
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale e dell’Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

XeMPUPiL
Towards a performance-aware power capping orchestrator for

the Xen hypervisor

Relatore: Prof. Marco Domenico SANTAMBROGIO

Correlatore: Dott. Ing. Rolando BRONDOLIN

Tesi di Laurea di:

Marco Arnaboldi

Matricola n. 833920

Anno Accademico 2016–2017

To my family

Contents

1 Introduction and motivations 1

1.1 The challenge to growth . 2

2 Background 6

2.1 Xen project . 6

2.2 XeMPower . 8

2.3 Intel Running Average Power Limit (RAPL) interface 10

2.3.1 MSR Power Unit . 11

2.3.2 MSR Package Power Limit 12

2.3.3 MSR Package Energy Status 14

3 Problem Definition and goals 16

3.1 Power consumption and power cap 16

3.2 Virtualization challenges . 17

3.3 Goals . 18

4 State of the Art 20

4.1 Classification criteria . 20

4.2 Hardware approaches . 21

4.3 Software approaches . 24

4.4 Hybrid approaches . 26

4.4.1 PUPiL . 27

5 Methodology 29

5.1 XeMPUPiL: a bird’s eye view . 29

iii

CONTENTS iv

5.2 Observe Decide Act (ODA) as a gradient ascending algorithm . . . 30

5.3 XeMPUPiL ODA control loop . 32

5.3.1 Observe . 34

5.3.2 Decide . 36

5.3.3 Act . 38

6 Implementation 41

6.1 Architecture design . 41

6.2 RAPL command line interface . 43

6.2.1 Enabling RAPL in multi-socket architecture 47

6.3 XeMPUPiL orchestrator . 51

6.3.1 Act . 51

6.3.2 Observe . 52

6.3.3 Decide . 53

7 Experimental Evaluation 55

7.1 Experimental setup and benchmarking 55

7.2 Baseline definition . 57

7.3 XeMPUPiL methodology evaluation 59

7.3.1 Performance maximization given a power cap 59

7.3.2 Power consumption minimization under a Service Level

Agreemen (SLA) . 62

8 Conclusions and Future works 65

Bibliography 72

List of Figures

1.1 Major bottlenecks for current datacenters: on the left is represented

the problem regarding limited physical datacenter available space,

instead on the right the problem regarding energy consumption

limits. 2

1.2 The chart shows past and projected growth rate of total US data

center energy use from 2000 until 2020. It also illustrates how much

faster data center energy use would grow if the industry, hypothet-

ically, did not make any further efficiency improvements after 2010. 3

2.1 Representation of the Xen architecture 7

2.2 XeMPower design . 9

2.3 Representation of the MSR_RAPL_POWER_UNIT Register. 11

2.4 Representation of the MSR_PKG_POWER_LIMIT Register 13

2.5 Representation of the MSR_PKG_ENERGY_STATUS Register . . . 14

3.1 The graph shows how the performance (measured in Instruction

Retired (IR)) of a domain in Xen, running a high parallel applica-

tion is affected by enforcing a power cap on the system. 17

5.1 ODA logic composing the PUPiL orchestrator 34

5.2 Workflow diagram leading the ODA cycle 35

5.3 Graphical demonstration on how the virtual CPU (vCPU) are pinned

over physical CPU (pCPU) according to 5.1 36

6.1 Overview of the XeMPUPiL architecture 42

v

LIST OF FIGURES vi

6.2 Overview of the XeMPUPiL architecture for multi-socket systems. 48

7.1 Baseline definition for the different configurations, displayed by

benchmark . 58

7.2 Results obtained for the four benchmarks under a power cap en-

forced through the proposed hybrid approach 60

7.3 Comparison between the performance obtained enforcing a power

cap of 40W in the hybrid and pure RAPL cases 61

7.4 Comparison between the performance obtained enforcing a power

cap of 30W in the hybrid and pure RAPL cases 61

7.5 Comparison between the performance obtained enforcing a power

cap of 20W in the hybrid and pure RAPL cases 62

List of Tables

7.1 Minimization results obtained for the EP benchmark 63

7.2 Minimization results obtained for the BT benchmark 64

7.3 Minimization results obtained for the CacheBench benchmark . . . 64

7.4 Minimization results obtained for the IOzone benchmark 64

vii

List of Listings

6.1 Code needed in order to declare a new hypercall 44

6.2 Code needed in order to declare the arguments passed to the hy-

percall managment routine . 44

6.3 Code needed in order to define the hypercall in the hypervisor

interface . 45

6.4 Code needed in order to define the prototypes for the routines that

will manage the hypercalls . 45

6.5 New version of the routine managing the hypercall. 48

6.6 Tasklet defined in order to write a given MSR 49

6.7 New version of the routine managing the hypercall. 50

viii

List of Algorithms

1 Pseudocode for a gradient ascending algorithm 30

2 Pseudocode for a generic ODA control loop 31

3 Pseudocode for the xc_xempower_setRAPL tool 47

4 Pseudocode for the xc_xempower_monitorRAPL tool 47

ix

List of Abbreviations

aaS as a Service

API Application Programming Interface

CLI Command Line Interface

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage and Frequency Scal-

ing

IR Instruction Retired

HPC Hardware Performance Counters

MSR Model Specific Register

RAPL Running Average Power Limit

ODA Observe Decide Act

OS Operating System

PMU Performance Monitoring Unit

pCPU physical CPU

TTL Time To Live

vCPU virtual CPU

VM Virtual Machine

x

LIST OF ABBREVIATIONS xi

MLR Multinomial Logistic Regression

NASA National Aeronautics and Space Ad-

ministration

NPB NAS Parallel Benchmarks

EP Embarassingly parallel

BT Block Tri-diagonal solver

MC Memory Controller

SoA State of the Art

CPU Central Processing Unit

PMC Performance Monitoring Counter

TDP Thermal Design Power

EDA Eletronic Desing Automation

SLA Service Level Agreement

SoC System on Chip

Abstract

In the era of Cloud Computing, applications and computational power are

provided in an as a Service (aaS) fashion, reducing the need of buying, build-

ing and maintaining proprietary systems. In the last few years, many services

moved from being proprietary and built in loco, to the as a Service paradigm.

This was possible thanks to virtualization techniques, which allowed multiple

applications to easily run on the same machine. However, the burden of costs

optimization is left to the Cloud Provider, that still faces the problem of con-

solidating multiple workloads on the same infrastructure. As power consump-

tion remains one of the most impacting costs of any digital system, several ap-

proaches have been explored in literature to cope with power caps, trying to

maximize the performance of the hosted applications. These approaches were

usually classified in two macro families, the software and hardware techniques.

The former family is typically adopted when the goal consists in minimizing

the power consumption, while providing the best possible performance for the

running workloads. These approaches are characterized by obtaining high effi-

ciency, but lacks in timeliness. Instead, the latter family is exploited when there

are strict constraints regarding the power budget and the main goal consists in

respecting them, while trying to maximize the performance of the running appli-

cations. In this case, the main characteristic consists in respecting the concept of

timeliness, totally neglecting the concept of efficiency. In this thesis, we present

results and opportunities obtained towards a performance-aware power capping

orchestrator for the Xen hypervisor, that exploit a novel emerging family intro-

duced in the literature: the hybrid approach. This fresh set of techniques aims to

xii

SUMMARY xiii

adopt synergically and concurrently both hardware and software approaches in

order to achieve at the same time the concept of efficiency and timeliness, mask-

ing the weak spots of the two common approaches when adopted alone. The

proposed solution, called XeMPUPiL, uses the Intel RAPL hardware interface to

set a strict limit on the processor’s power consumption, while a software-level

ODA control loop performs an exploration of the available resource allocations

to find the most power efficient one for the running workload. We show how

the XeMPUPiL methodology is able to allow the definition of two different poli-

cies: achieving higher performance under different power caps and minimizing

power consumption while respecting a given SLA for almost all the different

classes of benchmarks analyzed (e.g., CPU-, memory- and IO-bound).

Sommario

Al giorno d’oggi stiamo assistendo all’affermazione di un nuovo paradigma

computazionale: il cloud computing. In questa nuova era, detta epoca dell’aaS,

le applicazione e i servizi non vengono più eseguiti su macchine di proprietà, ma

bensì su macchine (spesso virtuali) fornite da terzi: i così detti cloud provider.

Dal punto di vista degli utenti questo permette loro di accedere a queste risorse

computazionali in maniera elastica e scalabile, permettendo di dimensionare fa-

cilmente le loro necessità computazionali a seconda delle variazioni del mercato

o anche solo all’interno della giornata lavorativa, riducendo in questa maniera

i costi e i danni economici in caso di errore nella stima delle risorse richieste.

D’altra parte questo "nuovo mondo" ha spostato tutti quelli che erano i costi di

gestione delle macchine fisiche sulle spalle dei cloud provider. Inoltre l’attratti-

va che questo nuovo paradigma porta con se, ha spinto sempre più clienti ad

adottare approcci basati sul cloud computing. L’incremento di utenti affacciate-

si a questo paradigma ha portato al sorgere di due sfide per i gestori del cloud,

in particolare due sfide riguardanti la gestione dei datacenter. In modo da ri-

spondere alla crescente domanda i gestori di datacenter devono aumetare la loro

potenza computazionale e per farlo sono costretti ad aumentare il numero di ser-

ver presenti nelle loro strutture rischiando quindi di saturare e sforare lo spazio

fisico della struttura oppure di non rispettare i contratti con i fornitori energetici,

incappando in penali o blackout. Per risolvere questi problemi diverse tecniche

di ottimizzazioni delle risorse all’interno di un datacenter e di gestione dei cari-

chi di lavoro sono stati promossi. Su tutti spiccano le tecniche di virtualizzazione,

ormai diventate una prassi adottata da tutti i cloud provider. In questo modo è

xiv

SOMMARIO xv

possibile sfruttare una macchina fisica da più utenti, aumentandone così l’effi-

cienza.

In questo scenario, il consumo di potenza rimane uno dei costi principali di ogni

sistema digitale. Diversi approcci hanno provato, in letteratura, ad affrontare il

problema dei consumi e limiti di potenza, provando a massimizzare le prestazio-

ni delle applicazioni ospitate. Questi approcci sono comunemente classificati in

due macro famiglie, quella software e quella hardware. La prima è tipicamente

adottata quando l’obiettivo consiste in minimizzare il consumo di potenza e allo

stesso tempo fornendo le performance migliori per i carichi di lavoro del siste-

ma. Questa famiglia è caratterizzata dall’ottenimento di alta efficienza, ma dalla

mancanza di tempestività. Al contrario, la seconda famiglia è usata quando ci

sono vincoli stringenti riguardanti il budget di potenza e l’obiettivo principale

consiste nel rispettarlo e contemporaneamente provare a massimizzare le perfor-

mance delle applicazioni in esecuzione. In questo caso, la caratteristica principale

consiste nel rispettare il concetto di tempestività, trascurando completamente il

concetto di efficienza.

In questa tesi presentiamo una metodologia così detta ibrida, che cerca di sfrut-

tare contemporaneamente sia un approccio software (un ciclo di controllo ODA)

e un approccio hardware (Intel RAPL) in modo da nascondere i punti deboli

dei due approcci quando presi singolarmente, ottenendo in questo modo sia ef-

ficienza the tempestività. Lo sviluppo di questa metodologia sfocia nel design

di un orchestratore performance-aware e in grado di effettuare power capping

svilluppato per l’hypervisor Xen, come prova di concetto. La soluzione proposta,

chiamata XeMPUPiL, sfrutta la tecnologia RAPL di Intel tramite le sue interfacce

hardware per definire un limite stringente sui consumi di potenza del processore,

mentre a livello software un ciclo di controllo basato su strategia ODA si occupa

di un’esplorazione delle possibili configurazioni riguardanti l’allocazione delle

risorse ai vari carichi di lavoro, in modo da trovare quella corrispondente alla

più power efficient. Per sfruttare al tecnologia RAPL siamo andati a sviuppare

un tool stack che lavora a tutti e 3 i livelli della cononica pila di un ambienta

virtualizzato, cioè: livello hardware, livello hypervisor e livello Virtual Machines

SOMMARIO xvi

(VMs). Per far questo abbiamo usato una serie di meccanismi propri delle tecno-

logie di virtualizzazione in modo da ottenere privilegi sull’hardware, le così dette

hypecall (simili per comportamneto alle syscall in un Operating System (OS) co-

mune). Questo tools stack è poi stato sfruttatto nella fase di Attuazione del ciclo di

controllo ODA in modo da definire e far rispettare il power cap. Sempre in que-

sto stadio andiamo inoltre ad attuare la configurazione delle risorse decisa per

questa iterazione del ciclo di controllo, ripartendo le risorse virtuali delle VMs

su quelle fisiche. Nella fase di Osservazione invece siamo andati a sviluppare un

sistema di monitoring agnostico che valuta come stanno performando le VM ese-

guite nel sistema tramite metriche hardware quali il numero di IR, recuperate dai

Model Specific Registers (MSRs). Infine, nella fase Decisionale andiamo ad esplo-

rare, tramite ricerca binaria in intervallo chiuso, la prossima configurazione delle

risorse da esplorare in modo da massimizzare le risorse. In questa tesi mostrere-

mo XeMPUPiL è in grado di raggiungere performance migliori sotto differenti

power cap per diverse tipologie di carico analizzate (e.g., CPU-, memory- and

IO-bound). Inoltre mostriamo anche come è possibile sfruttare la stessa meto-

dologia per ribaltare il problema e quindi dato un SLA da rispettare cercare di

minimizzare i consumi di potenza del sistema.

Il testo è organizzato come segue:

• Il Capitolo 1 fornisce una introduzione generale al lavoro;

• Il Capitolo 2 fornisce le definizione comuni usate in questo lavoro di tesi,

insieme ad una descrizione nel dettaglio delle tecnologie sfruttate e da cui

si è presa ispirazione per questo lavoro di tesi;

• Il Capitolo 3 definisce il problema affrontato dal lavoro di tesi e le motiva-

zioni dietro ad esso;

• Il Capitolo 4 dà una visione d’insieme dello stato dell’arte in cui questo

lavoro si inserisce;

• Il Capitolo 5 dettaglia la metodologia alla base di XeMPUPiL;

SOMMARIO xvii

• Il Capitolo 6 presenta in dettaglio come è stato implemnetato l’orchestrato-

re;

• Il Capitolo 7 presenta i risultati sperimentali ottenuti all’interno del lavoro

di tesi;

• Infine, il Capitolo 8 riporta le conclusioni del lavoro, sottolineando il con-

tributo e i possibili lavori futuri.

1

Introduction and motivations

Computing infrastructures changed considerably in the last few decades [31]

moving from huge, private and centralized computing infrastructures, usually

maintained by the client (e.g. universities, mid-range industries) of such infras-

tructures, that was at the same time both client and provider. Nowadays, such

infrastructures are decentralized and easily scalable ones, decoupling the client

from the provider. This change is due to a new demand coming from the mar-

ket: accessing services everywhere and in an elastic fashion in order to keep

the pace with the continuing evolving request [22]. Cloud computing has now

become the leading paradigm, from Web services to batch and streaming com-

putations, allowing companies to run their applications “in-the-cloud” instead of

buying proprietary servers, providing a better response to the elastic and scal-

able needs of the datacenter clients. In this context cloud computing is an un-

precedented opportunity for all the companies aiming either to grow fast or to

consolidate their provided service. Thanks to this new computational paradigm

is possible to move a lot of management and initial investment costs from the

client to the cloud provider, which is now in charge to find ways in order to max-

imizes his/her profits by optimizing the usage of its hardware. In this context,

“virtualization” enables cloud providers to run multiple applications on the same

physical resources, still ensuring strong isolation to each of them [39, 8].

1

1. INTRODUCTION AND MOTIVATIONS 2

Figure 1.1: Major bottlenecks for current datacenters: on the left is represented the problem regard-
ing limited physical datacenter available space, instead on the right the problem regarding energy
consumption limits.

1.1 The challenge to growth

The growing number of users attracted by the rising of the aaS paradigm

leads to an unprecedented number of workloads running on the servers com-

posing the cloud, playing up to two major challenges regarding increasing the

computational power of the datacenter facility: on the one hand while respect-

ing the physical space constraints of the site on the other one while while re-

specting the contract stipulated with the energy provider. Both challenges are

generated by the need of having more servers inside the datacenter in order to

cope with the increasing number of workloads. The first challenge regards the

physical space that such hardware occupies, which is limited inside a datacenter,

as the left image in Figure 1.1 can suggest. The second one regards instead, the

available power that such machines consume, since energy is not an endless re-

source and furthermore is defined in strict contract between datacenter owners

and energy providers, as is suggested by the right image in Figure 1.1 . In partic-

ular the second challenge is the more concerning one as the study conducted by

1. INTRODUCTION AND MOTIVATIONS 3

Figure 1.2: The chart shows past and projected growth rate of total US data center energy use
from 2000 until 2020. It also illustrates how much faster data center energy use would grow if the
industry, hypothetically, did not make any further efficiency improvements after 2010.

the US Department of Energy at Lawrence Berkeley National Laboratory shows

in Figure 1.2. The chart presents a forecast of the power consumption trends in

datacenter. The dotted line represents the power consumption prevision in case

the same technology adopted in 2010 are still used nowadays. Instead, the black

line at the bottom represents the power consumption forecast in case all the ex-

pected improvements in datacenter management technologies will be really ef-

fective. Then, the area delimited by these two lines represents a possible amount

of power savings in a 10 year time window. In this area, it is also interesting to

notice that the greatest amounts of savings are expected for infrastructure (more

focused on material and electronic improvements) and servers.

Unfortunately, the need of having more and more computational power in a

limited space can lead to a better utilization of the hardware platforms only if

the hypervisor is able to perform a good consolidation of the tenants over the

datacenter, as well as on the resources on every single machine [28, 42]. This

task is made difficult by both hardware and software heterogeneity: the servers

of the same datacenter may not be equipped with the same amount of memory

and processors, as well as different tenants may be characterized by different

1. INTRODUCTION AND MOTIVATIONS 4

workload profiles (e.g., memory-bound, I/O-bound and/or CPU-bound).

Moreover, this scenario gets even worse when considering power consump-

tion, a major concern for almost every digital system. Given the huge density of

servers in modern data centers, the power grid may not be able to supply enough

energy to run all of them at their peak performance, thus requiring tools and in-

terfaces able to set a power cap on the whole system. To face this first requirement,

Intel introduced the RAPL interface since its second generation of Sandy Bridge

processors [16]: this interface enforces a strong and precise limit on the power

consumption of a processor, i.e., the component that contributes the most on the

dynamic power consumption of a server [44].

RAPL uses Dynamic Voltage and Frequency Scaling (DVFS) techniques to

guarantee the desired power cap but is not aware of the impacts that these tech-

niques have on the performances of the hosted applications. Of course, these per-

formances need to be maximized even when a power cap is enforced: we want

to find the most power efficient hardware configuration under a certain power

cap, thus maximizing the performance-per-watt ratio. In order to accomplish our

goal, a uniform metric of performance has to be defined, as well as a smart or-

chestration policy to guarantee the stability of the system as soon as the run-

time conditions change. As the system may be composed of thousands of nodes,

thus hosting hundreds of thousands of concurrently running applications, even

a small optimization may lead to massive savings on the overall datacenter in

terms of power consumed and, thus, money spent by the cloud provider.

In this thesis, we propose XeMPUPiL, a hybrid hardware and software power

capping orchestrator for the Xen hypervisor (a common open source virtualiza-

tion technology adopted by several datacenter providers), based on the PUPiL

approach [45], that aims at enforcing two different and distinct policies: maximiz-

ing the performance of a running workload under a power cap and minimizing

the power consumption given a SLA to respect. The main contributions of this

thesis are the following:

1. we propose an Observe phase that takes into account a generic performance

metric for all the hosted tenants, avoiding any instrumentation of the work-

1. INTRODUCTION AND MOTIVATIONS 5

loads;

2. we improved the decision phase of PUPiL, to deal with the resources avail-

able in a multi-tenant virtualized environment;

3. we implemented a new Actuation phase, to support all the knobs that Xen

provides to control the resources assigned to each tenant.

The rest of the thesis is organized as follows:

• Chapter 2 gives the common definitions shared across this work, gives a

description of the technologies and tools adopted in this thesis work;

• Chapter 3 introduces the problem we are coping with this thesis work;

• Chapter 4 describes the state of the art;

• Chapter 5 details the methodology behind XeMPUPiL;

• Chapter 6 digs into the implementation details of the orchestrator;

• Chapter 7 presents the experimental results that validates our approach;

• Finally, Chapter 8 draws the conclusions and presents the future directions

of this work.

2

Background

In this chapter we are going to introduce some useful concepts that will help

the reader in better understanding the work proposed in this thesis. In Section

2.1 the Xen project will be presented and information about virtualization will

be provided. In Section 2.2 the XeMPower monitoring tool will be introduced in

its key aspects. In Section 2.3 a full overview over the Intel RAPL interface for

socket power management is provided.

2.1 Xen project

In this section we are going to introduce what is the Xen project, present-

ing some useful terminology that will let the reader better understand the next

chapters of this thesis. The Xen hypervisor is an open-source type-1 or baremetal

hypervisor, since it runs directly on the physical hardware resources. This allows

it to run different instances of various operating systems in parallel on a sin-

gle machine (usually called host). The main advantage of the Xen hypervisor is

that it is the only type-1 hypervisor provided under open source license. Differ-

ent commercial and open source application exploit it as their basis, examples of

these applications are: security applications, server virtualization, desktop virtu-

alization, Infrastructure as a Service (IaaS), embedded and hardware appliances.

Indeed, different production virtualization technologies are powered by the Xen

hypervisor, such as: Oracle VM Server [5] and Huawei FusionSphere [27]. In 2.1

6

2. BACKGROUND 7

Figure 2.1: Representation of the Xen architecture

[7] is introduced a schema of the Xen Project architecture. CPU, Memory, and

interrupts are handled by the hypervisor, since it lies directly on the hardware

layer. After exiting the bootloader, the hypervisor is the first program running.

The virtual machines run on top of the hypervisor. In Xen terminology a domain

or guest is a running instance of a virtual machine. Domain0 is a special domain

containing the drivers for all elements in the system. The necessary control stack

to manage virtual machines (e.g. creation, configuration, and destruction) is lo-

cated in this domain. In detail, the components are:

The hypervisor is a thin1 software level that lies directly on the hardware and is

in charge to manage CPU, memory, and interrupts. It is the first program

running after the bootloader exits.

Domains also called either Guest Domains or VMs, are virtualized spaces, each

of them can run different OS and applications. Two kinds of virtualization

are supported by the hypervisor: Paravirtualization (PV) and Hardware-

assisted or Full Virtualization (HVM). On a single hypervisor, both guest

types can be used concurrently. This kind of VM is defined as unprivileged

domain (or DomU), the reason lies in the fact that it has no privilege to

1Xen hypervisor contains less than 150,000 lines of code

2. BACKGROUND 8

access directly hardware or I/O functionality, resulting in a total isolation

from the hardware layer.

Domain 0, also called control domain, is a particular VM that has special rights,

examples are: handling all access to the system’s I/O functions, interact-

ing with the other Virtual Machines and the capability to access the hard-

ware directly. It also exposes a control interface to the system administrator,

that allows the system control. It is not possible to use the Xen hypervisor

without Domain 0, which is directly instantiated by the hypervisor after its

initialization successfully terminates.

Command Line Interface (CLI) it is located in Domain 0 and drives a control

stack (or Toolstack) allowing the management 2 of the running VMs.

Furthermore, will result useful for the reader to introduce some terminology re-

lated to the virtualization domain:

vCPU This is a virtual Central Processing Unit (CPU) assigned to a VM, usu-

ally known also as virtual processor. vCPUs permit multitasking to be per-

formed sequentially in a multi-core environment.

pCPU It is a physical CPU, with all the circuitry and memory. It is capable of

independent processing.

CPU-Pool The main idea behind CPU-pools consists in splitting into different

pools the physical cores of the system. A separate CPU scheduler, with also

different parameters, may be assigned to each of these pools. A pCPU can

be assigned at any time to either no one or one of the defined pools. Simi-

larly, a VM can be moved from one pool to another at any time, but must

be always assigned to one and only one pool at a time.

2.2 XeMPower

In this section we introduce the XeMPower power monitoring tool [19]. XeM-

Power is a lightweight monitoring solution for Xen designed to: 1) provide pre-
2creation, destruction, and configuration

2. BACKGROUND 9

X
e
M

P
o
w

e
r

C
L
I

A1

1

B1

A2

2

B2

A1

1

B1

A3

3

B3

A2

2

1

A1

Core 0 Core N

T
im

e B2

…

… …

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

X
e
M

P
o
w

e
r

D
a
e
m

o
n B2

B2

B1

B1

B3

B2

B2

B1

B1

B3

Xen Kernel Dom0

Hardware events per core,
energy per socket

…

Figure 2.2: XeMPower design

cise attribution of hardware events to virtual tenants, 2) be agnostic to the map-

ping between virtual and physical resources, hosted applications and scheduling

policies, and 3) add negligible overhead. Ferroni et al. approach uses hypervisor-

level instrumentation to monitor every context switch between domains. More

precisely, the monitoring flow proceeds as follows:

1. At each context switch and before the domain chosen by the scheduler

starts running on a CPU, the tool begins counting the hardware events of in-

terest. From that moment the configured Performance Monitoring Counter

(PMC) registers in the CPU store the counts associated with the domain

that is about to run.

2. At the next context switch, the PMC values are read from the registers and

accounted to the domain that was running. The counters are then cleared

for the next domain to run.

3. Steps 1 and 2 are performed at every context switch on every system CPU

(i.e., physical core or hardware thread). The reason is that each domain may

2. BACKGROUND 10

have multiple vCPU. Socket-level energy measurements are also read (via

Intel RAPL interface) at each context switch.

4. Finally, the PMC values are aggregated by domain and finally reported or

used for other estimations (e.g., power consumption per domain).

2.2 illustrates the monitoring flow described above. Steps 1 and 2 for domains

1, 2, and 3 are shown at every context switch on the left side of the figure. On

the right side, steps 3 and 4 are performed by the XeMPower daemon and CLI

program, both in Dom0.

2.3 Intel RAPL interface

RAPL is an interface provided by Intel consisting of non-architectural MSRs.

Resources within each processor socket are divided into domains of power man-

agement. Usually these are the “Package domain”, corresponding to the proces-

sor die, and the “Memory domain”, corresponding to the directly attached Dy-

namic Random Access Memory (DRAM). Each domain has the following inter-

faces used to control its behaviour:

Power Limit Interface to specify power limit and its fine tuning such as the time

window.

Energy Status Interface to retrieve information about the power consumption.

Performance Status It provides information about the effect due to the power

limit. This interface is optional.

Power Info It provides information about the range of parameters describing

a given domain, such as min-power, max-power etc. This interface is op-

tional.

Policy It is used in order to describe a policy on how to divide budget between

sub-domains in a parent domain. This interface is optional.

2. BACKGROUND 11

RESERVED

63 20 19 16 121315 78 34 0

Time unit Energy
status unit Power unit

Figure 2.3: Representation of the MSR_RAPL_POWER_UNIT Register.

In this thesis work we targeted the first two, since they allow to set the power

cap and subsequently to check it is correctly enforced. This interfaces are repre-

sented by three MSRs: the Power Unit MSR, the Package Power Limit MSR and

the Package Energy Status. We will exploit the first and the last register in order

to retrieve information on how the system is behaving. We need to read the right

fields inside these registers and to aggregate the gained information accordingly

to what is specified in the Intel Manual. Instead the second register will be writ-

ten in order to define and to enforce the corresponding power cap. In the next

sections we detail those register, their fields and how they are put together in

order to enforce a power cap via hardware.

2.3.1 MSR Power Unit

As shown in 2.3, MSR_RAPL_POWER_UNIT is a 64 bits long register. It con-

tains architecture specific information about the units adopted to measure power,

energy and time. This register is used in read-only access mode, and it is com-

posed by three fields:

Power Units Power is measured in Watts and expressed in "number of power

units" inside the Package Energy Status register. This value is an unsigned

integer. As default it is set to 001b. This value indicates that each power

unit represents an increment of 1/8 Watt. This information is contained in

bits 3:0.

Energy Status Units Energy is measured in Joules and expressed in "number of

energy units" inside the Package Energy Status register. As default this field

is set to 10000b. This value indicates that each energy unit represents an

increment of 15.3 micro-Joule. This information is contained in bits 12:8.

2. BACKGROUND 12

Time Units Time is measured in Seconds and expressed in "number of time units"

inside the Package Energy Status register. As default this field is set to

1010b. This value indicates that each time unit represents an increment of

976 micro-seconds. This information is contained in bits 19:16.

The interesting information stored in this register is contained by the first two

fields: power and energy. The register contains also info about time. This is not

going to be useful, since there is no need to take into account information about

this metric. It will be retrieved by the OS. Once the units are retrieved, it be-

comes possible to assess a relation between physical values and how they are

represented at architectural level. These transformations are designed by 2.1 [21],

where PU stands for Power Unit.

unitInWatts[WATTS] =
1

2PU
(2.1)

2.1 represents the relation between a power cap expressed in Watts and the num-

ber of power unit representing it. The initial value of this register is 011b, equiva-

lent to 3 in base 10, applying 2.1 the resulting value will be 1
23 so 1/8. This explains

why the default value corresponds to 1/8 Watts. For what concerns energy the

approach is the same. This time the equation ruling the relation between physi-

cal values and architectural ones is expressed by 2.2,where ESU stands for Energy

Status Unit.

unitInJoule[JOULE] =
1

2ESU
(2.2)

This register is read just one time. It is read during the initialization phase

previous the beginning of the ODA cycle. This is sufficient since once the metric

(i.e. units) are retrieved the will remain the same during all the computation.

2.3.2 MSR Package Power Limit

As shown in 2.4, MSR_PKG_POWER_LIMIT is a 64 bits long register. It pro-

vides an interface in order to define and enforce a power limit. It allows to specify

two power limits, corresponding to time windows of different sizes. The fields

composing this 64 bits long register are:

2. BACKGROUND 13

63 49 48 42 232441 062 56 55 47 46 17 1615 14
L
O
C
K

Time
window

Pkg
Power Limit

Time
window

Pkg
Power Limit

E
N
B
L

E
N
B
L

C
L
M
P

C
L
M
P

Power Limit #2 Power Limit #1

Figure 2.4: Representation of the MSR_PKG_POWER_LIMIT Register

Lock If this field is set to 1, the power limit settings are static and un-modifiable

until next RESET. Corresponding to bit 63.

Package Power Limit The value of this field is specified in units, retrievable by

the register presented in Section 2.3.1. Respectively bits 14:0 and 46:32 for

the two imposable power limits.

Enable Once this field is settled to 1, the specified power limit is enforced.Respectively

bit 15 and 47 for the two imposable power limits.

Package Clamping Limitation If this field is set (i.e. different from 0), the socket

is allowed going below OS-requested P/T state. Respectively bit 1 and 48

for the two imposable power limits.

Time Window This field indicates the time window for the specific power limit.

Respectively bits 23:17 and 55:49 for the two imposable power limits.

In the proposed approach only the "Package Power Limit" and the "Enable" fields

are of interest, since the time window will be set to infinite and the "Lock" field

will be unset in order to allow runtime modification at the power limit. In order

to define a power limit the relation expressed in 2.1 is needed. This is necessary

due to that physical measures are expressed in architectural specific units metrics

inside the register. To define a cap in power units inside the correspondent field,

2.3 must be applied.

powerUnits =
powerCap[Watt]

1
2PU

(2.3)

2.3 states that in order to retrieve the number of power units corresponding to

a physical value, it is necessary to divide it by the physical value corresponding

2. BACKGROUND 14

TOTAL ENERGY CONSUMED RESERVED

63 032 31

Figure 2.5: Representation of the MSR_PKG_ENERGY_STATUS Register

to a singular power unit. Also in this case the register is written just one time.

This happens during the initialization phase too. The number of power units

calculated is written in the corresponding field of one of the two power limits,

than the time window is set to infinite and the enable bit is set to 1. All this fields

are written at the same time. The fields corresponding to the other power limit

are not written except for the enable bit that is set to 0 just to ensure that the

second power limit will be disabled.

2.3.3 MSR Package Energy Status

The information contained in the register displayed in 2.5, represents the to-

tal energy consumed. This is an accumulator register, where the count starts from

the moment it is cleared. “ENERGY_STATUS_UNIT” is the unit adopted to rep-

resents the value contained in this field, as specified by register “MSR_RAPL_POWER_UNIT”

presented in Section 2.3.1. The total amount of energy consumed in a time win-

dow is designed by 2.4.

energyConsumed[Joule] = TOTAL_ENERGY_UNITS× 1
2ESU

(2.4)

2.4 states that the energy consumed by the socket corresponds to the amount of

number of energy units read from the register times the Watts value of a sin-

gle energy unit, expressed in 2.2. Then, applying the physical relation between

energy and power, it is possible to retrieve the power consumption over a time

window, as stated in 2.5.

powerConsumed[Watts] = energyConsumed× ∆t (2.5)

2. BACKGROUND 15

The time window is retrieved via OS calls. At the first time-call the register is

erased, its bits are written to 0s. After a fixed time interval a second time-call is

done, at this point the register is read and with the 2.4 and 2.5 the power con-

sumption is retrieved. ∆t in this case corresponds to difference between the time

measured during the second time call and the first one. This register is used in

order to periodically check that the given power cap is effectively enforced.

3

Problem Definition and goals

In this chapter we are going to describe the problem addessed by this thesis

work and the main goals the proposed solution should achieve. In Section 3.1 we

will present the power consumption problem in current datacenters, in particular

how it can be addressed under two different points of view: respecting power

budget while optimizing workloads performances and respecting a given SLA

while optimizing power consumptions. In Section 3.2 the challenges of power

capping in virtualized environments will be presented. Finally, in Section 3.3 we

will introduce the goals of the proposed methodology.

3.1 Power consumption and power cap

Modern processors are constrained by dark silicon, as the abundance of tran-

sistors enables them to draw more power than they can safely sustain [18, 43].

This phenomena affects several classes of processors, from mobile System on

Chip (SoC) to datacenter processors. On the one hand, mobile processors like

the Exynos 5 (used in the Samsung Galaxy S4 phone) has a 5.5W peak power

draw – nearly 2× its sustainable heat dissipation [41]. On the other hand, future

exascale supercomputers have a predicted operating power budget of 20 MW

[12], making power management a central challenge of supercomputer operating

systems. In between this two borderline cases we have the datacenter challenge,

since the power consumption estimated (only for servers) in a modern datacen-

16

3. PROBLEM DEFINITION AND GOALS 17

ter is around 1MW [34]. Server compute performance has been increasing by a

factor of three every two years, however, energy efficiency is only doubling in the

same period. This means computational performance increased by a factor of 27

between 2000 and 2006. Energy efficiency has gone up as well, but by only a fac-

tor of eight during the same period. This means that while power consumption

per computational unit has dropped dramatically in this six-year period (by 88

percent), the at-the-plug power consumption has still risen by a factor of 3.4 [13].

A constant rate of IT hardware spending results in increasing hardware power

consumption at-the-plug, which, in turn, results in rapidly escalating site elec-

tric utility costs as part of the enterprise IT operating expense. This increase of

the costs typically happens when an enterprise datacenter runs out of power

and/or cooling capacity, and an unplanned (or sub-optimally planned) site cap-

ital investment is required to increase capacity. For large-scale enterprise data

centers, these CapEx investments can now be in hundred million dollar incre-

ments. The physical constraints and the monetary constraints that affects modern

enterprise datacenters create the need for power control systems which guaran-

tee that the processors, the servers and the whole computational infrastructure

operate within a strict power cap.

3.2 Virtualization challenges

Po
w

er
 c

ap
 (W

)

0

20

40

In
st

ru
ct

io
ns

 re
tir

ed

0

2×109

Time (s)
0 20 40 60 80 100 120 140 160 180 200 220

Power cap effects on Virtual Machines

Figure 3.1: The graph shows how the performance (measured in IR) of a domain in Xen, running a
high parallel application is affected by enforcing a power cap on the system.

The first technique (now the leading one) adopted in datacenter in order to

increase the efficiency of the machines is virtualization. Thanks to this technology

3. PROBLEM DEFINITION AND GOALS 18

it is possible to isolate and host concurrently multiple users on the same phys-

ical machine, enhancing in this way the utilization of the datacenter resources.

However, when hardware resources are affected by power constraints, the vir-

tualized ones are affected as well. The graph in Figure 3.1 shows how different

power constraints affect the performance returned by a VM running in the virtu-

alized environment. The application running in the VM is a high parallel random

number generator taken from the NAS Parallel Benchmarks (NPB). It is possi-

ble to notice that in a system, where no power constrains (region 1) are defined,

the performance (mesured as the number of IR) are optimal. The challenge rises

when a power cap must be enforced on the system as shown in region 2. In this

case it is possible to notice a slight downgrade in performance. This behaviour

is even more clear when the power cap becomes stricter, like in regions 3 and

4. In these cases the performance downgrade is really significant. On the other

hand it is also true that being able to exploit a power cap technique like the one

in the graph (in this case was used RAPL) ensures a precise and strict power con-

trol of the system. Hence, the challenge consists in being able to apply this kind

of power control and at the same time finding a way to reduce the amount of

lost performance. Another challenge under this path is to find a strict power cap

which allows a VM to consume less resources and power while respecting on a

SLA.

3.3 Goals

The goals of this thesis work consist into the development of an orchestrator

for workloads running in a virtualized environment, which will be based on the

following concepts:

Timeliness At any change of the power cap for the system, the orchestrator

should be able to enforce it in the strictest and quickest way possible, avoid-

ing any oscillatory behaviour.

Efficiency Depending on the different running workloads in the system, the or-

chestrator should be able to identify which is the best resource set to assign

3. PROBLEM DEFINITION AND GOALS 19

to each workload in order to maximize its performance.

Multi-tier The orchestrator should be able to work and access at each layer of the

common virtualization stack. It should communicate with the hardware in

order to manage the power consumption via RAPL, with the hypervisor in

order to observe the running workload performance and with the VM tier

in order to manage the resource assignment.

Workload agnostic Finally, the orchestrator should be able to provide all the

listed behaviour without requiring any workload instrumentation, in order

to ease the developers job and the spreading of such methodology.

4

State of the Art

Due to the increasing interest in the field of power monitoring tools, several

works were produced in these years. They can be classified into two families

of approaches: hardware approaches and the software approaches. The formers

are built upon the concept of timeliness, trying to enforce the cap as faster and

stricter as possible, exploiting hardware control circuits. The latter, instead, are

built upon the concept of efficiency, searching for the best configuration possible

in order to maximize the performance while reducing the power consumption.

In this chapter we will present the analysis of the State of the Art that is of in-

terest for this thesis work, focusing on the pure software/hardware and also on

hybrid power capping approaches. In Section 4.1 a brief introduction about the

methodology adopted in order to classify the State of the Art (SoA) is presented.

Then, in Section 4.2 we are going to introduce in detail the hardware approaches

and the concept of timeliness. Instead in Section 4.3 the software approaches and

the concept of efficiency are presented. Finally in Section 4.4 a novel approach

exploiting at the same time both hardware and software techniques, the so called

hybrid approach, is analysed in detail.

4.1 Classification criteria

In several works proposed in literature and introduced in the next sections

the approaches presented always exploit hardware techniques alongside soft-

20

4. STATE OF THE ART 21

ware techniques. This is due to the fact that hardware and software in the field

of power management are strongly related. The criteria adopted to distinguish

between pure software and hardware approach is based upon which of the two

aspects is more prominent, which is exploited and used more and also which is

the problem addressed. Usually the software approaches are typically used in

problems where the main constraint is represented by the performance of the

workloads with respect to a power cap, instead hardware approaches are used

in problems where the constraint is represented by the power budget available.

The novelty introduced by the hybrid approach consists basically into the fact

that both approaches are equally valuable. In detail, it exploits software tech-

niques in order to achieve better performance and hardware techniques to obtain

a strict power control in a problem where the limit consists in the constrained

power consumption. This approach results in real synergy able to exalt the best

characteristics of both approaches, erasing completely the weak spots of the two

techniques when adopted individually.

4.2 Hardware approaches

All the power capping techniques implying the use of on socket modules or

interfaces in order to enforce a cap, can be classified as hardware approaches.

These ones usually exploits socket control circuits in charge to manage the chip

resources. This group of techniques guarantees that timeliness is reached, where

timeliness is meant as the speed at which a new cap can be enforced. In general

hardware reacts faster than software, thus, timeliness is achieved thanks to rela-

tively simple circuits controlling key power indicators like processor voltage and

frequency. To the best of our knowledge, the hardware approaches proposed in

literature can be classified into three families: (i) DVFS, (ii)CPU Quota and (iii)

RAPL.

DVFS This techniques exploits socket’s frequency and voltage controllers. The

main idea is to reduce dynamic power consumed per time unit via fre-

4. STATE OF THE ART 22

quency and voltage decrement using 4.1,

DynamicPower = C× V2 ×A× f (4.1)

where C is the capacitance being switched per clock cycle, V is the voltage,

A is the Activity Factor indicating the average number of switching events

undergoing between the transistors in the chip and f is the switching fre-

quency. The technique ruled by 4.1 is profitable only if no concerns about

the performance of the running workloads are taken into account. In the

work proposed by Deng et al. in 2012 [17] the authors present MultiScale.

This is the first technique that tries to manage DVFS in systems presenting

multiple memory channel, devices, and Memory Controller (MC). This ap-

proach consists into monitoring workload bandwidth requirements across

MC, under OS control. The information retrieved from the monitoring stage

is then used by a heuristic in order to select the best frequencies combina-

tions. These combinations try to minimize the overall system power con-

sumption, while respecting the user-specified per-application performance

constraints Instead in the work of Horvath et al.[26], the authors address

DVFS in multistage service pipelines, unlike previous works that addressed

DVFS on individual servers and on load-balanced server replicas.

CPU Quota This technique consists in assigning a limited amount of computa-

tional time (i.e. a quota) to the workload. Then the processor is in charge to

schedule each workload in order to respect the allocated quota. Reducing

the time will lead to a postponed workload, thus reducing the overall dy-

namic power. This approach is feasible for workloads with no priority and

no strict Time To Live (TTL). The work presented by Fornaciari et. al in 2014

[32] represents a double value in the field of hardware power management

and monitoring. The authors demonstrated how a user-space run-time re-

source manager, based upon CPU quota technique, can exploits Hardware

Performance Counters (HPC) as performance metric. The obtained results

consists in a resource manager able to optimize both energy consumption

4. STATE OF THE ART 23

and workloads execution time.

RAPL This interface provides a way to set power limits on processor packages

and DRAM. The need behind this interface lies in the necessity to provide,

to programs in charge to dynamically monitor and control, a mechanism in

order to limit the max average power, matching the imposed power bud-

get. Furthermore, power budgeting across the rack distribution is enabled

by power limits in a rack. Power limits can be reassigned based on use

and workloads, by dynamically monitoring the feedback of power con-

sumption The control over the power limit can be defined also on short

and long term averaging windows, whose size and limit can be defined

dynamically. Also in this case, the proposed technique is profitable only if

no performance interest is taken into account for the running workloads.

The survey published in 2012 by the Intel sandy-bridge development team

[38] provides useful information about the new features introduced in the

sandy-bridge processors family. The Intel developer manual [21], volume

3B, section 14.9, shows that RAPL can be defined as an interface provid-

ing mechanisms to enforce power consumption limit. The usage of those

interfaces has a huge importance for both client and server platforms. The

provided interfaces ease the power limit control, especially in server plat-

form adopted in data-centers, exploiting the following power and thermal

related usages:

• Platform Thermal Management: this is a robust proactive or reactive

mechanism to oversee platform and component thermal behaviour.

• Platform Power Limiting: system’s power consumption is managed

by a deterministic control model.

• Power/Performance Budgeting: enables the concept of efficiency, mean-

ing to control the power consumed and the performance delivered

within and across platforms.

The RAPL interfaces presents multiple domains of power managing within

the socket, where each processor lies. In general, these RAPL domains may

4. STATE OF THE ART 24

be composed by:

• Package domain, which represents the processor die.

• Memory domain, which contains the directly-attached DRAM.

In order the case of multiple sockets, the consumed power can be man-

aged via RAPL, programming individual power limit for each processor.

The definition of specific RAPL power domain across multiple sockets is

not supported yet. Detailed information about registers being part of this

interface can be found in Section2.3.

4.3 Software approaches

Software approaches are thought in order to address the challenge repre-

sented by the concept of efficiency. Efficiency is meant as the performance deliv-

ered under the power cap. Software approaches have greater efficiency compared

to hardware ones. They find the resources configuration providing the highest

performance within the power limit. This capability is possible thanks to the time

that this family of techniques spends during the exploration phase. Where all the

possible configurations of the resources are studied and tested, considering com-

plex interactions between them. In this way is possible to solve the constrained

optimization problem, defined as finding the resource configuration which de-

livers the highest performance, while respecting the define power cap. Also in

this case, at the best of our knowledge, the software approaches can be classi-

fied into three families: (i) thread migration, (ii) race-to-idle and (iii) model based

monitoring.

Thread migration In this technique the different processing nodes are config-

ured with various P and C states arrangements, one for each node. These

arrangements are made in order to respect the overall power cap. Then

a software technique analyses the threads requirements and resource re-

quests and tries to pack them upon similarity and to schedule them on the

computational nodes accordingly to a defined efficiency policy. This ap-

4. STATE OF THE ART 25

proach requires time in order to find the best packing and placing and it

is profitable only if the cap is not strict, since this approach allows time

windows where the cap is not respected. In this direction Cochran et al.

presented in 2011 [15] an interesting work. Their approach, called “Pack

& Cap”, consists in a control technique, which aims to maximize perfor-

mance while respecting a given power budget. This goal is achieve through

a system designed to make optimal and thread packing control decisions.

This chain of decisions leads to the selection of the optimal operation point,

found by a Multinomial Logistic Regression (MLR) classier trained using a

large amount of HPC, power, and temperature characterization data. They

proved a decreasing of 51.6% of workload energy consumption compared

to existing control techniques. On the other hand their most significant lim-

itation consists in the fact that only the 82% of the time the power cap is

respected.

Pacing This technique addresses the problem of power consumption under a

different point of view. In this case the challenge is formulated as a mini-

mization problem, where the objective function to minimize is the power

consumption and the constraints are the application performance. The main

idea in this case is to avoid computational peaks followed by idle states, in

exchange trying to maintaining as constant as possible the busied compu-

tational resources, avoiding huge excursion in the processor’s behaviour.

This technique demonstrated that maintaining a constant pace reduces the

power consumption, but this approach is profitable only if the power con-

sumption is not though as the main constraint for the system. The work

proposed by Hoffman et al. in 2013 [23] showed a detailed survey over dif-

ferent pacing heuristics, demonstrating their benefits and their constraints.

In particular those heuristics can be divided into three families:

• Race-to-idle[11, 10, 23, 35]. In this approach all the resources are let

available for a workload until it completes. Their consumption needs

a runtime optimization , in order to limit the racing time. The aim of

4. STATE OF THE ART 26

this technique is to let the job to complete as quick as possible. In this

way the time in which the system can stay in idle state waiting for

another job can increase, reducing the power consumption.

• Pace-to-idle[23]. This is a simple, but effective heuristic. Its simplic-

ity consists in the fact that no optimizations at runtime are required.

When a task enters the system, it makes all resources available, going

into idle state when the task completes.

• no-idle[23]. This strategy consists into finding a scheduling of the job

tasks able to limit, and in the best scenario to eliminate, the idle states.

Hence avoiding expensive transition phases between idle and race,

saving the dynamic power necessary for this transition.

Model Based Monitoring In this set of techniques the main goal consists in re-

ducing power consumption in datacenter [26, 33, 40] or in increasing the

battery life of embedded systems [20, 30, 36]. Model based on previous ob-

served behaviour of the application are used in order to predict the power

and the resources required by a new unobserved running application in

order to fine tune the resources’ configuration, saving power. Once again

this approach is profitable only if spending time in training the model is an

affordable cost and if the power cap is not a strict requirements, but only a

guideline.

4.4 Hybrid approaches

These approaches are defined hybrid due to their double nature. In particular

the two natures work sinergically and concurrently to achieve a better technique

where the strong points of one approach compensate the weak ones of the other.

The two natures are the already presented hardware and software approaches.

In detail, for a generic hybrid approach, the hardware technique is in charge to

impose the given power cap as fast as possible regardless the application per-

formance obtained, hence respecting the concept of timeliness. Concurrently a

software approach begins to explore the space of feasible configuration in order

4. STATE OF THE ART 27

to maximize the performance while enforcing the power cap, hence respecting

the concept of efficiency.

4.4.1 PUPiL

Among all the proposed works in literature, the one proposed by Zhang and

Hoffmann [45] is the most remarkable one, since it has the same goal that we

want to address: maximizing the performance and at the same time strictly re-

specting a given power cap. PUPiL is thought as an orchestrator for applications

in a Linux bare metal OS. It totally embraces the definition of hybrid power con-

sumption management technique. Its approach is composed by a software part

(i.e. an ODA control loop) and an hardware one (i.e. Intel RAPL interface). By ex-

ploiting this hardware technique, it is possible to notice that enforcing the power

cap simply consists in writing the registers presented in Section 2.3. In a bare

metal Linux environment these registers are easily accessible by opening in read

mode the files abstracting the CPUs. Then applying some transformations ac-

cordingly to the information provided by the Intel manual [21] its possible to

impose a strict power cap for the entire socket. The PUPiL authors developed a

simple, but really effective tool written in C in order to impose a power cap to ad-

dress this challenge, exploiting all the abstraction that a bare metal native Linux

OS provides to its users. For what concerns the software approach, it is composed

by an ODA control loop written in Python. During the initialization phase before

the beginning of the loop the first operation consists into invoking the tool in

charge to enforce the power cap. Once it is defined the application is launched

assigning it all the available computational assets. At the best of our knowledge

in PUPiL the only resources managed, and hence assigned, is the number of cores

on which running the application. Then the ODA control loop enters in its first

iteration: the observe phase. In order to monitor the workload’s performance the

authors decided to instrument each application running under PUPiL orches-

trator. They exploited the Heartbeats [25] library to retrieve information about

application performance, in particular the throughput of the work. They also

slightly modified the mentioned library in order to retrieve a throughput per

4. STATE OF THE ART 28

Watt metric in order to evaluate how the application is performing. This infor-

mation is retrieved by the Hearbeats Application Programming Interface (API)

during the observe phase and then transmitted to the decide phase. In this phase

the performance regarding the current configuration of the workload is updated,

then a new arrangement (i.e. a not already acted one) of the resources is decided

to put in practice. The decision is lead by a binary tree search based algorithm. At

the end of this iteration of the control loop, the decision is passed to the act phase.

In this phase the decision is put in action via the Linux CLI commands providing

a useful tool to change, while running, the number of cores assigned to a process,

in this case to the running application. Even though the approach proposed by

PUPiL is effective, we identified two non-negligible limitations of the proposed

solution: first, the applications running on the system need to be instrumented

with the Heartbeat framework [25, 24], in order to provide a uniform metric of

throughput to the decision phase; second, the tool is meant to work with appli-

cations running bare-metal on Linux. Both these conditions might not be met in

the context of a multi-tenant virtualized environment, in which a virtualization

layer allows the execution of multiple workloads and ensures isolation to each

of them. This is the case of the Xen hypervisor [9], a bare-metal type-1 hypervi-

sor widely adopted in real production environments [6], that runs directly as an

abstraction layer between the hardware and the hosted virtual machines, called

domains in the Xen terminology. It is based on a microkernel design, providing

services that allow multiple operating systems to concurrently run on the same

hardware. A privileged domain, called Dom0, is in charge of managing the DomU

unprivileged domains. In this context, the high isolation of each tenant, seen as

a black box, makes any instrumentation of the code of the hosted applications not

feasible in a real production environment.

5

Methodology

In this chapter we are going to introduce the methodologies adopted inside

XeMPUPiL and the goals of the proposed approach. In Section 5.1 a brief intro-

duction of the proposed approach is presented. In Section 5.2 a short comparison

between the ODA control loop and a well known maximization problem solver

technique is presented in order to ease the understanding of the overall approach.

Finally in Section 5.3 the ODA methodology is explained in detail.

5.1 XeMPUPiL: a bird’s eye view

XeMPUPiL is a hybrid power-aware orchestrator for the Xen hypervisor, since

it exploits software and hardware techniques to achieve power control over the

system. The work presented in this thesis takes inspiration from the idea exposed

by Zhang and Hoffman [45] and detailed in Section 4.4, which proposes an hy-

brid power capping technique for application running in a native Linux environ-

ment. In this work we propose a new methodology based on PUPiL. We target a

virtualized environment such as Xen, addressing all the problems and the chal-

lenges related to the isolation between the running jobs inside the guest OS and

the underlying virtualized hardware.

The orchestrator is obtained thanks to an ODA control loop. It checks the run-

ning workloads and how they are performing, thanks to hardware performance

metrics. After that it explores the space of all the feasible and interesting configu-

29

5. METHODOLOGY 30

rations in order to find the one providing the best result for the defined objective

function. These tasks are pursued exploiting the Intel RAPL interface ensuring

that the power constraint over the system is respected. XeMPUPiL aims also at

enforcing two different and distinct policies which are two faces of the same coin.

The first one consists in the maximization problem concerning the performance

function as objective function and power consumption power cap given as a con-

straints.Instead, the second one is nevertheless the dual problem of the previous

one, where the objective function to be minimized is the power consumption and

constraints are given over on SLA regarding workload performances. In this way,

by just changing the decision policy inside the ODA loop, is possible to shift from

one to another, since finding a methodology solving the first problem ensures a

methodology able at least to provide an upper bound (weak duality) or in the best

case an optimal solution (strong duality) also for the second one.

5.2 ODA as a gradient ascending algorithm

Data: a point P(x1, x2, x3, ..., xn) and a concave N dimensional function f
Result: the point P(x1, x2, x3, ..., xn) corresponding to the maximum
tmpPoint← P;
result← f(tmpPoint);
repeat

tmpResult← result;
tmpPoint← tmpPoint + γ5 f(a);
tmpResult← f(tmpPoint);

until tmpResult - result > 0;

Algorithm 1: Pseudocode for a gradient ascending algorithm

In the proposed approach the ODA control loop (Algorithm 2) was inspired

by a gradient ascending algorithm (Algorithm 1). This specific formulation fits

well with the proposed problem, since we are trying to solve a maximization

[minimization] problem, hence finding the global maximum [minimum] of a tar-

get function. The objective function to maximize is the overall performance in

our first case, instead in the second one the objective function to minimize is

the power consumption. In order to express the problem under this formulation

5. METHODOLOGY 31

strong assumptions were made:

• The performance function is a concave function, hence it contains a single

global maximum, a unique point convergence;

• The power consumption function is a convex function, hence it contains a

single global minimum, also in this case, a unique point convergence;

• Each resource is independent from the others, this allows to study how

changing the amount of resource assigned to the workload modifies the

target function.

Under these assumptions a gradient ascending algorithm follows the gradi-

ent in order to find the global maximum [minimum]. This approach can be di-

vided in four phases:

Initialization A starting point (i.e. a configuration) according to the constraints

defined in the problem formulation is selected, and the gradient is set to

−∞.

Function evaluation The target function is evaluated for the given point. The

gradient is also calculated taking into account the difference between the

old value of the target function and the new one.

Point update The new gradient is analysed. If it represents an increment [decre-

ment] of the target function than the point is incremented by predefined

fixed step. If there is no improvement then there is no increment and the

convergence point is found.

Data: initial state of the system
Result: the best state according to the decision
configuration← initialization();
repeat

state← act(configuration);
metrics← observe(state);
configuration← decide(metrics);

until configuration doesn not change;

Algorithm 2: Pseudocode for a generic ODA control loop

5. METHODOLOGY 32

Repetition If no convergence was found, the new point is used to evaluate the

function and repeating the second and third steps.

These phases can be easily mapped over the steps being part of a common ODA

loop. In our approach we decide to proceed with the following mapping: the

“Initialization” phase is totally mapped over the act stage, the “Function evalu-

ation” one is partially mapped over the act (setting the point), observe (evaluate

the function) and decide (calculate gradient) stages and at the end the “Point up-

date” phase is totally managed by the decide stage. Obviously, the two methods

are different, since they are based upon two different methodologies. The gradi-

ent ascending technique is based on a mathematical model, where the behaviour

of the function is studied and analysed through the gradient, hence the deriva-

tive, resulting into an informed choice about where to move next. Instead, the

ODA control loop, structured as in our case, is based upon a model free heuris-

tic that observes how the target function changes, guessing where to move next.

Further details about the methodology adopted thanks to this parallelism are

provided in the next sessions.

5.3 XeMPUPiL ODA control loop

In this section we are going to present the software approach adopted in or-

der to reach the properties of efficiency and timeliness. This technique is used in

order to fine tune the resources assigned to each domain. The formulation is de-

signed in order to support both maximization and minimization problems. In the

first case, given a power cap as a constraint, the software approach maximizes the

performance of the running application. Instead in the second one, given a SLA

as a constraint,the software approach minimize the power consumption of the

running applications. What we are going to use is the so called PUPiL approach.

PUPiL was meant to be used in a bare metal OS environment, hence it was nec-

essary to adapt its phases to work in a virtualized environment, in particular the

observe, decide, act phases being part of its ODA control cycle as in 5.1. An ODA

loop is a strategy planner technique. It is composed by three steps (i.e. Observe,

5. METHODOLOGY 33

Decide, Act) plus an initialization phase. Once a first version of the strategy is

put in practice during the initialization, the loop starts. During the observation

phase feedbacks on how the running strategy is behaving are gathered. Then the

information is passed to the decision step, where one or more decisional policies

exploit it in order to take a choice on how to modify the strategy. Finally the new

plan of action is communicated to the acting step, which is in charge to put it

in practice. Then a new observation phase starts again. Furthermore to maintain

this approach as portable as possible, we decided to implement the orchestrator

logic at the highest level possible. To this aim, we inflated the control logic inside

dom0, given that this VM is the first one instantiated in Xen every time the hy-

pervisor is initialized. Moreover, this VM is the only one with privileged access

to the underlying hypervisor. Arranging the orchestrator in such position allows

to exploit the intrinsic privileges of dom0 inside the Xen architecture, since this

domain can monitor other domains and also provide a CLI to manage the hy-

pervisor and do some resource assignment. A brief description to the high-level

flow is given:

• XeMPUPiL observes the power consumption of the system and a set of hard-

ware events of interest for each running domain;

• the traced events are then used as metrics of performance, in order to decide

which hardware configuration is the most power efficient for the current

workload;

• finally, the actuation phase sets the system to the best configuration found,

to maximize the performance under the desired power cap enforced through

the RAPL interface.

In this section, we present the design and the implementation of the three ODA

loop phases, describing the challenges faced while working in a virtualized en-

vironment.

5. METHODOLOGY 34

Figure 5.1: ODA logic composing the PUPiL orchestrator

5.3.1 Observe

Recalling the parallelism between this step and the phases of the gradient

ascending algorithm, in this stage the goal is to evaluate, hence retrieving infor-

mation about, the target function; in our case the performance. The observation

phase is necessary in order to retrieve information about the system, and to un-

derstand how it is behaving under the current configuration. The main challenge

consists in avoiding any instrumentation of the application in order to retrieve

metrics on how it is performing. Addressing this challenges will lead us to ob-

tain an approach which is as general and portable as possible, furthermore this

does not require any additional effort by the application developers. Originally

PUPiL was designed targeting workloads that are instrumented via “Heartbeats”

library. In our adaptation we decided to change this approach, avoiding the need

of workload instrumentation. We decided to use hardware event counters as low

level metrics of performance, exploiting the Intel Performance Monitoring Unit

(PMU) to monitor the amount of IR accounted to each domain in a certain time

window. Among all the available hardware events that can be monitored, we

chose to count the IR events on purpose, because these give an insight on how

many microinstructions were completely executed (i.e., that successfully reached

the end of the pipeline) between two samples of the counter, thus representing a

reasonable indicator of performance [1] . The challenges here are three:

5. METHODOLOGY 35

Start with
minimal config

features

Set RAPL power
cap

exists a resource that has
not been tried yet?

turn it on at full
throttle

Monitor
performance

binary search for
accurate tuning

convergence

if performing better
 keep on else turn off

NO

YES

KEEP IT ON

TURN IT OFF

Figure 5.2: Workflow diagram leading the ODA cycle

5. METHODOLOGY 36

1. provide precise attribution of hardware events to virtual tenants;

2. be agnostic to the mapping between virtual and physical resources, hosted

applications and scheduling policies;

3. add negligible overhead.

In order to cope with these challenges we took inspiration from the XeMPower mon-

itoring tool already being part of the Xen distro and developed by Politecnico di

Milano in collaboration with the SwarmLab at University of California at Berke-

ley. In order to access the PMCs containing information about the IR we faced the

necessity to work in hypervisor space Thus, we instrumented the Xen scheduler

in order to read those values from the hardware registers and to empty them at

each context switch. Then we exploited the deamon provided by XeMPower as

is, in order to gather the information coming from the scheduler, to aggregate ac-

cording to a per domain policy and to present them in a shared-memory region

that will be read from the observe phase. Finally the retrieved information is sent

to the Decide phase in order to drive the current decision policy.

5.3.2 Decide

Workload vCPUs
vCPU vCPU vCPU vCPU vCPU vCPU vCPU vCPU

System pCPUs

pCPU pCPU pCPU

Figure 5.3: Graphical demonstration on how the vCPU are pinned over pCPU according to 5.1

Recalling again the coupling between this step and the phases of the gradient

ascending algorithm, in this stage the goals are multiple: calculating the gradient

5. METHODOLOGY 37

is the first one and updating the point, so selecting the next configuration to test

is the second one. The gradient is trivially calculated by looking at the difference

between the previous value of the obtained result and the just observed one. Dur-

ing this step we are going to work with the concept of resource, in particular the

decision concerns how to assign different resources to a workload. A resource is

defined as a computational significant asset which can slightly modify, either in

better or in worse, the performance of running observable application. In partic-

ular the resources we are going to manage in XeMPUPiL are: the frequency of the

cores, and the number of vCPUs pinned over the pCPUs ones. The decision phase

is thought as we are working inside a “gradient ascending” algorithm. We made

three meaningful assumptions in order to adopt this technique. The performance

function is a concave function, the power consumption is a convex function and

each resource is independent from each others. The first assumption ensures the

spotting of a global maximum, hence an unique point of termination. The second

one trivially ensures the spotting of a global minimum. The third one allows us

to explore the domain of the target function one dimension at a time, hence one

resource at a time, since the point of global maximum will be represented by the

point where the gradient is 0 for each direction. To enable this approach the first

things to do is to assign each resource to a priority queue, we decided to adopt

the following one: the first resource to explore is the number of vCPUs to pin over

a pCPU and the second one is the frequency. The gradient is simply expressed as

the difference, in term of performance, from a previous measured point to the

actually observed. If it will be positive, then the exploration will continue to an-

other point, else, in case it will be negative or zero, there will be a rollback to the

previous resource configuration and the exploration for this one is terminated.

At the beginning all the resources are obviously not tested, hence the gradient

for all of them is set to +∞. As shown in 5.2, the decision phase is split into two

steps. The first one consists into looking for a not already tested resource, this

means that there is no information about the performance provided by the ap-

plication once the current resource is set to a specific value, hence the one to be

tested. The switching from exploring the different configuration happens when a

5. METHODOLOGY 38

degradation or stabilization of the performance is encountered, hence a termina-

tion condition for the under examination resource is found. Then a new resource

will be explored. For what concerns the allocation of resources to each domain,

we chose to work at a core-level granularity: on the one hand, each domain owns

a set of vCPU, while, on the other hand, we have a set of pCPU present on the

machine. Each vCPU is mapped on a pCPU for a certain amount of time, while

it may happen that even multiple vCPU can be mapped on the same pCPU. We

wanted our allocation policy to be as fair as possible, covering the whole set of

pCPU if possible; given a workload with M virtual resources and an assignment

of N physical resources, to each pCPU we assign:

vCPUs(i) =

M−

i−1∑
j=0

vCPUs(j)

N− i

(5.1)

where i is an integer between 0 and N − 1, i.e., it spans over the set of pCPU.

This formula represents the following behaviour: if the system has 3 pCPU and

a workload has 8 vCPU, respecting 5.1 leads to a partition of a pinning of the

virtual ones over the physical ones of 3-3-2. Three vCPU pinned over the first

pCPU, two over the second one and three over the third one, as shown in 5.3.

5.3.3 Act

This is the phase where the innovative hybrid approach truly takes place, the

act step essentially consists in:

1. setting the desired power cap;

2. actuating the selected resource configuration.

On the one hand, we decided to implement the same hardware technique pro-

posed by PUPiL to set the power cap, i.e., exploiting the Intel RAPL interface.

This provides a fast and strict response to power oscillations, harshly cutting the

frequency and the voltage of the whole CPU socket, and ignoring the perfor-

5. METHODOLOGY 39

mance of the applications actually running on the system. On the other hand,

we support the knobs made available by the hypervisor to assign resources to

each domain. This second step allows a fine tuning of the resources to improve

domains’ performance, but it is of course slower than the hardware actuation

in responding to power variations. This is the reason why we use both the ap-

proaches to provide a fast response, still trying to find the best resource allocation

to maximize the performance of each domain under the power cap.

Hardware Power Cap

A bare metal operating system can easily access the RAPL interface to set a

power cap on the system by writing data into the right MSR of the processor. The

two registers of interest are MSR_RAPL_POWER_UNIT and MSR_PKG_RAPL_POWER_LIMIT:

the former contains processor-specific time, energy and power units, which are

used to scale each value read or written on the RAPL MSR. To obtain a valid

power or energy measure. The latter,instead, can be written to set a limit on the

power consumption of the whole CPU socket.

In a virtualized environment, these registers are not directly accessible by the

virtual domains, even from the privileged tenant Dom0. However, this limitation

can be overcome by invoking custom hypercalls that can directly access the un-

derlying hardware. To the best of our knowledge, the Xen hypervisor does not

natively support specific hypercalls to interact with the RAPL interface: as a con-

sequence, we implemented our custom hypercalls to this purpose. In order to

be generic enough, we implemented two hypercalls: "xempower_rdmsr" and

"xempower_wrmsr". The first one allows to read, while the second one allows

to write a specific MSR from Dom0.

Each hypercall needs to be declared inside the kernel of the hypervisor, that

runs bare metal on the hardware. The kernel keeps track of the list of hypercalls

available and the input parameters they accept. For each of them, a callback func-

tion has to be declared and implemented to be accessible by the kernel at runtime:

our implementation makes use of two Xen built-in functions to safely read and

write MSR registers, i.e., wrmsr_safe and rdmsr_safe. These indications raise

5. METHODOLOGY 40

exceptions if something goes wrong in accessing the registers, avoiding errors

and faults that can undermine the kernel stability.

We then implemented our own CLI tools to access these hypercalls from

Dom0: xempower_RaplSetPower to set and xempower_RaplPowerMonitor

to read the power consumption of the socket. Arguments (e.g., the desired value

of power cap and the power consumption measured) are passed through the

whole stack using a set of buffers that allow a fast and safe communication be-

tween different hierarchical protection domains [29] (i.e. ring0 for Xen and ring3

for Dom0). The CLI tools are in charge of performing some checks on the input

parameters, as well as of instantiating and invoking the Xen CLI to launch the

hypercalls.

Software resource management

The current implementation of XeMPUPiL exploits two tools provided by the

Xen hypervisor to tune the performance and assign resources to domains.

The first one is the cpupool tool: this is part of the Xenxl CLI and allows to

cluster the physical CPUs in different pools. Once a pool is declared, it is possible

to create a domain that uses that pool: a new scheduler is instantiated in order to

manage the pool. It will then schedule the domain’s vCPU only on the pCPU that

are part of that cluster. Our approach exploits this tool to assign more pCPU to a

domain at runtime: as a new resource allocation is chosen by the decide phase, we

increase or decrease the number of pCPU in the pool and pin the domain’s vCPU

to these, to increase workload stability. The domain still has the same amount

of virtual resources, that XeMPUPiL distributed over the maximum number of

physical ones available, potentially causing more vCPU to be time-multiplexed

on the same core.

The second tool supported is xenpm: this allows to set a maximum and mini-

mum frequency for each pCPU. After a first evaluation, we decided to leave the

actuation of the core frequencies out of the decision phase, as it may interfere with

the actuation made by RAPL.

6

Implementation

In this chapter we will present the current implementation of XeMPUPiL. In

Section 6.1 we will describe the architecture of the proposed solution. In Section

6.2 we will detail the implementation of the CLI needed to exploit the RAPL

interface in the context of virtualized environment, while in Section 6.3 we will

present the integration of RAPL with the ODA control loop.

6.1 Architecture design

In this section we will describe the architecture on which the XeMPUPiL ap-

proach is based on. From 6.1 is possible to notice the three layers composing the

architecture. At the bottom there is the hardware layer, where the physical hard-

ware resources lie. On top of this level there is the hypervisor, which is in charge

of the virtualization of the underlying resources and to provide the respective

virtualized one to the top layer, the domains level. In this last level the domains

(i.e. the VM) are instantiated and can exploit the virtualized resources provided

by the hypervisor. In this layer the domains containing the workloads will be

instantiated and executed. The ODA control loop of the XeMPUPiL approach

lies in the dom0, the first VM instantiated at hypervisor startup. In this way is

ensured that the orchestrator will be always present in the system, and further-

more, it will be able to exploit the privileges provided by the hypervisor to this

domain. The decision phase operates totally inside this domain, instead the act

41

6. IMPLEMENTATION 42

Figure 6.1: Overview of the XeMPUPiL architecture

and observe phases need to work among all the three different levels. The former

will need to work at hardware level in order to exploit the RAPL interface, but to

do so it needs access to the hardware, hence it is imperative to gain these access

from the hypervisor level. This can be done exploiting the hypercall mechanism

provided by Xen and addressed in details in Section 6.2. The chain of instructions

is developed as follows: a tool providing a new set of commands for the Xen

CLI is developed and exploited from dom0. This tool then exploits the hypercall

and the buffer mechanism in order to move the computation into the hypervisor,

gaining kernel rights. The hypercall manager deployed inside the kernel detects

the called hypercall and manages it. This is enabled through the routines we will

define as hypecall handlers for the new declared XeMPUPiL hypercalls. Finally,

these routines will access the RAPL interface, setting the parameters according

to the ones defined in uses space (i.e. dom0, act phase). Then, the act phase also

needs to exploit privileged CLI commands in order to manage the resources as-

signments to domains, and these are provided at hypervisor level from the “xl”

set of directives. The observe stage also need to access the hardware level in order

to observe metrics retrieved from the HPC. To do so we exploit a modified ver-

6. IMPLEMENTATION 43

sion of the XeMPower monitoring tool, a tool working among the three different

layers, as explained in Section 2.2.

6.2 RAPL command line interface

The first step to achieve, in order to define the hardware power management

technique that will exploit the RAPL interface, is the implementation of a work-

ing CLI that enables the exploitation of the RAPL interface also for a virtualized

environment. In order to do so it is necessary to communicate with the hardware

layer, thus leveraging the hypervisor. Since our software actor plays its role in-

side dom0, that is in user space, it is not possible to directly access the hardware

resources from there. This is due to the Xen policies, made in order to maintain

and respect the virtualization paradigm. In order to address this challenge, Xen

provides a set of interfaces to its developers, which they are able to use when

they want to gain access to the privileged level (i.e. the hypervisor level). These

interfaces are called hypercalls and allow privileged command calls from the user-

land. A hypercall exploits a mechanism similar to the one used by system calls

and OS. Making a parallelism between hypercalls and syscalls, an hypercall can

be defined as a software trap from a domain to the hypervisor, in the same way

a syscall is an interrupt from an application to the kernel. Privileged operations

coming from the domain level can be requested only through a hypercall, that is

synchronous and exploits event channels, a queue of asynchronous notifications,

as return path to the domain. During the scheduling stage, when the domain

has just been scheduled, if its queue of events is not empty, the event-callback

(sited in the hypervisor) is called in order to take the related routine. They are

provided through the /proc/xen/privcmd interface. In order to exploits the

set of privileged calls, the user should compile dom0 or domU kernel with priv-

ileged configurations (i.e. CONFIG_XEN_PRIVILEGED_GUEST=y; in our case

only dom0 is sufficient. Trying to be as general as possible, thus not focusing

only on MSR for the RAPL interface, we will need two kind of hypercalls: one

for reading a given MSR and one for writing a given MSR. In this direction the

/proc/xen/privcmd

6. IMPLEMENTATION 44

first step consists into registering our hypercalls. To do so we need to modify the

following file: xen/arch/x86/x86_64/entry.S. This assembly file contains

all the hypercall and low-level fault handling routines. As shown in Listing 6.1,

1

2 ENTRY(hypercall_table)

3 .quad do_set_trap_table /* 0 */

4 .quad do_mmu_update

5 .quad do_set_gdt

6 .quad do_stack_switch

7 .quad do_set_callbacks

8

9 .quad do_kexec_op

10 .quad do_tmem_op

11 .quad do_xempower_rdmsr /* XeMPower MSR reading hypercall*/

12 .quad do_xempower_wrmsr /* XeMPower MSR writing hypercall */

13 .rept __HYPERVISOR_arch_0-((.-hypercall_table)/8)

14 .quad do_ni_hypercall

15 .endr

16

Listing 6.1: Code needed in order to declare a new hypercall

we added two hypercalls to the hypercall table. Each hypercall is declared as a

.quad 1. The second step, instead, consists into declaring the arguments that our

hypercall routines will receive. In our case we will need two arguments, each one

of 1 Byte size as shown in Listing 6.2.

1

2 ENTRY(hypercall_args_table)

3 .byte 1 /* do_set_trap_table */ /* 0 */

4 .byte 4 /* do_mmu_update */

5 .byte 2 /* do_set_gdt */

6 .byte 2 /* do_stack_switch */

7 .byte 3 /* do_set_callbacks */

8

9 .byte 1 /* do_tmem_op */

10 .byte 2 /* do_xempower_rdmsr */ /* XeMPower MSR reading args */

11 .byte 2 /* do_xempower_wrmsr */ /* XeMPower MSR writing args */

12 .rept __HYPERVISOR_arch_0-(.-hypercall_args_table)

13 .byte 0 /* do_ni_hypercall */

14 .endr

15 .byte 1 /* do_mca */ /* 48 */

16

Listing 6.2: Code needed in order to declare the arguments passed to the hypercall managment
routine

1For each expression into the current section, this assembly instruction generates an initial-
ized word (64-bit). Each expression must evaluate to an integer value entry and must be a 64-bit
value.[37]

xen/arch/x86/x86_64/entry.S

6. IMPLEMENTATION 45

The first argument represents the MSR on which the action will take place,

while the second one will be used to pass the value to write (in the case of

do_xempower_writemsr) or to pass the variable that will contain the value

read from the given MSR (in the case of do_xempower_readmsr). The next

step consists into assigning a constant for the new hypercalls. These constants

are defined into the xen/include/public/xen.h file, containing the guest

OS interface to Xen. The numbers choosen must be sequential with respect to the

pre-existing hypercall definition in the file, as shown in Listing 6.3.

1

2 #define __HYPERVISOR_kexec_op 37

3 #define __HYPERVISOR_tmem_op 38

4 #define __HYPERVISOR_xempower_rdmsr 39

5 #define __HYPERVISOR_xempower_wrmsr 40

6 #define __HYPERVISOR_xc_reserved_op 41 /* reserved for XenClient */

7

Listing 6.3: Code needed in order to define the hypercall in the hypervisor interface

Then it is possible to declare the prototypes of our routines inside xen/include/

xen/hypercall.h, the file containing all the prototypes for the system hyper-

calls as shown in Listing 6.5.

1

2 extern long

3 do_tmem_op(

4 XEN_GUEST_HANDLE_PARAM(tmem_op_t) uops);

5 extern long

6 do_xenoprof_op(int op, XEN_GUEST_HANDLE_PARAM(void) arg);

7 extern long

8 do_xempower_rdmsr(unsigned long msr, XEN_GUEST_HANDLE_PARAM(uint64_t) u_val);

9 extern long

10 do_xempower_wrmsr(unsigned long msr, uint64_t val);

11

Listing 6.4: Code needed in order to define the prototypes for the routines that will manage the
hypercalls

As shown in Listing 6.5, the two prototypes are slightly different. Both of

them return a long and are declared as extern. The first argument is also the

same for both and it is an unsigned long representing the 64 bit address of the

MSR. The real difference is in the second argument. Since the write just need

to pass the value to the kernel level from the user space a simply passage by

value is sufficient, because what matters is the value itself. Instead for what con-

xen/include/public/xen.h
xen/include/xen/hypercall.h
xen/include/xen/hypercall.h

6. IMPLEMENTATION 46

cern the read, the value must be returned from this routine in kernel space to

the user level, through the variable. A common passage by reference is not fea-

sible, since in a virtualized environment the address space is disjoint between

user and kernel space. So we exploit XEN_GUEST_HANDLE_PARAM() macro.

XEN_GUEST_HANDLE_PARAM() represents a guest pointer, when passed as

an hypercall argument. It is 4 bytes on aarch and 8 bytes on aarch64. In this way

a mapping between guest and kernel memory addresses is possible, enabling the

pass by reference technique. Once the prototypes are declared, it is possible to

implement the body of the just defined hypercalls. To do so we need to modify

the xen/common/kernel.c file. For what concerns the write and read routines

we exploit the wrmsr_safe and rdmsr_safe, two functions provided by the

Xen hypervisor in order to read and write those registers. In particular, the for-

mer needs as arguments the MSR address and the value to write, instead, the

latter needs as arguments the MSR to read as well as the variable where to store

the read value. Furthermore, in this routine we exploit the copy_from_guest

and copy_to_guest functions in order to respectively retrieve and send the

data into user space. Once the routines in charge to manage the hypercalls are

defined at the kernel level, we can develop the interface based upon the Privcmd

driver provided by Xen, providing access to those routines in user space. We

declared and defined our user space hypercall invoker in tools/libxc/xc_

private.h. This hypercall manager is in charge to identify the requested hy-

percall type (i.e. write or read) and the relative arguments to pass to the routine

dispatcher in the Xen kernel. In particular, when a read is detected, an HYPER-

CALL_BUFFER_BOUNCE_BOTH is declared. This is a macro that creates a map-

ping between the address of a variable in user space and the address of the same

variable in kernel space, enabling for a variable the passage by reference between

these two disjoint address spaces. Now what remains to define are our two CLI

tools in tools/xcutils and to modify accordingly the “Make” file correspond-

ing to the Xen tools module. The tools developed are based upon the guidelines

contained into the Intel manual and presented in Section 2.3. The pseudo code

for the tool invoked via xempower-set-rapl [power-cap] is represented in

xen/common/kernel.c
tools/libxc/xc_private.h
tools/libxc/xc_private.h
tools/xcutils

6. IMPLEMENTATION 47

Algorithm 3.

Data: power cap
Result: completion value or exception
cap← checkArgs(args);
openXenInterface();
powerUnit← do_hypercall(MSR_RAPL_POWER_UNIT,
null,RDMSR_HYPERCALL);

wattUnit← transform(powerUnit);
capInUnit←wattToUnit(wattUnit,cap);
result←
do_hypercall(MSR_PKG_RAPL_POWER_LIMIT,capInUnit,WRMSR_HYPERCALL);

Algorithm 3: Pseudocode for the xc_xempower_setRAPL tool

Instead the pseudocode for the xempower-monitor-rapl tool is represented

in Algorithm 4. Where the loop is used to monitor that the cap is truly enforced.

Data: none
cap← checkArgs(args);
openXenInterface();
powerUnit← do_hypercall(MSR_RAPL_POWER_UNIT, null,
RDMSR_HYPERCALL);

wattUnit← transform(powerUnit);
while true do

capInUnit← do_hypercall(MSR_PKG_RAPL_POWER_LIMIT, null,
RDMSR_HYPERCALL);

result← unitToWatt(wattUnit,capInUnit);
print(result)

end
Algorithm 4: Pseudocode for the xc_xempower_monitorRAPL tool

6.2.1 Enabling RAPL in multi-socket architecture

In a single socket architecture is straightforward to set the correct value in the

right MSR, since it is ensured that, independently from which core the hypecall is

executed, the core will belong to the socket. Hence, the MSR hypercall will con-

trol the entire socket. Instead, in a multi-socket environment it’s impossible to

predict on which core the hypercall management routine will be executed. One

first idea was to launch a random number of hyercalls, hoping that at some point

in time at least one physical core per socket had executed the hypercall routine.

6. IMPLEMENTATION 48

Figure 6.2: Overview of the XeMPUPiL architecture for multi-socket systems.

This approach is not optimal at all, since no guarantee about the enforcing of

the power cap over all the sockets is provided. This is why we decided to ex-

ploits some elements provided by Xen under a different fashion. First of all we

modified the xempower_wrmsr hypercall routine like in Listing 6.5. We exploited

a macro already existing in Xen, the FOR_EACH_ONLINE_CPU. This macro is

like the “for each” construct in high level languages like Java. In this particular

case, it executes its body a number of times like the number of pCPUs actually

online in the system, providing a driving variable containing the number of the

actual CPU taken in consideration. The data initialization consists into defining

a msr_data_t variable, that contains all the arguments that will be necessary

to the auxiliary function launched on the new pCPU. The memory region is set

to all zeros through the memset functionality. Then the values to be passed are

stored in the variable and the hypercall is continued on each online CPU.

1

2 DO(xempower_wrmsr)(unsigned long msr, uint64_t val)

3 {

4
5
6 unsigned int cpu;

7 msr_data_t data;

8 memset(&data,0,sizeof(data));

6. IMPLEMENTATION 49

9 data.msr = msr;

10 data.value = val;

11
12 CUSTOM_LOGT("In xempower_wrmsr hypercall\n");

13 for_each_online_cpu(cpu){

14 continue_hypercall_on_cpu(cpu,hyppo_wrmsr_helper,(void *)&data);

15 CUSTOM_LOGT("Hypercall continued on cpu %d\n",cpu);

16 }

17 }

18

Listing 6.5: New version of the routine managing the hypercall.

The second step, presented in Listing 6.6, consisted in the definition of the

“writing MSR” function as a tasklet. In Xen, tasklets are dynamically-allocatable

tasks run in either vCPU context (specifically, the idle VCPU’s context) or in

softirq context, on at most one CPU at a time. Softirq versus vCPU context execu-

tion is specified during per-tasklet initialisation. Defining the write MSR function

as a tasklet allowed us to exploit it in the continue_hypercall_on_cpu already men-

tioned, which allows to continue a tasklet with hypercall priviledges on a defined

CPU. In this way we were able to ensure that on each core, hence on each socket,

the MSR controlling the power consumption is correctly defined.

1

2 void hyppo_wrmsr_helper(void *data_passed){

3
4 msr_data_t data;

5 int ret;

6
7 memset(&data, 0, sizeof(data));

8 memcpy(&data,data_passed,sizeof(data));

9 ret = 0;

10
11 printk("[XeMPower Kernel Hypercall] Written value %"PRIu64" on CPU %d \n",

data.value,smp_processor_id());

12
13 ret = wrmsr_safe(data.msr, data.value);

14 if(ret)

15 {

16 printk("[XeMPower Kernel Hypercall] custom wrmsr hypercall terminated with ERROR!\n");

17 return;

18 }

19 return;

20 }

21

Listing 6.6: Tasklet defined in order to write a given MSR

Firstly, we exploit the memset and memcpy functions in order to set the memory

6. IMPLEMENTATION 50

region of data to 0 and then to copy in the the values coming from the data re-

gion passed to the tasklet. Then we write the MSR and the value contained in

the data passed. The new full architecture for multisocket architecture is rep-

resented in Figure 6.2. After several tests with this new implementation, con-

ducted without rebooting the system, we discovered a significant downgrade

of the performance of the hypervisor. This was due to a behaviour hidden by

the continue_hypercall_on_cpu function. Digging deeper in its implementation we

discovered that each time this function is called it kills the running hypercall and

generates a new one, with return point in the killed one. This behaviour was lead-

ing us to have zombie hypercall tasklets running in the system, leading to worst

performance. In order to solve this problem we moved to a new implementation

where we exploit a smp2 call, in order to launch a tasklet on each pCPU without

the need of returning at some point, in this way avoiding any kind of zombie pro-

cess in the system. The code of this final implementation is presented in Listing

6.7.

1
2 DO(xempower_wrmsr)(unsigned long msr, uint64_t val)

3 {

4
5 msr_data_t data;

6 memset(&data,0,sizeof(data));

7 data.msr = msr;

8 data.value = val;

9
10 CUSTOM_LOGT("In xempower_wrmsr hypercall\n");

11
12 on_each_cpu(hyppo_wrmsr_helper,(void *)&data,0);

13 return 1;

14 }

Listing 6.7: New version of the routine managing the hypercall.

2Symmetric multiprocessing (SMP) involves a multiprocessor computer hardware and software
architecture where two or more identical processors are connected to a single, shared main mem-
ory, have full access to all I/O devices, and are controlled by a single operating system instance
that treats all processors equally, reserving none for special purposes.

6. IMPLEMENTATION 51

6.3 XeMPUPiL orchestrator

In this section we are going to describe how the three phases of the ODA con-

trol loop were implemented inside XeMPUPiL. The first important choice was

to decide to write the orchestrator in Python in order to ease the developing

and testing steps. The second choice, instead, consisted into developing it in-

side dom0, in order to exploit the privileges provided to this domain from the

Xen hypervisor as mentioned in Section 5.3. We will start to analyse the ODA

loop from the acting phase since it is the first one taking action in our implemen-

tation, starting from the initialization stage. Then, we will move to the observe

phase and finally to the decision step. XeMPUPiL were designed as a Python

class where each phase is represented by one or more methods. In this way the

approach results extensible with respect to new implementations of the different

phases, enabling modularity and isolation between them.

6.3.1 Act

This phase is divided into two different steps. The first one takes place during

the initialization and consists into enforcing the power cap via RAPL exploiting

the provided xc tool described in Section 6.2. It also consists into creating a num-

ber of CPU-Pools according to the number of instantiated workload. To achieve

this second goal, we used the Xen “xl” interface(i.e. set of privileged CLI direc-

tives). The corresponding commands are exploited:

• xl cpupool-create in order to create a new pool for each running work-

loads;

• xl cpupool-cpu-remove in order to remove a pCPU from a given pool;

• xl cpupool-cpu-add in order to add a not assigned pCPU to a pool.

In this way, during initialization, we are able to define all the structures needed to

manage the physical resources. During this initial stage, we exploit also the Xen

CLI in order to create the domains (i.e. VM) on which the workloads will run.

These initial activities are all executed inside the RunApp method. The other step

6. IMPLEMENTATION 52

of the acting phase happens inside the ODA loop, just after a decision is taken.

This step is represented by the method AdjustConfig. This function receives the

results coming from the decision phase and puts them in practice. To do so, it

exploit the xenpm set-scaling-[max or min]freq tool. This function is

provided by Xen and allows a user to set the system frequency from dom0. By

setting both min and max frequency at the same value it is possible to define

a specific frequency instead of a range. The next phase being part of this stage

consists into moving the pCPU from one pool to another according to the deci-

sion mode, exploiting the tools mentioned above. The mapping of all the pools

regarding the pCPU over the vCPU is stored in a dictionary, where the key is the

pool name and the value is a vector containing the pCPU actually assigned to it.

This is helpful when the pool assignments change.

6.3.2 Observe

The observe stage is implemented through the GetFeedBack orchestrator method.

This function retrieves information about how the workload is performing under

the current configuration.

The first step consisted in instrumenting the Xen Scheduler. Xen instantiate

an independent instance of the scheduler for each pCPU of the system, thus at

this level it is not feasible to obtain an overall view of how a domain is perform-

ing, since each observation will be a fractal of the current pCPU (a domain may

run on multiple pCPUs). In order to retrieve such information we are monitoring

IA32_FIXED_CTR0 register, containing the number of IR in the Intel architec-

ture. Then, the information provided by each instance of the schedule is traced to

a higher level exploiting the xentrace [14], a lightweight trace capturing facility

present in Xen that can record events at arbitrary control points in the hypervisor.

We tag every trace record with the ID of the scheduled domain and its current

VCPU, as well as a timestamp, in order to respect the mechanism implemented

by the xempowermon deamon exploited to reconstruct the trace flow. Finally, we

set to 0 the register, ready for the next observations. These informations are used

by the xempowermon deamon (running at dom0 level) in order to reconstruct the

6. IMPLEMENTATION 53

flow and to initially aggregate the results under a per domain policy and it saves

them in a shared memory region that is read-only with respect to applications

different from the deamon itself. The last step lies in the observer phase inside

the orchestrator ODA logic, where exploiting Python we periodically scan the

tumbling windows produced by the XeMPower deamon (in the shared mem-

ory region), and performs aggregations in the given time interval. This shared

memory region is accessed by the GetFeedBack method, the new entries over the

time window are read, the mean of IR over this interval is calculated and then a

tuple is created. A new entry is meant as a new value arrived after the current

configuration is changed. The tuple is composed by the current configuration

and the calculated performance for it. In this way a coupling between them is

made. Finally this structure is then added to the dictionary containing all the

configuration-performance couple. Exploiting the dictionary data structure will

speed up the search for the best configuration during the decision phase.

6.3.3 Decide

The Decide phase was implemented in two ways. The first one defining the

condition necessary to solve the maximization problem regarding the perfor-

mance of the workload under given power consumption constraints. The second

one in order to solve the minimization problem regarding the power consump-

tion given a SLA as constraint. The decision phase is implemented in the Decision

method. The goal is simple: looking in all the possible configurations and finding

the one associated with the best result. To do so we exploited a bounded binary

search. Initially we explore always three configuration: (i) the one with minimum

resources, (ii) the one with maximum resources and (iii) the one with an average

amount of resources. For each of them we observe the behaviour of the workload,

then some considerations are made. The overall idea consists into finding the two

best and contiguous performances among these configurations and then defining

a lower bound and an upper bound for the next iteration of the binary search.

This reduces the space to be analysed, reaching in less iterations the convergence

point. This is possible thanks to the nature of the dictionary containing the key-

6. IMPLEMENTATION 54

value pairs made by configuration-performance tuples. Since these data can be

seen as a sorted array without duplicates, it is possible to exploits two bounded

binary searches in order to find the range of a given target value. Once these two

configurations are defined they are passed to the function performing the binary

search in an iterative way, where at each step the range becomes closer to the

configuration point of convergence. The function is implemented in the PerfB-

search method. The upper and lower bounds are used to define a new average

configuration point, that is actuated and observed. Then the range is once again

restricted adopting again the policy of best and contiguous performances. The

search continues until the upper and lower bound are the same (convergence)

or the new bounds performances are worse than the ones of the previous limits.

In this second case the best between the previous ones is defined as the conver-

gence configuration. Once the configuration providing the best performances for

the workload is found the ODA control loop actuates it and terminates.

7

Experimental Evaluation

In this chapter we will present and discuss the results of the experimental

campaign we conducted to validate the proposed methodology. The goals of

our experiments are twofold: (i) we want to define a valid baseline that will be

exploited to compare the obtained results and (ii) we want to show that XeM-

PUPiL is able to maximize the performance metric given a certain power limit.

Then a comparison between pure RAPL and XeMPUPiL is done and discussed.

This is possible thanks to the system setup, that is in common among the two

steps. In this way, we will verify that the proposed methodology reaches better

performance compared to the pure hardware one.

The chapter is structured as follows: Section 7.1 will present the benchmarks

specification and also the experimental setup on which the experiments were

conducted, including a description of the system. Section 7.2 will introduce the

set of experiments conducted in order to define and validate the baseline. Finally

in Section 7.3 the results obtained using the same set of experiments are presented

when the hybrid methodology is applied and we will compare them with the

baseline results.

7.1 Experimental setup and benchmarking

The evaluation of the proposed methodology has been carried out on a sys-

tem equipped with an Intel Xeon E5-1410 processor. The CPU features 4 cores

55

7. EXPERIMENTAL EVALUATION 56

clocked at 2.8 GHz, with 8 hardware threads. The evaluation was carried out

with Turbo Boost and Hyper Threading disabled. The systems runs the Xen hy-

pervisor version 4.4, with a paravirtualized instance of Ubuntu 14.04 as Dom0,

pinned on the first core with 4GB of RAM assigned. For the benchmarking ac-

tivity we decided to exploit four different benchmarks, each one representing

a possible family of computational workloads having some bounds directly re-

lated to the resources of the system. In particular, we decided to investigate the

following families: (i) CPU-bound, (ii) memory-bound, (iii) IO-bound and (iv)

CPU-mem-bound workloads. Two of them are part of the set of benchmarks pro-

vided by the National Aeronautics and Space Administration (NASA), the NPB

version 3.3 [3]. In the hera of supercomputers the NPB provides small, but valid,

set of programs to evaluate the performance of these machines. The benchmarks

consist of five kernel, derived from computational fluid dynamics (CFD) appli-

cations, and three pseudo-applications. This suite has been improved with com-

putational grids, multi-zone applications, parallel I/O, and unstructured adap-

tive mesh. The sizes of the problems are predefine and represented as different

classes. MPI and OpenMP are some programming models used to implement

those benchmarks.

The two benchmarks taken from this suite are the Embarassingly parallel (EP)

and the Block Tri-diagonal solver (BT) ones. The former adopts negligible inter-

processor communication in order to provide estimates for the upper achiev-

able limits for floating point performance. This can be defined as a CPU-bound

workload. The latter, instead, is a pseudo application. In detail it provides solu-

tion of different, independent system of block tridiagonal, non-diagonally dom-

inant equations. This application is both parallel and memory bounded. A third

benchmark used to represent the IO-bound family is IOzone [2], a tool for bench-

marking filesystems. A variety of file operation is measured and generated by

this benchmark, which has been ported and able to run under different OSs.

Finally, the fourth benchmark is used to represent the memory-bound applica-

tion family. It is Cachebench [4], a performance test designed to test the memory

and cache bandwidth performance, provided by the Low Level Characterization

7. EXPERIMENTAL EVALUATION 57

Benchmarks suite. Each benchmark were run in a domain under a Debian OS.

The configuration of each domain is independent from the workload running on

it. A domain is configured as follow: 1 GB of RAM assigned and 3 vCPU. Before

creating the domain, a CPU-pool is created with a number of pCPU equal to the

virtual ones requested by the domain.

7.2 Baseline definition

In this section we are going to present and explain how the baseline were

chosen and measured, exploiting some of the tools developed for XeMPUPiL.

We tested the four benchmarks in different configurations of the system, select-

ing four power limits. First of all we measured the power consumption when no

power limit was imposed. In order to have a valid comparison we exploited the

WattsUp power meter. Knowing the power consumed by components other than

the CPU socket, it was trivial to find the power consumption associated to the

socket. During this phase we noticed that a totally busied CPU induces a power

consumption of ' 43 Watt, this was defined as the maximum power budged for

the targeted socket. On the other hand on a totally idle CPU the consumed en-

ergy for the socket was measured as' 18 Watts, this was defined as the minimum

power budget for the given system. In this way we were able to define the up-

per and the lower bound of the system’s power consumption. Then, we decided

to define four significant configurations in which studying the behaviour of the

workloads. These configurations were defined as follows:

• NO_RAPL, in this configuration no power cap is defined, the workload is

able to consume as much power as it needs, according to its resource as-

signment.

• RAPL_40, in this configuration a power cap is defined to 40W. The power

limit is defined exploiting only the pure RAPL approach.

• RAPL_30, in this configuration a power cap is defined to 30W. Also in this

case the only approach adopted in order to enforce this power cap is the

7. EXPERIMENTAL EVALUATION 58

0

0.2

0.4

0.6

0.8

1.0

NO RAPL
RAPL 40
RAPL 30
RAPL 20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1.0

EP cachebench IOzone BT

Figure 7.1: Baseline definition for the different configurations, displayed by benchmark

RAPL one.

• RAPL_20, in this configuration a power cap is defined to 20W. The same

hardware power capping technique of the previous two cases is adopted to

define this power limit.

Furthermore each domain is configured to run on a CPU-pool composed by three

cores, where each vCPU is pinned over a different core, reaching a mapping of 1

on 1. The results are normalized with respect to the NO_RAPL configuration and

displayed in 7.1.

From 7.1 it is possible to notice that the behaviour of the EP benchmark is

as expected. When no constraint over the power consumption is enforced (i.e.

NO_RAPL configuration), the CPU-bounded workload exploits the critical resources

as much as it can, reaching the best performance possible. Instead, when a power

cap is enforced (i.e. RAPL_40, RAPL_30, RAPL_20 configurations) the perfor-

mance decreases. This decrement is more significant as the cap becomes closer to

the system lower bound. This is the expected behaviour since this CPU-bound

workload is strongly dependent on the number of operation the processor can

complete in a second. Hence, a reduction of frequency, along with a reduction

of the computational units leads to worse performance. For what concerns the

7. EXPERIMENTAL EVALUATION 59

Cachebench benchmark, the trend slightly differs from the previous one. The

decrement in performance is less significant now. This is due to the fact that in

this case the performance strongly depends upon the memory and its response

time. Hence, a decreasing in frequency is less significant for the high and middle

range power caps. While applying limitations near the lower bound of the sys-

tem the performance slightly decreases, mainly due to lower voltages assigned

to memory components. A similar result is obtained for the IO-bound work-

load.. Once again the performance directly depends on resources different than

the CPU. Finally, the performance of the BT benchmark workload depends both

upon CPU and memory, indeed the measured behaviour is an average between

the one observed in EP and Cachebench cases.

7.3 XeMPUPiL methodology evaluation

In this Section we are going to present the results obtained under the two

different decision policies. In first place we conducted experiments on the max-

imization policy since its exploited later in the minimization one. We applied

in the system a power cap by exploiting the developed tool stack for RAPL in

Xen. Then, the ODA control loop is in charge to find the configuration obtain-

ing the best performance in the current power configuration. These results were

then compared to a pure hardware approach like RAPL. Then, we studied the

behaviour of the minimization policy by looking at the resource assignment to

the different classes of workload and the power consumption obtained for the

system. In this case we defined different level of SLA, which correspond to frac-

tions of the best performance, defined as the number of IRs obtained after the

convergence of the maximization process.

7.3.1 Performance maximization given a power cap

In this set of experiments the results of the proposed hybrid approach are

gathered and compared with respect to the defined RAPL baseline. Once again,

the benchmarks exploited for these tests are the four presented in Section 7.1. In

7. EXPERIMENTAL EVALUATION 60

0

0.2

0.4

0.6

0.8

1.0

NO RAPL
PUPiL 40
PUPiL 30
PUPiL 20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1.0

EP

EP performance results

(a) EP performance evaluation

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4NO RAPL
PUPiL 40
PUPiL 30
PUPiL 20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

cachebench

CacheBench performance results

(b) CacheBench performance evaluation

0

0.2

0.4

0.6

0.8

1.0

1.2NO RAPL
PUPiL 40
PUPiL 30
PUPiL 20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1.0

1.2

IOzone

IOzone performance results

(c) IOzone performance evaluation

0

0.2

0.4

0.6

0.8

1.0

NO RAPL
PUPiL 40
PUPiL 30
PUPiL 20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1.0

BT

BT performance results

(d) BT performance evaluation

Figure 7.2: Results obtained for the four benchmarks under a power cap enforced through the
proposed hybrid approach

this case the configurations explored are the following three:

• pupil 40, in this configuration a power cap is defined to 40W. The power

limit is defined exploiting the RAPL interface, while the ODA control loop

explores the set of all possible configuration, returning the best one provid-

ing the maximum performance.

• pupil 30, in this configuration a power cap is defined to 30W.

• pupil 20, in this configuration a power cap is defined to 20W.

The power caps are chosen according to the ones of the previous set of test in

order to have a direct comparison between the results in the two cases. In Fig-

ure 7.2a the results obtained for the EP are shown. For what concern the IOzone

benchmark the results are shown in Figure 7.2c, instead the behaviour of the

memory-bound workload is represented in Figure 7.2b. Finally, the pseudo ap-

plication BT is presented in 7.2d. All the results proposed are normalized with re-

spect to the NO_RAPL configuration. In 7.3, 7.4 and 7.5 we compare the results ob-

tained in the case of pure RAPL with the ones retrieved in the case of the hybrid

7. EXPERIMENTAL EVALUATION 61

0

0.5

1.0

PUPiL 40
RAPL 40

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

Figure 7.3: Comparison between the performance obtained enforcing a power cap of 40W in the
hybrid and pure RAPL cases

0

0.5

1.0

PUPiL 30
RAPL 30

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

Figure 7.4: Comparison between the performance obtained enforcing a power cap of 30W in the
hybrid and pure RAPL cases

approach. In all the three configurations is possible to notice how the proposed

hybrid approach achieves better performance for the IO-bound, memory-bound

and pseudo applications. This is due to the software approach represented by the

ODA control loop, which finds the best configuration for the assignment of the

resources, hence maximizing the overall performance. On the other hand it is also

possible to notice that this behaviour is not valid for the EP workload too. This

happens when the power cap is higher, while it decreases when the power bud-

get diminishes. Looking at the configurations at which the ODA loop converges,

it is possible to notice that the difference between RAPL and XeMPUPiL in this

case lies in how the vCPU are pinned over the pCPU. This could be related to

a misleading behaviour provided by some sort of optimization that Xen intro-

duces during the initialization phase of the domain, when it automatically pins

7. EXPERIMENTAL EVALUATION 62

0

0.5

1.0

PUPiL 20
RAPL 20

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

Figure 7.5: Comparison between the performance obtained enforcing a power cap of 20W in the
hybrid and pure RAPL cases

the vCPU. This leads to a worst behaviour when the same mapping topology is

adopted inside a CPU-pool, requiring a deeper study and a redesign of the pol-

icy adopted in XeMPUPiL in order to pin vCPU over pCPU while the workload

presents a strong parallel behaviour.

7.3.2 Power consumption minimization under a SLA

In order to test both the minimization policy and the multisocket implemen-

tation, we moved the benchmark suite on a machine equipped as follow: dual

socket Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz with 10 physical thread per

socket and hyperthreading enabled. In this case we moved from Xen-4.4 to Xen-

4.6 in order to exploit new functionalities introduced in this new version. The

benchmarks and the VM running were the same. Since also in this case we ex-

ploited a 32-bit version of Ubuntu in order to carry out our tests, the maximum

amount of vCPUs that the VM is able to manage is up to 8. We defined three

SLAs: 90%, 80% and 70%, since from the previous set of experiments we noticed

that at these steps is possible to notice measurable decrease of power consump-

tion. The meaning of these values corresponds to the percentage of the maximum

performance that must be at least returned. For instance, given a maximum per-

formance of 1000 IRs obtained thanks to the maximization phase, defining for

it a SLA of 80 means trying to minimize the power consumption until the per-

formance downgrades under an absolute value of 800 IRs. The tests on the four

7. EXPERIMENTAL EVALUATION 63

benchmarks were conducted as follows:

1. The power cap is imposed to default value. In this way is like imposing no

power cap, since the maximum consumption for the sockets of the system

is around 160W;

2. The maximization of the performance in a NO-CAP configuration is ran in

order to find the resource configuration for the workloads providing the

best performance;

3. The minimization of the power consumption is executed in order to respect

the given SLA;

In Table 7.1 the results obtained for the EP benchmark are shown. It is possible

to notice that in all the SLA cases, the maximization phase tends to converge to

a configuration that assigns all the available resources to the VM. In these cases

it is possible to notice that trying to respect a small SLA will result a greater

standard deviation for what concerns the converged performance percentage,

meaning that the orchestrator tends to disrespect the SLA defined in case is too

small. A similar behaviour can be noticed from Table 7.2. In this test case the

application is at the same time computational intensive and memory intensive

and this is why less cores are assigned to it. This leads to try to assign to it less

pCPUs, due to the memory intensive nature of the application.

Instead, in Table 7.3 and 7.4 two benchmarks respectively memory and IO in-

tensive are presented. In this cases our methodology tends to assign less cores to

the VMs. And it also possible to notice that the power consumption is decreased

significantly. On the other hand these results presents a huge standard deviation.

This is due to the IR metric adopted in order to evaluate the performance, since is

Table 7.1: Minimization results obtained for the EP benchmark

Sla
Cores

assigned
Power

consumption (W)
Maximization

time (s)
Minimization

time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 0,97 0,07 7,93 0,25 140,17 40,38 3,73 0,32 5,51 0,78
80 0,94 0,12 7,97 0,18 139,00 42,76 3,57 0,36 5,33 0,58
70 0,82 0,23 7,87 0,43 112,83 54,94 3,61 0,30 5,28 0,67

7. EXPERIMENTAL EVALUATION 64

Table 7.2: Minimization results obtained for the BT benchmark

Sla
Cores

assigned
Power

consumption (W)
Maximization

time (s)
Minimization

time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 0,99 0,04 7,10 0,92 159,17 4,56 4,40 0,43 5,86 0,86
80 0,96 0,12 7,00 1,23 154,67 18,71 4,39 0,62 5,85 1,09
70 0,91 0,17 7,10 0,92 147,17 32,13 4,51 0,51 5,95 0,94

Table 7.3: Minimization results obtained for the CacheBench benchmark

Sla
Cores

assigned
Power

consumption (W)
Maximization

time (s)
Minimization

time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 1,00 0,05 5,60 2,40 147,17 35,40 4,51 0,50 6,04 0,79
80 0,99 0,12 5,43 2,28 135,50 46,37 4,62 0,50 6,27 0,93
70 1,00 0,05 5,10 2,09 147,67 35,10 4,68 0,44 6,48 0,99

really a low level measurement, very sensitive to each phase of the running appli-

cation, even the smallest one. One last consideration regards the time needed in

order to converge to the solution. This value is pretty stable for all the benchmark

classes and its required only once for each iteration. Furthermore, this time can

be further decreased since at the moment is left a time window of 2 seconds to the

workloads to stabilize when the performance maximization phase is completed.

Table 7.4: Minimization results obtained for the IOzone benchmark

Sla
Cores

assigned
Power

consumption (W)
Maximization

time (s)
Minimization

time (s)

Objective Obtained
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

90 0,93 0,11 6,70 1,62 133,33 42,23 4,82 0,55 6,38 1,48
80 0,84 0,18 6,13 2,13 126,33 45,45 4,83 0,43 6,37 0,98
70 0,83 0,26 6,67 1,65 126,00 48,63 4,81 0,49 6,53 1,41

8

Conclusions and Future works

In this thesis, we presented XeMPUPiL, a performance-aware power capping

orchestrator for the Xen hypervisor. We extended the current implementation of

PUPiL [45] to make it work in a virtualized environment based on the Xen hyper-

visor. The methodology proposed in this work leverages three main concepts: (i)

efficiency, (ii) timeliness, and (iii) lack of workload instrumentation. The first two con-

cepts encapsulate the need of a system able to provide the best performance pos-

sible for the running workload (efficiency), while strictly and quickly respecting

the defined power limit (timeliness). In order to achieve these two characteristics

the proposed methodology totally embrace the novel hybrid approach, where

software and hardware techniques work synergically in order to achieve at the

same time both efficiency and timeliness. Instead, the third concept allows XeM-

PUPiL methodology to be portable and extensible as possible. This is feasible

thanks to the monitoring the workload perfromances avoiding any instrumen-

tation, resulting in less overhead pending on the workload developer to under-

stand and use third parties APIs. Initially, we introduced in Chapter 3 the prob-

lem deriving from the switch to the new computational paradigm based on the

cloud computing. We presented two problems deriving from this switch: max-

imizing performance given a power cap to respect and minimizing the power

consumption while respecting a given SLA. In Chapter 4 we showed how the

state of the art in the field of power management tackled power consumption

optimization challenge by means of custom solutions, which can be classified

65

8. CONCLUSIONS AND FUTURE WORKS 66

in two main families: the hardware and the software ones. The classification is

based on the characteristic that each approach intrinsically enhances: timeliness

for the hardware approaches and efficiency for the software ones. Then, we de-

scribed a novel emerging technique that embraces the hybrid approach. How-

ever, to the best of out knowledge, a power capping hybrid approach in the field

of virtualization requiring no instrumentation by the workloads is still missing.

This is the why we introduced XeMPUPiL, a hybrid power capping orchestra-

tor for a Xen virtualized environment. The methodology presented in Chapter

5 is built upon two components: the Intel RAPL interface and the ODA control

loop. The former represents the hardware approach and is in charge to strictly en-

force the power cap, instead the latter represents the software approach, which

is in charge both to find the best resource configuration under the power cap

that maximize the workload performance and minimizing the power consump-

tion while respecting a given SLA, depending on which policy the user decided

to put in practice. In Chapter 5 these two components are described inside the

stages of the ODA control loop, where each challenge tackled in the three stages

(i.e. observe - decide - act) is introduced and how they are addressed by XeM-

PUPiL is presented. Then, in Chapter 6 we went in detail on how to define and

implement a set of tools in order to exploit the RAPL interface in the Xen vir-

tualized environment. In particular, we explained how to take advantage of the

hypercall mechanism, provided by virtualized envirorment, in order to gain con-

trol of the resources usually isolated (by the hypervisor) from the domains. Fur-

thermore, the details regarding the implementation and the tools exploited by

the ODA control loop are presented. Finally, in Chapter 7 we presented the sys-

tem and the benchmarks adopted to validate the XeMPUPiL approach. At first,

we described how the baseline was obtained through pure RAPL power cap-

ping. Then, these results were compared with the ones obtained when the power

capping task is supervised by XeMPUPiL. We showed how XeMPUPiL is able to

achieve higher performances under different power caps for almost all the differ-

ent classes of benchmarks analyzed (e.g., CPU-, memory- and IO-bound ones).

Finally, we conducted a study on the power consumption minimization policy,

8. CONCLUSIONS AND FUTURE WORKS 67

showing that XeMPUPiL methodology is able to reduce power consumptions in

almost all the benchmark classes tested.

Future Works The future works revolve around the development of a better

decision algorithm to minimize the duration of the decide phase. In particular, it

would be interesting to make studies about how different decision policies and

techniques adopted in the the decision phase the ODA control loop may influ-

ence the convergence time of the software approach to the configuration pro-

viding highest performance. Furthermore, in this stage a redesign of the policy

adopted to split the mapping of the vCPUs on the pCPUs is necessary in order

to achieve at least the same performance obtained for pure parallel benchmarks

in the case of pure RAPL. In this direction the mechanism behind the policies

and techniques for vCPU repartition adopted by Xen during the domain creation

must be better understood and then exploited. Moreover, we want to improve

the observe phase, digging deeper into the XeMPower tool to weight the IR met-

ric on the number of the “clock-ticks" in the observed interval, thus obtaining a

cycle per instruction metric. Finally, we want to improve the actuation phase, im-

plementing custom fine-grain tools, since the actual CLI provided by Xen allows

only a limited set of resources to be tuned.

Bibliography

[1] Clockticks per instructions retired (cpi). https://software.intel.com/

en-us/node/544403. Accessed: 2016-06-01.

[2] Iozone filesystem benchmark. http://www.iozone.org. Accessed: 2017-03-15.

[3] Nas parallel benchmarks. http://www.nas.nasa.gov/publications/npb.

html#url. Accessed: 2017-03-15.

[4] Openbenchmarking.org. https://openbenchmarking.org/test/pts/

cachebench. Accessed: 2017-03-15.

[5] Oracle vm user’s guide = https://docs.oracle.com/cd/e35328_01/

e35332/html/vmusg-ovm-intro.html, note = Accessed: 2017-04-16.

[6] The xen project - success stories. http://www.xenproject.org/users/

success-stories.html. Accessed: 2017-03-15.

[7] Xen project wiki. https://wiki.xenproject.org/wiki/Xen_Project_

Software_Overview, note = Accessed: 2017-04-14.

[8] Ishtiaq Ali and Natarajan Meghanathan. Virtual machines and networks-

installation, performance study, advantages and virtualization options. arXiv

preprint arXiv:1105.0061, 2011.

[9] Paul R. Barham, Boris Dragovic, Keir A. Fraser, Steven M. Hand, Timothy L. Har-

ris, Alex C. Ho, Evangelos Kotsovinos, Anil V.S. Madhavapeddy, Rolf Neugebauer,

Ian A. Pratt, and Andrew K. Warfield. Xen 2002. Technical report, 2002.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter as a computer:

An introduction to the design of warehouse-scale machines. Synthesis lectures on

computer architecture, 8(3):1–154, 2013.

[11] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.

Computer, 40(12), 2007.

68

https://software.intel.com/en-us/node/544403
https://software.intel.com/en-us/node/544403
http://www.iozone.org
http://www.nas.nasa.gov/publications/npb.html#url
http://www.nas.nasa.gov/publications/npb.html#url
https://openbenchmarking.org/test/pts/cachebench
https://openbenchmarking.org/test/pts/cachebench
https://docs.oracle.com/cd/e35328_01/e35332/html/vmusg-ovm-intro.html
https://docs.oracle.com/cd/e35328_01/e35332/html/vmusg-ovm-intro.html
http://www.xenproject.org/users/success-stories.html
http://www.xenproject.org/users/success-stories.html
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview

BIBLIOGRAPHY 69

[12] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,

Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al. Exas-

cale computing study: Technology challenges in achieving exascale systems. Defense

Advanced Research Projects Agency Information Processing Techniques Office (DARPA

IPTO), Tech. Rep, 15, 2008.

[13] Kenneth G Brill. The invisible crisis in the data center: The economic meltdown of

moore’s law. white paper, Uptime Institute, pages 2–5, 2007.

[14] David Chisnall. The definitive guide to the xen hypervisor. Pearson Education, 2008.

[15] Ryan Cochran, Can Hankendi, Ayse K Coskun, and Sherief Reda. Pack & cap: adap-

tive dvfs and thread packing under power caps. In Proceedings of the 44th annual

IEEE/ACM international symposium on microarchitecture, pages 175–185. ACM, 2011.

[16] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. Rapl: Memory power

estimation and capping. In International Symposium on Low Power Electronics and

Design (ISPLED), 2010.

[17] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch, and

Ricardo Bianchini. Multiscale: memory system dvfs with multiple memory con-

trollers. In Proceedings of the 2012 ACM/IEEE international symposium on Low power

electronics and design, pages 297–302. ACM, 2012.

[18] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and

Doug Burger. Dark silicon and the end of multicore scaling. In ACM SIGARCH

Computer Architecture News, volume 39, pages 365–376. ACM, 2011.

[19] M. Ferroni, J. A. Colmenares, S. Hofmeyr, J. D. Kubiatowicz, and M. D. Santambro-

gio. Enabling power-awareness for the xen hypervisor. In CEUR Workshop Proceed-

ings, volume 1697, 2016.

[20] Matteo Ferroni, Andrea Cazzola, Domenico Matteo, Alessandro Antonio Nacci, Do-

natella Sciuto, and Marco Domenico Santambrogio. Mpower: Gain back your an-

droid battery life! In Proceedings of the 2013 ACM conference on Pervasive and ubiqui-

tous computing adjunct publication, pages 171–174. ACM, 2013.

[21] Part Guide. Intel® 64 and IA-32 Architectures Software Developer’s Manual, 2011.

[22] Mohammad Haghighat, Saman Zonouz, and Mohamed Abdel-Mottaleb. Cloudid:

Trustworthy cloud-based and cross-enterprise biometric identification. Expert Sys-

tems with Applications, 42(21):7905–7916, 2015.

BIBLIOGRAPHY 70

[23] Henry Hoffmann. Racing and pacing to idle: an evaluation of heuristics for energy-

aware resource allocation. In Proceedings of the Workshop on Power-Aware Computing

and Systems, page 13. ACM, 2013.

[24] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and

Anant Agarwal. Application heartbeats: A generic interface for expressing perfor-

mance goals and progress in self-tuning systems. In 4th Workshop on Statistical and

Machine learning approaches to ARchitecture and compilaTion (SMART), 2010.

[25] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and

Anant Agarwal. Application heartbeats for software performance and health. Tech-

nical report, August 2009.

[26] Tibor Horvath, Tarek Abdelzaher, Kevin Skadron, and Xue Liu. Dynamic voltage

scaling in multitier web servers with end-to-end delay control. IEEE Transactions on

Computers, 56(4), 2007.

[27] Huawei. Huawei FusionSphere 3.1 Technical White Paper on Virtualization.

[28] James M Kaplan, William Forrest, and Noah Kindler. Revolutionizing data center

energy efficiency. Technical report, Technical report, McKinsey & Company, 2008.

[29] Paul Karger and Andrew Herbert. An augmented capability architecture to support

lattice security and traceability of access. In IEEE Symposium on Security and Privacy,

1984.

[30] Minyoung Kim, Mark-Oliver Stehr, Carolyn Talcott, Nikil Dutt, and Nalini Venkata-

subramanian. xtune: A formal methodology for cross-layer tuning of mobile em-

bedded systems. ACM Transactions on Embedded Computing Systems (TECS), 11(4):73,

2012.

[31] Rakesh Kumar and Shilpi Charu. Comparison between cloud computing, grid com-

puting, cluster computing and virtualization. International Journal of Modern Com-

puter Science and Applications, 3(1):42–47, 2015.

[32] Simone Libutti, Giuseppe Massari, Patrick Bellasi, and William Fornaciari. Exploit-

ing performance counters for energy efficient co-scheduling of mixed workloads on

multi-core platforms. In Proceedings of Workshop on Parallel Programming and Run-

Time Management Techniques for Many-core Architectures and Design Tools and Archi-

tectures for Multicore Embedded Computing Platforms, page 27. ACM, 2014.

BIBLIOGRAPHY 71

[33] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber,

and Thomas F Wenisch. Power management of online data-intensive services. In

Computer Architecture (ISCA), 2011 38th Annual International Symposium on, pages

319–330. IEEE, 2011.

[34] Jennifer Mitchell-Jackson, Jonathan G Koomey, Bruce Nordman, and Michele

Blazek. Data center power requirements: measurements from silicon valley. En-

ergy, 28(8):837–850, 2003.

[35] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Rajamony, and Raj

Rajkumar. Critical power slope: understanding the runtime effects of frequency

scaling. In Proceedings of the 16th international conference on Supercomputing, pages

35–44. ACM, 2002.

[36] Shivajit Mohapatra, Radu Cornea, Hyunok Oh, Kyoungwoo Lee, Minyoung Kim,

Nikil Dutt, Rajesh Gupta, Alexandru Nicolau, Sandeep Shukla, and Nalini Venkata-

subramanian. A cross-layer approach for power-performance optimization in dis-

tributed mobile systems. In Parallel and Distributed Processing Symposium, 2005. Pro-

ceedings. 19th IEEE International, pages 8–pp. IEEE, 2005.

[37] CA 94065 U.S.A. Oracle Corporation 500 Oracle Parkway Redwood City. x86 As-

sembly Language Reference Manual Developer’s Manual, 2010.

[38] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann, and

Doron Rajwan. Power-management architecture of the intel microarchitecture code-

named sandy bridge. Ieee micro, 32(2):20–27, 2012.

[39] Amir Ali Semnanian, Jeffrey Pham, Burkhard Englert, and Xiaolong Wu. Virtualiza-

tion technology and its impact on computer hardware architecture. In Information

Technology: New Generations (ITNG), 2011 Eighth International Conference on, pages

719–724. IEEE, 2011.

[40] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen. Power containers:

An os facility for finegrained power and energy management on multicore servers.

In IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and Applica-

tions. IEEE, 2015.

[41] Youngmin Shin, Hoi-Jin Lee, Ken Shin, Prashant Kenkae, Rajesh Kashyap, Dongjoo

Seo, Brian Millar, Yohan Kwon, Ravi Iyengar, Min-Su Kim, et al. 28nm high-k metal

gate heterogeneous quad-core cpus for high-performance and energy-efficient mo-

BIBLIOGRAPHY 72

bile application processor. In SoC Design Conference (ISOCC), 2013 International,

pages 198–201. IEEE, 2013.

[42] Arunchandar Vasan, Anand Sivasubramaniam, Vikrant Shimpi, T Sivabalan, and

Rajesh Subbiah. Worth their watts?-an empirical study of datacenter servers. In

High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Sympo-

sium on, pages 1–10. IEEE, 2010.

[43] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav

Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Con-

servation cores: reducing the energy of mature computations. In ACM SIGARCH

Computer Architecture News, volume 38, pages 205–218. ACM, 2010.

[44] C. Xu, Z. Zhao, H. Wang, and J. Liu. On the interplay between network traffic and

energy consumption in virtualized environment: An empirical study. In 2014 IEEE

7th International Conference on Cloud Computing, pages 392–399, June 2014.

[45] Huazhe Zhang and Henry Hoffmann. Maximizing performance under a power

cap: A comparison of hardware, software, and hybrid techniques. pages 545–559,

2016.

September 14, 2017

Document typeset with LATEX

	Introduction and motivations
	The challenge to growth

	Background
	Xen project
	XeMPower
	Intel rapl interface
	MSR Power Unit
	MSR Package Power Limit
	MSR Package Energy Status

	Problem Definition and goals
	Power consumption and power cap
	Virtualization challenges
	Goals

	State of the Art
	Classification criteria
	Hardware approaches
	Software approaches
	Hybrid approaches
	PUPiL

	Methodology
	XeMPUPiL: a bird's eye view
	oda as a gradient ascending algorithm
	XeMPUPiL oda control loop
	Observe
	Decide
	Act

	Implementation
	Architecture design
	rapl command line interface
	Enabling rapl in multi-socket architecture

	XeMPUPiL orchestrator
	Act
	Observe
	Decide

	Experimental Evaluation
	Experimental setup and benchmarking
	Baseline definition
	XeMPUPiL methodology evaluation
	Performance maximization given a power cap
	Power consumption minimization under a sla

	Conclusions and Future works
	Bibliography

