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ABSTRACT

This thesis arises from the will of exploiting the recent technologies and developments in
compact representation of the acoustic field to implement one of the classic applications
present in the literature, called Virtual Miking (VM). The goal of this thesis is to develop an
efficient and flexible VM technique, analyzing the acoustic scene by means of multiple arrays
arbitrary distributed in the space. The process of Virtual Miking consists in the acquisition
of the signals from one or more virtual microphones which are freely placed in the analysis
space. This is possible only if the acoustic field is known in the relative locations. In oder to
characterize the acoustic field the proposed technique uses a parametric soundfield model
that is formulated in time-frequency domain. It assumes that each time-frequency instant
of a microphone signal can be decomposed into three different components: the source
signal, the source directivity and the propagating function. The knowledge of these three
parameters allows the reconstruction of the acoustic field in every position. This gives the
possibility of simulating the signal acquired by a microphone arbitrary placed in the space
of analysis. A proper procedure for retrieving the parameters from the soundfield has been
proposed starting from the microphone arrays signals. The use of multiple arrays allows
us to capture the whole acoustic scene, but a proper representation is necessary. Among
the different representation paradigms present in the literature, we adopted a geometrical
acoustics inspired representation called ray space. In this context the soundfield is described
in terms of acoustic rays which are mapped onto the ray space gaining an efficient and sturdy
description: the soundfield image. Indeed, points in the ray space domain represent rays
in the geometric space. Since the soundfield is analyzed by multiple microphone arrays,
practically an extension of the ray space called projective ray space has been implemented.
The parameters needed by the VM technique are extracted starting from the soundfield
image and finally the VM signal is computed according to the parametric model. Through
simulations and experiments we have proven that our VM technique is effective. Thanks to
its flexibility the our VM procedure is suitable for being employed in a wide range of areas
such as studio recording and forensic analysis.





SOMMARIO

Questa tesi di laurea nasce dalla volonta di sfruttare i recenti sviluppi tecnologici e gli ultimi
approcci nell’area della rappresentazione del campo acustico per implementare una delle clas-
siche applicazioni presenti nella letteratura, denominata: Virtual Miking. L’obiettivo di questo
lavoro è quello di ottenere una tecnica di Virtual Miking flessibile ed efficace, analizzando la
scena sonora con schiere (array) di microfoni in numero e posizione arbitraria. Il processo di
Virtual Miking consiste nel libero posizionamento di uno o più microfoni virtuali all’interno
dello spazio d’analisi e nell’acquisizione dei realtivi segnali. Ciò è possibile solo se si è a
conoscenza del campo acustico in tali posizioni. Per descrivere il campo sonoro, la tecnica
proposta sfrutta un modello parametrico del campo formulato nel dominio tempo-frequenza.
Il modello assume che ad ogni istante in questo dominio, il segnale di un microfono possa
essere decomposto in tre fattori differenti: il segnale sorgente, la direttività della sorgente e la
funzione di propagazione. La conoscenza di questi tre parametri permette la ricostruzione del
campo acustico in ogni posizione. Questo dà la possibilità di simulare il segnale acquisito da
un microfono posizionato arbitrariamente nello spazio. È stata proposta un’appropriata pro-
cedura per estrarre i parametri dal campo acustico a partire dai segnali acquisiti dalle schiere
di microfoni. L’utilizzo di numerosi array ci permette di catturare l’intera scena acustica, ma
è necessario rappresentare l’informazione adeguatamente. Tra le diverse rappresentazioni
presenti in letteratura, ne abbiamo adottata una ispirata alla acustica geometrica detta: ray
space. In questo paradigma di rappresentazione, il campo sonoro è descritto in termini di
raggi acustici che sono mappati nel ray space ottenendo così una descrizione efficiente e
robusta: la soundfield image. Infatti, i punti nel dominio ray space rappresentano i raggi
nello spazio geometrico. Nella pratica, dato che il campo sonoro è analizzato da più array di
microfoni, è stata implementata una estensione della rappresentazione ray space chiamata
projective ray space. I parametri richiesti dalla technica di VM sono estratti a partire dalla
soundfield image e infine il segnale del microfono virtuale calcolato secondo il modello
parametrico. L’efficacia della procedura di VM è stata comprovata attraverso simulazioni ed
esperimenti. Grazie alla sua flessibilità, la nostra tecnica di VM si adatta ad essere impiegata
in una ampia gamma di aree come lo studio recording e l’analisi forense.





TABLE OF CONTENTS

List of figures ix

List of tables xi

Introduction xiii

1 Background 1
1.1 Ray Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Plenacoustic Function . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Projective Ray Space . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Acoustic Primitives in the Projective Ray Space . . . . . . . . . . . 4
1.1.4 Managing Multiple OW . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Soundfield Images in the Projective Ray Space . . . . . . . . . . . 8

1.2 Spatial Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Linear Constrained Minimum Variance Beamformer . . . . . . . . 12
1.2.3 Delay and Sum Beamformer . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Null Steering Beamformer . . . . . . . . . . . . . . . . . . . . . . 14
1.2.5 Minimum Variance Distortionless Response Beamformer . . . . . . 15

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 State of the Art 17
2.1 Acoustic Signal Representation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Geometric Representation . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Virtual Miking State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Parameters Estimation . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Virtual Microphone Synthesis . . . . . . . . . . . . . . . . . . . . 27

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



viii Table of contents

3 Extraction of sound parameters 29
3.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Soundfield Image Construction . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Radiance Pattern Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Source Signal Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Virtual Miking 45
4.1 Synthesis of the Virtual Microphone signal . . . . . . . . . . . . . . . . . . 45
4.2 Summary of the Virtual Miking technique . . . . . . . . . . . . . . . . . . 48

5 Results 51
5.1 Measurements Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Source Localization Metrics . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Directivity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3 VM Signal Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.1 Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Pattern Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 VM Signal Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Source localization . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 VM signal synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions and future works 71

References 75

Appendix A Equipment specification 77



LIST OF FIGURES

1.1 The local and the global parametrization of rays. The Euclidean parametriza-
tion of rays (m,q) is defined with respect to the local reference frames. The
line on the second OW y′ = m′x′+q′ cannot be represented in the reference
frame of the first OW. With the projective parametrization (l1, l2, l3) any
reference frame can be assumed as the global one, letting us to write the line
incident on the second OW in the (x,y) frame. . . . . . . . . . . . . . . . . 4

1.2 A segment in the geometric space and its image in the reduced ray space . . 5
1.3 A source sensed by OW pApB and its ROI in the reduced ray space . . . . . 7
1.4 The reflector pApB and the OW pCpD in the geometric space and the ROI of

the reflector in the reduced ray space. Note that the ROI is obtained from the
intersection of the visibility regioni of the OW and the image of the reflector. 7

1.5 The Region of Visibility of the source in the setup of Fig. 1.3 with an added
reflector pDpC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Uniform Linear Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Relation between the wavenumber vector and the acoustic rays in a plane
wave field Fig. 2.1a and spherical wave field Fig. 2.1b. The dashed lines and
circles represent the eikonals while the dotted lines stand for the acoustic
rays trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 The VM processing block in the case of two microphone arrays . . . . . . . 27

3.1 The analysis set-up used in the Virtual Miking procedure. Sources (red
dots) are randomly located in a circular area of ray 2[m] and centered in
o = [2,2]T [m]. The microphone arrays are placed all around the sources area,
while the virtual microphone (green dot) can be arbitrary placed in the space. 30

3.2 Most common microphone array configurations . . . . . . . . . . . . . . . 31
3.3 Geometry of a circular array made of N microphones . . . . . . . . . . . . 32
3.4 An example of radiance patterns with their relative formula. . . . . . . . . 33



x List of figures

3.5 The pseudospectrum of an array. The main peak represents the DOA of an
acoustic source. The corresponding x value gives the angle from which the
microphone array captures the source signal, namely the Direction of Arrival
(DOA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 The VM procedure block diagram. The signals coming from the micro-
phones arrays are analyzed by the three main modules in order to retrieve
the parameters: the sources positions d‵, the pattern coefficients c and the
source signals S. Then the estimated parameters and the position of the VM
are used to compute the signal of the virtual microphone. . . . . . . . . . . 50

5.1 The setup used in the simulations. The arrays are arbitrary located all around
the sources (red). The virtual microphone (green) lies almost in the center of
the scene. The directivity is shown in the case of 0◦ orientation for both the
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Estimated directivity in the case of one and two sources from tests 1 and 3.
The blue thick line represents the reference cardioid pattern. . . . . . . . . 60

5.3 Experiment setup in the semi-anechoic chamber . . . . . . . . . . . . . . . 60
5.4 Uniform Circular Array structure with microphones. . . . . . . . . . . . . 63
5.5 The experiments setting. The six microphones arrays are deployed in the

scene around the two sound sources in red. Four microphones (green) are
placed in the scene as reference for the VMs signals . . . . . . . . . . . . . 63

5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7 The estimated radiance pattern of source 1 in experiment 1. Frequencies up to

1000Hz show an omnidirectional-like pattern while the highest frequencies
point to 90◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Measurement microphone MM1 . . . . . . . . . . . . . . . . . . . . . . . 78
A.2 Measurement microphone MM1 . . . . . . . . . . . . . . . . . . . . . . . 79
A.3 Measurement microphone ECM 800 . . . . . . . . . . . . . . . . . . . . . 80
A.4 Measurement microphone AT 4022 . . . . . . . . . . . . . . . . . . . . . . 81
A.5 Measurement microphone AT 4022 . . . . . . . . . . . . . . . . . . . . . . 82
A.6 Microphones preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.7 Microphones preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.8 ADC/DAC converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.9 Loudspeaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



LIST OF TABLES

5.1 General setting of tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Parameters shared by all the simulation tests. Positions are expressed in [m]. 56
5.3 Source localization performance in simulated tests. For each test we report

which one of the sources is active and the orientation of the pattern. The
value 0◦ corresponds to an orientation parallel to the x axis in the positive
direction while ±90◦ corresponds to an orientation parallel to the y axis with
respect to Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Pattern estimation performance in simulated tests. For each test we report
which one of the sources is active and the orientation of the pattern. The
value 0◦ corresponds to an orientation parallel to the x axis in the positive
direction while ±90◦ corresponds to an orientation parallel to the y axis with
respect to Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 VM synthesis performance in simulated tests. For each test we report which
one of the sources is active and the orientation of the pattern. The value 0◦

corresponds to an orientation parallel to the x axis in the positive direction
while ±90◦ corresponds to an orientation parallel to the y axis with respect
to Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Hardware equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Experiment parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Source localization performance in experimental tests. For each test we

report which one of the sources is active and the orientation of the pattern.
The value 0◦ corresponds to an orientation parallel to the x axis in the positive
direction while ±90◦ corresponds to an orientation parallel to the y axis with
respect to Fig. 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xii List of tables

5.9 VM signal synthesis performance in experimental tests. For each test we
report which one of the sources is active and the orientation of the pattern.
The value 0◦ corresponds to an orientation parallel to the x axis in the positive
direction while ±90◦ corresponds to an orientation parallel to the y axis with
respect to Fig. 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



INTRODUCTION

In the last few years an increasing interest in the microphone array signal processing tech-
niques has been experienced. The steady decrease of the cost of acoustic transducers and the
development of convenient representations of the acoustic field [10] give new possibilities
of research in the field of space-time signal processing. Both researchers and companies
are putting efforts into developing advanced space-time processing techniques that can be
applied in many different areas such as environment monitoring, human-computer interaction
and music recording. One of the most well known applications in the literature is the Virtual
Miking (VM). The VM is a procedure which allows us to arbitrary place one or more virtual
microphones and acquire their signals. In this thesis, we will introduce a novel and flexible
Virtual Miking technique inspired by the state of art in acoustic signal representation and
space-time processing literature.

Recently, the geometrical representation of the acoustic field has been exploited in the
development of an efficient soundfield representation paradigm [10]. Geometrical acoustics
is based on the description of the soundfield in terms of acoustic rays. Although it is a
rough approximation of the acoustic field, this model has the makings of describing arbitrary
complex acoustics environments, for which other representations are not practical. Starting
from the geometrical representation, the concept of the ray space has been introduced as a
domain whose primitives are the acoustic rays [3]. This domain allows a sparse and compact
representation of the soundfield in which every point corresponds to a plane wave component
of the field. In [10] the authors develop an analysis tool called soundfield imaging which
aims in mapping the plenacoustic function [24](i.e. the function characterizing the acoustic
radiance in the space) onto the ray space. The tool used to derive this description is the so
called Observation Window, namely an array of microphone. Within the ray space context
all the main acoustic primitives are mapped onto linear patterns, so, many problems such
as source localization, environmental inference and radiometric analysis can be solved with
pattern processing algorithms taken from the wide computer vision literature. In this thesis
we are interested in managing multiple microphone arrays, so we will adopt the projective
ray space [11]. In [11] the authors proposed the projective ray space as an extension of the
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ray space able to overcome its main limitations, such as the possibility of managing multiple
observation windows. In our thesis, we will exploit the soundfield image in the projective ray
space as a tool for implementing a robust source localization [5]. Indeed, we will adopt a
parametric model for describing the acoustic scene, so the geometric description will be a
complementary representation useful in retrieving the parameters we need.

The Virtual Miking procedure developed will take advantage of a parametric description
inspired by the ones available in the literature [25] [6]. Our model is simple and flexible,
we are able to compute the sound pressure in every point of the space just knowing few
parameters. The needed parameters are the following:

1. Sources positions.

2. Sources signals.

3. Sources radiance patterns.

4. Propagating function.

5. Virtual microphone positions.

Some parameters are known or assumed (Propagating function and Virtual microphone
positions), while the others have to be extracted from the analysis of the acoustic scene. A
key innovation of our VM procedure with respect to the literature [25] lies in the fact that we
take into account of the source radiance pattern in the model. This envisions the possibility
of developing application driven by this information. As regards the source signal and
radiance pattern retrieval, we have developed two methods for extracting these informations
from the signals. Both methods solves an optimization problem directly derived from the
adopted model. Another important feature is represented by the acquisition devices. We can
arbitrary place the microphone arrays in the space with the only limitation of using two or
more devices. We choose to adopt circular array of microphones rather than the usual linear
structure due to its advantages in terms of spatial filtering [26]. Moreover the circular array
has been adopted also in consumer products such as: Amazon Echo, Google Home and Apple
Homepod.

The thesis is organized as follows. In Chapter 1 we will provide an overview of the
main theoretical background on which our work is based. First we will introduce the ray
space and the projective ray space, then we will describe the main space-time processing
techniques adopted in this thesis. In Chapter 2 we will present the state of art of acoustic
signal representation and Virtual Miking . We will describe the main paradigm available in
literature to represent the acoustic information and a Virtual Miking technique similar to the



xv

one proposed in this work. In Chapter 3 we will start the description of our Virtual Miking
procedure. First we will introduce the problem of Virtual Miking and the choices we made
to derive a solution. We will describe the model and assumptions adopt in the development
of the work. Then, we will give an in depth analysis of the source localization through the
projective ray space representation. Moreover we will describe in details the developed
methods for retrieving the model parameters from the microphones signals. Chapter 4 will be
spent to present the synthesis of the virtual microphone signal and we will give a summary
of the entire Virtual Miking technique. In Chapter 5 we will corroborate our VM procedure
with ad hoc designed experiments and simulations. Finally in the last chapter we will draw
conclusions and discuss applications and possible future developments.





CHAPTER 1

BACKGROUND

In this chapter we will introduce the readers to the main concepts which constitute the basis
of the thesis. In particular we will describe in detail the soundfield representation used to
efficiently encode the whole acoustic scene. This representation is called Projective Ray
Space and has its roots in the theory of geometrical acoustics. The second important concept
is spatial filtering. We present the classical spatial signal processing techniques with focus on
the ones adopted in our work. We will describe in detail the state-of-the-art of beamforming
methods used in the development of our Virtual Miking technique. First we will present the
general design procedure and the optimization problems solved by beamformers. Then we
will give an in depth analysis of three well-known techniques.

1.1 Ray Space

In the literature, we can find different soundfield representation paradigms for analyzing
and characterizing the objects of an acoustic scene. Usually those techniques exploit arrays
of microphones for capturing the acoustic scene. Compared with other techniques, the
soundfield image [10] has the key advantage that it gathers and organizes at once and in a
single representation, all the informations needed in order to develop different acoustic scene
analysis applications.

We first introduce the plenacoustic function which is able to describe the acoustic radiance
in every direction through every point in the scene. Spatial filtering is used to retrieve the
directional informations. The plenacoustic function has been related to geometrical acoustics
through the adoption of the ray space [10], as a new domain for its parameterization. The
ray space is defined as the space of parameters that describe acoustic rays. In doing so the
sound field gains a sparse and sturdy description. This domain is called ray space because
each point in the domain corresponds to a ray in the acoustic scene. Hence every point in
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the soundfield image corresponds to a ray crossing the so called Observation Window (OW),
which is the microphone array that analyze the scene. As result of the change of domain, all
the main acoustic primitives are mapped onto linear pattern in the soundfield image. This
enables the employment of computer vision techniques to perform the most common acoustic
analysis.

The Ray Space exploits an Euclidean parametrization, while Projective Ray Space [11] is
based on projective geometry and it can be considered as an extension of the first one, since
it is able to manage rays coming from any direction and multiple arrays. Hence, in this thesis
we adopted the Projective Ray space in order to implement a robust source localization with
multiple arrays distributions which is the first step of our Virtual Miking procedure.

1.1.1 The Plenacoustic Function

The Plenacoustic Function (PF) is introduced in [24] as the acoustic counterpart of the
plenoptic function [2]. The PF defines the contribution of the soundfield at a given point
coming from a given direction. In this thesis we limit the analysis to the 2D space, so the
PF is a five-dimensional function f (x,y,θ ,ω, t) of: position (x,y); direction (θ ); frequency
(ω) and time (t). In [1] the PF is captured by mean of sensor arrays acting as Observation
Windows of the acoustic scene. The directional information brought by the beamforming
operation is used to scan the acoustic field for a discrete set of directions. A planar geometry
scenario is assumed such that the soundfield p(r,ω), at point r = [x,y]T , is described as the
superposition of plane waves with direction of propagation θ . Taking the integral over the
propagating plane-wave components we can define the soundfield as follows:

p(r,ω) =
1

2π

∫ 2π

0
P(k(θ))ei⟨r,k⟩dθ . (1.1)

This expression represents the well known plane-wave decomposition of the acoustic
wavefield where P(k(θ)), the Hergoltz density function, encodes the amplitude and the phase
of each plane-wave component. The PF is formally defined as the integrand in 1.1:

f (x,y,θ ,ω) := e j⟨r,k⟩P(k(θ)). (1.2)

The estimation of P(k(θ)) can be obtained by means of a beamforming operation which
will be introduced in Sec. 1.2. Assuming the geometrical acoustics paradigm we can state a
direct relation between plane waves and acoustic rays. Considering the Radiance Invariance



1.1 Ray Space 3

Law, we can characterize the acoustic ray as the oriented line orthogonal with respect to the
planar wavefront of direction θ .

The parametrization proposed in [10] and called ray space introduces a correspondence
between each point in the ray space domain and each acoustic ray. More specifically, rays
are identified by the parameters of the line on which they lie. These parameters are referred
to each OW considered as staying on the y axis with the origin in its middle. They are: the
slope m and the intercept with the y axis q. The line equation does not specify a direction, so
it is conventionally assumed that the rays cross the OW only in one direction. This is one of
the limitations of Euclidean ray space.

1.1.2 Projective Ray Space

In the previous section we have defined an acoustic ray as an oriented line perpendicular to
its planar acoustic wavefront. This lets us to graphically represent it as a line. The introduced
ray space definition, also known as Euclidean ray space suffers from different limitations
which can be solved with the adoption of the Projective Rays Space. The Euclidean ray space
represents a local parametrization of the acoustic field, namely the parameters extracted by
each OW refer only to the OW it self. In fact the image coordinates (i.e. the slope m and the
intercept q) are related to a single window as shown in Fig. 1.1. Furthermore is not possible
to specify the direction of the rays. This limitations are crucial when the goal is to jointly use
multiple observation windows and we have to represent all possible rays.

On contrary, Oriented projective geometry enables the simultaneous use of multiple OW
observing the acoustic scene and allows us to parametrize all possible rays, irrespective of
the reference frame with the line equation l1x+ l2y+ l3 = 0. The equation can be written in
vector form as:

pT l = 0;

l = [l1, l2, l3]T ;

p = [x,y,1]T .

(1.3)

We can notice that this representation is homogeneous because all vectors of the form
l = k[l1, l2, l3]T ,k ̸= 0 represent the same line. Therefore they form a class of equivalence. In
order to distinguish between two oppositely directed rays, the scaling factor k is limited to
either positive or negative values only. This oriented geometric space is defined as Projective
Ray Space P [11]

It is always possible to reduced the Projective Ray Space to its 2D counterpart, the
reduced ray space, by cutting it with a plane. This is particularly useful in order to visu-
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Fig. 1.1 The local and the global parametrization of rays. The Euclidean parametrization
of rays (m,q) is defined with respect to the local reference frames. The line on the second
OW y′ = m′x′+q′ cannot be represented in the reference frame of the first OW. With the
projective parametrization (l1, l2, l3) any reference frame can be assumed as the global one,
letting us to write the line incident on the second OW in the (x,y) frame.

alize the soundfield image. For instance, if we choose to cut with a prescribed plane, the
resulting reduced ray space corresponds to the Euclidean (local) Ray Space described by the
coordinates [m,q] = [−l1/l2, l3/l2].

1.1.3 Acoustic Primitives in the Projective Ray Space

One of the main advantages of the Ray Space representation is that acoustic primitives are
mapped onto linear features. In the current section we describe the main characteristics of
this mapping for the most important acoustic primitives.

Rays

As discussed in Sec. 1.1.2 a ray in the geometric space corresponds to a point in the projective
space P. Thanks to homogeneity of the representation the ray is visualized as a line, passing
through the origin, of coordinates k[l1, l2, l3]T , k > 0

Sources

An acoustic source can be seen as the point from which all its acoustic rays originate.
Therefore, the rays passing through a source of coordinates pA = k[xA,yA,1], k > 0, clearly
satisfy the following equation:
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Fig. 1.2 A segment in the geometric space and its image in the reduced ray space

pT
A l = 0

The identified set of rays forms, in the projective ray space, the image of pA: IpA = {l ∈
P|pT

A l = 0}. It corresponds to a plane passing through the origin of the projective ray space
which divides the space in two half-space P+

pA
= {l ∈ P|pT

A l > 0} and P+
pA

= {l ∈ P|pT
A l < 0}.

The first plane corresponds to all rays passing through pA and leaving it on their left, while
the second one refers to rays leaving the source from their right.

Segments

Segments are useful elements in the projective ray space because they are suitable to model
both observation windows and acoustic reflectors. Consider two points pA and pB and
the segment which connects them as shown in Fig. 1.2(a). The images of pA and pB are
respectively the two plane, visualized as lines in the reduced ray space, IpA and IpB . We
are able to determine the direction of a ray crossing the window looking at the different
intersection regions of IpA and IpB . Referring to the Fig. 1.2 it is easy to identify the different
types of rays.

The image of I1 rays is:

I+pApB
= P+

pA
∩P−

pB
;

while the image of the second type is given by:
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I−pApB
= P−

pA
∩P+

pB
.

The two images are wedge-shaped regions delimited by the two planes IpA and IpB which
meet in lpApB . This specific plane corresponds to the line which connects the endpoints in
the geometric space. Rays which do not intercept the segment, named I2 and I3 in Fig. 1.2
are outside the discussed regions. Finally, we can define also the image of a non oriented
segment as the union of the two images of the oriented one:

IpApB = I+pApB
∪ I−pApB

.

Observation Windows and Reflectors

Observation Windows are the model of sensor arrays. Their ray space representation is
directly derived from the one of segments as explained above. Usually, OW are able to
"sense" the rays that cross them in one of the two direction only. We are interested in
managing multiple observation windows each corresponding to a different microphone
arrays. For a one sided OW, we can identify the so called Visibility Region V(i) (with
superscript (i) identifying the ith OW) as one of the two wedge-shape regions I+pApB

and I−pApB
.

Acoustic reflectors are the acoustic primitives of reflective elements in the acoustic scene
such as walls. Their geometric model is again the segment. The wavefront reflected by a
planar wall can be thought of as originating from an image source mirrored about the wall
and the source. The reflector is identified as an "illuminating window" since all rays coming
from the image source are forced to pass through the reflector. It acts as an aperture that casts
reflected acoustic radiance onto the scene.

Regions of Interest (ROI)

The Region of Interest of a primitive (source or reflector) is defined as the portion of the
image of that primitive visible from an observation window. We can easily obtain the ROI
by intersecting V(i) (ith OW visibility) with the primitive image. Let us consider a source
placed in ps, its ROI can be identified as:

R(i)
ps = Ips ∩V(i) (1.4)

Similarly the ROI of a reflector is given by:
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Fig. 1.3 A source sensed by OW pApB and its ROI in the reduced ray space

Fig. 1.4 The reflector pApB and the OW pCpD in the geometric space and the ROI of the
reflector in the reduced ray space. Note that the ROI is obtained from the intersection of the
visibility regioni of the OW and the image of the reflector.

R(i)
pApB = IpApB ∩V(i). (1.5)

The ROIs are shown in figures Fig. 1.3 and Fig. 1.4.

1.1.4 Managing Multiple OW

For the scope of this thesis we are interested in managing an arbitrary number of observation
windows. This is possible in the projective ray space. In [11] the global region of visibility is
defined as the union of all ROVs relative to each OW. The region of visibility generally differs
from the region of interest because it takes into account of possible acoustic shades made
by the reflectors potentially placed between sources and OW. Figure Fig.1.5 illustrate the
concept of ROV. With reference to Fig.1.5 we can define the ROV of the source ps referred
to the ith observation window as:
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Fig. 1.5 The Region of Visibility of the source in the setup of Fig. 1.3 with an added reflector
pDpC

R(V,i)
ps = R(i)

ps ∩R(i)
pApD

. (1.6)

Where R(i)
pApD

stands for the region of V(i) not occupied by R(i)
pCpD , i.e.

R(i)
pCpD

= V(i)∩R(i)
pCpD (1.7)

Therefore we can define the global region of visibility Rps of a source ps as:

RV
ps
=

N⋃
i=0

R(V,i)
ps (1.8)

1.1.5 Soundfield Images in the Projective Ray Space

In this section we introduce the reader to the theoretical formulation of soundfield images.
The goal is to map the plenacoustic function f (x,y,θ) onto the global visibility V . In the
following discussion we assume an ideal scenario, where the soundfield cameras are able to
capture the acoustic radiance with no resolution losses or aliasing phenomena.

Let us consider a ray passing through a generic point p = [x,y]T with direction θ . The
parameters of the ray are:

l1 = k sin(θ)

l2 = k cos(θ)

l3 = k[ycos(θ)− xsin(θ)],k > 0.

(1.9)
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We can parametrize the plenacoustic function with the above parameters obtaining the
soundfield map p(l). This function has now the projective ray space as domain. From 1.9 we
can write that:

p(l) =


f (x,− l1x+ l3

l2
,−arctan

l1
l2
) l2 ̸= 0

f (
−l1
l2

,y,π/2) l2 = 0
(1.10)

Notice that the plenacoustic function is complex-valued and it carries the phase informa-
tion at the considered frequency. Moreover scaling x (or y in the second case) has no effect.
Thanks to the Radiance Invariant Law indeed, the value of the plenacoustic function does not
change if it is picked at a different point on the same ray. Again under the hypotheses of RIL,
the authors in [11] express the contribution of a source ps to the soundfield image pps:

pps =

{
bps(l) R(V)

ps

0 elsewhere
(1.11)

where bps(l) is the radiance pattern of a source pps which characterizes how the source
radiates the sound in space along the ray l.

1.2 Spatial Filtering

Spatial filtering is a signal processing technique that exploits spatial distribution of sensors
to detect or transmit directional signals. It is an active research area which involves different
fields such as radar sonar systems and acoustics.

The sensors structure is fundamental and sensors arrays are the tool to achieve spatial
filtering. Indeed, the redundant information brought by multiple sensors can be exploited
by properly combining the signals coming from the distributed sensors. This technique is
also known as beamfoming and it has several applications ranging from source extraction
to source position estimation. Concerning this thesis, we are interested in the Direction of
Arrival (DOA) estimation, since the DOA is the key information on which the ray space
representation is devised.

In the literature, several different beamforming algorithms have been presented. In the
following sections, we introduce the readers to the most used beamforming techniques. In
particular, we present the theoretical analysis of:

• Linear Constrained Minimum Variance Beamformer (LCMV)

• Delay-and-sum (DAS)
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• Null Steering

• Minimum Variance Distortionless Response Beamformer (MVDR)

1.2.1 Signal Model

Before the introduction of the spatial filtering techniques we have to clearly define the model
adopted in this thesis for represent the signals. In this thesis we assume to work with a short
time approach. The signal is spliced and processed frame-by-frame with the assumption that
the length of the temporal frame is short enough to have a stationary signal within the frame.
We start by defining the model for a single source scenario, but we will soon extend it to
keep into account multiple sources. Let us consider I omnidirectional microphones. We can
define the signal at the ith sensor at time t as:

xn(t) = fi,n(t)∗ sn(t)+ ei(t), (1.12)

where: snk(t) is the signal emitted by the nth source at time t, fi,n(t) is the transfer
function between the nth source and the nth microphone, ’∗’ is the convolution operator. The
ei(t) is an additive noise. ei(t) represent the thermal noise of sensors electrical circuits and
the random background noise sensed by the sensors.

Applying the Fourier Transform to 1.12 we obtain:

Xi(ω) = Fi,n(ω)Sn(ω)+Ei(ω). (1.13)

Where Xi(ω), Fi,n(ω), Sn(ω) and Ei(ω) are the Fourier transform of the microphone
signal, the transfer function, the source signal and the noise respectively. We can express
1.13 in a vectorial form as:

x(ω) = fn(ω)Sn(ω)+ e(ω), (1.14)

where x(ω) = [X1(ω), ...,XI(ω)]T is the output vector, fn(ω) = [F1,n(ω), ...,FI,n(ω)]T is
the so-called array transfer vector and e(ω) = [E1(ω), ...,EI(ω)]T is the noise vector.

Finally, we can extend 1.14 to a multi-source scenario, considering N sources. The
overall model becomes:
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x(ω) = F(ω)s(ω)+d(ω), (1.15)

where F(ω) = [fi(ω), ..., fN(ω)] and s(ω) = [S1(ω), ...,SN(ω)]T .

Transfer function model

To complete our signal model we have to define the transfer function Fi,n(ω), from the nth
source to the ith sensor. Since its expression strongly depends on the distance between the
sources and the arrays, we can identify two main expressions. From now we are assuming to
work with linear arrays. The definitions can be easily extended to circular arrays.

Far Field If an acoustic source is sufficiently far from the array, the wavefronts impinging
on it can be considered as plane waves. This assumption let us to simplify the mathematical
analysis. A source can be considered far from a circular array if the following relation on the
distance between the source and the array ρ holds [26] :

ρ >
2d2

λ
(1.16)

Where d2 stands for the array diameter and λ is the wavelength. Under the far field
assumption, the transfer function assumes the form of a plane wave:

Fi,n(ω) = e− j⟨kn,ri⟩ (1.17)

Limiting our analysis to a 2D scenario, we can define the wavenumber vector of the nth
source as kn =

ω

c [cos(θn),sin(θn)]
T and the position vector of the ith sensor as ri = [xi,yi]

T .
The angle θn is the Direction of arrival of the nth source.

Near Field If the far field assumption (i.e. ρ > 2d2

λ
) does not hold we are in the so called

near field. In this case the assumption on the plane wavefronts is no longer valid. Hence we
have to express the transfer function from source to sensor by means of a Green’s Function .

Fi,n =
e− j ω

c ||ri−r‵n||

||ri − r‵n||
(1.18)
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Fig. 1.6 Uniform Linear Array

where: r‵n = [xn,yn]
T is the position of the kth source and ri = [xi,yi]

T is the position of
the ith sensor. Again we limit the definition to a 2D case.

1.2.2 Linear Constrained Minimum Variance Beamformer

In this section we introduce the reader to the Linear Constrained Minimum Variance Beam-
former (LCMV) [26], one of the most used beamformer in the literature. Other beamformers,
presented in the next sections, can be seen as special cases of the LCMV.

Let us assume the signal model defined in 1.12, where the transfer function fi,n is given
either by 1.17 or 1.18. We consider the setting of a Uniform Linear Array deployed along
y-axis and centered in the origin and a source placed in d‵ = ρs[cos(θs),sin(θs)]

T emitting
the signal s(t) as shown in Fig. 1.6. In order to extract the signal we can apply a linear filter
(FIR) to the array outputs:

y(ω) = hH(ω)x(ω), (1.19)

where hH(ω) = [h1(ω), ...,hI(ω)]H is a vector containing the filter coefficients. We can
derive a solution for the filter coefficients as an optimization problem:
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h0(ω) =arg min
h(ω)

hH(ω)A(ω)h(ω)

subject to hH(ω)B(ω) = c(ω),

(1.20)

where A∈CI×I , B∈CI×q and c∈C1×q are complex-valued matrices and q is the number
of constraints. Consequently the general solution according to [23] is:

h0 = A−1B(BHA−1B)−1cH , (1.21)

where we have omitted the dependency on the frequency. The different beamformers
described in the next sections are devised from 1.21 making different assumptions on A, B
and c.

For the LCMV beamformer we state the following conditions: A denotes the spatial
covariance matrix, B contains all the constraints being applied to the response c. The LCMV
design method is at the base of other beamformers that we present in the following sections.
The optimization problem design remains the same for all these techniques, but different
constraints are assumed. This results in different values assumed for matrices A, B and c.
Hence each beamformer is characterized by the form of its matrices, despite they all share
the same solution formula. We briefly describe the assumptions of the different beamformers
before describe them in details. In the design of the DAS beamformer Sec. 1.2.3 we assume
that the auto-covariance matrix is equal to the identity matrix, namely that the signal x(ω)is
assumed to be spatially white therefore is not correlated between one microphone and another.
This implies that the matrices are: A(ω) = I, B(ω) = fi(ω) and c = 1.

The Null Steering beamformer is similar to DAS, but it adds additional constraints as
specified in Sec. 1.2.4. The matrices configuration depends on the order of the constraints,
but the main difference is in the form of vector c. Indeed c = [1,ε] contains the vector ε

which represent the desired values to attenuate interferes.
Finally, the MDVR differs form the DAS in the definition of the matrix A(ω) since the

assumption of having a spatially white signal is no longer valid. The auto-covariance matrix
is computed from data as explained in Sec. 1.2.5.

1.2.3 Delay and Sum Beamformer

The Delay and Sum beamformer (DAS) is the simplest Beamformer in the literature. It
follows a data-independent approach and its principle is to apply a delay to each microphones
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signal to construct by summation the desired signal. We can define the the variance of 1.19
as:

E{|y(ω)|2}= hH(ω)φxx(ω)h(ω), (1.22)

where φxx(ω) = E{x(ω)xH(ω)} is the array signal auto-covariance matrix. In the case
of the DAS beamformer we assume a spatially white signal x(ω), with no correlation among
signals at different microphones. This is equal to assume the identity matrix as the auto-
covariance matrix (i.e. φxx(ω) = I). Notice that 1.22 reminds 1.21 with A(ω) = φxx(ω). We
define a single constraint so that the source signal passes undistorted:

hH(ω)fn(ω) = 1 (1.23)

Finally we can derive the DAS optimization solution substituting in 1.21 A(ω) = I,
B = fn(ω) and c = 1:

h0(ω) =
fn(ω)

fH
n (ω)fn(ω)

=
fn(ω)

||fn(ω)||2
(1.24)

We can compute the filter power spectrum simply by inserting 1.24 in 1.22:

E{|y(ω)|2}= fH
n (ω)φxx(ω)fn(ω)

||fn(ω)||4
(1.25)

1.2.4 Null Steering Beamformer

The Null Steering is very similar to the DAS, but it adds more constraints to attenuate the
interfering signals in order to better extract the desired signal. This is achieved attenuating
the signals coming from given positions. As already pointed out, also this beamformer can
be expressed in tems of an optimization problem:

h0(ω) =arg min
h(ω)

hH(ω)h(ω)

subject to hH(ω)F(ω) = c,
(1.26)
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where F = [f1(ω), ..., fN(ω)] and c = [1,ε]. With this definition of c we are assuming
with no loss of generality that the first source is the desired one. All the other sources are
treated as interferers. We are forcing this behavior with the vector ε ∈ C1×(N−1), which
contains the established values for the interferers. Doing so, we are attenuating the interfering
signals and letting pass the desired signal undisturbed. This type of constraints is called
zero-order constraints or zero-order null . More advanced designs are present in the literature
[26]. They add a second type of constraints forcing the derivative of the beam pattern to zero.
This design is strongly dependent on the transfer function model adopted, since the beam
pattern depends on it.

1.2.5 Minimum Variance Distortionless Response Beamformer

Minimum Variance Distortionless Response Beamformer (MVDR), also known as Capon ,
can be seen as an extension of DAS, since it aims at minimizing the variance as defined in 1.22.
Differently from DAS, in MVDR we do not make any assumption on the auto-covariance
matrix. However, in practical situations is not possible to compute the real auto-covariance
matrix φxx(ω) = E{x(ω)xH(ω)}, hence it is substituted by an estimate on T time frames:

φ̂xx(ω) =
T

∑
t=1

xt(ω)xH
t (ω) (1.27)

The constraint in the optimization problem is the same as 1.23, so the overall optimization
problems take the form:

h0(ω) =arg min
h(ω)

hH(ω)φ̂xx(ω)h(ω)

subject to hH(ω)fn(ω) = 1
(1.28)

The solution can be devised from 1.24 by properly substitute the identity matrix I with
the estimated auto-covariance matrix φ̂xx:

h0 =
φ̂−1

xx fn(ω)

fn(ω)φ̂−1
xx fH

n (ω)
(1.29)

From 1.29 it clearly appears the data dependency of MVDR design opposed to the data
independent DAS. The dependency is given by the presence of the estimated auto-covariance
matrix.
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1.3 Summary

In this chapter we have introduced the main concept involved in this thesis. First we have
introduced the representation paradigm used to analyze the acoustic scene: The Ray Space.
We began by describing the plenacoustic function that practically describe the acoustic
radiance in the space. Then we have defined according to the literature the ray space as a
new parametrization of the plenacoustic domain. We have presented the Euclidean ray space
and the Projective ray space as a generalization of the first one able to overcome its limits.
In fact, we adopt the projective ray space in this thesis, in order to develop a robust and
flexible source localization by means of multiple microphone arrays. In Sec 1.2 we have
discussed the main issues related to spatial filtering first and foremost the problem of defining
a suitable signal model valid throughout the whole Virtual Miking procedure. Afterwards,
we have presented an analysis of state of the art of beamforming methods. In particular, we
have described the general design procedure of the optimization problem involved in the
beamforming procedure. Then, we gave a detailed description of the beamformers used in
our work spotting the differences between the different approaches.



CHAPTER 2

STATE OF THE ART

In this section we will present the State of the Art of acoustic signal representation. Three
main approaches are adopted in the literature:

1. Parametric description.

2. Nonparametric description.

3. Geometric description.

In particular our focus will be on the Geometric Representation which emerged in the
last years as an advantageous solution for space time soundfield analysis. In this context, the
acoustic propagation is modeled on the concept of acoustic rays. After, we will describe in
detail a Virtual Miking technique similar in the approach to the one presented in this thesis.

2.1 Acoustic Signal Representation

Acoustic signal processing is an active area of research that deals with the processing and
extraction of information from acoustic signals. At the bottom of this disciple we find
the acoustic signals representation. In the literature three main acoustic representation
paradigms have emerged. What follows is a general introduction to the two main acoustic
representations: Parametric and Nonparametric. Geometric representation is described in
depth in section Sec. 2.1.1.

Parametric representation In this context the soundfield is described by means of param-
eters which characterize the scene [13]. To each sound event corresponds a sound signal
with different and possibly many parameters which describe the soundfield. Examples of
these parameters are: environment geometry, source locations, source radiation pattern etc.,
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they depend on the a priori information available and on the desired accuracy. Microphone
arrays have been traditionally used to retrieve soundfield characteristics. By means of spatial
filtering Sec. 1.2 we can estimate the DOA of a sound source and localize a source given the
measurements of the acoustic field. Different procedures have been developed in literature
based on Time Difference of Arrival (TDoA) as [29], [8], [19], [1].

Nonparametric representation In this paradigm we do not assume any a priori knowledge
about the acoustic scene, but it is the acoustic field itself that describes the scene. We consider
the soundfield as a function of time and space, able to describe efficiently the scene. In
the literature, efficient acoustic signal representations, inspired by physical models, have
been developed. Indeed a point-to-point description for the acoustic field would require a
big amount of data impossible to handle in practice. The most important Nonparametric
representations are: plane wave representation introduced in [28], [27]; spherical wave
representation [12] and cylindrical wave representation [15]

Nonparametric analysis aims to estimate the coefficients of a set of basis functions in
which the acoustic field can be decomposed. Again the tool to sample the acoustic field is the
array of microphones. The general idea is to represent the spatial dependency of a soundfield,
in terms of specific set of basis functions (i.e. plane waves, spherical waves, cylindrical
waves etc). In recent works such as [24] the signals from microphones are interpreted
as time-space samples with their own specific temporal and spatial sampling frequencies,
determined respectively by the temporal interval between adjacent time samples and by the
spacing between microphones. In the literature many acoustic signal processing techniques
have been proposed to decompose the acoustic field in terms of basis functions e.g. in [21]
[18] [20].

Nonparametric representation is applied also in the synthesis of acoustic fields usually
called rendering. Acoustic rendering is the process of synthesizing physically accurate acous-
tic fields over an extended area. This goal is achieved by means of spatially arrangements of
loudspeakers. However, in this thesis we are not interested in acoustic rendering therefore
acoustic rendering techniques are not presented.

2.1.1 Geometric Representation

Geometric representation is different from the other representations because it is devised
from geometric acoustics instead of wave acoustics. In this context the propagation model is
quite simple: acoustic rays are straight lines which carry the acoustic information. From a
physical point of view this is a rough approximation of an acoustic field, in particular for near
field scenarios, but the ray-based model lets us model arbitrary complex acoustic fields, for
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which a physically accurate modeling is not practical. The concept of ray space, described
in the next section, takes advantage of the geometric representation to define a projective
domain whose primitives are acoustic rays. In the ray space domain, points correspond
to plane-wave components of the acoustic field allowing a compact and sturdy soundfield
representation as we have already shown in the previous chapter. Recently in [4] the author
introduces the novel paradigm of beam acoustics in which the computational ease and the
intuition of geometric representations are combined with the accuracy of physically-inspired
representations.

Geometrical acoustics is devised from ray optics. Indeed a close analogy exists between
the image formation process of an optical component and the acoustic image formation
process with a microphone array. Ray acoustics is directly derived from optics and it assumes
that acoustic radiance is constant along acoustic rays. Therefore this paradigm comes from
the high frequency approximation of the wave equation.

Ray Acoustics

Ray acoustics is concerned with the location and direction of acoustic rays. The trajectories
can be univocally identified by the surfaces ψ(r,ω) to which they are perpendicular. The
function ψ(r,ω) is usually referred as Eikonal [22] and depends on position r and frequency
ω . Taking the direction of the gradient vector ∇ψ(r,ω) we can identify the ray trajectories.

Let us introduce the Homogenous Helmholtz Equation as follows:

∇
2P(r,ω)+

(
ω

c

)2
P(r,ω) = 0, (2.1)

where P(r,ω) expresses the acoustic field in a volume free of sources (i.e. Homogenous
condition). Equation 2.1 is the Fourier transform of the homogeneous wave equation:
∇2 p(r, t)− 1

c2
∂ 2 p(r,t)

∂ t2 = 0, which describes the field as small-amplitude variations of pressure
p(r, t).

The function governing the Eikonals is derived from the high frequency approximation
of the Helmholtz Equation. Let us consider the 2.1 rewritten in terms of amplitude and phase
of P(r,ω):

∇
2
(
|P|e( jψ)

)
+
(

ω

c

)2
|P|e( jψ) = 0. (2.2)

Where dependency of P and ψ on space and time are omitted. Letting ω → ∞ we obtain the
Eikonal equation as defined in [4]:
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⟨∇ψ,∇ψ⟩=
(

ω

c

)2
(2.3)

The physical meaning of 2.3 is that acoustic rays are constrained to travel in the direction
orthogonal to lines of constant phase. Hence in free-space, the acoustic rays (normals to
the Eikonals ψ(r,ω)) must be straight lines [22] and the Eikonal may be parallel planes or
concentric sphere.

Consider a plane wave acoustic field propagating with wavenumber vector k:

P(r,ω) = A(ω)e j⟨k,r⟩. (2.4)

Where A(ω) is an amplitude factor. Also in this case we can factorize the amplitude and the
phase of the acoustic field as:

P(r,ω) = |A(ω)|e j(⟨k,r⟩+φ). (2.5)

with φ the phase contribution of A(ω). Therefore the Eikonal is:

ψ(r,ω) = ⟨k,r⟩+ψ (2.6)

Substituting Sec. 2.6 in Sec. 2.3 we can find that a plane wave is a solution to the Eikonal
equation as long as the k satisfies the dispersion relation k =

(
ω

c

)
. Finally the trajectory of

acoustic rays is determined by the gradient of ψ(r,ω):

∇ψ(r,ω) = k. (2.7)

This main result establishes the strong relation between the wavenumber vector and the
trajectory of acoustic rays as shown in Fig. 2.1a.

In the case of a spherical wave acoustic field we can apply the same reasoning. With no
loss of generality the source is placed in the origin of the coordinate system, and the acoustic
field is:
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(a) Rays in plane wave field (b) Rays in spherical wave
field

Fig. 2.1 Relation between the wavenumber vector and the acoustic rays in a plane wave
field Fig. 2.1a and spherical wave field Fig. 2.1b. The dashed lines and circles represent the
eikonals while the dotted lines stand for the acoustic rays trajectories.

P(r,ω) =
e j ω

c ||r||

4π||r||
(2.8)

The corresponding Eikonal is:

ψ(r,ω) =
ω

c
||r||, (2.9)

and its gradient:

∇ψ(r,ω) =
ω

c

(
x

||r||
x̂+

y
||r||

ŷ+
z

||r||
ẑ
)
. (2.10)

From 2.10 it is possible to verify that spherical wavefronts are solutions to Eikonal
equation. The acoustic rays belong to a set of lines crossing at the origin. Fig. 2.1b illustrates
the mentioned relation.

2.2 Virtual Miking State of the Art

In this section we will go through the state of the art of Virtual Miking available in literature. In
particular we focus on the work Geometry-Based Spatial Sound Acquisition Using Distributed
Microphone Arrays [25]. In this paper, the authors present a virtual miking technique similar
to the one proposed in this thesis. They follow a geometry-based analysis of the sound field
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and a parametric description of the acoustic scene to compute the virtual microphone signal.
In our work we have adopted a similar approach and the aim of this section is to highlight
the technique adopted in [25] and to present its main characteristics.

2.2.1 Problem Formulation

In [25] the authors formulate a geometry-based spatial sound acquisition method capable
of computing a signal corresponding to a virtual microphone with arbitrary pick-up pattern.
The virtual microphone can be placed in an arbitrary position. The signal is computed in the
time-frequency domain based on a parametric sound field model. The model accounts for a
isotropic-point like sound source (IPLS), an homogeneous diffuse sound contribution and an
arbitrary microphone pick-up pattern.

Hence, the signal model used is the following:

S(k,n,d) = Sdir(k,n,d)+Sdi f f (k,n,d). (2.11)

Where n denotes the time instant, k is the usual wavenumber vector and d = [x,y,z]T is
an arbitrary position in cartesian coordinates. We can notice that the model assumes that the
sound pressure at time n in position d is given by the sum of two components: the direct one
and the diffuse one.

The direct sound emitted by the IPLS located at dIPLS(k,n) is assumed to be a monochro-
matic free field spherical wave. In case of more than one source we can generalized the
model if the sources are sufficiently sparse. The propagation of the wave from dIPLS(k,n) to
d is represented by the transfer function Hdir(k,d,dIPLS), i.e.:

Sdir(k,n,d) = Hdir(k,d,dIPLS)Sdir(k,n,dIPLS). (2.12)

Hdir(k,d,dIPLS) is the deterministic transfer function and can be computed for any d
and dIPLS by assuming a propagation model. Note that one can design arbitrary transfer
functions to model the propagation between the source and virtual microphone, this means
that any physical or non-physical behavior can be generated. In [25] authors approximate the
spherical wave propagation from dIPLS to d with:

Hdir(k,d,dIPLS) = r−1(k)e jkr(k). (2.13)
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Where r(k) = ||d−dIPLS(k)|| is the distance between the source and the virtual micro-
phone.

The diffuse sound contribution at an arbitrary position d is given by the diffuse sound
contribution at dIPLS(k,n) as:

Sdi f f (k,n,d) = Hdi f f (k,n,d)Sdi f f (k,n,dIPLS). (2.14)

Where Hdi f f (k,n,d) is simply a time and frequency dependent complex value. Indeed
the diffuse sound at position d is typically uncorrelated if the distance between both points is
sufficiently large. In the article the diffuse soundfield is assumed of being isotropic (i.e. the
average sound power arriving at d is uniformly distributed over all direction of incidence)
and homogeneous (i.e. the average sound power does not vary with d). In [25] due to the
homogeneous assumption an estimate of the power of the diffuse sound in d is given by the
diffuse sound in dIPLS. Authors have considered the phase of Sdi f f (k,dIPLS) as an estimate of
Sdi f f (k,d), consequently the transfer function reduces to: Hdi f f (k,d,dIPLS) = 1. In practice
the diffuse sound at the reference position is assumed as the sound at any d.

The described model is used to compute the signal S(k,n,dV M) of a virtual microphone
located at dV M with an arbitrary pick-up pattern given the sound pressures at the position
of the IPLS. According to what previously introduced the signal is divided in its direct
and diffuse components plus a propagation model. We can express the signal of a virtual
microphone as follows:

S(k,n,dV M) = wT (k,n,dV M,dIPLS)s(k,n,dIPLS). (2.15)

Where

s(·) = [Sdir(k,n,dIPLS) Sdi f f (k,n,dIPLS)]
T (2.16)

and

w(·) = [Wdir(k,n,dV M,dIPLS) Wdi f f (k,n,dV M,dIPLS)]
T . (2.17)

For example, for an omnidirectional VM the weights w are:
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w(k,n,dV M,dIPLS) = [Hdir(k,n,dV M,dIPLS) Hdi f f (k,n,dV M,dIPLS)]
T (2.18)

2.2.2 Parameters Estimation

In this section we briefly describe how the parameters to compute the VM signal are estimated
in [25]. From the previous section it is clear that to compute the VM signal we need some
parameters which have to be extracted from the acoustic scene. These parameters are obtained
starting from the measurements of a reference omnidirectional microphone, arbitrary located
in dre f .

Sound Pressure at the IPLS The direct sound Sdir(k,dIPLS) and the diffuse sound Sdi f f (k,dIPLS)

required to compute the VM signal are estimated from the reference signal S(k,dre f ). In
general we can express the direct sound at the reference point as:

Sdir(k,dIPLS) = H−1
dir (k,dre f ,dIPLS)Sdir(k,dre f ). (2.19)

Where H−1
dir (k,dre f ,dIPLS) is the inverse of the transfer function between the source and

the reference microphone. An estimate of the direct sound pressure Sdir(k,dre f ) is obtained
in [25] with the square-root Wiener filter that is given by:

Gdir(k,dre f ) =

√
Γ(k,dre f )

1+Γ(k,dre f )
, (2.20)

where the signal-to-diffuse ratio (SDR) Γ(k,dre f ) is the power ration between the direct
and the diffuse sound at the reference position.

Γ(k,dre f ) =
E{|Sdir(kdre f )|2}

E{|Sdi f f (kdre f )|2}
(2.21)

Therefore:

Ŝdir(k,dre f ) = Gdir(k,dre f )S(k,dre f ). (2.22)

The same method is applied also to extract the estimation of the diffuse sound pressure:
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Ŝdi f f (k,dre f ) = Gdi f f (k,dre f )S(k,dre f ). (2.23)

Again the square-root Wiener filter is used:

Gdi f f (k,ddi f f ) =

√
1

1+Γ(k,dre f )
=
√

1−G2
dir(k,dre f ) (2.24)

The square-root Wiener filter is used because it has the desirable property that the
estimated sound component has the correct power

|Ŝdi f f (k,dre f )|2 + |Ŝdir(k,dre f )|2 = |Sdir(k,dre f )|2 (2.25)

Position estimation An important parameter is the source position dIPLS(k). The authors
estimate it via triangulation based on the direction-of-arrival (DOA) of the direct sound
observed at two or more different observation points. We can define the DOAs relative to M
microphones arrays (centered at dm with m ∈ 1,2, ...,M) as the unit vectors e(k,dm). Let us
define c(k) as the lines defined by the array centers and the DOA vectors:

c(k) = dm + e(k,dm)ξ (k), (2.26)

where ξ is an unknown real-valued scaling factor. In an ideal situation the intersection of
any two lines returns the position dIPLS, but in a real scenario the triangulation might fail due
to inaccurate DOA estimates. Hence the position dIPLS can be computed by minimizing the
sum of the square distances of the lines in 2.26:

dIPLS(k) = argmin
c

M

∑
m=1

||J(k,dm,c)||2. (2.27)

The cost function is defined as:

J(·) =
[
I− ê(k,dm)êT (k,dm)

]
(c−dm), (2.28)
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where ê(k,dm) represents the estimated DOAs. The accuracy of the position estimate is
determined by factors such as the performance of the DOA estimator, the relative position of
the array and the IPLS position itself.

Signal-to-Diffuse Ratio Estimation In [25] authors estimate the SDR Γ(k,dre f ) at the
reference point dre f assuming that positions d1...M of the M microphones arrays are known.
The estimation procedure is divided in two steps:

• Computing the SDRs Γ(k,dm) for each array

• Determining the SDR at the reference point dre f from the estimated SDRs.

Given the active sound intensity vector as:

ia(k,dm) =
1√

2ρ0c
ℜ{S∗(k,dm)v(k,dm)}, (2.29)

where ℜ(·) provides real part, (·)∗ represents the complex conjugate operation and ρ0

is the density of air. We can define the coefficient-of-variation (CV) cv(k,dm) of the active
sound intensity vector is:

cv(k,dm) =
||E{ia(k,dm)}||
E{||ia(k,dm)||}

. (2.30)

Authors use 2.30 to obtain an estimate of the diffuseness of the sound: Ψ̂(k,dm) =√
1− cv(k,dm), which is directly related to the SDR. Finally an estimate of the SDR Γ(k,dm)

is given at the mth array as:

Γ̂(k,dm) =
1

Ψ̂(k,dm)
−1 =

1√
1− cv(k,dm)

−1 (2.31)

As far as the second step is concerned, the computation of the SDR at the reference
position, we report in our description only the case when dre f is equal to one of the array
positions dm. Doing so, we can directly consider the SDR estimated for the corresponding
array:

Γ̂(k,dre f ) = Γ̂(k,dm)|dm=dre f . (2.32)
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Fig. 2.2 The VM processing block in the case of two microphone arrays

2.2.3 Virtual Microphone Synthesis

Once all the parameters described in the previous section are available, a VM signal can
be synthesized based on a the parametric representation of the sound field. we can use the
knowledge of the IPLS parameters to generate a VM signal for any position dV M simulating
a physical microphone placed in that specific position. We can express the VM signal as
follows:

S(k,dV M) =C(k, lV M,dV M,dIPLS)Sdir(k,dV M)+Q(k)Sdi f f (k,dV M), (2.33)

where, C(k, lV M,dV M,dIPLS) ∈ R denotes the pick-up pattern of the VM with orientation
defined by unit vector lV M and Q(k) ∈ R controls the sensitivity of the VM with respect to
the diffuse sound and:

Sdir(k,dV M) = Hdir(k,dV MdIPLS)Sdir(k,dIPLS), (2.34)

Sdi f f (k,dV M) = Hdi f f (k,dV MdIPLS)Sdi f f (k,dIPLS), (2.35)

denote the direct and diffuse sound pressures of a virtual omnidirectional microphone. It
is clear that the output signal S(k,dV M) of the VM microphone is the weighted sum of the
direct and diffuse sound pressures at the position dV M of the VM. Therefore it is sufficient to
assume a proper direct and diffuse transfer function, as explained in Sec. 2.2.1, and a pick-up
pattern to compute the VM signal.
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In Fig. 2.2 the entire VM procedure presented in the current section is displayed. The
advantage of the parametric sound field representation is that one can assign an arbitrary pick
up pattern to the VM trough C(·). Moreover it is possible to define a specific sensitivity of the
VM with respect to the diffuse sound via the weight Q(k). We remark that also the transfer
functions can be arbitrary chosen. Hence every kind of behavior, physical or nonphysical,
can be simulated. This flexibility makes the technique suitable for different applications.

2.3 Summary

In this section we have introduced the reader to the main acoustic representation paradigms
and in particular to the geometric representation. We have described in details the assumption
of geometric acoustics, showing how the concept of acoustic ray is fundamental in this
context. Ray acoustics has been discussed in Sec. 2.1.1 as the reference paradigm of the
procedure proposed in this thesis. Indeed even if it provides a rough approximation of the
acoustic field it proves its importance in modeling complex acoustic environments. For this
reason it has been widely adopted in literature and it can be considered the state of art of
acoustic representations.

Geometric representation is at the base of the recent Virtual Miking technique [25]
that we have discussed in Sec. 2.2. We have presented the method in details explaining it
assumptions and characteristics. The work proposed in [25] presents a geometry-based spatial
sound acquisition that involves the computation of one or more virtual microphone signals,
which approximate the signals of physical microphones placed at the desired positions.
The parametric approach assumed, let us define specific VM behavior both physical or
non-physical, making this technique flexible and suitable for many different applications.

When we will present our Virtual Miking technique, in the following sections and we will
use Sec. 2.2 as a reference highlighting similarities and differences with our approach.



CHAPTER 3

EXTRACTION OF SOUND PARAMETERS

In this section we will introduce our Virtual Miking (VM) technique. We will present how
the theoretical concepts described in the previous sections have been exploited to derive a
flexible and robust acoustic analysis framework. On the top of this setting we have developed
the computations needed for the VM signals synthesis.

Our goal is to derive a flexible Virtual Miking procedure suitable for being applied in
a wide range of applications. Hence, we decided to work with sensors arrays which can
be arbitrary placed in the space. This choice represents an improvement with respect to
already existing VM techniques in the literature, where, usually the position and the number
of microphone arrays is fixed. Simultaneously we keep an high grade of flexibility which
makes our procedure suitable for many different applications.

After the setting description, we will give an in depth analysis on the implemented
procedure to retrieve the soundfield image. We will take advantage of the characteristics
of the projective ray space, introduced in Sec. 1.1, to obtain a compact acoustic scene
representation in a flexible context like the chosen one.

Later we will describe the methods that we have developed to analyze the soundfield and
to retrieve the parameters useful to synthesize the virtual microphone signal. We will start
from the acoustic scene representation derived in Sec. 3.2 to inspect the soundfield and to
obtain the main parameters needed by our procedure. Recalling the parametric description of
the soundfield proposed in Sec. 3.1 we will present the techniques adopted in our analysis
procedure with their assumptions and characteristics. We will exploit the projective ray
space representation of the soundfield to develop a robust and efficient source localization
procedure. In order to reach this goal we will take advantage of well known computer vision
algorithms. Then a parametric approach will be adopted to compute the radiance pattern
of the source, more precisely we will obtain the pattern coefficients which determine the
pattern by solving an optimization problem. Finally, we will present how the source signal
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Fig. 3.1 The analysis set-up used in the Virtual Miking procedure. Sources (red dots) are
randomly located in a circular area of ray 2[m] and centered in o= [2,2]T [m]. The microphone
arrays are placed all around the sources area, while the virtual microphone (green dot) can be
arbitrary placed in the space.

is retrieved from the sound pressure captured by the microphones. In this case a solution
inspired by the beamforming procedure (Sec. 1.2) has been implemented.

3.1 Setting

In this section we present the setting of our problem. We state the assumptions we made and
the general scenario of our VM technique. Following the example of [25] we exploit the
geometry-based spatial sound description, as introduced in Sec. 2.1.1. This lets us to adopt
the projective ray space as paradigm to represent the acoustic scene. Moreover like in [25]
we use a parametric model of the acoustic scene. Our model assumes that the sound pressure
at each time-frequency instant and position is given by the response of one or more sound
sources. Differently from what is present in the literature we do not simply consider as source
an isotropic point like sound source (IPLS), but we extend this basic model considering
also the radiation pattern of the source (Sec. 3.1.1). In contrast to [25] we are not interested
in taking into account for diffuse sound. In order to analyze the acoustic scene we adopt
acoustic sensors organized in structure called arrays. In the literature, the use of microphone
array for analyzing the acoustic field is well established. The sensors arrays are located all
around the sources, with a random position. So every array observes the sources from a
different perspective. The number of microphone arrays is not limited but there must be at
least two devices. In Fig. 3.1 we show an example of the analysis setup just described.
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Fig. 3.2 Most common microphone array configurations

The microphone arrays can be designed almost arbitrarily, indeed, in literature many
different configurations are present. In Fig. 3.2 the most common configurations are displayed.
We decided to work with Circular Arrays of omnidirectional microphones in two dimensions.
In this configuration the sensors are equally spaced on a circumference of fixed radius as
shown in Fig. 3.3. We have chosen to work with circular array instead of the commonly used
uniform linear array Fig. 1.6, because it has the advantage of being able to locate sources from
all the directions, while the ULA suffers from the so-called front-back ambiguity, i.e. ULA
cannot distinguish if the sound source is in front of the array or behind itself. Additionally,
ULA can pinpot only sources which are not aligned with it [26]. Furthermore the circular
array has been recently deployed also in consumer products such as: Amazon Echo, Google
Home and Apple Homepod.

3.1.1 Problem Formulation

Let us consider the signal model introduced in Sec. 1.2.1. Limiting our description to a single
acoustic source we can extend the 1.14 to express the sound pressure impinging an acoustic
sensor, taking into account the radiation pattern. The aim of the thesis is to compute the
signal X(ω,dV M) of a virtual microphone (VM) located at dV M given the sound pressure
at the position of the source and the radiance pattern of the source itself. More precisely,
X(ω,dV M) is defined as follows:

X(ω,dV M) = w(ω,dV M,dS)S(ω)+E(ω) (3.1)

where w(·) = F(ω,dV M,dS)P(ω,θ) are the weights given by the transfer function and
the radiance pattern of the source. This two components characterize the sound pressure
present at the dV M position. E(ω) is an additive noise corresponding to the definition
given in 1.14. F(ω,d,dS) represents the transfer function between the source at position
dS and the microphone at position d. Previously in 1.13 this was indicated by Fn,k(·) as the
transfer function between the nth sensor and the kth source. Note that the transfer function
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Fig. 3.3 Geometry of a circular array made of N microphones

F(ω,d,dS) is deterministic and can be computed for any d and dS by assuming a specific
sound propagation model as the ones proposed in Sec. 1.2.1. We underline that no limits are
applied to the propagation model so it can be arbitrary chosen in the VM synthesis phase.

For practical reason, we do not take into account the pick-up pattern of the virtual
microphone, but it can be easily implemented in the future following the example of Sec. 2.2.
Differently from [25] we focus our model on the radiation pattern of the source. This turns
out to be an advanced description of real sound sources with respect to the plain IPLS model.
The radiation pattern P(ω,θ) of a source is a real number which defines the variation of the
power radiated by the source as a function of the direction θ away from the source and the
frequency ω [7]. Fig. 3.4 shows an example of well known radiation patterns. Actually the
radiation pattern can be also time dependent in the case of moving sources, but for the sake
of simplicity we assume that the sources are fixed in space, so their radiation pattern does
not change. However the implementation of a time dependent radiation pattern in our VM
technique can be easily achieved repeating the estimation at each time frame.

3.2 Soundfield Image Construction

This section provides the procedure we have implemented to built the acoustic scene repre-
sentation which is at the base of our VM technique. In Sec. 1.1 we have introduced the theory
of soundfield imaging as a representation built from the concept of geometric acoustics
(Sec. 2.1.1). What follows is a detailed description of how we build the ray space image of
the acoustic scene with the analysis setup of Sec. 3.1.
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Fig. 3.4 An example of radiance patterns with their relative formula.

Let us recall the derivation of the projective ray space image as explained in Sec. 1.1.
We need to compute the plenacoustic function in order to obtain the characterization of the
acoustic scene in space. We report the definition of the plenacoustic function 1.2:

f (x,y,θ ,ω) := e j⟨r,k⟩P(k(θ)).

The key information contained in 1.2 is represented by P(k(θ)). If the assumptions made
in the previous sections are valid we can completely describe the acoustic rays if we know
the direction θ . Lets assume that only one acoustic source is present in the analysis space, we
can retrieve the angular information for each microphone array by means of a beamforming
procedure. Hence, we can identify an angle θ for each array which represents the Direction
of Arrival (DOA) of the ray reaching it from the source. In particular, in order to retrieve
the information we exploit the Minimum Variance Distortionless Response Beamformer
(MVDR) described in details in Sec. 1.2.5, which gives a better performance with respect to
DAS (Sec. 1.2.3) and Null Steering (Sec. 1.2.4) beamformers.

The beamformer output is what we call Pseudospectrum . The pseudospectrum exhibits
some peaks which represent the DOA of the acoustic rays, i.e. the angle θ of the source
position with respect to the array itself. An example of the pseudospectrum is visible in
Fig. 3.5. Assuming the presence of K sources in the acoustic scene we can identify, for the
mth array, K angles corresponding to the first K peaks of the pseudospectrum.

DOAsm = [θ1,θ2, · · · ,θK]
T . (3.2)

Once the DOAs as been identified for each array we can easily build the projective ray
space image which describe the acoustic scene. Recalling the definitions given in Sec. 1.1.2
we can obtain the projective ray space representation of the mth observation window with the
following parameters:
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Fig. 3.5 The pseudospectrum of an array. The main peak represents the DOA of an acoustic
source. The corresponding x value gives the angle from which the microphone array captures
the source signal, namely the Direction of Arrival (DOA).

l(m)
1 = csin(DOAsk),

l(m)
2 = ccos(DOAsk),

l(m)
3 = c[ycos(DOAsm)− xsin(DOAsm)],

(3.3)

where c is a scaling factor, usually equal to 1, DOAsm ∈ RK×1 is the vector of DOAs
found for the mth array and x,y are the coordinates of the position of the array center.
Differently from the linear OW proposed in Sec. 1.1.3, the circular array corresponds to a
single plane in the projective ray space, since we identify it simply with the coordinates of
its center in the geometric space. Obviously in 3.3 we compute only K points of the mth
plane. The whole acoustic primitive in the projective ray space can be reconstructed with
interpolation techniques.

3.3 Source Localization

In this section we will go through the procedure that we have implemented in order to localize
the acoustic sources in the space. The problem of source localization is a well known signal
processing issue in the literature. Many different solutions have been developed for achieving
the ability of localize acoustic sources in the space. Recently, with the introduction of the
projective ray space [11] new techniques that take advantage of computer vision algorithms
has been introduced [5]. As already stated in Sec. 1.1.2 acoustic sources are mapped into
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planar pattern in the projective ray space. Hence, find the position of a source results in
estimating the parameters of the plane corresponding to it. Let us recall the soundfield image
construction described in Sec. 3.2. After the mentioned procedure we have mapped the arrays
signal in the projective ray space. As we stated in Sec. 3.1.1 the signal is frequency dependent
and so by extension, also the soundfield image. For this reason, in order to deal with the
localization problem, we use a wide band extension of the soundfield image. This is done
adopting a geometric mean over all frequency bins of the pseudospecturm considered as in
Sec. 3.2. The signal in the (l1, l2, l3) domain contains both magnitude and phase information
but only the first is useful for localizing the sources, so we can discard the phase taking the
module of the signal. As described in Sec. 1.1.2, the equivalent of an array in the projective
ray space is a plane, hence, after the wide-band analysis of the acoustic scene in the (l1, l2, l3)
we obtain the planes of the arrays which present peaks in magnitude. Note that for each
plane the number of peaks goes up to K that is the number of sources present in the acoustic
scene in analysis. That is because those points represent the intersection between the sources
planes and the arrays planes. Ideally the identified peak points in the projective space cluster
in linear patterns that can be detected using techniques derived from the computer vision
literature. In fact there exists a wide range of robust and efficient algorithms to detect linear
patterns which are flexible and able to discard outliers. Following the example of [5] we
approach the localization with RANSAC (Random Sample Consensus) [14]. RANSAC is an
iterative subspace clustering algorithm able to identify linear pattern with an high grade of
robustness to noise and outliers. What follows is a detailed description of the application
of RANSAC to the source localization problem. After the outliers have been found and
discarded, we have to identify, through a linear regression the planes which represent the
sources in the projective ray space. Consider a source S with position dS = [xS,yS,1]T

expressed in projective coordinates. From Sec. 1.1.2 we know that equation lT dS = 0 is valid
for all lines passing through dS. The RANSAC algorithm finds the locations of the aligned
features that we denote with l1, l2, · · · , lP. They are the rays reaching the arrays from the
source, so ideally they pass through the point dS verifying the following conditions:

lT1 dS = 0

lT2 dS = 0

· · ·
lTPdS = 0

(3.4)

Rearranging the system in matrix form we obtain:
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LdS = 0, (3.5)

where L = [l1, l2, · · · , lp]
T . Therefore we are able to find the position vector dS simply by

finding the null space of the matrix L. Let us define:

Lw = diag{ 1
e1
,

1
e2
, · · · , 1

eP
}L = WL, (3.6)

where W is a weighting diagonal matrix, and ep, p = 1, · · · ,P is the unavoidable error
introduced by the peak-finding method in 3.4. The error is estimated for each peak as the
width at -3dB of the lobe containing the local maximum lp. In order to find the null space
of the matrix, the next step is to compute the Singular Values Decomposition (SVD) of the
matrix:

LT
wLw = ULDLVT

L , (3.7)

where DL = diag(σ1,L,σ2,L,σ3,L) contains the singular values σ1,L > σ2,L > σ3,L and UL

and VL are the singular vector matrices of the decomposition. The position d̂k is identified
by the singular vector from VL related to the smallest singular value:

d̂k = VL(:,3) (3.8)

3.4 Radiance Pattern Estimation

In this section we present one of the most important block of our Virtual Miking technique.
The introduction of the source radiance pattern represents a step forward in the VM literature
[25]. It allows an advanced analysis of the source, envisioning the development of new
pattern-based VM applications. First we describe the theoretical model assumed in order to
compute the radiance pattern, then we present in details how we exploit this model in our
acoustic scene description and how we are able to retrieve the pattern of a source from the
signals of microphone arrays.

One of the most important property of an acoustic source is the radiation pattern or
directivity, which gives the angular dependency of the sound energy radiated from the source
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in the far field. The knowledge of directivity allows us to infer how the sound will propagate
in the environment and to compute the VM signal as stated in Sec. 3.1.1. Let us recall 3.1
which is the model adopted to describe the acoustic scene. Highlighting the radiance pattern
contribution we obtain:

X(ω,dV M) = F(ω,dV M,dS)P(ω,θ)S(ω)+E(ω), (3.9)

where P(ω,θ) denotes the directivity function of the source. It depends on frequency
(ω) and on the DOA (θ ) of the source to the virtual microphone. Hence, we need to know
the radiation pattern at all frequencies and the DOA of interest in order to reconstruct its
contribution to the VM signal. P(ω,θ) can be thought in terms of weighting factors whose
values goes from 0 (maximum attenuation) to 1 (no attenuation) based on the direction θ .
Once the source has been localized, the computation of the DOA is straightforward, but
the directivity estimation needs more computations. First, we have to define a model for
the radiation pattern. For the sake of simplicity, we describe the directivity function with a
summation of weighted polar equation:

P(ω,θ) =

J
2−1

∑
j=0

c1,j(ω)cos(jθ)+ c2,j(ω)sin(jθ), (3.10)

where J is the number of coefficients and c·,j represent the jth coefficient related to the
sin(·) or to the cos(·). In this model the trigonometric functions are multiplied by coefficients
which defines the shape of the overall pattern which values goes from 0 to 1. An example of
these equations with their relative graph is visible in Fig.3.4. Consequently the directivity is
completely characterized by the number and value of the pattern coefficients. For example,
let us consider the polar equation of a cardiod pattern:

P(ω,θ) =
1

∑
j=0

0.5cos(jθ) = 0.5+0.5cos(θ). (3.11)

In this case J = 2 and c1,j = 0.5 while c2,j = 0 for all js.
Thanks to the adopted model the radiance pattern estimation reduces to the estimation of

the number and value of the pattern coefficients. Note that in the VM procedure we cannot
know in advance the right number of coefficients. So, we have to assume a fixed number of
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coefficients a priori, relying on the specific application and on the number of arrays. In case
of extra coefficients, their contribution is negligible since they would tend to zero.

We can rewrite the 3.10 in matrix form to ease the radiation pattern estimation description:

P(ω) = B(θ)c(ω), (3.12)

where c(ω) = [c0,c1, · · · ,cJ−1]
T is the vector containing the J pattern coefficients and B

is the basis functions vector with the form:

B =


cos(0θ1), . . . , cos((J−1)θ1), sin(0θ1) . . . sin((J−1)θ1)

cos(0θ2), . . . , cos((J−1)θ2), sin(0θ2) . . . sin((J−1)θ2)
...

...
...

...
...

...
cos(0θR), . . . , cos((J−1)θR), sin(0θR) . . . sin((J−1)θR)

 (3.13)

where θr is the rth direction in which compute the pattern. Hence we can build the matrix
B with specific directions, this is useful in the analysis and synthesis phases.

The estimation procedure is directly derived from our model 3.10. Let us consider the
signals captured by a sensor array made of N microphones in a one source scenario. X(ω,dn)

is the signal of the nth sensor placed in dn. In an ideal situation with the absence of errors,
the directivity of the source in the direction θn to the nth microphone can be expressed as:

P(ω,θn) =
X(ω,dn)

F(ω,dn, d̂k)S(ω)
, (3.14)

where d̂k is the position of the point-like source generating the sound pressure S(ω)

and F(ω,dn, d̂k) is the transfer function, in particular we adopt the near field model 1.18.
The key information here, is the source position, since we assume that the microphones
positions are known. Hence the performance of the source localization technique (Sec. 3.3)
is fundamental. In practice, we do not know the source signal S(ω) and a noise component is
present, additionally, in general, more than one source can be emitting at the same time. As a
consequence we cannot estimate the pattern as in 3.14. We can only obtain an estimation
of the radiated signal, i.e. the source signal multiplied by the pattern weight, through the
inversion of the transfer functions between sources and microphones. Here, we have to make
an important assumption about our model. Since the microphones arrays are small compared
to the distance from the source, the DOA is almost the same for each microphone in the array.



3.4 Radiance Pattern Estimation 39

Therefore, also the pattern contribution remains almost unchanged for each microphone
signal. This let us approximate the considered angles θn with the one relative to the center of
the array θm. Doing this, we can estimate the radiated signal of the kth source from the N
signals of an array as the following least square solution:

SP,k(ω,θm) = F(ω)†X(ω), (3.15)

where SP,k(ω,θm) = Sk(ω)Pk(ω,θm) is the the radiated source signal in the direction of
the array, F(ω) = [F(ω,d1, d̂k), · · · ,F(ω,dN , d̂k)]

T is the vector of the transfer functions
between the source and the microphones and † denotes the pseudo inverse operator. In general
we can easily extend 3.15 to take into account more than one source at a time. In this scenario
SP,k(ω,θm) becomes the vector SP ∈ CK×1, and F(ω) becomes the matrix F ∈ CN×K . It is
worth to notice that we have to perform the above estimation method for each microphone
array. The result is the directed signal (source signal emitted by the point source and weighted
according to the pattern) SP(ω,θ) sampled in the directions θ1,θ2 · · ·θM. Recalling the
directivity function model outlined in 3.10, the final goal of the procedure is to estimate the
coefficients that properly describe the pattern. For a single source, the solution of the radiance
pattern estimation can be found by means of an optimization problem. To retrieve the radiance
pattern we need just the magnitude of the signals SP(ω,θ) = [SP(ω,θ1), · · · ,SP(ω,θM)]T ,
therefore from now, we will consider only its module and for the sake of simplicity we will
omit the frequency dependence. The solution can be found from the following constrained
optimization problem:

arg min
x

||Bx−SP||2

subject to

{
Aeqx = beq

Ax ≤ b
,

(3.16)

where the vector x ∈ R1×J contains the unknowns and matrix B ∈ RM×J is the matrix
of the basis functions, as defined in 3.13, computed in the direction between microphone
arrays and source. The procedure aims in finding the unknown x which minimize the squared
norm of the difference between the actual directed signal and the unknowns multiplied by
the basis function matrix B. It is clear that the solution of 3.16 does not directly retrieve
the pattern coefficients. In fact the vector x contains also the amplitude information of the
signal. This comes evidently from the definition of SP 3.15. Therefore, directly applying
the solution to 3.12 we will obtain a scaled version of the radiance pattern. Ideally, if
we compute the pattern for all the directions θ we can easily obtain the actual radiance
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pattern by normalizing the scaled pattern between 0 and 1. We can do this dividing the
module of the scaled pattern by its maximum value. Doing this, the pattern will present
values between 0 an 1 with the boundaries in correspondence of maximum and minimum
attenuation directions. Consequently, just the weighting factor of the directivity remains
and the amplification coming from the solution of 3.16 disappears. Note that from 3.12 we
can compute the directivity only for R directions, so practically, we have to adopt a dense
sampling on the angles θ in 3.13 in order to obtain a good estimation of the radiance pattern
with the estimated coefficients .

The constraints are important in defining the properties of the unknown x. The solution
of problems like 3.16 with linear cost functions and linear constraints can be found with
different iterative algorithms [16] [9].

The first constraint Aeqx = beq, set the condition that the coefficients sum up to beq: the
vector Aeq[1, · · · ,1] has dimensions 1× J and beq = 1. The second constraint Ax ≤ b is used
to obtain positive pattern values. The matrix A and vector b are specially made for this
purpose. A is built from the basis functions matrix and extended as follows:

A =−D (3.17)

where D is the matrix of 3.13 computed for all the R angles uniformly sampled between
0◦ and 360◦. The vector b ∈ RR×1 gives the limits of the range:

b = [0(1), · · · ,0(R)]T , (3.18)

where the notation ·(r) indicates the rth position in the array.

3.5 Source Signal Retrieval

Once the source has been localized and its pattern has been reconstruct, the last parameter
we need for complete our model 3.9 is the source signal S(ω). This the signal emitted by the
ideal point-like source without the weight of directivity. Again in an ideal situation, given the
radiation pattern and proper transfer function, the procedure for retrieving the source signal
form the nth microphone signal is trivial:
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S(ω) =
X(ω,dn)

P(ω,θn)F(ω,dn,dIPLS)
(3.19)

Let us consider a multi-source scenario with K sources sensed by the M microphone
arrays each one made of N microphones. If we know the source positions (Sec. 3.3) we can
easily compute with the proper model (Sec. 1.2.1) the transfer function from each source to
each microphones F(ω,dn,dk) where dn and dk denote respectively the nth sensor position
and the kth source location. Hence, if we add the knowledge of the directivity of each source
Pk(ω,θ), we can compute the weights vector of 3.1. In practice we use those informations
to retrieve the source signal by means of a spatial filtering method. In particular, we take
advantage of the LCMV beamformer described in details in Sec. 1.2.2. We can imagine to
apply a linear filter (FIR) to the microphones signals in order to extract the source signal:

Ŝ(ω) = hH(ω)X(ω) (3.20)

where we have omitted the dependency on position and hH(ω)= [h1(ω), · · · ,h(N×M)(ω)]H

is the vector of the filter coefficients and X(ω) ∈ C(N×M)×1. From Sec. 1.2.2 we know that
we can derive a solution for the filter coefficients h as an optimization problem 1.20 that we
report for the reader’s convenience:

h0(ω) =arg min
h(ω)

hH(ω)A(ω)h(ω)

subject to hH(ω)B(ω) = c(ω),

(3.21)

We can set the constraint in order to force the filter in returning only one source signal at
a time. The knowledge of the radiance pattern (Sec. 3.4) and the source position (Sec. 3.3),
let us write the proper conditions to achieve the goal. From 1.2.2 we know that matrix
A ∈ C(N×M)×(N×M) is the covariance matrix of the signals, matrix B ∈ C(N×M)×K contains
the problem constraints and the vector c ∈ Rk×1 is the desired response. According to
our model 3.1, to obtain the kth source signal we can simply define the matrix B with the
information we already know, i.e. the weighting vector w as follows:

B(ω) =


w1,1, · · · , w1,K

w2,1, · · · , w2,K
...,

...,
...

w(N×M),1, · · · , w(N×M),K,

 (3.22)
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where wn,k(ω) = Pk(ω)Fn,k(ω) is the weighting factor given by the directivity of the kth
source and the transfer function between the kth source and the nth microphone. As regards
the desired response vector c we apply the same assumptions of the Null steering beamformer
(Sec. 1.2.4). The vector c = [1,0, · · · ,0]T is used to let the desired signal pass undisturbed
and attenuate the interferers. The number 1 is placed in the kth location of c, specifying that
the desired signal is the one of the kth source. Therefore to compute the source signal of the
different sources we have to properly modify vector c and to repeat the procedure at each
step.

3.6 Summary

In this section we have introduced the core of our Virtual Miking technique. We have
described how the theoretical concepts presented in the previous sections have been imple-
mented to build a robust analysis framework.

The set-up (Sec. 3.1) as been presented with its characteristics and assumptions. In this
context we have introduced the problem formulation and our parametric description of the
acoustic scene. This description let us to compute the VM signal X(ω,dV M) which is the
ultimate goal of our work. For that reason we have derived the procedure (Sec. 3.2) to
compute the projective ray space image of the acoustic scene. The projective ray space image
is the fundamental description that we adopt in order to retrieve the parameters needed by
our model.

The analysis of the acoustic scene is fundamental for the final result. In fact, the quality
of the synthesized VM signal, presented in the next section, is strongly dependent on the
estimated parameters. Its quality can decrease quickly if the parameters are unreliable. Hence
we have developed the robust and efficient techniques of this section. As regards the source
localization, we have played on a wide-band soundfield image of the acoustic scene to get
a complete description of the soundfield. The localization has been implemented in the
projective ray space by means of the efficient and robust RANSAC algorithm borrowed from
the computer vision literature. Thanks to the procedure of Sec. 3.3, we have been able to
implement a reliable method for retrieving the source position. With this information we
can compute the transfer function present in the model 3.9. As regards the radiation pattern
of the source (Sec. 3.4), first we have proposed a model 3.10 for describe the directivity in
terms of weighted basis functions. Then, we have described in depth the designed method
for extracting the radiation pattern. The shape of a pattern is given by the so-called pattern
coefficients, so we need them to characterize the directivity of the source. In the directivity
retrieval we have abandoned the soundfield image in favor of a parametric approach. In
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this context we have presented the Linear Optimization Problem 3.16 thanks to which we
are able to estimate the directivity from the sensors signals. Finally we have exploit one of
the spatial filtering techniques described in (Sec. 1.2) to extract the source signal from the
measurements. We have adapt the LCMV beamformer (Sec. 1.2.2) with the proper contraints,
in order to obtain the source signal of one source at a time.

In this chapter we have seen how the acoustic scene is analyzed exploiting the theoretical
concept introduced in the previous chapters. Moreover we have highlighted the analogies
and the differences between our VM technique and state of art in the literature. The methods
developed in are the core of our work because their performance is crucial in the synthesis of
the VM signal that we will present in the next section.





CHAPTER 4

VIRTUAL MIKING

In this section we will introduce the final steps of our Virtual Miking technique. After the
analysis of the soundfield proposed in the previous chapter we have all the informations
needed by our model (Sec. 3.1.1) in order to compute the signal of a virtual microphone. In
this section we will look at our soundfield parametric description and we will use the results
of the acoustic scene analysis to derive the signal of the virtual microphone. We will also
present the main characteristics of our method, discussing its aspects in terms of flexibility.
Finally we will recap the whole Virtual Miking procedure to give a synthetic and methodical
view of the entire process.

4.1 Synthesis of the Virtual Microphone signal

In this chapter we deal with the last issue of the VM procedure: the synthesis of the Virtual
microphone signal. We will describe how to use the information derived from the analysis of
the acoustic scene (Sec. 3) and the parametric soundfield representation in order to compute
the signal of the desired VM. Once the parameters of the acoustic scene are estimated as
described in the previous Sec. 3, a VM signal can be synthesized based on our parametric
description of the soundfield (Sec.3.1.1). The knowledge of:

1. Sources position,

2. Sources directivity,

3. Sources signal,

can be used to generate the VM signal for any position dV M approximating a physical
microphone placed at that position.

The output signal X(ω,dV M) of the VM in 3.1 can be computed using:
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w(ω,dV M, d̂k) = F(ω,dV M, d̂k)P̂k(ω,θV M) (4.1)

where d̂k is the estimated position of the kth source. w(ω,dV M, d̂k) is the weighting
factor determined by the assumed transfer function and the estimated source radiation pattern
of source k. The estimated parameters, d̂k and P̂k(ω,θV M) are computed with the methods
described in details in Sec. 3.3 and Sec. 3.4 respectively.

The overall signal is obviously determined by the superposition of the contributions given
by all the K sources. Hence, we can write the output signal of the VM X(ω,dV M) as:

X(ω,dV M) =
K

∑
k=1

w(ω,dV M, d̂k)Ŝk(ω) =
K

∑
k=1

F(ω,dV M, d̂k)P̂k(ω,θV M)Ŝk(ω) (4.2)

where Ŝk(ω) denotes the source signal of the kth source estimated through the LCMV
beamformer based technique that we have introduced in Sec. 3.5.

Similarly to the VM technique in [25], an high grade of flexibility is achieved by the
possibility of choosing any arbitrary transfer function. Indeed the function F(ω,dV M,dk)

in 4.2 let us define the transfer function between the source k and the VM. This function
determines the propagation of the source signal from its origin to the dV M. It modifies the
magnitude and the phase of the source signal Ŝk(ω) according to a specific propagating
model. In Sec. 1.2.1 we have describe the two main propagating model based on the physical
behavior of sound. It is important to note that while we have to strictly follow the appropriate
physical law during the analysis phase (Sec. 3), in the synthesis step, one can design any
arbitrary transfer functions. Indeed, in order to correctly estimate the directivity and the
source signal we have to reconstruct the true physical propagation of the sound from the
source to the microphone arrays. On contrary, in the synthesis phase, we can generate a
virtual microphone with any behavior either physical or non-physical.

The VM synthesis phase follows the opposite order of steps that we have in the analysis
of the soundfield. First we compute the directivity of the source in the direction of the VM.
In order to evaluate the pattern we have to compute the angle θV M between the source and
the virtual sensor. Since we know the estimate position of the source d̂k and the position of
the VM dV M is give a priori, we can easily compute θV M as follows:

θV M = arctan
(

yV M − ŷk

xV M − x̂k

)
. (4.3)
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With the direction θV M and the estimated pattern coefficients (Sec. 3.4) we can compute
the directivity according to 3.12:

P̂k(ω,θV M) = c(ω)B(θV M), (4.4)

where B(θV M) contains only the basis functions relative to the direction θV M.
Then we compute the weighted signal according to the directivity simply by multiplying

the pattern P̂k(ω,θV M) with the estimated source signal Ŝk(ω) (Sec.3.5).

SP,k(ω) = P̂k(ω,θV M)Ŝk(ω). (4.5)

Finally, the last step is represented by the propagation of the signal from the source to the
VM with the function F(ω,dV M,dk) of choice. We remark that the propagating function can
simulate any physical or non-physical behavior. In general the transfer function depends on
the position of the source and on the listener position. The model is used to describe how the
information is carried from the source to an arbitrary destination, which in our case, is the
position of the VM.

Since we suppose to work in the frequency domain, the propagation of the signal can be
achieved by multiplying the directed signal by the transfer function:

X(ω,dV M) = F(ω,dV Md̂k)SP,k(ω). (4.6)

From the definitions previously given, we observe that the final synthesized VM signal
4.6 is in compliance with the parametric description of the soundfield:

X(ω,dV M) = F(ω,dV Md̂k)SP,k(ω) = F(ω,dV Md̂k)P̂k(ω,θV M)Ŝk(ω) = w(ω,dV M, d̂k)Ŝk(ω).

(4.7)

Clearly, the accuracy of the estimated parameters deeply influence the final VM synthe-
sized signal. In particular, we remark the dependency on frequency and time of the soundfield
description. Hence, a proper frequency and time sampling has to be considered in order to
correctly retrieve the soundfield parameters. In addition, the choice of the transfer function
represents a crucial point in the overall procedure: in the analysis phase, in order to obtain
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good estimations of the parameters, it has to be as close as possible to the real one, while in
the synthesis phase, its definition is arbitrary and strongly influences the result.

4.2 Summary of the Virtual Miking technique

In this section we give a compact recap of the Virtual Miking technique described in this
thesis. We briefly express all the main steps of the procedure with their relative contribution
to the final result. After the systematic description we discuss the characteristics of our VM
process, its novelty compared to the literature and the differences with already existing VM
methods.

Algorithm 1: VM computation

Analysis

1. Compute the Short Time Fourier Transform of the array signals

2. Source localization in the projective ray space

(a) Construct the soundfield image in the projective ray space

• Estimate DOAs through a beamforming operation

• Compute the (l1, l2, l3) features

(b) Determine the source description in (l1, l2, l3) with RANSAC

3. Radiance pattern coefficients estimation

(a) Estimation of the directed signal (source signal weighted by the directivity)

• Estimate the transfer function between source and microphones with a phys-
ical model

• Retrieve the directed signal inverting the propagating functions

(b) Estimate the pattern coefficients solving an optimization problem

4. Source signal retrieval

(a) Compute the pattern and propagation weights

(b) Retrieve the source signal by means of the LCMV beamformer

Synthesis
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1. Synthesis of the VM signal based on the estimated parameters

(a) Estimate angle between source and VM

(b) Compute the directivity according to the estimated coefficients and direction

(c) Compute the propagation contribution

(d) Synthesize the signal according to the model and the estimataed parameters

The proposed VM technique derives from a geometry-based spatial sound acquisition
integrated by a parametric model of the acoustic scene. The soundfield image is based
on the geometric representation of the soundfield (Sec. 2.1.1). It is acquired by means of
microphones arrays that can be placed almost arbitrary in the space. Differently from [25],
we adopt the projective ray space image of the soundfield [11], which has proved its benefits
in the field of acoustic analysis [5]. In this context, we have implemented a robust source
localization procedure adapting the RANSAC [14] algorithm, a well known computer vision
method for the identification of linear patterns. The main difference of our VM procedure
lies in the parametric model of the sound scene (Sec. 3.1.1). We describe the soundfield
by means of a simple model which includes also the radiation pattern, or directivity, of the
sources like in [7]. Therefore, we need to estimate this key information and in order to do
that we propose a model of the source directivity and a procedure to estimate it through an
optimization problem. Our model represents better the real sound source with respect to what
is available in literature. Moreover, it let us describe the acoustic scene with only three main
parameters: the source signal, the radiation pattern and the transfer function. The knowledge
of the directivity is particularly interesting because we can imagine different applications of
the VM technique driven by this information. As regards the source signal, it is estimated
through a beamformer as described in details in Sec. 3.5. Finally, the synthesis phase is
straightforward, since it is very simple to compute the signal of the virtual microphone with
the given model and the parameters as described in Sec. 4.1.

In conclusion, we sum up the whole Virtual Miking procedure with the following block
diagram.
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Fig. 4.1 The VM procedure block diagram. The signals coming from the microphones arrays
are analyzed by the three main modules in order to retrieve the parameters: the sources
positions d‵, the pattern coefficients c and the source signals S. Then the estimated parameters
and the position of the VM are used to compute the signal of the virtual microphone.



CHAPTER 5

RESULTS

In this chapter we will analyze the features of the Virtual Miking technique proposed in
this thesis and we will compare its performances in different situations. We will test our
procedure in two main context. The first one we will be a software simulation, through which
we will analyze the performance in presence of different kind of source signals such as the
white noise and speech. This analysis is important because it is close to a real application
scenario and flexible in order to evaluate the behavior in different configurations. The second
test context is in a real applicative scenario. In order to give a complete judgment of our
work, we have set up a real scenario using microphones and loudspeakers placed as described
in the theory. Also in this case, we will use both white noise and speech as source signals
plus a recorded guitar.

In order to evaluate the characteristics of the technique we need appropriate metrics. To
evaluate the synthesized VM signal we will compared it with a reference signal which will
give the ground truth. The evaluation of the entire technique is not a trivial task. Many
different distortions might affect the final result, so we have to measure the performance of
the technique in the different steps which compose the VM procedure. We will test the three
main tasks of the procedure (source localization, pattern estimation, VM signal synthesis)
separately, reporting the values of the different metrics.

In the following sections we will introduce the evaluation metrics and we will report the
results obtained in the tests.

5.1 Measurements Setup

The setup of the tests reflects the problem formulation described in the theory (Sec. 3.1.1).
Different source signals have been used, in particular we have deployed a white gaussian
noise signal and two different speech signals plus a guitar to test the system. We have
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Parameter Value
General setting Software MATLAB R2016b

Fs 44100 Hz
c 340 ms−1

Window type hanning
P(window length) 882

H(hop size) 441
M(number arrays) 6

J(number of pattern coefficients) 4
K(number of sources) 2 or 1

Microphone array configuration Type UCA
N(number of microphone in an array) 4

R(array radius) 0.1 m

Model parameters Transfer function F(ω,dn,dk) =
e−ik||dn−dk ||

4π||dn−dk||
J(radiance pattern coefficients) 4/2

Frequency bands per octave
Table 5.1 General setting of tests

developed a Matlab script which implements the whole VM procedure. It performs the
analysis of the acoustic scene, as presented in Sec. 3 and synthesizes the VM signal according
to Sec. 4.1. Hence our software reflects the steps derived in theory and shown in the block
diagram Fig. 4.1.

In Table 5.1 we report the main parameters that we adopt both in the simulations and in
the experiments with their respective values. Note that the transfer function is an assumed
parameter as stated in theory (Sec. 3) and it conforms to the definition of the near field
propagation given in 1.18.

As regards the position of the different elements composing the acoustic scene, we refer
to the model proposed in Fig. 3.1. The microphone arrays are placed randomly around the
source. They can be thought to be ideally located on a circle around the sources. The virtual
microphones instead can be freely placed in the space and we will specify their positions for
the tests. In general according to the source signals the tests can be divided in two groups:
White noise and Speech. Tests inside the groups differ from each other by the number and
orientation of the sources. We have chosen these source signals for different reasons. The
white noise is useful to examine the behavior of the system in the frequency since it contains
the same energy in the whole spectrum. The speech and the guitar instead, simulate a real
applicative scenario of our VM technique.

As explained in Sec. 3.1.1 and in Sec. 3.4 the radiation pattern is a frequency dependent
function. As regards the directivity estimation, we have to highlight some practices ans
assumptions made during the implementation.
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It is worth to notice that portions of signal can be silent especially in speech. Hence,
the pattern coefficients should be estimated in the time instants when the actual signal
information is present, and then we can average the found values through a geometric mean.
This operation can be implemented by means of a signal detector which detects time instants
in which the source is emitting. As we explain in Sec. 3.1.1 and in Sec. 3.4 the radiation
pattern is frequency dependent function. We have simplified the estimation working under
the assumption that the pattern does not change considerably in the neighborhood of a
frequency bin. Hence, the pattern is analyzed per-band and the signal inside a frequency
band is averaged. The estimator works on a band of frequencies and not on a single specific
frequency. This is especially useful with signals that present a sparse spectrum, such as speech
[17]. Indeed, in these signals the energy is concentrated in the frequencies which characterize
them, while almost no energy is present in the remaining spectrum. Hence, averaging on
bands of frequencies helps in avoiding the error given by estimating the coefficients from
a frequency with little energy contribution. We have implemented an octave frequency
band estimator which gives us eleven estimation of the coefficients for the bands with the
corresponding central frequencies: 15.625Hz, 31.25Hz, 62.5Hz, 125Hz, 250Hz, 500Hz,
1000Hz, 2000Hz, 4000Hz, 8000Hz, 16000Hz.

5.1.1 Source Localization Metrics

In Sec. 3.3 we have described in details the source localization technique exploited in this
thesis. We take advantage of the soundfield image in the projective ray space to obtain a
robust and flexible method for localizing the sources in the acoustic scene. We have to adopt a
proper measure to evaluate the performance of our method. This is not a trivial task since we
rely on the soundfield image and several sources of noise can affect the final result. Indeed, as
stated in Sec. 3.2, a key step of the source localization is the identification of the peaks in the
pseudospectrum. This can be achieved taking the peaks greater than a predefined threshold,
but clearly the results strongly depend on the choice of the threshold and it can be distorted
by the presence of undesired peaks. In order to attenuate the contribution of those peaks in
the localization, we have implemented a windowed version of the pseudospectrum. Since we
know that the sources are surrounded by the arrays, we can simply apply a sort of window
to the pseudospectrum. Practically, we attenuate the directions external to the analysis
scene by putting their contribution to zero. Moreover, we have to consider that during the
identification of the sources planes (Sec. 3.3), the performance of the localization is affected
by the nondeterministic behavior of RANSAC. Therefore, to evaluate the performance of the
localization step, we use the Mean Squared Error(MSE) of the found locations with respect
to the actual positions of the sources.
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Mean Squared Error MSE The mean squared error is a well known measure that assesses
the quality of an estimator. It measures the average of the errors which is the difference
between the estimated values and what has to be estimated. In our case the error is the
difference between the estimated source position and the actual location. The MSE of an
estimator Ŷ with the respect to an unknown parameter Y is defined as:

MSE(Y ) = EY [(Ŷ −Y )2]. (5.1)

The MSE is always non-negative and the closer it is to zero the better is the estimator
performance. In practice, we cannot compute the expectation value of 5.1, so we approximate
the MSE with N data as follows:

MSE(Y ) =
1
N

N

∑
n=1

(Ŷn −Yn)
2. (5.2)

As regards the problem of evaluating the source localization method, we can apply 5.2 to
the estimated positions d̂s obtaining:

MSE(ds) =
1
K

K

∑
k=0

(d̂k −dk)
2. (5.3)

The MSE of the estimated position gives us a compact and intuitive metric to under-
stand the performance of the estimator and it is useful both in the simulations and in the
experiments.

5.1.2 Directivity Metrics

Similarly to the evaluation of the localization, derive a metric to properly evaluate the
directivity estimator is not an easy task. Indeed, the estimator aims in deriving the pattern
coefficients for our model, but the right number of coefficients is not known in advance.
Moreover, the estimator depends on the source localization step and on the transfer function
assumed. Additionally, it is worth to notice that aside simulation tests we cannot know in
advance the directivity of the source. A real evaluation is not possible in these cases since we
are not able to compare the estimated patterns with the real ones. Therefore, we will provide
an analysis of the radiance pattern only for simulation tests, while in the experiments we will
just make some observations based on the overall performance.
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To measure the directivity estimation performance we have adopted a solution similar to
the localization error metric inspired by the MSE. In this case, the error computed between
the estimated directivity and the actual pattern is averaged not only on the different directions
θ as MSE does, but also on the frequency, in order to obtain a single compact metric for the
evaluation. Therefore the metrics that we called Directivity Error (DE) is defined as follows:

DEk =
1
F

F

∑
f=1

MSEk( f ) =
1
F

F

∑
f=1

1
R

R

∑
r=1

(P̂k(r)−Pk(r))2, (5.4)

where k is the source subscript, f stands for the frequency and r is the direction for which
the directivity is computed. The direction R are the sampling directions of the basis functions
in 3.13.

5.1.3 VM Signal Metrics

Define a proper evaluation metrics for the synthesized signal is a tricky task. The idea behind
the proposed evaluation metrics is the comparison of the VM signal with the real signal. For
this reason, in the simulations we compute the reference signal in the position of the VM
and in the experiments we place four reference microphone in order to have a signal which
represent the target. Once the VM signal has been synthesized, we can compare it to the
target signal called reference signal. This signal gives indeed a reference for our results. It
is the ground truth to which we compare the VM. Hence, the aim of the VM procedure is
to obtain a synthesized signal as close as possible to that target signal. Define a metrics to
evaluate the similarity of two signal is a complex task because perception plays an important
role in the evaluation. Hence it is hard to derive a complete metrics which is also compact at
the same time.

As done for the other metrics we follow an approach based on the MSE to derive an
objective metric called Root Mean Squared Error RMSE. The RMSE is a frequently used
metrics for evaluating the difference between values. In RMSE we compute the standard
deviation of the prediction error for each sample in the signal. Hence, with a single value we
measures the accuracy of the estimation. The RMSE is defined as follows:

RMSEV M =
√

MSEV M =

√
1
T

T

∑
t=1

|xvm(t)− xre f (t)|2, (5.5)
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Parameter Value
Sources ds1 [3,3]T

ds2 [2,1.5]T

Sourcesignal1 WN, Female
Sourcesignal2 WN, Male

Microphones arrays dOW1 [4.620,2.208]T

dOW2 [4.3123.661]T

dOW3 [0.7783.981]T

dOW4 [0.1062.827]T

dOW5 [1.1900.204]T

dOW6 [3.8251.097]T

Virtual Microphone dV M [2.5,2]T

Table 5.2 Parameters shared by all the simulation tests. Positions are expressed in [m].

where t is the time index, xvm(t) is the synthesized signal and xre f (t) is the reference
signal. For the definition 5.5 is clear that the closer the RMSE is to zero the better is the
estimator. Therefore, we can have at a first glance an evaluation of the synthesized signal.

5.2 Simulations

In this section, we analyze the performance of the VM procedure in software simulations.
First we introduce the simulated measurements setup giving the list of the parameters used in
the script. Then we evaluate the performance with the ad hoc metric (Sec. 5.1.1) and discuss
the results.

The setup is shown in Fig. 5.1. It conforms to the context described in the theory where
the sources are surrounded by arbitrary placed microphones arrays. We performed a total of
twelve tests which we can divide based on the source signals. In the Table 5.3, Table 5.4,
Table 5.5, we divide the tests based on their source signals and we specify the characteristics
of each test. For each type source signal we perform six different tests. In the first and in
the second tests the first and second sources are activated respectively, while in the third one
the two sources emit simultaneously. Then we repeat the three simulations with a different
source directivity. Some parameters do not change among all the tests, these parameters are
the source and microphone positions and the VM position. Moreover, in the speech group
we always assign a female voice to the first source and a male voice to the second one. In
Table 5.2 we report the parameters of the setting as shown in Fig. 5.1.

In order to mimic the consumer devices available in the market, we have modified the
sensor arrays adding an extra microphone in the center of the structure. In the developed
software the signals are wighted by a specific directivity and propagated to the sensors in the
simulated space. We adopt the well known cardiod pattern as radiance pattern introduced in
Sec. 3.4 and visible in Fig. 5.1. We propagate the signals according to the near field transfer
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Fig. 5.1 The setup used in the simulations. The arrays are arbitrary located all around the
sources (red). The virtual microphone (green) lies almost in the center of the scene. The
directivity is shown in the case of 0◦ orientation for both the sources.

function 1.18. Then, the analysis of the soundfield begins with the source localization
followed by the directivity estimation, the source signal retrieval and it is closed by the VM
signal synthesis. The reader will notice that this structure reflects the steps introduced in
theory except from the fact the we have first to simulate the signals at the microphones.

5.2.1 Source Localization

In the Table 5.3 we report the localization performance in the different simulations with the
estimated and correct values. For each one of the twelve experiments we indicate the number
of sources, their orientation and the relative MSE obtained.

The low MSE values obtained for all the tests prove the reliability of the implemented
source localization. Obviously, the performance can be affected by several factors. It is
mainly influenced by the setup arrangement and by the presence of multiple sources which
emit simultaneously. But even with more than one source emitting at the same time we obtain
a good estimation of the sources locations as we can observe from the Table 5.3.

5.2.2 Pattern Estimation

In a simulated scenario, we have the control over the source pattern, so it is possible to exactly
evaluate the performance of our estimator since we know the directivity of the sources. In
our tests, we have decided to apply the well known cardioid pattern to the sources. For
each source signal category, the first three simulations present a pattern oriented towards 0◦,
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White noise
Simulation 1 Source number 1

Orientation 0◦

MSE 0.000083
Simulation 2 Source number 2

Orientation 0◦

MSE 0.000013
Simulation 3 Source number 1-2

Orientation 0◦, 0◦

MSE 0.000046
Simulation 4 Source number 1

Orientation −90◦

MSE 0.000017
Simulation 5 Source number 2

Orientation 90◦

MSE 0.000008
Simulation 6 Source number 1-2

Orientation 90◦, 0◦

MSE 0.000018
(a)

Speech (Female-Male)
Simulation 7 Source number 1

Orientation 0◦

MSE 0.000106
Simulation 8 Source number 2

Orientation 0◦

MSE 0.000023
Simulation 9 Source number 1-2

Orientation 0◦, 0◦

MSE 0.000146
Simulation 10 Source number 1

Orientation 0◦

MSE 0.000061
Simulation 11 Source number 2

Orientation 90◦

MSE 0.000014
Simulation 12 Source number 1-2

Orientation 90◦, 0◦

MSE 0.000723
(b)

Table 5.3 Source localization performance in simulated tests. For each test we report which
one of the sources is active and the orientation of the pattern. The value 0◦ corresponds to
an orientation parallel to the x axis in the positive direction while ±90◦ corresponds to an
orientation parallel to the y axis with respect to Fig. 5.1.
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White noise
Simulation 1 Source number 1

Orientation 0◦

DE 0.006612
Simulation 2 Source number 2

Orientation 0◦

DE 0.036062
Simulation 3 Source number 1-2

Orientation 0◦, 0◦

DE1 0.051792
DE2 0.041718

Simulation 4 Source number 1
Orientation −90◦

DE 0.011016
Simulation 5 Source number 2

Orientation 90◦

DE 0.008666
Simulation 6 Source number 1-2

Orientation 0◦, 90◦

DE1 0.11717
DE2 0.05526

(a)

Speech (Female-Male)
Simulation 7 Source number 1

Orientation 0◦

DE 0.006238
Simulation 8 Source number 2

Orientation 0◦

DE 0.030793
Simulation 9 Source number 1-2

Orientation 0◦, 0◦

DE1 0.072337
DE2 0.040498

Simulation 10 Source number 1
Orientation −90◦

DE 0.090905
Simulation 11 Source number 2

Orientation 90◦

DE 0.008115
Simulation 12 Source number 1-2

Orientation 90◦, 0◦

DE1 0.082255
DE2 0.033562

(b)

Table 5.4 Pattern estimation performance in simulated tests. For each test we report which
one of the sources is active and the orientation of the pattern. The value 0◦ corresponds to
an orientation parallel to the x axis in the positive direction while ±90◦ corresponds to an
orientation parallel to the y axis with respect to Fig. 5.1.

namely this corresponds to an orientation towards the x axis in the positive direction. The
other simulations present a pattern oriented both with the positive and the negative y axis
(i.e. 90◦ and 0◦). For the sake of simplicity we assume in our simulations that the pattern
is not time dependent. Moreover, for the sake of simplicity we have assigned the cardioid
pattern to all frequency. We remark from Sec. 5.1 that the estimation the radiance pattern
coefficients is performed over bands of frequencies.

The obtained results in terms of Directivity Error (DE) 5.4, where we have sampled the
direction over all the 360◦ with a step of 5◦, are visible in Table 5.4. For each test we report
the number, the directivity of the sources and the obtaining DE.

Here the results are mainly influenced by the presence of two sources that propagate
signals simultaneously. Although we obtain a good DE, the performance decreases with
respect to the single source tests. This is shown in Fig. 5.2.
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Fig. 5.2 Estimated directivity in the case of one and two sources from tests 1 and 3. The blue
thick line represents the reference cardioid pattern.

5.2.3 VM Signal Synthesis

The synthesis of the VM signal is the final operation of the Virtual Miking technique.
We strictly follows the steps given in Sec. 4.1. Once the parameters have been retrieved,
we exploit the model of the soundfield to compute the virtual microphone signal. In our
simulations we compute the signal of an omnidirectional VM placed in dV M = [2.5,2.0]T .
Our code also computes the actual signal in the position of the VM, in order to have the
reference needed for evaluating the goodness of the technique. In Table 5.5 the results of the
synthesis phase are shown.

The data confirms the trend observed in the other metrics. The values of RMSE 5.5 are in
the order of (10−2,10−3), which allow us to have a good reconstruction of the VM signals.
From tests number: 3, 9, 12; we can note that the estimator works better when only one
source is present. This conforms to the performance of the other estimators.

(a) (b)

Fig. 5.3 Experiment setup in the semi-anechoic chamber
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White noise
Simulation 1 Source number 1

Orientation 0◦

RMSE 0.008436
Simulation 2 Source number 2

Orientation 0◦

RMSE 0.017533
Simulation 3 Source number 1-2

Orientation 0◦, 0◦

RMSE 0.010484
Simulation 4 Source number 1

Orientation y−

RMSE 0.027043
Simulation 5 Source number 2

Orientation 90◦

RMSE 0.018573
Simulation 6 Source number 1-2

Orientation 0◦, 90◦

RMSE 0.007486
(a)

Speech (Female-Male)
Simulation 7 Source number 1

Orientation 0◦

RMSE 0.001271
Simulation 8 Source number 2

Orientation 0◦

RMSE 0.000884
Simulation 9 Source number 1-2

Orientation 0◦, 0◦

RMSE 0.003584
Simulation 10 Source number 1

Orientation −90◦

RMSE 0.006044
Simulation 11 Source number 2

Orientation 90◦

RMSE 0.000595
Simulation 12 Source number 1-2

Orientation 90◦, 0◦

RMSE 0.001333
(b)

Table 5.5 VM synthesis performance in simulated tests. For each test we report which one
of the sources is active and the orientation of the pattern. The value 0◦ corresponds to an
orientation parallel to the x axis in the positive direction while ±90◦ corresponds to an
orientation parallel to the y axis with respect to Fig. 5.1.
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Microphones Beyerdynamic MM1
Behringer ECM 8000

Audiotechnica AT4022
Preamplifier Focusrite Platinum Le Octopre
Loudspeakers B & C passive speakers

Power amplifier B & C power amplifier
ADC/DAC Lynx Aurora 16

Table 5.6 Hardware equipment

5.3 Experiments

In this section we will discuss the performance of the VM technique in a real applicative
scenario. First we describe the measurement setting used in the experiments and then we will
go through the analysis of the VM procedure in this context. Differently from the simulations
cases discussed in Sec. 5.2, here we have used hardware equipment both for reproducing the
signals emitted by the sources and for acquiring them. The employed hardware is summarized
in Table 5.6.

The deployment of the equipment is shown in Fig. 5.5. Note that it is coherent with
the one proposed in theory. The two sources are placed inside the analysis area with four
extra microphones which give the references for the VM signals. In Fig. 5.3 we report two
pictures of the setup for the sake of clarity. We tested the VM technique in a semi-anechoic
room. Our VM procedure has been developed in a 2D space, therefore we have used a set of
stands adjustable in height, to ensure that the cones of the loudspeakers and the microphones
capsules were lying on the same plane. Microphones are omnidirectional and arranged in the
circular array structure by means of ad hoc build supports as shown in Fig. 5.4. As regards
the software, the steps are exactly the same of the simulations (Sec. 5.2) and conform with
the block diagram of Fig. 4.1.

It is important to note that this kind of tests, hold in real environments with hardware
equipment, are subject to many non idealities. In fact, it is practically impossible to have
loudspeaker and microphones perfectly aligned at the same height or to perfectly measure the
positions of the elements in the space. Moreover, even if we work in a controlled environment,
some sound reflections are present due to the presence of the equipment itself and to the
inability to have a perfect non-reverberant room. Additionally, the hardware equipment such
has microphones, cables, preamplifiers, converters etc. are a inherent and unavoidable noise
sources. Hence, the performance of our VM technique is corrupted by the those inevitable
approximations. The metrics that we use to evaluate the VM procedure in the experiments are
the same of the simulation tests. However, in a real context we cannot control the directivity
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(a) (b)

Fig. 5.4 Uniform Circular Array structure with microphones.

Fig. 5.5 The experiments setting. The six microphones arrays are deployed in the scene
around the two sound sources in red. Four microphones (green) are placed in the scene as
reference for the VMs signals
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Set-up Positions Values
Sources [m]

ds1 [1.2,0.8]T

ds2 [0.4,0.8]T

ds1 (Experiment 19) [0.9,0.8]T

Reference microphones [m]
dre f1 [0.8,1.45]T

dre f2 [0.8,0.0]T

dre f3 [2.1,0.8]T

dre f4 [−0.5,0.8]T

Microphones Arrays [m]
dOW1 [−0.4,1.6]T

dOW2 [0.7,2.2]T

dOW3 [1.7,1.8]T

dOW4 [1.6,−0.4]T

dOW5 [0.9,−0.8]T

dOW6 [−0.5,0.0]T

Table 5.7 Experiment parameters

of the sources, so no real evaluation of the radiation pattern is performed. We simply make
some considerations about the estimated directivity, so for the sake of simplicity and in order
to ease the considerations about the pattern made in Sec. 5.3.2 we adopt 2 coefficients to
compute the directivity. We also report and discuss the performance of the source localization
and VM signal synthesis.

We have performed nineteen tests with different source signals and setup. In particular
we can divide the experiments in three categories based on the different source signals: white
noise, speech, and guitar. Differently from the simulations, we have added a third source
signal in order to have a better knowledge of the behavior of our technique in different
situations. We use four different speech signal first we will assign the female speech to the
first source and the male speech to the second one, then we swap the assigned source and
change the source signals.

In Table 5.7 we report the position of the equipment in the different tests. Indeed, the
setting is almost fixed for all the experiments except for the sources orientations and in the
guitar test, the source position. In all the test the locations of microphone arrays and reference
microphones remains the same.
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5.3.1 Source localization

In this section we report the performance of our source localization step in a real scenario.
We remark that the procedure adopted in the experiments is the same as the one implemented
for simulations. Hence, we adopt also the same metrics to evaluate the results of the source
localization. The MSE is used to measure the error between the estimated positions and the
actual ones.

In Table 5.8 we can note that the tests differ from each others on the source signal type,
the number of sources and their orientation. The measured MSE computed according to 5.3
is reported for each experiment, just after the number of sources and their orientation. We
have grouped the experiment according to their source signal.

It is important to note that for all the experiments the value of the MSE is in the order
of (10−3,10−4) or lower. These values demonstrate the reliability of the source localization
method implemented. Remember that the non-deterministic behavior of the RANSAC
algorithm (Sec. 3.3) affects the performance of the estimator which returns slightly different
values at each execution. Obviously the performance is affected by the presence of more than
one emitting source. However it is always able to find a good approximation of the sources
positions as we can see from Table 5.8.

5.3.2 VM signal synthesis

In this section we report the results obtained by the VM technique during the experiments.
The parameters extracted are used to compute the virtual signal in the desired positions
dV M = [0.8,1.45]T , dV M = [0.8,0]T , dV M = [2.1,0.8]T , dV M = [−0.5,0.8]T . In these points
we have placed the omnidirectional microphones which give us the target signal. We evaluate
the synthesized signal with respect to the reference signals. The reference positions have
been chosen in order to have the most complete view of the soundfield. Indeed, we compute
the VM signal in four positions all around the sources. This let us to give a rough evaluation
of the directivity estimation, even if we cannot know the real radiance pattern of the source.
In fact we expect that the amplitude of the VM signals vary accordingly to the orientations of
the sources. This assumption seems confirmed, for example, by Fig. 5.6. We can notice from
the spectrograms in Fig. 5.6 that the estimated signals and the reference ones are very similar.
In particular, the amplitude of microphones in the direction of the propagation is higher with
the respect to the microphones behind the source.

Fig. 5.6 refers to test number 7. In this case we have the first source emitting a female
speech. The directivity is at 90◦ (i.e. aligned with the y axis in the positive direction
(Fig. 5.5)). Hence, we expect to observe the highest amplitude in the V M1 signal since it is
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White noise
Experiment 1 Source number 1

Orientation 90◦

MSE 0.000311
Experiment 2 Source number 2

Orientation 90◦

MSE 0.001208
Experiment 3 Source number 1-2

Orientation 90◦, 90◦

MSE 0.000961
Experiment 4 Source number 1

Orientation 90◦

MSE 0.000310
Experiment 5 Source number 2

Orientation −90◦

MSE 0.000966
Experiment 6 Source number 1-2

Orientation 90◦, −90◦

MSE 0.002008
(a)

Speech (Female-Male)
Experiment 7 Source number 1

Orientation 90◦

MSE 0.005812
Experiment 8 Source number 2

Orientation 90◦

MSE 0.000361
Experiment 9 Source number 1-2

Orientation 90◦, 90◦

MSE 0.002375
Experiment 10 Source number 1

Orientation 90◦

MSE 0.002007
Experiment 11 Source number 2

Orientation −90◦

MSE 0.001449
Experiment 12 Source number 1-2

Orientation 90◦, −90◦

MSE 0.000723
(b)

Speech (Male-Female)
Experiment 13 Source number 1

Orientation 90◦

MSE 0.001818
Experiment 14 Source number 2

Orientation 90◦

MSE 0.0000875
Experiment 15 Source number 1-2

Orientation 90◦, 90◦

MSE 0.0009322
Experiment 16 Source number 1

Orientation 90◦

MSE 0.002534
Experiment 17 Source number 2

Orientation −90◦

MSE 0.000087
Experiment 18 Source number 1-2

Orientation 90◦, −90◦

MSE 0.0018522
Guitar

Experiment 19 Source number 1
Orientation 90◦

MSE 0.0004334
(c)

Table 5.8 Source localization performance in experimental tests. For each test we report
which one of the sources is active and the orientation of the pattern. The value 0◦ corresponds
to an orientation parallel to the x axis in the positive direction while ±90◦ corresponds to an
orientation parallel to the y axis with respect to Fig. 5.5.
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(a) The spectrogram of the synthesized VM with their respective reference signal from experiment 7.

(b) The spectrogram of the synthesized VM with their respective reference signal from experiment 12.

Fig. 5.6
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Fig. 5.7 The estimated radiance pattern of source 1 in experiment 1. Frequencies up to
1000Hz show an omnidirectional-like pattern while the highest frequencies point to 90◦ .

almost in front of the source. The lowest signal is in correspondence of V M2 which is placed
behind the source. Clearly from the spectrograms this conditions are verified. Moreover it is
important to note that the third signal is stronger then the fourth, this behavior is coherent to
the actual signals since V M3 is located closer to the source than V M4. This trend appears
in all the synthesized spectrograms according to the test setup, in fact in Fig. 5.6a the VM
signals present a similar level, according to the setup of test 12. Hence, we can infer that the
directivity is estimated correctly. Additionally examining the estimated radiation patterns
such as the one reported in Fig. 5.7 we can roughly identify the difference in terms of
directivity between high frequencies and low frequencies. In Table 5.9 we summarize the
results obtained in terms of RMSE 5.5.

Inspecting the table we can note that the values of the RMSE are low are coherent with
each other. As already explained in Sec. 5.1.3 the evaluation of the similarity of two acoustic
signals is a tricky task that concerns also perceptual measures. We interpret these results as a
first satisfying evaluation of the VM signal.

5.4 Summary

In this chapter a thorough analysis of the performance of our Virtual Miking technique has
been provided. First we have described the metrics used for evaluating the performance.
Defining metrics for evaluate the entire procedure is not a easy task. We have, so analyzed
the main steps of the VM technique discussing the obtained results. In this section we have
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White noise
Experiment 1 Source number 1 Experiment 4 Source number 1

Orientation 90◦ Orientation 90◦

RMSE1 0.013896 RMSE1 0.013862
RMSE2 0.003263 RMSE2 0.002848
RMSE3 0.007562 RMSE3 0.007613
RMSE4 0.004775 RMSE4 0.003850

Experiment 2 Source number 2 Experiment 5 Source number 2
Orientation 90◦ Orientation −90◦

RMSE1 0.014491 RMSE1 0.003444
RMSE2 0.003371 RMSE2 0.011145
RMSE3 0.004550 RMSE3 0.003046
RMSE4 0.006694 RMSE4 0.005660

Experiment 3 Source number 1-2 Experiment 6 Source number 1-2
Orientation 90◦, 90◦ Orientation 90◦, −90◦

RMSE1 0.017820 RMSE1 0.013286
RMSE2 0.004298 RMSE2 0.012908
RMSE3 0.009453 RMSE3 0.007321
RMSE4 0.008016 RMSE4 0.007449

Speech (Female-Male)
Experiment 7 Source number 1 Experiment 10 Source number 1

Orientation 90◦ Orientation 90◦

RMSE1 0.010801 RMSE1 0.011250
RMSE2 0.006272 RMSE2 0.006453
RMSE3 0.009393 RMSE3 0.011638
RMSE4 0.005299 RMSE4 0.005474

Experiment 8 Source number 2 Experiment 11 Source number 2
Orientation 90◦ Orientation −90◦

RMSE1 0.011542 RMSE1 0.008773
RMSE2 0.008364 RMSE2 0.009636
RMSE3 0.007163 RMSE3 0.006443
RMSE4 0.009886 RMSE4 0.010775

Experiment 9 Source number 1-2 Experiment 12 Source number 1-2
Orientation 90◦, 90◦ Orientation 90◦, −90◦

RMSE1 0.015674 RMSE1 0.014055
RMSE2 0.010860 RMSE2 0.009831
RMSE3 0.012121 RMSE3 0.012508
RMSE4 0.011542 RMSE4 0.008416

Speech (Male-Female)
Experiment 13 Source number 1 Experiment 16 Source number 1

Orientation 90◦ Orientation 90◦

RMSE1 0.011542 RMSE1 0.011289
RMSE2 0.006746 RMSE2 0.007093
RMSE3 0.010380 RMSE3 0.009703
RMSE4 0.006177 RMSE4 0.006603

Experiment 14 Source number 2 Experiment 17 Source number 2
Orientation 90◦ Orientation −90◦

RMSE1 0.011507 RMSE1 0.009388
RMSE2 0.011427 RMSE2 0.011677
RMSE3 0.010374 RMSE3 0.009622
RMSE4 0.012039 RMSE4 0.013324

Experiment 15 Source number 1-2 Experiment 18 Source number 1-2
Orientation 90◦, 90◦ Orientation 90◦, −90◦

RMSE1 0.01838 RMSE1 0.012314
RMSE2 0.01152 RMSE2 0.013726
RMSE3 0.01453 RMSE3 0.011911
RMSE4 0.01347 RMSE4 0.010358

Guitar
Experiment 19 Source number 1

Orientation 90◦

RMSE1 0.003132
RMSE2 0.002536
RMSE3 0.002668
RMSE4 0.002494

Table 5.9 VM signal synthesis performance in experimental tests. For each test we report
which one of the sources is active and the orientation of the pattern. The value 0◦ corresponds
to an orientation parallel to the x axis in the positive direction while ±90◦ corresponds to an
orientation parallel to the y axis with respect to Fig. 5.5.
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proposed three different metrics inspired by the MSE 5.1. As regards the source localization
we have applied the MSE itself while for the radiance pattern we derived the Directivity
Error 5.4 as an average on frequency of the MSE between the estimated pattern and the real
one. Finally the evaluation of the VM signal has been performed through the RMSE 5.5.
We have analyzed the performance of our VM procedure in two different context. The first
one is a simulated scenario (Sec. 5.2) which gives us the advantage of knowing the exacts
values of the signals and parameters. This is fundamental for the computation of the metrics,
in particular for the directivity of the source. In fact, in the second context Sec. 5.3, a real
applicative scenario we have no knowledge about the radiance pattern of the source, although
we were able to make some observation about source position and orientation. In the second
context we have been able to test the VM technique in a semi-anechoic chamber were source
and arrays of microphones have been deployed. To test the VM signals we have used four
reference microphone placed in the space of analysis. In order to evaluate our work in
different conditions, we adopt both in simulations and experiments various source signals. In
particular we have chosen the white gaussian noise due to its frequency content and speeches
and a guitar to simulate real use-cases. The results reported for all the three metrics are
reported in tables to easily examine their values. In two sources scenarios the results are little
lower for every metrics due to the fact that the sources are emitting simultaneously. But if we
consider the context of a common conversation, the speaker barely overlaps themselves, thus
the performance can be considered consistent with the one source tests. Indeed, since we
work in a short-time approach, we can assume that in a conversation, no more than one source
is present in each time frame. It is important to note that the evaluation of the synthesized
signal is not trivial task, since it concerns an important perceptive component. We have
introduced a compact and objective metrics in order to have at a first glance a measure of the
synthesized signal.

Overall, the proposed Virtual Miking show satisfactory and promising results both in
simulation and in the experiments.



CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this thesis the problem of Virtual Miking has been addressed. The Virtual Miking is a
well known application in the literature. It involves the computation of one or more virtual
microphone (VM) signals, which approximate the signals of physical microphones placed
at the VM positions. We have proposed a flexible technique inspired by the state of art
of VM [25] and acoustic field representation. The designed system exploits the powerful
geometrical representation of the soundfield, which gives a complete and sturdy description
of the acoustic field, and a parametric model inspired by [25] and [7] to compute the VM
signals. As we saw, in the recent years the geometric description of the soundfield has
been deeply investigated and very interesting results have come out. Our approach starts
from an efficient soundfield representation called ray space (Sec 1.1). In this domain every
point represents the information of the soundfield "transported" along a ray with a given
orientation. However, this transformation is based on a Euclidean parametrization of the
rays that is not general enough to account for all rays in any given direction and thus is not
suitable for our approach. In order to overcome this limitation, a re-parametrization of the
ray space transform using a projective characterization of the rays has been done in [11]. In
the projective ray space we are able to represent rays in any direction and as a consequence,
to efficiently represent the signals acquired by multiple array arbitrary distributed in space.
Therefore, we can analyze the acoustic scene with an higher grade of flexibility with respect
to techniques where the location of the acquisition devices is strictly defined. Thanks to
the soundfield parametric model introduced in Sec. 3.1.1, we are able to describe the whole
acoustic scene by means of few parameters. This parameters are:

1. Source Signal.

2. Source Directivity.

3. Source Position and propagation function.
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The presence of the source radiation pattern in the model represents an advance with
respect to the existing VM literature. In fact, the knowledge of the source directivity let us
approximate a real sound source better than the usual Isotropic Point Like Source model [25].
Obviously, the accuracy of the VM signal depends on the estimated parameters. We have
designed and developed an analysis procedure able to extract the needed informations from
the microphones signals. In particular, we exploit the characteristics of the soundfield image
in the projective ray space to localize the source in the space by means of the RANSAC
algorithm (Sec. 3.3). This information is necessary for the computation of the transfer
function, which model the propagation of the acoustic rays from the source to the sensors. As
regards the source directivity, in Sec. 3.4 we have derived a linear constrained optimization
problem that allows us to compute the radiance pattern of the source. In Sec. 3.4 we have
leveraged the LCMV beamformer in order to retrieve the source signal.

In order to validate our VM technique, both simulations and experimental sessions have
been designed in which our procedure has been evaluated by means of ad hoc metrics. During
the tests we adopt different source signals. In particular we have used white noise, speech
and a recorded guitar. The first kind of source signal is useful to understand the system
frequency behavior, while the speech and the guitar have been adopted to approximate a real
applicative scenario. The metrics used to evaluate the different steps of the VM technique
are inspired by the Mean Squared Error (MSE) 5.1. In particular, we have examined the
performance of the system in localizing the sources positions, retrieving the source directivity
and computing the VM signal. As regards the source localization, as a metrics of evaluation
we have adopted the MSE of the error between the estimated position and the actual one. An
averaged MSE that we have called Directivity Difference DE 5.4 has been defined in order to
examine the performance of the radiance pattern estimator in the simulations. As far as the
VM signal evaluation is concerned, deriving a complete and at the same time compact metric
is not a trivial task, since the perceptive evaluation plays an important role here. Hence, at
first, an objective metric, the RMSE 5.5, has been adopt to evaluate in a compact fashion the
synthesized VM signal. The RMSE is computed with respect to a reference signal which
is the signal simulated or captured by an actual microphone in the VM position. Further
metrics including perceptive ones can be a matter of future works.

The proposed VM technique has shown promising results both in simulations and in
experiments that let us envision future developments. For example, we can easily extend
our model to take into account for the pick up pattern of the VM. This let us to simulate the
behavior of any arbitrary directional microphone. Moreover we can envision the possibility
of working in a reverberant environment similarly to what is done in [25]. Another possible
improvement is related to the extension of the proposed VM procedure to a three-dimensional
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scenario. This would open the way to a broad range of applications in music-related areas or
forensic analysis. For instance, we could image the VM procedure exploited in recording
studios allowing the design of novel and innovative miking technique at a very low cost.
Additionally we can envision the employment of our VM technique in acoustic environment
monitoring with the possibility of performing an acoustical zooming. Finally, a remarkable
achievement would consist in a real time implementation of the whole Virtual Miking
technique.
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Fig. A.1 Measurement microphone MM1
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Fig. A.2 Measurement microphone MM1
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Fig. A.3 Measurement microphone ECM 800
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Fig. A.4 Measurement microphone AT 4022
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Fig. A.5 Measurement microphone AT 4022
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Fig. A.6 Microphones preamplifier

Fig. A.7 Microphones preamplifier
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Fig. A.8 ADC/DAC converter
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Fig. A.9 Loudspeaker
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