comparable with the dynamics of
molecular bonds making possible structural studies of chemical pro-
cess in the femtoseconds range including pump-probe experiments
with femtoseconds pulses, leading to new advancement in femto-
chemistry. In plasma physics XFEL radiation allows to reach new
plasma states at higher temperatures and pressures than before, new
studies of the interaction between X-rays and plasmas, and makes
possible advancements in plasma spectroscopy. In condensed matter
physics it is posed to become an important tool in the investigation
of open problems in magnetism and phase transitions. Its qualities
are expected to make possible the study by diffraction of organic
molecules that cannot be process into crystal making it a valuable
tool in structural biology. Many more applications are expected to
surface involving this new radiation source, making XFELs a new im-
portant tool in scientific research[23].

1.1 linear accelerators in xfels

The basic of operation of the European XFEL can be described by
starting from the generation of the electron bunches used to emit
X-ray radiation[1]. A solid cathode is irradiated by a laser beam and
the extracted electrons are accelerated by a Radio Frequency (RF) gun
towards a Linear Accelerator (LINAC). After multiple stages of accel-
eration and bunch compression the electrons reach the undulators
where the X-ray radiation is generated according to the SASE princi-
ple and then sent to experimental stations. The electrons are instead
discarded in beam dumps.
The LINAC stage is based on the technology of the Tera-Electronvolt
Superconducting Linear Accelerator (TESLA) Test Facility (TTF), orig-
inally developed for the use in a linear collider. The electronic beams
travels in nine-cell Niobium cavities where are accelerated by a res-
onating electromagnetic field. Each cavity is tuned for operation for
the TM010 π-mode2 at 1.3 GHz, and operated in cryostat modules,
maintaining the cryogenic temperatures required for Niobium super-
conductivity. The LINAC stage includes a total of 808 cavities (101

cryomodules), divided in 26 RF stations for a length of 1.6 km to
bring the electrons received from the RF gun from 120 MeV to 17.5

2 On the symmetry axis of the cavity the electric field oscillates as a standing wave
with a node between each cell. The travelling beam interacting with the field receives
an on-crest acceleration proportional to the field oscillation amplitude.
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GeV. A pulsed operation is targeted with a 10 Hz repetition rate for
the acceleration of a maximum pulse length of 800 µ and an electronic
current of 4.5 mA.

1.2 detuning

To deliver the required beam quality and to keep the accelerating
process efficient the frequency of the TM010 π-mode of the cavities
should remain as close as possible to its nominal value. During op-
eration electromagnetic pressure on the internal cavity walls leads
to time-varying deformations capable of pushing the resonant fre-
quency outside tolerable limits when high accelerating gradients (>
25 MV/m) are involved. Vibrations from the external environments,
fluctuation of helium pressure are some of the external factors that
contributes to a change in the resonant frequency of the accelerating
electromagnetic mode of the cavity. Detuning, the shift of the reso-
nant frequency from its nominal value, has required the development
of tuning systems capable of dynamic mechanical compensation of
cavity deformations by regulating the cavity length.
In the European XFEL each cavity is equipped with a tuner based on
the Saclay I design, developed by the French Alternative Energies and
Atomic Energy Commission (CEA) research center in Saclay and later
modified by the German Electrosynchrotron (DESY) research center.
This tuning system includes a double stack piezo configuration (one
as a sensor, the other as an actuator) to provide the dynamic mechan-
ical compensation of detuning.

1.3 control methods

One of the challenges represented by the tuning system is the control
of the piezoelectric actuator during operation. Complex mechanical
coupling of the actuator to the cavity leads to a wealth of resonances
and antiresonances preventing the use of schemes based exclusively
on feedback control. Simple Proportional Integral Derivative (PID)
controllers are unable to produce stable closed loop system with suf-
ficient speed for the compensation of the dynamic detuning from
Lorentz forces. Model based control designs, such as the Kalman fil-
ter or Model Predictive Control (MPC), needs an intermediate step
where a model of the system is be estimated. Uncertainties in the ex-
perimentally estimated model can impact negatively the performance
of the controlled system and variations between different cavities re-
quire a different estimated model for each tuner-cavity installation
(808 in the XFEL). Indirect self-tuning system, where an estimation
of the system is calculated online, have been considered impractical
due to the high computational costs of their DSP or FPGA implemen-
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tation. Furthermore the closed loop update of the system estimate
makes such controllers nonlinear systems, making even stability re-
quirements hard to assure in non-specific cases.
Direct schemes that include, or use exclusively, feedforward action
have instead been successfully implemented and are currently in use
in FELs. In contrast with indirect methods the intermediate step of
estimation of the plant model is avoided and the controller or feed-
forward filter parameters are obtained minimizing a cost function
depending explicitly only on input/output data. The piezoelectric
actuator in the European XFEL is driven according to a feedforward
scheme in which the filter is synthesized using an direct iterative con-
trol method. At each iteration, consisting in the 1.4 ms XFEL pulse,
the cavity detuning is collected and used to update the filter coeffi-
cients [21][20].
Continuous Wave (CW) operation of XFELs (currently a proposed
extension for the European XFEL[6]) is particularly affected by low
frequency (below 100 Hz) detuning contribution from external vibra-
tions and pressure variations. For their compensation the use of an
approach combining feedback and feedforward actions was shown
effective. A manually tuned PID controller was combined with a self-
tuning feedforward filter and tested at the Horizontal bi-cavity testing
facility (HoBiCaT) at the Helmoholtz-Zentrum center in Berlin (HZB),
reaching the piezoelectric resolution limits [17].
One drawback of iterative methods is the complexity hidden in the
iterative process. The self-tuning feedforward filter tested in HoBi-
CaT is a non linear device that needs manual tuning of the iteration
parameters to remain in a stable range. The initial conditions of the
iterative process also affect its ability to converge to a filter capable of
achieving compensation. The iterative feedforward algorithm in use
at the European XFEL as presented in [21] is limited to the correction
of the controller gain with a manually set iteration coefficient, poten-
tially incurring in slow convergence or instability problems where to
change the characteristics of the RF pulse in the accelerating cavity.
Having the iterative process limited to the gain means that the time
delay of the correcting pulse to sent to the piezo must be found sepa-
rately. In [20] the delay is obtained by scanning over a possible range
of time intervals searching for a local minimum of the detuning, an
additional procedure in the feedforward filter synthesis.
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1.4 outline of the thesis

An application of non-iterative direct methods is proposed for the syn-
thesis of a feedback controller and a feedforward filter with the in-
tention to provide an alternative free of manually tuned parameters,
reducing the implementation burden, and capable of synthesizing the
controller using only input/output data from the cavity in operation
with no intermediate step of model estimation. Such methods have
been called one-shot for their ability to return a controller from a sin-
gle experiment and no intermediate steps.
Before their introduction a quantitative description of the effects of
detuning on the acceleration of the electronic beam is given in Chap-
ter 2. A model for the main cause of detuning, the electromagnetic
pressure acting on the cavity walls, is presented, while the detun-
ing effects of external vibrations and pressure of the helium bath are
treated as a stochastic disturbance.
To compensate the cavity detuning different devices have been devel-
oped, and a brief overview is given in Chapter 3. Mechanical tuners
are able to compensate the detuning by a mechanical deformation
of the cavity even during operation by employing piezoelectric actu-
ators and sensors. The mechanical coupling of the actuator to the
cavity leads to a frequency response rich with resonances and anti-
resonances constituting a challenge for control. In Chapter 4 the pro-
posed control scheme for the compensation of detuning by the me-
chanical tuners is introduced. The Virtual Reference Feedback Tun-
ing (VRFT) [7] and the Correlation Approach [12] are chosen to be
applied to the synthesis of a feedback controller and a feedforward
filter, to obtain a fully offline direct non-iterative design method for
the compensation of detuning in both CW and pulsed cavity opera-
tion.
Finally the obtained approach to detuning compensation is put to the
test on a simulated system in Chapter 5, both in pulsed and continu-
ous wave operation, with concluding remarks in Chapter 6.





2
D E T U N I N G

The TESLA cavity is designed to have the beam accelerating resonant
mode of the electromagnetic field at the fixed frequency of 1.3 GHz.
Electromagnetic pressure inside the cavity , mechanical vibrations
and pressure fluctuation of the helium bath are the leading cause
of shift of the resonant frequency via mechanical deformations of its
walls. This phenomenon, indicated with the term detuning, causes
a decrease of the effective accelerating gradient and a deterioration
of the beam quality possibly leading the requirements for a pure RF
compensation outside tolerable limits. In pulsed operation electro-
magnetic pressure is the dominant factor in the overall cavity detun-
ing. The high gradients (25-35 MV/m) of the RF field reached in the
European XFEL during the acceleration of the electronic beam can
lead to to a reduction of the accelerating voltage up to 50% , if left
uncompensated. In the continuous wave operation most of the detun-
ing contribution from electromagnetic pressure reduces to a constant
term that can be compensated easily, leaving external sources as ma-
jor contributors.
In this chapter the effects of detuning will be discussed quantitatively
using an RLC model of the cavity, giving particular attention the re-
sulting loss of accelerating voltage. A model for the effects of elec-
tromagnetic pressure on the cavity, the dominant cause of detuning,
will be presented, while the overall effect of the external causes of
detuning of the cavity will be treated as a stochastic disturbance on
the frequencies of the electromagnetic modes.

2.1 effects on cavity operation

The TESLA cavity is a metallic structure composed by nine cells in
which an electromagnetic field from a klystron is injected. The beam
of charged particles propagates along the symmetry axis and is ac-
celerated by the electric field of a TM mode of the cavity. Along the
symmetry axis, the electric field of the mode used during acceleration
can be described as a standing wave with a node between each cell.
To efficiently maintain the oscillating electric field, the cavity is de-
signed in such a way to have a resonance for the previous electro-
magnetic mode at the same frequency of the klystron.
An RLC model for the cavity can be employed to describe the effects
of the cavity resonance on the accelerating voltage. The nine cell
structure produces nine resonances for the TM010 mode of the cavity,

7



8 detuning

each corresponding for the electric field along the symmetry axis to a
standing wave from 0 to 8 nodes between the cells. This corresponds
to 9 coupled RCL circuits, as shown in figure (1).

• • • • • •

Figure 1: Multicell RLC Model of the cavity
Circuit composed by coupled RLC resonators modeling the reso-

nant frequencies of the cavity. A more complete model includes the
klystron and the transmission line.

Mode fm

f 1
9π

1274.387 MHz

f 2
9π

1276.435 MHz

f 3
9π

1280.206 MHz

f 4
9π

1284.409 MHz

f 5
9π

1289.022 MHz

f 6
9π

1293.345 MHz

f 7
9π

1296.861 MHz

f 8
9π

1299.260 MHz

fπ 1300.091 MHz

Table 1: Frequencies of the first pass-band modes of a typical TESLA cavity.
Before operation the cavity π is tuned to 1300 MHz. The relative

closedness of the 8
9π mode to the π mode, allows it to influence the

stability of the electromagnetic field during operation.

Since only the π-mode is used for beam acceleration due to higher
efficiency between the accelerating voltage and the injected power re-
quired, only one resonance needs to be modeled reducing the system
to a single RLC oscillator driven by the klystron through a transmis-
sion line. For the purpose of studying the behaviour of the cavity the
model can be further simplified by considering the klystron as a cur-
rent source and the transmission line as additional impedance. The
resulting circuit is shown in figure (2).

By construction Vc is the resulting accelerating voltage of the cavity.
Other parameters of the RLC circuit can also be related to measurable
characteristics of the cavity.

The resonant frequency can be immediately introduced (1).

ω0 =
1√
LC

(1)
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Ig Zext RL C Ib

Vc

Figure 2: RLC model of the cavity for the π mode.
Ig and Ib are the currents representing the klystron and the beam

respectively.

Parameter Typical Value

ω0 1.3GHz

β 3000

QL 3.6 · 106

ω1/2 200Hz

RL 1.55GΩ

Table 2: Typical characteristics for the TESLA cavity.
ω0 is the natural frequency of the resonance used for beam acceler-

ation, β is the ratio of external and internal dissipated power during
operation, QL is the quality factor, ω1/2 is the bandwidth of π-mode,
RL is the total shunt resistance.

For the quality factor of the resonant mode we first distinguish be-
tween the power dissipated in the cavity and external dissipated
power, for example due to losses within the transmission line. In
particular to avoid damages to the klystorn due to reflected RF waves
a circulator with a matched load Z0 is located between it and the
cavity resulting in an additional dissipative term for the RLC circuit.

Q0 =
ω0W

Pdiss,cav
= ω0RC =

R

Lω0
(2)

Qext =
ω0W

Pdiss,ext
= ω0n

2Z0C (3)

The β coefficient, the ratio between the power dissipated externally
and internally to the cavity, can now be introduced:

β =
Pdiss,ext

Pdiss,cav
=

Q0
Qext

=
R

n2Z0
(4)
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For superconductive cavities most losses are external, for the TESLA
typically β > 103. The effective Q factor is given by:

QL =
Q0
1+β

(5)

The cavity bandwith can be introduced from QL:

ω1/2 =
ω0
2QL

=
1

τ
(6)

The last quantity that needs to be introduced is the shunt impedance,
that can be defined as the ratio between the accelerating field ampli-
tude and the dissipated RF power on the cavity walls (7) usually given
normalized by the quality factor (8).

r =

∫L
0

E2z(z)

−dP/dz
dz (7)

R =
1

2
r =

1

2
(r/Q)Q0 (8)

The effective load driven by the Klystron is given by the parallel
of the cavity load, given by R, and the matched impedance Z0 of the
transmission line.

n =

√
R

βZ0
(9)

RL = R//(n2Z0) =
R

1+β
=
1

2
(r/Q)QL (10)

The previous circuit in figure (2) corresponds to the equation of
the damped harmonic oscillator driven by the sum of the klystron
current and the beam current:

d2Vc

dt2
+

1

RLC

dVc

dt
+
1

LC
Vc =

1

C

dI

dt
(11)

Using the relationships between the model parameters and the
physical quantities describing the cavity the latter can be substituted
obtaining:

d2V

dt2
+ 2ω1/2

dV

dt
+ω20V = 2ω1/2RL

dI

dt
(12)

Equation (12) describes the behaviour of the accelerating voltage
inside the cavity. To find an explicit solution the cavity will be con-
sidered in its steady-state, where the klystron current is a sinusoidal
signal oscillating at its fixed frequency of 1.3 GHz and no beam are
travelling along the cavity.
The Klystron current can be written as a phasor, ideally oscillating at
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frequency ω0, but in practice it differs from the cavity frequency and
so it will be indicated with ω.

Ĩ(ω, t) = I0e−jωt (13)

Since the system is linear the steady-state solution for the accelerating
voltage can be written in the form:

Ṽ(ω, t) = V0e−jωt (14)

The steady-state solutions can be substituted in equation (12) obtain-
ing:

−ω2Ṽ − 2jω1/2ωṼ +ω20Ṽ = 2jω1/2RLωĨ (15)

Which can immediately be solved by grouping Ṽ on the left side of
the expression:

Ṽ =
ω1/2RL

ω1/2 − j
ω
2 + j

ω20
2ω

Ĩ (16)

Ideally the cavity resonant frequency ω0 is going to be equal to the
frequency of the driving klystron ω, in practice ω−ω0 << ω0, so
that the solution found can be approximated:

Ṽ =
ω1/2RL

ω1/2 − j
ω2−ω20
2ω

Ĩ (17)

Ṽ =
ω1/2RL

ω1/2 − j
(ω+ω0)(ω−ω0)

2ω

Ĩ ≈
ω1/2RL

ω1/2 − j
2ω(ω−ω0)

2ω

Ĩ (18)

Ṽ =
ω1/2RL

ω1/2 − j∆ω
Ĩ (19)

The introduced term ∆ω is called cavity detuning, and represent
the difference between the frequency the cavity is being operated (ω)
and its resonant frequency ω0. ω is fixed by the klystron and there-
fore detuning is caused by variations of the cavity resonant frequency
from the desired value.

From the solution (19), written in phasor notation, follows that the
cavity detuning affects both the amplitude and the phase of the accel-
erating voltage.

|Vc| =
ω1/2RL√
ω2
1/2

+∆ω2
(20)

φ = tan−1 ∆ω

ω1/2
(21)

The immediate results of detuning is a decrease of the accelerating
voltage due to a shift of the cavity resonant frequency away from
the frequency where the klystron is operating. The Low Level Radio
Frequency (LLRF) control system, responsible for the control of the
resonating RF field with a combination of feedforward and feedback



12 detuning

-500 -300 -100 100 300 500

Detuning [Hz]

8

10

12

14

16

18

20

22

24

V
o

lt
a

g
e

 [
M

V
]

Cavity Accelerating Voltage

Figure 3: Detuning effects on cavity accelerating voltage
Effects on the accelerating voltage due to cavity detuning for val-

ues of typical pulsed mode operation of the TESLA cavity. (ω1/2 =

200Hz,RL = 1.5GΩ, I = 15mA)

action, can compensate this effect by increasing the klystron driving
current and thus the injected power into the cavity. The increased
power required to maintain the amplitude of the resonating electric
field to the desired point is considered as a power loss due to the
presence of detuning.
To consider the effects of the phase shift we consider a small beam
travelling along the symmetry axis of the cavity. In each cell the beam
receives an acceleration by the resonating electric field of the cavity:

∆E = q∆Vcell (22)

The π-mode of the cavity along the axis has only the electric com-
ponent oscillating as a standing wave. By construction each cell has
length λ/2:

∆E = q

∫λ/2
0

E(z, t)dz = q
∫λ/2
0

E0sin

(
2π

λ
z

)
sin (ωt(z) +φ)dz (23)

φ is the phase term due to detuning of the cavity. By approximating
the speed of the beam with c:

∆E = q

∫λ/2
0

E0sin

(
2π

λ
z

)
sin

(
2π

λ
z+φ

)
dz (24)

The integral can be explicitly solved:

∆E = q

∫π
0

E0sin(u)sin(u+φ)du = ∆E0cos(φ) (25)
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Figure 4: Cavity phase shift from detuning
Phase shift of the accelerating voltage due to cavity detuning for

values of typical pulsed mode operation of the TESLA cavity. (ω1/2 =
200Hz,RL = 1.5GΩ, I = 15mA)

From (25) it follows that the phase shift of the cavity causes a de-
crease of the effective accelerating voltage on top of the reduction of
the actual cavity voltage as seen in (20). When the detuning is not
present ∆E is maximum. This condition is called on-crest accelera-
tion since the beam reaches the half-cavity length at the instant in
which the electric field is at its peak.

An exponential term can be added to the steady-state solution by
recognizing the time constant from (12) obtaining the step response
of the cavity in case of static detuning.

Ṽ(ω, t) =
ω1/2RL

ω1/2 − j∆ω

(
1− e−(ω1/2−j∆ω)t

)
Ĩ (26)

Detuning is caused by variation of the resonant frequency ω0 of
the cavity respect to the frequency of the driving klystron. In order
to explicitly solve (12) it was considered a purely static term. During
operation the cavity is exposed to static and dynamic detuning. In the
following sections the most important causes of internal and external
detuning will be introduced.

2.2 microphonic detuning

During operation, the cavity is susceptible to external mechanical dis-
turbances: variations in pressure of the helium bath, vibrations from
nearby machinery, such as helium or vacuum pumps, ground motion.
The overall effect on the resonating frequency of the cavity by all the
external noise sources is indicated with the term microphonic detun-
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Figure 5: Step response of the cavity.
Step response of the cavity at constant detuning for various detun-

ing values. Uncompensated detuning in the European XFEL corre-
sponds to ∆ω/ω1/2 = 2 corresponding to an increased RF power to
mainting the set accelerating voltage of a factor of 2.

ing. External vibrations transmitted to the cavity cause variation of
the cavity size in the order of nanometres, enough to cause detuning
in the order of hertz. Due to the nature of microphonic effects there
are no theoretical models available to predict the spectral properties
of the disturbance on the cavity detuning from the helium bath and
the external machinery. In practice in each combination of cavity and
external environment the contributions of microphonics to the cavity
resonant frequency will be a non-stationary non-white noise. Never-
theless it can be show by comparing different samples of microphonic
detuning from different experimental setups that there are important
similarities that can be exploited to produce parameters for the syn-
thesis of a feedback controller that remain valid independently from
the specific setup.
Samples of cavity detuning can be collected from the cavity in con-
tinuous wave operation using the same RF detector used in the LLRF
control system. From the measured phase shift the detuning can be
obtained from (21).

In general there are two main shared spectral features of the micro-
phonic detuning [13]:

• A low frequency background from circa 0.01 Hz up to 5 Hz

• Sharp resonances between 10 Hz to 200 Hz
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Figure 6: Phase step response of the cavity.
Phase term of the cavity step response at constant detuning.

Uncompensated detuning in the European XFEL corresponds to
∆ω/ω1/2 = 2 corresponding to a phase shift during beam acceler-
ation of approximately 45 degrees.
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Figure 7: Simulated microphonic detuning.

The ratio of the spectral power of the low frequency background
and the resonances does not depend solely the specific tuner-cavity-
tank system, but it varies in time in a stochastic manner during nor-
mal operation. The main causes of the microphonics detuning re-
mains largely the same instead: pressure fluctuation of the helium
bath of the cryogenic unit, vibrations from auxiliary machinery such
as vacuum pumps. To include the effects of detuning in the cavity
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Figure 8: Simulated microphonic detuning.
Simulated microphonic detuning over a smaller time interval, oscil-

lations from external machinery are visible.
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Figure 9: Simulated integrated microphonic spectra.

model a simulated detuning disturbance is superimposed to the de-
tuning caused by Lorentz forces. The low frequency background has
been reproduced by feeding a band-pass linear system white noise,
while the resonance peaks from the nearby operating machinery are
included by superimposing sinusoidally oscillating signals at fixed
frequencies. The obtained stationary noise renders the qualitative
features of experimental microphonic spectra when sampled for a
sufficiently long time.
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2.3 lorentz detuning

Another source of cavity detuning is the accelerating electromagnetic
field itself. During operation small currents are induced on the in-
ternal layer of the metallic structure. The resonating electromagnetic
field, responsible for these superficial currents, exercises a Lorentz
force on them. The result is an uneven pressure on the internal cavity
walls leading a deformation of the cavity.

p =
1

4

(
µ0H

2 − ε0E
2
)

(27)

The pressure from the electromagnetic field (27) is sufficient to ob-
tain a significant variation of the internal volume of the cavity witch
leads to detuning of the oscillating mode used for beam acceleration
(28).

∆ω

ω0
=

1

4W

∫
∆V

(
ε0E

2 − µ0H
2
)
dV (28)

W =
1

4

∫
V

(
ε0E

2 + µ0H
2
)
dV (29)

The above expressions lead to a linear dependence of the detuning
from the intensity of the accelerating RF field. The proportionality
constant can be determined experimentally. A typical value for the
static detuning of TESLA cavities is 1 Hz/(MV/m)2[14]. During typi-
cal pulsed operation a value of 0.5 Hz/(MV/m)2 is observed during
flat-top.

(30).
∆ωc = −KE2acc (30)

For the XFEL operating at an accelerating gradient of 25 MV/m a
detuning of 350 Hz can be observed, which is greater then the band-
width cavities are typically operated at (100 - 300 Hz).

Pg = P0

(
1+

(
∆ω

ω1/2

)2)
(31)

The additional power injected into the cavity to maintain the required
effective accelerating voltage increase quadratically with the detuning
(31), and the detuning from Lorentz forces increases quadratically
with the accelerating voltage (30). Under these conditions the addi-
tional power required at high accelerating gradients could be substan-
tial.
Compensating mechanically the volume change induced by the Lorentz
forces allows maintaining the detuning inside the cavity bandwidth.
In continuous wave operation the main contribution of Lorentz de-
tuning is a static term (fluctuations of the amplitude of the oscillating
field can give origin to a small dynamic component), that can be com-
pensated by a pre-detuning of the cavity such that the sum of the two
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contributions will cancel each other.
In pulsed operation the dynamic behaviour of Lorentz detuning can-
not be neglected. The bandwidth of the variations of the amplitude
of the electromagnetic field during a pulse (1.3 ms in the European
XFEL) are sufficient to excite the mechanical modes of the cavity lead-
ing to an oscillating behaviour of the detuning. Since the oscillation
from the mechanical modes are deterministic, the knowledge of their
dynamics allows their compensation using a feedforward scheme. In
general the effect of Lorentz forces on the detuning of a supercon-
ductive cavity can be described using a system of independent res-
onating modes, each corresponding to a cavity mechanical mode and
modeled using a second order linear system.

d

dt

[
∆ωm

∆ ˙ωm

]
=

[
0 1

−ω2m −ωm/Qm

][
∆ωm

∆ ˙ωm

]
+ 2πV2acc

[
0

−Kmω
2
m

]
(32)

The total contribution of each mode to the detuning will be given
by the superposition of each mode (33) .

∆ω(t) = ∆ω0 +∆ω0(t)
′ +

M∑
m=1

∆ωm (33)

ωm is the m-th mechanical resonance and Qm its quality factor.
The Km coefficient can be determined using modal analysis. By si-
nusoidally modulating the radiation pressure on the cavity wall at
frequency ωm the steady state solution can be solved for Km, after
reconstructing ∆ωm(t) from an experimental measure of the cavity
phase.

fm Qm Km

53 2 0.2

89 1 0.2

191 2 0.2

278 5 0.2

439 2 0.2

Table 3: First five mechanical modes for an European XFEL cavity
The above values are obtained from a fit of experimental data and

they can vary across different cavities.

To compensate the dynamic Lorentz detuning using a feedforward
scheme, a reference signal of the detuning is needed. Even though
the above model is used in simulations, the signal to use during com-
pensation can be also collected experimentally, avoiding the use of a
cavity model.
Using the same RF detector of the LLRF control system it is possible
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to collect the cavity detuning during operation from the phase shift of
the accelerating voltage using relationship (21). Microphonic contri-
bution to the detuning can be reduced by averaging across multiple
pulses.
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Figure 10: Simulated phase shift from a TESLA cavity operating in the
XFEL.
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Figure 11: Simulated cavity detuning during pulsed operation of the TESLA
cavity for the XFEL.

In figure (10) and (11) the phase shift and detuning of an Euro-
pean XFEL TESLA cavity during pulsed operation are presented. The
pulse lasts 1.3ms, with a flat-top stage of 800µs. As relationship
(21) was derivate in steady-state it does not hold outside the flat-top
stage of the pulse and it is not possible to reconstruct the detuning
from the measurable phase-shift using it. More general solutions that
takes into account the dynamic behaviour of the detuning in the RLC
model (making it a nonlinear system) are available and have been suc-
cessfully implemented in FPGAs allowing real-time detuning compu-
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tation [21]. For the purpose of the mechanical compensation during
the flat-top stage the inaccessibility of the detuning in fill stage will
be show not to be a limiting factor. In (11) a longer time scale is sim-
ulated to show the damping of the mechanical resonances excited by
the Lorenz forces during the pulse.
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M E C H A N I C A L T U N E R S

In the previous chapter it has been shown how Lorentz forces acting
on the cavity walls and external vibrations are the main cause of de-
tuning, the shift of the resonating frequencies of the cavity from the
desired value with a consequent loss of efficiency and beam quality.
In the presence of detuning the LLRF control system is able to main-
tain the desired accelerating voltage by increasing the injected RF
power. Mechanical compensation of cavity deformations allows to
maintain the resonant frequency at the desired value avoiding the in-
creases of injected power by the LLRF control system. With this goal
different designs of mechanical tuners, devices capable of regulating
the resonant frequency of a cavity even during operation, have been
proposed and employed in LINACs. In this chapter it will be given a
quick overview of some common designs, including the one in use at
the European XFEL, giving particular attention to the dynamic com-
pensation of detuning during operation using piezoelectric actuators.
The mechanical coupling of the tuner with the cavity is in fact not
trivial and experimental models of the tuner-cavity system have high-
lighted the presence of numerous resonances and anti-resonances in
the frequency range of interest. The characteristics of the tuner will
justify the choice of the control approach applied to the resulting
tuner-cavity system.

3.1 tuners

In chapter 2 it was shown how variations in the cavity volumes dur-
ing operation cause a detuning of the resonant mode of the cavity (28).
This suggests that it is possible to control the frequency of the accel-
erating resonant mode by causing an overall internal volume change
in the cavity via a deformation of its walls. In practice this volume
change is accomplished by regulating the cavity length using mechan-
ical devices driven by stepping motors and piezoelectric tuners. The
main differentiating factor among the common designs consists in the
mechanical coupling to the cavity. The Blade design is an example of
a coaxial mechanical tuner for TESLA cavities where the movement
of the stepping motor is translated along the symmetry axis causing a
deformation of the cavity in length [4]. In the European XFEL a Saclay
tuner based design was chosen, where the cavity length is modified
via a lateral-pick-up mechanism [15]. The stepping motor acts on a
spindle connected to a lever system that exercise pressure on the cav-
ity from one end resulting in an increase of its length. The mechanical

21
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Figure 12: Saclay I Tuner
The modified Saclay I tuner in use at the European XFEL. The

piezoelectric actuators, providing dynamic detuning compensation,
are highlighted in orange.
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system is attached to the cavity with fixtures applied to the same end
before the first cell, as shown in figure (12). On one of the attach-
ment, in place of a simple rod, the piezoelectric actuators are located
to provide the speed and resolution not allowed by the stepping mo-
tor. Both the Blade and the Saclay designs are entirely contained in
the cryogenic vessel (cryostat) and their dimensions along the plane
perpendicular to the cavity axis are comparable with the dimensions
of the cavity itself. The Slide-Jack tuner is instead an example of tuner
design with both coaxial and lateral action on the cavity whose driver
is collocated outside the cryostat. This design allows, in addition to
the stepping motor, a full manual regulation of the cavity length.

Blade SaclayI Slide− Jack

Type Coaxial Lateral-Pick-
up side

Coaxial and
Lateral

Drive Unit Inside Inside Outside

Frequency 1.3GHz 1.3GHz 1.3GHz

Tunable Range 600kHz 500kHz 900kHz

Sensitivity 1.5Hz/step 1Hz/step 3Hz/step

Piezo 2,thin-layer
(0.1mm)

2,thin-layer
(0.1mm)

1,thick-layer
(2mm)

Piezo Voltage 200V 200V 1000V

Piezo Stroke 55µm 55µm 40µm

Piezo Cap. 8µF 8µF 0.9µF

Table 4: Figures of merit for different mechanical tuners [25].

It should be noted that the sensitivity of the above tuning systems
does not translate in practice to such an accuracy on the cavity tun-
ing. Typically a millimeter change in cavity length causes a detuning
of 315kHz [2]. Having a sensitivity in the order of 1Hz/step for the
coarse tuner means achieving step size of approximately 3 nm in
a cavity of 1 m. While this sensitivity is actually achieved in prac-
tice, the hysteresis exhibited by the cavity must also be taken into
account during the tuning process even in a relative restricted range
(300Hz) compared to the full tunable range afforded by the stepping
motor (500− 900kHz). Characterization of the hysteresis of the Saclay
tuner from −150Hz to 150 has shown a residual detuning of 30Hz[17],
while a characterization from −2500Hz to 2500[4] has shown a value
of ≈ 300Hz. In both cases a backslash effect, where movement of the
stepper motor does not lead to a change in resonant frequency, was
observed. All the presented tuners include, in addition to the step-
ping motor for coarse tuning, the piezoelectric actuator allowing fine
tuning of the cavity during operation.
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3.2 piezoelectric actuator

While the coarse tuners are capable of tuning the cavity over an ex-
tended range of frequencies their low resolution and speed make
them inadequate to the compensation of dynamic detuning, where
due to Lorentz forces large variations of the resonant frequency (up
to 600Hz) occur in a 1− 2ms time window. In all the previous designs
piezoelectric actuators are mounted along the symmetry axis of the
cavity in a frame part of the tuning system, to provide the fast tuning
ability to compensate the effects of Lorentz forces during pulsed op-
eration.
Piezoelectric actuators are a class of devices that employ the piezo-
electric effect commonly used to either measure vibration, deforma-
tions or displacements, (direct piezoelectric effect), or to compensate
them (inverse piezoelectric effect). Many kind of materials showing
piezoelectricity are used in the construction of piezoelectric actua-
tors or sensor [24]. Quarz, lithium niobate and lithium tantalate are
the most common crystals employed in single-crystal devices, includ-
ing frequency stabilized oscillators, extensively used as clock sources,
and surface acoustic devices. Thanks to the ability to change their
piezoelectric properties, polycrystalline materials are the most used
and studied for actuators and sensors. In particular ceramics made
of solid solutions of lead zirconate titanate (PZT), (Pb(Ti,Zr)O3), have
shown piezoelectric properties that have led to their use in high per-
formance actuators and are the one employed in linear accelerators
for the compensation of detuning [4].
For the Blade and Saclay tuner designs stack actuators are used. These
are multilayer actuators in which many (100-500) thin (aproximately
100µm) layers of piezoelectric/electrorestrictive ceramic material are
stacked on top of each other. The main advantages in respect to
the bimorph designs, where instead piezoelectric and elastic plates
are bonded together, are a faster response delay, (10µs) compared to
(1ms), and higher generative force, in the order of kN compared to
N. The latter is particularly important due to the high stiffness of the
tuner-cavity system. The main disadvantage is a lower displacement
that limits their cavity tuning range, a requirement that must be taken
into account also due to the deterioration of the piezoelectric perfor-
mance at cryogenic temperature compared to room conditions.
As seen in chapter 2 Lorentz forces acting on the cavity walls can lead
to a detuning of several hundred hertz, depending on the desired
accelerating voltage. The piezoelectric actuator therefore should be
capable to offer a sufficient displacement. A tuning range of 850Hz
is considered a requirement for the compensation of Lorentz forces
in XFEL cavities capable to operate at high gradients (35MV/m)[20].
This corresponds to a displacement of ≈ 3µm that has to be realized
by the piezoelectric actuator at cryogenic temperature. Typically ac-
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tuators manufacturers do not publish technical specifications at cryo-
genic temperatures, and different performance deterioration of differ-
ent actuators lead to the necessity of conduct a new characterization
in the working condition of the cavity.

Noliac Noliac Epcos PI

Material PZT-S1 PZT-S2 PZT-nd34 PZT-PIC
255

Layers 266 490 300

Layer
Thickness

140 µm 140 µm 113 µm

Max Stroke 60 µm 100 µm 40 µm 35 µm

Max Stroke
(4K)

7 µm 12 µm 8 µm 7 µm

Capac. 8 µF 40 µF 2.1 µF 12.5 µF

Capac.
(4K)

1 µF 4 µF

Table 5: Figures of merit for different piezoelectric actuators [4].

In table 5 the performance deterioration of different piezoelectric
actuators used in linear accelerating cavities are shown. Typically the
maximum stroke is reduced by a factor of 5-10 or more and actuators
that seemed fit to operate in superconductive cavities (ex. a series
from JENA, stroke @ 300 K ≈ 40µm, not in the table) had to be dis-
carded after the characterization at cryogenic temperatures [10].
Along with the reduction of maximum stroke the actuator capaci-
tance also decreases, with a linear correlation at temperatures lower
than 100 K. Since each piezo in a linear accelerator (one for each cav-
ity, nearly a thousand in the European XFEL), needs to be calibrated,
measuring the capacitance was proposed as faster and simpler mean
to retrieve the displacement as oppose to a more complex direct mea-
sure.
Operating these actuators at low (4 K) temperatures does not intro-
duce only additional difficulties. Piezoelectric actuator are commonly
affected by hysteresis introducing a nonlinearity in their behaviour.
At liquid helium temperatures the hysteresis of the piezoelectric itself
is negligible [10] but not the one of the overall structure of the tuner-
cavity system, making the hysteresis observed during piezoelectric
actuator action dependent on the tuner design with errors varying in
a order of magnitude for the same displacement. A characterization
of the hysteresis for the piezoelectric actuator in the Blade tuner as
shown an error up to 200 Hz in a 1200 Hz range compared to the
approximated linear behaviour [4]. The European XFEL, that will be
considered during simulations, employs instead a Saclay tuner that
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show a reduced hysteresis with a maximum error of 25 Hz in the
same 1200 Hz tuning range. (13) [8].
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Figure 13: Hysteresis from piezoelectric action of an European XFEL tuner
The graph was reconstructed from experimental data available in [8].

During the RF pulse the piezoelectric actuator is actually expected
to offer compensation in a lower range resulting in a smaller hys-
teresis. In the European XFEL during typical operation the resonant
frequency shift from Lorentz forces reach 600 Hz (accelerating gradi-
ent of 25 MV/m) but due their relative slow dynamics compared to
the pulse length (1.3 ms) only a shift of 350 Hz needs to be compen-
sated. This reduces errors induced by hysteresis sufficiently below
the cavity bandwidth (250 Hz) and can thus be neglected during the
feedforward pulse compensation.
In addition to have sufficient displacement to cover the detuning due
to Lorentz forces in pulsed operation the piezoelectric actuator also
needs to have sufficient resolution to be able to compensate micro-
phonic detuning during CW operation. The theoretical minimum
step size of the piezoelectric actuators employed is approximately
0.2nm corresponding to a detuning of 0.06Hz. In practice the pres-
ence of the hysteresis leads to a lower resolution. In [17] the piezoelec-
tric hysteresis over a limited frequency range (1.5Hz) was character-
ized. Taking into account the effects of the hysteresis a real resolution
of 0.2Hz was achieved, allowing operation at a very narrow (less than
5 Hz) bandwidths.

3.2.1 Model

To conduct simulations involving the piezo actuator a model repro-
ducing the main features of the tuner-cavity system was reconstructed
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on the basis of physical considerations of the system. The tuner is me-
chanically coupled to the cavity forming, for the purpose of the study
of the transfer function from the piezoelectric actuator to the cavity
detuning, a cavity-tuner system characterized by its own mechanical
resonances. In the case of Lorenz detuning the deforming electro-
magnetic pressure acts on the overall structure of the cavity while the
piezoelectric force is applied in a small section. In general the me-
chanical modes excited by the action of the piezoelectric will differ
from the modes excited by the Lorentz detuning.
An estimation of the cavity-tuner system function can be obtained ex-
perimentally by sweeping the operating frequency of the drive unit
operating the piezo. The cavity is operated in CW and to the drive
of the piezoelectric actuator is fed a sinusoidally oscillating signal at
a chosen frequency. The resonant frequency of the accelerating mode
for the RF field of the cavity similarly oscillates, after a transient, at
the same frequency of the drive signal as a sinusoids. The amplitude
of the resulting sinusoidal oscillation is then recorded along with its
phase respect to the signal driving the piezo. The procedure is then
repeated for a set of frequencies obtaining the frequency response of
the cavity-tuner system from the driver of the piezoelectric actuator
to the detuning of the accelerating mode of the cavity [13][9].
A time-resolved approach can also be used to provide an estimate
of the transfer function. In this case the piezoelectric tuner is used
as a sensor (direct piezoelectric effect) during repeated pulsed opera-
tion. The resulting collected voltage signal is then used to provide an
estimation of the transfer function[3]. In [5] the frequency response
of the piezoelectric tuners used in the European XFEL was character-
ized using the latter approach. The main identifiable features are two
resonances at 250Hz and at 820Hz. In figure (14) a simplified transfer
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Figure 14: Dominant resonances of the cavity-tuner system.
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function, that includes the two main resonances, is shown.
To construct a simplified model of the tuner-cavity system transfer
function, the time estimation from [5] was considered. Apart from vis-
ible resonances shown by the signal of the piezoelectric when used as
a sensor, the transfer function must also take into account the driver
and time delays. The first term we consider is a low pass filter given
by the piezoelectric driver:

Hlp(s) =
ωp

s+ωp
(34)

Usually the pole is located at 500Hz well below the resonant frequen-
cies of the piezoelectric (above 50kHz for the actuators typically used).
To this term the delay given by the control delay given by the piezo-
electric actuator and the group delay of the acoustic waves in the
cavity must be added:

Hdelay(s) = e
−τ·s (35)

In practice the piezoelectric actuator exhibit a great number of smaller
resonances and anti-resonances given by the mechanical coupling of
the cavity-tuner system. For this simulations only the two dominant
resonances were considered, parametrized with their frequencies ωk
and dumping coefficients ξk.

Hk(s) =
ω2k

s2 + 2ξkωk +ω
2
k

(36)

The overall transfer function from the driver of the piezoelectric ac-
tuator to the detuning of the accelerating resonance of the cavity is
therefore given by:

H(s) =

(∑
k

Hk(s) +Hlp(s)

)
·Hdelay(s) (37)

Such a model is not going to be a good approximation of the actual
system and as such it cannot be used to synthesize a controller or
feedback filter for a real cavity. It will only be used to produce simu-
lated data on which to test the control approach proposed in the next
chapter.
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C O N T R O L A P P R O A C H

In the previous chapter it has been shown how piezoelectric tuners
inserted into the tuning system attached to the external walls of the
cavity are able to shift the resonant frequencies for the electromag-
netic field and therefore are potentially capable of compensating cav-
ity detuning during operation.
In linear accelerators, such as the LINACs in operation in the Euro-
pean XFEL, piezoelectric tuners are successfully employed to com-
pensate Lorentz detuning using iterative adaptive control schemes
[21]. Since the Lorentz detuning during a pulse is known, a pulse
of opposite sign is fed through a feedforward filter to the piezoelec-
tric actuator and the resulted detuning is used to update the filter
coefficients for the next pulse. In continuous wave operation feed-
back control schemes, and schemes involving both a feedback and
feedforward paths have been show to be able to reduce the effects of
microphonic noise [17].
In the following chapter will be proposed an application of non itera-
tive direct control methods for the compensation of Lorentz and mi-
crophonic detuning, employing respectively a feedforward and feed-
back control path.

4.1 system scheme

F + C -1

P

+L R

Cl

·

| · |2

x(t)

∆ωmic

∆ωp

∆ωl ∆ω Vacc ∆φ(t)

Ig(t)

Ib(t)

Figure 15: Cavity detuning control scheme

We’ve previously seen in chapter 2, while describing the effects of
detuning on beam acceleration, a model for the radio frequency be-
haviour of the cavity and a model for the detuning caused by Lorentz

29
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forces. While those have been considered independently to provide
an explicit solution to the cavity differential equation, they are cou-
pled together via the detuning term ∆ωl, the Lorentz detuning, as
show in scheme (15). During operation the accelerating voltage of
the cavity causes a detuning due to the Lorenz forces which in turn
causes a variation of the accelerating voltage. The same considera-
tion is valid for the contributions of the piezoelectric actuator. As
seen in chapter 3, P represent the transfer function of the piezoelec-
tric actuator attached to the cavity, from the actuator voltage to the
detuning of the resonant frequency of the accelerating mode. Its con-
tribution, indicated with ∆ωp is superimposed to the contribution of
the Lorentz forces, modeled by the model L, and to the microphonic
noise ∆ωmic. The radio frequency model of the cavity R, in a similar
way to the simplified model shown in section 2.1, takes as inputs the
detuning, the Klystron current and beam current and gives as output
the accelerating voltage. By remembering the RLC equation for the
accelerating voltage of the cavity (12), and the model for the Lorenz
detuning (32), we can notice that the overall system is nonlinear. It
therefore would appear that methods for the synthesis of both the
feedfoward filter and the feedback filter for linear systems cannot be
applied.
From the diagram we can see that the Low Level Radio Frequency
(LLRF) control, responsible for the resonating RF field and hidden in
the nonlinear block Cl, forms an inner loop containing the RF model
of the cavity. The LLRF control system, which has not been treated
in detail, hides the nonlinearities to the outer loop by making the am-
plitude of the accelerating gradient independent from ∆ω (and Ib)
while its phase remains correlated to it. This decouple the radio fre-
quency model of the cavity R from the effects of Lorentz detuning,
only dependent on the modulus of Vacc and not its phase. The LLRC
controller is thus performing a feedback linearization for the dynam-
ics of the cavity resonant frequency. As a consequence the closed
loop containing the contribution of Lorentz detuning is cut, reducing
it to a known disturbance on the output of P. Furthermore, since the
relationship between the phase of the accelerating voltage and the de-
tuning is known, the phase can be used to recover the detuning from
the RF detector. Under the assumption of a correctly working LLRF
control system and detector the control scheme with the hidden in-
ner loop is reduced to (16). While the block Rc, hiding the inner
loop formed by the LLRF control system, is in general non linear, un-
der the assumption of a ideal action from the Klystron its model is
known. Remembering equation (21), we can retrieve the detuning mi-
nus a multiplicative constant during flat-top operation without using
any cavity parameters. This allows to restore linearity to the detuning
compensation feedback loop under a condition that is not restrictive
in practice neither for the synthesis of the feedback controller nor the
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feedforward filter justifying the use of synthesis methods for linear
systems.

F + C -1

P

+L Rc

x(t)
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∆ωlz(t) ∆ω ∆φ

Figure 16: Simplified cavity detuning control scheme

4.2 control scheme
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Figure 17: Detuning compensation scheme.

In figure (17) the control scheme that is going to be considered is
presented. The plant P represents the tuner-cavity-tank system hav-
ing the piezoelectric driver voltage as input and the detuning of the
cavity as output. The cavity detuning is calculated using (21), where
the phase of the accelerating voltage is measured using the RF detec-
tor, already employed in the LLRF control system. It should be noted
that (21) is limited to the flat-top stage and does not hold during the
fill and decay stages. This does not constitute a limit in practice. In
continuous wave the cavity remains in the flat-top stage during oper-
ation and so no sampling problem is present. In the pulsed regime
detuning sampling is possible only during the flat-top stage of each
pulse, leading to a limit of the sampling frequency for compensation
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of 10 Hz [22]. Such rate is still sufficient to compensate all or part of
the low frequency microphonic background.
The disturbance d(t) includes the contributions to detuning from
both the Lorentz forces and the microphonics.
For the feedback controller C a simple PID is used, but the synthesis
method employed, VRFT, is only limited to controllers linear in their
adjustable parameters and therefore the optimal controller could be
looked in a more general class. The reference signal to the feedfor-
ward filter x(t) is constructed by inverting the sign of the detuning
due Lorentz forces during operation in the flat-top stage, possibly
averaged to reduce noise. The feedforward filter F, ideally a stable
approximation of the inverse of the plant P in the frequencies excited
by the reference signal, filters x(t) obtaining the voltage signal for the
piezoelectric actuator compensating Lorentz detuning.
As seen in chapter 3 P, the piezoelectric actuator shows a good linear
behaviour justifying the use of linear control for detuning compensa-
tion.

4.3 direct methods

The transfer function of the tuner-cavity-tank system, indicated previ-
ously with P, exhibit a complex behaviour, including numerous reso-
nances and anti-resonances, due to the coupling of all the mechanical
structures in which vibrations from the cavity can be transmitted. In
the absence of theoretical models capable to predict the frequency
shift of the RF resonant mode of the cavity from the piezo displace-
ment, the piezoelectric tuner has been characterized by estimating its
transfer function from input/output data. Traditional model-based
control (MBC) employs these models in the synthesis of the controller
according to the certainty equivalence principle: the estimated model
is used in place of the real model, as it it were the true one, while
looking for the desired controller. The accuracy of the estimation
is therefore an important concern regarding both the performance
and stability of the closed loop system. Currently model estimation
has been conducted via the frequency domain analysis of the system
[9][16]1. Models obtained have shown an important number of res-
onances even in a limited frequency range leading to hundreds of
parameters necessary to reconstruct the system dynamics (120 for a
range of 10-200 Hz in [17]). This has prevented the use self-tuning
methods, where an estimate of the model is update online, due to an
excessive computational cost both in digital signal processor (DSP)
and field programmable gate array (FPGA) implementations. The

1 The signal to the piezoelectric actuator is sinusoidally modulated and confronted
with the resulting steady-state sinusoidal oscillation of the cavity resonant frequency.
The resulting amplitude ratio and delay respect to the piezo driving signal is col-
lected for a set of frequencies to reconstruct the frequency response of the tuner-
cavity system.
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difficulties in producing an accurate model of the system combined
with its high order has led to reject the use of MBC. In contrast data
driven control (DCC) methods allows the synthesis of the feedback
controller or the feedforward filter from a set of input/output mea-
surements without the intermediate step of constructing an estimate
of the model.
Iterative direct methods have already been successfully employed
both in the compensation of Lorentz detuning at the European XFEL
[21], and in the compensation of microphonic detuning [17]. Iterative
Feedback Tuning (IFT) and Iterative Learning Control (ILC) are direct
methods that has been employed in a variety of application and have
been show to produce results as good as, or better, than the most com-
mon non direct method for the synthesis of the feedback controller or
feedforward filter in presence of uncertainties on the plant model. In
these methods multiple iteration are performed to minimize the re-
spective cost functions using an approximation of the gradient of the
cost function itself constructed from experimental data at each step.
However the iteration procedure has the unwanted effect to produce
an overall nonlinear device that can exhibit complex behaviour. The
implementation of an iterative least-square based feedforward algo-
rithm for the compensation of microphonics has shown that conver-
gence to a stable and effective filter depends on the initial conditions
and manually tuned iteration parameters [17].
In contrast non-iterative methods, where the controller is synthesized
offline, preserve the linearity of the controlled system while avoiding
convergence issues during operation. To this end the Virtual Refer-
ence Feedback Tuning (VRFT) and the Correlation Approach are pro-
posed for the synthesis of a feedback controller and a feedforward
filter. Both are non-iterative direct control methods that allow an
offline synthesis from sets of input/output data. Additionally when
considering a class of linear controllers in their parameter vector their
respective cost function admit an explicit solution in the form of the
least squares formula. In this sense these method correspond to a
one-shot solution to the control problem, with no experimental itera-
tions, where only sets of input/output data are required. The main
drawback compared to the iterative methods is the loss of the ability
to adapt during operation to changes in the behaviour of the system,
for example due to the heating of the piezo actuator [19].

4.3.1 Direct Feedback Design

Virtual Reference Feedback Tuning (VRFT) is a direct non-iterative
method for the synthesis of a feedback controller from a pair of in-
put/output measurement. In the following section will be given an
introduction of its offline variant as employed for the detuning com-
pensation scheme for the TESLA cavity as described in [7].
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Figure 18: Feedback control scheme with disturbance.

Considering a closed loop system where P is an unknown linear
plant and C is feedback controller, we are interested in choosing C
to obtain the desired behaviour for the controlled system. C will be
chosen between the class of controllers with parameter vector θ:

θ =
[
ϑ1 ϑ2 ... ϑn

]T
(38)

The closed loop behaviour of the controlled system is given by:

M(z; θ) =
C(z; θ)P(z)

1+C(z; θ)P(z)
(39)

Ideally we would like to find a vector of parameters θ so that the
closed transfer functionMwill be equal to aM0, the transfer function
of the system with the desired behaviour. In general such vector
does not exists, so instead we try to minimize a distance between
the behaviour of the system controlled by C(z; θ) and M0. A model-
reference cost function can be defined:

JMR(θ) =

∥∥∥∥( P(z)C(z; θ)
1+ P(z)C(z; θ)

−M0(z)

)
W(z)

∥∥∥∥2
L2

(40)

JMR(θ) =
1

2π

∫π
−π

∣∣∣∣ P(ejω)C(ejω; θ)
1+ P(ejω)C(ejω; θ)

−M0(e
jω)

∣∣∣∣2 ∣∣W(ejω)
∣∣2 dω

(41)
W is a weighting term that can be use to give more importance to the
behaviour in a chosen frequency range.
As JMR depends on the unknown plant P it cannot be minimized.
VRFT sidestep the problem be introducing a new cost function, the
virtual reference cost function JVR, in which the plant P does not ap-
pear explicitly and whose minimum approximate the minimum of
JMR.
To introduce JVR we can consider the following scheme:
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Figure 19: Scheme for the synthesis of the feedback controller.

On the unknown plant P we can conduct an input/output experi-
ments, obtaining an output y(t) from an input u(t).
For the closed loop system (20) it exists an input r(t) such that the
output M(z)r(t) will be equal to y(t), or in others words, it exists an
input for the closed loop system such as to give the same output of the
plant when driven by u(t). Such input can be immediately obtained
r̄(t) =M−1(z)y(t). Since all the calculations are offline M−1(z) does
not need to be proper and so r̄(t) can always be calculated.
Considering the closed loop system we can introduced the virtual er-
ror ē(t) = r̄(t) − y(t). For C to be a good controller for P when fed
the virtual error it should output u(t), the input signal that fed to the
plant outputs y(t).
Therefore it is a necessary condition for the ideal C(z; θ0) to have
u(t) = C(z; θ0)ev(t). In general we cannot expect to find such a con-
troller but we can ask to have C as closed as possible to it, meaning
its output should be as close as possible to u(t):

JVR =
1

N

N∑
t=1

(u(t) −C(z; θ)ev(t))
2 (42)

The new cost function introduced is not equivalent to JMR, and so
needs to be modified to recover an equivalent, or more generally an
approximately equivalent, cost function to JMR. In (40) we could
give different weights to different frequencies using W. To recover
this ability the filter L(z) can be introduced to JVR.

ul(t) = L(z)u(t); el(t) = L(z)ev(t) (43)

JVR =
1

N

N∑
t=1

(ul(t) −C(z; θ)el(t))
2 (44)

In general finding the absolute minimum of the JVR means minimiz-
ing a nonlinear scalar function over the vector variable θ which is not
a trivial task. Instead we consider a class of linear controllers in their
parameter vector θ. Such controllers can be written using as a basis a
vector of linear transfer functions β(z):

β(z) =
[
β(z)1 β(z)2 ... β(z)n

]ᵀ
(45)
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And the resulting controller is given by:

C(z; θ) = β(z)θ (46)

The VRFT cost function is now a quadratic function, admitting a sin-
gle minimum, that can be explicitly solved by the least squares for-
mula:

θ̂N =

[
N∑
t

ϕl(t)ϕl(t)
T

]−1 [ N∑
t

ϕl(t)ul(t)

]
(47)

where:
C(z; θ)el(t) = βT (z)el(t)θ = φTl (t)θ (48)

In general the virtual reference cost function JVR differs from the
model reference cost function JMR, and so the minimizing parameter
vector will also be different. By an appropriate choice of L(z) it is
possible to minimize the distance between the two minima.

L∗(z) =
W(z)M(z)(1−M(z))

G(z)
(49)

G(z) =
∣∣G(ejω)

∣∣2 = Φu (50)

WhereΦ(u) is the spectral density of u(t). Since u(t) is chosen for the
input/output experiment the pre-filter L∗(z) can be computed. We
can justify (49) by substituting it in JVR and comparing the obtained
cost function with JMR.

JMR(θ) =
1

2π

∫+π
−π

|P|2 |C0 −C(θ)|
2

|1+ PC0|
2
|1+ PC(θ)|2

|W|
2 dω

JVR(θ) =
1

2π

∫+π
−π

|P|2 |C0 −C(θ)|
2

|1+ PC0|
2
|1+ PC0|

2
|W|

2 dω

(51)

The only approximation of the virtual reference cost function is a
substitution of a C(θ) at the denominator with the ideal controller
C0. JVR is not, across all possible values for the parameter vector θ, a
good approximation of JMR since C(θ) can differ much from C0. But
it is a good approximation in its minimum, which is the only point
we are interest in and that can immediately solved using the least
squares formula (47). The minimum for JMR is, if the controller class
is reasonable chosen, a controller approximating C0, and JVR is justi-
fied as good approximation of JMR in its minimum.
Until now the case of an input/output experiment has been consid-
ered in absence of noise on the system output. In an experimental
setting the output of the plant will be affected by a non white noise
d(t).

The virtual reference cost function remains (44) but the virtual er-
ror el(t) includes now the effect of the disturbance on the output. To
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Figure 20: Feedback control scheme with disturbance.

study the effects of d(t) we can consider the asymptotic case, obtain-
ing for JVR the following expression in the frequency domain:

JVR(θ) =
1

2π

∫+π
−π

|P|2 |C0 −C(θ)|
2

|1+ PC0|
2
|1+ PC0)|

2
|W|

2 dω+

+
1

2π

∫+π
−π

|C(θ)|2

|C0|
2

|L|2

|P|2
Φd(ω)dω

(52)

The virtual reference cost function in presence of noise is not consis-
tent: the noise influences the position of the minimum with the term
on the second line regardless of the duration of the experiment.
L cannot be used to transform in a constant contribution the second
term for two main reasons:

• We could not use L to make JVR a good approximation of JMR.

• We would need to known |P|2 and Φd, both unknown.

The problem can be overcome by relaxing the requirement of a single
experiment allowing the introduction of an instrumental variable (IV).
Previously the explicit solution for the minimizing parameter vector
θ̂VR was given by the least squares formula (47).
As defined, θ̂VR can be interpreted as an estimator for θ0 the opti-
mal parameter vector of the controller C. The approach consists in
introducing a new estimator θ̂IVVR that remains consistent even in the
presence of the disturbance d(t):

θ̂IVVR =

[
N∑
t

ξ(t)ϕT (t)

]−1 [ N∑
t

ξ(t)ul(t)

]
(53)

The effects of d(t) in the estimator are contained in ul, according to
the control scheme:

ul(t) = θ
ᵀ
0φ(t) + z(t) (54)

z(t) = −
L(z)

P(z)
d(t) (55)

The introduced instrumental variable ξ(t) needs to fulfill two proper-
ties. First it needs to correlated with φl, so that the term E[

∑
ξ(t)ϕTl (t)]
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is non singular and (53) has meaning. And secondly it needs to guar-
antee the consistency of the estimator, from which ξ(t) needs to be
uncorrelated with the disturbance d(t). With those two properties
θ̂IVVR is a good estimator for θ0. To show it we explicit the depen-
dence of ul(t) from z(t) as in equation (54):

θ̂IVVR =

[
N∑
t

ξ(t)ϕl(i)
T

]−1 [ N∑
t

ξ(t)ul(t)

]
=

=
����������
[
N∑
t

ξ(t)ϕl(t)
T

]−1
���

���
��N∑

t

ξ(t)ϕl(t)
T θ0+

+

[
1

N

N∑
t

ξ(t)ϕl(t)
T

]−1
1

N

N∑
t

ξ(t)z(t)

θ̂IVVR −−−−→
N→∞ θ0 + E [ξ(t)ϕl(t)]

−1 E [ξ(t)z(t)] = θ0

(56)

Performing a second experiment allows the construction of the in-
strumental variable while maintaining the direct characteristic of the
VRFT method.
The repeated experiment is performed using the same u(t) input to
the plant, but obtaining a different output, ỹ(t), affected by a new
disturbance d̃(t). ỹ(t)is still correlated to the output of the previous
experiment, (u(t) is unchanged), but uncorrelated with d(t), due to
the general decrease of correlation in time in stochastic processes. The
assumption of non correlation between d(t) and d(t+ τ) is verified in
practice as long as a sufficient time is waited between the experiments.
By constructing the instrumental variable ξ(t) as:

ξ(t) = ϕ̃l(t) = β(z)el(t) =

= β(z)L(z)M(z)(1−M(z))ỹ(t)
(57)

it satisfied the previously listed properties and θ̂IVVR is a consistent
estimator, asymptotically unaffected by noise.
The VRFT method as presented, with the use of the instrumental
variable constructed from the second experiment, is applied in this
thesis to the synthesis of the feedback controller for the compensation
of microphonic detuning. A pseudocode description of the algorithm
implemented in shown in (1).
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Algorithm 1 VRFT For a Linear Controller

Experimental Data: u(t), y1(t), y2(t)
Parameters: Linear Filter Class β(z), S(z), W(z)

Output: Parameter Vector θ
1: procedure SIM(T, x(t))
2: Return the output of the system T to the input x(t)
3: end procedure
4: L(z) = (1−M(z))M(z)W(z)/Φu(t) . Prefilter
5: ul(t) = SIM(L(z),ul(t))
6: e1(t) = SIM(L(z)(M−1(z) − 1),y1(t))
7: e2(t) = SIM(L(z)(M−1(z) − 1),y2(t))
8: φ(t) = SIM(b(z), e1(t))
9: ξ(t) = SIM(b(z), e2(t))

10: θ = (ξ(t) ·φ(t)ᵀ)−1 (ψ(t) · ul(t))

4.3.2 Direct Feedfoward Design

The correlation approach is a general approach to the direct synthe-
sis of a feedforward, or feedback, filter. In [12] has been applied to
non-iterative synthesis of a feedforward filter using just a single in-
put/output experiment on a closed loop system. In the following
section will be given an introduction in the form it was be applied to
construction of the filter for the compensation scheme (17), proposed
in this thesis for the detuning compensation of a TESLA cavity.
Considering a closed loop system (17) where P is an unknown linear
plant and C is the feedback controller, synthesized for example by
employing the VRFT method, we are interest in choosing F to obtain
a good tracking of the reference signal x(t), when this is not possible
to accomplish with the use of the feedback filter alone. Ideally, in
order to have good tracking, we would like to have the expectation
value of tracking error equal to zero. Following the control scheme
we can obtain an explicit expression for the tracking error:

e(t) = S(z)x(t) − F(z; θ)P(z)S(z)x(t) − S(z)d(t) (58)

Since E[x(t)] 6= 0 in general, but E[d(t)] = 0 by assumption, requiring
the expectation value of the tracking error to be zero is equivalent to
ask F to be the exact inverse of the plant P. If this is the case, the first
two terms of (58) cancels each other.

e(t) = S(z)d(t) (59)

Since E[d(t)] = 0 the expectation value of the tracking error is zero.
We can observe that if we have good tracking, (F = P−1), (59) is un-
correlated with x(t), otherwise holds (58) and e(t) is correlated with
x(t). Therefore asking for the filter minimizing the expectation value
of the tracking error e(t) is equivalent to ask for the filter making
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uncorrelated e(t) and x(t). This change of perspective constitutes the
key concept of the correlation approach.
Since in general the vector θ0 giving a decorrelating filter F does
not exists, a cost function to minimize, representing the degree of
correlation between e(t) and x(t), is introduced. First we define an
instrumental variable (IV), correlated with the tracking error e(t) but
uncorrelated with d(t).

ξ(t) = βᵀ(z)x(t)

ξ(t) =


β1(z)x(t)

β2(z)x(t)

...

βn(z)x(t)

 (60)

The correlation is given by:

f(θ) = E [e(t; θ)ξ(t)] (61)

We define a quadratic cost function to minimize:

Jc(θ) = ‖f(θ)‖22 = f
T (θ)f(θ) (62)

Since in practice we are limited by a finite experiment, an estimator
for the correlation is needed:

f̂(θ) =
1

N

N∑
t

e(t; θ)ξ(t) (63)

As written the cost function Jc is impossible to minimize because in-
cludes explicitly in the tracking error (58) the unknown plant transfer
function P.
The issue can be overcome by constructing an estimator for e(t) that
depends only on measurable quantities and the filter F. The scheme
in figure (21) allows an experiment from which to obtain such estima-
tor.

P F

C

x(t) + um(t) ym(t) − ef(t)

+

−

d(t)

Figure 21: Scheme for the synthesis of the feedforward filter.

The system is operated in a closed loop configuration with zero as
reference signal.
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x(t) is used as an experimental input acting as disturbance on the
control signal to the plant. More generally any signal could be used,
the advantages and drawbacks of a particular choice will be shown
later in the frequency domain.
The experimental outputs are um(t) and ym(t), the total control sig-
nal to the plant and its output affected by noise. By looking at the
diagrams we obtain the following expressions:

um = S(z)x(t) − SCd(t)

ym = Sd(t) + PSx(t)
(64)

While looking for an estimator for e(t) we can substitute the previous
expressions in (58):

e(t) = um(t) − Fym(t) + SCd(t) − FSd(t) − Sd(t) (65)

The explicit dependence on P has been removed, and it is now con-
tained implicitly in the measurable signals um(t) and ym(t). Since
E[d(t)] = 0, the d(t) terms can be removed obtaining a consistent
estimator for e(t).

ê(t) = um(t) − Fym(t) (66)

The resulting estimator for the correlation is:

f̂(θ) =
1

N

N∑
t

ξ(t) [um(t) − F(z; θ)ym(t)] (67)

The estimator obtained is in general not linear in θ and the minimiza-
tion of the cost function is a non trivial tasks involing finding the
absolute minimum of a nonlinear scalar function over the variable
vector θ. By chosing F(z; θ) as a linear controller in θ the estimator be-
comes linear and the resulting cost function can be immediatly solved
for its only minimum using the least square formula. Such controller
can be writtern using a vector of linear transfer function as a basis:

F(z; θ) = β(z)θ (68)

θ =
[
ϑ1 ϑ2 ... ϑn

]ᵀ
(69)

β(z) =
[
β(z)1 β(z)2 ... β(z)n

]
(70)

We can explicit F(z; θ) in (??):

ê(t) = um(t) −βᵀ(z)ym(t)θ (71)

Calling ϕ(t) = βᵀ(z)ym(t) we obtain a new expression for the corre-
lation function.

f̂(θ) =
1

N

N∑
t

ξ(t)[um −ϕᵀ(t)θ] (72)
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The new cost function Ĵc, where f̂(θ) was substituted to f(θ), can be
immediately be solved using the least squares formula. Introducing
the matrix Q and vector Z:

Q =
1

N

N∑
t

ξ(t)ϕᵀ(t)

Z =
1

N

N∑
t

ξ(t)um(t)

(73)

Explicit solution for the estimate of the optimal parameter vector θ0:

θ̂0 = (QᵀQ)−1QᵀZ (74)

Previously was used the signal x(t) as the experimental input for
the synthesis of the filter in the tuning scheme. This choice can be
justified by looking in the domain frequency at the tracking error
e(t).

J(θ) =
1

2π

∫+π
−π

|Φex(ω)|2 dω (75)

By remembering (58) we immediately obtain:

J(θ) =
1

2π

∫+π
−π

|S|2 |1− FP|2Φ2x(ω)dω (76)

The experimental input in the synthesis experiment acts as weight-
ing term in the frequency domain. Choosing x(t) itself, the reference
signal that will be fed to the feedforward filter , allows to give more
importance to the range of frequencies actually used during opera-
tion. When x(t) is not known in advance the synthesis experiment
can still be performed by constructing an input signal with spectral
power in the regions of interests.
In this thesis the correlation approach has been employed to syn-
thetize the feedforward filter. A pseudocode description of the re-
sulting algorithm is given in (2).

Algorithm 2 Correlation Approach for a Linear Causal Filter

Experimental Data: x(t), um(t), ym(t)

Parameters: Linear Filter Class β(z)
Output: Parameter Vector θ

1: procedure SIM(T, x(t))
2: Return the output of the system T to the input x(t)
3: end procedure
4: ξ(t) = SIM(β(z), yd(t))ᵀ

5: φ(t) = SIM(β(z), ym(t))ᵀ

6: Q = ξ(t) ·φᵀ(t)

7: z = ξ(t) · um(t)

8: θ = (Qᵀ ·Q)−1(Qᵀ · z)
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Figure 22: Piezo control with synthesis’ signals.

By adding to the control scheme the signals introduced during the
synthesis of both the feedback controller and feedforward signal we
obtain the scheme (22). Since the correlation approach needs a closed
loop experiment, the first step in the control synthesis consists in the
application of the VRFT method to the synthesis of the feedback con-
troller. The two input/output experiments, one used to construct the
instrumental variable, are conducted in open loop by setting both F
and C to zero. u(t) correspond to the experimental input, a voltage
on the piezoelectric driver, while ym(t) correspond to the experimen-
tal output, the cavity detuning. The Lorentz detuning on ym(t) is
a known background, subtracted from the measured signal prior to
its use in the VRFT algorithm. The third experiment for the synthe-
sis of the feedforward filter is conducted in closed loop, using C as
previously synthesized. The input signal x(t) is a disturbance on the
control action of the feedback controller, a voltage on the piezoelectric
driver, while the two outputs are um(t), the total signal send to the
driver, and ym(t) the cavity detuning. Again the contribution of the
Lorentz detuning on both outputs is a subtracted background contri-
bution.
The necessity to subtract the experimental background given by the
Lorentz forces and the cavity pre-detuning in the synthesis of both
the feedback controller and feedforward filter bring the overall num-
ber of input/output experiments to five. Two for the VRFT algorithm
with the instrumental variable, one for the correlation approach and
the two additional to gather the background with and without feed-
back action. The overall parameters that influence the control syn-
thesis are show in (6), in the next chapter a particular choice will be
justified and tested on a simulated system.
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Feedback Controller

Parameter Description

u(t) Experimental Input

S(z) Desired Sensitivity

W(z) Frequency Weights

β(z) Filter Class

Feedback Filter

Parameter Description

x(t) Reference Signal

β(z) Filter Class

Table 6: Control Parameters



5
S I M U L AT I O N S

In the previous chapter was proposed a control scheme for the com-
pensation of Lorentz and microphonic detuning composed by a feed-
forward and a feedback path. VRFT was presented has a direct
method for the synthesis of the feedback controller, while for the
feedforward filter was shown a correlation approach. Both synthe-
sis methods employs only input/output experiments without prior
knowledge of the model, resulting in a direct offline non-iterative ap-
proach to the control problem.
In the following chapter they will be applied to a TESLA cavity sim-
ulator set to operate at the same parameters of the cavities used in
the LINACs of the European XFEL. It will be shown the feasibility
of both method for the compensation of Lorentz detuning in pulsed
operation and a partial compensation of microphonic detuning dur-
ing continuous wave operation. A reduction of the injected power
by the klystron in the accelerating cavity is shown and compared to
the uncompensated case. Microphonics noise during synthesis will
also be shown to not constitue a limiting factor even for relative short
(in the order of senconds) experiments durations, confirming the con-
sistency of both methods for the synthesis of the feedback controller
and feedforward filter.

5.1 tesla model

To conduct simulation of the cavity behaviour during operation, a
minimum system composed by the cavity, the piezoelectric tuner, and
the klystron must be implemented in a numerical simulator. Due to
the high computational costs of the mathematical models involved,
real time cavity simulators are implemented in hardware using FPGA
boards.
An important drawback of those implementation is a high knowledge
barrier for their programming, requiring specialistic competences and
specific instrumentation. In absence of a real-time requirements soft-
ware based simulators offers a lower entry barrier, requiring only
a general purpose personal computer, while allowing a shorter al-
gorithm to implementation time. In the following sections simu-
lations have been conducted using the SIMULINK model currently
in use at the Laboratorio Acceleratori e Superconduttività Applicata
(LASA) (Milan), offering a model of a TESLA cavity as employed at
the LINACs in use in the European XFEL, where electronic beams
are accelerated to 17.5 GeV before being sent to the undulators for
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the generation of X-ray radiation.
In figure (23) an high level block scheme of the SIMULINK model,

CL Controller

OL Control

Klystron

Cavity RF Detector

Microphonics

Piezo

Beam

∆φ

Figure 23: Block diagram of the TESLA SIMULINK model

completed with the added blocks for microphonic detuning simula-
tion and mechanical compensation of detuning, is presented. The
Low Level Radio Frequency (LLRF) control system, which includes
the CL Controller, the Klystron and the RF detector, is responsible
for the construction of the oscillating electromagnetic field inside the
cavity, and its maintenance during the flat-top stage. In closed loop
operation it compensates the effects of cavity detuning on the beam
by increasing the Klystron power. The mechanical detuning compen-
sation system is composed by the same RF detector plus the piezo-
electric actuator completed by its controller.
Since the signal of the RF detector is used in both the control systems
it must meet the more stringent requirements between the two. In
particular its sampling rate is set by the needs of the LLRF control
system, which has to deal with the dynamics of the resonant field,
to 5µs, corresponding to a rate of 200kHz. To the internal detuning
caused by Lorentz forces, modeled inside the cavity block, the con-
tribution of microphonics its added as a disturbance from its relative
block (24).

LF Background

Mic Resonances

r

1-r

+ k
∆ωmic

Figure 24: Block diagram of the microphonic subsystem.
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Piezo Actuator Driver + Feedback Controller

Feedforward Filter

∆ω

ref

Figure 25: Block diagram of the piezo subsystem.

The low frequency background is simulated using a low pass fil-
tered white-noise, while the microphonic resonances are modeled
which sinusoidally oscillating signals superimposed to the background.
The total noise rms and the ratio of the spectral power of the low
frequency background to the resonances are controlled by the two
adjustable parameter r and k.

5.2 cw operation

During Continuous Wave (CW) operation the contribution from
Lorentz forces to the cavity detuning remain manly a static term,
(dynamics from fluctuation of the intensity of the oscillating electro-
magnetic field are negligible), that can be trivially compensate by
pre-detuning the cavity accordingly and are therefore neglected in
this section. In the proposed scheme (17), microphonics, the domi-
nant cause of detuning in CW, are compensated by the feedback path
where the controller is synthesized using the VRFT method.
In CW operation the cavity is kept at flat-top where the relationship
(21) allows the recover of the detuning, minus a multiplicative con-
stant, from the accelerating voltage measured by the RF detector with-
out knowledge of the system parameters. As seen in 4 the system to
be controlled is in general nonlinear, but the feedback control action
of the LLRF system linearise the system seen by piezoelectric tuner,
allowing the use of methods for the control of linear systems. By
calling S(z) the sensitivity of the closed loop system our only require-
ment is an attenuation of the microphonic disturbance d(t). We can
introduce a simple target sensitivity function with a single parame-
ter ωp representing the target frequency up to which microphonic
detuning is to be attenuated by the control system.

S(z) =
ωp

s+ωp
(77)

The VRFT method asks for the desired transfer function of the closed
loop system. This is immediately obtained from the sensitivity func-
tion:

M(z) = 1− S(z) (78)
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In the model reference cost function JMR a frequency weighting term
was also be introduced. Since we are interest in the attenuation of
low frequency disturbances, W(z) is given as a low pass filter:

W(z) =
ωw

s+ωw
(79)

where ωw is greater than ωp. Among the class of feedback con-
trollers linear in θ it has been chosen a PID due to the ease of im-
plementation. It should be noted that due to approximation (51),
the VRFT cost function is exactly equivalent to the model reference
cost function only when the optimal controller belongs to the chosen
class. We cannot expect this to be the case for a PID controller, it will
be shown a posteriori that the error introduced is negligible for the
chosen ωp and the closed loop system obtained is close to the one
requested.

C(z; θ) = ϑ1 +
z

z− 1
ϑ2 +

z− 1

z
ϑ3 (80)

β(z) =
[
1 z

z−1
z−1
z

]ᵀ
(81)

A white noise was selected as the input to to the piezoelectric actua-
tor to be certain to excite all the modes of the system in the frequency
range of interest. Since this signal is going to detune the cavity, its
rms (and therefore its peak values) should be chosen to not cause
excessive detuning. If the Klystron is unable to keep the set accelerat-
ing voltage stable, the assumption made in the previous section about
the linearity of the system does not hold. On the other hand, choos-
ing a low rms increases the influence of noise during the synthesis
experiments, requiring longer experiment durations. Considering a
cavity bandwidth ω1/2 a detuning rms from the input signal of the
piezoelectric of 13ω1/2 has been chosen as a compromise.
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Figure 26: Target sensitivity function.
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5.2.1 Results

In table (7) the simulation parameters used to show the main results
obtained from the VRFT method are presented. To show the ability of

Parameter Value Description

ωp 10Hz Rejection bandwidth

ωw 1kHz Weighting bandwitdth

beta(z)
[
1 z

z−1
z−1
z

]ᵀ
Controller Class

ω1/2 30Hz Cavity bandwidth

rms(∆ωp) 10Hz Rms of experimental input

rms(∆ωmic) 5Hz Rms of microphonic noise

tsim 3.125s Experiment duration

Table 7: VRFT Simulation Parameters

the synthesized feedback filter to compensate the microphonics’ low
frequency background a simulated microphonic sample was recorded
and then fed to the cavity during CW operation with and without the
feedback action. The results are shown in (27). The feedback filter is
able to attenuate the low frequencies components below the higher
frequency resonances. Critically the detuning from the resonances in
the 10-100 Hz range is contained within a known amplitude range,
while low frequency high detuning events, where the detuning is ob-
served a full order of magnitude over its standards deviation, can
occur stochastically during operation [17]. Since the klystron power
required increased quadratically with the detuning (31), the feedback
controller is able to prevent a failure of the klystron to sustain the
accelerating voltage during these event even when the cavity is oper-
ated at very low bandwidths (which can be as low as 1Hz).

In (28) is show
The injected power from the klystron used to sustain the acceler-

ating voltage is shown in figure (28) for a narrow cavity bandwidth,
highlighting the effect of its quadratic dependence on detuning. The
feedback controller is able to reduce the power required. Removing
the low frequency backgrounds leaves the higher frequencies vibra-
tions to cause oscillation of the detuning near the desired cavity res-
onant frequency. Thanks to the quadratic dependence on the power
from the detuning the effects of those oscillations are attenuated in
spite of the absence of actual mechanical compensation at those fre-
quencies.

The VRFT method introduces an approximation in its cost function
JVR respect to the model reference cost function JMR. The quality
of the approximation in the minimum is greater the closer the mini-
mizing parameter vector θ0 brings the controller C(z; θ0) to the ideal
controller C0, and therefore the obtained closed loop system M(z; θ0)
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Figure 27: CW Cavity detuning.

closer to the desired model M0. This ability of the parameter vector
θ0 depends on the model class chosen. We can now justify a poste-
riori the choice of the class of PID controllers by showing that the
synthesized system is similar to the desired M = 1− S. In (29), the
feedback controller is switched on during a CW simulation, showing
the behaviour of the simulated system with the synthesized controller
C and the desired system M obtained from (77). There is no signif-
icant difference in their behaviour, JVR is in its minimum a good
approximation of JMR and the PID is a good class in which to look
for controllers. It should be noted that this may not hold if the re-
quirements on S, and therefore M, change. In particular increasing
the bandwidth of the feedback controller would erode the stability
margin of the closed loop system; its behaviour, showing oscillation
from the piezo resonances, would diverge from the desired M.

As seen in chapter 4 the use of an instrumental variable allows the
VRFT method to remain consistent in the presence of noise. While
asymptotically the cost function JVR is unaffected by the disturbance,
for an experiment of finite duration the noise will introduce an ad-
ditive term to JVR that leads to a non optimal controller (52). While
there are no hard limits in principle for how long we could make
the experiments lasts, it is generally desirable to keep the experiment
short as long as the quality of the results is not significantly affected.
To better characterize the effects of noise in typical conditions on the
controller, it was chosen to conduct repeated simulations encompass-
ing different data collection durations for a worse case noise rms of 5

Hz. The synthesized controllers were then tested in the operation of
the closed loop system while affected by a known disturbance. For
each controller the rms of the compensated detuning was collected
and normalized with respect to the uncompensated detuning. In (30)
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Figure 28: CW Cavity injected power.

the obtained data for constant rms noise is visualized using boxplots.
The decrease of the influence of noise for longer experiment dura-
tions confirms the asymptotic insensitivity of the cost function JVR
when constructed using an instrumental variable. This also shows
that only a few seconds of collected data are sufficient to produce
a controller practically unaffected by noise. Since there are no par-
ticular constraints on the duration of the experiment, noise during
synthesis is not an issue.
For a PID controller the influence a noise brings either a faster, with
consequence loss of stability margin, or slower closed loop system. A
comparison between two synthesized controller in presence of noise
is shown in figure (31). Of the three VRFT1 is the slowest and VRFT2
is the faster with the ideal controller C0 in the middle.

5.3 pulsed operation

In pulsed operation the contribution of microphonics to the cavity de-
tuning is much smaller (5Hz rms) compared to both the cavity band-
width (100 − 300Hz) and the contribution of Lorentz forces (up to
600Hz) and therefore, while remaining a source of noise during syn-
thesis experiments, their compensation has been neglected. In the
proposed scheme (17) the effects of the Lorentz forces are compen-
sated using a feedforward path where the filter is synthesized using
the correlation approach.
The feedforward filter is going to take as input a reference signal such
as to cancel the effects of the Lorentz forces on the cavity. Ideally the
reference signal is going to be the detuning from the Lorentz forces
itself with an opposite sign. The detuning itself is not measurable but



52 simulations

250 300 350 400

Time [ms]

-5

0

5

10

15

20

D
e

tu
n

in
g

 [
H

z
]

Cavity detuning

Synthetized

Reference Model

Figure 29: CW detuning of the closed loop system.

can either be obtained from simulations, or from the phase shift of the
accelerating voltage. We can remember the relation (21) that allowed
us for the feedback path to retrieve the detuning minus a multiplica-
tive factor from the accelerating voltage (by taking the tangent of the
phase shift) or to use the phase shift directly by introducing a small
nonlinearity, both without knowledge of the cavity parameters. For
these simulations the control signal is retrieved from the flat-top stage
only, thus excluding a full compensation by feedforward action dur-
ing the cavity fill. However the LINACs of the European XFEL spend
a time interval of 500µs in the fill stage out of a total 1.3ms. Limiting
the feedforward action to the flat-top would leave a significant part
of the pulse uncompensated. Furthermore this would introduce the
necessity of bringing the resonant frequency to its desired value in
a relative short time , approximately 100µs, before the beam arrival,
increasing the bandwidth requirements on the feedforward filter. Re-
trieving the detuning from the phase of the accelerating voltage is still
possible using a non stationary solution for the RLC model of the
cavity. Such approach has been successfully implemented, in hard-
ware due to speed requirements, in [21]. While this solution allows
a good reconstruction of the detuning during all operating phases of
the cavity, it includes, in the form of the solution to the RLC equation,
a model of the system complete with some cavity parameters. To
keep the overall approach to detuning compensation direct, we can
observe that for a reference signal, allowing a partial compensation
during the fill stage, a perfect reconstruction of the detuning is not
strictly needed. Therefore the use of a low-pass filtered extrapolation
of the phase shift collected during flat-top is proposed.
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Figure 30: VRFT Performance across different experiment durations.

In figure (32) is shown such a reconstruction for a pulse. The main
reason behind the low pass filter is due to avoid sharp steps that
would pose a challenge to both the piezoelectric driver and the feed-
forward filter. It should be noted that the reconstructed Lorentz de-
tuning is affected by microphonic noise that can either be neglected
given the large bandwidth of the cavity (100− 300Hz) compared to
its rms (< 5Hz) or averaged across multiple reconstructions.
The input for the synthesis experiments needs also be constructed.
According to equation (76) the spectrum of the experimental input
acts as a weighting factor, together with the sensitivity function S of
the closed loop system, to the cost function J(θ). The sensitivity func-
tion, realized by the VRFT method applied to the feedback path for
the compensation of the microphonic detuning, is not known, since it
contains the unknown plant P, but its modulus is approximately 1 for
frequency higher than 10Hz, where the microphonic detuning is not
compensated. Therefore the experimental input is the only weight-
ing factor in the frequency domain in the range of interest for the
compensation of Lorentz detuning. The use of the reference signal
itself as experimental input allows to give more weight in the cost
function to the frequencies that are actually going to be excited by
the reference signal itself during use. This also limits the reconstruc-
tion in the frequency domain causing the loss spectral information at
higher frequencies. This could lead to poorly conditioned matrices in
the numerical algorithm for the solution of the least squares formula.
The problem was overcome by limiting the sampling frequency of the
filter, and therefore restricting the frequency range considered by the
cost function.
The signal to the feedforward filter is downsampled to 20kHz to dis-
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Figure 31: Comparison between noise affected controllers.

card in the numerical solution frequencies poorly excited by the ex-
perimental input, that would lead to a poorly conditioned matrix.
This has also the effect of reducing the order of the filter required to
capture the oscillating dynamics of the piezoelectric actuator. This
limit does lead to discard data since the full 200kHz signal can still
be used to synthesized the 20kHz filter.
The choice of the rms of the input signal, as for the VRFT experiment,
is going to be a compromise. The experimental input is applied as a
disturbance on the control signal of the piezoelectric driver causing
a detuning of the cavity. A high rms could cause excessive detuning,
causing a failing of the Klystron to maintain the accelerating voltage
constant during flat-top while a low rms increase the influence of the
microphonic noise on the synthesized controller. Since in pulsed op-
eration cavities are operated with a higher bandwidth (100− 300Hz)
compared to CW operation (1− 30) while the microphonics rms does
not increase it was chosen a detuning rms from the input signal of
the piezoelectric of 1

10ω1/2.
The correlation approach as presented in chapter 4 needs to look for
the optimal filter in the class of filters linear in their parameter vector,
the use of a Finite Impulse Response (FIR) filter is proposed:

F(z; θ) = βᵀ(z)θ

β(z) =
[
1 z−1 z−2 ... z−n

]ᵀ (82)

Since this approach to the synthesis of the filter does not provide a
way to choose the order of the filter a priori, the order choice will
be justified later by a cross-validation procedure. Filters of different
orders will be compared in terms of rms detuning during flat-top
operation and n = 20 will be shown to minimize the detuning.
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Figure 32: Construction of the feedforward reference signal

5.3.1 Results

Parameter Value Description

fs 20kHz Sampling Frequency

β(z)
[
1 z−1 ... z−50

]ᵀ
Filter Class

n 20 Filter Order

ω1/2 250Hz Cavity bandwith

∆ω 250Hz Pre-Detuning

rms(P(z)x(t)) 25Hz Rms of experimental input

rms(∆ωmic) 5Hz Rms of microphonic noise

tp 3ms Pulse duration

tflat−top 0.8ms Flat-top duration

tsim 125ms Synthesis Experiment duration

Table 8: Correlation Approach Simulation Parameters

The simulation parameters used in simulation are presented in ta-
ble 8. To show the ability of the feedforward filter to compensate
the detuning due to Lorentz forces during pulsed operation a com-
parison between a compensated and uncompensated pulse is shown
in figure (33). The reference signal constructed as in (32), fed into
the feedforward filter synthesized using the correlation approach, is
able to compensate most of the detuning during the flat-top stage. At
the beginning of the decay stage of operation the control input of the
piezo is switched off leaving it to return to the equilibrium position
by the free motion of the tuner-cavity system. This is the cause of the
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Figure 33: Pulsed Cavity detuning.

visible ringing of the cavity resonant frequency after the 1.3ms mark.
If the ringing were to persist until the next pulse (100ms) it would
introduce a further detuning term. Extending the reference signal
in the decay stage to bring the piezoelectric actuator in a controlled
manner to zero displacement (for example by adding a decaying term
to its last value in the flat-top region) is expected to be a viable strat-
egy to reduced the ringing should the need arise. The rms for the
detuning in the compensated case is 25Hz compared to 120Hz for
the uncompensated pulse. This translate to a mean injected power of
240W during the flat-top stage instead of 270W, as shown in figure
(34).

Figure 34: Pulsed Cavity injected power.
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In figure (35) is also show the power injected by the klystron during
pulsed operation with the addition of an accelerating beam of 2mA.
The cavity pre-detuning has been chosen to obtain a detuning of the
cavity close to zero during pulse propagation (from 0.9ms to 1.1ms)
even without the dynamic compensation of the piezoelectric actuator.
The power savings obtained by the feedforward filter are therefore
realized mostly during the approaching of the desired accelerating
voltage in the fill stage (0.3− 0.5ms) and in the maintenance of the
resonating field during the flat-top stage and not in the acceleration
of the beam itself.

Figure 35: Pulsed Cavity injected power with beam acceleration.

The choice of filter of order 20 was made with no a priori justifica-
tion. In figure (36) filters obtained from the same simulated experi-
ment but of different order are compared following a cross-validation
procedure where their quality is given by the rms detuning during
flat-top operation. The orders 20− 25 corresponds to a minimum of
the detuning during the flat-top stage. It can be observed that 25 sam-
ples correspond to a time window of 1.3ms exactly the duration of the
pulse. While adding further samples to the filter, increasing its order,
may potentially lead to a better tracking over a longer time interval,
adding filter coefficients that are not utilized leads to a decrease of the
filter performance in the short (compared to the step response of the
piezo actuator, that could take 100 ms or more to reach steady-state
like conditions) time interval of the pulse.

As seen in chapter 4 the correlation approach is asymptotically un-
affected by noise provided that its expected value is zero. For an
experiment of limited duration the correlation cost function J(θ) is
affected by noise and its minimization will yield a non optimal pa-
rameter vector θ, different from the one minimizing the correlation
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Figure 36: Pulsed Cavity detuning at different filter orders.

from the reference signal to the output. To characterize the influence
of microphonics on the correlation approach in terms of its synthe-
sized filter it was chosen to conduct repeated simulated synthesis
experiments at different noise levels. Each synthesized filter is then
tested in the compensation of the Lorentz detuning during a pulse
and the resulting rms during flat-top is collected. To reduce the com-
putational time required a duration of 25ms is considered instead
of 125ms. The result is presented in figure (37). Microphonic noise
during synthesis introduces variations on the quality of the obtained
filters, leading to a worse compensation of the Lorentz detuning at
increasing levels of noise.
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Figure 37: Correlation Approach Performance
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Figure 38: Correlation Approach Performance across different experiment
durations.

The amplitude of the input signal during the synthesis or the dura-
tion of the experiment can both be increased to reduce the noise influ-
ence on the correlation cost function. In order to show the consistency
of the correlation approach in the presence of microphonic noise, re-
peated simulated synthesis experiments were conducted. The result-
ing feedforward filter were then applied to the compensation of a
test pulse. The results are presented in figure (38). Since the filter is
tested on a single pulse the microphonic noise is not compensated,
contributing to the variance of the detuning rms even at higher ex-
perimental durations. Once this effect has been taken into account
the results confirms the asymptotic insensitivity of the cost function
to microphonic noise. Since both the VRFT applied to the synthesis
of the feedback filter and the correlation approach applied to the syn-
thesis of the feedforward filter are consistent, the overall method for
the compensation of microphonic detuning is consistent.
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C O N C L U S I O N S

The high accelerating gradients of the resonant electromagnetic field,
external vibrations and pressure fluctuation causes deformation of
the accelerating cavities of the LINACs employed in the generation
of X-ray radiation in XFEL facilities. To address the loss of efficiency
and beam quality, caused by the cavity detuning from these deforma-
tions, devices capable of mechanical compensation are adopted. The
complex mechanical coupling of the piezoelectric actuator responsi-
ble for compensating the detuning during operation has led to the
use of control schemes with feedforward action or combined feed-
forward/feedback action and direct iterative control methods. The
controlled system obtained is nonlinear: its stability and ability to
converge to feedforward filters capable of compensation depends on
the initial conditions and manually tuned parameters of the iteration
algorithm.
This thesis aims at reducing the complexity of the control system by
proposing the use of non-iterative direct control methods. The con-
troller is computed offline using data collected from input/output
experiments yielding an overall linear device with no convergence
issues. On a simulated system, the VRFT method has shown its
ability to synthesize a feedback controller capable of compensating
the low frequency microphonic background, allowing the continuous
wave operation of XFELs at low cavity bandwidths (possibly down
to 5 Hz), while the detuning from Lorentz forces was compensated
in pulsed operation by a feedforward filter synthesized on the basis
of the correlation approach. Power savings were achieved for both
pulsed and continuous wave operations and characterized for typical
cavity conditions. Repeated experiments in the presence of noise have
shown the consistency of both methods and their ability to provide
controllers or filters nearly unaffected by the microphonic noise.

6.1 further developments

Iterative methods adjust the parameters of the filter or controller at
each iteration, responding during operation to changes in the sys-
tem, such as the increase of the piezoelectric temperature. The perfor-
mance loss over time of the feedback controller and feedforward filter
from non-iterative methods remains to be characterized on a real sys-
tem, and it could represent a decisive factor on the feasibility on the
proposed control approach.
The use of a PID class for the feedback controller in the VRFT method
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represent a conservative choice. System stability respects the Bode cri-
terion and the low compensation bandwidth keeps the tuner-cavity
resonances below the instability threshold. However this low band-
width does not allow compensation of the mechanical vibrations re-
sponsible for the resonances in the microphonic spectrum. The use
of a high order class for the controller in the VRFT algorithm, one
capable to include in the feedback action these resonances, remains
to be investigated. Compensation limited by the actuator resolution
could be achieved, making possible the use of very low (1 Hz) cavity
bandwidths in continuous wave operation.



B I B L I O G R A P H Y

[1] Massimo Altarelli et al. The European X-Ray Free-Electron Laser,
Technical design report. Tech. rep. 2006.

[2] B. Aune et al. The Superconducting TESLA Cavities. 2000.

[3] Angelo Bosotti. “Piezo ceramics for LLRF”. In: 2007.

[4] Angelo Bosotti et al., eds. Full Characterization of the Piezo Blade
Tuner for Superconductive RF Cavities. INFN/LASA, Segrate (MI),
BESSY GmbH, Berlin, and DESY, Hamburg. 2008.

[5] J. Branlard, V. Ayvazyan, M. Grecki, H. Schlarb, C. Schmidt, W.
Cichalewski, K. Gnidzinska, A. Piotrowski, K. Przygoda, and W.
Jałmuzna, eds. LLRF Tests of XFEL Cyromodules at AMTF: First
Experimental Results. 2013.

[6] R. Brinkman, E.A. Schneidmiller, J. Sekutowicz, and M.V. Yurkov.
“Prospects for CW and LP operation of the European XFEL in
hard X-ray regime”. In: (2014).

[7] M.C. Campi, A. Lecchini, and S.M. Savaresi. “Virtual reference
feedback tuning: a direct method for the design offeedback con-
trollers”. In: Automatica (2002).

[8] W. Cichalewski, A. Napieralsk, J. Branlard, and C. Schmidt, eds.
European XFEL Cavities Piezoelectric Tuners Control Range Opti-
mization.

[9] J. R. Delayen and G. K. Davis, eds. Piezoelectric Tuner Compensa-
tion of Lorentz Detuning in Superconductive Cavities. Jefferson Lab.
2013.

[10] M. Fouaidy, G. Martinet, N. Hammoudi, F. Chatelet, A. Olivier,
S. Blivet, H. Saugnac, and A. Le Goff. “Electromechanical, Ther-
mal Properties and Radiation Hardness Tests of Piezoelectric
Actuators at Low Temperature”. In: 2003.

[11] Arne Hessenbrunch. “A brief history of x-rays”. In: Endeavour
(2003).

[12] Alireza Karimi, Mark Butcher, and Roland Longchamp. “Model-
Free Precompensator Tuning Based on the Correlation Approach”.
In: IEEE Transactions on Control Systems Technology (2008).

[13] Oliver Kugeler, Wolfgang Anders, Jens Knobloch, and Axel Neu-
mann. “Characterisation of Microphonics in HoBiCaT”. In: 2006.

[14] Matthias U. Liepe. “Superconducting Multicell Cavities for Lin-
ear Colliders”. PhD thesis. Universitat Hamburg, 2001.

[15] Lutz Lilje. Fabrication and Quality Control of the Frequency Tuner
for the XFEL. ECFA LC2013 Workshop. 2013.

63



64 Bibliography

[16] A. Neumann, W. Anders, O. Kugeler, and J. Knobloch. “Anal-
ysis and active compensation of microphonics in continuous
wave narrow-bandwidth superconducting cavities”. In: (2010).

[17] Axel Neumann. “Compensating Microphonics in SRF Cavities
to Ensure Beam Stability for Future Free-Electron-Lasers”. PhD
thesis. Humboldt University of Berlin, 2008.

[18] Claudio Pellegrini and Joachim Stöhr. X-Ray Free Electron Lasers:
Principles, Properties and Applications.

[19] Y. Pischalnikov, B. Hartman, J. Holzbauer, W. Schappert, S. Smith,
and J.C. Yun, eds. Reliability of the LCLS II SRF Cavity Tuner.
2015.

[20] K. Przygoda, J. Branlard, O. Hensler, H. Schlarb, C. Schmidt,
K. Kasprzak, W. Cichalewski, and T. Pozniak, eds. Testing Proce-
dures For Fast Frequency Tuners of XFEL Cavities. 2015.

[21] Konrad Przygoda. “Development of Control System for Fast
Frequency Tuners of Superconducting Resonant Cavities for
FLASH and XFEL Experiments”. PhD thesis. Technical Univer-
sity of Łódź, 2010.
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