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Osa diventare ció che sei. E non disarmarti facilmente. Ci sono

meravigliose opportunitá in ogni essere. Persuaditi della tua forza e della

tua gioventú. Continua a ripetere incessantemente: “Non spetta che a me”.

- André Gide



Sommario

Recentemente, l’uso della chirurgia robotica teleoperata é cresciuto notevol-

mente grazie a vantaggi considerevoli rispetto alla tradizionale laparoscopia.

In chirurgia mini invasiva teleoperata, i chirurghi operano tramite un master

device, ovvero un manipolatore in grado di controllare un braccio robotico

che si interfaccia direttamente con il paziente. Questo sistema permette

di ottenere performance piú elevate grazie alla possibilitá di ridurre e fil-

trare i movimenti della mano del chirurgo, portando quindi a maggior preci-

sione e minor invasivitá. Le sostanziali differenze nella cinematica, cinetica e

percezioni sensoriali introdotte dall’uso di un controllore a distanza (il master

device), ha portato nuove sfide per i chirurghi, a partire dall’apprendimento

di abilitá psicomotorie. Mentre feedback visivi, sonori e tattili (haptici) sono

stati ampiamente usati in sistemi di allenamento tradizionali, l’assenza di

feedback haptici nel piú usato sistema di chirurgia teleoperata, il da Vinci

Surgical System, impedisce l’uso di questi ultimi. Lo sviluppo di piú avan-

zati sistemi di controllo teleoperati ha portato all’integrazione di questo tipo

di feedback nell’allenamento su sistemi di realtá virtuale aumentata. Questi

sistemi sono stati applicati con successo in riabilitazione: l’uso della tecnica

di error augmentation basata su feedback haptici ha portato a miglioramenti

nel ri-sviluppo di capacitá motorie in pazienti colpiti da ictus. Tuttavia,

gli effetti di questo approccio in un contesto di allenamento per chirurgia

teleoperata sono ancora da approfondire.

Questo lavoro di tesi analizza l’uso della teoria di error augmentation

per lo sviluppo di capacitá psicomotorie per chirurgia robotica. Abbiamo

sviluppato un set up di realtá virtuale e feedback haptici per valutare gli

effetti nell’apprendimento di un task di inseguimento di traiettoria. Tre
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diversi gruppi di allenamento sono stati considerati: con solo feedback vi-

sivo, con approccio Limit-Push, un’applicazione di feedback di forza usata

attualmente in riabilitazione, e con l’approccio qui introdotto per la prima

volta, il Limit-Trench, basato sull’allenamento con instabilitá. I migliora-

menti nell’esecuzione dell’esercizio proposto sono stati analizzati tra i tre

gruppi tenendo in considerazione cinque diversi indici di performance. Da

questo studio é risultato che allenarsi senza feedback di forza porta ad una

migliore esecuzione del task. Inoltre, abbiamo riscontrato che l’allenamento

condotto con forze che portano ad instabilitá nell’esecuzione é addirittura

controproducente per l’apprendimento di capacitá psicomotorie, delineando

quindi l’esistenza di condizioni limite per un allenamento adeguato basato

sull’error augmentation.



Summary

In recent years, the impact of robotic teleoperated surgery has grown sig-

nificantly thanks to the considerable advantages with respect to traditional

laparoscopy. In teleoperated Robotic Minimally Invasive Surgery, surgeons

use a master device: a manipulator that controls a slave robot that directly

interacts with the patient. This system allows to obtain high performances

thanks to the possibility of downscaling and filtering the surgeon hand move-

ments, achieving higher accuracy and lower invasiveness. The substantial dif-

ferences in the kinematic, kinetic and sensory perceptions introduced by the

interaction with the master devices gave rise to a series of new challenges for

surgeons, starting from skill acquisition. While visual, auditory, and touch

senses have been widely used in traditional training, the absence of inherent

haptic feedback in the currently most used surgical teleoperation system, i.e.,

the da Vinci Surgical System, prevented the use of tactile and kinesthetic in-

formation. The development of more advanced master devices enabled the

possibility of providing augmented feedback in the form of tactile or kines-

thetic information while training on VR simulators. These systems have been

successfully applied in rehabilitation: the use of haptics-based error augmen-

tation has been able to swiftly improve dysfunctional psychomotor skills in

stroke patients. However, its effects on teleoperation training and expertise

skills development are yet to be fully understood.

This thesis work further explore the use of error augmentation theory

for psychomotor skill training for robotic surgery. We developed a virtual

reality and haptic test bed to evaluate learning effect in a trajectory-following

task. Three different training conditions have been taken into consideration:

with visual feedback only, with Limit-Push condition, which is an error-
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augmented force feedback application currently used in rehabilitation, and

with the novel Limit-Trench approach, based on training with instability

conditions. We evaluated improvements of the groups of subjects among five

different performance indexes. Our results show that training without any

force feedback leads to better task execution. Furthermore, we found out

that instability is even detrimental for development of psychomotor skills,

thus delineating the existance of boundary conditions of positive training

effects.
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Chapter 1

Introduction
1

Psycho-motor skills for surgery are hard to develop: usually, they are very

technical movements that have to be carried out precisely and in a very

restricted workspace (minimally invasive surgery).

The traditional surgical training phase is based on the apprenticeship

model, developed by Halsted, of “learning by doing” [14]: along their stud-

ies, medical students and residents are able to deal with a great variety of

clinical conditions. However, as real patients are involved, learning is always

subordinate to the needs and safety of the patients [38] and experience pos-

sibilities are restricted to what the hospital “can offer”, in terms of diseases

and procedures [50].

Furthermore, bureaucratic and financial issues have more and more lim-

ited training hours [55], and only attendants assessment, i.e. a subjective

evaluation, is used to verify residents skill level.

For these reasons, current surgical training hallmark is the exposure of a

great volume of general knowledge, rather than specific ones [55]. Thus, key

challenges for training are:

• to provide effective learning without compromising patient safety;

• to be able to adapt to different skill levels: residency is 5 years, there-

fore, 5th year residents will be definitely more capable than 1st year

ones;

1This chapter has been taken from the work of the author at [22].
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• to quantitatively assess skill levels.

Simulation, i.e. the act of mimicking a real object, could be considered

an optimal solution for surgical training [27]:

• it proposes a safe, error-free environment, so that the learners can fully

understand to what consequences such a failure brings [38];

• it is attendant-independent, so that the learners can focus on entire

procedures or just on his/her weaknesses.

Two classes of simulation can be identified: physical simulation and

computer-based simulation, also known as Virtual Reality Environments

(VREs).

1.1 Physical Simulation

It is traditionally present as wet and dry laboratories, where cadaver or

animal models are used.

Cadaver models are very precise in terms of anatomy with respect to

animal models, but they are definitely more expensive and of limited avail-

ability.

On the other hand, animal models are much easier to find, but an ethic

committee is necessary to approve and validate their use. In addition, a large

number of animals is required [6] [17].

Phantom-based models are another type of physical simulation: they

provide the opportunity to practice surgical skills with realistic-pulsatile-

bleeding tissues, teaching also how to deal with stressful and emergency

situations [42]; however, they can be considered as static, i.e. they are not

able to change depending on the users performance or ability [74].

1.2 Virtual Reality Environment

It overcomes many possible drawbacks of physical simulation: computer-

based training is safe, can be independent from the presence of an attendant
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Figure 1.1: Example of a Phantom-based model.

(integrating guided tutorials), and, above all, it allows rehearsing in different

procedures independently on actual patients diseases. Moreover, it is able to

provide different scenarios complexities and allows a real time feedback and

quantitative evaluation of the trainee [50] [55] [63].

On the other hand, it has not been fully demonstrated the efficacy of

computer-based training on traditional surgery: high fidelity of the scene

and implementation of procedures are current open problems [55] [7].

However, in the last decade, the advent of robotic surgery transforms

teaching and training fields, due to different task execution and lack of haptic

feedback in the system [48]. As result, the use of surgery simulators has been

triggered, bringing to a fast and rapid growth of different systems.

Currently, the most used teleoperation system is the da Vinci R© Surgical

System (Intuitive Surgical R© Inc., Sunnyvale, California): it is composed by a

slave part, 4 robotic arms, and a master controller. In addition, it is equipped

with stereoscopic view for depth perception, and pedals to switch among the

instrumentations assembled on the robotic arms. The manipulators are not

equipped with haptic feedback, so that the entire reliability of the procedure

is based on visual feedback only [43].

Intuitive offers its own simulator; however, during the last few years, dif-

ferent companies have proposed other training systems: virtual reality sim-

ulators can give access to different simple (psychomotor) or complex (entire
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procedure) tasks using an off-site location available at any time, thus helping

residents to fully understand and practice the gestures needed [42].

In robotic surgery field, a simulator can be considered almost essential

because the trainee is not able to have the same point of view and approach

as the operative attendants; moreover, in case of error from the trainee during

a procedure, the attendant intervention can be delayed due to switching of

the actual controller at the work station [5].

For these reasons, robotic surgical training is also even more hindered

than traditional one.

1.3 Surgical Simulators

Figure 1.2: Most used surgical simulators. In A the dVSS is displayed, the red circle
highlights the actual simulator, which is a sort of backpack attached to the same exact
system used during procedures; in B the RoSS system [41]; in C it is represented the
dv-Trainer (Image courtesy of Mimic Simulation).

Currently, five different surgical simulators, displayed in 1.2, are com-

mercially available. The most used and studied simulators are the da Vinci

Surgical Skill Simulator R© (dVSSS; Intuitive Surgical R© Inc., Sunnyvale, Cal-

ifornia), the dv -Trainer R© (Mimic Technologies R©, Inc, Seattle, Washington)

and the Robotic Surgical SimulatorTM (RoSS; Simulated Surgical System

LLCTM, Buffalo, NY) evaluated on some main criteria connected to the con-
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cept of validation [44], i.e. “the process of determining the degree to which a

model or simulation is an accurate representation of the real world from the

perspective of the intended uses of the model or simulation” [4]:

• Face validation: linked to the accuracy of the simulator;

• Content validation: the utility of the simulator as a training system;

• Construct validation: ability of the simulator to recognize the user

performance level, i.e. classify the user as expert or novel;

• Concurrent validation: quantitative correlation with the gold standard;

• Predictive validation: ability to predict forthcoming performance.

Face and content validities are subjective validation, because related to

the own meaning of realism and coherence about training task of the trainees,

while the others are able to provide an objective evaluation of the simulators.

1.3.1 da Vinci Surgical Skill Simulator R©

The dVSS is a sort of backpack device mounted behind the da Vinci system

itself. In this way, the trainee practices on the actual master controller

that he/she will use in real procedures. However, this could be a limitation

because the simulation modality is available only when the robot is not used

in actual surgeries [17].

Training on this simulator has brought positive results compared to tra-

ditional training [37] [34].

1.3.2 dV-Trainer R©

The dV-Trainer is composed by 2 haptic devices, so that force, tactile and

pose feedback are provided at each hand, along with visual ones. 3D vision

is realized using a simulator stereo eyepiece. Also this simulator has brought

positive results as a training tool in robotic surgery [53], except for predictive

validity, which has not been proved, yet; however, the dv-Trainer has the big
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advantage to provide a realistic workspace as the one of the daVinci Surgical

System, since it is based on Mimic’s simulation Technology (MSimTM) [2].

1.3.3 Robotic Surgical SimulatorTM

The RoSSTM is one of the most recent surgical simulator approved, therefore,

not so many validations have been carried out. It is modeled on the dVSS

master controls: it is provided with two 6 DoF input devices, and stereo

visualization for depth perception. Haptic feedback is possible thanks to

the use of two haptic devices as master controllers. Only face, content and

construct validity have been studied [61][62][68] with positive results.

During the last year, a new simulator has been assessed with face, content and

construct validity as training surgical simulator: the RobotiX MentorTM, by

3D SystemsTM (Simbionix Products, Cleveland, OH) is composed by stereo-

scopic vision and adjustable headset and foot pedals, but as opposed to the

other simulators, it is equipped with non-fixed hand controls, as shown in 1.3

[73]. The main innovations brought by this simulator referred to the possi-

bility to train different techniques, simulate complications and injuries, and

train surgeons on visual cues only, enable them to rely on their vision only,

as in the actual procedure. Therefore, no haptic feedback are provided.

Summing up, only two simulators effectively provide haptic feedback as

training tool, thus not considering them as requisites for the correct and

good execution of the surgery procedure. However, haptic information are

fundamental for tissue characterization and palpation, and also for all that

tasks involving tissue-tool interaction, where it is necessary to avoid tissue

damages or internal bleeding.

Haptic feedback are tactile (cutaneous) and kinesthetic (forces) informa-

tion, characterized by the unique bidirectional property: the haptic sense is

able to provide information of the environment around us, but also to sense

these interactions [45]. They can be implemented not only as a simple feed-

back, but also as an intelligent assistance (virtual fixtures), that could lead

to improvement in task precision and execution [48].
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Figure 1.3: RobotiX Mentor surgical simulator: it is provided with an external screen,
too, so that the instructor can easily give feedback to trainers.

Nevertheless, the absence of this feature in the actual robot teleoperation

system is controversial in terms of procedure efficiency and accuracy: just

getting used to visual clues, provided by high definition displays, surgeons

are able to counterbalance the absence of haptic feedback during procedures

[28]. However, in terms of motor learning, haptics is the fundamental sense

used by infants to understand and learn the physical world around them,

without visual control [59], and also growing up, the loss of the sense of

touch leads to deformed and incorrect skill actions [56]. In addition, haptic

feedback showed positive results in the rehabilitation field: especially virtual

fixtures have been successfully implemented to accelerate re-learning of daily

tasks [33].

Based on these results, this study aims to analyze and try assessing the pos-

sibility of benefits of haptic feedback in motor learning (and its effectiveness

in surgical training). The major point of this validation is to assess motor

learning using feedback that will not be used in the real task implementation:

in different fields of study, augmented feedback enhance motor learning; the

main issue is how to provide these feedback in order to be effective [35].

In this way, we do not want to influence the well established techniques
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and systems of minimally invasive surgery (MIS) procedures, i.e. teleopera-

tion and laparoscopy, but we want to understand if haptic feedback can be

actually learned and used to improve training of robotic surgery. This objec-

tive will be analyzed studying trajectory learning in a virtual environment,

applying both haptic and visual feedback.

Since one of the main issues is how to provide visual and, especially, haptic

feedback for an optimal learning [33], we firstly focused on understanding and

developing the optimal experimental setup. Eventually, an actual training

protocol will be tested.

The whole work has been divided into two thesis works, conducted by the

same author in two different places. The first part took into consideration

the development and first validation of the experimental setup; this work

has been conducted at the University of Illinois at Chicago, IL, USA [22].

In the second one (the one here proposed), a training protocol is tested to

evaluate and quantitatively assess possible benefits of haptic error augmen-

tation in psychomotor skill learning. This second part has been developed

at Politecnico di Milano, Italy.
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Chapter 2

Background
1

During teleoperated robotic surgery, the user controls a slave robot via a mas-

ter controller that detects the pose, i.e. position and orientation, of his/her

hands. In comparison with traditional MIS, the mechanical characteristics of

teleoperation tools allow a natural wrist mobility, thus giving a better overall

experience to the surgeon. Indeed, Robot-Assisted Surgery (RAS) increases

precision and reduces hand tremors thanks to these features, too [48].

However, these differences bring to various tasks execution, differentiating

motor control and skill learning from MIS, thus constraining surgeons to

undergo a long and intensive training phase [31]. Moreover, as already said in

Chapter 1, the lack of haptic feedback in the system can lead to complications

in some very delicate and precise tasks that surgeons have to do in their

normal procedure, such as suturing [48]. On the other hand, the majority

of surgeons affirm that just getting used to visual clues, provided by high

definition displays, they are able to counterbalance the absence of haptic

feedback during procedures [28].

Thus, our purpose is to understand if motor skill learning, in an aug-

mented virtual reality environment, can be improved if haptic feedback under

the form of force fields are used.

1This chapter has been taken from the work of the author at [22].

9



2.1 Motor Learning

Richard Schmidt, one of the most important intellectual leader in motor

learning and control, defined motor learning as “a set of processes associated

with practice or experience leading to a relatively permanent changes in the

capability for responding” [60].

This definition includes the main features of motor learning:

• “Motor Learning is a set of processes”, thus, it leads to some changes,

states or products, of acquiring the capability of responding; moreover,

unlike other kind of activities, the processes here involved are hidden,

i.e. not directly observable; therefore, they are inferred by changes in

motor behavior. For these reasons, motor learning experiments have to

be outlined so that differences in motor behavior reflect some associated

changes in the internal states.

• Motor Learning is “associated with practice or experience”; the goal is

to strengthen or increase the products of motor learning, maximizing

the related skill capabilities.

• Motor Learning leads to “relatively permanent changes”: with continu-

ous and persistent practice, something is then embedded in the learner,

so that he/she will interpret the learned activities differently than be-

fore. Thus motor learning is able to change the learner itself quite

permanently.

Indeed, motor learning affects the brain, producing both structural and

functional changes that go along with learning of optimal muscular pat-

terns. These differences represent the products of motor learning, i.e. what is

learned; the ways how we learn them, i.e. the mechanisms of motor learning,

could be different depending on the type of training underlying the motor

learning itself [32].
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2.1.1 Products of Motor Learning

They can be divided into two main types of product: neural representation

of trajectory and neural representation of transformation.

Neural representation of trajectory, i.e. trajectory learning, refers to the

ability to target a reference trajectory with the end-effector, resulting in

learning the trajectory itself. This process involves both spatial (static) and

temporal (dynamic) features, which are controlled separately by our brain

[26].

On the other hand, neural representation of transformation, also called

adaptation, refers to the trajectory of the end-effector, thus, it is related to

the joints chain that allows the end effector to move in a particular way.

In this case, we can differentiate between dynamic (forces into movements)

and kinematic (movements into movements) transformation. Combining the

output of the transformations, an internal model is built: this model could be

a forward or inverse model, depending whether motor movements or motor

commands needed to achieve that movements are predicted [32].

2.1.2 Mechanisms of Motor Learning

Different mechanisms can give rise to products as explained above. The

most known mechanisms are observational learning, use-dependent learning,

reward-based learning and error-based learning [32].

Observational learning is based on skill demonstration so that the learner

can see directly what he/she has to do; skill demonstration could be based on

models, but also on videotapes or photos explanation [60]. However, obser-

vational learning can consider even proprioceptive of movement information,

i.e. skin receptors, muscles or joints information [32]. This kind of training

starts attracting researchers after mirror neurons theory took places in motor

learning with positive results [29]; this is true also with unnatural movement,

like the ones carried out by robots [24].

Use-dependent learning has the same underline concept of mirror neurons

theory, but implies the user active role. It is basically behavioral changes

induced by repetition of movements: indeed, according to Hebb theory, re-
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peated movements increase synaptic efficacy, and also, due to plasticity of

the nervous system, increase the creation of new synapses and deletion of

those not used anymore [32] [30].

Reward-based learning and error-based learning both rely on the use of

feedback, since it has been demonstrated that learning improves when qual-

itative (“right” or “wrong” movement) or, even better, quantitative (actual

movement error) feedback are given to the user. Thus, reward-based learn-

ing depends on the use of feedback to let the user know about positive per-

formances, while error-based learning is centered on giving feedback to the

amount of error [32].

The relationships among products and mechanisms of motor learning are

really complexes, so that no one-to-one connection has been established so

far.

2.1.3 Stages of Motor Learning

Motor skills learning usually consists of performance of several training ses-

sion until that skill is mastered. When this happens, it is memorized by the

user, i.e. it causes a permanent change in the subject (see Section 2.1). Dur-

ing their training, learners seem to pass through different phases or stages,

which are not strictly defined [60]: the two main variation are related to two

or three stages.

The two stage process considers a first phase called adaptation, which

involves understanding and acquisition of the neuromuscular pattern neces-

sary to perform the task, and the facilitation stage, which is related to the

improvement phase of the task [67] [25].

However, the most important and recent studies referred motor learning

as based on three different stages: cognitive, fixation and autonomous [60]

[21] [8].

• Cognitive stage. Since the trainee is new to the presented task, he/she

has to figure out what he/she needs to do, in order to achieve the goal

set; indeed, a large cognitive effort is required to determine the best
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and optimal strategy. For this reason, the task motor program is built

in this stage.

• Fixation stage. It begins when the general neuromuscular pattern is

then settled, and thus, the learner can focus on how to improve the

skill, i.e. the motor program is refined in its details and error-detection

mechanisms are enhanced. Thus, from the first stage to this second

one, the learner switches from which movement pattern is better to

how to improve the pattern itself.

• Autonomous stage. This is the last and long-term stage, which will

come along the user after months or years of practice: the skill is

basically automatic, i.e. the mental effort requested to the learner is

approximately null, and the performance is generally high level, even

including ongoing simultaneous activities that can be considered as

interferences.

2.2 Inherent and Augmented Feedback

Feedback are fundamentals for the learner in order to improve performances

and be able to understand if his/her training is efficient and effective.

Some of these movement-related-information can be directly bounded to

learner sensory mechanisms. This kind of feedback is defined inherent.

Inherent feedback information can be connected to both performance

evaluation, i.e. feedback after the action has been computed, but also to

the action itself: sensors systems information could be enough to understand

the immediate outcome of the task, thus giving a sort of run time feedback

based also on experience. However, not all aspects of inherent feedback are so

easy understandable: sometimes the trainee has to understand and actually

learn feedback meaning and occurrence [60].

Opposite to inherent feedback, augmented feedback contain more infor-

mation than inherent ones, or even augment the information content.

A very clear and intuitive definition of augmented feedback is presented in

[65], where it is formalized as “information that cannot be elaborated without
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an external source”. Different kind of feedback are possible, as summarized

in 2.1.

Table 2.1: AUGMENTED FEEDBACK.

Table comparison among the different types of augmented feedback. KR stands for
knowledge of results; KP stands for knowledge of performance.

Concurrent Given during the perfor-
mance.

Terminal Given when the perfor-
mance is completed.

Immediate Given runtime, i.e. as
soon as it is processed.

Delayed Given after a certain
amount of time.

Verbal Given under a spoken
form.

Non-verbal Feedback under a form not
containing actual readable
characteristics.

Accumulated Given as summary of past
events.

Distinct Given distinctively for
each instant of the perfor-
mance.

KR Given as information
about the outcome of the
performance in terms of
movement.

KP Given as information
about the movement
pattern and its nature.

In different fields of study, augmented feedback can be effectively used to

enhance motor learning: first of all, they can present information to the user,

but avoiding the reward-punishment issue when assessing the performance.

This means that the errors of the previous task execution are presented to the

learners as hint to improve. Furthermore, it subsequently follows motivation

function: since the trainee is pushed to understand and learn what was wrong

in the execution, he/she is challenged to improve him/her -self [60].

However, the main issue related to augmented feedback is how to provide

them in order to be effective [35]. Usually the learner is subjected to a large

variety of different inherent feedback: they are physiologically given at any

time to the body. For this reason, it is necessary to discriminate which of

them are actually used and how.

In order to have a clearer experimental setup, researchers often alter the

task environment, taking advantage of artificial augmented feedback, and

limiting intrinsic one. In this way, the study is driven depending on fixed
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and well-defined variables [60].

Despite of the previous feedback classification, another easier and much

more intuitive characterization of inherent and augmented feedback is based

on the sensory system taken into consideration: visual, auditory and tactile.

In addition to unimodal feedback, multimodal, i.e. combination of different

sensory system information, are possible, and are used by people everyday,

even much more efficiently than unimodal ones [65].

The last part of the chapter will focus on the main studies and their

conclusions, focusing on this last division; as already said, we can differentiate

among visual, auditory, haptic or multimodal feedback. However, even if

auditory feedback could be powerful because they allow to stay focus on the

patient while operating, and have shown positive applications in surgery field

[49], in the Operating Room (OR) there are already a large amount of sounds

mainly used to monitor the patient vital signal; thus stating this feedback

modality as meaningless in surgery [10].

For this reason, only visual, haptic and multimodal feedback will be con-

sidered. A brief introduction on these feedback modalities and the main

associated studies and research evidences will be carried out.

2.2.1 Visual feedback

Visual information are considered as the most important perception informa-

tion in daily life [65]; indeed, it is the sensory modality more investigated in

motor learning. The main mechanisms of motor learning applied are obser-

vational and use-dependent learning: using informational videos or miming

actions, the user can easily learn tasks, just by following tips and movements

from experts.

Visual augmented feedback, instead, is a much more open field. Different

kind of augmented feedback are possible (see also 2.1): curves, graphs, plots,

or simple scores [46] [16], or even avatar, under the form of superposition or

side-by-side 3D perspective of a reference on the users part, can be employed

[72]. For this last type of feedback, the efficiency is related on the amount of

body part superimposed and on the perspective given to the user (first/third
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person visualization).

Figure 2.1: Visual Feedback Modalities. In A the performance is summarized and
given to the user as a graph [16]; in B the feedback is represented as a curve ( c©2007
IEEE), while in C there is an example of superposition: the arm of the user is hidden
by a screen where will be displayed the fake movement. ( c©2011 IEEE)

The effectiveness of visual feedback is mainly related to task complexity:

a task is defined complex if it “cannot be mastered in a single session, has

several degrees of freedom, and perhaps tend to be ecologically valid” [75].

From the great and large variety of studies based on visual feedback applied

to motor learning, it has been shown that visual augmented feedback effect

is determined by task complexity and user level of experience: concurrent

visual feedback seem much more adequate when used along with complex

tasks than with simple tasks [65].

Regarding surgical field, visual feedback are nowadays fundamental dur-

ing surgery, since no other kind of feedback are applicable. In particular,

surgeons rely on tissue deformation, so that, increasing visualization accu-

racy, the chance of error decreases. Indeed, 3D video-camera or the use of

the so called visual haptics, i.e. replacement of haptic feedback with visual

representation of forces exerted by the user, have shown to be useful and

adequate substitutes of actual haptic feedback [10] [71].

During training phase instead, a large variety of visual cues is used:

graphs and scores are currently implemented in all the major surgical simula-
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tors to give quantitative performance feedback [66]. They are also equipped

with videos and bullet lists, which help to understand the entire work flow

of the procedure, and even Hands-on instruction, where the trainee has to

follow a target avatar [34] [61].

2.2.2 Haptic feedback

As already explained in Chapter 1, haptic feedback refers to both force and

tactile feedback; however, motor learning studies apply it only as a force one,

since tactile information are still difficult to correcrtly reproduce [65].

Different haptic augmented feedback can be used to improve and facilitate

motor learning and training. Usually, they are used as active constraints

in trajectory learning. Active constraints are cooperative control strategies

applied to manipulation tasks to assist or enhance difficulty of the regulating

motion, i.e. the hand movement detected by a proper haptic device. They

can be classified as (see also 2.2):

• Rigid position control : the trainee movement is basically intended as

an external disturb that has to be counteracted; it consist of a force

application that oblige the user to follow a default movement.

• Guidance constraints : the trainee is pushed by convergent forces toward

the target point or trajectory. This modality is also called convergent

force field application, as the name better and easily explain the aim

of the constraint.

• Repulsive constraints : the trainee is pushed by divergent forces away

from the target point or trajectory. This modality is also called diver-

gent force field application.

Studies based on rigid path control have shown that such a strict ap-

proach can be even detrimental in motor learning: completely avoiding the

possibility of mistakes, the trainee will not focus on the task and thus, the

performance would not improve; these results also prove that human beings

learn by making mistakes [52].
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Figure 2.2: Haptic Constraints Modalities. In A it is represented the rigid position
control concept: the user is forced to strictly follow the trajectory, in B and C there
are represented a convergent and divergent force field respectively. c©2013 IEEE.

Convergent force fields represent a very similar concept of position con-

trol; however, the user is much more free to explore the environment around

the target, but, in the same time, is literally guided along the ideal path.

This modality has been largely studied, since it has been expected that hav-

ing an active assistant that guides you along the correct path could improve

learning. Nevertheless, different studies proved that even convergent guid-

ance, i.e. convergent force field application on trajectory learning, does not

improve trainee performances [40]. This failure seems to lie on the guidance

hypothesis concept: during training, the trainee tends to develop a depen-

dency on the haptic feedback, so he/she is then prevented in acquiring the

new skill [57].

On the other hand, the opposite approach, i.e. divergent force field ap-

plication, seems promising, challenging more the trainee and following the

concept of learning-by-making-mistakes that drives the human motor learn-

ing. Indeed, this modality is inspired by the error augmentation idea, where

visual or haptic cues related to errors are magnified, displaying a distorted

result. This approach has shown positive results in rehabilitation [72] [52],

but also some good conclusions are related to skill learning: in [40] Lee, J.

et al. studied the application of force feedback disturbance and noise-like

disturbance in learning a 2D trajectory task. They compared these results

with haptic guidance and a control group, who executed the training without

any force feedback; they concluded that, as already known, haptic guidance

is ineffective for motor learning, while haptic disturbance, and in particular,

noise-like forces, benefits motor learning.

Summing up, divergent force fields could be beneficial or inefficient for
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motor learning: inadequate haptic disturbance could lead to useless training

procedures, showing that the motor learning method should be fitted on the

nature of the motor task itself.

Following the foregoing researches, also a hybrid approach has been de-

veloped: in [39], haptic guidance is exploited in the early stages of motor

learning in order to improve understanding of the task, while haptic distur-

bance takes place when user performance increases, creating a motor skill

training setup based on user learning itself. However, this approach has not

shown any significant outcome compared to no assistance, haptic guidance

only or haptic disturbance only (2.3).

Figure 2.3: Hybrid Approach Test Results. In both immediate and delayed retention
tests the hybrid approach does not show any evidence of better performance. c©2014
IEEE.

Regarding surgical training, haptic feedback has been applied in different

VR simulators with promising outcomes, even if there is not an absolute

consensus on how much it could be eventually effective: tissue consistency

information is fundamental to avoid tissue damages; this information can

only be delivered as haptic feedback. The main issue is which is the best

”force quantization” necessary to produce a meaningful and useful feedback

[70].
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2.2.3 Multimodal Feedback

Up to now, it has been proved the efficacy of unimodal feedback on motor

learning in different type of implementation and with different modalities.

However, people are usually subject to different stimuli at a time, and they

process them together, thus being able to catch and receive different com-

bined information. Indeed, multimodal perceptions are usually faster and

more precise than unimodal ones, due to decrease of cognitive load. More-

over, different aspects of motor learning are supported simultaneously. All

these advantages are possible thanks to the distribution of information pro-

cessing. hHwever, few studies have been validated on the effectiveness of

multimodal feedback in motor learning [65].

Nevertheless, visuohaptic feedback in trajectory learning proved to be

more effective than visual information only, reducing spatial errors [11]. Also

in rehabilitation, the use of modulated haptic feedback along with visual

ones, has been effective in terms of assist-as-needed application and patient-

cooperation control strategies [19].

Figure 2.4: Visuohaptic feedback example. A haptic device is used along with a screen,
so that visual and haptic information are assess together and combined by the user to
improve trajectory learning under the form of letters. c©2008 Bluteau et al.

In surgical training, the combination of visual and haptic cues has been

tested without significant results: this type of feedback could combine the
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stated use of visual information along with new and much more detailed

tissue-related data, improving capabilities of residents and even expert sur-

geons faster, when learning teleoperation [70]. However, the main limitation

is still the lack of knowledge present in haptic implementation in surgery

where adequate and really precise force information are needed.

In conclusion, augmented feedback, both visual and haptic, can be effective

in motor learning. However, lots of problems and issues still persist in trying

to understand their actual optimal implementation and use. Currently, some

new approaches are rising from rehabilitation fields: the so called limit-push

condition is inspired by the error augmentation concept. The purpose is to

bring the trainee to learn the boundaries of a safe area, otherwise, his/her

hand would be pushed away by a divergent force field. This study showed

that trainees were able to re-shape motion distribution according to the safe

volume of movement [64].

This implementation further brings our attention towards the concept of

learning by making mistakes: since the limit-push condition has been studied

only in rehabilitation, we would implement it in a trajectory learning exper-

iment. In addition, we would like to test another force field implementation

that combines a divergent and a convergent force field, called Limit-Trench

condition.

This idea comes from the fact that making errors improve user concen-

tration on the task, but could also lead to frustration and discouragement,

that are instead counter-productive for motor learning [32]. Therefore, we

will exploit two different force fields, whose application is function of the dis-

tance from the target trajectory: the force feedback will push the user away

from the trajectory up to a certain distance threshold, if the performance is

good, while it will drive him/her toward the divergent area if he/she is too

far from the trajectory. The concept is better explain in 2.5, and it will be

further analyzed in the next chapter.
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Figure 2.5: Limit-Push (A) and Limit-Trench (B) concept representation. The thick
line represents the ideal trajectory, arrows represent the force field direction, while the
dashed lines define the distance threshold used to apply or switch force.
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Chapter 3

Methods
1

This work aims to develop and assess an innovative experimental setup for

psychomotor skill training. The whole work has been divided into two main

steps:

• creation of the experimental setup in a flexible virtual reality environ-

ment;

• validation of haptic error augmentation in a following-the-trajectory

task.

In order to achieve these main objectives, the experimental setup has to

consider both graphic and haptic elements. For this reason, a high definition

stereoscopic display, able to provide 3D visualization, along with a haptic

device have been used.

The haptic device is a TouchTM 3D Stylus (3.1), provided by 3D Systems R©

(Rock Hill, SC, USA), whose characteristics are summarized in Table 3.1. It

is an impedance control device, i.e. it senses a position and commands a force.

From a software point of view, the Touch 3D stylus interfaces with a haptic

library, which is, however, limited in graphics rendering. For this reason, an

external graphic library has been implemented to supply this lackness.

In addition, a computational geometry library have been used to speed up

forces and complex curve computation. Indeed, in order to challenge enough

1This chapter has been taken from the work of the author at [22].
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the trainee, and effectively allow training, splines curves have been employed.

This work has been settled merging these components in the so-called

LACE library [20] [54] [69].

Figure 3.1: Touch 3D Stylus.

Table 3.1: TECHNICAL SPECIFICATION TOUCH 3D STYLUS.

Type Touch 3D Stylus
Positional Feedback 6 (complete pose)
Force Feedback DoF 3 (position only)
Force Feedback workspace (WxHxD) 265 x 241 x 89 mm
Maximum Force 3.4 N
Nominal position resolution 0.084 mm

3.1 LACE Implementation

The implementation of the libraries has resulted in the creation of a platform

among four different software-hardware environments:

• QuickHapticsTM (QH): the MicroAPI built upon Geomagic R© OpenHapticsTM,

which is the software development toolkit provided for the haptic de-

vices of 3D Systems; it allows to easily create a graphic and haptic

application [3].
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• Visualization Library (VL): the external graphic library used to allow a

better trajectory visualization, and to generally improve the standard

graphic rendering brought by QH [12].

• Wykobi Computational Geometry Library c© (WK): a 2D-3D computa-

tional geometry library very useful to improve math calculation [51].

• Ascension (AS): the library required to integrate the 3D Guidance elec-

tromagnetic tracking unit (composed of both transmitters and 6 DoF

sensors) into the application (Ascension Technology Corporation c©,

Shelburne, VT, USA) [1].

In order to be able to synchronize graphics, haptics and computational

rendering, and the electromagnetic tracking system, it has been necessary to

re-organize and merge the work flow of all the components in a new structure

composed by both software and hardware parts, as represented in 3.2.

Figure 3.2: LACE logic
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LACE is organized on two different renderings that communicate thanks

to LACE itself. As already said, the graphics rendering is handled by VL:

in this way there are increased the user possibilities in terms of visualiza-

tion, because VL allows stereoscopic view, creating full 3D environments,

but also in terms of interaction, since keyboard and mouse inputs can be

easily implemented.

On the other hand, the haptics rendering is handled by QH: here forces are

managed differently, depending on the goal the programmer has to achieve.

The interconnections between QH and VL allow to map the haptic device in

the graphic environment, thus creating interactions between the renderings.

As an useful extra features, WK library boosts performances in terms

of geometry computations, thus making the haptics rendering and the user-

interaction faster and smoother, i.e.without delays between graphics and hap-

tics.

In addition, the Ascension system inserts a tracking item, i.e. the elec-

tromagnetic sensors, so that an exhaustive and complete platform is built for

a large variety of augmented virtual reality applications.

The communication between the four libraries is done thanks to LACE

library classes. Based on their functions, they can be divided in four groups,

as also represented in 3.3:

• Renderable Objects Classes

These are the classes for the creation of haptically and visually ren-

derable objects. All of them are derived from the base class (LACE

Object) that allows the communication between QH and VL. Different

types of objects are available in LACE, from simple geometries, such

as spheres, cones and cylinders, to more complex ones, like meshes,

volumes and extrusions.

• Tracking System Classes

This group includes the LACE classes that are responsible for the com-

munication with AS.

• Special Forces Classes

26



Figure 3.3: LACE Classes

LACE VolumeForce and LACE ForceField are two classes that can be

associated respectively to a LACE Volume and a LACE Extrusion in

order to define variables or functions used to render force fields.

• Rendering Classes

LACE library allows the creation of multiple renderings in the scene.

Each rendering is defined as a LACE Rendering class instance, which

contains both a list of the objects to be rendered and all the rendering

parameters, i.e. camera and viewport parameters. In this group it can

be included also the class LACE CuttingPlane that implements the

possibility to cut one or more LACE Object instance.

The class LACE Class is not included in this division because it is a

singleton class that contains pointers to all the other classes, handling their

initializations and updates.

All the objects that can be graphically created in LACE inherit from the

same base class: LACE Object. A scheme of LACE Object class organization

and interaction with QH and VL is reported in 3.4.

27



Figure 3.4: LACE Object organization

Each LACE Object contains three main elements:

• an Actor, linked to a geometry, i.e. the specific created shape;

• a Transform, that define the pose of the object;

• an Effect, to be able to tune and customize the object (changing color,

visual effects of texture and materials).

Moreover, LACE Object class contains the pointer to the corresponding QH

shape, so that also the properties of the shape in QH can be accessed and

tuned.

The presence of a common base class among all the objects, containing

shape-specific variables and parameters, is needed to properly render the

shape in the scene and to allow the communication between VL and QH in

a standardized way. The graphics rendering of all the objects is obtained by

adding all the created objects to the main rendering. On the other hand, the
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haptic properties of each object can be defined using QH functions, called

passing through the QH shape pointer.

The LACE Object class contains the two main members that allow to con-

trol VL and QH exchange of information: VL Transform and QH Transform.

They are the transformation matrices that define the rotation, translation

and scale (i.e. the pose) of each object in VL and QH respectively. To make

the two environments consistent, they always need to be equal, therefore a

connection mechanism reflecting their variations is needed.

There are two main circumstances where an object transform can change

(see 3.5). The first one is when an object is created for the first time in

the scene: in this case the transform takes into account an object-dependent

transformation, defined by default just for some specific objects for rendering

purposes, and an eventual user-defined initial transformation. Then, the

communication process defines VL Transform first and sets QH Transform

accordingly, if QH is used. However, the transformation matrix can change

also as consequence of one particular event while the application is running;

this second scenario is mainly related to the graphic cursor, which could be

either the haptic device or the electromagnetic tracker: at each graphic frame,

either the QH Transform or the AS Transform are automatically updated by

QH or AS respectively, according to the typology of the defined cursor. The

VL Transform is the last one to be updated.

Figure 3.5: LACE Transform
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Since the proposed approach is based on determining run-time the er-

ror computed by the user as distance between the tip representation of the

haptic device and the ideal trajectory, the curves have to be defined compu-

tationally low-cost, but in the same time, they have to be challenging enough

for the user, thus providing articulate trajectories and reliable force feedback

simoultaneously.

For these reasons, spline curves have been implemented, specifically, Bezier

curves, which are a particular type of parametric curve used in computer

graphics, designed by using few control points. Each of these points is de-

fined by a position on the 3-dimensional work space and delineates the path

direction [36].

On the other hand, forces are based on force fields application, in partic-

ular, linear force fields.

3.2 Bezier Curve

Bezier Curves are B-splines curves, i.e. basis spline; a B-spline is defined

as a linear combination of n control points Pi and B-spline basis functions

Ni,k(t):

C(t) =
n∑

i=0

PiNi,k(t) (3.1)

Control points are points of a set used to define the spline itself [58], while

the i-th B-spline basis function of degree k is defined recursively using the

Cox-de Boor recursion formula as:

Ni,0(t) =

1, if ti ≤ u ≤ ti+1

0 otherwise

Ni,k(t) =
t− ti

ui+k − ti
Ni,k−1(t) +

ti+k+1 − t
ti+k+1 − ti+1

Ni+1,k−1(t)

(3.2)

This formulation basically relates each basis between two consecutive con-

trol points: basis function Ni,0(t) is 1 if t is in the i-th span [ui, ui+1) [9].

Bezier curves can be represented using this notation, and their basis func-
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tions are Bernstein Polynomials of general n degree:

bi,k(t) = Ni,k(t) =

(
k

i

)
ti(1− t)k−i (3.3)

Therefore, 3.1 becomes:

B(t) =
n∑

i=0

Pibi,k(t) (3.4)

Depending on the number of control points, we can differentiate among lin-

ear, quadratic, cubic or higher order Bezier curves; using the de Casteljau

algorithm [9], we can easily define them as:

B(t) = (1− t)P0 + tP1, 0 ≤ t ≤ 1

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, 0 ≤ t ≤ 1

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3, 0 ≤ t ≤ 1

(3.5)

The de Casteljau algorithm defines how to split a Bezier curve P[t0,t2] into

two segments P[t0,t1] and P[t1,t2] whose union is equivalent to P[t0,t2]. This is a

very important and useful property of Bezier curves, which allows to easily

compute different curves just using a recursive algorithm.

In 3.6 there are displayed three basic examples. From this figure, it is

also easy to understand how the de Casteljau algorithm works. For example,

taking into consideration the quadratic Bezier curve, for each segment created

connecting two consecutive control points, we consider a point Qn in the

interval [1−t, t]. On the consecutive segment, we have to find the point Qn+1

at the same ratio. Then, connecting these two points, the point belonging to

B(t) is a point of this last segment and at the same ratio of the other two.

This is the point on the curve at the specified value of t.

Bezier curves are characterized by some interesting and convenient prop-

erties:

• the curve begins at P0 and ends at Pn;

• if and only if all the control points are collinear, the curve is a straight
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Figure 3.6: Bezier Curves Construction of a quadratic (left), cubic (center) and quartic
(right) Bezier curve.

line;

• a curve can be split at any point into two subcurves, or into arbitrarily

many subcurves, each of which is also a Bezier curve;

• every degree n Bezier curve is also a degree m curve for any m > n.

Since composite Bezier can give rise to a large variety of different curves, and

in order to challenge adequately the user, the trajectory implemented would

be based on two consecutive and connected Bezier geometries. In particular,

task trajectories are built as two connected cubic Bezier curves, guaranteeing

continuity up to the second order.

Having two Bezier curves of the same order: S(t), Q(t) defined respec-

tively by (S0, S1, ..., Sn) and (Q0, Q1, ..., Qn), C0-continuity, i.e. continuity of

position, is achieved by setting last control point of the first curve coincident

with the first one of the second curve [18]:

S(1) = Q(0)⇒ Sn = Q0 (3.6)

In order to achieve C1-continuity (tangent continuity), also the first deriva-

tives at the two points S(t), Q(t) has to be guaranteed. Specifying to a cubic

Bezier case:

B’(t) = −3(1−t)2P0−6(1−t)tP1+3(1−t)2P1−3t2P2+6(1−t)tP2+3t2P3

(3.7)

From 3.7 it is possible to compute C1-continuity condition:

S’(1) = Q’(0)⇒ S3 − S2 = Q1 −Q0 (3.8)
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Thus, combining 3.6 and 3.8, Q1 is set in terms of the first curve as:

Q1 = 2S3 − S2 (3.9)

Eventually, following the same logic, C2-continuity, i.e. curvature continuity,

is guaranteed by C1-continuity and equivalence of second derivative at the

end of first curve and start of the second one:

B”(t) = 6(1− t)P0 +6tP1−12(1− t)P1−12tP2 = 6(1− t)P2 +6tP3 (3.10)

S”(1) = Q”(0)⇒ S3 − 2S2 + S1 = Q0 − 2Q1 + Q2 (3.11)

and combining 3.6, 3.8 and 3.11, it is possible to define Q2 coordinates as

function of S(t):

Q2 = 4S3 − 4S2 + S1 (3.12)

3.7 represents an example of two cubic Bezier curve composition.

Figure 3.7: Composite Bezier Curve. In yellow there is the graphical interpretation of
tangent continuity, while in green the curvature one.

3.2.1 Graphic Rendering

Bezier curves are the mathematical tool used to create the trajectories, how-

ever, a graphic element is necessary in order to display them.
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Exploiting VL, the curves are rendered by extruding a circular shape

along the mathematical function (see 3.8); in order to clearly identify start

and end of the trajectory, two spheres are used.

Figure 3.8: Example of an extrusion from a circular shape along a Bezier curve. Start
and end points are marked with spheres.

Extrusion is a process used to create objects of a fixed cross-sectional

profile [47]. In addition, exploiting a stereoscopic display, the trajectory

visualization is even increased, since depth perception allows a better inter-

pretation of a larger number of trajectories.

For this reason, an Extrusion class has been implemented in LACE Li-

brary. From this point of view, VL improves the implementation consistently:

since in QH only simple shapes can be built, it would be really heavy com-

putational trying to display such curves just by lines, cylinders or series of

points, thus slowing the overall program. However, in order to apply forces

consistently with the trajectory itself, it has been necessary to synchronize

the two libraries.

LACE Extrusion is able to compute the Bezier needed just using the

control points as input. In particular, LACE implements automatically con-

tinuous Bezier, if needed, applying continuity up to the second order. In this

way, the variety of possible trajectory increases consistently, since they will

be longer (one, two or more extrusions), thus, also increasing the overall task

complexity.

The LACE Extrusion class structure enables both the creation of the ex-

trusion itself, but also insert graphics and haptics rendering of the control

points by using spheres. In this way the user can interact and have a bet-

ter general view on how the control points have to be placed to obtain a
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predetermined path.

3.3 Force Fields

Force fields are haptic applications belonging to the category of active con-

straints, or virtual fixtures [48]. Generally, active constraint implementations

are based on three main processes, that, put together, give rise to the frame-

work in 3.9 [13].

Figure 3.9: General scheme of an active constraint implementation

The first process is the definition of the constraint itself. It creates the

computational representation, i.e. a geometry, of the constraint as output.

The second stage allows the haptic device to evaluate the constraint. Even-

tually, the regulation can be carried out as third stage: here the software

implementation is translated in hardware commands, so that the motion of

the trainee could be regulated and modified.

3.4 Implementation

Exploiting the great number of LACE functionalities, the psychomotor skill

learning application has been based on force field applied to spline curve

trajectories. Since the user will receive run-time haptic and visual feedback,

WK library has been used, helping to avoid delays. In this way, force com-

putation is always fast and precise, and feelings among the two main sensory

modalities here taken into account, i.e. visual and tactile, are well matched.
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The logic behind the overall implementation is showed in 3.10: the appli-

cation runs on a Windows platform where the graphic and the haptic threads

run concurrently, but at different speeds (60 Hz for graphics and 1000 Hz for

haptics).

The main elements are the trajectory (i.e. the extrusion) and the cur-

sor, both displayed visually and haptically. The graphics rendering enables

the visualization of the correct meshes and texture that create the scene. A

stereoscopic display has been used in the preliminary phase of testbed imple-

mentation. The haptics rendering is focused on the Touch 3D Stylus device:

the current cursor position is read via QH library. Considering the extru-

sion function, the distance between the trajectory and the current position is

computed. Depending on this operation, a force feedback is given run-time

to the haptic device. In the same time, also a visual feedback is given, as

change of color of the trajectory as function of the trainee’s performance.

Since distance from the trajectory also represents the trainee’s error, this

values is stored everytime, and it will be then used for data analysis.

Furthermore, in a first testbed implementation, some predefined keyboard

input are used to easily tune force field parameters and study the effect of

different applications.

In order to facilitate haptic dexterity, the mesh applied to the cursor has

been chosen to help the self-evaluation of the task: a hollow sphere, with

slightly bigger dimensions than the extrusion shape, has been placed so to

match its center with the tip of the haptic default cursor. In this way, the

user will carry out the task by having a clear visual feedback on his/her

performance, since a good task would be equal to have overlapped sphere

and trajectory, as displayed also in 3.11.

An additional visual feedback has been implemented to further help the

user during task execution (3.12): depending on the error made, the trajec-

tory will change color from green, i.e. low or null error, to red, i.e. high

error.
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Figure 3.10: Psychomotor Skill scheme

Figure 3.11: Cursor and Trajectory representation

3.4.1 Force Rendering

In this study, a linear 3-dimensional force field has been applied as function

of the error computed. In order to create these forces, it has been neces-

sary to exploit the QH force callback, along with WK library, so that the

computation would be faster. Indeed, force callback is executed at 1kHz,

thus, a fast and reliable implementation is needed. The algorithm used is

represented in Figure 3.13.

When the “start sphere” is touched, the force callback starts. At this

point all variables used to evaluate the performance are reset. As soon as

the callback begins, the actual cursor position is saved and used by WK
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Figure 3.12: Representation of the trajectory’s change of color depending on cursor
distance, i.e. the error made by the user. The more the cursor is away from the ideal
curve, the more the trajectory will move toward the red color.

library to compute the closest point on curve from an external point in three

dimension.

Since WK algorithm works only with single cubic Bezier, it is necessary

to compute this operation for all the extrusions that create the actual path.

Once the function is called, WK automatically generates the cubic curve,

given the control points. Then it is divided into n segments (1000 if not

specified) and for each segment finds the closest point to the external point

given. This operation is computed by knowing that a point on a line segment

can be parameterized by

P(t) = P0 + t(P1 −P0), t ∈ [0, 1] (3.13)

so that P0 and P1 are first and last points belonging to the segment itself

(see also 3.14). Thus, ~P0P(b), i.e. the distance from the segment, is the

projection of ~P0P onto ~P0P1.
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Figure 3.13: Force Algorithm
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Figure 3.14: Geometry representation of a distance from a linear segment. Using the
scalar product among first and last point of the line segment, and the external point,
the distance is computed.

In this way, it is possible to compute b as

b =
d(P0,P(b))

d(P0,P1)
=
~w • ~vL

~vL

(3.14)

where ~w = P−P(b) and ~vL = P1 −P0.

Thus, as result,

d(P, ¯P1P0) = ‖P−P(b)‖ = ‖~w− (~w • ~vL)‖ (3.15)

Finding out the minimum distance among all the segments, the algorithm

also reaches the nearest point to the curve itself.

Once this point has been computed, the distance between it and the cursor

position is calculated and the force vector is built. This is characterized

by magnitude equal to the distance itself and direction equal to the one

connecting the two points.

Both force fields linearly vary according to the distance from cursor po-

sition to the closest point on curve:

~F = G ∗∆d ∗ ~v (3.16)

where G is a gain factor, ∆d is the difference between the euclidean distance

between cursor position and closest point on curve and distance threshold,
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and ~v is the unit vector indicating the force direction.

Trends for both the Limit-Push and Limit-Trench condition are presented

in Figure 3.15; here the aim is to give only a qualitative representation of the

forces trends.

Figure 3.15: Qualitative representation of forces as linear functions of the distance. Di-
vergent forces are characterized by positive values, while convergent forces by negative
ones. Force magnitude is capped at 70% (2.38N) of the device Nominal Maximum
Force (3.4N). In green are also showed the parameters that can vary force field action
on the trainee.

• Limit-Push

is currently used in rehabilitation, as already said in Section 2. In cur-

rent state of the art, Limit-Push condition is based on the application

of a step function. Here, it has been replaced with a ramp function,

so that increasing the error, also the force increases, proportionally to

a certain slope. However, following the traditional concept, forces are

applied only behind a certain distance threshold (Thr in Figure).

• Limit-Trench

introduced in this work, focuses on the instability to which trainees are

usually exposed while dealing with error-augmentation. A convergent

force towards the ideal trajectory is applied when the trainees’ error

exceeds certain threshold to help them to stay focus on the task. Once
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the error gets reduced (i.e., the distance between cursor and trajectory

is lower than the threshold), a divergent force is generated by the haptic

device similar to the one applied in the limit-push method. The idea

behind this approach is to both motivate and challenge the trainees

during the learning process with the goal of improving their overall

performance.

As already said in Chapter 2, because different parameters, i.e. distance

threshold and slope of the straight line, can affect the overall experiment, and

both of them are relevant in terms of haptic feedback, which is the one we

want to study as primary feedback, a preliminary study has been prepared,

creating a Test-bed version.

This first application has been implemented so as to try different threshold

and gain (slope) values. In this way, analyzing these preliminary data, the

optimal parameters will be then used in the real experimental phase.

3.5 Experimental Setup

The experimental setup is structured in different sections, as displayed in

3.16, and it is enriched with extra-features in order to be as flexible as pos-

sible in terms of trajectory creation and slope and distance threshold values

settings.

3.5.1 Choice of Trajectories

As soon as the application starts, the user can decide to train him/herself

on default trajectories or change them creating new ones. For this first

implementation, it has been decided to use a set of five different trajectories,

allowing the same user to try different kinds of curves in the trial.

Trajectory editing is carried out by directly moving the control points

with the haptic device. Since Bezier curves are splines, thus it would be

difficult to exactly know its shape until it is displayed, the curve variations are

visible run-time. Of course, if multiple Bezier are connected together, only
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Figure 3.16: Experimental Setup Workflow. First the user decided the trajectory to
use, then force field is chosen and eventually the actual task can be carried out, editing
the force function parameters to optimally tune them.

some control points will be visible and usable, due to second order continuity

assessment. This task is automatically provided by the application.

3.5.2 Choice of Force Field

Once the trajectories are decided, the user can choose which kind of force

fields he/she wants applied. For testing purposes, also simple convergent and

divergent force fields can be used. The values of the different parameters are

uploaded as default based on heuristic a priori values, but they are modifiable

during task execution.

3.5.3 Task Execution

Task execution is based on the algorithm shown in 3.13. When the “start

sphere” is touched, its rapid change of color indicates the user that forces

are on. When the end point is reached, the RMS Error is displayed and the
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curve will be uploaded to the next available, if it exists. Otherwise the task

is completed.

Two different visuo-haptic feedback can be used to check and evaluate force

strength, or to just visually inform the user about his/her performance:

• Change of color in the trajectory : as explained in Section 3.4, depending

on the run time error computed by the user, i.e. the distance from the

trajectory, the curve changes color accordingly.

• Arrow Force visualization: this feature is not displayed by default, but

it is possible to turn it on or off via keyboard interaction. It enables

the visualization of a qualitative information of force under the form

of an arrow. The magnitude is represented by changes in dimension of

the arrow, while direction as direction of the arrow itself (3.17). This

tool is also useful to debug the application and verify the correct force

computation.

Figure 3.17: Force arrows visualization examples. In the upper trajectory, it is displayed
a convergent force field, while a divergent one is represented in the lower curve.The
arrow elongates or shortens proportional to the force magnitude, pointing accordingly
to the direction.
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Also force parameters are changed via keyboard interactions:

• Slope setting can be changed by using up and down keyboard input.

Editing this parameter, the force could be stronger or weaker, there-

fore, it is necessary taking into account that also the capping will be

performed earlier, i.e. nearer to the ideal path.

• Distance threshold is set by using left and right keyboard input. In

this way, both Limit-Push and Limit-Trench conditions can vary in

terms of precision and overall ability required during task execution.

However, the effects on trainee performances could be different: in a

Limit-Push set up, a lower threshold means higher error possibilities,

thus the user need to be more careful while performing. On the other

hand, a lower threshold in a Limit-Trench set up does not necessarily

mean that the user has more error possibilities due to lower divergent

force application on the ideal trajectory and due to nearer null force

point application, i.e. nearer threshold.

45



Chapter 4

Experimental Evaluation

Training protocol acquisitions have been conducted at the Neuroengineering

and medical robotics Laboratory (NearLab) in Politecnico di Milano. We

used a high quality display, along with a Geomagic R©TouchTM haptic device,

by 3D Systems R© (see Figure 4.1). Technical specifications are reported in

Table 4.1.

Figure 4.1: Geomagic Touch.

4.1 Experimental Setup

Using a haptic interface manipulator, trainees had to control a spheric end-

effector along multiple trajectories. The experimental setup, shown in Fig.4.2,

consists of a high definition display along with a Geomagic R©TouchTM device

for force feedback. While doing the task, objects can compenetrate, thus
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Table 4.1: TECHNICAL SPECIFICATION GEOMAGIC TOUCH.

Type Touch
Positional Feedback 6 (complete pose)
Force Feedback DoF 3 (position only)
Force Feedback workspace (WxHxD) 160 x 120 x 70 mm
Maximum Force 3.3 N
Nominal position resolution 0.055 mm

leaving all haptic feedback to force fields only. To partially restore the 3D

perception, and to give a real-time feedback of the user performance, the tra-

jectory color changes from green to red with respect to the distance between

current cursor position and closest point on curve.

The application runs on a Windows platform where the graphic and the

haptic threads run concurrently, but at different frequency (60 Hz for graph-

ics and 1 KHz for haptics). The computer in use was provided with an

Intel R© CoreTM i7-6800K CPU at 3.40GHz and a TITAN Xp graphic card by

NVIDIA.

4.2 Subjects Involved

Eighteen right-handed volunteers (13 males and 5 females; aged 28 ± 7.8)

participated in the study. Most of them had a slight experience using the

master device, while none of them experienced 3D teleoperation on these

tasks before. Any subject without arm or hand problems can participate in

the study.

They were randomly divided into three groups of six:

• Control group (C): no forces are applied along the entire experiment.

• Limit-Push group (LP): forces are applied following Limit-Push condi-

tion during training phase.

• Limit-Trench group (LT): forces are applied following Limit-Trench

condition during training phase.
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Figure 4.2: Experimental setup of the virtual reality and haptic test bed for error
augmentation. A zoom on the cross section of the trajectory represents limit-push and
limit-trench concept application.
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Figure 4.3: Trajectories used for the training protocol. They are built as two intercon-
nected cubic Bezier curves.

4.3 Experimental design

To avoid the possibility of over fitting the user skills to the same task, we

developed a set of different 3D trajectories.

10 trajectories were created, each of them composed by two intercon-

nected cubic Bezier curves. Through some pilot acquisitions, 4 final tra-

jectories were chosen by homogeneity criteria. As result, we were able to

identify four trajectories (Fig. 4.3).

The experiment was composed by four phases:

1. Familiarization: subjects freely interacted and played in the virtual

environment to familiarize with the device. This phase lasted about

five minutes.

2. Baseline (B): subjects executed the sequence of trajectories once.

3. Training (T): subjects executed the sequence of trajectories 10 times

with or without force application, depending on the group they be-

longed to.
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4. Evaluation (E): subjects executed the sequence of trajectories once

without any force applied.

4.4 Force Fields Parameters

Haptic feedback is computed as a force field that linearly varies according

to the distance from cursor position to the closest point on the curve (see

Chapter 3).

Referring to Figure 3.15 and Equation 3.16, distance thresholds (Thr) are

2.2mm and 3.5mm for LP and LT respectively. Also G parameter is different

between the two approaches: GLP is equalt to 0.095N/mm, while GLT is

−0.19N/mm.

These choices have been conducted via empirical trials, evaluating the

best trade-off between force feedback strength and error inducted by the

force itself.

4.5 Performance Metrics

During task execution, trial time, cursor position, and closest point on curve

have been acquired to analyze trainee performance improvement.

Trial time (tTrial) has been defined as the time from touching the start

and end points (distance from point < 0.01mm).

From these raw data, we computed the distance between cursor position

and closest point on curve, root mean squared error, translational path error,

speed accuracy index and interquartile range of distances.

• Root mean squared error (RMSE) is used as overall index of user per-

formance. It is computed as:

RMSE =

∑N
i=1 di,Closest

N
(4.1)

where dClosest is the closest distance from curve calculated for each

sample acquired, and N is the total number of samples for each trial.
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• Translational path error (TPE) quantifies accuracy as the sum of the

punctual surface path errors (Fig. 4.4). It is computed as multiplication

of the distance between current closest point on curve and previous one,

and distance between current cursor position and closest point on curve

[15], representing the surface difference between the end effector path

and target path. The lower the TPE is, the higher is the accuracy of

the trial executed from the trainee. Analytically, it is calculated as in

Equation 4.2:

TPE =
N∑

n=1

‖Xn −Cn‖ ∗ ‖Cn −Cn−1‖ (4.2)

Unlike RMSE, no averaging on the total number of samples (N ) is

performed, thus TPE is used as accuracy metric, quantifying the total

amount of error executed by trainees along a trial.

• Speed-accuracy index (SA) is computed as combination of TPE and

trial time. It is inferred from Fitts’s law as a measure of the trade off

between accuracy and time spent to execute a trial [60]. Since a good

performance is connected to high accuracy (i.e., low TPE) and high

speed (i.e., low trial time), a low SA index, compared to a higher one,

indicates a better performance.

SA = TPE ∗ tTrial (4.3)

• Interquartile Range of closest distances (IQR) is used as variance met-

ric. By definition, it is the range of values between third and first

quantile:

IQR = Q3 −Q1 (4.4)

where dQ3 and dQ1 are 75th and 25th percentiles of the euclidean dis-

tances between current cursor position and closest point on curve of

each trial.
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Figure 4.4: Translational Path Error. Red line represents the end effector movement,
while the black is the target path. Considering the actual cursor position and closest
point on curve (Xn, Cn respectively), and previous cursor position and closest point
on curve (Xn−1, Cn−1 respectively), TPEi is the rectangular area pictured by current
closest distance from curve, and distance between current and previous closest point
on curve. The overall TPE is the sum of every TPEi computed, thus approximating
the surface difference between the two paths.

4.6 Statistical Analysis

4.6.1 Baseline

To verify the absence of learning effects during the execution of the four

trajectory in the Baseline recording, the measured indexes (RMSE, TPE,

ttrial, SA, IQR) have been grouped between subjects and corresponding tri-

als. Since for some of the indexes these data distributions were not normal

(Lilliefort α = 0.05) a Kruskal Wallis test (α = 0.05 ) was used to evaluate

the statistical differences between the consecutive baseline trials.

4.6.2 Training effects

To evaluate the different training modalities, we computed the variation be-

tween baseline and evaluation for each metric:

∆BE = Ii,Baseline − Ii,Evaluation (4.5)

with I = {RMSE, TPE, Duration, SA, IQR}. Positive training effects are

represented by higher ∆BE, while detrimental effects are negative. One ∆BE
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sample for each trajectory of each user was computed, yielding to 4-by-6

values (four trajectories, six subjects) for each group. We tested if data

were normally distributed for each subject with Lilliefors test (α = 0.01).

Since no significant difference was found for any performance metric, we

considered each trajectory execution as a repeated measure, and we extracted

the median value among the trajectories for each subject.

Even if all data followed a normal distribution, since our sample size

was small, we decided to use non-parametric statistic for repeated measures;

to conduct our statistical analysis, we used the Nonparametric Analysis of

Longitudinal Data in Factorial Experiments package in R.
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Chapter 5

Results

5.0.1 Baseline Analysis

Baseline was analyzed to verify that no learning effect would appear within

the first execution of the four trajectories. Kruskal Wallis tests with sig-

nificance level (α) of 0.05 have been conducted grouping all subjects of all

groups, and considering them across the different trajectories. No significant

differences were found for any metrics (p-values ranging from 0.0673 and

0.99).

5.0.2 Performance Analysis

Table 5.1 shows median and interquartile ranges for each index for all the

subjects in the three force groups. The results of the non parametric ANOVA

analysis for repeated measures is presented in Table 5.2, where significant

statistical differences (in bold) are highlighted with stars. In Fig. 5.1 the

index distributions and statistical differences are depicted.

Apart from the trial duration time (ttrial), in which no significant differ-

ence was found, the ∆BE variations in all the measured metrics show differ-

ences between the three force groups. For RMSE, TPE and IQR a statistical

difference subsist between each group, while for the SA index, no difference

was found between LP and LT. Throughout the 4 indexes presented in Fig.

5.1 the same trend was identified: the subjects that took part in the Con-
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Table 5.1: MEDIAN AND INTERQUARTILE RANGE OF ∆BE FOR EACH GROUP.

LP LT C

RMSE [cm] 3.02 51.7 -0.41 30.3 14.3 181.3
TPE [cm2] 0.01 1.5 0.005 2.22 1.02 8.9
Duration [s] 8.16 6.3 4.45 12.5 5.41 8.2
SA index[cm2 ∗ s] 1.10 0.9 0.31 1.1 3.28 4.0
IQR[cm] 0.002 0.02 -0.009 0.01 0.03 0.09

Table 5.2: P-VALUES FROM THE NON-PARAMETRIC ANALYSIS IN R; ASTER-
ISKS INDICATE STATISTICAL DIFFERENCES BETWEEN GROUPS.

LP:LT LP:C LT:C

RMSE 0.003** 0.03* 5 · 10−5***

TPE 0.004** 0.005** 8 · 10−9***

Duration 0.5 0.4 0.9
SA index 0.08 0.04* 0.003**

IQR 0.01* 0.003** 10−7***

trol group showed the highest incremental performances, followed by the LP

group which is characterized by less positive incremental effects. Users that

were teleoperating under the influence of LT force field showed substantial

negative ∆BE values for RMSE, TPE and IQR denoting a negative effect of

the training.
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Figure 5.1: Median, first and third interquartile distance as well as minimal and max-
imal values are presented as box-plots of the four performance metrics that showed
statistical differences. Statistical difference is quantitatively represented with asterisks
(* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).
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Chapter 6

Discussion

In this work we implemented a virtual teleoperation training protocol to

evaluate the effects of different force fields over psychomotor skills learning.

A thresholded linearly increasing divergent force field (LP) and a hybrid

convergent/divergent force field (LT) were developed and compared with a

control group.

The effects of the three training protocols have been quantified by eval-

uating the variation in multiple performance metrics between pre-training

baseline and post-training evaluation phase (∆BE). Non-parametric one-way

analysis has been conducted on ∆BE among the force groups.

A consistent trend has been found for all the analyzed metrics, with the

exception of trail time (ttrial): C group improvements overcome both LP and

LT. Regarding the lack of difference in ttrial, it seems that, independently

from the group, all the subjects equally decreased the trial time from Baseline

and Evaluation; this evidence seems to suggest that regardless of force fields,

users felt the same level of acquired acquaintance .

This result seems to suggest that the force field that have been imple-

mented reduce the subject natural capabilities in learning the tasks by pure

undisrupted repetitions.

Moreover, the LT group, whose performance are the worst among the

three groups, showed detrimental results, often worsening the subjects capa-

bilities in performing the tasks, especially in terms of RMSE and IQR.
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Regarding the SA index only, no significant difference was found between

LP and LT, but C is still significantly different.

This dissimilarity could result from the higher interquartile range of tTrial

for LT with respect to LP group(standard deviation of 9.93 vs. 6.57 of LP).

The classical error augmentation approach seems to be less effective in

teleoperation compared to rehabilitation: the differences between the fine

manipulations adopted in teleoperation and the less precise, often ballistic

movements characterizing rehabilitation may require additional studies. An-

alyzing our results along with other studies researching on divergent force

fields implementations for motor learning, leads to controversial conclusions.

In the study of Lee et al. [40], noise-like random disturbance force fields

showed better performance than control group and convergent force field

group. On the other hand, a recent work testing convergent and divergent

force fields for teleoperation did not find any difference between training with

and without force application [15]. In particular, it is interesting to notice

how LP and simple divergent forces could lead to different learning effects:

it seems that giving to user the possibility to carry out the task within a safe

region, where no forces are applied, restricts training effects, thus highlight-

ing possible advantages of simple divergence approach as error augmentation

technique for training.

Regarding the novel approach here proposed, it is interesting to notice

that a degradation in performance can be seen just for the LT group (neg-

ative ∆BE values in Fig. 5.1), especially for RMSE and IQR. These results

could suggest a negative impact of training in an unstable haptic environ-

ment: while training with LT approach, trainees struggle to carry out good

performances, since forces always reject them from the target path. This

condition leads to continuous error, and users experienced faster muscular

fatigue with respect to the other groups, causing them to require some min-

utes of relaxation between consecutive trials. Indeed, users have to generate

higher forces to stay as near as possible to the target path, possibly leading

to very stiff arm configurations. It seems that constraining the trainee to

an unstable environment, without giving him/her the possibility to actually

reach a good performance is even detrimental for training.
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In the end, we can observe that C group shows the highest variances,

indicating a large fluctuation of subjects’ learning effect within this group.

LP and LT groups show less overall improvement, but the changes induced

are more similar between different subjects: it seems that the effect of the

single user ability to learn is reduced. These trends could indicate a different

way to perceive and metabolize training with or without force feedback. In

fact, it seems that, after receiving a haptically-enhanced training phase, users

performances are narrowed around limited intervals, thus leading to more

repeatable results, and showing that force fields have a consistent effect over

subjects. The application of divergent and mixed force fields could therefore

carry a high potential in increasing teleoperators’ performance repeatability.
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Chapter 7

Conclusion

From these results and considerations, we could conclude that force fields

application during training on a series of different path would not improve

performances more than training without force feedback. On the other hand,

we were able to create conditions in which force feedback could be even

detrimental.

These factors should be highlighted and should keep researchers inter-

ested in the error augmentation field: no standard training protocols have

been implemented yet, thus different methodologies could be applied to same

training approaches, providing different results, and looking forward the op-

timal training methodologies.

A possible critical aspect and limitation of this work could reside in the

overall experiment duration: about 40-50 minutes were necessary to execute a

total number of 48 trials. This amount of training in just one session brought

to fatigue of the trainees, thus suggesting possible further implementation in

multi session training protocols.

In addition, since LP approach is still a novel technique in the motor

control field, future works would focus on a deeper analysis of its application

in psychomotor skill training: more data would be acquired, recruiting more

subjects for training. Furthermore, a multi-session experimental protocol

would be proposed to better simulate actual learning of complex skills, which

are not possible to acquire in just one session. As consequence, also task
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difficulty will be reassessed.

Focusing on the novel error-augmentation approach, i.e., LT, it could be

interesting to evaluate a non-linear force algorithm in order to maintain the

challenging aspects that characterize this implementation, without prevent-

ing learning. A critical aspect of this technique is indeed the inability of the

trainees to be able to exaclty follow the target path; smoothing divergent

forces, the instability would be still applied, but with lower strength.

Furthermore, it could be interesting to understand arm kinematics behind

the stiffness condition related to instability, and quantitatively understand

its contribution to the performance indexes.
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[32] Herbert Heuer and Jenna Lüttgen. Robot assistance of motor learning:

A neuro-cognitive perspective. Neuroscience & Biobehavioral Reviews,

56:222–240, 2015.

[33] Maureen K Holden. Virtual environments for motor rehabilitation: re-

view. Cyberpsychology & behavior, 8(3):187–211, 2005.

[34] Andrew J Hung, Mukul B Patil, Pascal Zehnder, Jie Cai, Casey K Ng,

Monish Aron, Inderbir S Gill, and Mihir M Desai. Concurrent and

predictive validation of a novel robotic surgery simulator: a prospective,

randomized study. The Journal of urology, 187(2):630–637, 2012.

[35] Timothy N Judkins, Dmitry Oleynikov, and Nick Stergiou. Enhanced

robotic surgical training using augmented visual feedback. Surgical in-

novation, 15(1):59–68, 2008.

[36] Arie Kaufman. Rendering, visualization and rasterization hardware.

Springer Science & Business Media, 1993.

65



[37] Douglas C Kelly, Andrew C Margules, Chandan R Kundavaram, Hadley

Narins, Leonard G Gomella, Edouard J Trabulsi, and Costas D Lallas.

Face, content, and construct validation of the da vinci skills simulator.

Urology, 79(5):1068–1072, 2012.

[38] Roger Kneebone. Simulation in surgical training: educational issues and

practical implications. Medical education, 37(3):267–277, 2003.

[39] Hojin Lee and Seungmoon Choi. Combining haptic guidance and hap-

tic disturbance: an initial study of hybrid haptic assistance for virtual

steering task. In Haptics Symposium (HAPTICS), 2014 IEEE, pages

159–165. IEEE, 2014.

[40] Jaebong Lee and Seungmoon Choi. Effects of haptic guidance and dis-

turbance on motor learning: Potential advantage of haptic disturbance.

In Haptics Symposium, 2010 IEEE, pages 335–342. IEEE, 2010.

[41] Michael A Liss and Elspeth M McDougall. Robotic surgical simulation.

The Cancer Journal, 19(2):124–129, 2013.

[42] Michael A Liss and Elspeth M McDougall. Robotic surgical simulation.

The Cancer Journal, 19(2):124–129, 2013.

[43] Sergio Maeso, Mercedes Reza, Julio A Mayol, Juan A Blasco, Mer-

cedes Guerra, Elena Andradas, and Maŕıa N Plana. Efficacy of the
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