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Abstract

The sequential state estimation of the relative pose between a chaser and
its target becomes a complex problem when the dynamics of the satellites
and the measurements equation are highly nonlinear. The classical Extended
Kalman Filter may show difficulties to filter the state of the target, thus high
order filters that are able to capture mean and covariance more accurately
has been developed in this work. This thesis explains how the first two mo-
ments, i.e. mean and covariance, are propagated with different techniques
such as Differential Algebra and the Unscented Transformation, and high-
lights their improvements compared to linearization. These new techniques
are used as building blocks for three new kind of filters: the DA-based high
order extended Kalman Filter, the Unscented Kalman Filter, and the DA-
based Unscented Kalman Filter. The performances of the resulting filters are
assessed and compared on a test case, addressing the problem of proximity
operations around the target ENVISAT. After describing the satellite dynam-
ics, a detailed discussion on the measurements model is presented. Markers
positions are the typical data obtained from the image processing software of
a camera. Thus, their relation with the relative state and their visibility are
discussed. Then, a Monte Carlo analysis is reported to show the improve-
ments of the presented filters with respect to the classical implementation of
the extended Kalman filter in terms of mean error and computational time.
In addition, the sensitivity of the performance to the number and distribu-
tion of the markers is investigated, and an analysis of the consequences of
the lack of measurements is carried out to prove robustness.



ii

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



Abstract

La stima sequenziale dello stato della posa relativa tra un inseguitore ed il
suo target diventa un problema complicato quando la dinamica dei satelliti e
l’equazione delle misure presenta alte nonlinearitá. Il classico filtro di Kalman
esteso puó presentare difficoltá nel filtrare lo stato del target, di conseguenza
sono stati sviluppati filtri di alto ordine capaci di identificare la media e la
covarianza in maniera piú accurata in questo elaborato. Questa tesi espone
come i primi due momenti, i.e. media e covarianza, vengano propagati da
diverse tecniche quali l’Algebra Differenziale (DA) e l’ Unscented Transfor-
mation, e sottolinea i loro miglioramenti rispetto alla linearizzazione. Queste
nuove tecniche sono i blocchi fondamentali di tre nuove tipologie di filtri: il
DA-based high order extended Kalman Filter (filtro di Kalman esteso di alto
ordine basato sulla DA), l’ Unscented Kalman Filter, e il DA-based Unscented
Kalman Filter. Le prestazioni dei filtri sono valutate e paragonate su un test
case, indirizzandosi al problema delle operazioni di avvicinamento al target
ENVISAT. Dopo aver descritto la dinamica del satellite, viene presentata
una dettagliata discussione sul modello di misura. Le posizioni dei markers
sono la tipica informazione che viene ricevuta dal software che processa le
immagini di una camera. Quindi, la loro relazione con lo stato relativo e
la loro visibilitá deve essere discussa. Successivamente, una analisi Monte
Carlo viene riportata per mostrare i miglioramenti dei filtri descritti rispetto
alla classica implementazione del filtro di Kalman esteso in termini di er-
rore medio e tempo computazionale. Inoltre, la sensitivitá delle prestazioni
rispetto al numero e alla distribuzione dei markers é investigata, e una anal-
isi sulle conseguenze della mancanza di misure é effettuata per dimostrare
robustezza.
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CHAPTER 1

Introduction

The problem of nonlinear uncertainty propagation represents a crucial issue
in celestial mechanics since all practical systems, from the basic vehicle nav-
igation to orbit determination, and mostly target tracking, involve marked
non-linearities of one kind or another. Therefore, the development of suitable
sequential state estimation algorithms that improve the classical Kalman fil-
ter is a problem that well answers nowadays space applications requests [42].
Different techniques have been developed and this thesis focuses deeply on
two of them: the introduction of high order moments in the estimation pro-
cess using Differential Algebra (DA) techniques; and the implementation of
numerically efficient Unscented Transformation (UT) in Unscented Kalman
filters. These filters find applications in space surveillance and spacecraft nav-
igation since they require methods to estimate the state of orbiting objects
including uncertainty to propagate and track them. Within this problems,
nonlinearities arises even in simple operations, such as conversions between
different coordinate systems, e.g. the conversion from polar to Cartesian
coordinates [22] [23] that forms the foundation for the observation models
of many sensors. The nonlinearity of such transformations entails the prob-
lem of managing the nonlinear propagation of the estimated statistics to the
estimated statistics.

Several approximated techniques exist in literature to approximate the
initial condition uncertainty evolution, which is typically required within any
state estimation algorithm. Present-day approaches mainly rely on linearized
propagation models, such as in the extended Kalman filter, or full nonlinear
Monte Carlo simulations. Both solutions have their drawbacks: on one hand,
the linear assumption could simplify the problem too radically leading to
the drop of the solution accuracy in the case of highly marked nonlinear
systems and/or long time propagations. On the other hand, Monte Carlo
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2 Filtering

simulations provide true trajectory statistics but they are computationally
very expensive. Therefore, Differential Algebra is introduced in the sequential
state estimation problem to overcome the limits of the simple linearization
by adding high order moments in the prediction step. In this way, the DA-
based filter better handles those systems with highly marked non-linearities
thanks to the introduction of higher order information. In fact, DA enables
the possibility to compute and use the Taylor expansion up to an arbitrary
order, including then nonlinearities in the filtering process.

The unscented transformation (UT) was developed to address the defi-
ciencies of linearization as well: a set of samples are deterministically chosen
to match the mean and covariance of a (non necessarily Gaussian-distributed)
probability distribution. The UT is founded on the idea that it is easier
to approximate a probability density function than it is to approximate an
arbitrary nonlinear function or transformation [20] [23]. The DA is then
introduced in the UT leading to the creation of the DA-based unscented
Kalman filter (UKFDA) which can achieve better performances with respect
to the basic UKF. The ability of DA to map the nonlinear propagation of
uncertainty can reduce the computational cost of the UT: it is sufficient to
propagate only one sample point (usually the mean) and not the whole set
to accurately describe the probability distribution.

1.1 Filtering

The concept of filtering is regularly stated when the time at which an estimate
is desired coincides with the last measurement points. “Sequential state
estimation” and “filtering” are used synonymously throughout the remainder
of the thesis: sequential state estimation is often used not only to reconstruct
state variables but also to “filter” out the noisy measurement process [11].
Thus, “sequential state estimation” and “filtering” are often interchanged in
the literature.

An estimation filter provides a rigorous theoretical approach to estimate
the state of a filter based upon stochastic processes for the measurement
error and error model. There is no knowledge of the exact values of these
errors; however, there is an assumption on the nature of the errors, indeed a
zero-mean Gaussian noise process is often assumed. The nonlinear filtering
problem has got a fundamental role in many space-related applications such
as space navigation problems and orbit determination. As pointed out before,
relative pose estimation for rendezvous maneuvers with uncooperative targets
demands GNC systems with an accurate encoded filter technique which must
be able to perform an accurate trajectory estimation in a very reduced lapse

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



CHAPTER 1: Introduction 3

of time.
Probably the most widely used estimator for nonlinear systems is the ex-

tended Kalman filter (EKF). The EKF applies the Kalman filter to nonlinear
systems by simply linearising all the nonlinear models so that the traditional
linear Kalman filter equations can be applied. Assume the equations of mo-
tion and the measurement equations are

x(k + 1) = f [x(k),u(k), k] + v(k) (1.1)

z(k + 1) = h[x(k),u(k), k] + w(k) (1.2)

where f [·, ·, ·] is the process model, x(k) is the state of the spacecraft at
time-step k, u(k + 1) is the input vector and v(k) is the process noise per-
turbing the spacecraft state, z(k+ 1) is the actual measurement at time-step
k + 1, h[·, ·, ·] is the measurement function, and w(k) is the measurement
noise characterizing the observation error. These equations get linearized via
Taylor expansion series around the current mean and covariance. Starting
from the first two moments (i.e. mean and covariance) of the state vector at
time step k, the EKF follows a division in two main steps, which are shown
in Figure 1.1.

Figure 1.1: Kalman Filter Scheme. Image from [16]
.

1. Prediction Step: the equations of motion get linearized around the
current mean at time step k and they are used to predict the mean and
covariance of the state vector and the measurements at time step k+1.
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2. Update Step: The information of the measurements acquired at time
step k + 1 is given to the filter which uses the residuals between the
predicted and the acquired measurements to update the estimate by
correcting the predicted state vector to the updated one.

The Kalman filter uses this structure of “prediction-update” to determine the
state of the spacecraft at time k+1 with the knowledge of the measurements
at the same time step. The filter, at first, uses the process model to predict
the state of the spacecraft at time k + 1, having as input an estimate of
the spacecraft state. The prediction is performed in terms of mean and
covariance:

x̂(k + 1|k) = E
[
f [x(k),u(k), k] + v(k)|Zk

]
(1.3)

P(k + 1|k) = E
[
{x(k + 1)− x̂(k + 1|k)}{x(k + 1)− x̂(k + 1|k)}T |Zk

]
(1.4)

where x̂(i|j) be the estimate of x(i) using the observation information up to
an including time j, and Zj = [z(1), . . . , z(j)] describes the measurements.
The conditional covariance of the estimate is P(i|j).

First, the current state and the associated covariance are transformed
through the state transition and the observation equations. These values
x̂(k + 1|k) and P(k + 1|k) are the predicted quantities since they represent
the estimation of the state of the system at time k + 1 given the knowledge
of all observations up to time k. In the second step, the update, the system
is observed at time k+ 1 and the filter uses the observation information (the
measurements) to correct the predicted quantities, producing the estimate
x̂(k+ 1|k+ 1) and P(k+ 1|k+ 1). The update part of the filter algorithm is
here presented:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)n(k + 1) (1.5)

P(k + 1|k + 1) = P(k + 1|k)−K(k + 1)Pzz(k + 1)KT (k + 1) (1.6)

n(k + 1) = z(k + 1)− ẑ(k + 1|k) (1.7)

K(k + 1) = Pxz(k + 1|k)P−1
zz (k + 1|k) (1.8)

where vector n(k + 1) is the innovation, which is evaluated as the difference
between the actual observation at time k, z(k + 1), and the predicted mean
observation ẑ(k + 1|k). Furthermore, K(k + 1) is the Kalman gain matrix,
evaluated with the information of the covariance matrix of the state mea-
surements Pzz(k + 1|k) and the cross-covariance matrix of the state and the
measurement Pxz(k+1|k). It can be seen that the update equations are only
a function of the predicted values of the first two moments of x(k) and z(k).
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Generally f [·] and h[·] are nonlinear, thus the drawback of the EKF is
the accuracy of the linearization in highly-nonlinear systems, which can be
related to the dynamical model or the use of low measurement frequencies.
Therefore, techniques such as the Unscented Kalman filter (UKF) and high
order filters have been developed. While the UKF relies on the UT, the DA-
based EKF that will be presented in this thesis relies on the use of DA in the
high-order extended Kalman filter initially introduced by Park and Scheeres
[32] [33]. This filter is more accurate that the basic EKF since the prediction
step relies on the fully nonlinear mapping of the first two moments. Parks
and Scheeres implemented a semi-analytical orbit uncertainty propagation
technique, that solves the higher-order Taylor series terms that describe the
nonlinear motion and use the resulting polynomials to analytically map the
initial uncertainties. However, the high order tensors may be difficult to be
derived due to the hard and complex computational work required. This
problem can be solved with the introduction of DA that, by replacing the
classical implementation of real algebra with the implementation of a new
algebra of Taylor polynomials, enables the computation of the Taylor ex-
pansion of any function f of n variables up to an arbitrarily order. The
consequence is a relevant improvement in the computational effort to Taylor
expand the solution of an ordinary differential equation (ODE).

It has been stated that the classical sequential state estimation techniques
have limits operating with nonlinear uncertainties problems. The introduc-
tion of DA and UT, and later on DA inside UT, represents a clever way to
overcome the classical EKF limitations. The resulting filters will then assess
their performance on the relative pose estimation problem to be studied and
compared.

1.1.1 Differential Algebra

Differential algebraic (DA) techniques are here proposed as a valuable tool
to implement the DA-based EKF and the DA-based UKFDA, in order to
obtain not only a higher-order filter, but also a computationally efficient one.
Differential algebra supplies the tools to compute the derivatives of functions
within a computer environment [43]. More specifically, by substituting the
classical implementation of real algebra with the implementation of a new
algebra of Taylor polynomials, any function f of n variables is expanded into
its Taylor polynomial up to an arbitrary order m. This has a strong impact
when the numerical integration of an ordinary differential equation (ODE)
is performed by means of an arbitrary integration scheme. Any integration
scheme is based on algebraic operations, involving the evaluation of the ODE
right hand side at several integration points. Therefore, starting from the DA
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representation of the initial conditions and carrying out all the evaluations in
the DA framework, the flow of an ODE is obtained at each step as its Taylor
expansion in the initial conditions. The accuracy of the Taylor expansion
can be kept arbitrarily high by adjusting the expansion order. So, in the
DA-based EKF and UKFDA presented in this thesis the propagation of the
mean trajectory is carried out in the DA framework.

The key idea of DA is to replace all algebraic operations between numbers
by ones that act on a suitably chosen subset of polynomials instead [2].
Thus, algebraic operations, in the space of truncated Taylor polynomials,
are defined such that they approximate the operations of the function space
Cr(0) of r times differentiable functions around point 0. In detail, each single
operation is defined to result in the truncated Taylor expansion of the correct
result computed on the function space Cr(0). Figure 1.2 shows an example
between working within a function in Cr(0) or in the DA arithmetic.

Figure 1.2: Evaluation of the expression 1/(1+x) in Cr(0) and in the DA
arithmetic.

Since the accuracy of the Taylor expansion can be kept arbitrarily high by
adjusting the expansion order, the approach of classical pointwise simulations
can be enhanced by replacing thousands of integrations with evaluations of
the Taylor expansion of the flow. As a result, the computational time reduces
considerably without any significant loss in accuracy [3].

1.1.2 Unscented Transformation

The unscented transformation (UT) tries to solves the computational draw-
backs of the moments propagation through linearization [46]. The state dis-
tribution is again represented as a Gaussian Random Variable (GRV), but it
gets specified by using a minimal set of carefully chosen sample points, the so-
called sigma points. These sample points completely capture the true mean
and covariance of the GRV, and when propagated through the true nonlinear
system, they capture the posterior mean and covariance accurately to the 3rd
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order (Taylor series expansion) for any non-linearity. Non-Gaussian inputs
approximation are accurate at least to the second order.

The UT then calculates the statistics of a random variable which under-
goes a nonlinear transformation. The covariance is expressed thanks to the
set of sigma points which, in addition to the mean, get propagated through
the nonlinear function. The mean and covariance of the transformed variable
are then approximated using a weighted sample mean and covariance of the
posterior sigma points. Figure 1.3 presents a simple 2-dimensional example

Figure 1.3: Representation of the linearization and UT approaches to mo-
ments propagation. Taken from [46].

to underline the superior performance of the UT with respect to lineariza-
tion. The left plots show the true mean and covariance propagation using a
Monte Carlo sampling; the central plots show the results using a lineariza-
tion approach as in the EKF; the right plots show the performance of the
UT. In the figure it can be seen that only 5 sigma points have been used:
therefore the UT method differs substantially from the general “sampling”
methods (such as particle filters still based on Monte Carlo type sampling)
which require orders of magnitude more sampling points in the attempt to
propagate an accurate distribution of the state [15].
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1.2 Relative Pose Estimation

One of the main space applications for filters is the relative pose estimation
during the rendezvous between two separate spacecraft. A particularly chal-
lenging application is the on-board autonomous guidance, navigation and
control (GNC) when one of the spacecraft is uncooperative [49]. The au-
tonomous rendezvous and docking requires that two spacecraft start at a
remote distance, come together into a common orbit, rendezvous, dock, and
control the new combined spacecraft in both orbit and attitude. Therefore a
sequential state estimation (i.e. a filter) is requested since the spacecraft that
is approaching, called the chaser, needs to know the relative position and ori-
entation, i.e. the pose, of the spacecraft that has been approached, called
the target. The chaser is always the active spacecraft, while the target can
be completely passive, and its role is just to remain reasonably stable while
the chaser does all the work. The target, thus, can be either cooperative or
uncooperative: in the first case, it is expected a target active participation
in the docking maneuver, while in the second case the spacecraft has neither
active or passive equipment to help the approaching process. A typical ex-
ample of the latter is the case of a chaser approaching the target during an
active debris removal (ADR) mission [51].

This thesis applies the implemented filters to the problem of capturing the
satellite ENVISAT (see Figure 1.4) with a chaser satellite. The approach-
ing maneuver itself is one of the main challenge in this problem since the
chaser must study and correctly predict the attitude of the target which, in
general, tends to have a tumbling motion. As a consequence, there is the
continue effort to create an effective and accurate autonomous GNC strat-
egy by enhancing its reliability by increasing the accuracy of the estimation
process and the robustness of the control laws to noise and system errors.
Autonomous GNC technologies for rendezvous and docking demand accu-
rate, real-time measurements and estimations of relative range and attitude
[24].

The knowledge of the target features and characteristics, in addiction to
the many information that can be found on the web and from the space
community, classifies this particular application as a model-based estimation
technique. Thanks to the availability of satellites models and CAD descrip-
tions, model-based techniques can take advantage of a priori knowledge of
the target whose pose and motion are to be estimated. Regardless the kind
of measurements taken, the estimation method shall include filtering due to
the presence of noise and errors. Therefore, the relative pose estimation and
attitude prediction problem must update, each time, the state and covariance
of the DOF that describe the motion and must also update the measurement
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Figure 1.4: ENVISAT

and state vector estimation. The state vector must include both the trans-
lational and the rotational motion.

The aim of this work is to assess the performance and on-board applica-
bility of the DA-based Extended Kalman Filter and the Unscented Kalman
Filter algorithms with the target application of estimating the relative pose
between two spacecraft during a rendezvous manoeuvre. The filters will be
proven to achieve excellent accuracy level and their performance will be com-
pared one another in terms of precision, robustness and computational time.
At a later stage, the filters must be proven to be robust to failures, at different
operational frequencies.

1.3 Thesis Overview

A quick work outline is here presented.

In chapter 2, an introduction to the Differential Algebra is presented,
focusing on its theoretical framework and the opportunity of using DA as a
new algebra to deal with computer operations.

Chapter 3 compares different propagation techniques of mean and covari-
ance. The DA framework and the Unscented Transformation are explained
and presented as a valid improvement with respect to the linearization tech-
nique. A transformation from polar to Cartesian coordinates is used as an
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example to show the improvements of the described techniques. The propa-
gation of uncertainties is the key idea upon the filters are based on. Chapter
3 purpose is to describe and show how DA and UT work with moments and
how they represent mean and covariance putting attention on the computa-
tional request, on the theory, and on the different results that are achieved.
Since the filtering statement is based on the knowledge of the moments, only
after having in mind a clear idea on how uncertainties are represented and
calculated, it is possible to describe the nonlinear filters algorithms.

Chapter 4 describes the filters. After presenting the filter statement, the
DA-based High Order Extended Kalman filter, and the Unscented Kalman
filter, are described in details providing their algorithms and pointing out
their common aspects and differences. Then, a mixed filter that combines
both DA and UT is presented. At the end of the chapter, an orbit deter-
mination problem in two body dynamics is used as test case to assess the
improvements with respect to the basic extended Kalman filter.

Chapter 5 takes the filters and applies them to a more realistic and com-
plex application: the ENVISAT relative pose estimation. After a detailed
presentation of the satellite dynamics, a careful presentation of the mea-
surement model (i.e. the ENVISAT markers acquisition, disposition and
visibility) is provided. In the last part of the chapter, the results of a ro-
bustness and accuracy (Monte Carlo-based) analysis are reported for three
different cases: the default acquisition of all the markers, the performance
obtained with only to 3 markers, and lastly the presence of failures in markers
acquisition.

Chapter 6, at the end, summarizes the work and draws the appropriate
conclusions. Moreover, final considerations are provided and future develop-
ments are proposed.
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CHAPTER 2

Differential Algebra

This chapter is dedicated to the illustration of differential algebra. The theory
of differential algebra has been developed by Martin Berz in the late 80’s,
and the short summary given in the followings takes advantages of his books
Advances in Imaging and Electron Physics [8] and Modern Map Methods in
Particle Beam Physics [28].

2.1 Introduction

Differential algebraic (DA) techniques find their origin in the attempt to
solve analytical problems by an algebraic approach. Historically, treatment
of functions in numerics has been based on the treatment of numbers, and
the classical numerical algorithms are based on the mere evaluation of func-
tions at specific points. DA techniques are based on the observation that it is
possible to extract more information on a function rather than its mere val-
ues. The basic idea is to bring the treatment of functions and the operations
on them to the computer environment in a similar way as the treatment of
real numbers. Of particular interest is the possibility to efficiently determine
Taylor expansions of the flow of differential equations in terms of initial con-
ditions. Referring to Figure 2.1, consider two real numbers a and b: in order
to operate in a computer environment, they get usually transformed in their
floating points (FP) representation, ā and b̄ respectively. Then, given any
operation × in the set of the real numbers, an adjoint operation ⊗ is defined
in the set of the FP numbers such that the diagram commutes. Consequently,
the same result is obtained if the real numbers a and b get transformed in
their FP representation and then operating on them in the set of FP numbers,
or if the operation is carried out in the set of real numbers and subsequently
transform the achieved result in its FP representation (left part of Figure

11



12 Introduction

Figure 2.1: Analogy between the floating point representation of real numbers
in a computer environment (left figure) and the introduction of the algebra
of Taylor polynomials in the differential algebraic framework (right figure).
Image from [27], as well [42] [3]

2.1). In an analogous way, suppose that two different, sufficiently regular,
functions f and g are given. In the framework of DA, the computer operates
on them by using their Taylor series expansions, referred respectively as F
and G. Therefore, the transformation of real numbers in their FP represen-
tation is now substituted by the extraction of the Taylor expansion of f and
g up to a selected m order. For each operation in the function space, an
adjoint operation in the space of Taylor polynomials is defined such that the
corresponding diagram commutes. Therefore, the same result is achieved by
extracting the Taylor expansions of f and g and operating on them in the set
of Taylor polynomial, as well as operating on f and g in the original space
and then extracting the Taylor expansion of the resulting function.

Differential algebra has the strength of being effectively implementable
in a computer environment. In this way, the Taylor series coefficients of a
function can be obtained up to an arbitrary and specified order m, along
with the relative function evaluation, with a fixed amount of effort. The
Taylor coefficients of any order for sums and product of functions, as well as
scalar products with reals, can be computed from those of summands and
factors; therefore, the set of equivalence classes of functions can be endowed
with well-defined operations, leading to the so-called truncated power series
algebra (TPSA) [6] [7] .

Similarly to the algorithms for floating point arithmetic, the algorithm for
functions followed, including methods to perform composition of functions,
to invert them, to solve nonlinear systems explicitly, and to treat common
elementary functions [4] [5] .

In addition to these algebraic operations, the DA framework is endowed
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with differentiation and integration operators, therefore finalizing the defini-
tion of the DA structure. In the following, the minimal differential algebra
for 1-dimensional functions and their first order expansion is explained in
details, and some hints on its extension to functions of v variables and to
n-th order are given.

2.2 The Minimal Differential Algebra

The simplest non-trivial differential algebra is here described. Consider all
ordered pairs (q0, q1), with q0 and q1 in the set of real numbers. The addiction,
scalar multiplication, and vector multiplication are defined as follows.

(q0, q1) + (r0, r1) = (q0 + r0, q1 + r1)

t · (q0, q1) = (t · q0, t · q1) (2.1)

(q0, q1) · (r0, r1) = (q0 · r0, q0 · r1 + q1 · r0)

The ordered pairs with the arithmetic are called 1D1. The first two equations
are the familiar vector space structure of R2, whereas the multiplication
is similar to the one in the complex number domain; except here (0, 1) ·
(0, 1) is equal to (0, 0) rather then (−1, 0). The multiplication of vectors is
seen to have (1, 0) as the unity element. Furthermore, the multiplication
is associative, commutative, and distributive w.r.t the addition. Together,
the three operations defined in (2.1) form an algebra. Furthermore, they
do form an extension of real numbers, as (r, 0) + (s, 0) = (r + s, 0) and
(r, 0) · (s, 0) = (r · s, 0), so that the reals can be included.

However, 1D1 does not present all the characteristics of a field, since
(q0, q1) has an inverse in 1D1 if and only if q0 6= 0. Thus, if q0 6= 0, then

(q0, q1)−1 =

(
1

q0

,−q1

q2
0

)
. (2.2)

If q0 is positive, then (q0, q1) ∈ 1D1 has a root defined by√
(q0, q1) =

(
√
q0,

q1

2
√
q0

)
(2.3)

just as simple arithmetic shows. One of the most important aspects of this
algebra is that it has encoded an order compatible with its algebraic opera-
tions. Given two elements (q0, q1) and (r0, r1) in 1D1, it is defined as

(q0, q1) < (r0, r1) if q0 < r0 or (q0 = r0 and q1 < r1)

(q0, q1) > (r0, r1) if (r0, r1) < (q0, q1) (2.4)

(q0, q1) = (r0, r1) if q0 = r0 and q1 = r1
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As for any two elements (q0, q1) and (r0, r1) in 1D1 only one of three relation
holds, therefore 1D1 is said to be totally ordered. The order is compatible
with the addition and multiplication; for all (q0, q1), (r0, r1), (s0, s1) ∈ 1D1,
it follows (q0, q1) < (r0, r1) ⇒ (q0, q1) + (s0, s1) < (r0, r1) + (s0, s1); and
(s0, s1) > (0, 0) = 0⇒ (q0, q1) · (s0, s1) < (r0, r1) · (s0, s1).

The number d = (0, 1) has the interesting property of being positive but
smaller than any positive real number, indeed

(0, 0) < (0, 1) < (r, 0) = r (2.5)

Due to this reason, d is called an infinitesimal or a differential. In fact,
d is such a small number that its square vanishes in 1D1. Since for any
(q0, q1) ∈ 1D1

(q0, q1) = (q0, 0) + (0, q1) = q0 + dq̇1 (2.6)

the first component is called the real part while the second component takes
the name of differential part.

The algebra developed in 1D1 becomes a differential algebra with the
introduction of a map ∂ from 1D1 to itself, and it can be proven that the
map is a derivation. Define ∂ : 1D1 → 1D1 by

∂(q0, q1) = (0, q1) (2.7)

Note that

∂{(q0, q1) + (r0, r1)} = ∂(q0 + r0, q1 + r1) = (0, q1 + r1)

= (0, q1) + (0, r1) = ∂(q0, q1) + ∂(r0, r1) (2.8)

and

∂{(q0, q1) · (r0, r1)} = ∂(q0 · r0, q0 · r1 + r0 · q1) = (0, q0 · r1 + r0 · q1)

= (0, q1) · (r0, r1) + (0, r1) · (q0, q1)

= {∂(q0, q1)} · (r0, r1) + (q0, q1) · {∂(r0, r1)} (2.9)

These two identities hold for every (q0, q1), (ro, r1) ∈ 1D1. Therefore ∂ is a
derivation and (1D1, ∂) is a differential algebra.

It is important to point out what is the most relevant aspect of 1D1: it
allows the automatic computation of the derivatives. In order to show this
fundamental feature, assume two functions f and g; put their values and
their derivatives at the origin in the form of (f(0), f ′(0)) and (g(0), g′(0)) as
two vectors in 1D1; then consider the product

(f(0), f ′(0)) · (g(0), g′(0)) = (f(0) · g(0), f(0) · g′(0) + f ′(0) · g(0)) (2.10)
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As can be seen, if the derivative of the product f · g is of interest, it is suffi-
cient just to look at the second component of the resulting pair in Equation
(2.10); whereas the first component gives the value of the product of the two
functions. Therefore, if two vectors contain the values and the derivatives of
two functions, their product contains the values and the derivatives of the
product function.

Defining the operator [ ] from the space of differential functions to 1D1

via
[f ] = (f(0), f ′(0)) (2.11)

it holds

[f + g] = [f ] + [g] (2.12)

[f · g] = [f ] · [g] (2.13)

[1/g] = [1]/[g] = 1/[g] (2.14)

by using Equation (2.2). This observation leads to the ability to compute
derivatives of different kinds of functions algebraically just by merely apply-
ing arithmetic rules in 1D1, beginning from the value and the derivative of
the identity function.

The following example is now offered: consider the function

f(x) =
1

x+
1

x

(2.15)

and its derivative

f ′(x) =
(1/x2)− 1

(x+ (1/x))2
(2.16)

The function values and the relative derivatives at point x = 3 are

f(3) =
3

10
, f ′(3) = − 2

25
(2.17)

Evaluating function (2.15) at the ordered pair corresponding to the identity
function, i.e. [x] = (x, 1), at point 3, i.e. (3, 1) = 3 + d, yields

f((3, 1)) =
1

(3, 1) + 1/(3, 1)
=

1

(3, 1) + (1/3,−1/9)

=
1

(10/3, 8/9)
=

(
3

10
,−8

9
/

100

9

)
=

(
3

10
,− 2

25

)
(2.18)

As the equation shows, after the function evaluation, the real part of the
result is the value of the function at x = 3, whereas the differential part is
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the value of the derivative of the function at x = 3. This is simply justified
by applying the relations (2.12),(2.13) and (2.14).

[f(x)] =

[
1

x+ 1/x

]
=

1

[x+ 1/x]

=
1

[x] + [1/x]
=

1

[x] + 1/[x]

= f([x]) (2.19)

Since, for a real number x, [x] = (x, 1) = x + d, and [f(x)] = (f(x), f ′(x)),
apparently

(f(3), f ′(3)) = f((3 + d)) (2.20)

The method can be generalized to allow the treatment of common intrinsic
functions, like trigonometric or exponential functions, by setting

gi([f ]) = [gi(f)] or

gi((q0, q1)) = (gi(q0), q1g
′
i(q0)) (2.21)

Therefore, by virtue of Equations (2.1) and Equation (2.21) any function f
representable by finitely many additions, subtractions, multiplications, divi-
sions, and intrinsic functions in 1D1 satisfies the important relationship

[f(x)] = f([x]) (2.22)

Moreover, note that f(r+ d) = f(r) + d · f ′(r) resemble f(x+ ∆x) ≈ f(x) +
∆x ·f ′(x), in which the approximation becomes increasingly more refined for
smaller ∆x.

2.3 The Differential Algebra nDv

The algebra described in this section is introduced to compute the derivatives
up to an order n of a function with v variables. Similarity as before, it is
based on considering the space Cn(Rv), i.e. the collection of n times continu-
ously differentiable functions on Rv. For this space an equivalent relation is
introduced. For any f and g ∈ Cn(Rv), f =n g if and only if f(0) = g(0) and
all the partial derivatives of f and g agree at 0 up to order n. The relation
=n satisfies

f =n f ∀ f ∈ Cn(Rv)

f =n g ⇒ g =n f ∀ f, g ∈ Cn(Rv) (2.23)

f =n g and g =n h⇒ f =n h ∀ f, g, h ∈ Cn(Rv)

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



CHAPTER 2: Differential Algebra 17

Thus, =n is an equivalence relation and a new set can be created: the equiv-
alence class [f ] of the function f , which groups together all the elements that
are related to f . The resulting equivalence classes are often referred to as
DA vectors or DA numbers. Intuitively, each of these classes is then specified
by a particular collection of partial derivatives all in v variables up to order
n. This class is called nDv.

If the values and the derivatives of the two functions f and g are known,
the corresponding values and derivatives of f + g and f · g can be inferred.
Therefore, the arithmetic on the classes in nDv can be introduced via

[f ] + [g] = [f + g] (2.24)

t · [f ] = [t · f ] (2.25)

[f ] · [g] = [f · g] (2.26)

Under this operations, nDv becomes an algebra.
For each k ∈ 1, . . . , v define the map ∂k from nDv to nDv for f via

∂k[f ] =

[
pk ·

∂f

∂xk

]
(2.27)

where
pk(x1, . . . , xk) = xk (2.28)

projects out the k -th component of the identity function. It is easy to show
that, for all k = 1, . . . , v and for all [f ], [g] ∈ nDv,

∂k([f ] + [g]) = ∂k[f ] + ∂k[g] (2.29)

∂k([f ] · [g]) = [f ] · (∂k[g]) + [g] · (∂k[f ]) (2.30)

Therefore, ∂k is a derivation for all k, and hence (nDv, ∂1, . . . , ∂k) is a differ-
ential algebra.

The dimension of nDv is now assessed. Define the special numbers dk as
follows:

dk = [xk] (2.31)

Observe that f lies in the same class as its Taylor polynomial Tf of order n
around the origin; they have the same function values and derivatives up to
order n. Therefore,

[f ] = [Tf ] (2.32)

Denoting the Taylor coefficients of the Taylor polynomial Tf of f as cj1,...,jv ,
it follows

Tf (x1, . . . , xv) =
∑

j1+···+jv≤n

cj1,...,jv · x
j1
1 · · · xjvv (2.33)
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with

cj1,...,jv =
1

j1! · · · jv!
· ∂j1+···+jvf

∂xj11 · · · ∂x
jv
v

(2.34)

and thus

[f ] = [Tf ] =

[ ∑
j1+···+jv≤n

cj1,...,jv · x
j1
1 · · · xjvv

]

=
∑

j1+···+jv≤n

cj1,...,jv · d
j1
1 · · · djvv (2.35)

where, in the last step, the properties of Equations (2.24) and (2.26) have
been used. Therefore, the set {1, dk : k = 1, 2, . . . , v} generates nDv, as
any element of nDv can be obtained from 1 and the dk via addition and
multiplication. Therefore, as an algebra, nDv has (v+ 1) generators, and the
terms dj11 · · · djvv form a basis for the vector space nDv. It is shown in [28]
that the number of basic elements is defined in the following equation, which
defines the dimension of nDv.

N =
(n+ v)!

n!v!
(2.36)

Similarly to the structure 1Dv, nDv can be ordered, and the dk, being smaller
than any other real number, are infinitely small or infinitesimal. Furthermore,
a fixed point theorem for contracting operations in nDv exists, which enables
the evaluation of the square roots, the quotient, and the inversion of Taylor
polynomials through iterative process based on a finite number of steps [28].
Once the function composition and the elementary functions, like trigono-
metric or exponential functions, are introduced in nDv, the derivatives of any
function f belonging to Cn(Rv) can be computed up to order n in a fixed
amount of effort by applying

[f(x1, . . . , xv)] = f([x1, . . . , xv]) = f(x1 + d1, . . . , xv + dv) (2.37)

The differential algebra sketched in this section was implemented by M. Berz
and K. Makino in the software COSY INFINITY [30]. The filter presented
in this thesis have been implemented using the “Differential Algebra Compu-
tational Engine”, DACE software. The DACE module is composed by three
different sub-modules: the DACE Fortran core, the C++ interface, and the
Matlab interface (see [35]).
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CHAPTER 3

Moments Propagation
Techniques

The covariance is the main parameter that is adopted to describe how the
distribution of points is spread around their mean value [38] [44] [40]. The
analysis of the covariance ellipse gives information about the system time
behaviour and also about how the system state responds to a transformation.
By describing the distribution of points by only the mean and covariance, it
is assumed a Gaussian distribution, characteristic that is no more valid after
a nonlinear transformation.

Within any filtering process, the state of the system undergoes a trans-
formation, and this propagation is often nonlinear. The transformation of
the covariance is then one of the most critical filtering steps: given a set
of random points whose distribution is accurately described by their mean
and covariance, the distribution resulting from their mapping through the
nonlinear transformation cannot be exactly described by providing only its
mean and covariance.

This chapter describes how different techniques try to propagate the co-
variance under nonlinear transformations. The Monte Carlo method (MC) is
used as benchmark for the assessment of the performance of the linearization,
the propagation with DA, and the Unscented Transformation (UT).

3.1 Uncertainty Propagation

Suppose x is a random variable with mean x̄ and covariance Pxx. A second
variable y is related to x through the nonlinear function f , i.e.

y = f [x] (3.1)

19



20 Uncertainty Propagation

The aim is to see how different methods such as MC, Linearization, DA and
UT calculate the mean ȳ and the covariance Pyy.

The nature of f [·] is the driver to calculate the statistics of y by deter-
mining the density function of the transformed distribution and evaluating
the statistics from that distribution. In the case of a linear function, the ex-
act close solution can be derived. However, such solutions may be inaccurate
since many applications have to deal with high non-linearities in the transfor-
mation function. Therefore some approximate methods must be used: these
methods should be efficient and unbiased and they should yield consistent
statistics. A performance analysis is mandatory before the description of how
different filters work in order to have a clear idea of the covariance propaga-
tion concepts these methods are based on.

The transformed statistics are consistent if the equality

Pyy − E[{y − ȳ}{y − ȳ}T ] > 0 (3.2)

holds, where E[·] represents the expected value. If the statics are not consis-
tent, then the value of the transformed covariance is under-estimated; hence,
this is such an important propriety for the validity of the transformation
method. A Kalman filter that uses an inconsistent set of statistics will give
too much weight on the information and, as a consequence, it will under es-
timate the covariance, leading the filter to the strong possibility of diverging.
Ensuring that the transformation is consistent guarantees that the filter will
be consistent as well. However, consistency does not necessarily imply accu-
racy since the calculated value of Pyy might greatly exceed the actual error.
Therefore, it is better, and desirable, to work with an efficient transformation
that minimises the left hand side of Equation (3.2). Moreover, it is desirable
that the estimate is unbiased.

A common test case is adopted in the following sections to compare the
results of different propagation techniques. The selected example is the same
used by Julier and Uhlmann in [22] [23] since it is both simple and generates
a highly nonlinear density function of the transformed points distribution.

A mobile robot detects beacons in its environment using a range-optimised
sonar sensor. The sensor returns the polar information, thus the range r and
the bearing θ, and these information are sent to be converted to Cartesian
coordinates. Therefore the transformation is:(

x
y

)
=

(
r cos θ
r sin θ

)
High Orders Filters for Relative Pose Estimation of an Uncooperative Target



CHAPTER 3: Moments Propagation Techniques 21

The real location of the target is (0, 1) . This sonar has a fairly good range
accuracy, with a standard deviation of 2 cm, which is traded off to give a very
poor bearing measurement, with a standard deviation of 15◦. The difficulty
of the transformation is here enhanced because the sonar physical proprieties,
especially the large bearing uncertainty, do not make possible the assumption
of local linearity.

3.2 Monte Carlo

Monte Carlo methods are a broad class of computational algorithms that rely
on repeated random sampling to obtain numerical results. Their essential
idea is using randomness to solve problems that might be deterministic in
principle. The general idea is to use a statistical analysis on an high number
of samples to study how the system responds to uncertainties on its variables.
The drawback of MC methods is that they require strong computational work
and thus they are not so efficient in problems such as filtering where time
is one of the key drivers. However, MC is here used as benchmark for the
problem of uncertainty propagation: as it is able to provide accurate values
for the mean and covariance if a proper number of samples is used.

Referring to the sonar example, MC method generates a random distri-
bution of points once the mean and the standard deviations of x are given.
Then, each single point is transformed according to the function rules and
the mean and the covariance are evaluated on the resulting distribution of
samples. As expected, this method can work in an efficient way only for sim-
ple functions since the propagation of each sample would require a significant
computational time in the propagation of dynamical systems, as required in
the filtering process. The MC method has been applied to the sonar problem
and Figure 3.1 shows the transformed sampling points distribution (a total
of 1e6 samples have been used) and the corresponding location of the mean
with the relative covariance ellipse at 1σ. The 1σ contour is the locus of point
where the Equation y : {(y − ȳ)P−1

y (y − ȳ) = 1} is satisfied and it is a good
graphical representation of the size and orientation of Pyy. The location of
the points shows how this specific example perfectly suits the problem of the
impossibility to apply the local linearity assumption since the distribution is
highly asymmetric.
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Figure 3.1: Monte Carlo Method 1e6 points: mean and 1σ covariance

3.3 Linearization

The first, and most intuitive solution that comes in mind when dealing with
uncertainty propagation is to perform a local linearization in the area of
the points to be propagated in order to try to reduce the computational
burden of the propagation. Usually, the mean x̄ is used as a reference point
for the Taylor expansion. The problem of developing a consistent, efficient
and unbiased transformation procedure can be seen by looking at the Taylor
expansion of Equation (3.1) about x̄. The series is expressed by Equation
(3.3) where δx is a zero mean Gaussian variable with covariance Pxx.

f = f [x̄ + δx]

= f [x̄] +
1

2
∇2f

∣∣∣
x̄
δx2 +

1

3!
∇3f

∣∣∣
x̄
δx3 +∇4f

∣∣∣
x̄
δx4 + ... (3.3)

Each ∇nfδxn term represents the appropriate nth order term in the multi-
dimensional Taylor Series. At this point, variable y can be calculated and
expressed in terms of mean and covariance by evaluating expectation of the
Taylor series. It can be shown that:

ȳ = f [x̄] +
1

2
∇2f

∣∣∣
x̄
Pxx +

1

2
∇4f

∣∣∣
x̄
E[δx4] + ... (3.4)

Pyy = ∇f
∣∣∣
x̄
Pyy(∇f

∣∣∣
x̄
)T +

1

2 · 4!
∇2f

∣∣∣
x̄
(E[δx4]− E[δx2Pyy]− E[Pyyδx

2]+

+P2
yy)(∇2f

∣∣∣
x̄
)T +

1

3!
∇3f

∣∣∣
x̄
E[δx4](∇f

∣∣∣
x̄
)T + ... (3.5)
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Equation (3.3) shows how the nth order term in the series for x̄ is a function
of the nth order moments of x multiplied by the nth order derivatives of
f [·] evaluated at x = x̄. If the moments and derivatives can be evaluated
correctly up to the nth order, then the mean is correct up to the nth order
as well. This is the power of the DA, which can compute the Taylor series up
to an arbitrary order and then tune the accuracy of the resulting polynomial.
The same reasoning works for the covariance as well.

If the Taylor series converges, each term has an impact on the computed
moments that decreases with the order: the lowest order terms in the series
are likely to have the greatest influence since higher order terms tend to have
smaller coefficients as the series order increases.

The linearization technique assumes that the second order terms of δx in
Equation (3.3) can be neglected. Under this assumption, the relations that
connect the mean and the covariance of variable x (before the transformation)
to variable y (after the transformation) are expressed by Equation (3.6) and
Equation (3.7).

ȳ = f [x̄] (3.6)

Pyy = ∇fPxx(∇f)T (3.7)

By comparing Equations (3.6) and (3.7) with Equations (3.4) and (3.5) it
is clear that the linearization method, with its approximations, is accurate
only if the second and higher orders terms for the mean, and the fourth and
higher order terms for the covariance, are negligible.

Figure 3.2: Mean and Covariance propagation with Linearization Method
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As can be seen in Figure 3.2, the linearized transformation is not capable
of accurately describing the covariance of the sample points distribution after
the transformation. The figure shows a result inconsistent and biased: this
bias is mostly in the range direction, since the linearized mean estimates a
position at y = 1 whereas in reality it is at y = 0.967. The bias error, which
arises from the transformation process itself, means that the same error, with
the same sign, will be committed each time a coordinate transformation takes
place. Moreover, the error associated the linearization is over 1,5 times the
standard deviation of the range measurement. Looking at the shape of the 1σ
line, it can be seen that the transformation is inconsistent even if there would
be no bias. The covariance ellipse is not long enough in the range direction:
therefore, the estimate error is not only localized in the mean position, but it
influences also the mean squared error, which is much smaller than the true
value.

The Kalman Filter (KF) can be applied to nonlinear systems only if a
consistent set of predicted quantities can be calculated. These quantities
are derived by projecting the prior estimate through the dynamical system
whose state is to be estimated. Thus, the linearization, as applied in the
EKF, can be inadequate for highly nonlinear systems, however, the alterna-
tive approaches tend to show higher and often unaffordable computational
complexity Therefore, there is a strong need for a method that is provably
more accurate than linearization but, at the same time, does not increase
drastically the computational burden. The EKFDA and UKFDA have been
developed to meet these needs.

3.4 Differential Algebra

Differential algebraic (DA) techniques [16] [43] are a valuable tool to obtain
a higher-order, computationally efficient filter. By enabling the computation
of Taylor expansions of arbitrary order, DA is able to operate directly on
Equations (3.4) and (3.5), without introducing the limitation of truncating
the expansion to the first order. In fact, the linear propagation described in
the previous section can be seen as a special case of the more general DA
approach, i.e. the one corresponding to order m = 1. The accuracy of the
Taylor expansion can be kept arbitrarily high by adjusting the expansion
order.

Thanks to its properties, DA can be exploited to compute the moments of
the transformed probability density function (e.g., mean, covariance, skew-
ness, and kurtosis) by applying the expectation operation to the polynomial
maps [43] [16]. In the restricted case of variables with Gaussian random
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distributions, the moments can be completely described by the first two mo-
ments (i.e. mean and covariance) and can be easily computed in terms of
the covariance matrix using Isserlis formula on the monomials of the Taylor
polynomial [18].

Considering the random variable x with a probability density function
p(x) and the second variable y related to x according Equation (3.1), the
problem is to calculate a consistent estimate of the main cumulants of the
transformed probability density function p(y). As said before, since f is a
generic nonlinear function, this formulation includes a wide range of problems
involving uncertainty propagation.

Define independent variable x as DA variable

[x] = x̄ + δx (3.8)

where x̄ is the initial mean, and implement the non linear transformation in

kDn (see Chapter 2). The result is the Taylor expansion of the initial solution
with respect to deviation δx of the independent variable

[y] = f([x]) = ȳ +My(δx) =
∑

p1+···+pn≤k

cp1...pn · δx
p1
1 · · · δxpnn (3.9)

where ȳ is the zeroth order term of the expansion map, and cp1...pn are the
Taylor coefficients of the resulting Taylor polynomial

cp1...pn =
1

p1! · · · pn!
· ∂p1+···+pn

∂xp11 · · · ∂x
pn
n

(3.10)

Note that the case k = 1 corresponds to the ordinary first order statistic
propagation (i.e. the approximation corresponding to the linearized model)
where cp1...pn are elements of the well-known state transition matrix. The
evaluation of Equation (3.9) for a selected value of δx supplies the kth order
Taylor approximation of the solution y corresponding to the displaced inde-
pendent variable. Of course, the accuracy of the expansion map is function
of the expansion order and can be controlled by tuning it. Working in kDn

allows the computation of derivatives up to order k of functions in n variables
and the approximation of the original function in the space of Taylor poly-
nomials. Thus, contrary of other methods such the UT (that are founded on
the assumption that it is easier to approximate a probability density func-
tion that it is to approximate an arbitrary nonlinear function) the starting
point and the foundation of DA is the straightforward approximation of the
function itself.
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Equation (3.9) is used to efficiently compute the propagated statistics
by introducing the Taylor polynomial in the definition of mean value µ and
covariance P;

µi = E[yi] =
∑

p1+···+pn≤k

ci,p1...pnE
[
δxp11 · · · δxpnn

]
(3.11)

Pij = E[(yi − µi)(yj − µj)] =
∑

p1+···+pn≤k
q1+···+qn≤k

ci,p1...pncj,q1...qnE
[
δxp1+q1

1 · · · δxpn+qn
n

]
(3.12)

where ci,p1...pn are the Taylor coefficients of the Taylor polynomial describing
the ith component of y. Note that in the covariance matrix formula the coeffi-
cients ci,p1...pn and cj,q1...qn already include the subtraction of the means terms.

Figure 3.3 shows the DA technique applied to the sonar example. After
having initialized variable x, i.e. range and bearing, as DA variables, the
variable is now written into its Taylor expansion to the arbitrary selected
order. The transformation (Equation (3.1)) is performed and the moments
are evaluated. Figure 3.3 is the representation of how DA is able to cal-

Figure 3.3: Comparison of the mean and covariance computed with the lin-
earization approach and the application of DA

culate the first two moments, i.e. mean and covariance, with second order
accuracy. The accuracy of the mean location is further improved respect the
simple linearization case. Moreover, the covariance ellipse at 1σ is now able
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to represent the correct value even in the range direction, where the lineariza-
tion method was ineffective. The solution presented by DA is coherent and
consistent, without the presence of any bias error.

3.5 The Unscented Transformation

The Unscented transformation (UT) is a method to propagate the statistics
of a random variable under a nonlinear transformation [46] [22] [45] [21] [23]
[20] [41] [39]. The UT is founded on the intuition that it is easier to approx-
imate a Gaussian (probability) distribution than to approximate an arbitrary
nonlinear function or transformation (see [22], [21] and [23]). Following this
statement, looking at Figure 3.4, the aim of the UT is to find a parametriza-
tion which accurately describes the mean and the covariance information of
the initial variable x and that, at the same time, permits the direct propaga-
tion of the information through the set of nonlinear equations (e.g. functions,
transformations,..). This aim can be achieved by generating a discrete dis-

Figure 3.4: Representation of the Unscented Transformation (UT)

tribution of points, the so-called sigma points, so that they have the same
first and second (hopefully even higher [34]) moments matched to x̄ and Pxx.
The nonlinear function (3.1) is then applied to each sigma point. The mean
and the covariance of the transformed points distribution ȳ and Pyy are then
computed as the estimate of the sigma points distribution after the propaga-
tion. At a first sight, this method might resemble the Monte Carlo one (or
even a particle filter) but there is an extremely important and fundamental
difference. The sigma points are not drawn at random location, but their
position is ruled according to a specific and deterministic algorithm based on
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the value of the moments. As a result,the non linearity of the distribution
is captured using only a fixed, small number of points. Moreover, the sigma
points are weighted through parameters in a way that makes them inconsis-
tent with the distribution interpretation of sample points in a particle filter.
The weight of a sigma point does not have to lie in the range [0, 1] as for the
sample points of the particle filters.

The n-dimensional variable x with mean x̄ and covariance Pxx is approx-
imated by a set of 2n+1 sigma points. This is the minimal number of points
capable of encoding this information. The creation of a bigger set of sigma
points is often used in filtering due to the consequent increase of robustness
in the Unscented Kalman Filter [45]. A random sampling of points from the
distribution, on the other hand, will generally introduce spurious modes in
the transformed distribution even if the set of sample points has the correct
mean and covariance. In a filtering application these modes will take the
form of high frequency noise that may completely obscure the signal.

Being X the 2n + 1 long sigma points vector of the n-dimensional x
variable, and w the correspondent weight vector; their selection must be
such that the following Equations are respected:

2n∑
i=0

w[i] = 1 (3.13)

x̄ =
2n∑
i=0

w[i]X [i] (3.14)

Pxx =
2n∑
i=0

w[i](X [i] − x̄)(X [i] − x̄)T (3.15)

Therefore, there is no unique solution for the sigma points vector and the
weights vector. One possibility is to chose the first sigma point as the mean
and the remaining ones as indicated in Equations (3.17) and (3.18).

X [0] = x̄ (3.16)

X [i] = x̄ + (
√

(n+ λ)Pxx )i i = 1, ..., n (3.17)

X [i] = x̄− (
√

(n+ λ)Pxx )i−n i = 1, ..., n (3.18)

In Equations (3.18) and (3.17), λ is a scaling parameter that will be later
explained, while (

√
(n+ λ)Pxx )i is the ith row or column of the matrix

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



CHAPTER 3: Moments Propagation Techniques 29

square root of (n + λ)Pxx. Defining S as Pxx = SS, the matrix square root
is computed through diagonalization.

Pxx = VDV−1

= V

d11 . . . 0

0
. . . 0

0 . . . dnn

V−1

= V


√
d11 . . . 0

0
. . . 0

0 . . .
√
dnn



√
d11 . . . 0

0
. . . 0

0 . . .
√
dnn

V−1

(3.19)

Therefore, with the definition of Equation (3.20) it is possible to get the
matrix square root from the knowledge of the covariance matrix.

S = V


√
d11 . . . 0

0
. . . 0

0 . . .
√
dnn

V−1 (3.20)

So that:
SS = (VD1/2V−1)(VD1/2V−1) = Pxx (3.21)

In this thesis the Cholesky Matrix Square Root is adopted. The Cholesky
decomposition (see Appendix) asks for a (theoretically) symmetric positive
definitive matrix as input for the root evaluation: the result is numerically
stable and thus this decomposition is often used in UKF implementation.
This formulation can be generalised by exploiting the freedom to choose
which of the infinite number of possible square roots to use. The freedom
to choose an arbitrary matrix square root comes from the fact that any
square root can be found from any other root by applying an orthonormal
transformation [26]. If the original matrix is Pxx, then a matrix square root
L1 has the following property, which is another definition of the matrix square
root.

L1L1
T = Pxx (3.22)

It is important to point out that L1 and Pxx have the same eigenvectors.
However, if we define a second matrix square root L2 = L1U where U is an
orthonormal transformation, then

L2L2
T = (L1U)(L1U)T

= L1UUTL1
T

= L1L1
T (3.23)
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There are no restrictions on using orthogonal or symmetric matrix square
roots which are numerically sensitive and computationally expensive to find.
Rather, efficient and stable methods such as the Cholesky decomposition can
be used, especially for real time estimation where time is one of the main
drivers [39] [21].

In the UKF (and hence in the UKFDA) this passage is critical since
if something unforeseen happens during the computational iterations of the
computer, then the evaluation of matrix S is the point where the filter is most
likely to have stopped working. Each component of matrix S is evaluated
separately and a non-positive definitive covariance matrix leads to the root
of a negative number, which interrupts the algorithm (see Equation (A.2) in
the Appendix).

Once the matrix S has been obtained, the sigma points position can be
evaluated. The sigma points can (but do not have to) lie on the main axes
of Pxx.

The weights are different if they are referred to Equation (3.14), i.e. the
mean, or Equation (3.15), i.e the covariance. Therefore, there will be two
different weights vectors wm and wP , one for each moment.

wm
[0] =

λ

n+ λ
(3.24)

wP
[0] = wm

[0] + (1− α2 + β) (3.25)

wm
[i] = wm

[i] =
1

2(n+ λ)
i = 1, ..., 2n (3.26)

Since there is no unique solution, the parameters are free to choose but with
some restrictions. The first parameter is k ≥ 0, and along with α ∈ (0, 1], it
defines how far from the mean the sigma points are located: in each analysis
reported on this thesis the values of k = 3 and α = 0.25 have been selected.
Parameter k is positive because a negative choice can lead to a non-positive
semi-definite estimate of Pyy. Then, there is β which is typically equal to
2 since this value is the optimal choice for Gaussian distributions [39]. The
last parameter, λ, is a combination of the others.

λ = α2(n+ k)− n (3.27)

The first and second moment propagation can now be performed following
the presented procedure. At first each point is instantiated through the
function in Equation (3.1) to yield the set of transformed sigma points.

Y [i] = f [X [i]] (3.28)
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The mean of y is given by the weighted average of the transformed sigma
points.

ȳ =
2n∑
i=0

w[i]
mY [i] (3.29)

The covariance is the weighted outer product of the transformed sigma points.

Pyy =
2n∑
i=0

w
[i]
P (Y [i] − ȳ)(Y [i] − ȳ)T (3.30)

The mean and the covariance of x are captured precisely up to the second
order, therefore the calculated values of mean and covariance of y are correct
to the second order as well, Figure 3.5. This means that the accuracy of
the representation of the mean is higher with respect to the linearization
case, therefore the UKF will present better performances with respect to
the EKF. Moreover, since the UT approximates the distribution of x rather
than f [·], and thus there is no truncation of the series at a particular order,
the unscented algorithm is able to partially incorporate information from the
higher orders (see [34] for possible skewness and kurtosis matching).

The UT calculates the first two moments using standard vectors and
matrix operations. Consequently the algorithm is suitable for any choice of
process model, with a rapid implementation that avoids the evaluation of the
Jacobians which are needed in an EKF.

In Figure 3.5, the UT is applied to the sonar example. The results are
similar to the DA case which means that the UT correctly approximates
moments with the same accuracy. The position of the unscented mean value
is the same as the true value (on the figure the two points are one on top the
other). Furthermore, the UT is consistent, indeed 1σ covariance contour is
only slightly larger.
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Figure 3.5: Comparison of the mean and covariance computed with the lin-
earization approach and the application of the UT
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CHAPTER 4

Nonlinear Filtering

This chapter is devoted to introduce the algorithm of the high-order DA-
based extended Kalman filter EKFDA and the algorithm for the classical
and DA-based Unscented Kalman filter. A first assessment of the filters
performance is provided on an orbit determination problem in Keplerian
dynamics.

4.1 Filtering Statement

The equations of motion that describes the dynamical evolution of a space-
craft can be written in the following general form, where the system evolves
according to a discrete-time nonlinear state transition equation, Equation
(4.1). The only information about this system are its sequence of control
inputs and a set of measurements, which are acquired at discrete times. The
measurements are related to the state vector by Equation (4.2).

x(k + 1) = f [x(k),u(k), k] + v(k) (4.1)

z(k + 1) = h[x(k),u(k), k] + w(k) (4.2)

Where f [·, ·, ·] is the process model, x(k) is the m-dimensional state of the
spacecraft at time-step k, u(k+1) is the input vector and v(k) is the process
noise perturbing the spacecraft state, z(k+ 1) is the n-dimensional vector of
actual measurements at time-step k+1, h[·, ·, ·] is the measurement function,
and w(k + 1) is the measurement noise characterizing the observation error.
It is assumed that the process noise vector v and the measurement noise
vector w are Gaussian and form uncorrelated white sequences, E[v(k)] =
E[w(k)] = 0, with the following autocorrelations for all discrete time-steps i
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and j.

E[v(i)vT (j)] = Q(i)δij ∀ i, j (4.3)

E[w(i)wT (j)] = R(i)δij ∀ i, j (4.4)

E[v(i)wT (j)] = 0 ∀ i, j (4.5)

The Kalman filter propagates the first two moments of the distribution of x
recursively with a distinctive “prediction-correction” structure [36] [11]. Us-
ing Julier’s and Ulhmann’s notation ([21] [22] [19]), let x̂(i|j) be the estimate
of x(i) using the observation information up to an including time j, and
Zj = [z(1), . . . , z(j)]. The conditional covariance of the estimate is P(i|j).
Given an estimate of the spacecraft state x̂(k|k), the filter predicts what the
future state will be using the process model. The predicted quantities are so
calculated.

x̂(k + 1|k) = E
[
f [x(k),u(k), k] + v(k)|Zk

]
(4.6)

P(k + 1|k) = E
[
{x(k + 1)− x̂(k + 1|k)}{x(k + 1)− x̂(k + 1|k)}T |Zk

]
(4.7)

Generally f [·] and h[·] are nonlinear, hence they challenge the precise propa-
gation of the statistics of x(k). In this thesis it is assumed that the distribu-
tion of x(k) is Gaussian and completely parametrised by just the mean and
the covariance.

First, the current state and the associated covariance are transformed
through the state transition and the observation equations. These values
x̂(k + 1|k) and P(k + 1|k) are the predicted quantities since they represent
the estimation of the state of the system at time k + 1 given the knowledge
of all observations up to time k. In the second step, the update, the system
is observed at time k+ 1 and the filter uses the observation information (the
measurements) to correct the predicted quantities, producing the estimate
x̂(k + 1|k + 1) and P(k + 1|k + 1).

As far as the two DA-based filters introduced in this work are concerned,
they both use the update equations of a classical Kalman filter. They differ
instead by the way the prediction step is performed. The update equations
are:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)n(k + 1) (4.8)

P(k + 1|k + 1) = P(k + 1|k)−K(k + 1)Pzz(k + 1)KT (k + 1) (4.9)

Where vector n(k+ 1) is the innovation, which is evaluated as the difference
between the actual observation at time k, z(k + 1), and the predicted mean
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observation ẑ(k + 1|k).

n(k + 1) = z(k + 1)− ẑ(k + 1|k) (4.10)

Furthermore, K(k+ 1) is the Kalman gain matrix, evaluated with the infor-
mation of the covariance matrix of the state measurements Pzz(k+ 1|k) and
the cross-covariance matrix of the state and the measurement Pxz(k + 1|k).

K(k + 1) = Pxz(k + 1|k)P−1
zz (k + 1|k) (4.11)

It can be seen that the update equations are only a function of the predicted
values of the first two moments of x(k) and z(k).

4.2 High Order Extended Kalman Filter

The high-order DA-based extended Kalman filter, here called EKFDA, uses
the representation of quantities such as the state vector and the measurement
vector in their Taylor series expansion to perform the prediction step [16].
The arbitrary choice of the filter order let the EKFDA work as a simple EKF
in the case of order 1. The prediction step works on the current state and
related covariance to estimate at time k+1 the mean and the covariance of the
state vector, x̂(k + 1|k) and P(k + 1|k), and the mean of the measurements,
ẑ(k + 1|k).

x̂i(k + 1|k) = E
[
fi[x(k),u(k), k] + vi(k)

]
(4.12)

Pij(k + 1|k) = E
[
{fi[x(k),u(k), k]− x̂i(k + 1|k) + vi(k)}·
· {fj[x(k),u(k), k]− x̂j(k + 1|k) + vj(k)}

]
(4.13)

ẑp(k + 1|k) = E
[
hp[x(k),u(k), k] + wp(k)

]
(4.14)

These equations, which recall Equations (4.6) and (4.7), are referred to the
singular vector component, where i, j = 1, . . . ,m and p = 1. . . . , n. The pre-
diction step, as it has been defined in this thesis, includes also the evaluation
of the cross-covariance matrix of the state and the measurement, and the
covariance matrix of the measurement (q = 1. . . . , n).

Pzz,pq(k + 1|k) = E
[
{hp[x(k),u(k), k]− ẑp(k + 1|k) + wp(k)}·
· {hq[x(k),u(k), k]− ẑq(k + 1|k) + wq(k)}

]
(4.15)

Pxz,ip(k + 1|k) = E
[
{fi[x(k),u(k), k]− x̂i(k + 1|k) + vi(k)}·
· {hp[x(k),u(k), k]− ẑp(k + 1|k) + wp(k)}

]
(4.16)
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In the classical EKF, the Taylor series expansions of the equations of motion
(4.1) and measurement (4.2) are linearized about the current estimate of the
mean:

x(k + 1) = x̂(k + 1|k) + A(k)δx(k) + w(k) (4.17)

z(k + 1) = h[x̂i(k + 1|k),u(k), k] + C(k)δx(k) + w(k) (4.18)

where δx(k) is deviation of the true trajectory from the estimated mean.

δx(k) = x(k)− x̂(k|k) (4.19)

x̂(k + 1|k) = f [x̂(k|k),u(k), k] (4.20)

Therefore, the equations of the prediction step can take advantage of the
linearity with respect to the state.

DA, on the other hand, can easily provide the Taylor series expansion up
to the selected order, both for f [·, ·, ·] and h[·, ·, ·]. Thus, DA can generalize
Equation (4.17) and (4.18) into the arbitrary order form.

xi(k + 1) = fi[x̂(k|k),u(k), k]+

+
c∑

r=1

1

r!
fγ1...γri,(k+1|k)δx

γ1
1 (k) . . . δxγrm (k) + vi(k) (4.21)

zp(k + 1) = hp
[
f [x̂(k|k),u(k), k],u(k), k

]
+

c∑
r=1

1

r!
hγ1...γrp,(k+1|k)·

· δxγ11 (k) . . . δxγrm (k) + wi(k) (4.22)

Where c is the order of the expansion and γi ∈ {1, . . . ,m}. Furthermore,
fγ1...γri,(k+1|k) includes the higher-order partials of the solution flow, which maps

the deviations from time k to time k + 1 and, in an analogue way, hγ1...γrp,(k+1|k)

includes the higher-order partials of the measurement function. These two
functions are both obtained by integration in the DA framework of the equa-
tions of motion and evaluating the measurement equation [16] [29] .

The two expansions (4.21) and (4.22) can be inserted into the prediction
equations ((4.12), (4.13), (4.14), (4.15), (4.16)) to predict the means and
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covariances.

x̂i(k + 1|k) = fi[x̂(k|k),u(k), k]+

+
c∑

r=1

1

r!
fγ1...γri,(k+1|k)E[δxγ11 (k) . . . δxγrm (k)] (4.23)

Pij(k + 1|k) =
c∑

r=1

c∑
s=1

1

r!s!
fγ1...γri,(k+1|k)f

ξ1...ξs
j,(k+1|k)·

· E[δxγ11 (k) . . . δxγrm (k)δxξ11 (k) . . . δxξsm(k)]+

− δx̂i(k + 1)δx̂j(k + 1) + Qij(k) (4.24)

ẑp(k + 1|k) = hp
[
f [x̂(k|k),u(k), k],u(k), k

]
+

+
c∑

r=1

1

r!
hγ1...γrp,(k+1|k)E[δxγ11 (k) . . . δxγrm (k)] (4.25)

Pzz,pq(k + 1|k) =
c∑

r=1

c∑
s=1

1

r!s!
hγ1...γrp,(k+1|k)h

ξ1...ξs
q,(k+1|k)·

· E[δxγ11 (k) . . . δxγrm (k)δxξ11 (k) . . . δxξsm(k)]+

− δẑp(k + 1)δẑq(k + 1) + Rpq(k + 1) (4.26)

Pxz,ip(k + 1|k) =
c∑

r=1

c∑
s=1

1

r!s!
fγ1...γri,(k+1|k)h

ξ1...ξs
p,(k+1|k)·

· E[δxγ11 (k) . . . δxγrm (k)δxξ11 (k) . . . δxξsm(k)]+

− δx̂i(k + 1)δẑp(k + 1) (4.27)

Where ξi ∈ {1, . . . ,m}; δx̂i(k + 1) = fi[x̂(k|k),u(k), k] − x̂i(k + 1|k); and
δẑp(k+1) = hp

[
f [x̂(k|k),u(k), k],u(k), k

]
−ẑp(k+1|k). Since the distribution

of the state has been assumed to be Gaussian, the moments can be completely
described by the first two moments and can be easily computed in terms of
covariance matrix using Isserlis’ formula on the monomials of the Taylor
polynomial.

Once the prediction step has been performed, the update step can be
carried out as described in the previous section.
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4.3 Unscented Kalman Filter

The Unscented Kalman Filter UKF relies its prediction step on the unscented
transformation. The state vector is often augmented with the process noise
term in order to increase the filter robustness, since the noise terms have well
known moments with null mean (Gaussian noise) [45]. This option leads to
the creation of additional sigma points, which means that the effects of the
process noise are introduced with the same order of accuracy as the uncer-
tainty in the state.
The UKF prediction starts with the set of sigma points, which is created
applying Equations (3.16), (3.17), and (3.18) to the given system, and their
relative weights, Equations (3.24), (3.25), and (3.26). The set gets trans-
formed by initializing each sigma point through the process model, giving
the transformed set.

X [i](k + 1|k) = f [X [i](k|k),u(k), k] (4.28)

The mean and the covariance of the propagated set is evaluated by weighting
each transferred sigma point.

x̂(k + 1|k) =
2m∑
i=0

w[i]
mX [i](k + 1|k) (4.29)

P(k + 1|k) =
2m∑
i=0

w
[i]
P {X

[i](k + 1|k)− x̂(k + 1|k)}·

· {X [i](k + 1|k)− x̂(k + 1|k)}T (4.30)

The same line of thinking is adopted for the measurement vector, where each
one of the prediction sigma points goes through the observation model, and
then the predicted measurements are calculated.

Z [i](k + 1|k) = h[X [i](k + 1|k),u(k), k] (4.31)

ẑ(k + 1|k) =
2m∑
i=0

w[i]
mZ [i](k + 1|k) (4.32)

And, since the observation noise is independent and additive, the covariance
matrix of the measurement and the cross-covariance matrix of the state and
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the measurement are so evaluated.

Pzz(k + 1|k) =
2m∑
i=0

w
[i]
P {Z

[i](k + 1|k)− ẑ(k + 1|k)}·

· {Z [i](k + 1|k)− ẑ(k + 1|k)}T + R(k + 1) (4.33)

Pxz(k + 1|k) =
2m∑
i=0

w
[i]
P {X

[i](k + 1|k)− x̂(k + 1|k)}·

· {Z [i](k + 1|k)− ẑ(k + 1|k)}T (4.34)

The UKF has completed its prediction process and can now use the update
equations for the correction part of the Kalman filters.

4.4 DA-based Unscented Kalman Filter

The UKF can be modified into the DA-based Unscented Kalman Filter, the
UKFDA. This filter provides an improvement by reducing the computational
time of the classical UKF when the equations of motion are particularly
complex. DA is used to Taylor expand the function f in Equation (4.20). As
a result, it builds an analytical map that connects the state at time k with the
state at time k + 1. The resulting polynomials can be evaluated to map the
sigma points through the model equations, by replacing then the evaluations
of f . Consequently, the DA-based approach tends to outperform the classical
one when the evaluation of f and h is computationally demanding. The order
at which the Taylor polynomial is computed can be arbitrarily selected.

More specifically, at each step, the state x is initialized as DA variable
around the current mean and propagated in the DA framework through the
equations of motions and of the measurements. Then the polynomials are
evaluated at the sigma points. The distance of each single sigma point is
known and given by the columns (or rows) of matrix S = ±

√
(n+ λ)P (see

Equations (3.17) and (3.18)). The sigma points are propagated by simply
evaluating the Taylor expansion at each column of S. As a results, the
UKFDA presents faster performances with respects to the UKF because f is
evaluated only once in the DA framework.

However, the introduction of the DA in the filter is useful only if the
problem has a certain level of complexity. If the process model f [·, ·, ·] is not
numerically complex, then the creation of the polynomial and the relative
sigma point evaluation could take longer than the direct propagation of the
2n+ 1 sigma points.
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Figure 4.1: The propagation of the sigma points in the UKF and UKFDA
approaches.

Figure 4.1 gives a visual idea of the different propagation technique used
by the two unscented Kalman filters.

4.5 Orbit Determination in Two-Body Dy-

namics

The performance of the different filters is here assessed on a test case: the
determination of the orbit of a spacecraft around the Earth. The equations
of motion governing the system are the ones associated to Keplerian dy-
namics, where r is the position vector of the spacecraft and µ is the Earth
gravitational parameter.

dṙ

dt
= − µ

r3
r (4.35)

The problem is taken from [16]. The initial true position and velocity as-
sumed for the test are reported in Equation (4.36), where each length unit
has been scaled by the orbit semi-major axis, a = 8788 km and by the time√
a3

µ
.

x0 =

(
r0

v0

)
=


−0.68787
−0.39713
+0.28448
−0.51331
+0.98266
+0.37611

 (4.36)
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The initial estimates for the state have a 10% offset from the true initial state
values expressed in Equation (4.36). The initial error covariance matrix has
been assumed as diagonal, the value of the variance for the position vector
components is 0.01, while the variance for the velocity vector components is
10−4.

The measurement model assumes the radial position of the spacecraft
with respect to the Earth and the line of sight direction of the planet.

z1 = r + w1 (4.37)

z2 = arctan
(y
x

)
+ w2 (4.38)

z3 = arcsin
(z
r

)
+ w3 (4.39)

Where wi, with i = 1, 2, 3, represents the related measurement noise compo-
nent. This simulation provides no process noise, while the standard deviation
of the error is assumed to be 10−3 for the radial position, and 1.745 · 10−6

for the angle error, following the conventional measurement accuracy for the
directional measurement.

In the results that are going to be shown, different filter orders are ex-
pressed in the filters names with a number. Thus, for example, UKFDA2
indicates that the DA-based Unscented Kalman Filter has been used with a
second order polynomial.

Figures 4.2 and 4.3 show the comparison of the position and error profiles
obtained with the EKFDA1, EKFDA2, EKFDA3 and UKFDA2. The posi-
tion and velocity errors, expressed respectively as εr and εv, are defined as
the Euclidean norm of the difference vector between the estimated position
and velocity with the corresponding true values. The two figures represent
the time duration of two orbits, with a total of 12 observations each orbit
separated by the same time interval. The EKFDA1 line is equivalent to the
performance of a classical EKF, therefore it is possible to directly compare
both the UKFDA and EKFDA with the classical EKF. The simulation re-
sults show how the second order filter significantly improves the estimation
accuracy, proving that higher order filters can extract more information from
the available nonlinear equations with respect to the first order. However,
there appears to be no benefits into upgrading to third order from second
order. This lack of improvement is connected to the decision, that is intrinsic
in the Kalman approach, of describing the propagated statistics using only
the first and second order moments (see [16]).

The filters based on the unscented transformation show same accuracy
level of the second order DA-based extended Kalman filter. As already stated
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Figure 4.2: Orbit determination test, 12 observations per orbit: position
error profiles of the EKFDA1, EKFDA2, EKFDA3, UKF, UKFDA1 and
UKFDA2.

when talking about UT, the UKF filter type can precisely predict the first
two moments of a variable after propagation, thus UKFDA1, UKFDA2 and
UKF accuracy is comparable to the EKFDA2.

The difference between the DA-based and the standard UKF resides
mostly on the computational time and can’t be appreciated in a fast ap-
plication such as the Keplerian dynamics. A more detailed time performance
analysis has been performed for the relative pose application in the next
chapter.

UKFDA1 and UKFDA2 presents no valuable difference in this application
since the second order terms of the polynomials are relatively small.

Figure 4.4 represents the standard deviation profiles both for the space-
craft position and velocity. These quantities are calculated from the diagonal
terms of the estimate position and velocity covariance matrices: σ2

rx, σ
2
ry, σ

2
rz,

σ2
vx, σ

2
vy, σ

2
vz.

σr =
√
σ2
rx + σ2

ry + σ2
rz (4.40)

σv =
√
σ2
vx + σ2

vy + σ2
vz (4.41)

The filters give the same behaviour when the measurements frequency is
changed. Figure 4.6 and 4.7 show the position error profile accuracy for
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Figure 4.3: Orbit determination test, 12 observations per orbit: velocity
error profiles of the EKFDA1, EKFDA2, EKFDA3, UKF, UKFDA1 and
UKFDA2.

different observation frequencies, respectively 6 and 24 measurements per
orbit. As in the case of 12 observations, moving from the first order EKF
to EKFDA2 or to an unscented filter improves significantly the estimation
accuracy.
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Figure 4.4: Orbit determination test, 12 observations per orbit: σr profile of
the EKFDA1, EKFDA2, EKFDA3, UKF, UKFDA1 and UKFDA2.

Figure 4.5: Orbit determination test, 12 observations per orbit: σv profile of
the EKFDA1, EKFDA2, EKFDA3, UKF, UKFDA1 and UKFDA2.
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Figure 4.6: Orbit determination test, 6 observations per orbit: εr profile of
the EKFDA1, EKFDA2, EKFDA3, UKF, UKFDA1 and UKFDA2.

Figure 4.7: Orbit determination test, 24 observations per orbit: εr profile of
the EKFDA1, EKFDA2, EKFDA3, UKF, UKFDA1 and UKFDA2.

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



46 Orbit Determination in Two-Body Dynamics

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



CHAPTER 5

Application: ENVISAT
Relative Pose Estimation

5.1 Problem Statement

Nowadays more than ever space pollution is a relevant problem. Active de-
bris removal is just one of the many application filters are used in: they are
a key component for navigation systems, guidance, but mostly rendezvous
problems, especially if the target is uncooperative. In order to solve estima-
tion problems such as localization, mapping, and tracking, the filter must
determine the relative position and orientation (pose) between the chaser
and the target [37] [14] [25].

The chaser is approaching the uncooperative target to perform the dock-
ing maneuver to remove it. Thus, the chaser needs to estimate the relative
pose of the target and the filter is the software applied for this task: it takes
the target images from a camera (as input) and informs the chaser about its
relative pose with the target (as output).

The thesis applies the developed filters to the problem of docking and
deorbiting ENVISAT, following the effort of the European Space Agency.
[9].

The analysis is performed by making the following assumptions [16]:

• a priori knowledge of the geometrical and physical characteristics of
both chaser and target [1]

• chaser motion supposed to be deterministic

• rigid-body dynamics

• no external disturbances
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• no control actions

It must be noticed that neglecting external disturbances and flexibility im-
plies the possibility of completely decouple the translational problem and
the rotational one. However, as explained later in the chapter, the adopted
measurement model asks for the simultaneous propagation of both the trans-
lational and rotational dynamics.

5.2 Dynamics

5.2.1 Translational Dynamics

Absolute Chaser Motion

The motion of the chaser is described by the following equations, where µ
is the gravitational parameter of the Earth, r̄ is the position of the chaser
centre of mass with respect to the Earth, and θ indicates the true anomaly
in the orbit of the chaser.

¨̄r = r̄θ̇2 − µ

r̄2
(5.1)

θ̈ = −2
˙̄rθ̇

r̄
(5.2)

Relative Translational Dynamics

The target, ENVISAT, has its relative translational dynamic equations devel-
oped with respect to the chaser local-vertical-local-horizontal (LVLH) frame
of the chaser. The target relative position, denoted as rr, and relative veloc-
ity, vr, are defined in the chaser LVLH frame as expressed in Equations (5.3)
and (5.4).

rr = x̂i + ŷj + zk̂ (5.3)

vr = ẋ̂i + ẏ̂j + żk̂ (5.4)

Where x, y, and z represent the three components of vector rr in the chaser
LVLH frame and î, ĵ, and k̂ are the corresponding unit vectors of the ref-
erence frame. Thus, the equations of motion of the target for its relative

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



CHAPTER 5: Application: ENVISAT Relative Pose Estimation 49

translational dynamics can be written in the following way.

ẍ = +2θ̇ẏ + θ̈y + θ̇2x− µ(r̈ + x)

[(r̄ + x)2 + y2 + z2]3/2
+
µ

r̄2
(5.5)

ÿ = −2θ̇ẋ− θ̈x+ θ̇2y − µy

[(r̄ + x)2 + y2 + z2]3/2
(5.6)

z̈ = − µz

[(r̄ + x)2 + y2 + z2]3/2
(5.7)

Figure 5.1: Translational dynamics elements representation.

5.2.2 Rotational Dynamics

Similar to the translational dynamics, the rotational dynamics of the target
relies on the problem setted in [16]. The relative orientation of the body-
fixed frame on the target with respect to the body-fixed frame of the chaser
can be described through a rotational matrix Γ. Therefore, the relative
angular velocity ωr in the target body-fixed reference frame is function of
the angular velocity of the chaser ωc and the angular velocity of the target
ωt, both expressed in their own body-fixed reference frames.

ωr = ωt − Γωc (5.8)

ω̇r = ω̇t − Γω̇c + ωr ∧ Γωc (5.9)

The relative attitude of the target is determined by the parametrization of
rotation matrix Γ. The Modified Rodriguez Parameters, MRP [13] [48] [12],
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are adopted as the minimal set of three parameters that allows to overcome
singularities and to describe every rotation with the minor angle definition.
This parametrization is derived by applying a stereographic projection of the
quaternions. The quaternions q are expressed as follows.

q =

[
q̄
q4

]
(5.10)

q̄ =

q1

q2

q3

 = n̂ sin
(φ

2

)
(5.11)

q4 = cos
(φ

2

)
(5.12)

Where n̂ is a unit vector corresponding to the axis of rotation and φ is the
angle of rotation. The MRP are related to the quaternions in the following
way.

p =
q̄

(1 + q4)
= n̂ tan

(φ
4

)
(5.13)

Vector p is the MRP vector, with dimension 3x1. The kinematic equation of
motion are derived by using the target’s relative angular velocity, therefore
the time evolution of the MRP is described by Equation (5.14).

ṗ =
1

4

[
(1− pTp)I3 + 2ppT + 2[p∧]

]
ωr (5.14)

Where I3 is a 3 x 3 identity matrix and [p∧] is a 3 x 3 cross product matrix
defined as:

[p∧] =

 0 −p3 p2

p2 0 −p1

−p2 p1 0

 (5.15)

The rotation matrix that connects the chaser body-fixed frame and the target
body-fixed frame can thus be evaluated.

α1 = 4
1− pTp

(1 + pTp)2

α2 = 8
1

(1 + pTp)2

(5.16)

Γ(p) = I3 − α1[p∧] + α2[p∧]2 (5.17)

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



CHAPTER 5: Application: ENVISAT Relative Pose Estimation 51

The absolute rotational dynamics of the chaser is described by the torque-
free Euler equations.

The relative attitude dynamics are obtained by substituting the kinemat-
ics relationship in the Euler absolute equations of the target spacecraft.

Jtω̇r + ωr ∧ Jtωr = Mapp −Mg −Mci (5.18)

Where Jt is the matrix of inertia of the target, Mapp is the apparent torques,
Mg is the gyroscopic torques, and Mci is the chaser-inertial torques.

Mapp = Jtωr ∧ Γωc (5.19)

Mg = Γωc ∧ JtΓωc + ωr ∧ Jtωc + Γωc ∧ Jtωr (5.20)

Mci = JtΓω̇c (5.21)

5.3 Measurement Model

5.3.1 Markers Creation

Filters need reliable measurements to perform a good correction on the pre-
dicted quantities to properly determine the target attitude. The majority
of filters used for space applications rely on camera image processing. In
real applications, the image processing software is set up to look for target
points in each image taken: these points are refereed to as markers [47]. The
software processes the image sent from the camera and analyses it: once the
position of the markers is found, it sends this information to the filter. The
marker selection is a complex trade-off based on the target shape, volume
and colour since the processing of the image needs to be as fast as possible.
A common solution is to select the target corners as markers and to base the
processing software on one of the most reliable corner detecting algorithms,
such as the Harris-Stephens algorithm [52] and the Förstner algorithm.

Regardless the selected algorithm, there is the need of an effective inter-
action between the filter and the image processing software. After a transient
time, where the first measurements are made and the position error by the
filter estimation rapidly drops, the communication between the image pro-
cessing software and the filter should be optimized to achieve a faster marker
estimation. When the filter ends its iterative cycle, it can directly tell the
camera where to look for the markers in the next image. In this way, the
camera software can analyse a smaller region of the image and, thus, it will
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not have to process all the image pixels, but just the ones that are nearby
the position indicated by the filter.

Back to the ENVISAT relative pose estimation problem, it has been de-
cided to select the corners of the main body as markers and to track their
position in time. Figure 5.2 shows the dimension of the spacecraft and [1]
gives information about ENVISAT’s mass, its centre of mass location (with
no propellant), its moments of inertia (with no propellant) and its geometrical
centre and volume. The marker positions can therefore provide information

Figure 5.2: ENVISAT dimensions, image from [1]

about the spacecraft attitude since the position of each marker is well known
with respect to the centre of mass. By tracking the marker trajectory, the
filter is able to reconstruct the state of the spacecraft and calculate relative
position and velocity. ENVISAT main body, without the solar panel, can
be described as a simple parallelepiped with 8 corners: these corners have
been selected as the filter markers knowing their position with respect to the
centre of mass. Each marker has been called with an alphabetical letter in
order to have a clear identification: hence, there is Marker A, B, C, D, E,
F, G, and H. The position vector of each marker, expressed in Table 5.1, is
provided with respect to the centre of mass of ENVISAT; therefore there is
the need to express the vector vCM that identifies the centre of mass position
with respect to the geometrical centre.

vCM =

−3.905
−0.009
+0.003

 (5.22)

where each component is expressed in meters and the geometrical centre
position is shown in Figure 5.3, along with the axis direction and the markers
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Figure 5.3: Markers, Geometrical Centre (CM), and Centre of Mass (MC)
position.

position. Consequently, the position of each marker, vi, is calculated as
simple vector summation

vi = si − vCM for i = A, . . . , H (5.23)

where si is the marker position vector with respect to the geometric centre
and vCM is the vector from the geometrical centre to the centre of mass.
Figure 5.4 gives a visual representation of the vector summation.

Figure 5.4: Marker A vector disposition.

The left part of Figure 5.5 illustrates on how ENVISAT appears in the
chaser camera. The right part of the picture shows the system from another
perspective; the red mark in the figure represents the centre of mass.

5.3.2 Measurement Equations

The state vector has 12 components that can be divided in four parts, divided
into four equal parts. Each part, composed by three elements, describes one
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Marker si [m] vi [m]

A +5.010 +1.3750 +0.800 +8.9150 +1.3840 +1.5970
B +5.010 +1.3750 -0.800 +8.9150 +1.3840 -1.6030
C +5.010 -1.3750 -0.800 +8.9150 -1.3660 -1.6030
D +5.010 -1.3750 +0.800 +8.9150 -1.3660 +1.5970
E -5.010 +1.3750 +0.800 -1.1050 +1.3840 +1.5970
F -5.010 +1.3750 -0.800 -1.1050 +1.3840 -1.6030
G -5.010 -1.3750 -0.800 -1.1050 -1.3660 -1.6030
H -5.010 -1.3750 +0.800 -1.1050 -1.3660 +1.5970

Table 5.1: ENVISAT markers position vectors with respect to its centre of
mass (with no propellant)

Figure 5.5: ENVISAT model as seen from the chaser (left) and external
representation of the implemented simulation (right): red point is ENVISAT
centre of mass, whereas blue point is the chaser centre of mass (equal to
camera position)

aspect of the attitude on ENVISAT:

x =
(
x, yz, ẋ, ẏ, ż, p1, p2, p3, ωr,x, ωr,y, ωr,z

)T
(5.24)

Where the four parts are: the relative position between target and chaser
centres of mass, relative velocity of the centre of mass, MRP, and angular
velocities. Consequently, there is the need to evaluate the marker position
from the knowledge of the state in order to compare, in the update part of
the algorithm, the predicted measurement with the true one, which comes
from the camera system.

Being u the position vector of the chaser centre of mass with respect to
the ENVISAT centre of mass, the measurements are calculated separately
for each single marker in the following way. The marker position vector vi is
expressed in the target reference frame; then, it is transformed in the chaser
reference frame, i.e. through the multiplication of the rotation matrix Γ.
Then, by a simple vector difference, the position of each single marker with
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respect to the chaser can be evaluated:

zi = Γvi − u for i = A, . . . , H (5.25)

where zi is the position of one marker with respect to the chaser centre
of mass and the rotation matrix Γ comes from the knowledge of the MRP
(which are part of the state vector) according to Equation (5.17). Figure 5.6
shows the vectors disposition in the measurement equations.

Figure 5.6: Vectors disposition for the measurement equation.

Regarding the measurement generation, the true state of ENVISAT is
computed through the integration of the dynamics equations. Afterwards,
noise is introduced in the measurements as an exponentially correlated ran-
dom variable according the following model.

E(k + 1) = KE(k) +
√

1−K2 · N (0, σ) (5.26)

K = e

−1

fτ (5.27)

Where E is the error with respect to the true state, N (0, σ) is a random
number generated with a Gaussian distribution (null mean and σ as standard
deviation), f is the frequency in which the measurements are taken, and τ is
the autocorrelation time. In this way, the error at time k+1 is exponentially
correlated to the error at the previous step, time k, and this correlation
decays with a time scaled by a time defined by τ [16].

Figure 5.7 is reported in order to show how the autocorrelated noise
behaves. The figure shows the noise for one of the three components of a
marker position vector, in particular along the î-axis direction.
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Figure 5.7: Error in the measurement of the position along the chaser LVLH
î-axis.

5.3.3 Marker Visibility

The presented measurement model is based on the position of the 8 corners
of ENVISAT main body. However, the camera is not able to locate all
the markers position in one single frame due to the fact that ENVISAT’s
structure will cover some markers. Therefore, the filter does not work with
the whole set of markers but it needs to change its measurements frame by
frame depending on which marker is visible. Consequently, the measurement
vector resulting from Equations (4.25) and (4.32) changes its size depending
on how many markers are visible. Thus, since each marker contributes to
the observation with the three components of its position, the measurement
vector ẑ will have 3 · i components, where i = 0, . . . , 8.

The visibility and association of a corner to the correspondent marker is
fundamental since a larger number of located markers tends to improve the
estimation accuracy.

A study on the marker visibility has been performed. When thinking
about visibility of the corners of a parallelepiped, it is better to focus on
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which face of the parallelepiped is visible and then associate the corners to
each visible face. Considering ENVISAT body as free, with no other external
objects that can cover it from the camera, there could be only three different
options: 1, 2 or 3 faces are visible. Therefore, the set of numbers of visible
markers is not a continuous set. Since each face defines 4 markers, the camera
sees 4 markers if 1 face is visible, 6 markers if 2 faces are visible, and 7 markers
if 3 faces are visible.

Markers visibility then relies on the correct association of ENVISAT’s
faces to the processed image from the camera. The process is performed
by using a set of unit vectors n̂i, with i = α, . . . , ζ, see Table 5.2, that
defines the faces. Table 5.2 connects each face to the corresponding markers;
consequently, once the visible faces are identified, the visibility of the markers
is completely determined.

Face n̂i Markers Seen

α n̂α =

1
0
0

 A - B - C - D

β n̂β =

0
1
0

 A - B - E - F

γ n̂γ =

0
0
1

 A - D - E - H

δ n̂δ =

−1
0
0

 E - F - G - H

ε n̂ε =

 0
−1
0

 C - D - G - H

ζ n̂ζ =

 0
0
−1

 B - C - F - G

Table 5.2: ENVISAT faces and visible markers relations

The requirement for the face visibility is expressed by Equation(5.28).
If the scalar product between the relative chaser-target position vector and
the unit vector perpendicular to the face is negative, it means that the face
is looking forward the camera and the markers associated to the face are
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visible.

u · n̂i < 0 for i = α, . . . , ζ (5.28)

The marker visibility calculation is been encoded inside the filter itself.
However, this information can come from an external software, i.e. image
processing, as additional input for the filters. Both cases have been im-
plemented in this thesis, but, since the computational time of the markers
visibility is of interest, only the case in which the filters calculate visibility
by themselves has been reported in the results. A detailed architecture of
the software is presented in the following section.

Figure 5.8: Set of visible and hidden markers in simulation of 3000 seconds
with a measurement frequency of 1Hz. Solar panel omitted.

The filter uses the states at the beginning of each observation to predict
the marker that will be visible at the next step and thus it prepares itself to
receive the correct amount of measurements from the camera. It has hard
encoded the ENVISAT faces disposition, according to versors n̂i, and the
face-markers relation of Table 5.2: therefore it predicts the marker visibility
thanks to condition (5.28).

The filters handle markers visibility in a binary mode, assigning each
marker value 1 if it is visible or 0 if it is not. It is possible to give a visual
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idea of the markers position through time by applying the dynamics presented
previously to the simulation of Figure 5.5.

The results of a simulation are reported in Figure 5.8 to show the results
of the marker visibility analysis during the ENVISAT motion. It can be noted
that, in time, the markers move on two spheres and, more importantly, that
the position of the hidden markers is concentrated in the region opposite to
the chaser.

Figure 5.9 points out how the hidden markers are located all in the same
semi-spheres, which are opposite to the chaser position.

Figure 5.9: Set of hidden markers in a simulation of 3000 seconds with a
measurement frequency of 1Hz. Solar panel omitted.

5.4 Software architecture

The software architecture is made up by different sections and it is shown in
Figure 5.10.

Offline The measurements are generated offline and the dynamics of the
system are integrated using a Runge-Kutta 78 scheme once a set of initial
condition is provided. The position of the markers are computed and noise is
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Figure 5.10: Software Architecture

added with the exponentially correlated random model described previously.
The measurements creation works with the knowledge of the propagated
dynamics, therefore the same precision gained through the Runge-Kutta78
integrator is reached. All these computations are performed in advance since
they are common to each different kind of filter; therefore the outputs are
loaded in a memory buffer before running the filters.

A file with the information of the marker visibility is here created. De-
pending on which type of filter is used, this file can be loaded in the filter or
omitted, leading the filter itself to deal with analysis of the marker visibility.

Filtering For the filtering, the measurement model couples the transla-
tional and rotational information. However, the dynamics propagation can
be decoupled into its translational and rotational part, leading to a faster and
more efficient estimation of the relative translational states (relative position
rr and relative velocities vr) and of the relative rotational states (MRPs p
and angular velocities ωr). In this way, even if the state vector needs to be
12 components long, (which means 12 DA variables have to be initialized
in the EKFDA), the relative dynamics propagation can split the vector into
two separate parts of 6 components and propagate the translational and ro-
tational model in parallel. The propagation inside the filters uses a different
kind of integrator with respect to the one in the “dynamics simulator” part:
a 4th-order Runge-Kutta integrator is exploited. In all the filters the required
markers positions and chaser absolute states are loaded at the beginning and
an initial estimate of the relative states, in terms of mean and covariance,
has to be provided. Moreover, before stating the estimation, the filter uses
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the information of the previous step to calculate the markers visibility, if it
is not given. Depending on which simulation it is demanded, the filter can
work with the whole set of markers or can limit the measurements to three
markers (markers selection will be later explained). Moreover, measurement
failures can be added to the simulation. Finally, the estimated relative states
are compared with the true states propagated by the dynamics simulator to
assess the performance of the filters.

5.5 Simulation Results

Referring to Figure 5.5, it can be seen how the chaser and the target are
assumed to lie on the same orbit at a reasonable distance. The numerical
analysis is thus performed once a set of initial condition for the relative pose
of the chaser with respect to the target is selected: Table 5.3 reports the
state values used as starting point for the sequential estimation process. The
nominal attitude is initialized randomly, while the nominal angular velocity
is selected in order to have an absolute value of about 2.5 deg/s.

Tr. Dyn. Rot. Dyn

x(m) -0.002 p1 -0.367
y(m) -31.17 p2 -0.590
z(m) 0 p3 -0.570
ẋ(m/s) -3.5e-6 ωr,x(rad/s) 0.02
ẏ(m/s) -2.0e-6 ωr,y(rad/s) 0.02
ż(m/s) 0 ωr,z(rad/s) 0.04

Table 5.3: Initial condition

5.5.1 Robustness and Accuracy

This first part of the results aims to show the sensitivity of the filter to ac-
quisition frequency and initial uncertainty. Therefore, the filters are tested
using a discrete set of frequencies and with different initial standard devia-
tions. For each case, a Monte Carlo-based sensitivity analysis is performed to
obtain a statistical assessment of the performance of the filter. The analysed
cases are reported in Table 5.4 and Table 5.5, where σi,0 indicates the initial
standard deviation for the variable i and K is the correspondent amplifica-
tion factor. As a consequence, a total of 15 different scenarios have been
performed, by combining frequency and amplification factor values.
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Tr. Dyn. Rot. Dyn

σrr,0(m) K ∗ 1 σpr,0 K ∗ 0.002
σvr,0(m/s) K ∗ 0.1 σωr,0(rad/s) K ∗ 0.1

Table 5.4: Initial Standard Deviations

K 1 5 10
Freq. (Hz) 0.05 0.1 0.5 1 3

Table 5.5: Amplification Factor K and Frequencies values

Before explaining how each case has been analysed, it is important to
point out how the selection of the sensors standard deviations σsi has been
made. These values are the ones that characterize matrix R in the filter
prediction part, especially in Equation(4.26) for the EKFDA, and Equation
(4.33) for the UKF and UKFDA. The sensors standard deviations are usu-
ally quite different (one order of magnitude) when referring to the different
dynamics of the observed object, i.e. translational and rotational dynamics
[16]. However, the simulation is based on the evaluation of the marker po-
sition, which can be considered as a series of translational only information
of many separate points. Therefore, the decision of relying on the sensor
standard deviation associated to a common camera has been made. The
resulting values are expressed in Table 5.6.

Sensors Std. Dev.

σsx 0.02
σsy 0.02

σsz 0.03

Table 5.6: Standard deviation for the measurement noise.

As stated above, a Monte Carlo sensitivity analysis is performed for each
of the 15 different cases. For each case, a set of 1000 samples is generated
around the true initial conditions, according to the statistics. However, not
the whole set has been used for the analysis, but only the furthest 100 samples
are selected and used as initial estimate for the relative states in the filter. In
this way, a more reasonable time-consuming analysis has been achieved where
only the worst case conditions, in which the non-linearities are expected to
play a prominent role, are deeply studied.

Afterwards, the performance are assessed by analysing the root mean
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square error (RMSE), in the following statistical way.

filternµ̄ =

∑100
i=1RMSEi

100
(5.29)

filternσµ̄ =

√∑100
i=1(µ̄−RMSEi)

2

100
(5.30)

where in RMSEi the subscript indicates the ith simulation while filternµ̄

Figure 5.11: Graphical representation of statistical indexes. Angular velocity
error evaluation. UKF filter for a 3000 seconds simulation with a frequency
of 1Hz and amplification factor K = 1.

and filternσµ̄ are, respectively, the mean and the relative standard deviation
of the RMSE, considering the filter expressed by the subscript filtern. This
subscript expresses the associated filter of the simulation and it is divided
into two parts: the filter represents the type of filter, thus it could stand
for UKF, UKFDA or EKFDA; the n indicates the filter order, hence it is a
number. Figure 5.11 gives a visual representation of the quantities expressed
by Equations (5.29) and (5.30): filternµ̄ gives the accuracy level of the filter,
while filternσµ̄ informs about the dispersion around the mean.

According to this sensitivity analysis, convergence is considered reached
only if the final error at the end of the simulation has a mean at least one
order of magnitude smaller with respect to the initial error value dictated
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by the initial condition sample. Only the samples that achieved convergence
were considered in Equations (5.29) and (5.30).

Figure 5.12 shows the software architecture for the nominal condition
associated to the results reported in the following subsection. The nominal
condition uses the whole set of markers without the introduction of any
measurement failure. Other settings will be later analysed.

Figure 5.12: Software architecture. Nominal Condition.

5.5.2 Results

The tables with the performance of the filters are reported in this subsection.
However, it is helpful to show, in a graphical way, how the values reported in
the tables directly connect to the performance on the the translational and
the rotational dynamics.

Figure 5.13 shows the translational part of the filter results, using a UKF
simulation as example. The translational dynamics is almost linear since the
chaser is close to the target and on the same orbit, which is nearly circular.
As a consequence, high-order filters and UT-based ones are expected not to
provide significantly better performance with respect to the classical EKF.
On the other side, the rotational dynamics shows higher nonlinearities, thus
the RMSE standard deviation is expected to be larger with respect to the
simple translational one: Figure 5.14 shows this behaviour.

The table results are evaluated only considering the sample values that
lead to convergence. If a failure occurred, or convergence was not reached,
the sample was not considered in the RMSE statistics and therefore the sum-
mation in Equations (5.29) and (5.30) is performed with fewer information.
Tables 5.7 and 5.8 show how many samples, out of 100, achieved valid results.
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Figure 5.13: UKF. Translational results. 3000 seconds simulation with a
frequency of 1Hz and amplification factor K = 1. North-West: relative po-
sition error. North-East: relative position covariance. South-West: relative
velocity error. South-East: relative velocity covariance.

It can be seen that the rotational dynamics has lower convergence ratio with
respect to the translational one, especially at low frequencies.

The results in the tables show how each filter accuracy improves with
higher frequency. However, the filters are able to achieve solid convergence
even with low frequency, having some problems only when the amplifica-
tion factor is 10, which means 100 times larger covariance with respect to
the nominal case. Therefore, the implemented filters are robust and accu-
rate both for the translational and rotational pose estimation of the target.
Almost in each step, the filter corrects its prediction values thanks to the in-
formation from 7 different markers, since it is rare to have only two faces of
the target on sight, and almost impossible to have only one. However, some
differences between the filters must be underlined. There is no significant
improvement in the performance of the filter by passing from the EKFDA1
to the UKFDA, UKF, and EKFDA2 in the translational part: the reason is
due to the fact that translational dynamics is almost linear, cancelling the
advantages given by nonlinear filters. Only Table 5.9 and Table 5.10, which
refer to the UKFDA2 filter, are reported for the translational dynamic RMSE
mean and standard deviation since each filter leads to the same error level
in the estimation process: in the Appendix all the tables referring to all the
other filters are reported to check the results of each single simulation.
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Figure 5.14: UKF. Rotational results. 3000 seconds simulation with a fre-
quency of 1Hz and amplification factor K = 1. North-West: MRP error.
North-East: MRP covariance. South-West: angular velocity error. South-
East: angular velocity covariance.

EKFDA1 EKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 100 63 49 0.05 99 56 49
0.1 100 100 81 0.1 100 100 90
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

UKF UKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 100 70 60 0.05 100 69 58
0.1 100 100 83 0.1 100 100 83
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

Table 5.7: Success rate for each combination of frequency and amplitude
factor. Translational dynamics
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EKFDA1 EKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8 6 2 0.05 8 17 3
0.1 59 41 18 0.1 69 79 36
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

UKF UKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 12 11 3 0.05 12 11 3
0.1 64 57 24 0.1 64 57 24
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

Table 5.8: Success rate for each combination of frequency and amplitude
factor. Rotational dynamics

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 3.93e-3 1.74e-1 6.89e-1 0.05 5.51e-6 3.10e-4 1.24e-3
0.1 1.42e-3 1.10e-2 2.28e-1 0.1 2.63e-6 1.64e-5 3.63e-4
0.5 6.33e-4 6.29e-4 7.86e-4 0.5 9.34e-7 9.60e-7 1.34e-6
1 2.88e-4 2.81e-4 2.77e-4 1 5.08e-7 4.90e-7 4.68e-7
3 8.82e-5 8.96e-5 9.50e-5 3 1.52e-7 1.55e-7 1.65e-7

Table 5.9: UKFDA2µ̄ sensitivity analysis for translational performance.

On the other side, regarding the rotational part of the simulation, higher-
order EKF and UKF (and UKFDA) provide more accurate state estimations.
Improvements are evident especially at low frequencies and in cases with high
amplification factor K. EKFDA1 has larger RMSE standard deviation with
respect to the other filters. Moreover, Table 5.7 and Table 5.8 show that
EKFDA1 is the filter with the lowest success rate, thus the first 2 rows of
all the tables related to EKFDA1, and the first row of the other tables must
be read having in mind that only few of the samples were able to reach
convergence. However, these two tables are filled with the samples that were
able to achieve a mean error, in the last part of the simulation, one order
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.05e-3 3.27e-1 5.11e-1 0.05 1.89e-6 6.33e-4 1.02e-3
0.1 6.11e-5 2.60e-2 4.07e-1 0.1 1.24e-7 3.66e-5 7.15e-4
0.5 2.53e-6 4.90e-5 2.94e-4 0.5 2.68e-9 6.39e-8 5.53e-7
1 4.53e-7 7.07e-5 2.98e-5 1 6.51e-10 1.18e-8 4.39e-8
3 8.37e-8 1.36e-6 6.52e-6 3 1.35e-10 2.25e-9 1.07e-8

Table 5.10: UKFDA2σµ̄ sensitivity analysis for translational performance.

of magnitude smaller with respect to the initial one. This constrain left out
many samples that were able to achieve convergence but in a softer way:
Figure 5.15 is such a good example to show how the EKFDA2 converges
with almost all of the samples even if the related value in Table 5.8, in row
0.05 Hz and column K = 1, indicates that only 8 samples converge. If the
frequency is reduced, the reported accuracy of the filters will stabilize on
the convergence level (since the samples with mean error bigger than the
threshold will be left out) until no sample would reach convergence.

Figure 5.15: EKFDA1 and EKFDA2 accuracy for the whole set of 100 sam-
ples. Simulation of the case with frequency 0.05 Hz and K = 1. Comparison
for the relative position estimation, upper row, and for the Modified Ro-
driguez Parameters estimation, lower row.

Filters that work with the full knowledge of the first two moments work
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better with respect to the filter based on linearization. However there are
differences among them. EKFDA2 seems to appear the filter with the best
accuracy, especially for low frequencies and high uncertainties. The filters
based on the UT, UKF and UKFDA, produce the same results (with few
exceptions, for low frequencies with high uncertainties): as already stated,
their difference is not on the accuracy level but on the computational time
requested by the filter itself, as will be later shown. The introduction of
the DA inside the UKF has the purpose to achieve a faster filter, without
affecting accuracy.

A visual representation of the improvements of EKFDA2 with respect to
EKFDA1 is shown in Figure 5.15 where the case with frequency of 0.05 Hz
and amplification factor K = 1 is considered. The figure shows the error
of both relative position and MRP for all the 100 samples: in EKFDA1
the high standard deviation of the RMSE can be seen on how the lines
related to each sample toil to merge together; while the EKFDA2 shows a
more narrow behaviour toward convergence. Thus, high order filters have
improved the estimation process more on dispersion, filternσµ̄, than on mean
level of accuracy, filternµ̄.

The accuracy results connected to Figure 5.15 are reported in Table 5.11
to Table 5.14, referring to the rotational performance. By directly comparing
Table 5.12 and Table 5.14 it can be seen how EKFDA1σµ̄ >EKFDA2 σµ̄ and
the few exceptions (at low frequency) are due to the low number of samples
with convergence in Equations (5.29) and (5.30).

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8.90e-4 1.98e-3 5.13e-3 0.05 1.82e-5 3.48e-5 4.31e-5
0.1 4.43e-4 1.33e-3 2.64e-3 0.1 9.46e-6 2.51e-5 3.24e-5
0.5 9.46e-5 1.06e-4 2.27e-4 0.5 1.93e-6 2.31e-6 5.37e-6
1 5.16e-5 5.39e-5 6.87e-5 1 3.93e-7 5.30e-7 1.11e-6
3 9.44e-6 1.06e-5 1.44e-5 3 1.52e-7 1.95e-7 3.55e-7

Table 5.11: EKFDA1µ̄ sensitivity analysis for rotational performance.
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.49e-4 6.31e-4 3.34e-4 0.05 3.84e-4 1.94e-5 3.79e-5
0.1 6.96e-5 1.17e-4 2.20e-3 0.1 2.75e-6 2.40e-5 2.46e-5
0.5 1.81e-6 3.27e-5 2.13e-4 0.5 8.81e-8 1.01e-6 4.48e-6
1 1.24e-6 8.82e-6 3.27e-5 1 1.21e-8 2.07e-7 9.52e-7
3 1.37e-7 1.44e-6 7.30e-6 3 6.16e-9 6.63e-8 2.79e-7

Table 5.12: EKFDA1σµ̄ sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.36e-4 1.21e-3 2.82e-3 0.05 2.35e-5 2.51e-5 2.17e-5
0.1 4.49e-4 7.60e-4 1.23e-3 0.1 1.05e-5 1.64e-5 2.24e-5
0.5 9.46e-5 1.04e-4 2.13e-4 0.5 1.96e-6 2.25e-6 5.01e-6
1 5.07e-5 5.30e-5 6.79e-5 1 3.88e-7 5.24e-7 1.10e-6
3 9.17e-7 9.98e-6 1.41e-5 3 1.49e-7 1.91e-7 3.50e-7

Table 5.13: EKFDA2µ̄ sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.54e-5 4.01e-4 2.21e-3 0.05 6.56e-7 6.79e-6 8.79e-6
0.1 9.47e-6 6.23e-4 1.10e-3 0.1 4.29e-6 1.19e-5 2.38e-5
0.5 1.75e-6 3.05e-5 1.96e-4 0.5 8.47e-8 9.51e-7 4.17e-6
1 1.23e-6 8.67e-6 3.24e-5 1 1.03e-8 2.02e-7 9.41e-7
3 1.23e-7 1.38e-6 7.25e-6 3 5.58e-9 6.45e-8 2.77e-7

Table 5.14: EKFDA2σµ̄ sensitivity analysis for rotational performance.

5.5.3 Computational Time

The other performance analysis concerns the computational time. Table
5.15 shows the software computational time performed on a 3000 seconds
simulation. The characteristic time used to describe the performance of
the filters at each frequency has been evaluated as a mean among all the
simulations connected to the samples that lead to convergence. Therefore,
any failure has been left out from the computational time analysis. The
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computational time mean is evaluated in the following way:

Ψf =

∑3
j=1

∑κf,j
i=1 τf,j,i
κf,j

3
(5.31)

where Ψf is the computational mean time associated to frequency f (f =
0.05, 0.1, 0.5, 1, 3); j indicates the amplification factor K of the simulation
(j = 1 → K = 1, j = 2 → K = 5, j = 3 → K = 10); κf,j is the number
of samples that achieved convergence for the simulation with frequency f
and amplification factor j; and τi,j,k is the computational time of the ith

sample in simulation (f, j). The characteristic time Ψf is the mean among
all the different values of K, since it is only the acquisition frequency of the
measurement the relevant figure of merit when dealing with time.

Table 5.15 purpose is to provide a comparison between the proposed filters
and the data is visualized in Figure 5.16.

Freq. EKFDA1 EKFDA2 UKF UKFDA2
(Hz) Ψf (s) Ψf (s) Ψf (s) Ψf (s)

0.05 1.47 5.84 8.06 2.41
0.1 1.67 6.70 8.50 2.69
0.5 3.23 13.88 12.47 5.66
1 5.18 22.43 17.23 9.31
3 11.54 50.13 29.16 21.94

Table 5.15: Computational time analysis of the filters

Figure 5.16: Mean computational time of the filters at different frequencies.

The linear filter EKFDA1, as expected, is the fastest one. The UKFDA
has nearly the same trend of the UKF but it requires always less time with

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



72 Performance with three markers

respect to the UKF. Therefore, the improvement of including DA in the UT
is evident: the two filters have the same accuracy, but the one based on DA
is faster in the whole frequency range. The EKFDA2 is the filter with the
most demanding computational time. However, this happens only at high
frequencies because, thanks to the different slope of the curve, it is able to
show faster behaviour at low frequencies with respect to UKF.

5.6 Performance with three markers

The filters have been proven to work with the whole set of available markers,
which means a shape-shifting measurement vector that adapts to the number
of visible markers for each acquisition. A new scenario is now analysed, which
relies on the assumption of the identification of a fixed number of markers:
three markers. Therefore, each acquisition, a set of 3 markers, taken by the
full group of visible ones, will be used to create the measurement vector.
This study is also justified by the fact that the solar panel of ENVISAT
may cover some of the markers and therefore the available measurements
decrease due to the restricted visibility. The selection of the makers is based
on a simple criterion: the filter will have to work with the 3 markers that
create the triangle with the largest area on the plane of sight. The plane
of view (or sight), from now on called π1, is the ideal plane defined by the
relative position chaser-target vector and passing through the target centre
of mass. This plane gives information on how the camera sees the target,
therefore each marker is projected on π1 before evaluating the triangle with
the largest area. Each marker projection lies on plane π1 and is the vertex
of many triangles whose number depends on how many markers are visible.
In this way, the perceived area of all the triangles on plane π1 is evaluated
and maximized.

As described previously, the available number of markers, from now on
referred as n, is 8. These n markers are always selected in group of 3; let
k be the number of group elements. Since the order in which the markers
are selected is not important, which means that group ADH gives the same
information of DHA, the number of possible different groups is perfectly
described by the binomial coefficient expressed in Equation (5.32) [17].

Ξ =

(
n
k

)
=

n!

k!(n− k)!
= 56 (5.32)

Ξ indicates the number of all possible combinations, but not every combina-
tion is suitable for the estimation process. Furthermore, some combinations
are physically impossible due to ENVISAT geometry model. Having in mind
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the geometrical model of ENVISAT, a parallelepiped, opposite markers are
the ones that are connected by a central symmetry with centre the geomet-
rical centre of the model. Thus, there are 4 pairs of markers that will never
be part of the same group because if the first is visible, the other one will
not. Looking at Figure 5.3, the four pairs are AG, BH, CE and DF, and they
lead to a total of 24 impossible combinations.

As a result, the number of physical combinations can be found by a
simple difference between Ξ and the unphysical combinations. However, not
all the 56 - 24 = 32 combinations are valid for the estimation process. There
is a further distinction of markers based on their relative position in the
ENVISAT geometrical model. A valid combination is selected not have the
3 markers belonging to the same side of the model. Recalling Figure 5.8,
this statement states that in a combination of 3 markers, they cannot all
belong to the same sphere, but if two markers are in the outer sphere, then
the third must be in the inner one. Therefore, a new division of groups
has been performed, dividing the 32 physical combinations in allowed and
forbidden. Table 5.16 shows all combinations divided by their classification.
The number of the forbidden combination can be found by the binomial
coefficient of 4 available markers per side grouped by 3; being two sides, the

forbidden combination are 2 ×
(

4
3

)
= 8. This leaves a total of 24 allowed

combinations.

Groups

ABG ACG ADG AEG AFG AGH ABH BCH
impossible BDH BEH BFH BGH ACE BCE CDE CEF

CEG CEH ADF BDF CDF DEF DFG DFH
forbidden ABC ABD BCD ACD EFG EFH FGH EGH

ABE ABF BCF BCG CDH CDG ADE ADH
allowed ACF ACH BDE BDG AEF BEF BFG CFG

CGH DGH AEH DEH BEG DEG AFH CFH

Table 5.16: Groups of 3 markers divided by their nature

The filters will try to work using only the allowed combinations, but, in
lack of available data, they will work with the forbidden combinations, which
is way better that having a time step with no measurements.

In order to select the combination of markers that creates the largest
triangle on the plane of view, every marker must be projected on π1. The
unit vector u perpendicular to plane π1 (and with origin ENVISAT’s centre
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of mass) is found by taking the relative position chaser-target vector and
dividing its component by the relative module. Being mi, with i = A, . . . , H,
the vector of each marker position with respect to the target centre of mass,
the projection of the marker on plane π1 is found by subtracting to mi the
component directed along u, according the following equations.

bi = u ·mi (5.33)

m̃i = mi − biu (5.34)

Where m̃i is the vector projection of the ith marker lying on π1 with origin
taken at the target centre of mass, and bi is the scalar component of the
marker vector mi in direction u. Let X’ be the projection on π1 of marker X
(defined by the vector m̃X). All the markers have been reported on the same
plane: the triangle with the largest area can now be found by evaluating the
areas of all the possible triangles with vertexes the visible markers by using,
for example, Erone’s formula.

Figure 5.17: Three markers selection.

However, a more elegant, and less computational demanding, solution has
been adopted. Since ENVISAT geometrical model is a slender parallelepiped
with one predominant axis, axis defined by n̂α in Table 5.2, it is convenient
to think about the markers as divided into two separate groups: group SX
with markers A, B, C, and D, and group DX with markers E, F, G and
H. The master group is the one which has more visible markers, usually 4,
with respect to the slave group, with fewer visible markers, usually 3. The
projection on π1 of the principal inertia axis defined by n̂α can be calculated
in the same way as performed in Equations (5.33) and (5.34) for the markers.

ñα = n̂α − (u · n̂α)u (5.35)
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Versor ñα defines a straight line on plane π1, line r. Figure 5.17 shows plane
π1 with the visible and hidden markers, line r (in blue), master and slave
group, and the triangle with the maximum area.

The markers combination that has the triangle with the largest area can
be directly found by selecting the two furthest marker projections from line
r in the master group and the nearest marker projection, again from line r,
in the slave group. In this way, there is no need to evaluate all the possible
triangle areas, but it is sufficient to compute, for each visible marker, the
distance between its projection X’ and line r. This distance, di, is evaluated
by considering vector m̃i as the hypotenuses of a rectangular triangle with
one cathetus on line r and the other di itself.

di = |m̃i ∧ ñα| (5.36)

In this way, the best allowed group from Table 5.16 can be rapidly found for
each acquisition.

The software setting for the three markers scenario is shown in Figure 5.18
where only the introduction of measurement failures in the system is left out.

Figure 5.18: Software architecture. Three markers condition.

The results of all the simulations are reported in the appendix, where
the subscript “3M” indicates that the simulations have been performed with
the filters measurement vector limited at 3 markers. Here are reported the
results form the EKFDA2 simulations are only reported.

The filter convergences in almost all the cases. A slight accuracy decrease,
with respect to the filter working with all the markers, can be noted by com-
paring the tables reporting the RMSE mean: compare Table 5.19 with Table
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.62e-2 1.89e-1 1.11e-0 0.05 3.23e-5 2.98e-4 1.74e-3
0.1 1.38e-3 9.62e-3 3.86e-1 0.1 2.65e-6 1.48e-5 6.16e-4
0.5 6.26e-4 6.34e-4 9.37e-4 0.5 9.27e-7 9.90e-7 1.65e-6
1 2.94e-4 2.88e-4 3.16e-4 1 5.22e-7 4.92e-7 4.84e-7
3 8.87e-5 9.25e-5 1.14e-5 3 1.53e-7 1.59e-7 1.93e-7

Table 5.17: EKFDA2µ̄3M sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 6.83e-2 3.16e-1 6.07e-1 0.05 1.42e-4 5.19e-4 1.01e-3
0.1 2.23e-5 2.11e-2 5.98e-1 0.1 5.69e-8 3.22e-5 9.91e-4
0.5 3.33e-6 6.63e-5 4.59e-4 0.5 3.56e-9 1.04e-7 8.25e-7
1 9.55e-7 1.45e-5 9.24e-5 1 1.58e-9 2.26e-8 8.13e-8
3 2.15e-7 5.59e-6 3.83e-5 3 2.92e-10 7.60e-9 5.15e-8

Table 5.18: EKFDA2σµ̄,3M sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.12e-4 1.76e-3 - 0.05 2.05e-5 2.42e-5 -
0.1 4.55e-4 8.15e-4 1.71e-3 0.1 1.24e-5 1.80e-5 3.14e-5
0.5 8.80e-5 1.07e-4 2.95e-4 0.5 1.37e-6 2.16e-6 6.83e-6
1 6.46e-5 7.34e-5 1.24e-4 1 4.41e-7 8.38e-7 2.45e-6
3 7.76e-6 1.31e-5 3.36e-5 3 1.25e-7 3.04e-7 9.68e-7

Table 5.19: EKFDA2µ̄3M sensitivity analysis for rotational performance.

5.13. However, the main difference lies on the RMSE standard deviation:
which is bigger (compare Table 5.20 with Table 5.14). The 3 markers sim-
ulations spread more around the mean since the update step relies on fewer
information compared to before. As a consequence, the number of failures
and final uncertainty have increased. The overall performance decay is not so
marked, but it is important to stress that the estimation process has become
critical at very low frequencies.

Table 5.22 shows how the convergence was not achieved with the EKFDA
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.42e-5 3.48e-4 - 0.05 2.64e-6 8.49e-6 -
0.1 1.93e-5 5.00e-4 1.58e-3 0.1 9.24e-7 1.27e-5 3.33e-5
0.5 3.44e-6 3.87e-5 3.23e-4 0.5 1.57e-7 1.29e-6 7.48e-6
1 3.07e-6 2.24e-5 9.64e-5 1 2.49e-8 5.34e-7 2.89e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.71e-9 2.54e-7 1.20e-6

Table 5.20: EKFDA2σµ̄,3M sensitivity analysis for rotational performance.

EKFDA1 EKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 100 57 34 0.05 95 52 47
0.1 100 100 73 0.1 100 100 87
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

UKF UKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 100 63 53 0.05 100 59 48
0.1 100 100 80 0.1 100 100 82
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

Table 5.21: Success rate for each combination of frequency and amplitude
factor. Translational dynamics. 3 Markers limitation.

in the case with 0.05 Hz and K = 10 and fewer samples reached convergence
for the other scenarios, in general. The UT-based filters have higher conver-
gence rate of samples at low frequency with respect to DA-based EKF filters,
but the EKFDA2 still shows slight better accuracy. The EKFDA1 is the least
accurate filter: the difference among the others is evident, anyhow, only for
the rotational part of the simulation, since the translational dynamics is quite
linear. However, even if the improvement gained by UT-based and DA-based
filters is not so relevant in the mean error accuracy (filternµ̄3M), EKFDA1σµ̄,3M
differs from the other filters showing bigger values. This means that, espe-
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EKFDA1 EKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8 5 0 0.05 8 7 0
0.1 58 30 11 0.1 63 72 27
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

UKF UKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 11 8 2 0.05 11 8 2
0.1 57 41 16 0.1 57 41 16
0.5 100 100 100 0.5 100 100 100
1 100 100 100 1 100 100 100
3 100 100 100 3 100 100 100

Table 5.22: Success rate for each combination of frequency and amplitude
factor. Rotational dynamics. 3 Markers limitation.

cially in low frequency cases, the EKFDA1 samples have produced simula-
tions that spread more around the mean value, thus proving that EKFDA2
and UT-based filters are more reliable. UKF and UKFDA show again the
same results.

Figure 5.19 shows how EKFDA2 has better performance with respect
to the unscented filter based on DA. The figure reports the 100 samples
simulation at frequency 0.1 Hz and K = 1: the set of EKFDA2 error lines is
narrower with respect to the UKFDA2 error lines (left column).

Table 5.23 reports the computational time of the filters for the 3 markers
simulations. As expected, the overall simulation time has decreased for each
filter for all the frequencies. The EKFDA1 is again the fastest filter, followed
by UKFDA2 with almost double computational time. The main difference
between the default simulation lies on the comparison between EKFDA2 and
UKF. EKFDA2 is still the slowest filter at 3 Hz. The reduced length of the
measurement vector implies a faster inversion of the measurement covariance
matrix, which is the most time demanding passage in the DA-based filter.
Therefore, for the 3 marker simulation, the EKFDA2 reduces its computa-
tional time as the frequency decreases with a stronger slope compared to the
UKF. As a result, EKFDA2 and UKF have almost the same computational
time near 1 Hz and the UKF becomes the most demanding filter, in terms
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Figure 5.19: UKFDA2 and EKFDA2 accuracy for the whole set of 100 sam-
ples. 3 Markers limitation. Simulation of the case with frequency 0.1 Hz and
K = 1. Comparison for the relative position estimation, upper row, and for
the Modified Rodriguez Parameters estimation, lower row.

of time, at higher frequencies.

Freq. EKFDA1 EKFDA2 UKF UKFDA2
(Hz) Ψf (s) Ψf (s) Ψf (s) Ψf (s)

0.05 1.40 5.49 7.98 2.23
0.1 1.53 6.00 8.26 2.41
0.5 2.93 10.19 11.15 4.22
1 3.37 15.25 14.29 6.43
3 6.23 30.10 20.43 13.31

Table 5.23: Computational time analysis of the filters. 3 Markers limitation.

5.7 Acquisition Failures

Measurement failures can be critical in sequential state estimation applica-
tion. The lack of proper data management could lead to an unforeseen be-
haviour of the filters. Therefore, in this section, the filters have been tested
against marker position data failure. The failure analysis has been restricted
to the 3 markers limitation case, since it is the most critical scenario.
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Considering the set of 3 marker, the occurrence of a failure is indicated
with 1, while the correct marker is indicated with 0. Therefore, being the set
of 3 elements, there are 23 = 8 different combination of failures: 111 - 100 -
010 - 001 - 110 - 101 - 011 - 000. Given a failure probability level, p = 20%,
it is possible to calculate, using statistics, the probability of having a certain
amount of failures in the set of 3 markers, shown in Table 5.24. The integer
number α indicates the number of failures in a set. The probability of having
α failures in a set, Pα, is evaluated according the following formula.

Pα = [pα(1− p)(N−α)]γ (5.37)

Where N , number of elements, is 3 due to the fact that the set includes 3
markers, and γ is an integer number that tells how many combination of
failures have α failures. The failures set probability Pα shall follow Equation
(5.38).

N∑
α=0

Pα = 1 (5.38)

α γ Pα
3 1 0.80%
2 3 9.60%
1 3 38.40%
0 1 51.20%

Table 5.24: Probability of failures in a set of 3 markers.

Table 5.24 shows how only half of the time steps work without any failure
(with probability threshold p). The simulations at high frequencies, 3 Hz and
1 Hz, are not reported since their performance resemble the simulations done
without failures with a frequency of half value. The failure simulations have
their own subscript, which is “3Mfail”, and the results can be read in the
tables in the appendix. The software settings for the failure condition is
shown in Figure 5.10 in the software architecture section.

As expected, failures affects negatively the filters performances. However,
the filters are able to reach convergence and the state estimation of the target
is performed correctly. Nevertheless, even if the mean value of the RMSE
shows a decrease in accuracy with respect to the case without failures, the
main difference is the high dispersion of the simulations for each case. The
RMSE standard deviation considerably increases, which means that, due to
the stochastic nature of the failures, the convergence of one single run highly
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depends on when, and where, the failure occurs. Moreover, looking at Table
5.30 the number of samples that were able to converge has decreased further.

The comparison among the filters presents the same behaviour described
in the simulations with no failures. However, the difference between high-
order filters and the classical EKF is here more marked, especially in the
ability of high order filters to be more robust and consistent showing ap-
proximately same error rate for different samples. The EKFDA1 achieves
convergence, but it is more suitable to present an anomalous behaviour and,
thus, it is weaker to the failure presence. All the results are reported in the
appendix, while the UKF simulation results are reported here for a rapid
idea on how the performance of the filters have worsen due to failure (see
Table 5.25 to Table 5.28).

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.38e-3 1.90e-1 1.14e0 0.05 6.76e-6 3.46e-4 1.87e-3
0.1 1.62e-3 2.81e-2 4.36e-1 0.1 2.87e-6 4.25e-5 7.26e-4
0.5 6.28e-4 7.19e-4 2.77e-3 0.5 9.24e-7 1.09e-6 4.30e-6

Table 5.25: UKF µ̄3Mfail sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.73e-3 3.51e-1 6.82e-1 0.05 3.63e-6 7.02e-4 1.16e-3
0.1 4.59e-4 7.83e-2 6.02e-1 0.1 7.71e-7 1.10e-4 1.08e-3
0.5 5.88e-5 2.23e-4 9.53e-3 0.5 8.89e-8 2.89e-7 1.47e-5

Table 5.26: UKFσµ̄,3Mfail sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.37e-4 1.35e-3 4.21e-3 0.05 1.91e-5 2.96e-5 6.70e-5
0.1 4.55e-4 1.06e-3 2.47e-3 0.1 1.12e-5 1.87e-5 3.68e-5
0.5 9.96e-5 1.70e-4 5.30e-4 0.5 1.55e-6 3.91e-6 1.19e-5

Table 5.27: UKF µ̄3Mfail sensitivity analysis for rotational performance.

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



82 Acquisition Failures

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 2.01e-4 2.23e-4 0 0.05 2.97e-6 1.80e-5 0
0.1 8.16e-5 9.53e-4 1.53e-3 0.1 3.01e-6 1.43e-5 3.90e-5
0.5 1.97e-5 1.61e-4 7.27e-4 0.5 4.95e-7 4.16e-6 1.74e-5

Table 5.28: UKFσµ̄,3Mfail sensitivity analysis for rotational performance.

EKFDA1 EKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 99 47 37 0.05 93 38 40
0.1 100 89 69 0.1 100 89 82
0.5 100 100 100 0.5 100 100 100

UKF UKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 100 53 43 0.05 100 46 51
0.1 100 94 72 0.1 100 94 79
0.5 100 100 100 0.5 100 100 100

Table 5.29: Success rate for each combination of frequency and amplitude
factor. Translational dynamics. 3 Markers limitation with failures.

EKFDA1 EKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 3 3 0 0.05 6 6 1
0.1 48 24 10 0.1 63 51 20
0.5 100 100 89 0.5 100 100 94

UKF UKFDA2
Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9 2 1 0.05 10 4 1
0.1 58 31 13 0.1 58 31 13
0.5 100 100 93 0.5 100 100 93

Table 5.30: Success rate for each combination of frequency and amplitude
factor. Rotational dynamics. 3 Markers limitation with failures.
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CHAPTER 6

Conclusions and Future
Developments

Innovative nonlinear filters have been developed in this thesis. The fil-
ters have been proven to show better performance with respect to classical
Kalman filters and to be robust to failures. The introduction of DA in the
standard EKF improves the accuracy of the filter by using second expansion
order terms of the Taylor series that would have been neglected. Moreover,
DA improves also the numerical performance of the UKF leading to a lighter,
and faster, software.

The three filters presented have been proven to achieve an accurate pose
estimation of the target in the deorbit mission of ENVISAT. Moreover, the
filters present higher reliability and a better accuracy level when compared
to the standard EKF, especially at low acquisition measurement frequencies.
The decision of using a set of markers from the image processing of the
camera as the measurement model has created a realistic application. The
sensitivity analysis has been performed according to the selected model and
respecting the system characteristics.

Both EKFDA2 and UKFDA2 are able to capture the mean and the covari-
ance accurately up to the second order, but EKFDA2 has a better accuracy
level with respect to the UT-based filters. Anyhow, nonlinear filters are bet-
ter with respect to the classic EKF. Moreover, the insertion of DA brings
great benefits: EKFDA improves EKF in accuracy while UKFDA improves
UKF in computational time.

This thesis opens to a variety of future developments. The marker mea-
surement model is based on the typical measurements obtained from camera
images, therefore a scenario within the filters and a real time image process-
ing software is the next step to a more real application. Furthermore, the
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implemented dynamics of ENVISAT has got no couplings between the trans-
lational and rotational part, thus more complex equations that introduce
flexibility can be developed and added to the system. Concerning again the
dynamics, this thesis has considered the knowledge of the inertia matrix and
the centre of mass position of the target as granted. A new application may
consider the error in those values and aims to use the filter not only to esti-
mate the target state, but also to identify this mismatch and try to correct it.

The UKF could be improved by trying to use higher moments knowledge,
such as skewness and kurtosis, as active information to give matching weight
to each sigma point [34]. In the same way, the DA-based high order filter
may be improved thanks to its fast capability of calculating moments with
of higher order. The higher order moments could be included in the update
step of the filters to improve accuracy.

Moreover, it is worth highlighting that all the unscented transformations
have been performed with the same set of parameters for the selection of the
sigma points in the covariance ellipse. A statistical analysis could be done
to study the UKF (and UKFDA) behaviour considering the UT parameters
as variables.

Finally, this thesis has provided a comparison between two different Kalman
filter types. It may be useful to extend this comparison to particle filters [10],
by applying it to scenarios with multiple targets [31].
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APPENDIX A

Cholesky Decomposition

In linear algebra, the Cholesky decomposition or Cholesky factorization is
a decomposition of a Hermitian, positive-definite matrix into the product
of a lower triangular matrix and its conjugate transpose. Therefore, every
positive definite matrix A ∈ Rn×n can be factored as A = LLT where L is
lower triangular with positive diagonal terms. The complexity of computing
L is (1/3)n3 flops, where n is the matrix dimension. L is called the Cholesky
factor of A and can be interpreted as the ”square root” of a positive definite
matrix.
The Cholesky Banachiewicz algorithm is here reported. This algorithm starts
from the upper left element of matrix L and then it builds the matrix row
by row.

li,j =
1

lj,j

(
ai,j −

j−1∑
k=1

li,klj,k

)
(A.1)

li,j =

√√√√ai,i −
i−1∑
k=1

l2i,k (A.2)

These equations applies ∀i = 0, . . . , n and ∀j = 0, . . . , i− 1.
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APPENDIX B

Tables Results

B.1 All Markers

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.47e-3 1.52e-1 8.08e-1 0.05 6.35e-6 2.41e-4 1.39e-3
0.1 1.48e-3 1.84e-2 3.41e-1 0.1 2.70e-6 2.71e-5 5.53e-4
0.5 6.34e-4 6.30e-4 8.57e-4 0.5 9.35e-7 9.79e-7 1.54e-6
1 2.88e-4 2.81e-4 2.77e-4 1 5.08e-7 4.90e-7 4.68e-7
3 8.81e-5 8.95e-5 9.50e-5 3 1.52e-7 1.55e-7 1.65e-7

Table B.1: EKFDA1µ̄ sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 2.32e-3 2.82e-1 5.61e-1 0.05 3.61e-6 4.49e-4 1.03e-3
0.1 1.66e-4 3.30e-2 5.13e-1 0.1 2.52e-8 4.78e-5 9.12e-4
0.5 2.71e-6 4.84e-5 3.60e-4 0.5 2.79e-9 8.41e-8 7.44e-7
1 4.59e-7 7.19e-6 3.01e-5 1 6.62e-10 1.20e-8 4.47e-8
3 8.35e-8 1.37e-6 6.54e-6 3 1.35e-10 2.23e-9 1.07e-8

Table B.2: EKFDA1σµ̄ sensitivity analysis for translational performance.
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88 All Markers

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8.90e-4 1.98e-3 5.13e-3 0.05 1.82e-5 3.48e-5 4.31e-5
0.1 4.43e-4 1.33e-3 2.64e-3 0.1 9.46e-6 2.51e-5 3.24e-5
0.5 9.46e-5 1.06e-4 2.27e-4 0.5 1.93e-6 2.31e-6 5.37e-6
1 5.16e-5 5.39e-5 6.87e-5 1 3.93e-7 5.30e-7 1.11e-6
3 9.44e-6 1.06e-5 1.44e-5 3 1.52e-7 1.95e-7 3.55e-7

Table B.3: EKFDA1µ̄ sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.49e-4 6.31e-4 3.34e-4 0.05 3.84e-4 1.94e-5 3.79e-5
0.1 6.96e-5 1.17e-4 2.20e-3 0.1 2.75e-6 2.40e-5 2.46e-5
0.5 1.81e-6 3.27e-5 2.13e-4 0.5 8.81e-8 1.01e-6 4.48e-6
1 1.24e-6 8.82e-6 3.27e-5 1 1.21e-8 2.07e-7 9.52e-7
3 1.37e-7 1.44e-6 7.30e-6 3 6.16e-9 6.63e-8 2.79e-7

Table B.4: EKFDA1σµ̄ sensitivity analysis for rotational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 3.61e-3 1.53e-1 9.72e-1 0.05 4.68e-6 2.74e-4 1.68e-3
0.1 1.40e-3 4.60e-3 2.80e-1 0.1 2.60e-6 6.65e-6 4.82e-4
0.5 6.33e-4 6.29e-4 8.01e-4 0.5 9.34e-7 9.66e-7 1.40e-6
1 2.88e-4 2.81e-4 2.77e-4 1 5.08e-7 4.90e-7 4.68e-7
3 8.82e-5 8.96e-5 9.51e-5 3 1.52e-7 1.55e-7 1.65e-7

Table B.5: EKFDA2µ̄ sensitivity analysis for translational performance.
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.59e-5 3.62e-1 6.59e-1 0.05 1.15e-7 6.98e-4 1.81e-3
0.1 9.20e-6 1.18e-2 4.97e-1 0.1 2.43e-8 3.69e-5 9.18e-4
0.5 2.44e-6 4.59e-5 3.02e-4 0.5 2.61e-9 6.77e-8 6.04e-7
1 4.56e-7 7.09e-6 2.97e-5 1 6.55e-10 1.18e-8 4.40e-8
3 8.37e-8 1.36e-6 6.52e-6 3 1.35e-10 2.23e-9 1.07e-8

Table B.6: EKFDA2σµ̄ sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.36e-4 1.21e-3 2.82e-3 0.05 2.35e-5 2.51e-5 2.17e-5
0.1 4.49e-4 7.60e-4 1.23e-3 0.1 1.05e-5 1.64e-5 2.24e-5
0.5 9.46e-5 1.04e-4 2.13e-4 0.5 1.96e-6 2.25e-6 5.01e-6
1 5.07e-5 5.30e-5 6.79e-5 1 3.88e-7 5.24e-7 1.10e-6
3 9.17e-7 9.98e-6 1.41e-5 3 1.49e-7 1.91e-7 3.50e-7

Table B.7: EKFDA2µ̄ sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.54e-5 4.01e-4 2.21e-3 0.05 6.56e-7 6.79e-6 8.79e-6
0.1 9.47e-6 6.23e-4 1.10e-3 0.1 4.29e-6 1.19e-5 2.38e-5
0.5 1.75e-6 3.05e-5 1.96e-4 0.5 8.47e-8 9.51e-7 4.17e-6
1 1.23e-6 8.67e-6 3.24e-5 1 1.03e-8 2.02e-7 9.41e-7
3 1.23e-7 1.38e-6 7.25e-6 3 5.58e-9 6.45e-8 2.77e-7

Table B.8: EKFDA2σµ̄ sensitivity analysis for rotational performance.
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 3.93e-3 1.66e-3 7.51e-1 0.05 5.51e-6 2.74e-4 1.33e-3
0.1 1.42e-3 1.10e-2 2.31e-1 0.1 2.63e-6 1.64e-5 3.83e-4
0.5 6.33e-4 6.29e-4 7.86e-4 0.5 9.34e-7 9.60e-7 1.34e-6
1 2.88e-4 2.81e-4 2.77e-4 1 5.08e-7 4.90e-7 4.68e-7
3 8.82e-5 8.96e-5 9.50e-5 3 1.52e-7 1.55e-7 1.65e-7

Table B.9: UKF µ̄ sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.05e-3 3.02e-1 5.37e-1 0.05 1.89e-6 5.35e-4 1.04e-3
0.1 6.11e-5 2.60e-2 4.17e-1 0.1 1.24e-7 3.66e-5 7.61e-4
0.5 2.53e-6 4.90e-5 2.64e-4 0.5 2.68e-9 6.39e-8 5.53e-7
1 4.53e-7 7.07e-5 2.96e-5 1 6.50e-10 1.18e-8 4.39e-8
3 8.37e-8 1.36e-6 6.52e-6 3 1.35e-10 2.25e-9 1.07e-8

Table B.10: UKFσµ̄ sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8.53e-4 1.77e-3 2.75e-3 0.05 1.91e-5 3.06e-5 2.60e-5
0.1 4.50e-4 1.02e-3 2.12e-3 0.1 1.04e-5 2.00e-5 3.22e-5
0.5 9.45e-5 1.06e-4 2.23e-4 0.5 1.95e-6 2.32e-6 5.29e-6
1 5.07e-5 5.30e-5 6.79e-5 1 3.88e-7 5.24e-7 1.11e-6
3 9.17e-7 9.98e-6 1.41e-5 3 1.49e-7 1.91e-7 3.50e-7

Table B.11: UKF µ̄ sensitivity analysis for rotational performance.
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8.87e-5 1.06e-3 1.69e-3 0.05 3.20e-6 2.62e-5 1.80e-5
0.1 6.31e-5 7.15e-4 1.79e-3 0.1 2.50e-6 1.52e-5 2.45e-5
0.5 1.85e-6 3.32e-5 2.04e-4 0.5 8.86e-8 1.04e-6 4.42e-6
1 1.23e-6 8.70e-6 3.25e-5 1 1.04e-8 2.03e-7 9.45e-7
3 1.23e-7 1.38e-6 7.25e-6 3 5.58e-9 6.45e-8 2.77e-7

Table B.12: UKFσµ̄ sensitivity analysis for rotational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 3.93e-3 1.74e-1 6.89e-1 0.05 5.51e-6 3.10e-4 1.24e-3
0.1 1.42e-3 1.10e-2 2.28e-1 0.1 2.63e-6 1.64e-5 3.63e-4
0.5 6.33e-4 6.29e-4 7.86e-4 0.5 9.34e-7 9.60e-7 1.34e-6
1 2.88e-4 2.81e-4 2.77e-4 1 5.08e-7 4.90e-7 4.68e-7
3 8.82e-5 8.96e-5 9.50e-5 3 1.52e-7 1.55e-7 1.65e-7

Table B.13: UKFDA2µ̄ sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.05e-3 3.27e-1 5.11e-1 0.05 1.89e-6 6.33e-4 1.02e-3
0.1 6.11e-5 2.60e-2 4.07e-1 0.1 1.24e-7 3.66e-5 7.15e-4
0.5 2.53e-6 4.90e-5 2.94e-4 0.5 2.68e-9 6.39e-8 5.53e-7
1 4.53e-7 7.07e-5 2.98e-5 1 6.51e-10 1.18e-8 4.39e-8
3 8.37e-8 1.36e-6 6.52e-6 3 1.35e-10 2.25e-9 1.07e-8

Table B.14: UKFDA2σµ̄ sensitivity analysis for translational performance.
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8.54e-4 1.77e-3 2.79e-3 0.05 1.91e-5 3.05e-5 2.60e-5
0.1 4.50e-4 1.02e-3 2.12e-3 0.1 1.04e-5 2.00e-5 3.22e-5
0.5 9.45e-5 1.06e-4 2.23e-4 0.5 1.95e-6 2.32e-6 5.29e-6
1 5.07e-5 5.30e-5 6.79e-5 1 3.88e-7 5.24e-7 1.11e-6
3 9.17e-7 9.98e-6 1.41e-5 3 1.49e-7 1.91e-7 3.50e-7

Table B.15: UKFDA2µ̄ sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 8.86e-5 1.06e-3 1.75e-3 0.05 3.19e-6 2.63e-5 1.72e-5
0.1 6.31e-5 7.15e-4 1.79e-3 0.1 2.50e-6 1.52e-5 2.45e-5
0.5 1.85e-6 3.32e-5 2.04e-4 0.5 8.86e-8 1.04e-6 4.42e-6
1 1.23e-6 8.70e-6 3.25e-5 1 1.04e-8 2.03e-7 9.45e-7
3 1.23e-7 1.38e-6 7.25e-6 3 5.58e-9 6.45e-8 2.77e-7

Table B.16: UKFDA2σµ̄ sensitivity analysis for rotational performance.
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B.2 Three Markers

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.64e-3 1.34e-1 8.20e-1 0.05 6.74e-6 2.41e-4 1.28e-3
0.1 1.50e-3 2.78e-2 4.09e-1 0.1 2.70e-6 4.30e-5 6.66e-4
0.5 6.29e-4 6.38e-4 9.76e-4 0.5 9.30e-7 1.00e-6 1.74e-6
1 2.95e-4 2.89e-4 3.16e-4 1 5.21e-7 4.91e-7 4.83e-7
3 8.83e-5 9.22e-5 1.14e-4 3 1.52e-7 1.59e-7 1.92e-7

Table B.17: EKFDA1µ̄3M sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 2.89e-3 2.45e-1 6.58e-1 0.05 4.52e-6 5.09e-4 9.75e-4
0.1 2.24e-4 4.99e-2 5.59e-1 0.1 3.43e-7 7.50e-5 1.04e-3
0.5 3.50e-6 6.91e-5 4.93e-4 0.5 3.77e-9 1.15e-7 9.06e-7
1 9.66e-7 1.49e-5 9.38e-5 1 1.58e-9 2.27e-8 8.21e-8
3 2.16e-7 5.70e-6 3.87e-5 3 2.95e-10 7.68e-9 5.18e-8

Table B.18: EKFDA1σµ̄,3M sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.29e-4 2.54e-3 - 0.05 1.78e-5 4.15e-5 -
0.1 4.47e-4 1.05e-3 2.43e-3 0.1 1.17e-5 2.02e-5 2.96e-5
0.5 8.68e-5 1.08e-4 3.07e-4 0.5 1.30e-6 2.20e-6 7.12e-6
1 6.74e-5 7.66e-5 1.27e-4 1 4.36e-7 8.58e-7 2.50e-6
3 8.51e-6 1.40e-5 3.46e-5 3 1.30e-7 3.17e-7 9.88e-7

Table B.19: EKFDA1µ̄3M sensitivity analysis for rotational performance.
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.43e-4 1.02e-3 - 0.05 5.60e-6 1.76e-5 -
0.1 8.46e-5 7.98e-4 1.65e-3 0.1 3.23e-6 2.11e-5 1.71e-5
0.5 3.22e-6 4.12e-5 3.42e-4 0.5 1.52e-7 1.36e-6 7.88e-6
1 3.03e-6 2.29e-5 9.79e-5 1 1.66e-8 5.68e-7 2.94e-6
3 4.48e-7 7.83e-6 3.60e-5 3 1.08e-8 2.63e-7 1.21e-6

Table B.20: EKFDA1σµ̄,3M sensitivity analysis for rotational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.62e-2 1.89e-1 1.11e-0 0.05 3.23e-5 2.98e-4 1.74e-3
0.1 1.38e-3 9.62e-3 3.86e-1 0.1 2.65e-6 1.48e-5 6.16e-4
0.5 6.26e-4 6.34e-4 9.37e-4 0.5 9.27e-7 9.90e-7 1.65e-6
1 2.94e-4 2.88e-4 3.16e-4 1 5.22e-7 4.92e-7 4.84e-7
3 8.87e-5 9.25e-5 1.14e-5 3 1.53e-7 1.59e-7 1.93e-7

Table B.21: EKFDA2µ̄3M sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 6.83e-2 3.16e-1 6.07e-1 0.05 1.42e-4 5.19e-4 1.01e-3
0.1 2.23e-5 2.11e-2 5.98e-1 0.1 5.69e-8 3.22e-5 9.91e-4
0.5 3.33e-6 6.63e-5 4.59e-4 0.5 3.56e-9 1.04e-7 8.25e-7
1 9.55e-7 1.45e-5 9.24e-5 1 1.58e-9 2.26e-8 8.13e-8
3 2.15e-7 5.59e-6 3.83e-5 3 2.92e-10 7.60e-9 5.15e-8

Table B.22: EKFDA2σµ̄,3M sensitivity analysis for translational performance.
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.12e-4 1.76e-3 - 0.05 2.05e-5 2.42e-5 -
0.1 4.55e-4 8.15e-4 1.71e-3 0.1 1.24e-5 1.80e-5 3.14e-5
0.5 8.80e-5 1.07e-4 2.95e-4 0.5 1.37e-6 2.16e-6 6.83e-6
1 6.46e-5 7.34e-5 1.24e-4 1 4.41e-7 8.38e-7 2.45e-6
3 7.76e-6 1.31e-5 3.36e-5 3 1.25e-7 3.04e-7 9.68e-7

Table B.23: EKFDA2µ̄3M sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.42e-5 3.48e-4 - 0.05 2.64e-6 8.49e-6 -
0.1 1.93e-5 5.00e-4 1.58e-3 0.1 9.24e-7 1.27e-5 3.33e-5
0.5 3.44e-6 3.87e-5 3.23e-4 0.5 1.57e-7 1.29e-6 7.48e-6
1 3.07e-6 2.24e-5 9.64e-5 1 2.49e-8 5.34e-7 2.89e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.71e-9 2.54e-7 1.20e-6

Table B.24: EKFDA2σµ̄,3M sensitivity analysis for rotational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 3.97e-3 1.50e-1 9.28e-1 0.05 5.80e-6 2.26e-4 1.53e-3
0.1 1.42e-3 1.66e-2 3.44e-1 0.1 2.61e-6 2.59e-5 5.72e-4
0.5 6.36e-4 6.34e-4 9.24e-4 0.5 9.27e-7 9.85e-7 1.60e-6
1 2.94e-4 2.88e-4 3.16e-4 1 5.22e-7 4.92e-7 4.84e-7
3 8.87e-5 9.25e-5 1.14e-4 3 1.53e-7 1.59e-7 1.93e-7

Table B.25: UKF µ̄3M sensitivity analysis for translational performance.
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.44e-3 2.97e-1 5.47e-1 0.05 2.79e-6 4.91e-4 1.02e-3
0.1 1.08e-4 3.25e-2 5.29e-1 0.1 2.01e-7 4.59e-5 9.77e-4
0.5 3.38e-6 6.85e-5 4.55e-4 0.5 3.69e-9 1.00e-7 7.88e-7
1 3.51e-7 1.46e-5 9.27e-5 1 1.57e-9 2.26e-8 8.12e-8
3 2.15e-7 5.59e-6 3.83e-5 3 2.92e-10 7.59e-9 5.14e-8

Table B.26: UKFσµ̄,3M sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.10e-4 2.21e-3 2.69e-3 0.05 1.89e-5 3.98e-5 4.86e-5
0.1 4.52e-4 1.06e-3 2.41e-3 0.1 1.20e-5 1.94e-5 3.92e-5
0.5 8.79e-5 1.08e-4 3.00e-4 0.5 1.37e-6 2.21e-6 6.98e-6
1 6.46e-5 7.38e-5 1.24e-4 1 4.41e-7 8.39e-7 2.46e-6
3 7.76e-6 1.31e-5 3.37e-5 3 1.24e-7 3.03e-7 9.69e-7

Table B.27: UKF µ̄3M sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.95e-5 1.40e-3 9.41e-5 0.05 3.06e-6 4.46e-5 2.27e-5
0.1 7.21e-5 8.90e-4 1.77e-3 0.1 3.17e-6 1.55e-5 3.72e-5
0.5 3.53e-6 4.04e-5 3.29e-4 0.5 1.60e-7 1.35e-6 7.60e-6
1 3.07e-6 2.24e-5 9.67e-5 1 2.48e-8 5.46e-7 2.90e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.72e-9 2.54e-7 1.20e-6

Table B.28: UKFσµ̄,3M sensitivity analysis for rotational performance.
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 3.97e-3 8.93e-2 9.26e-1 0.05 5.80e-6 1.33e-4 1.45e-3
0.1 1.42e-3 1.66e-2 3.54e-1 0.1 2.61e-6 2.59e-5 5.94e-4
0.5 6.26e-4 6.34e-4 9.24e-4 0.5 9.27e-7 9.85e-7 1.60e-6
1 2.94e-4 2.88e-4 3.16e-4 1 5.22e-7 4.92e-7 4.84e-7
3 8.87e-5 9.25e-5 1.14e-4 3 1.53e-7 1.59e-7 1.93e-7

Table B.29: UKFDA2µ̄3M sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.44e-3 1.58e-1 5.93e-1 0.05 2.79e-6 2.41e-4 1.07e-3
0.1 1.08e-4 3.25e-2 5.31e-1 0.1 2.01e-7 4.60e-5 9.75e-4
0.5 3.38e-6 6.85e-5 4.55e-4 0.5 3.69e-9 1.00e-7 7.88e-7
1 9.51e-7 1.46e-5 9.27e-5 1 1.57e-9 2.26e-8 8.12e-8
3 2.15e-7 5.59e-6 3.83e-5 3 2.92e-10 7.60e-9 5.14e-8

Table B.30: UKFDA2σµ̄,3M sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.12e-4 2.19e-3 2.67e-3 0.05 1.89e-5 3.96e-5 4.82e-5
0.1 4.53e-4 1.06e-3 2.42e-3 0.1 1.20e-5 1.94e-5 3.91e-5
0.5 8.79e-5 1.08e-4 3.00e-4 0.5 1.37e-6 2.21e-6 6.98e-6
1 6.47e-5 7.38e-5 1.24e-4 1 4.42e-7 8.39e-7 2.46e-6
3 7.76e-6 1.31e-5 3.38e-5 3 1.25e-7 3.03e-7 9.69e-7

Table B.31: UKFDA2µ̄3M sensitivity analysis for rotational performance.
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Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.99e-5 1.39e-3 1.32e-4 0.05 2.98e-6 4.46e-5 2.16e-5
0.1 7.22e-5 8.90e-4 1.77e-3 0.1 3.17e-6 1.55e-5 3.70e-5
0.5 3.53e-6 4.04e-5 3.29e-4 0.5 1.59e-7 1.35e-6 7.60e-6
1 3.07e-6 2.24e-5 9.67e-5 1 2.48e-8 5.46e-7 2.90e-6
3 3.50e-7 7.58e-6 3.57e-5 3 6.72e-9 2.54e-7 1.20e-6

Table B.32: UKFDA2σµ̄,3M sensitivity analysis for rotational performance.
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B.3 Measurement failures

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 7.25e-3 2.27e-1 1.05e0 0.05 1.08e-5 3.83e-4 1.71e-3
0.1 1.99e-3 5.33e-2 5.53e-1 0.1 3.46e-6 7.91e-5 9.26e-4
0.5 6.23e-4 9.20e-4 1.93e-2 0.5 9.29e-7 1.57e-6 2.38e-5

Table B.33: EKFDA1µ̄3Mfail sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.03e-2 3.43e-1 5.37e-1 0.05 1.41e-5 6.31e-4 1.04e-3
0.1 2.03e-3 1.09e-1 6.21e-1 0.1 3.50e-6 1.46e-4 1.11e-3
0.5 5.98e-5 1.24e-3 1.15e-1 0.5 8.95e-8 2.85e-6 1.48e-4

Table B.34: EKFDA1σµ̄,3Mfail sensitivity analysis for translational perfor-
mance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 7.79e-4 2.36e-3 - 0.05 1.87e-5 5.24e-5 -
0.1 4.77e-4 1.41e-3 3.24e-3 0.1 1.16e-5 2.32e-5 4.40e-5
0.5 9.78e-5 2.18e-4 5.75e-4 0.5 1.46e-6 5.29e-6 1.28e-5

Table B.35: EKFDA1µ̄3Mfail sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.13e-4 1.02e-4 - 0.05 1.98e-6 2.61e-5 -
0.1 1.24e-4 1.16e-3 1.56e-3 0.1 4.10e-6 2.82e-5 4.33e-5
0.5 1.86e-5 3.12e-4 9.10e-4 0.5 4.77e-7 8.00e-6 2.10e-5

Table B.36: EKFDA1σµ̄,3Mfail sensitivity analysis for rotational performance.
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.30e-2 1.95e-1 1.22e-0 0.05 2.43e-5 3.10e-4 1.88e-3
0.1 1.55e-3 1.61e-2 4.89e-1 0.1 2.77e-6 2.59e-5 8.60e-4
0.5 6.28e-4 7.18e-4 3.53e-3 0.5 9.24e-7 1.11e-6 4.89e-6

Table B.37: EKFDA2µ̄3Mfail sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 5.40e-2 3.38e-1 6.41e-1 0.05 1.12e-4 5.90e-4 1.06e-3
0.1 2.49e-4 3.98e-2 5.96e-1 0.1 4.84e-7 5.90e-5 1.10e-3
0.5 5.86e-5 2.10e-4 1.66e-2 0.5 8.86e-8 3.14e-7 1.94e-5

Table B.38: EKFDA2σµ̄,3Mfail sensitivity analysis for translational perfor-
mance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.88e-4 1.82e-3 2.54e-3 0.05 2.09e-5 2.17e-5 1.69e-5
0.1 4.66e-4 1.11e-3 1.42e-3 0.1 1.16e-5 1.99e-5 2.22e-5
0.5 9.97e-5 1.63e-4 5.71e-4 0.5 1.55e-6 3.72e-6 1.19e-5

Table B.39: EKFDA2µ̄3Mfail sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.37e-4 7.87e-4 0 0.05 2.62e-6 3.85e-6 0
0.1 7.29e-5 9.21e-4 1.31e-3 0.1 2.76e-6 1.56e-5 1.98e-5
0.5 1.96e-5 1.46e-5 8.76e-4 0.5 4.93e-7 3.90e-6 1.71e-5

Table B.40: EKFDA2σµ̄,3Mfail sensitivity analysis for rotational performance.
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.38e-3 1.90e-1 1.14e0 0.05 6.76e-6 3.46e-4 1.87e-3
0.1 1.62e-3 2.81e-2 4.36e-1 0.1 2.87e-6 4.25e-5 7.26e-4
0.5 6.28e-4 7.19e-4 2.77e-3 0.5 9.24e-7 1.09e-6 4.30e-6

Table B.41: UKF µ̄3Mfail sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.73e-3 3.51e-1 6.82e-1 0.05 3.63e-6 7.02e-4 1.16e-3
0.1 4.59e-4 7.83e-2 6.02e-1 0.1 7.71e-7 1.10e-4 1.08e-3
0.5 5.88e-5 2.23e-4 9.53e-3 0.5 8.89e-8 2.89e-7 1.47e-5

Table B.42: UKFσµ̄,3Mfail sensitivity analysis for translational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.37e-4 1.35e-3 4.21e-3 0.05 1.91e-5 2.96e-5 6.70e-5
0.1 4.55e-4 1.06e-3 2.47e-3 0.1 1.12e-5 1.87e-5 3.68e-5
0.5 9.96e-5 1.70e-4 5.30e-4 0.5 1.55e-6 3.91e-6 1.19e-5

Table B.43: UKF µ̄3Mfail sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 2.01e-4 2.23e-4 0 0.05 2.97e-6 1.80e-5 0
0.1 8.16e-5 9.53e-4 1.53e-3 0.1 3.01e-6 1.43e-5 3.90e-5
0.5 1.97e-5 1.61e-4 7.27e-4 0.5 4.95e-7 4.16e-6 1.74e-5

Table B.44: UKFσµ̄,3Mfail sensitivity analysis for rotational performance.
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Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 4.39e-3 1.69e-1 1.15e0 0.05 6.76e-6 2.73e-4 1.86e-3
0.1 1.62e-3 2.78e-2 3.92e-1 0.1 2.87e-6 4.22e-5 6.44e-4
0.5 6.28e-4 7.19e-4 2.77e-3 0.5 9.24e-7 1.09e-6 4.30e-6

Table B.45: UKFDA2µ̄3Mfail sensitivity analysis for translational performance.

Relative Position (m) Relative Velocity (m/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.73e-3 3.31e-1 6.32e-1 0.05 3.66e-6 5.58e-4 1.07e-3
0.1 4.60e-4 7.62e-2 5.06e-1 0.1 7.75e-7 1.08e-4 9.15e-4
0.5 5.88e-5 2.23e-4 9.53e-3 0.5 8.89e-8 2.89e-7 1.47e-5

Table B.46: UKFDA2σµ̄,3Mfail sensitivity analysis for translational perfor-
mance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 9.54e-4 1.14e-3 3.26e-3 0.05 1.88e-5 2.21e-5 3.55e-5
0.1 4.55e-4 1.06e-3 2.46e-3 0.1 1.12e-5 1.87e-5 3.75e-5
0.5 9.96e-5 1.70e-4 5.30e-4 0.5 1.55e-6 3.91e-6 1.19e-5

Table B.47: UKFDA2µ̄3Mfail sensitivity analysis for rotational performance.

Modified Rodriguez Parameters Relative Angular Velocity (rad/s)

Freq. K Freq. K
(Hz) 1 5 10 (Hz) 1 5 10
0.05 1.97e-4 2.98e-4 0 0.05 3.03e-6 1.03e-5 0
0.1 8.15e-5 9.50e-4 1.45e-3 0.1 3.01e-6 1.43e-5 2.87e-5
0.5 1.97e-5 1.61e-4 7.27e-4 0.5 4.95e-7 4.16e-6 1.74e-5

Table B.48: UKFDA2σµ̄,3Mfail sensitivity analysis for rotational performance.
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Lavagna. Nonlinear filtering methods for spacecraft navigation based
on differential algebra. Acta Astronautica, 94(1):363–374, 2014.

High Orders Filters for Relative Pose Estimation of an Uncooperative Target



BIBLIOGRAPHY 107

[44] Rudolph Van Der Merwe. Sigma-point kalman filters for probabilistic
inference in dynamic state-space models. 2004.

[45] James R Van Zandt. A more robust unscented transform. In Inter-
national symposium on optical science and technology, pages 371–380,
2001.

[46] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter
for nonlinear estimation. In Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000, pages 153–158. Ieee, 2000.

[47] Han Wang and Michael Brady. Real-time corner detection algorithm for
motion estimation. Image and vision computing, 13(9):695–703, 1995.

[48] Eric W Weisstein. Rotation matrix. 2003.

[49] J Wertz and Robert Bell. Autonomous rendezvous and docking
technologiesstatus and prospects. In SPIEs 17th Annual Interna-
tional Symposium on Aerospace/Defense Sensing, Simulation, and Con-
trols,(Orlando, USA), pages 21–25, 2003.

[50] Alexander Wittg. Differential algebra lab. In Astronet II - Fourth Train-
ing School, February 2015.

[51] Kjetil Wormnes, Ronan Le Letty, Leopold Summerer, Rogier Schonen-
borg, Olivier Dubois-Matra, Eleonora Luraschi, Alexander Cropp, Hol-
ger Krag, and Jessica Delaval. Esa technologies for space debris reme-
diation. In Proceedings of the 6th IAASS Conference: Safety is Not an
Option, pages 3–4, 2013.

[52] Wan-jin Zhao, Sheng-rong Gong, Chun-ping Liu, and Xiang-jun SHEN.
Adaptive harris corner detection algorithm. Computer Engineering,
10(5):212–215, 2008.

High Orders Filters for Relative Pose Estimation of an Uncooperative Target


