
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Algorithms for limited-buffer shortest

path problems in

communication-restricted environments

Relatore: Prof. Francesco Amigoni

Correlatori: Ing. Alessandro Riva, Ing. Jacopo Banfi

Tesi di Laurea Magistrale di:

Arlind Rufi, matricola 836735

Anno Accademico 2016-2017

Alla mia famiglia.

Sommario

In diverse applicazioni, un robot, muovendosi da un posizione di partenza

ad una finale, deve raccogliere dati durante il suo percorso (per esempio, un

video in un scenario di monitoraggio). Il robot può avere a disposizione solo

una quantità limitata di memoria per salvare i dati raccolti, per tenere i costi

bassi o per motivi di sicurezza (per evitare che dati sensibili cadano nelle

mani di un aggressore). Questo pone la necessità di trasmettere periodica-

mente i dati ad una Base Station (BS) tramite un’infrastruttura di comuni-

cazione, che, in generale, non è disponibile ovunque. In questa tesi, studiamo

questo scenario considerando una variante dello shortest path problem (che

dimostriamo essere NP-hard) dove il robot acquisisce informazioni lungo il

percorso, li salva in una memoria limitata e si assicura che nessuna infor-

mazione venga persa, trasmettendo periodicamente alla BS. Presentiamo e

valutiamo, un algoritmo ottimale, un efficiente test di feasibility e un algo-

ritmo euristico.

I

Abstract

In several applications, a robot moving from a start to a goal location is

required to gather data along its path (e.g., a video feed in a monitoring

scenario). The robot can have at its disposal only a limited amount of

memory to store the collected data, in order to contain costs or to avoid

that sensible data fall into the hands of an attacker. This poses the need of

periodically delivering the data to a Base Station (BS) through a deployed

communication infrastructure that, in general, is not available everywhere.

In this thesis, we study this scenario by considering a variant of the shortest

path problem (which we prove to be NP-hard) where the robot acquires in-

formation along its path, stores it into a limited memory buffer, and ensures

that no information is lost by periodically communicating data to the BS.

We present and evaluate an optimal algorithm, an efficient feasibility test,

and a polynomial time heuristic algorithm.

III

Ringraziamenti

Desidero ringraziare tutti coloro che mi hanno aiutato nella stesura con

suggerimenti, critiche ed osservazioni: a loro va la mia gratitudine, anche se

a me spetta la responsabilità per ogni errore contenuto in questo lavoro.

Ringrazio anzitutto il professor Francesco Amigoni, Relatore, e gli in-

gegneri Alessandro Riva e Jacopo Banfi, Co-relatori: senza il loro supporto

e la loro guida sapiente questa tesi non esisterebbe.

Vorrei infine ringraziare le persone a me più care: i miei amici e la mia

famiglia.

V

Contents

Sommario I

Abstract III

Ringraziamenti V

1 Introduction 1

2 State of Art 5

2.1 Mobile Robot Navigation . 5

2.1.1 Environment Representation 6

2.1.1.1 Occupancy Grid Map 6

2.1.1.2 Visibility Graph 7

2.1.1.3 Potential Fields 7

2.1.1.4 Sample Based 8

2.1.2 Self Localization . 9

2.1.3 Shortest Path Planning 11

2.1.3.1 BFS . 11

2.1.3.2 DFS . 12

2.1.3.3 Dijkstra . 13

2.1.3.4 A* . 13

2.1.3.5 Theta* . 15

2.1.4 Robot Motion Planning 17

2.1.4.1 DWA and Trajectory Planner 19

2.2 Constraint Shortest Path Problem and its Variants 20

2.2.1 Integer Liner Programming 20

2.2.2 Dynamic programming 21

2.2.3 The Pulse Algorithm 22

2.2.4 Acceleration strategies for the weight constrained short-

est path problem with replenishment 24

VII

2.2.5 Shortest Feasible Paths with Charging Stops for Bat-

tery Electric Vehicles 24

3 Problem Setting 27

3.1 NP-hardness . 30

4 Algorithms 33

4.1 Optimal Algorithm . 33

4.2 Feasibility Test . 35

4.3 A Heuristic Algorithm . 36

5 Implementation 39

5.1 Algorithms Implementation 39

5.2 Implementation as a ROS Planner 40

5.2.1 What is ROS? . 41

5.2.1.1 Navigation Stack 41

5.2.2 Algorithms implementation in ROS 45

6 Experiments 47

6.1 Experiments Settings . 47

6.2 Experiment Set 1 . 50

6.3 Experiment Set 2 . 54

6.4 ROS Experiments . 58

6.4.1 ROS used Tools . 58

6.4.2 Experiments . 60

7 Conclusions 63

A Class Diagram 65

B ROS complete list packages and ROS configuration 67

List of Algorithms

2.1 BFS pseudocode . 12

2.2 DFS pseudocode(recursive implementation) 13

2.3 Dijkstra pseudocode . 14

2.4 A* pseudocode(recursive implementation) 16

2.5 Theta* pseudocode (only lines different from A*) 18

2.6 Pulse Algorithm . 23

2.7 Pulse function . 23

4.1 Graph Transformation . 34

4.2 Find Times . 38

IX

List of Figures

2.1 Grid example: Black real obstacles, White free cells, Grey

occupied Cells. 6

2.2 Visibility graph example. 7

2.3 Potential field example: Obst produces a repelling field and

Goal an attracting field. 8

2.4 Sampling algorithm example: RRT. 9

2.5 GPS trilateration. 10

2.6 BFS Example . 11

2.7 DFS example . 12

2.8 Dijkstra example. 14

2.9 Theta* vs A*: On the left, in red, the path produced by A*,

on the right, in blue, the path produced by Theta*. 17

2.10 DWA and trajectory planner example. 19

3.1 Example of an environment. Red vertices represent the trans-

mission vertices, r represents the transmission-rate function

of each node, and r̄ represents the information unstacked from

the buffer if the robots moves on the edge 28

3.2 Example of a feasible solution and infeasible solution. Start-

ing from the green vertex with an empty buffer and going to

g the blue vertex. Buffer size of the robot is B=5. Following

the green edges and stopping for two time steps at node C33

to transmit the robot ends at the blue node with a full buffer.

Following the purple edges we have a total accumulation of

information of 6 which makes the path infeasible. 29

XI

4.1 Example of a Graph transfomation with buffer B=4 consid-

ering the graph presented in Figure 3.1. (To keep the figure

simple only a few nodes are considered and not all the edges

are shown). After building the transformed graph applying

Dijkstra’s algorithm the path in green would be the optimal

solution. 35

4.2 Example G2 based on the graph presented in Figure 3.1 with

a buffer size 4. In this case there exist a solution because

there exists a path connecting start and goal nodes. 36

4.3 Example of feasible but not optimal path, found using the

feasibility approach, shown on G1 (that is build based on the

graph presented in Figure 3.1). The feasible path starts from

the cell in green, ends at the cell in blue and is composed by

the edges in purple and yellow. The optimal path would be

the path composed by edges in purple and in green. 37

5.1 Result of the pre-transformation of the graph in Figure 3.1. 40

5.2 Simple example of a publish-subscribe and service invocation

architecture. 41

5.3 A common navigation stack setup. 42

6.1 Experimental environment (size 400×300 m). Red discs rep-

resent the communication zones (e.g, areas covered by RF

transceivers). 48

6.2 Communication map with buffer discretization 1. 48

6.3 Communication map with buffer discretization 0.25. 49

6.4 Example of path generated by our optimal algorithm using

as local planner Theta* (in blue) and using as a local planner

4-connected grid with Dijkstra’s (in green). 51

6.5 First set of Experiments Start and Goal positions 51

6.6 Results of the experiments with buffer discretization 1. 52

6.7 Results of the experiments with buffer discretization 0.25. . . 53

6.8 Example paths of the first set of experiments. (a) First set

(blue: B = 21, green: B = 29, brown: B = 41); (b) Second

set (blue: B = 17, green: B = 26, brown: B = 40). 55

6.9 Results of the second set of experiments on 100 randomly

selected pairs of start-goal locations. Feasible solutions de-

pending on the buffer size. 56

6.10 Results of the second set of experiments on 100 randomly

selected pairs of start-goal locations. Heuristic solution wors-

ening in comparison with the optimal algorithm. 57

6.11 Stage view of the environment 59

6.12 Rviz view of the environment. 60

6.13 Result of the ROS experiments, optimal algorithm. 61

6.14 Result of the ROS experiments, heuristic algorithm. 62

A.1 ER Diagram of the C++ implementation. (Baseline is imple-

mentation of the heuristic algorithm.) 66

Chapter 1

Introduction

In several applications, a robot moving from a start to a goal location may

be required to gather data along its path. This happens, for instance, in

some monitoring applications, where the robot acquires a video feed to be

later processed at a Base Station (BS) [1] or in those civilian or military

settings where a posteriori processing of log files is required to ensure that

the robot has not been hijacked by a malicious attacker [2].

The robot can have at its disposal only a limited amount of memory to

store the collected information. In civilian settings, this could be motivated

by the need to reduce costs, while, in military settings, this could be enforced

to avoid that a large amount of sensible data fall into the hands of a malicious

attacker. This memory limitation poses the need of periodically transmitting

data to a BS in order to not overfill the available memory buffer.

In most application settings, it is unrealistic to assume the presence of

a robust communication infrastructure able to uniformly cover the environ-

ment with the same (high) transmission rate. Typical settings can instead

rely only on the presence of a limited number of “communication zones”

from where robots can reliably communicate with the BS [1]. Moreover,

such zones could display a significant variability in the data transfer rate,

also according to the distance from the communication device [3]. The com-

munication paradigm we use is introduced in [1] in the context of multirobot

patrolling. It assumes the presence of a number of ‘communication zones’

that robots can exploit to communicate with the BS. We further refine the

model by associating different zones with (possibly) different data trans-

mission rates. The combination of requirements imposed by incremental

data acquisition, limited memory, and restricted communication define a

challenging path planning scenario.

In this thesis, we study a variant of the shortest path planning problem

with the goal of planning high-level paths (defined in terms of waypoints to

traverse) under the constraints imposed by the above scenarios. Specifically,

the problem we consider is to compute the shortest path between given

start and goal locations in a graph representing the environment, while

(a) accounting for the storage of the gathered information into a buffer of

limited size and (b) ensuring that no information is lost through periodic

transmissions of data from communication zones to the BS.

In literature, different works try to incorporate in the path planning

problem some additional (possibly application-dependent) constraints. For

instance, [4] is one of the first works to propose a path planning algorithm

(inspired to A*) able to cope with additional constraints, such as time,

risk, energy, and uncertainty. An example of a more recent work is [5],

which studies path planning for a solar-powered robot subject to time and

energy constraints. However, communication issues in path planning have

been mainly investigated for multirobot systems, especially in the context

of maintaining (more or less periodically) the team of robots globally con-

nected through a multi-hop network while pursuing a primary mission ob-

jective (see, for instance, the solution devised in [6] for informative path

planning under periodic connectivity constraints). Our problem shares sim-

ilarities with variants of the Constrained (or restricted) Shortest Path prob-

lem (CSP) [7]. The work in [8] investigates a generalization of the CSP where

edges may be associated to binary indicators able to reset the accumulated

weight when the corresponding edge is traversed. This model is not appli-

cable in our case, since we have to deal with the possibility of transmitting

only a portion of the accumulated data. Authors of [9], instead, propose

a model that partially generalizes ours in the context of planning shortest

paths with charging stops for electric vehicles (the filling of our buffer can

be naively thought as dual to the draining of the battery). However, in our

case we must consider cycles with negative cumulative weight.

After formalizing the problem and proving its NP-hardness, we present

three original contributions:

1. An optimal exponential time solving algorithm.

2. An efficient feasibility test that can be applied to all problem instances

to check if they admit a solution.

3. A polynomial time heuristic algorithm based on the refinement of a

“raw” feasible solution.

To evaluate and validate our algorithms we designed three types of ex-

periments, each with a different purpose. In particular, we consider a fixed

2

environment and repeat the first two sets with different discretization pa-

rameters. The idea behind the first set of experiments is to evaluate how

the path changes in dependence of the memory of the robot, if start and

goal are fixed points. The idea behind the second set, instead, is to evaluate

the computational time, and the solution cost, chosing random start and

goal points. The aim of the third set of experiments is to further validate

our algorithms in more real scenarios implementing them using ROS [10]

(Robot Operating System).

This thesis is structured as follows:

• Chapter 2 (State of Art). In this chapter we give a general descrip-

tion of the mobile robot navigation problem, of the Constraint Shortest

Path problem (CSP) and describe some of the existing algorithms used

to solve problems similar to ours.

• Chapter 3 (Problem Setting). In this chapter we formally define our

environment and problem setting. We also prove that our problem is

NP-hard.

• Chapter 4 (Algorithms). In this chapter we describe the proposed

algorithms, along with their pseudocode and execution example.

• Chapter 5 (Implementation). In this chapter we describe the imple-

mentation of our algorithms in C++ and their adaption to the ROS

architecture.

• Chapter 6 (Experiments). In this chapter we describe our three sets

of experiments and their results.

• Chapter 7 (Conclusion). In this chapter we do a quick recapitulation

of the thesis and describe few ideas about possible future research.

3

4

Chapter 2

State of Art

The problem we address in this thesis shares some similarities with some

optimization problems studied both in robotics and in other research fields.

Planning high-level paths is a fundamental ability that a mobile robot needs

to possess [11]. Without constraints, this problem becomes the classical

path planning problem of finding the shortest path between two points.

So this chapter begins by giving a general description of the mobile robot

navigation. We start by describing some of the main techniques used to

represent a given environmnet and to locate the robot in the environment.

Furthermore, we present some of the main algorithms to find the shortest

path without constraints in the environment.

At an algorithmic level, the problem we investigate can be framed in

the class of the shortest path problems with resource constraints [12]. In

particular it shares similarities with variants of the Constraint Shortest Path

problem (CSP). Therefore, we then present the CSP and some of its variants,

which are closest to our model, studied in the literature.

2.1 Mobile Robot Navigation

In order to be able to plan and follow a path, a robot needs a way to

perceive the environment where it is put into, a way to locate itself in this

environment, a planner to plan the high-level path using different algorithms

depending on the environment representation, and a motion planner to fol-

low the produced path. So, in this section, we describe some of the main

solutions for each of these problems.

2.1.1 Environment Representation

The environment is usually represented as a state space. The state space

for motion planning is a set of possible states that could be reached by the

robot. This will be referred to as the configuration space (Cspace). Cobstacle

is a subset of the configuration space that includes obstacles and unobtain-

able configurations (subset of free states which the robot can not reach for

different reasons e.g., physical limitations). Cfree is the remaining subset of

Cspace. There are four main techniques to build the Cspace [11].

2.1.1.1 Occupancy Grid Map

Occupancy grid map represents the environment as an array of cells. The

grid cells can be occupied, when a part of an obstacle is in the cell, or free.

The Cspace is built using the array of the cells. Cobstacle corresponds to the

occupied cells (usually colored in black/grey) and the Cfree corresponds to

the free cells (usually colored in white). Figure 2.1 shows a possible grid-

based discretization of a simple environment.

Figure 2.1: Grid example: Black real obstacles, White free cells, Grey occupied
Cells.

Occupancy grid maps depend on the resolution chosen. A fine grained

occupancy grid uses large amounts of memory and planning in these grids

is slower. Coarse grained occupancy grid uses less memory and planning

in these grids is faster but some environment features (e.g., narrow paths)

may be lost. So careful consideration must be made when choosing the

resolution.

6

2.1.1.2 Visibility Graph

Visibility graph is a graph of intervisible locations, typically build based on

a set of points and obstacles in the Euclidean plane. Each node in the graph

represents a point location, and each edge represents a visible connection

between them. That is, if the line segment connecting two locations does

not pass through any obstacle, an edge is drawn between them in the graph.

Visibility graphs are used to find the Euclidean shortest path [13]. By the

definition of the visibility graph, in the configuration space we only have

Cfree. Figure 2.2 shows a simple visibility graph.

Figure 2.2: Visibility graph example.

The visibility graph can have a quadratic number of edges. There exist

different algorithms to build the visibility graph which run from O(n3), for

the most naive one that compares every pair of nodes in the set of obstacles

and checks if they intersect with any edges of obstacles, to more faster ones

that can go to O(n2 log n) [13].

2.1.1.3 Potential Fields

The idea behind this method is to build potential fields in the Cspace so

that the point that represents the robot is attracted to the goal and re-

pelled by the Cobstacle zone. Representing the environment this way has

the advantage that producing a trajectory takes little computation. Motion

planning in potential fields is done by computing the artificial force at the

current configuration, moving by a small step at the direction of the force

and repeating the process [14]. Figure 2.3 (taken from [15]) shows a sim-

ple environment, containing just the goal and start nodes, represented by

potential fields method.

7

Figure 2.3: Potential field example: Obst produces a repelling field and Goal an at-
tracting field.

However, potential field method can create local minima of the potential

field where the robot gets traped and fails to find a path. Hence motion

planning based on artificial potential fields is not complete. There are dif-

ferent algorithms in literature, that deal with this problem, like for example

Random Motions [14] where, when blocked at a local minima, we take a

random step towards another configuration.

2.1.1.4 Sample Based

Sampling-based algorithms represent the configuration space with a roadmap

of sampled configurations. A basic algorithm samples N configurations in

the configuration space Cspace, and retains those in the free space Cfree to

use as milestones. A roadmap is then constructed that connects two mile-

stones P and Q, if the line segment PQ is completely in the free space.

Again, collision detection is used to test inclusion in the free space. To find

a path that connects start and goal, they are added to the roadmap. If a

path in the roadmap links start and goal, the planner succeeds, and returns

the path. If a path that connects start and goal is not found, the reason is

not definitive: either there is no path in the free space, or the planner did not

sample enough milestones. One algorithm that uses sampling is RRT [16].

Figure 2.4 (taken from [17]) shows an excecution of RRT.

These algorithms work well with high-dimensional configuration spaces,

because unlike combinatorial algorithms, their running time is not (explic-

itly) exponentially dependent on the dimension of configuration space. They

are also (generally) substantially easier to implement. They are probabilis-

tically complete, meaning the probability that they will produce a solution

8

Figure 2.4: Sampling algorithm example: RRT.

approaches 1 as more time is spent. However, they cannot determine if no

solution exists.

2.1.2 Self Localization

Robot localization denotes the robot’s ability to establish its own position

and orientation within a given frame of reference. Methods in locating the

position of a robot can be divided in two groups: relative methods and

absolute ones.

Relative methods consist in providing a change in position, to a pre-

viously known position. Acquiring relative measurements, dead reckoning,

is the process of estimating the position of a robot based on the speed,

the direction of travel, and the time passed since the last known position.

Since the position estimates are based on earlier positions, the error in the

estimates increases over time. Some relative methods are:

• Odometry [18] - is a navigation technique which uses the rotation of

the wheels to track the position of a robot. Odometry gives good short-

term accuracy, is inexpensive, and allows for very high sampling rates

but, due to slippage of the wheels, terrain sensivity, or differences in

wheel diameter, errors can occur and with time they accumulate and

cause large position errors.

• Inertial navigation [19] - is a self-contained navigation technique in

which measurements provided by accelerometers and gyroscopes are

used to track the position and orientation of an object relative to

a known starting point. Gyroscopes give a measurement of rate of

rotation of the object, and accelerometers measure linear accelerations

along the x or y axis of the object. Like odometry, position estimates

drift over time, and thus the errors increase without bound.

Absolute methods consist in supplying information about the location

of the robot directly from one measurement. Some absolute methods are :

• GPS - The Global Positioning System is a global navigation satel-

lite system that provides geolocation information to a GPS receiver

anywhere on or near Earth where there is an unobstructed line of

sight to three or more GPS satellites [20]. There are few problems

with GPS because of the fact that transmissions are line-of-sight and

signals from satellites can be refracted or other signals can interfere.

Figure 2.5 (taken from [21]) shows how GPS works using trilateration.

Figure 2.5: GPS trilateration.

• Landmarks or Beacons - Active landmarks (beacons) send out the

position information, and the location is obtained with triangulation

or trilateration. Passive landmarks have to be detected, for instance

with vision.

• Map based - Map based positioning uses geometric features (lines that

describe walls, ...) of the environment to compute the location of the

robot. Sensor output is then matched with these features. Model

matching can be used to update a global map. It needs enough sensor

information and it requires large amounts of processing power. An

interesting work about map based localization can be found in [22].

2.1.3 Shortest Path Planning

In graph theory, the shortest path problem is the problem of finding a path

between two vertices (or nodes) in a graph such that the sum of the weights of

its constituent edges is minimized. The problem of finding the shortest path

between two intersections on a road map (the graph’s vertices correspond

to intersections and the edges correspond to road segments, each weighted

by the length of its road segment) may be modeled by a special case of the

shortest path problem in graphs. There exist different planning algorithms

used to find the shortest path between two nodes. We present some of them.

A planning algorithm is complete if it can find a path in finite time, if it

exists. Similarly, a planning algorithm is optimal if it can always find an

optimal path.

2.1.3.1 BFS

Breadth-first search (BFS) is an algorithm for traversing or searching tree

or graph data structures. It starts at some arbitrary node of a graph and

explores the neighbor nodes first, before moving to the next level neigh-

bors [23]. A simple node expansion using breadth-first search strategy is

shown on Figure 2.6 (taken from [24]).

Figure 2.6: BFS Example

The time complexity can be expressed as O(|V |+ |E|). |V | is the number

of vertices and |E| is the number of edges in the graph. Note that O(|E|) may

vary between O(1) and O(|V |2), depending on how sparse the input graph

is [25]. The pseudocode of the BFS algorithm is shown in Algorithm 2.1.

Breadth-first search is complete and optimal.

11

Algorithm 2.1: BFS pseudocode

Input: A graph G and a starting vertex root of G
Output: Goal state. The parent links trace the shortest path back to root

1 function BFS(G, root)

2 Q(queue)← root

3 while Q 6= ∅ do

4 current← Q.dequeue()

5 if current = goal then

6 return current

7 foreach n adjecent to current do

8 if n is not discovered then

9 label n as discovered

10 n.parent← current

11 Q.enqueue(n)

2.1.3.2 DFS

Depth-first search (DFS) is an algorithm for traversing or searching tree or

graph data structures. One starts at the root (selecting some arbitrary node

as the root in the case of a graph) and explores as far as possible along each

branch before backtracking. A simple node expansion using the depth-first

search strategy is shown in Figure 2.7 (taken from [26]).

Figure 2.7: DFS example

DFS may suffer from non-termination meaning that it may go without

finding a solution for an infinite time when there are loops in the graph.

12

Complexity of the DFS depends on the way the graph is implemented. It

will be O(|E|+ |V |) if the graph is given in the form of adjacency list but if

the graph is in the form of adjacency matrix then the complexity is O(E2),

as we have to traverse through the whole row until we find an edge [25]. The

pseudocode of DFS is given in Algorithm 2.2.

Algorithm 2.2: DFS pseudocode(recursive implementation)

Input: A graph G and a starting vertex root of G
Output: All vertices reachable from root labeled as discovered

1 function DFS(G, root)

2 label root as discovered

3 foreach root to w in G.adjacentEdges(w) do

4 if w is not discovered then

5 DFS(G,w)

2.1.3.3 Dijkstra

Dijkstra’s algorithm is an algorithm for finding the shortest paths between

nodes in a graph [27]. For a given source node in the graph, the algorithm

finds the shortest path between that node and every other. It can also be

used for finding the shortest paths from a single node to a single destination

node by stopping the algorithm once the shortest path to the destination

node has been determined. A simple node expansion using Dijkstra’s algo-

rithm is shown in Figure 2.8 (taken from [28]).

Dijkstra’s original algorithm does not use a min-priority queue and runs

in time O(|V |2). The implementation based on a min-priority queue im-

plemented by a Fibonacci heap runs in O(|E|+ |V | log |V |) [29]. Dijkstra’s

algorithm is complete and correct. The pseudocode of Dijkstra’s algorithm

is given in Algorithm 2.3. (If we are only interested in a shortest path be-

tween two nodes source and target, we can terminate the search after line

15, of Algorithm 2.3, if u = target.)

2.1.3.4 A*

A* is an informed search algorithm, or a best-first search, meaning that it

solves problems by searching among all possible paths to the solution (goal)

for the one that incurs the smallest cost (least distance travelled, shortest

time, etc.), and among these paths it first considers the ones that appear

to lead most quickly to the solution. It is formulated in terms of weighted

13

Figure 2.8: Dijkstra example.

Algorithm 2.3: Dijkstra pseudocode

Input: A graph G and a starting vertex source
Output: Shortest path from source to all the other vertex

1 function Dijkstra(G, source)

2 create vertex set Q

3 foreach v in G do

4 dist[v]←∞
5 prev[v]← ∅
6 Q.add(v)

7 dist[s] = 0

8 while Q 6= ∅ do

9 u←vertex in Q with min dist[u]

10 Q.remove(u)

11 foreach neighbor n of u do

12 alt← dist[u] + lenght(u, n)

13 if alt < dist[n] then

14 dist[n]← alt

15 prev[n]← u

16 return dist[], prev[]

14

graphs: starting from a specific node of a graph, it constructs a tree of paths

starting from that node, expanding paths one step at a time, until one of

its paths ends at the predetermined goal node. At each iteration of its main

loop, A* needs to determine which of its partial paths to expand into one or

more longer paths. It does so based on an estimate of the cost (total weight)

still to go to the goal node. Specifically, A* selects the path that minimizes

f(n) = g(n) + h(n)

where n is the last node on the path, g(n) is the cost of the path from

the start node to n, and h(n) is a heuristic that estimates the cost of the

cheapest path from n to the goal. The heuristic is problem-specific. For the

algorithm to find the actual shortest path, the heuristic function must be

admissible, meaning that it never overestimates the actual cost to get to the

nearest goal node. A*, with an admissible heuristic, considers fewer nodes

than any other search algorithm with the same heuristic.

A* is commonly used for the common pathfinding problem in applica-

tions such as games, but was originally designed as a general graph traversal

algorithm. What sets A* apart from a greedy best-first search algorithm is

that it takes the cost/distance already traveled, g(n), into account. There

exist many different variations of A* which try to speed up the search like

weighted A* which expands states in the order of f = g+ εh values, (where

ε > 1 and is bias towards states that are closer to goal). Weighted A*

trades off optimality for speed. There exist other algorithms that produce

more realistic looking paths on a grid environment. One of them, Theta*,

is introduced in the next section.

The time complexity of A* depends on the heuristic. In the worst case

of an unbounded search space, the number of nodes expanded is exponen-

tial in the depth of the solution (the shortest path) d: O(bd), where b is

the branching factor (the average number of successors per state) [30]. A*

pseudocode is shown in Algorithm 2.4.

2.1.3.5 Theta*

Theta* [31] is a variation of A*, it propagates information along grid edges

(to achieve a short runtime) without constraining the paths to grid edges

(to find “any-angle” paths). The key difference between Theta* and A*

is that Theta* allows the parent of a vertex to be any vertex, unlike A*

where the parent must be a successor. Theta* is simple, fast and finds short

and realistic looking paths but it can not be applied to grids whose cells

have different sizes and traversal costs. On Figure 2.9 (taken from [31])

15

Algorithm 2.4: A* pseudocode(recursive implementation)

Input: A graph G and a starting vertex start and a goal vertex goal
Output: Shortest path from source to goal

1 function A*(start, goal)

2 closedSet← ∅
3 openSet← start

4 foreach v in G do

5 gScore[v]←∞
6 fScore[v]←∞
7 prev[v]← ∅
8 gScore[start] = 0

9 fScore[start] = heuristic(start, goal)

10 while openSet 6= ∅ do

11 u← v in openSet with min fScore[]

12 if u = goal then

13 return reconstrunctPath(prev, u)

14 openSet.remove(u)

15 closedSet.add(u)

16 foreach neighbor n of u do

17 if n ∈ closedSet then

18 continue

19 if n /∈ openSet then

20 openSet.add(n)

21 tentativeScore← gScore[u] + dist[u, n]

22 if tentativeScore ≥ dist[n] then

23 continue

24 prev[n]← u

25 gScore[n]← tentativeScore

26 fScore[n]← gScore[n] + heuristic(n, goal)

27 return failure

16

a comparison between a path produced using A* and a path produced by

Theta* is shown, it is clear that the one produced using Theta* is more

realistic looking. Theta* finds a path from the start vertex to the goal

vertex if such a path exists.

Figure 2.9: Theta* vs A*: On the left, in red, the path produced by A*, on the right,
in blue, the path produced by Theta*.

Theta* exists in two versions, Basic Theta* and Angle-Propagation

Theta* where the main difference is that Angle-Propagation, by calculating

and maintaining angle ranges, is much faster. At algorithimic level Theta*

is very similar to A* where the only difference are the lines from 21 to 26

(shown in Algorithm 2.5) from the Algorithm 2.4 of A* presented above.

2.1.4 Robot Motion Planning

Motion planning (also known as the navigation problem or the piano mover’s

problem) consists of the process of breaking down a desired movement task

into discrete motions that satisfy movement constraints and possibly opti-

mize some aspect of the movement. It is effectively an extension of localisa-

tion, in that it requires the determination of the robot’s current position and

a position of a goal location, both within the same frame of reference or coor-

dinates. A motion planning algorithm takes a description of the environment

and a goal state as input, and produces the speed and turning commands

sent to the robot’s wheels. Motion planning algorithms might address robots

with a larger number of joints (e.g., industrial manipulators), more complex

tasks (e.g., manipulation of objects), different constraints (e.g., a car that

can only drive forward), and uncertainty (e.g., imperfect models of the en-

vironment or robot). The main algorithms for solving motion planning are

DWA [32] and trajectory planner [33] which share a lot of similitaries.

Algorithm 2.5: Theta* pseudocode (only lines different from A*)

1 function PartTheta*(start, goal)

2 if lineofsight(prev[u], n) then

3 if gScore[prev[u]] + dist(prev[u], n) < gScore[n] then

4 gScore[n]← gScore[prev[u]] + dist(prev[u], n)

5 prev[n]← prev[u]

6 if n ∈ openSet then

7 openSet.remove(n)

8 openSet.add(u)

9 fScore[n]← gScore[n] + heuristig(n, goal)

10 else

11 if gScore[u] + dist(u, n) < gScore[n] then

12 gScore[n]← gScore[u] + dist[n, u]

13 prev[n]← u

14 if n ∈ openSet then

15 openSet.remove(n)

16 openSet.add(u)

17 fScore[n]← gScore[n] + heuristig(n, goal)

18

2.1.4.1 DWA and Trajectory Planner

The basic idea of both the Trajectory Rollout and Dynamic Window Ap-

proach (DWA) algorithms is as follows [34]:

1. Discretely sample in the robot’s control space (dx,dy,dtheta).

2. For each sampled velocity, perform forward simulation from the robot’s

current state to predict what would happen if the sampled velocity

were applied for some (short) period of time.

3. Evaluate (score) each trajectory resulting from the forward simulation,

using a metric that incorporates characteristics such as: proximity to

obstacles, proximity to the goal, proximity to the global path, and

speed. Discard illegal trajectories (those that collide with obstacles).

4. Pick the highest-scoring trajectory and send the associated velocity to

the mobile base.

5. Rinse and repeat.

Figure 2.10: DWA and trajectory planner example.

DWA differs from Trajectory Rollout in how the robot’s control space

is sampled. Trajectory Rollout samples from the set of achievable velocities

over the entire forward simulation period given the acceleration limits of the

robot, while DWA samples from the set of achievable velocities for just one

simulation step given the acceleration limits of the robot. This means that

DWA is a more efficient algorithm because it samples a smaller space, but

may be outperformed by Trajectory Rollout for robots with low acceleration

limits because DWA does not forward simulate constant accelerations. In

19

practice however, DWA and Trajectory Rollout perform comparably in all

tests [34] and DWA is recommended for its efficiency gains.

2.2 Constraint Shortest Path Problem and its Vari-

ants

The constrained shortest path (CSP) is a well known NP-hard problem [35].

CSP is a generalization of the shortest path problem on graphs in which

each edge is associated not only with a distance, but also with an additional

weight, and the objective is to find the shortest path between given start

and target locations, subject to a constraint on the total weight accumulated

along the path. Solution strategies for the CSP can be classified into one of

two main categories: Dynamic Programming (DP) and algorithms used to

solve integer linear problems (like columns generation). Methods based on

DP are also known as label-setting or label-correcting algorithms. In this

section we describe some of the main algorithms to solve CSP and different

works in different settings extending and improving the run time of the

algorithms.

2.2.1 Integer Liner Programming

An integer linear programming (ILP) problem is a problem in which some

or all of the variables are restricted to be integers and in which the objective

function and the constraints (other than the integer constraints) are linear.

Formally ILP is defined as

min cTx

Ax ≥ b

x ≥ 0 with x ∈ Zn

where x represents the vector of variables (to be determined), c and b are

vectors of (known) coefficients, A is a (known) matrix of coefficients, and

Zn represents the set of dimensional vectors n having integer components.

One of the algorithms used to solve integer linear problems is Column

Generation [36]. The overarching idea is that many linear programs are

too large to consider all the variables explicitly. Since most of the variables

will be non-basic and assume a value of zero in the optimal solution, only a

subset of variables need to be considered when solving the problem. Column

generation leverages this idea to generate only the variables which have the

potential to improve the objective function, that is to find variables with

negative reduced cost (assuming without loss of generality that the problem

is a minimization problem).

The problem being solved is split into two, different smaller problems:

the master problem and the subproblem. The master problem is the original

problem with only a subset of variables being considered. The subproblem

is a new problem created to identify a new variable. The objective function

of the subproblem is the reduced cost of the new variable with respect to

the current dual variables, and the constraints require that the variable obey

the naturally occurring constraints.

The process works as follows. The master problem is solved, from this

solution we are able to obtain dual prices for each of the constraints in the

master problem. This information is then utilized in the objective function

of the subproblem. The subproblem is solved. If the objective value of

the subproblem is negative, a variable with negative reduced cost has been

identified. This variable is then added to the master problem, and the

master problem is re-solved. Re-solving the master problem will generate

a new set of dual values, and the process is repeated until no negative

reduced cost variables are identified. If the subproblem returns a solution

with non-negative reduced cost, we can conclude that the solution to the

master problem is optimal.

2.2.2 Dynamic programming

Dynamic programming is a method for solving complex problems by break-

ing them down into collections of simpler subproblems and solving them

just once. After each of the subproblems is solved the solution is stored so

the next time the same subproblem occurs, instead of recomputing it, the

solution is simply looked up. This way some computational time is saved in

expense of a expenditure in storage space. (Each of the subproblem solutions

is indexed in some way, typically based on the values of its input param-

eters, so as to facilitate its lookup.) The technique of storing solutions to

subproblems instead of recomputing them is called “memoization”.

A dynamic programming algorithm will examine the previously solved

subproblems and will combine their solutions to give the best solution for

the given problem. There are two key attributes that a problem must have

in order for dynamic programming to be applicable: optimal substructure

and overlapping sub-problems.

Optimal substructure means that the solution to a given optimization

problem can be obtained by the combination of optimal solutions to its sub-

problems. Such optimal substructures are usually described by means of

recursion.

Overlapping sub-problems means that the space of sub-problems must be

small, that is, any recursive algorithm solving the problem should solve the

same sub-problems over and over, rather than generating new sub-problems.

2.2.3 The Pulse Algorithm

The work in [37], with the aim to expand the body knowledge of the CSP,

introduces the pulse algorithm, an exact solution method for CSP capable

of handling large-scale networks in a reasonable amount of time. This al-

gorithm consistently outperforms the methods presented in Sections 2.2.1

and 2.2.2.

The idea behind the pulse algorithm is very simple, almost naive, yet

very powerful. The algorithm is based on the idea of propagating pulses

through a network from a start node vs ∈ N to an end node ve ∈ N . As

a pulse traverses the network from node to node, it builds a partial path P

including the nodes already visited, the cumulative objective function c(P)

and the cumulative resource consumption t(P). Each pulse that reaches the

final node ve contains all the information for a feasible path P from vs to ve.

If nothing prevents the pulses from propagating, the algorithm completely

enumerates all possible paths from vs to ve, ensuring that the optimal path

P ∗ is always found. At the core of the algorithm lies the ability to (effectively

and aggressively) prune pulses (i.e., prevent their propagation), without

jeopardizing the optimal path. This idea is shared with other algorithms

like branch and bound, where an implicit enumeration is performed with

relative efficiency. Similarly, the strength of the pulse algorithm depends

on the pruning strategies. The pseudocode for pulse algorithm is shown on

Algorithm 2.6 with the respective pruning function shown on Algorithm 2.7.

Algorithm 2.6: Pulse Algorithm

Input: A graph G starting vertex vs goal vertex ve maximum resourse

consumtion T

Output: Optimal path P

1 function Pulse(G, vs, ve, T)

2 P ← ∅
3 c0 ← 0/* the initial objective function */

4 t0 ← 0/* the initial resource consumption */

5 initialization(G,T)/* initialization(G,T):one-to-all shortest

path algorithm to find the minimum resource consumption

for every node */

6 pulse(vs, c
0, t0, P)

7 return P

Algorithm 2.7: Pulse function

1 function pulse(vk, c, t, P)

2 if !checkDominance(vk, c, t) then

3 if checkFeasibility(vk, t) then

4 if !checkBounds(vk, c) then

5 foreach vi ∈ N(vk) do

6 c′ ← c+ cki

7 t′ ← t+ tki

8 pulse(vi, c
′, t′, P ′)

There are three core pruning strategies presented in [37] infeasibility

pruning, dominance pruning, bounds pruning. The infeasibility pruning

strategy discards a partial path Psi (path from a starting node vs to an-

other node vi) when it is not possible to reach the end node without ex-

ceeding the resource constraint. The dominance pruning P1 dominates P2

if c(P1) ≤ c(P2) and w(P1) < w(P2) or c(P1) < c(P2) and w(P1) ≤ w(P2)

where P1 and P2 are two partial paths at a given node vi ∈ N . The bounds

pruning uses a primal bound c̄ that is updated with the value of the best

solution found so far so if c(Psi + c(P c
ie) ≥ c̄) then path P can be safely

pruned.

2.2.4 Acceleration strategies for the weight constrained short-

est path problem with replenishment

The weight constrained shortest path problem with replenishment (WCSPP-

R) is a generalization of CSP. The paper [8] investigates a generalization of

the CSP where edges may be associated to binary indicators able to reset

the accumulated weight when the corresponding edge is traversed.

The WCSPP-R consists of finding the minimum cost path between a

start node vs ∈ N and an end node ve ∈ N without exceeding a resource

constraint W . The WCSPP-R considers replenishment arcs that reset the

value of the consumed resource to zero at the tail node, that is, just before

traversing the replenishment arc. A feasible path P in the WCSPP-R is an

ordered sequence of nodes that satisfies W everywhere.

They extend the pulse algorithm presented in Section 2.2.3 for the CSP

adding three new acceleration strategies, namely, path completion, pulse

queueing, and best-promise exploration order. A major modification to the

original pulse algorithm is the inclusion of a pulse queue denoted by Q.

When the depth of a partial path P reaches a maximum allowed value δ, its

exploration pauses and the corresponding pulse is stored in Q, saving the

partial path P , the node where the pulse was paused n(P), the cumulative

cost c(P), and the resource consumption w(P). The algorithm stops when

the queue Q is empty.

Path completion adds a minimun cost path P c
ie from vi to ve to a given

partial path Psi and checks is the completed path Pse is feasible and if c(Pse)

is less than the primal bound c̄. If one of the conditions is not true the path

can be pruned. Pulse queueing means performing a DFS from the start

node to a maximum depth δ. When the pulse reaches that depth the partial

path is stored in the pulse queue Q following a queue discipline. Once there

are no more active pulses the queued pulses are processed until Q is empty.

Best− promise exploration order is defined by the queue discipline for Q.

This model is not applicable in our case, since we have to deal with the

possibility of transmitting only a portion of the accumulated data.

2.2.5 Shortest Feasible Paths with Charging Stops for Bat-

tery Electric Vehicles

Authors of [9], propose a model that partially generalizes ours in the context

of planning shortest paths with charging stops for electric vehicles (EV) (the

filling of our buffer can be naively thought as dual to the draining of the

battery).

They extend CSP problems for EVs with realistic models of charging

stops, including varying charging power and battery swapping stations so

their model is able to cope with continuous, increasing, and concave func-

tions describing how batteries recharge, even when going downhill. In par-

ticular, charging times are not independent of the state of battery when

arriving at a charging station. Additionally, the charging process can be in-

terrupted as soon as further charging would increase the arrival time at the

target. While the resulting problem is NP-hard, they propose a combination

of algorithmic techniques to achieve good performance in practice.

Their basic algorithm, charging function propagation (CFP), general-

izes the bicriteria variant of Dijkstra’s algorithm [38] extending labels to

represent (infinite, continuous) sets of nondominated solutions. Label l =

(τt, βu, u, f[u,...,v]) at a vertex v consists of the trip time τt of the path from s

to v (including charging time on every previous charging station except u),

the SoC (state of charge of the battery) βu when reaching u, the last charg-

ing station u, and the consumption profile f[u,...,v] of the subpath from u to

v. The consumtion profile(f[u,...,v]) is defined as fP : [0,M]→ [−M,M]∪∞
representing the change of the SoC of the battery when going throught path

P where ∞ value means an infeasible path.

They also present techniques based on A* Search, CH [39], and a com-

bination of them, to reduce the running times of the basic approach, CFP.

In this problem variant, the possibility of having cycles with negative

cumulative weight, namely the possibility of traveling along cycles while

indefinitely recharging the battery, is clearly ruled out by the laws of physics.

In our case, we must also contemplate such a possibility (think of a robot

which takes a detour towards a transmission area with an increasingly higher

transmission rate, and then goes back to its original path).

25

26

Chapter 3

Problem Setting

We model the environment as a connected, simple, weighted graph G =

(V,E), where V represents physical locations the robot can occupy and E

represents the connections between those locations. Edges are associated

with a weight function t : E → N+, called time function and representing

their traveling time. We assume that time evolves in discrete steps N+, as

well. Between two subsequent time steps, the robot can either stay still at

its current vertex or move along a graph edge. In the latter case, the robot is

not allowed to interrupt an edge traversal once started, but it must reach the

destination vertex before making another decision. In any case, at each time

step, the robot stacks 1 unit of information (or, equivalently, any constant

amount) into a buffer of size B ∈ N+.

The environment has some communication zones modeled as a set of

transmission vertices VT ⊆ V . To formalize the transmission of data, we

define a transmission-rate function r : V 2 → Q that describes the amount

of information a robot can send to the BS between two consecutive time

steps when moving from a vertex to another one or staying at a vertex. To

consistently model transmissions according to reasonable assumptions about

communication and legal moves in G, we impose some constraints on r():

1. (vertex transmission capability): r(v, v) > 0 ⇐⇒ v ∈ VT ;

2. (legal moves): r(u, v) = 0 for each u 6= v s.t. (u, v) 6∈ E;

3. (edge conservativeness): for each (u, v) ∈ E, r(u, v) ≤ max {r(u, u), r(v, v)}.

To compact the notation, we also define the net amount of information

unstacked from the buffer in a time step:

r̄(u, v) = r(u, v)− 1.

If r̄(u, v) > 0 the amount of information transmitted exceeds the amount

of information stacked in a time step and, thus, the robot is able to unfill

information from the buffer while moving from u to v. An example of a

simple environment is given of Figure 3.1.

C00r = 0 C01r = 0 C02r = 0 C03r = 0

C10r = 0 C11r = 0 C13r = 0 C14r = 0 C15r = 0

C05r = 0

C21r = 0 C23r = 1 C24r = 2

C31r = 0 C33r = 2 C34r = 3

C41r = 0C40r = 2 C42r = 0 C43r = 0

C50r = 3 C51r = 1 C52r = 0 C53r = 0 C54r = 0 C55r = 0

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1 r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1 r̄ = −1

r̄ = −1

r̄ = −1

r̄ = 0

r̄ = 0 r̄ = 1

r̄ = −1

r̄ = 1

r̄ = −1

r̄ = −1

r̄ = 1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1 r̄ = −1

r̄ = 0 r̄ = −1 r̄ = −1 r̄ = −1 r̄ = −1

Figure 3.1: Example of an environment. Red vertices represent the transmission ver-
tices, r represents the transmission-rate function of each node, and r̄ represents the
information unstacked from the buffer if the robots moves on the edge

The robot must move from a start vertex s ∈ V to a goal vertex g ∈ V ,

without any constraints on the initial and final amount of data contained

into the buffer. A solution S of our problem consists of a sequence of k pairs

pi ∈ V × N, representing the number of steps in which the robot remains

still at a vertex. A solution starts from s and ends in g:

S = [p1 = (s, ts), p2, . . . , pk = (g, 0)],

where two subsequent pairs pi = (vi, ti) and pi+1 = (vi+1, ti+1) implicitly de-

fine the traversal of the graph edge (vi, vi+1) ∈ E after having remained still

for ti steps at vi. This solution encoding defines a sequence of pairs of val-

ues [(bI1, b
O
1), (bI2, b

O
2), . . . , (bIk, b

O
k)] representing the amount of data present

28

into the buffer when arriving (I) and leaving (O) from each of the k vertices

composing a solution.

C00r = 0 C01r = 0 C02r = 0 C03r = 0

C10r = 0 C11r = 0 C13r = 0 C14r = 0 C15r = 0

C05r = 0

C21r = 0 C23r = 1 C24r = 2

C31r = 0 C33r = 2 C34r = 3

C41r = 0C40r = 2 C42r = 0 C43r = 0

C50r = 3 C51r = 1 C52r = 0 C53r = 0 C54r = 0 C55r = 0

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1 r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1 r̄ = −1

r̄ = −1

r̄ = −1

r̄ = 0

r̄ = 0 r̄ = 1

r̄ = −1

r̄ = 1

r̄ = −1

t = 2

r̄ = −1

r̄ = 1

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −1 r̄ = −1

r̄ = 0 r̄ = −1 r̄ = −1 r̄ = −1 r̄ = −1

Figure 3.2: Example of a feasible solution and infeasible solution. Starting from the
green vertex with an empty buffer and going to g the blue vertex. Buffer size of the
robot is B=5. Following the green edges and stopping for two time steps at node C33

to transmit the robot ends at the blue node with a full buffer. Following the purple
edges we have a total accumulation of information of 6 which makes the path infeasible.

We say that a solution S is feasible iff bIi , b
O
i ≤ B for each i = 1, 2, . . . , k.

Figure 3.2 showns an example of a feasible solution and an example of an

infeasible solution. The objective is to reach the goal in the least possible

time, i.e., to minimize:

T =

k−1∑
i=1

[ti + t(vi, vi+1)] . (3.1)

We call this problem Limited-Buffer Shortest Path problem (LBSP).

29

3.1 NP-hardness

We now give strong evidence to the fact that LBSP is a hard problem, by

proving that the corresponding decision version, called LBSP-D, is NP-hard.

In LBSP-D, the aim is to decide whether a given instance of LBSP admits

a feasible solution with total time less than a given T , with T ∈ N+. To

this aim, we construct a reduction from the decision version of CSP, which

is NP-complete [35]:

CSP-D

INSTANCE: a graph Ĝ = (V̂ , Ê), an edge length function l : Ê → N+, an

edge weight function w : Ê → N+, start and goal vertices ŝ, ĝ ∈ V , positive

integers L,W ∈ N+.

QUESTION: is there a path from ŝ to ĝ in Ĝ that has total length at most

L and total weight at most W?

Without loss of generality, we consider only CSP-D instances in which

l(u, v) ≥ w(u, v), ∀(u, v) ∈ Ê. Indeed, any problem instance can be turned

into an instance satisfying such a constraint by simply multiplying all the

lengths by a proper constant. For the reduction, we set G = Ĝ (implying

V = V̂ and E = Ê), VT = V , B = W , and T = L. The edge time function

t of LBSP-D is set equal to the edge length function l of CSP-D. The rate

function, for each u 6= v ∈ V , is defined as:

r(u, v) =

1− w(u, v)

l(u, v)
if (u, v) ∈ E

0 otherwise

Also, for each v ∈ VT , the rate function is defined as:

r(v, v) = max {r(u, v) | (u, v) ∈ E} .

Notice that all the transmission rates are lower than 1. This means that

there is no advantage in staying still at any vertex, since the buffer value

would not decrease. More formally, if there exists a solution of LBSP-D

whose stop time ti on a vertex is not 0, there also exists a not worse solution

whose stop time ti is 0. Also, because l(u, v) ≥ w(u, v), ∀(u, v) ∈ E there

are no “negative cycles”, i.e., cyclic paths allowing to decrease the buffer

value when traveled. More generally, if there exists a solution where the

robot travels along a cycle, then there exists a not worse solution without

cycles.

Given what said above, it is straightforward to check that the constructed

LBSP-D instance admits a yes answer iff the original CSP-D instance admits

30

a yes answer.

31

32

Chapter 4

Algorithms

4.1 Optimal Algorithm

We now present an exponential algorithm for solving to optimality the LBSP

defined in the previous section.

Let us notice that, despite transmission rates are rational numbers Q,

any problem instance can be turned into an equivalent instance where all the

possible buffer states are – arbitrarily large – integer numbers. In particular,

let M be the least common multiple of all the transmission rate’s denom-

inators. From now on, we assume that all the values of the time function

t and the buffer size B are defined as multiple of M and thus only integer

buffer states are allowed (the original time values can be obtained, once a

solution is found, dividing by M).

The algorithm leverages a transformation of the input graph G, whose

pseudo-code is reported in Algorithm 4.1. The directed graph obtained,

GB, is an expanded version of G in which the state of the buffer is explicitly

represented for each vertex through a set of “buffer-expanded” vertices. An

optimal solution to the LBSP on G is then obtained by simply finding a

shortest path on the new graph GB.

In order to simplify the pseudo-code, it is assumed that, for each u, v ∈ V ,

t(u, v) =∞ if (u, v) 6∈ E, and t(v, v) = M . The algorithm starts by creating

B+1 vertices {v0, v1, . . . , vB} for each vertex in V (lines 4-5): these vertices

univocally identify the state of the robot, i.e., vi means that the robot is at

v with buffer state i.

The algorithm then builds the set of arcs, which are of two types: those

connecting vertices of GB corresponding to the same vertex of G, but with

different buffer states (i.e., connecting vi and vj), and those connecting

vertices of GB corresponding to different vertices in G (and possibly different

Algorithm 4.1: Graph Transformation

Input: A simple undirected graph G = (V,E), a buffer size B, the rate
function r(), the time function t()

Output: A weighted directed graph GB = (VB , AB , w)

1 function transformGraph(G,B, r, t)

2 VB ← {}
3 AB ← {}
4 foreach v ∈ V do

5 VB ← VB ∪ {v0, v1, . . . , vB}
6 foreach u, v ∈ V do

7 for b = 0 to B do

8 x← max{0, b− t(u, v)r̄(u, v)}
9 if x ≤ B then

10 AB ← AB ∪ {(ub, vx)}
11 w(ub, vx)← t(u, v)

12 return GB = (VB , AB , w)

buffer states). In the pseudo-code, when u = v, the first case is handled,

otherwise, the second case is covered (lines 6-11). These arcs correspond to

temporal transitions in the system state. Following an arc, the robot can

either stay still on a vertex of G and change its current buffer state, or move

to another vertex of G (possibly changing his buffer state too). Notice that,

for each vertex in VB, there is exactly one arc of the first type and at most

|V |−1 arcs of the second type. This means that |AB| is lower than or equal

to MB|V |2 (where B is the buffer size).

Once the graph GB is returned, a shortest path algorithm is applied,

e.g., Dijkstra’s algorithm, to find a shortest path from s0 to any gx, where

s and g are the start and the goal vertices on G, respectively. (x could be

restricted to a set of values, if additional constraints to the final state of the

buffer are imposed.) Figure 4.1 shows part of the transfomed graph if we

would apply Algorithm 4.1 to the graph shown on Figure 3.1.

The correctness of the algorithm follows from the fact that we are explic-

itly representing all the possible buffer states. The whole computing time

of the transformation and the shortest path seeking is clearly exponential,

and both upper-bounded by O(MB|V |2) w.r.t. the parameters B and M ,

where B denotes the original size of the buffer.

34

C11r = 0start C2
40r = 2

C3
40r = 2

C1
40r = 2

C4
40r = 2

C0
40r = 2

C2
50r = 3

C3
50r = 3

C1
50r = 3

C4
50r = 3

C0
50r = 3

C2
51r = 1

C3
51r = 1

C1
51r = 1

C4
51r = 1

C0
51r = 1

C54r = 0

4

1
1

1
1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

3

3

Figure 4.1: Example of a Graph transfomation with buffer B=4 considering the graph
presented in Figure 3.1. (To keep the figure simple only a few nodes are considered and
not all the edges are shown). After building the transformed graph applying Dijkstra’s
algorithm the path in green would be the optimal solution.

4.2 Feasibility Test

To decide the feasibility of a given problem instance, one could apply Al-

gorithm 4.1 and check whether the obtained graph GB contains at least an

(s, g)-path. If not, the instance does not admit any feasible solution. How-

ever, since the computing time of such a procedure could be large (recall

the above complexity bound), it could be useful to have at hand a faster

method to decide feasibility.

We now present a simple method that leverages two additional graphs

G1 = (V1, E1, w1) (weighted) and G2 = (V2, E2) (unweighted). To obtain

G1, we set V1 = V and E1 = E. Then, for each (u, v) ∈ E1, we set

w1(u, v) = max {0,−t(u, v)r̄(u, v)}. The weights of G1 represent the amount

of stacked data (i.e., the amount of increase of the buffer value, if any) the

robot attains when traversing (u, v). For what concerns G2, the set V2 is

the set of vertices of G whose transmission rate is strictly greater than 1,

plus s and g. We add an edge (u, v) to E2, with u, v ∈ V2, iff the length of

the shortest path from u to v in G1 (with weights w1) is less than or equal

to B. This is equivalent to say that there exists a u-v path in G such that

it is always possible to travel from u to v without overfilling the buffer (for

a sufficiently low buffer state in u).

35

C24r = 2

C34r = 3

C33r = 2

C40r = 2

C50r = 3 C01r = 0C55r = 0

Figure 4.2: Example G2 based on the graph presented in Figure 3.1 with a buffer size
4. In this case there exist a solution because there exists a path connecting start and
goal nodes.

Given the graph G2 constructed as above, it can be easily shown that an

(s, g)-path in G2 exists if and only if the problem instance admits at least a

feasible solution. Figure 4.2 shows an example of G2 built from the graph

shown in Figure 3.1. Figure 4.3 shows an example of a path found using the

method described above and the graph G2 shown in Figure 4.2. The graph

shown in Figure 4.3 is G1 built based on the graph of Figure 3.1. The path

found using the feasibility method is not optimal as shown in Figure 4.3

because it does not consider the transmission rates of the nodes, if they are

strictly greater than 1. The computing time of this procedure is bounded

by the complexity of finding a shortest path between each pair of vertices

in G1 (to compute E2), that is, O(|V |3).

4.3 A Heuristic Algorithm

We now present a heuristic algorithm based on the refinement of an initial

solution, which can be obtained from a weighted variant of the graph G2

used above for the feasibility test. In particular, we start by constructing

the “skeleton” of the heuristic solution as the walk (a sequence of possibly-

repeated vertices) w = [s = v1, v2, . . . , vk = g] associated to the shortest

(s, g)-path on G2 according to a set of weights w2. Specifically, the weight

w2(u, v) of an edge (u, v) ∈ E2 is defined as the traveling time of the path

associated to the satisfaction of the buffer constraint (i.e., the traveling time

of the path obtained by minimizing the weights w1 defined previously). We

now present a method to compute the sequence of stopping times for w.

(In fact, this method allows to compute the stopping times for any given

36

C00r = 0 C01r = 0 C02r = 0 C03r = 0

C10r = 0 C11r = 0 C13r = 0 C14r = 0 C15r = 0

C05r = 0

C21r = 0 C23r = 1 C24r = 2

C31r = 0 C33r = 2 C34r = 3

C41r = 0C40r = 2 C42r = 0 C43r = 0

C50r = 3 C51r = 1 C52r = 0 C53r = 0 C54r = 0 C55r = 0

w1 = 1

w1 = 1

w = 1

w1 = 1

w1 = 1

w1 = 1 w1 = 1

w1 = 1

w1 = 1

w1 = 1

w1 = 1 w1 = 1

w1 = 1

w1 = 1

w1 = 0

w1 = 0 w1 = 0

w1 = 1

w1 = 0

w1 = 1

w1 = 1

w1 = 0

w1 = 1

w1 = 1

w1 = 1

w1 = 1 w1 = 1

w1 = 0 w1 = 1 w1 = 1 w1 = 1 w1 = 1

Figure 4.3: Example of feasible but not optimal path, found using the feasibility ap-
proach, shown on G1 (that is build based on the graph presented in Figure 3.1). The
feasible path starts from the cell in green, ends at the cell in blue and is composed
by the edges in purple and yellow. The optimal path would be the path composed by
edges in purple and in green.

sequence of vertices underlying a feasible solution.)

Formally, in order to obtain a solution S = [p1 = (s, ts), p2, . . . , pk =

(g, 0)], we have to find a sequence of times T = [t1 = ts, t2, . . . , tk = 0]

such that the buffer constraint is satisfied and the objective function (3.1)

is minimized. To this aim, we use the procedure of Algorithm 4.2.

The algorithm iterates through the vertices of the walk, iteratively up-

dating the buffer state bI , bO at each vertex. The idea is that, at a given

vertex vi, if the robot cannot reach the next vertex vi+1 in the walk, it has

to necessarily transmit a certain amount of information to proceed further.

Such an amount q is transmitted by the updateTimes() function, which iter-

atively tries to exploit the vertices with the higher transmission rates. Each

transmission is subject to two constraints: (1) the amount of information

transmitted cannot exceed that stacked in the buffer, (2) the transmission

cannot take place farther than B time steps from the vertex where the robot

37

Algorithm 4.2: Find Times

Input: A feasible walk w = [v1, . . . , vk] on G, a buffer size B, the rate
function r(), the time function t()

Output: A sequence of times T

1 function findTimes(w, B, r, t)

2 bI , bO, T ← k-length array initialized to 0

3 for i = 0 to k − 1 do

4 bOi ← max{0, bIi − Tir̄(vi, vi)}
5 bIi+1 ← max{0, bOi − t(vi, vi+1)r̄(vi, vi+1)}
6 if bIi+1 > B then

7 updateTimes(T, bI , bO, i)

8 updateBuffers(T, bI , bO, i)

9 return T

got stuck. More precisely, the algorithm makes use of two functions, which

have access to the input data B, r, t.

• updateTimes(T, bI , bO, i): it starts computing the amount to transmit

q = bIi+1−B, in order to proceed further through the walk. This func-

tion tries to transmit q units of information at each already traversed

vertex (index less than i + 1), starting from the one with the high-

est transmission rate and considering only those vertices whose rate is

greater than 1. At each transmission attempt, for each j < i, we check

two constraints: (1) at vertex vj , the robot cannot transmit more than

the current value of bOj , (2) at vertex vj , the robot cannot be farther

than B time steps from vi+1. At this point, if q units of information

are completely transmitted, the sequence of times T is updated.

• updateBuffers(T, bI , bO, i): given an updated sequence of times T , it

straightforwardly updates the buffer states bI and bO, up to the vertex

vi+1.

The algorithm has a complexity of O(|w|2), since updateTimes() can be run

in O(|w|) by pre-sorting the vertices in the walk by transmission rates and

pre-computing the distances between each pair of vertices.

38

Chapter 5

Implementation

5.1 Algorithms Implementation

We implemented the algorithms described in the previous chapter in C++.

To build the graphs and to find the shortest paths we used the LEMON

graph library [40] which is an open source C++ template library for op-

timization tasks related to graphs and networks. It provides highly ef-

ficient implementations of common data structures and algorithms. We

used the implementation of Dijkstra’s algorithm and the implementation

of graphs as list DiGraphs. For the complete class diagram of the pro-

gram created see Appendix A. The complete code can be downloaded

from https://github.com/Arlind1992/TesiPlanner.git.

To keep the number of nodes and edges to a minimum, in the implemen-

tation, a pre-transformation of the initial graph G is done. In particular, a

new graph Gpre = (Vpre, Epre) is build from the original one containing only

the communication nodes of the original graph. So we have Vpre = VT ⊆ V .

The edges are created applying Dijkstra’s algorithm on the original graph G

from each node v ∈ VT to every other node. We connect two nodes ∈ Gpre

only if the distance returned by Dijkstra’s algorithm is smaller than the

buffer size B. Algorithm 4.1 is then applied.

If we want to find the shortest path between two nodes that are not in

the communication set, (v1, v2) /∈ VT , we need to add them to Gpre and

then to GB. To connect them to Gpre we use the same logic as above

when connecting two communication nodes. To connect them with GB we

use the cost of edges created in the previous step. So we connect the new

nodes with the corresponding state calculated according to the rule, same

as the one used in Algorithm 4.1, max(0, b − t(u, v1)r̄(u, v1)), where u is a

communication node. After adding them to the graphs now we can apply

Dijkstra’s algorithm to find the shortest path. Figure 5.1 shows the resulting

graph after the pre-transformation of the graph in Figure 3.1 (only the nodes

in red are left after transformation). The start and goal nodes are added

like in Figure 5.1.

C33r = 2

C34r = 3

C24r = 2

C23r = 1

C51r = 1

C50r = 3

C40r = 2 C23r = 1

C01r = 0

C55r = 0

r̄ = −1

r̄ = −2

r̄ = −1

r̄ = −1

r̄ = −4

r̄ = −4

r̄ = −1

r̄ = −2

r̄ = −1

r̄ = −1

r̄ = −1

r̄ = −4

r̄ = −4

r̄ = −4

Figure 5.1: Result of the pre-transformation of the graph in Figure 3.1.

By implementing the algorithm in such a way we can save the static

parts of the transformed graph in a file for faster creating times. Moreover,

if we want to execute the algorithm multiple times on the same map with

different start and goal nodes we apply the Algorithm 4.1 only once and

then just add the different nodes to the graph and apply a shortest path

algorithm (we implemented it with Dijkstra’s).

5.2 Implementation as a ROS Planner

In order to further validate the feasibility of our approach we implemented

the proposed optimal algorithm using ROS (an operating system used for

real robots). Therefore, in this section we describe ROS. Then, we describe

the implementation of the optimal algorithm using ROS’s architecture, the

main problems to be solved within this architecture and the proposed solu-

tions.

5.2.1 What is ROS?

The Robot Operating System (ROS) is a flexible framework for writing robot

software [10]. It is a collection of tools, libraries, and conventions that aim

to simplify the task of creating complex and robust robot behavior across a

wide variety of robotic platforms.

ROS has many packages ready to use for general purposes robots. that

require little effort to be done by the user due only to a correct parameteri-

zation. The open source nature of the project allows users to customize the

packages code to develop new robot behaviors while reusing other commu-

nity members work.

From a technical perspective ROS is a middleware that offers an in-

terprocess communication layer. The communication happens with a pub-

lish/subsribe mechanism in which each package works as a node that pub-

lishes messages on a Topic (i.e., an argument) and receives messages from

subscribed topics; a simple example of nodes communicating through a

publisher-subscribe architecture can be seen in Figure 5.2 (taken from [41]).

Every node can listen for a topic and receive every message of that kind that

is sent in the communication infrastructure. Coordination is regulated by a

special node called roscore that informs other nodes of available topics and

notifies the publishers when a subscription to a topic happens. It is also

possible that a node needs to perform remote procedure calls, in this case

services should be used [42]. Other details on how communication by topics

happens in ROS are reported in [43].

Figure 5.2: Simple example of a publish-subscribe and service invocation architecture.

5.2.1.1 Navigation Stack

One of the main tasks for robots is autonomous navigation. ROS provides

a package (i.e., the navigation stack) that enables the programmer to setup

a robot to navigate the environment avoiding the developing of entirely new

solutions, but allowing him to customize the solution to the specific robot.

The navigation stack faces some common problems in robot navigation:

41

F
igu

re
5.3:

A
com

m
on

n
avigation

stack
setu

p
.

42

Mapping The map building process. This problem is addressed mainly by

the map server package [44].

Localization The capability of the robot to understand where it is in a

map. The amcl package [45] taking in input a map, laser scans, and

transform messages (trasformation between coordinates systems) gives

in output a pose estimation for the robot in the map.

Planning The capability to plan to move in an environment. The move

base package [46] handles the planning phase providing global and

local planning.

A graphical representation of a common navigation stack setup is shown in

Figure 5.3 (taken from [47]). Other details and tutorials on the setup of the

navigation stack can be found in [48].

The move base package In the navigation stack, the planning part is

delegated to the move base package. This package takes as input a map, a

pose estimate for the robot in the map, and a goal to perform the planning

phase that results in velocities commands (i.e., controls in terms of linear

and angular velocities) to be sent to the mobile base. As shown in Figure 5.3

the move base package is composed of other packages that handle various

aspects of the planning phase:

global planner it defines the entire path from the start position to the

goal position for the robot. It is possible to develop various kinds of

logics for the planner and to include them in move base as plugins.

local planner given a path to be followed and a local costmap, (where a

costmap is a data structure that stores information about the environ-

ment, for example it contains information if a cell, in a grid of cells, is

free or not), produces the velocity commands to be sent to the mobile

base. It is possible to develop various kinds of logics for the planner

including them in move base as plugins.

global costmap builds a costmap for the entire map.

local costmap builds a costmap for the part of the map around the robot

(updated with sensors feedbacks).

recovery behaviors is a node responsible for recovery behaviors genera-

tion that tries to clear the costmap (i.e., sensing again the surrounding

area to avoid errors) when the robot is stuck.

43

Actually there are few logics already implemented for the global planner

and for the local planner that can be chosen. The global planner has three

alternatives:

carrot planner takes a goal point, checks if the goal is inside an obstacle,

and if so it walks back along the vector between the objective and the

robot until an intermediate point that is not an obstacle is found. It

then passes this new goal point on as a plan to the local planner. It

is not a planner that ensures completeness, but could be good for few

specific applications.

navfn provides an implementation of a grid-based navigation function that

uses Dijkstra’s algorithm in a 2-variables environment (i.e., only x and

y coordinates are considered).

global planner is the upgraded replacement of navfn with optimizations

like the use of A* instead of Dijkstra’s.

A more detailed description of the three packages can be found respec-

tively in [49], [50] and [51].

The local planner has two alternatives based on the same procedure.

They both apply sampled possible velocities for the robot in a few steps

of forward simulations, a score is given to the resulting trajectories based

on the velocity and on the proximity to obstacles, goal and global path.

The highest score trajectory is then chosen for the movement sending the

respective velocities to the mobile base and the process starts again. The

difference between the two possible logics of the local planner are:

base local planner is based on the Trajectory Rollout approach [33], de-

scribed in Section 2.1.4.1. It samples from the set of possible velocities

over the entire forward simulation time given the acceleration bounds

of the vehicle.

dwa local planner is based on the Dynamic Window approach [32], de-

scribed in Section 2.1.4.1. It samples from the set of possible veloci-

ties only for one simulation step given the acceleration bounds of the

vehiche.

The best choice, among the available ones and only for shortest path prob-

lems without constraints, is the one implemented in the global planner pack-

age or the navfn, while for the local planner some considerations based on

the specific application should be done [52]. The above planners do not

44

consider any constraints so they can not be directly used for our problem.

Other details on the local planner possible implementations in ROS can be

found in [52] and [34].

5.2.2 Algorithms implementation in ROS

There are two main problems when implementing our algorithms using ROS

regarding navigation.

1. Integreating the planner of the C++ implementation with the ROS

architecture.

2. Stopping the robot at communication nodes if the robot has to trans-

mit any data.

To solve these problems we needed to create two plugins1, one to modify

the global planner and one to modify the local planner used by the naviga-

tion stack.

global planner The new global planner uses the planner described in 5.1,

transforms the path generated by the planner to ROS coordinates and pub-

lishes in two topics. One the default topic (nav msgs/Path) [51]. The second

topic is a new topic created for the purpose of containing the information

about the communication nodes in which the robot has to stop and the

amount of time the robot needs to stop in each one of these nodes.

local planner As a local planner one of the already implemented local

planners can be used (we use base local planner) with some small modi-

fications. The modifications, of the new local planner, consist in adding a

subscriber to the new topic, described above. When the information, needed

for the robot to move, is generated, the planner checks if the robot is in a

configuration corresponding to a communication node where it needs to stop.

If it is, the robot is stopped for the amount of time specified by the global

planner.

The message passed by the global planner to the local planner contains

the coordinates of the position, the robot needs to stop in, in terms of grid

coordinates, coordinates calculated after the map goes throught discretiza-

tion and the grid that is used by the planner is formed. It is done in this way

because the local planner uses the Trajectory Rollout approach [33] and it is

1For information on planners as plugins in ROS visit
http://wiki.ros.org/navigation/Tutorials/Writing A Global Path Planner As Plugin
in ROS.

45

not guaranteed (in a reasonible amount of motion computational time) that

the robot will pass through a certain exact point, but it can be configured

that the robot will have to pass through every node specified by the global

planner.

The topic created can be used also by another node, which can transmit

the data to a base station. Moreover, constant connection times can be

easily added to the robot wait time for each node.

46

Chapter 6

Experiments

We designed some experiments to valuate the running time and the solutions

found by our algorithms. In this chapter we first descibe the settings in

which we decided to test our algorithms. Then we proceed with describing

and analyzing the results of three different sets of experiments. All the

experiments are run on a laptop equipped with an Intel Core i7@2.70 GHz

CPU and 16 GB RAM.

6.1 Experiments Settings

Environment. To test our agorithms we choose a grid representation of

the environment. We start from a given map, set a discretization parameter,

and build the grid. For our tests we chose the map in Figure 6.1 with a size

of 400 meters long and 300 meters wide. We consider cells of 4 × 4 meters

meters. The robot moves at a speed of 4 m/s and we consider steps of 1

second, so that, in our discretization, this will correspond to 1 cell/step.

Communication. To simulate communication three RF transceivers are

represented in the environment (WiFi) with a maximum range of 80 meters

(the red circles on Figure 6.1) which correspond to 20 cells. The bitrate,

of each of the RF transceivers, changes depending on the distance and the

discretization of the buffer (the minimum amount of information the robot

can transmit). The robot collects data with a speed of 8 Mbit/s (for instance,

a video feed at low resolution), which will represent our basic buffer unit

(i.e., the “+1” unit of data stacked into the buffer at each time step).

Figure 6.1: Experimental environment (size 400 × 300 m). Red discs represent the
communication zones (e.g, areas covered by RF transceivers).

Figure 6.2: Communication map with buffer discretization 1.

48

Figure 6.3: Communication map with buffer discretization 0.25.

Buffer discretization. Depending on the discretization of the buffer we

have different discretizations of the communication zones. The discretization

of the buffer defines the minimum, atomic, amount of information that can

be unstacked by the buffer in one time step. In our experiments we use

two different discretizations, one with a discretization of 1 (conservative

scenario), meaning that the robot can unstack a minimum of 8 Mbit, and

a discretization of 0.25 (non-conservative scenario) meaning that the robot

can unstack a minimum of 2 Mbit.

Transmission speed. The transmission speed, of each communication

node, needs to be in correspondence with the discretization of the buffer,

so the transmission rate needs to be a multiple of the minimum amount

of memory that can be unstacked from the buffer. In our experiments the

transmission speed, apart from the first three cells (12 meters) where it

stays constant 32 MBit/s in both discretization scenarios, descreases linearly

based on an approximation model of the results of [53]. We consider two

discretizations for the transmission rate function corresponding to the buffer

discretizations. In the first case, we assume that the rate decreases by 8

Mbit/s each 4 cells (Figure 6.2), so that speeds will be going from 32 to

24, 16, 8, corresponding to 4, 3, 2, 1 w.r.t. the buffer unit. In the second case,

we assume that the rate decreases by 2 Mbit/s each cell (Figure 6.3) so that

speeds will go from 32 to 30, 28, 26...2, corresponding with 4, 3.75, 3.5...0.25

49

w.r.t the buffer unit. (When moving between cells having a different rate,

we assume that the robot can transmit at the minimum of the two rates.)

Local path planning algorithm. As a local path planning algorithm (a

shortest path algorithm to be used to calculate the shortest path between

two points on the graph, without considering the communication, neccessary

for the pre-elaboration step) we considered two different algorithms:

• Theta*

• Dijkstra’s

Because of a few problem that we are going to explain in the next paragraph

we decided to use Dijstra’s algorithm for our experiments, even though the

paths produced by Theta* are more realistic looking. So for all our experi-

ments planning takes place on the vertices of a uniform 4-connected grid.

Problems with Theta*. The basic problem with Theta* is that it uses

a 8-connected grid to calculate the shortest path. Using 8-connected grid

makes the discretization of the world difficult, meaning that we would have

approximate the time passed in an edge, losing this way the optimality of

our algorithm. On Figure 6.4 an example of how the path generated using

Theta* is more realistic.

Heuristic algorithm. In each of our experiments we compare the results

of our optimal algorithm (algorithm 4.1) with a heuristic algorithm. The

heuristic algorithm first finds a feasible path using the method described in

Section 4.2 and then it calculates the transmition times using the Algorithm

4.2.

6.2 Experiment Set 1

In the first set of experiments, we keep fixed start and goal locations as

shown in Figure 6.5 and, study how the solution cost (expressed as number

of time steps) and the runtime of our algorithms vary as a function of the

buffer size B. We test our algorithm for both our discretization scenarios

described in the section above.

Figure 6.6 shows the results obtained with a buffer discretization 1.

There are presented two graphs, one showing how the cost, in terms of

robot time steps, varies in dependence of the buffer size for both optimal

Figure 6.4: Example of path generated by our optimal algorithm using as local planner
Theta* (in blue) and using as a local planner 4-connected grid with Dijkstra’s (in green).

Figure 6.5: First set of Experiments Start and Goal positions

51

20 25 30 35 40 45 50
Buffer size B

80

100

120

140

160

180

200

220
S

ol
ut

io
n

co
st

(s
te

ps
)

HEURISTIC
OPTIMAL

(a)

20 25 30 35 40 45 50
Buffer size B

0.0

0.5

1.0

1.5

2.0

2.5

To
ta

lt
im

e
(s

)

HEURISTIC
OPTIMAL

(b)

Figure 6.6: Results of the experiments with buffer discretization 1.

52

15 20 25 30 35 40 45 50
Buffer size B

80

100

120

140

160

180

200

220
S

ol
ut

io
n

co
st

(s
te

ps
)

HEURISTIC
OPTIMAL

(a)

15 20 25 30 35 40 45 50
Buffer size B

0

2

4

6

8

10

12

14

16

To
ta

lt
im

e
(s

)

HEURISTIC
OPTIMAL

(b)

Figure 6.7: Results of the experiments with buffer discretization 0.25.

53

and heuristic algorithms, the other one showing the computational time it

takes to calculate the path in dependence of the buffer size. Examining

Figure 6.6(a), we can immediately notice how the optimal algorithm be-

haves significantly better than the heuristic. At the same time, note that

both the algorithms are able to obtain feasible solutions from a buffer size

B = 21. Also, in both cases, the solution cost decreases for increasingly

larger buffer sizes. While it is expected for the optimal algorithm, this fact

suggests the soundness of the heuristic algorithm. Figure 6.6(b) shows the

computing time required by the two algorithms. Clearly, the heuristic al-

gorithm runs faster, but its efficiency does not always compensate for the

loss in solution quality. Figure 6.8(a) reports three example paths (we do

not explicitly show where the robot stops in a cell for 1 or more steps to

transmit data) computed by the optimal algorithm and corresponding to

different buffer size values: the smallest value for which we obtain a solution

(B = 21) and the two values corresponding to sharp changes in the solution

cost (B = 29 and B = 41). Notice how these paths vary in length according

to the number of different transmission regions traversed. Moreover, note

that the three paths belong to three different “classes”, taking routes that

cannot be reduced to each other.

Figure 6.7 shows the results obtained with a buffer discretization 0.25.

The graphs shown are similar to the graphs built for the buffer discretization

1 (described above). Looking at the solution costs of Figure 6.7(a), we

observe the same trends of the previous case with buffer discretization 1.

The graphs clearly show that the smaller the discretization of the buffer

the smaller the solutions cost, for the same buffer size, is. Compared to

the discretization of 1 of the buffer, the runtime of our algorithms (Figure

6.7(b)) increases, but not dramatically. Figure 6.8(b) shows three example

paths computed by the optimal algorithm and corresponding to interesting

buffer size values. The same considerations made before hold also in this

case.

Looking at the running times for both discretizations we can notice that

when we have a discretization 1 the running time of the algorithm seems to

increase linearly with the size of the buffer and when we have a discretization

0.25 the running time of the algorithm seems to increase exponentialy.

6.3 Experiment Set 2

In the second set of experiments, we again consider both discetizations of the

buffer and we compare the solution quality of the optimal algorithm against

(a)

(b)

Figure 6.8: Example paths of the first set of experiments. (a) First set (blue: B = 21,
green: B = 29, brown: B = 41); (b) Second set (blue: B = 17, green: B = 26,
brown: B = 40).

55

10 20 30 40 50
Buffer size B

0

10

20

30

40

50

60

70

80

90

100

#
Fe

as
ib

le
S

ol
ut

io
ns

11

33

75

83
87

(a) Buffer discretization 1

10 20 30 40 50
Buffer size B

0

10

20

30

40

50

60

70

80

90

100

#
Fe

as
ib

le
S

ol
ut

io
ns

47

68

90
95

98

(b) Buffer discretization 0.25

Figure 6.9: Results of the second set of experiments on 100 randomly selected pairs of
start-goal locations. Feasible solutions depending on the buffer size.

56

10 20 30 40 50
Buffer size B

0

10

20

30

40

50

60
H

eu
ris

tic
S

ol
ut

io
n

W
or

se
ni

ng
(%

)

(a) Buffer discretization 1

10 20 30 40 50
Buffer size B

0

10

20

30

40

50

60

H
eu

ris
tic

S
ol

ut
io

n
W

or
se

ni
ng

(%
)

(b) Buffer discretization 0.25

Figure 6.10: Results of the second set of experiments on 100 randomly selected pairs
of start-goal locations. Heuristic solution worsening in comparison with the optimal
algorithm.

57

that of the heuristic one on 100 randomly selected pairs of start-goal loca-

tions for each buffer size. For each fixed instance number, we keep fixed

start and goal locations among the two rate scenarios. Figures 6.9(a)-(b)

show the number of instances for which the two algorithms return a solution.

(Note that, by construction, both the algorithms return a feasible solution

whenever there is at least one.) In both scenarios, this number increases

with the buffer size, as expected. Clearly, for a fixed buffer size, we are able

to solve a larger number of instances in the non-conservative scenario. Fig-

ures 6.10(a)-(b) show the average gap (in percentage) between the solution

returned by the optimal algorithm and the heuristic, plotted with 95% con-

fidence interval bars. In both cases, the average gap increases as the buffer

size increases. Also, note how the average gap of the conservative scenario

is significantly smaller than the gap of the non-conservative one for a given

buffer size, possibly because it represents a simpler setting.

6.4 ROS Experiments

The ROS experiments are simple experiments, with the purpose to show

that our algorithms implementations in ROS work, since the solution cost

and the paths found by the algorithms are equal to the ones produced by the

C++ implementation. The experiments are run on a mobile robot simulator

called Stage [54] and to view the produced paths a package called rviz is used

(both are going to be described in the next subsection).

6.4.1 ROS used Tools

Stage Stage is a robot simulator [54]. It provides a virtual world populated

by mobile robots sensors, along with various objects for the robots to sense

and manipulate.

There are three ways to use Stage:

• The Stage program: a standalone robot simulation program that loads

your robot control program from a library that you provide.

• The Stage plugin for Player (libstageplugin)- provides a population of

virtual robots for the popular Player networked robot interface system.

• Write your own simulator: the libstage, C++ library, makes it easy

to create, run and customize a Stage simulation from inside your own

programs.

Stage provides several sensor and actuator models, including sonar or

infrared rangers, scanning laser rangefinder, color-blob tracking, fiducial

tracking, bumpers, grippers and mobile robot bases with odometric or global

localization and was designed with multiagent systems in mind, so it pro-

vides fairly simple, computationally cheap models of lots of devices rather

than attempting to emulate any device with great fidelity. Our environment

in stage view is shown on Figure 6.11.

Figure 6.11: Stage view of the environment

rviz rviz [55] is a 3D visualizer for displaying sensor data and state in-

formation from ROS. We use it to show the paths generated by the al-

gorithms and the motion of the robot. To view the communication zones

and the generated path we use markers. Markers are messages (visualiza-

tion msgs/Marker) that send basic shapes (cube, sphere, cylinder, arrow)

to rviz. With rviz it is possible to set a navigation goal to simulate path

generation and the robots motion. Figure 6.12 shows the environment using

rviz package with the robot at the center of the environment. (The map is a

little bit different from the maps viewed in the sections above because ROS

uses costmaps to save the discretization of a map so rviz shows the real map

not discretized version, instead in our simulations, done only in C++, in a

custom viewer, we show the already discretized map.)

For a complete list of used packages and configuration check Appendix

59

Figure 6.12: Rviz view of the environment.

B.

6.4.2 Experiments

The experiments are done with a discretization of the buffer 1. Using rviz we

give a goal location to the robot and save the path produced. Figure 6.13(a)

shows the path produced by the optimal algorithm and the robot follow-

ing the produced path. In Figure 6.13(b) the robot stops to transmit data,

which for our experiments it means posting on the console the message

Transmitting. Figure 6.14(a) shows the path produced by the heuristic al-

gorithm and the robot following the produced path. In Figure 6.14(b), as

in Figure 6.13(b), the robot stops at a cell to transmit.

60

(a) Calculated Path.

(b) Stopping cell to transmit and Transmitting message on the console.

Figure 6.13: Result of the ROS experiments, optimal algorithm.

61

(a) Calculated Path .

(b) Stopping cell to transmit and Transmitting message on the console.

Figure 6.14: Result of the ROS experiments, heuristic algorithm.

62

Chapter 7

Conclusions

In this thesis we considered the problem of finding shortest paths under

a limited-buffer constraint, for a robot that acquires data while the time

evolves and can transmit them only from some communication zones. We

called this problem LBSP. We proposed three algorithms:

• An optimal algorithm that first transforms the given graph and then

applies a common shortest path algorithm (Dijkstra’s in our case).

The complexity of our optimal algorithm is O(MB|V |2), where B is

the buffer size, V is the number of nodes, and M is 1/D with D being

the discretization parameter of the buffer.

• A feasibility test that, given a problem setting, determines in a fast

way if there exists a feasible solution. The complexity of our fesibility

test is O(|V |3), where V is the number of nodes.

• A heuristic algorithm that, given a feasible path, calculates the optimal

stopping times at each communication node. The complexity of our

heuristic algorithm is O(|w|), where w is the feasible path and |w| is

its size.

We implemented the algorithms in C++ and tested them using two sets

of experiments with two different discretizations of the environment. In the

experiments, the cost of the solutions returned by the heuristic algorithm

is comparable with that of solutions found by the optimal algorithm, but

the gap increases with the complexity of the setting. The computing time

of the heuristic algorithm is consistently shorter than that of the optimal

one. Depending on the buffer size, the paths returned by the algorithms

can be very different from one another. We also noted, as expected, that

the smaller the discretization of the envirenmnet the higher the computing

times and the smaller the solution costs of the optimal algorithm.

To further validate our algorithms we implemented them for ROS archi-

tecture, and tested them using Stage simulation tool.

Some interesting directions for future research are:

• The investigation of the applicability of the approach proposed by [56]

to our constrained path planning problem.

• The Theta* discretizzation of the environmnet and loss of optimality.

How would the solutions change and how much time would be lost or

gained considering the more realistic paths of Theta*.

• Finding pruning strategies to reduce the number of nodes produced

by the optimal algorithm.

• The implementation of communicating nodes in a ROS architecture

and studying the impact these nodes would have in the total transmit-

ting time, considering that we would have to add connection latency

to the times calculated by the algorithms.

• From a theoretical point of view, it would also be worth it to investigate

the NP-membership of the LBSP.

64

Appendix A

Class Diagram

66 Appendix A. Class Diagram

F
igu

re
A

.1:
E

R
D

iagram
of

th
e

C
+

+
im

p
lem

en
tation

.
(B

aselin
e

is
im

p
lem

en
tation

of
th

e
h

eu
ristic

algorith
m

.)

Appendix B

ROS complete list packages

and ROS configuration

The created ROS package depends on:

• costmap 2d

• nav core

• geometry msgs

• message generation

• message runtime

It is build dependent on:

• catkin

• message generation

The launch configuration file launches the following ROS nodes:

• stage ros

• rviz

• map server

• move base

• tf

68Appendix B. ROS complete list packages and ROS configuration

To be able to build and run the package you need to have all the above

packages.

The ROS algorithms implementation code can be found in

https://github.com/Arlind1992/ROStesi. After installing the program us-

ing the instructions in the README.md file, to run the program use the

following commands:

• source devel/setup.bash - to register the new packages.

• roslaunch rrt planning heuristic planner.launch - to launch the planner

using the heuristic algorithm.

• roslaunch rrt planning tesi planner.launch - to launch the planner us-

ing the optimal algorithm.

Bibliography

[1] J. Banfi, N. Basilico, and F. Amigoni, “Minimizing communication la-

tency in mutirobot situation-aware patrolling,” in Proc. IROS, pp. 616–

622, 2015.

[2] M. Hooper, Y. Tian, R. Zhou, B. Cao, A. Lauf, L. Watkins, W. Robin-

son, and W. Alexis, “Securing commercial wifi-based uavs from common

security attacks,” in Proc. MILCOM, 2016.

[3] J. Jansons and T. Dorins, “Analyzing IEEE 802.11 n standard: outdoor

performance,” in Proc. ICDIPC, pp. 26–30, 2012.

[4] O. Causse and J. Crowley, “Navigation with constraints for an au-

tonomous mobile robot,” in Proc. IROS, vol. 3, pp. 1899–1905, 1994.

[5] P. Plonski, P. Tokekar, and V. Isler, “Energy-efficient path planning

for solar-powered mobile robots,” Journal Field Robot, vol. 30, no. 4,

pp. 583–601, 2013.

[6] G. Hollinger and S. Singh, “Multirobot coordination with periodic con-

nectivity: theory and experiments,” IEEE Transactions on Robotics,

vol. 28, no. 4, pp. 967–973, 2012.

[7] R. Hassin, “Approximation schemes for the restricted shortest path

problem,” Mathematics of Operations Research, vol. 17, no. 1, pp. 36–

42, 1992.

[8] M. Boĺıvar, L. Lozano, and A. Medaglia, “Acceleration strategies for

the weight constrained shortest path problem with replenishment,” Op-

timization Letters, vol. 8, no. 8, pp. 2155–2172, 2014.

[9] M. Baum, J. Dibbelt, A. Gemsa, D. Wagner, and T. Zündorf, “Shortest

feasible paths with charging stops for battery electric vehicles,” in Proc.

ACM SIGSPATIAL GIS, 2015. Paper 44.

69

70 BIBLIOGRAPHY

[10] “ros.org - about ROS.” http://wiki.ros.org/about-ros. Accessed: 2017-

07-29.

[11] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[12] S. Irnich and G. Desaulniers, “Shortest path problems with resource

constraints,” in Column generation (G. Desaulniers, J. Desrosiers, and

M. Solomon, eds.), pp. 33–65, Springer, 2005.

[13] M. Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Compu-

tational Geometry (2nd ed.). Springer-Verlag, 2000.

[14] J.-C. Latombe, Robot Motion Planning. Springer Science Business Me-

dia, LLC, 1991.

[15] “Mcgill - local path planning using virtual potential field.”

http://www.cs.mcgill.ca/ hsafad/robotics/. Accessed: 2017-08-30.

[16] S. LaValle, “Rapidly-exploring random trees: A new tool for path plan-

ning,” vol. 264, p. 4, 1998.

[17] “Rrt page - planning for a forward-only car-like robot.”

http://msl.cs.uiuc.edu/rrt/gallery carforward.html. Accessed: 2017-

08-30.

[18] G. Gini and V. Caglioti, Robotica. Zanichelli, 2003.

[19] O. J. Woodman, “An introduction to inertial navigation,” 2007.

[20] “GPS - what is GPS?.” http://www.loc.gov/rr/scitech/mysteries/global.html.

Accessed: 2017-08-27.

[21] “GPS - how does GPS work?.” http://www.physics.org/article-

questions.asp?id=55. Accessed: 2017-08-27.

[22] M. C. Andreu, Map-base localization for urban service mobile robotics.

PhD thesis, Universitat Politecnica De Catalunya, 2011.

[23] E. F. Moore, “The shortest path through a maze,” Harvard University

Press, 1959.

[24] “Algorithms - breadth first search.”

http://alumni.cs.ucr.edu/ tmauch/old web/cs141/cs141 pages/breadth first search.html.

Accessed: 2017-08-30.

BIBLIOGRAPHY 71

[25] C. Thomas, L. Charles, R. Ronald, and S. Clifford, Introduction to

Algorithm. MIT Press and McGraw-Hill., 1990.

[26] “Algorithms - deapth first search.”

https://www.hackerearth.com/practice/algorithms/graphs/depth-

first-search/tutorial/. Accessed: 2017-08-30.

[27] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, pp. 269–271, Dec. 1959.

[28] “Graphs - graph algorithms.” http://users.informatik.uni-

halle.de/ jopsi/dssea/chap8.shtml. Accessed: 2017-08-27.

[29] F. Michael, L. Tarjan, and E. Robert, “Fibonacci heaps and their uses

in improved network optimization algorithms,” Journal of the ACM,

vol. 34, no. 3, pp. 596–615, 1987.

[30] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Prentice Hall., 1995.

[31] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path

planning on grids,” Journal of Artificial Intelligence Research, vol. 39,

pp. 533–579, 2010.

[32] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,

pp. 23–33, 3 1997.

[33] B. P. Gerkey and K. Konolige, “Planning and control in unstructured

terrain,” in Proc. ICRA, 2008.

[34] “dwa local planner - ROS wiki.” http://wiki.ros.org/dwa local planner.

Accessed: 2017-07-29.

[35] M. Garey and D. Johnson, Computers and intractability: A guide to

the theory of NP-completeness. W. H. Freeman, 1979.

[36] J. Desrosiers and M. E. Lübbecke, Column Generation. Boston, MA:

Springer US, 2005.

[37] L. Lozano and A. L. Medaglia, “On an exact method for the constrained

shortest path problem,” Computers Operations Research, vol. 40, no. 1,

pp. 378 – 384, 2013.

[38] E. Martins, “On a multicriteria shortest path problem.,” European

Journal of Operational Research, vol. 16, no. 1, pp. 236–245, 1984.

72 BIBLIOGRAPHY

[39] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact routing

in large road networks using contraction hierarchies.,” Transportation

Science, vol. 46, no. 3, pp. 388–404, 2012.

[40] B. Dezső, A. Jüttner, and P. Kovács, “LEMON - An open source C++

graph template library,” Electronic Notes in Theoretical Computer Sci-

ence, vol. 264, no. 5, pp. 23–45, 2011.

[41] “ROS basic concepts - ROS wiki.”

http://wiki.ros.org/custom/images/wiki/ROS basic concepts.png.

Accessed: 2017-07-29.

[42] “Services - ROS wiki.” http://wiki.ros.org/Services. Accessed: 2017-

07-29.

[43] “Topics - ROS wiki.” http://wiki.ros.org/Topics. Accessed: 2017-07-29.

[44] “map server - ROS wiki.” http://wiki.ros.org/map server. Accessed:

2017-07-29.

[45] “amcl - ROS wiki.” http://wiki.ros.org/amcl. Accessed: 2017-07-29.

[46] “move base - ROS wiki.” http://wiki.ros.org/move base. Accessed:

2017-07-29.

[47] “Navigation stack - ROS wiki.” http://wiki.ros.org/navigation/Tutorials/RobotSetup.

Accessed: 2017-07-29.

[48] “map server - ROS wiki.” http://wiki.ros.org/navigation. Accessed:

2017-07-29.

[49] “carrot planner - ROS wiki.” http://wiki.ros.org/carrot planner. Ac-

cessed: 2017-07-29.

[50] “navfn - ros wiki.” http://wiki.ros.org/navfn. Accessed: 2017-07-29.

[51] “global planner - ROS wiki.” http://wiki.ros.org/globalPlanner. Ac-

cessed: 2017-07-29.

[52] “map server - ROS wiki.” http://wiki.ros.org/base local planner. Ac-

cessed: 2017-07-29.

[53] J. Jansons and T. Dorins, “Analyzing ieee 802.11n standard: outdoor

performanace,” in Proc. ICDIPC, pp. 26–30, July 2012.

BIBLIOGRAPHY 73

[54] “Stage - the robot simulator.” http://rtv.github.io/Stage/. Accessed:

2017-08-30.

[55] “ROS wiki - rviz.” http://wiki.ros.org/rviz. Accessed: 2017-08-30.

[56] S. Bhattacharya and V. Kumar, “Persistent homology for path planning

in uncertain environments,” IEEE Transactions on Robotics, vol. 31,

no. 3, pp. 578–590, 2015.

