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Abstract

Field robotics is a fast developing research field, in particular precision agri-
culture. The GRAPE project is an Echord++ robotic experiment aimed at
the use of a mobile robot for automatic pheromone dispenser distribution in
vineyards. This thesis illustrates the autonomous navigation system of such
robot. For the specific scenario of the vineyard navigation, there not exists
a real state of the art, so we adapted techniques that have been designed for
different problems, in particular classical methods for navigation in indoor
environments. The vineyard environment is challenging because of many va-
riability factors such as weather, soil and vegetation. These factors hinder
the indoor methods introducing noise in the robot perceptions. To solve this
problem, we propose a specific navigation system that takes advantage of
multiple sensors: wheel encoders, IMU and GPS to filter the environment
noise and accurately estimate the robot odometry. In addition, the system
exploits a LIDAR sensor to localize the robot through AMCL algorithm and
to map the vineyard using SLAM techniques. We tested the system in simu-
lation where it obtained very good results which have been confirmed during
a field test in a real vineyard.



Estratto

Al giorno d’oggi la robotica outdoor (field robotics) si sta sviluppando sempre
di più. In particolare l’agricoltura di precisione rappresenta un’applicazione
importante di essa. Il progetto GRAPE tratta l’utilizzo di un robot mobile
per la distribuzione automatica di dispensatori di feromoni nei vigneti. Que-
sta tesi illustra lo sviluppo del sistema di navigazione autonoma di tale robot.
Per lo scenario specifico della navigazione in un vigneto non esiste un vero e
proprio stato dell’arte, perciò abbiamo adattato a questo ambiente tecniche
che sono pensate per problemi diversi. In generale, gran parte dei metodi
conosciuti in robotica per la navigazione sono ideati per ambienti indoor. Il
vigneto presenta molti fattori di variabilità come le condizioni atmosferiche,
il suolo o la vegetazione, che rappresentano insidie per i metodi indoor clas-
sici, poichè generano molto rumore nelle percezioni del robot. Per risolvere
questo problema, in questa tesi, abbiamo proposto uno specifico sistema di
navigazione che sfrutta diversi sensori: encoders delle ruote, IMU e GPS
per filtrare il rumore dovuto all’ambiente e quindi stimare accuratamente il
percorso effettuato dal robot. Inoltre il sistema utilizza un sensore LIDAR
per localizzare il robot con l’algoritmo Adaptive Monte Carlo Localization, e
per costruire una mappa del vigneto utilizzando metodi di SLAM. Abbiamo
testato il sistema in simulazione ottenendo risultati molto buoni che abbiamo
successivamente validato in un vero vigneto.
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1.
Introduction

The application of autonomous robots in rough and unstructured environ-
ments has increased exponentially over the last years, so that it has defined
a new branch of robotics called field robotics. In particular one of the fields
that is most developed recently is precision agriculture. Indeed in agricul-
ture, robots are not only used for crop monitoring, like aerial inspection for
growth control, but they are taking a key role in the daily life of farmers and
producers. Heavy tasks like pruning, seeding or even precise harvesting are
the target topics of these new robots.

The GRAPE project has born to accomplish one of these precision tasks:
the distribution of pheromone for integrated pest control in vineyards. It
is funded by Echord++ program from European Commission. This thesis
carries out a specific part of the GRAPE project: the design of autono-
mous navigation system of the GRAPE robot. In the title we defined it
as “an experiment” since Echord++ uses this terms to define small-scale re-
search projects with a maximum duration of 18 months aimed at verifying
the readiness of a technology on the field

Autonomous outdoor navigation in a vineyard is a quite different pro-
blem with respect to similar categories of problems, like indoor navigation
or autonomous on-road driving. Indeed outdoor scenarios contain some very
important destabilizing factors which do not permit to use standard navi-
gation methods as they are. Specifically, we can identify three main factors
which are sources of variability: the soil, the weather and the vegetation.
Each of these introduces noise in the data perceived from the robot sensors.
For example the soil affects the mobility of the robot, and it is responsible
for wheels slippage and robot platform wobbling. Such effects influences the
perception done by the wheel encoders, by the IMU and by the LIDAR. The
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weather, instead, alters the satellite reception and the quality of the LIDAR
acquisitions. Finally the vegetation, depending on the season increase or de-
crease the volume of the vines and the quantity of grass and weeds. This
hinder the navigation of the robot in terms of number and size of obstacles.

1.1 Thesis contribution

To solve the variability of the vineyard environment this thesis proposes a
multi-sensors navigation system that takes advantage of a robust sensor fu-
sion framework, ROAMFREE, which provides tools to merge different sensors
in the estimation of the odometry of a robot. The sensors merged are: wheel
encoders, IMU and GPS.

Besides using GPS information the system performs the localization using
two different approaches based on the task: if the task is the autonomous
navigation the localization is done exploiting a particle filter in the form of
Adaptive MonteCarlo Localization (AMCL) algorithm, otherwise if the task
is to map the vineyard the localization takes places simultaneously with the
mapping of the robot for the autonomous navigation task and exploits a
technique, SLAM, able to build a map and simultaneously locate the robot
in that map when the task is to map the vineyard. In both cases the robot
acquires information about the obstacles and the environment structure using
a LIDAR sensor.

The navigation system has been tested in a simulation environment crea-
ted ad-hoc, which reproduces both the vine plants and the vineyard ground.
We have obtained excellent results both in mapping and in autonomous na-
vigation in this simulation environment. Afterwards the system has been
installed and configured on a real robot, the GRAPE robot, which is a four
wheeled skid-steering mobile robot based on the Husky platform.

The robot has been ran in a real vineyard to validate the performance of
the navigation system in real case. During tests this latter has continuously
provided the right localization of the robot. Further, the robot has been
able to correctly map the vineyard and then to autonomously navigate using
that map. For the mapping task the system has been tested with three
different laser based SLAM tools: Gmapping, Google’s Cartographer and
KartoSLAM. Gmapping outperformed the other approaches, since it proved
to be more reliable in providing accurate maps.
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1.2 Structure of Thesis

The thesis is structured as follows.

• In Chapter 2 we discuss and explain the challenges for autonomous
robot navigation due to the vineyard environment. In particular, we
first introduce the GRAPE project context, in section 2.1, then we
analyze the issues which are present in vineyard robot navigation and
for which this thesis propose a solution, section 2.2. Finally we show
other examples of vineyard robot in section 2.3

• In Chapter 3 we describe all the tools that we adopt in our solution and
the theoretical concepts to understand them. We start introducing the
standard approaches for the state estimation in section 3.1. Then we
explain the odometry estimation basics and we list the sensor fusion
tools that we use to compute it, respectively in section 3.2 and in
section 3.3. Finally we outline the most known methods for SLAM and
for localization in section 3.4 and in section 3.5.

• In Chapter 4 we present the navigation system architecture we propose.
We first depict the final architecture, in section 4.2 and then we analyze
singularly the sub-systems composing it from section 4.3 to section 4.7.

• In Chapter 5 we introduce the simulation environment in section 5.2
and then we describe and comment the simulation tests and results in
the three tasks of odometry estimation and sensor fusion in section 5.3,
mapping in section5.4 and autonomous navigation in section 5.5.

• In Chapter 6 we shows the vineyard used for validation tests in section
6.1 and we discuss the obtained results for mapping in section 6.2 and
autonomous navigation in section 6.3.

• In Chapter 7 we summarize the obtained results and we propose some
possible futures improvements for the system.

• Appendix A introduces ROS, outlining its structure and its main
features.

• Appendix B reports the technical data about the sensor adopted for
GRAPE robot during the vineyard tests.



2.
Challenges in Field Robotics: the
vineyard case

In the Introduction we have mentioned some of the challenges that we faced
during the thesis. In this chapter we first describe the GRAPE project and
then we focus on the identification and explanation the problems due to the
vineyard environment.

2.1 The GRAPE Project

The application of robotics as a support tool for farmers or automated sy-
stems for agricultural tasks can offer the necessary step change in farming
production in order to meet the future needs of an increasing world popula-
tion, 34% by 2050 according to FAO1. GRAPE project aims at contributing
to that technological breakthrough by developing a mobile robotic system
endowed with a robotic arm able to perform precise agricultural tasks at
plant level for vineyards.

GRAPE robotic concept is composed by four main technological compo-
nents designed and integrated to monitor plants health in vineyards and to
apply a biocontrol mechanism consisting of pheromone dispensers for plague
control. These results will be validated in real scenarios covering a predefined
range of scenarios in France, Italy and Spain, the three EU countries with
the largest wine production.

The four technological components of the GRAPE projects are:
1Food and Agriculture Organization of the United Nations.
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• Vineyard navigation module based on advanced localization and map-
ping capabilities and path planning techniques considering terrain
characteristics and kino-dynamic constraints to enhance safety and
robustness.

• Plant health monitoring module implementing advanced perception ca-
pabilities for plant detection in highly unstructured and geometrically
variable scenario and plant health assessment for early detection of
problems.

• Precise manipulation and deployment for a targeted pheromone
dispenser distribution.

• User friendly operational interface enabling robot teleoperation, data
visualization and reporting.

A ground robot for plague control related tasks shall be able to navigate
along the rows of vines typically found in this type of crops. The varie-
ty of terrains and typology of crops makes the definition of an application
scenario extremely relevant for a correct requirements elicitation. This pro-
ject belongs to Echord++ Program from European Commission. Vineyard
protection becomes one of the main issues for the producers. Control of
plagues, fungi and other threats are recurrent tasks in winery. This project
is focused on the improvement of the plague control tasks, specifically on
the installation of pheromone dispensers for matting disruption. The task of
dispenser distribution is currently done manually where the operators walk
through the vineyard hanging the dispensers in a regular distribution pattern
(approximately one dispenser every 5-6 plants). There are different shapes
available for the dispensers, depending on the brand, which is something to
take into account for our manipulation developments. In our case, we use the
dispensers provided by Biogard2, which is a reference company in Europe.
Regarding the specific location to deploy the dispenser, it must be placed in
one of the main branches. 2.1 shows the shape and the location of the phe-
romone dispenser. The installation of dispensers should be performed early
in the first moth flight (G1), which is to say from the end of March in the
earliest areas until early April. In this period, the vineyard is just trimmed.
This situation defines a particular scenario for dispenser deployment. The
plants have no leaves and only the main branches (two horizontal) remain.
The small branches are pruned. This particular situation have to be taken
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Figura 2.1: Dispenser shape and location

into account in the use case development. The project is a collaboration bet-
ween the Politecnico di Milano (Italy), the Eurecat research center (Spain)
and Vitirover (France). The three entity should work on different task, in
particular the Polimi team have to develop the navigation system and the
manipulation part of the robot.

From a robotics perspective, there are two main aspects to take into
account when analyzing the traversability challenges for a ground robot ope-
rating in vineyards: slope of the ground and terrain morphology. Depending
on the region, the vineyard distribution can be very challenging. Although
the plant distribution is always in rows, the crop can be located in a plain
terrain or in the mountainside. We identify three types of crops:

• Flat crops, located in an almost flat field maybe following the contour
of the hill but always in the same plane

• Hillside, with a slope less than 40% where the plants are organized in
rows with a horizontal path between them

• Mountainside, where plants are located in a hillside with more than
40% of slope. Usually, in best cases, there is a small path between
rows, 60cm at most, which allows the operator walking through the
crop, in order to do manual work. If not, there is no horizontal path
and robotic deployment becomes almost impossible.

Another important aspect in the performance of a ground robot in a vineyard
is the type of terrain. The performance of the robot largely depends on the
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type of soil. This can affect not only the navigation but also the battery
consumption and motion control, among other aspects.

2.2 Robot navigation in vineyards

Field robotics is concerned with the automation of vehicles and platforms
operating in harsh, unstructured environments. Field robotics encompas-
ses the automation of many land, sea and air platforms in applications
such as mining, cargo handling, agriculture, underwater exploration and
exploitation, planetary exploration, coastal surveillance and rescue.

Field robotics is characterized by the application of the most advanced
robotics principles in sensing, control, and reasoning in unstructured and
unforgiving environments. The appeal of field robotics is that it is challenging
science, involves the latest engineering and systems design principles, and
offers the real prospect of robotic principles making a substantial economic
and social contribution to many different application areas.

In general, field robots are mobile platforms that work outdoors, often
producing forceful interactions with their environments and without human
supervision. Many examples and other details about field robotics can be
found at [1].

Field robotics is as much about engineering as it is about developing ba-
sic technologies. While many of the methods employed derive from other
robotics research areas, it is the application of these in large scale and de-
manding applications which distinguishes what can currently be achieved in
field robotics.

The autonomous navigation in a vineyard belongs to the category of the
outdoor navigation that is one of the most challenging application of field
robotics. In fact it has been described in many works already in the 90s.
In particular there exists a work of Amit Singhal [2] that in 1997 identifies
three main sub-problems relative to the unmanned outdoor navigation: the
unstructured environments, moving obstacles and multiple sensors. Obviou-
sly the moving obstacles and the multiple sensors are also problems for the
indoor autonomous navigation but in a less accentuated manner. The majo-
rity of the known techniques and algorithms in robotics are created for indoor
scopes, thus adopting them for outdoor tasks is not simple and requires the
usage some tricks since there are a lots of uncertainties and noise due to the
environment.
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(a)

(b)

Figura 2.2: Examples of a real vineyard and a rough terrain; (a) illustrates a common
Italian vineyard (b) shows the irregularity of the terrain

2.2.1 Unstructured environments

For what concerns the unstructured environments, our robot has to work in
vineyards that even if they are different in each geographical zone always
maintain a similar skeleton: the vines are disposed in straight lines that have
a fixed separation distance among them, the vines belonging to the same line
are equidistant and often, in a vineyard, there are chunks of lines that share
the same length. Some examples of real vineyards can be seen in the 2.2.
Thus, we dont have a lack of structure, but we must note that the described
structure is very repetitive and this represent a drawback especially during
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navigation tasks. In fact, its harder for the robot to localize itself in points
of the vineyard which are very similar to others. Furthermore, if on one
hand we have an almost fixed structure on the other we have the presence of
some instability factors such as the ground, the weather and the vegetative
state of the environment. The ground problem is one of the most difficult
to solve due to its high variability. Indeed, the terrain is bumpy (see Figure
2.2b) and its consistency changes based on the geolocation and the weather
so it affects always differently the movements of the robot. In particular
it influences the slippage of the wheels, that increases the unreliability of
the wheel encoders acquisitions and it makes the robot platform wobble that
increments the noise of the measurements coming from the sensors fixed on it
(except for the GNSS). The vegetative state of the environment changes with
the seasons and can completely transform the aspect of it. During the late
autumn and the winter, the nature is bare, the vine plants havent leaves and
the ground has few grass and weeds. Instead during the others months, the
surroundings are green, so the vines are full of leaves and in certain periods
are also full of grapes while the terrain presents a lot of grass. Obviously in
this period many maintenances are done to make the vineyard clean and to
permit to work in it, but often the result is approximately clean and so many
obstacles remain. The problem created by the vegetation of the vineyard its
a visibility problem for the robot. In fact, the presence of leaves and weeds
near the plants increases the size of the obstacles and make them less definite
(its harder to identify the single vines) to the robots eyes. Furthermore, if
there are some high weeds (at least as high as the LIDAR sensor level), they
become new obstacles for the robot and makes the autonomous navigation
more difficult (they mislead the planner when it draws the path). Finally, the
weather impact is the more relative, since obviously the robot is expected
to work with acceptable atmospheric conditions, thus no rainfall and not
too much wind. Nevertheless, the weather, also when it is acceptable, can
influence the satellite reception or the LIDARs acquisitions quality, thus in
general the accuracy of the sensors.

2.2.2 Moving obstacles

Then we talk about the presence of moving obstacles and it is clear that in our
case this problem is the one that is the most similar to indoor navigation.
For many unmanned outdoor robots, the scenario is completely different
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from our one, i.e. autonomous cars, and the moving obstacles represent a
very sensitive issue. However, in all scenarios the problem is faced with
robust and, sometimes complex, local planner, thus planning algorithm that
are designed to reacts in real time to unexpected changes. Thinking to our
scenario there are moving obstacles when it happens that a living being
hinds the path that the robot is following. This is a quite rare case in a
vineyard since it doesnt guest much animals and humans are not expected
to be present in front of the robot while it runs. These kind of events are
even more probable in an indoor scenario. What can happen in our case is
that the atmospheric conditions create some new unexpected obstacles, i.e.
the wind can carry some small objects.

2.2.3 Multiple sensors

Finally, the multiple sensors problem. First of all, we have to make a brief
explanation of what we mean when we talk about this problem. In fact, in
the literature there exists a clear distinction between multi-sensor integration
and sensor fusion. The differences between these two has been well explained
in a work of Wilfried Elmenreich [3] and we summarize it here in the 2.3.

In our work we will always refers to sensor fusion and for this reason we
report the definition given by Elmenreich. Sensor Fusion is the combining of
sensory data or data derived from sensory data such that the resulting in-
formation is in some sense better than would be possible when these sources
were used individually. Another definition of sensor fusion can be found in
the article of Kam et al. [4], but its more mathematical and so we prefer to
not bring it here. Now that we have a definition, we can start explaining why
the sensor fusion problem is adapt to our scenario and what are the issues
in it. Looking at the definition of Elemenreich is simple to understand that
sensor fusion is needed to improve the accuracy of the state estimation of a
robot. In fact, the simultaneous usage of multiple sensors allows the robot
to have a more complete knowledge of the environment and so it enriches
its internal world representation. Robots differently from humans dont need
a global vision of the surrounding environment, but they need the informa-
tion necessary to complete the tasks for which they are designed. Thus, it
is important to choose the right sensors to collect only interesting data (we
explain our choices in the chapter 4), in the case of mobile unmanned navi-
gation and especially in our case is fundamental to have more sensors. There
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Figura 2.3: Block diagram of sensor fusion and multi-sensor integration

are many reasons of this need and some of them can be retrieved in the
problems that we already described. We can say that the multiple sensors
problem is, in part, a consequence of the other two, since it belongs to the
solutions of them. Thus, solving this problem means also to solve a portion
of the others. In general, the advantages that sensor fusion can leads to are
the following:

• Robustness and reliability: Multiple sensor suites have an inherent re-
dundancy which enables the system to provide information even in case
of partial failure.

• Extended spatial and temporal coverage: One sensor can look where
others cannot respectively can perform a measurement while others
cannot.

• Increased confidence: A measurement of one sensor is confirmed by
measurements of other sensors covering the same domain.

• Reduced ambiguity and uncertainty: Joint information reduces the set
of ambiguous interpretations of the measured value.
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• Robustness against interference: By increasing the dimensionality of
the measurement space (e.g., measuring the desired quantity with op-
tical sensors and ultrasonic sensors) the system becomes less vulnerable
against interference.

• Improved resolution: When multiple independent measurements of the
same property are fused, the resolution of the resulting value is better
than a single sensors measurement.

There exist many methods that face the sensor fusion problem and based on
the approach they give a different mathematical definition of the problem.
Among all the approaches there are three types that have been mostly used
in the last few years, thanks to their performance and reliability. These are
two Bayesian approaches: one Gaussian, the Kalman filter and one non-
parametric, the Particle filter; and the graph-based approach. In our work
we will test all these and in the end we will combine two of them in our
proposed solution. The differences between these types of state estimation
techniques and their description is explained in chapter 3 3. After this brief
digression on the possible solutions to the sensor fusion problem, we can
resume explaining what are the intrinsic issues of using more sensors. A
first and basic consideration is that every real sensor is affected by some
noise, so it provides measurements containing an error. Usually this error is
composed by two parts: one expected and one unexpected or unpredictable,
using more technical words they are, respectively, the statistical bias and
the standard deviation. For all commercial sensors there exists a descriptive
data-sheet in which the value of the expected error is specified, since its
an error that is intrinsic of the sensor for construction reasons. Thus, the
knowledge of the bias can be exploited, with a simple post processing, to have
better measurements in the state estimation. Instead, it remains unknown
the unexpected part of the error since its dependent from external factors,
in our case the ones coming from the outdoor environment, and thus it has
to be identified and reduced in real-time. In order to notice the entity of the
unexpected error is fundamental to have more sources of data which provide
an inherent measurement, thus more sensors collecting information on the
same domain, but from a different point of view. Its consequent that the
redundancy is a very important feature for sensor fusion, obviously in the
convenience limits. In fact, Its implicit that it is not meaningful to have too
much sensors measuring the same variable both for the economic side and for
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the computational complexity side. Integrate and merge acquisitions coming
from different sources is a very hard work since all the differences have to
be uniformed. What changes between the various sensor is: the frequency
with which they acquire data, the unit of measure and their uncertainty.
The amount of uncertainty is the most influent factor for the greatness of
a sensor fusion system, indeed there exists a well-known work of Fowler
[5] in which he comments the military systems and in particular he spends
some words about the usage of multiple sensors. He says: Massaging a lot
of crummy data doesnt produce good data; it just requires a lot of extra
equipment and may even reduce the quality of the output by introducing
time delays and/or unwarranted confidence. Thus, it is fundamental to have
sensors that provide good quality data and for this aim it is often necessary
to calibrate them before start executing the desired tasks. The importance
of the calibration phase should not be underestimated, especially for certain
type of sensors which otherwise produce harmful data. In case where its not
possible to successfully complete this phase it is better to discard at all the
information coming from the interested sensors.

In outdoor environments the sensors used for the planar navigation must
be able to perceive the robot movements and the obstacles. The clearer is
the data acquired the simpler is the localization and thus the navigation of
the robot. For these reasons the sensors, usually, adopted are: GPS, wheel
encoders, IMU (gyroscope, magnetometer, accelerometer) and laser range
finders. The GPS sensor is very important for outdoor robot, it allows to
have a real geolocation and thanks to the the last year improvement it is also
able to provide precise measure through the RTK adjustments. The curse
of the GPS is always the unreliability since it depends from the satellite
reception. So, building systems that are heavily based on the GPS work is
never a good choice, even in case like our one in which there is no signal
reflection problem and there are not very high barriers. Furthermore, the
GPS (without RTK correction) also suffers of multiple paths problem, thus
in the vineyard it can leads to jump among different lines. The wheel encoders
are really precise in the measurements, since they are internal sensor, but the
problem here is, as we stated above, the wheels slippage. This latter has a
different influence depending on the kinematic model of the robot (wheels
disposition). The gyroscope and the accelerometer are highly influenced by
the robot stresses due to the irregularity in the terrain. The magnetometer is
a very delicate sensors, in the sense that it is really sensitive to more factors:
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the geolocation, the presence of magnetic distortion due to metals or cables
around it. Finally the LIDAR is often quite stable, but it is measurement
depends on the robot platform inclination and thus it is influenced by the
rough ground. Further it has also some influence by the weather that we
already cited.

2.2.4 Simulation problems

Simulation is the imitation of the operation of a real-world process or system
over time; in robotics it corresponds to a software able to reproduce as real
as possible the robot and its working environment. This means to reproduce
all the physical behaviors of each component of the desired world and in par-
ticular of the robot model. Furthermore, thanks to the growing technologies
in computer graphics, the simulators are also able to show graphically what
is happening during the tests.

On the other hand, reproducing graphically and physically an entire en-
vironment is a very complex operation and thus the simulator results to be
a very heavy software respect to the computational power of common PCs.
The weight of a simulation depends on the quantity and the quality of the
objects that have to be reproduced and based on these values the simulation
is more or less flowing.

In our thesis we need to simulate both the vineyard and the GRAPE
robot. In particular the simulation of the vineyard is not a simple task
due to its high variability. Indeed the terrain and the plants have not a
constant shape, thus reproducing them with a 3D model introduces a relevant
approximation error. In addition, it is not possible to reproduce the weather
condition which another variability factor of the environment. We can assert
that, the simulated environment is always a simpler approximation of the
reality and in this scenario the approximation is even higher with respect
to other scenarios. Despite these approximations the models representing
the outdoor environment are very complex, both physically and graphically,
thus they can lead to some fluency problem during the simulation or to
inconsistency problem (if the physical model has some lacks).
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Figura 2.4: the "Dassie" prototype

2.3 Other similar projects

In the last years in the agricultural robotics is rapidly increasing the number
of unmanned robots. We report here some examples of other projects that
like our one have to deal with the field robotics problem. In particular we
describe robots that has been developed for the vineyard work. Almost all
are not already in commerce and in general we don’t have access to much
information about their navigation systems.

The first example of a similar robot is the one developed in SouthAfrica
by a collaboration between the CSIR (Council for Scientific and Industrial
Research) and the Stellenbosch University. The aim of this project is to
create a cost-effective platform to inspect and monitor horticultural crops
on local farms. The robot prototype is called Dassie 2.4, is quite agile and
can easily move around in the vineyard. A few sensors have been fixed to
the platform and include a laser (LIDAR) scanner as well as high definition
cameras facing to the front and sideways. The robot can also pull an electro-
magnetic induction sensor behind it to be able to map soil differences. All
measurements that it acquire are streamed to an online computer able to pro-
cess the information. After the prototype development it has been tested in
a vineyard and thus the sensors have been configured to estimate grape yield
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Figura 2.5: Vinbot robot prototype

and to monitor plant growth and canopy health. Currently, it is able to navi-
gate autonomously through the vineyard, using CSIR-developed data-sensor
fusion techniques to combine the data from the different sensors. Using the
CSIR-designed data-fusion algorithm, it is also able to perform path plan-
ning, obstacle avoidance and lane following. Unfortunately we don’t have
information about the sensor fusion algorithm and the navigation system
structure, thus we cannot compare our intuitions with their ones.

The second example that we report is another vineyard robot built under
an European project: VinBot.

The VinBot project is a European project: "Autonomous cloud-
computing vineyard robot to optimise yield management and wine quality"
in which there is an all-terrain robot that monitors vineyard criteria essen-
tial to successful yield management by accurately estimating, by means of
computer vision: the quantity of leaves, the quantity of fruit and the grapes
exact location on the vine.

The VinBot consists of an autonomous wheeled mobile robot based on
the Robotnik platform Summit XL HL. See Figure 2.5.

It mounts:

• a Kinect V2 RGB-D device for image and 3D scan
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Figura 2.6: Vinbot navigation architecture

• a RTK-DGPS antenna for high accuracy geo-localization

• two lasers Hokuyo 30m outdoor sensors (one for navigation purposes,
the second for plant 3d scanning)

• a small computer for basic computational functions running ROS

• a dual interface communication system using Wi-Fi and Radio

Looking at the navigation system it proposes an hybrid reactive/waypoint
based navigation architecture. It makes use of a laser range finder and RGBD
device to perform reactive row following and obstacle avoidance, while it
can make use of other reactive behaviors or GPS waypoint navigation for
changing from row to row or field to field, thus supporting different levels of
automation. In particular the hybrid architecture implements a high level
planner able to receive and store a sequence of waypoints or reactive actions
from an external HMI (Human Machine Interface). The reactive actions
are preset and are: follow the right/left row, follow the 2 rows (center),
turn to the right/left row, turn in-site 180o. The planner is implemented
through ROS actionlib stack and provides the waypoints and the reactive
actions through two different action servers. The structure is described in
2.5. Then, the VinBot proposal implements the localization of the robot
through the ROS package robot_localization, that we will explain the next
chapter. Thanks to this package they obtain a localization by merging the
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wheel odometry the IMU measurements and the GPS data. They show and
discuss their navigation results in this paper [6].

In the chapter 4 we illustrate our navigation system, there it can be
observed the different choice respect to the VinBot solution.



3.
Relevant background and tools

In this chapter we describe as clearer as possible the methods that we will
exploit in our solution and the theoretical background necessary to under-
stand them. Since this thesis belongs to an applicative field such as the field
robotics in which there is an infinite quantity of different scenarios, we don’t
have a pure state of the art, but we have a set of tools that are currently
adopted in the majority of the cases (similar to our one) and that for the
specific task that each of them solve, they are one of the most known solu-
tions. Thus, we will present them through their real implementation in order
to be specific in preparation to the next chapters. Going in a logic sequence,
we analyze as first the techniques that face the odometry estimation with
the sensor fusion, describing the robot_localization implementation and the
ROAMFREE framework. Then, we illustrate the methods able to solve the
SLAM problem referring in particular to Gmapping implementation, but also
mentioning different approaches such as KartoSLAM and Google’s Cartogra-
pher. Finally, we describe the localization approach explaining the most used
algorithm and tool, AMCL.

3.1 Background

Since the tools that we report have shown great performance in solving diffe-
rent and difficult applied problems, the background that stays behind them is
almost a state of the art for mobile robot navigation. In fact, we explain the
concept of state estimation and consequently the various approaches which
try to solve it that have emerged in the recent years, such as the Kalman
filters, the particle filters and the graph-based filters.
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3.1.1 State estimation

In the previous chapter we analyzed the general problems of the outdoor un-
manned navigation adapting some of them to our specific case. In particular
we showed how the problems relative to multiple sensors are very important
in our case and influence the state estimation. Now we go one step further
by describing with more details the whole state estimation since it is funda-
mental in order to make the robot navigate autonomously. We describe the
state estimation as the ensemble of two parts: the first regards the odometry
estimation while the second depends on the aim of the robot, that in our
case can be the mapping of the environment or the localization for the na-
vigation in a known map. These two parts are strictly linked, in particular
the second needs the first. Technically speaking the sensor fusion is present
in both the parts, but in two different ways. In fact, in the first part all
the sensors that give information about the movement of the robot are taken
into account, thus wheel encoders, gyroscope, gps etc., instead in the second
part the merging is between the estimated odometry and the laser acquisi-
tions. If the estimated odometry is erroneous the second part has a more
difficult work and very often, if not always, this means to have worst results.
Thus, the odometry estimation is crucial in order to obtain good results, in
our case this means accurate maps and a precise localization. Furthermore,
the complex is the scenario the higher is the importance of the estimated
odometry.

In the previous chapter we outlined the existence of three types of ap-
proaches for the state estimation, these are the one representing the basis
for the methods that solve the two parts that we just mentioned. Thus, be-
fore explaining these methods we illustrate the basic concepts of the three
approaches.

3.1.2 Bayesian approaches

The Bayesian approaches are the first important category for the theory of
the state estimation in robotics. Obviously, they make usage of the Bayes
statistic principles that can be found in chapter 2 of the this book [7]. In
general all the approaches belonging to this category start their reasoning
from the belief definition. The belief is the posterior of the state and thus is
defined by the formula

bel(xt) = p(xt|z1:t, u1:t) (3.1)
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This posterior is the probability distribution over the state xt at time t,
conditioned on all past measurements z1:t (sensor acquisitions) and all past
controls u1:t (robot control inputs). This definition include also the measure-
ment zt, but it is not always convenient to wait for this measurement before
estimate the state, thus there exists another definition of the belief

bel(xt) = p(xt|z1:t−1, u1:t) (3.2)

In the probabilistic filtering this distribution is called prediction, due to the
fact that bel(xt) predicts the state at time t based on the previous state
posterior before incorporating the measurement at time t. Starting from this
definition we can obtain the bel(xt) by applying a step, known as correction
or measurement update.

Bayes filter

The first type of filter we analyze is the most simple, the Bayes filter. It com-
putes the belief in a recursive way, thus the bel(xt) is computed using bel(xt−1)

along with the most recent control ut and the most recent measurement zt,

bel(xt) = ηp(zt|xt)

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (3.3)

where η is a normalization term. This equation can be obtained starting from
(3.1) thanks to the Bayes rule and two assumptions: (i)the states follow a
first-order Markov process, p(xt|x0:t−1) = p(xt|xn−1); (ii)the observations are
independent of the given states, i.e. p(zt|x0:t, z1:t, u1:t) = p(zt|xt).

The filter can be described more clearly through the pseudo-algorithm
reported below. It can be observed that it is composed of two steps, the pre-
diction and the correction. In the prediction bel(xt) is computed integrating
the prior belief over state xt−1, and the probability that control ut induces
a transition from xt−1 to xt. Instead in the correction or update step the
bel(xt) just computed is multiplied by the probability the measurement zt
may have been observed and since this product can result greater than 1, it
is normalized with the parameter η. The initialization of the belief, bel(x0),
is necessary to make the algorithm start and it can be done with certainty if
it that value is known or it can be generated with a uniform distribution (or
a different one) if it is unknown (or partially known).

The problem of this algorithm is the complexity, in fact the presence of
an integral is a bottleneck and further the product in the update state can
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Algorithm 1 Bayesian filtering
function BayesFilter(bel(xt−1), ut, zt)

for all x do
bel(xt)←

∫
p(xt|ut, xt−1)bel(xt−1)dx

bel(xt)← ηp(zt|xt)bel(xt)

end for
return bel(xt)

end function

Algorithm 2 Kalman filtering
function KalmanFilter(µt−1,Σt−1, ut, zt)

µt ← Atµt +Btut

Σt ← AtΣt−1A
T
t +Rt

Kt ← ΣtC
T
t

(
CtΣtC

T
t +Qt

)−1

µt ← µt +Kt (zt − Ctµt)

Σt ← (I −KtHt) Σt

return µt,Σt

end function

result very complex. Thus, a classical Bayes filter can be used only for very
simple problems in which the state space is very limited, since in these cases
the integral can be reduced to a finite sum.

Kalman filter

The Kalman filter (KF) is the first practical implementation of the Bayes
filter. It was invented by Rudolph E. Kalman in the 1960. It try to transform
the bayesian filter formulation in a efficient one, deleting the integral and
putting it in a closed form. To do this, It assumes the beliefs are Gaussian:
At time t, the belief is represented by the the mean µt and the covariance
Σt. In addition to the Markov assumptions there are other three properties
that are needed to treat the beliefs as Gaussian: (i) the states are linear,
xt = Atxt−1 + Btut + ϵt where At and Bt are matrices having dimension
according to the ones of the state vector xt and control vector ut, while ϵ is a
Gaussian noise; (ii) the measurement probability is linear in its arguments,
zt = Ctxt + δt, where Ct is matrix and δ a Gaussian noise; (iii) bel(x0) is
normally distributed.
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Algorithm 3 Extended Kalman filtering
function ExtendedKalmanFilter(µt−1,Σt−1, ut, zt)

µt ← g(ut, µt−1)

Σt ← GtΣt−1G
T
t +Rt

Kt ← ΣtH
T
t

(
HtΣtH

T
t +Qt

)−1

µt ← µt +Kt (zt − h(µt)

Σt ← (I −KtCt) Σt

return µt,Σt

end function

Given all the assumptions the Kalman filter can be formulated in a clo-
sed form that we report with a pseudo algorithm. The demonstration of the
listed formulae can be found at [7]. Again we have a two steps filter. The
differences respect to the purely Bayes filter are that the beliefs are substi-
tuted by the mean, µt, and the covariance Σt that are predicted in the first
two lines by including the new control ut and updated in the remaining ones
by considering the new measurement zt. Another news is represented by the
variable Kt that is known as Kalman gain and specifies the degree to which
the measurement is incorporated into the new state estimate.

Thanks to its matrix formulation the Kalman filter can be solved in a
closed form and thus results efficient. Instead, it suffers for what concern the
generality, in the sense that very often the assumptions (i) and (ii) are too
strong, thus far from the reality and so it cannot be applied in many real
cases. For this reason it has been evolved to an Extended version, so EKF.

Extended Kalman Filter

The EKF solve the problems of the KF by replacing the linear predictions
with their nonlinear generalizations. Moreover, EKFs use Jacobians Gt and
Ht instead of the corresponding linear system matrices At, Bt, and Ct in
Kalman filters. The Jacobian Gt corresponds to the matrices At and Bt,
and the Jacobian Ht corresponds to Ct. Thus it maintain the computational
efficiency and the simplicity of the KF while it adds the applicability to many
cases, it results robust also in for unexpected problems (problems that violate
the underlying assumptions). We report here the pseudo algorithm, just for
simplify the comparison with the standard KLF, but we then explain all the
passages in section 3.3.1 where it has a real implementation.
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The EKF main limit is that it approximates state transitions and measu-
rements using linear Taylor expansions [8] . In virtually all robotics problems,
these functions are nonlinear. The goodness of this approximation depends
on two main factors. First, it depends on the degree of nonlinearity of the
functions that are being approximated. If these functions are approximately
linear, the EKF approximation may generally be a good one, and EKFs may
approximate the posterior belief with sufficient accuracy. However, someti-
mes, the functions are not only nonlinear, but are also multi-modal, in which
case the linearization may be a poor approximation. The goodness of the
linearization also depends on the degree of uncertainty. The less certain the
robot, the wider its Gaussian belief, and the more it is affected by nonlinea-
rities in the state transition and measurement functions. In practice, when
applying EKFs it is therefore important to keep the uncertainty of the state
estimate small. We also note that Taylor series expansion is only one way
to linearize. In fact, there exist other two approaches that have demonstra-
ted to lead to better results. One is the Unscented Kalman filter (UKF),
which probes the function to be linearized at selected points and calculates
a linearized approximation based on the outcomes of these probes. Another
is known as moments matching, in which the linearization is calculated in a
way that preserves the true mean and the true covariance of the posterior
distribution (which is not the case for EKFs).

Particle filter

An alternative to the Kalman filters (in general to Gaussian filters) are non-
parametric filters. These filters do not rely on a fixed functional form of the
posterior, such as Gaussians. Instead, they approximate posteriors by a finite
number of values that are samples of the real distribution (state space). The
number of parameters used to approximate the posterior can be varied. The
quality of the approximation depends on the number of parameters used to
represent the posterior. As the number of parameters goes to infinity, non-
parametric techniques tend to converge uniformly to the correct posterior
(under specific smoothness assumptions). Some nonparametric Bayes filters
rely on a decomposition of the state space, in which each such value corre-
sponds to the cumulative probability of the posterior density in a compact
subregion of the state space. Others approximate the state space by random
samples drawn from the posterior distribution. In particular, we explain a
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method belonging to this latter category, called particle filter.
The particle filter is a nonparametric implementation of the Bayes filter,

thus it start from the same belief definition, but it approximate the posterior
distribution by using a finite number of parameters, the particles. The key
idea of the particle filter is to represent the posterior bel(xt) by a set of
random state samples drawn from this posterior. 3.1 illustrates this idea.
Obviously, this representation is an approximation of the real distribution,
but being drawn from the posterior it is able to represent a much broader
space of distributions.

The particles are denoted as

Xt = x
(1)
t , x

(2)
t , ..., x

(M)
t

where M is the finite number of particles (usually large). Each particle x
(m)
t

(with 1 ≤ m ≤ M ) is a concrete instantiation of the state at time t, thus
it is a hypothesis about what the true world state may be at time t. In
some implementations M is a function of t or of other quantities related to
the belief. Thus the belief bel(xt) is approximated by the set of particles Xt.
Ideally, the likelihood for a state hypothesis xt to be included in the particle
set Xt shall be proportional to its Bayes filter posterior bel(xt):

x
(m)
t ∼ p(xt|z1:t, u1:t) (3.4)

As a consequence of (4.23), the denser a subregion of the state space is
populated by samples, the more likely it is that the true state falls into this
region. This property should hold only for M →∞, but in practice this can
approximated drawing the particles from a slightly different distribution and
using a not too small M (i.e. M ≥ 100).

Just like all other Bayes filter algorithms, the particle filter algorithm
constructs the belief bel(xt) recursively from the belief bel(xt−1) one time
step earlier. Since beliefs are represented by sets of particles, this means
that particle filters construct the particle set Xt recursively from the set
Xt−1. The most basic variant of the particle filter algorithm is shown in
the Algorithm 4. The input of the algorithm are the particles Xt−1, the
most recent control ut and measurement zt. In the first cycle the algorithm
constructs the temporary set X which is reminiscent (but not equivalent)
to belt. In this cycle the first step generates a hypothetical state x

(
tm) for

time t based on the particle x
(
t−1m) and the control ut. The m apex of the

sample indicates that it is generated from the m-th particle in Xt−1. The
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Algorithm 4 Particle filtering
function ParticleFilter(Xt−1, ut, zt)
X t ← Xt ← ∅
for all m := 1 to M do

sample x
(m)
t ∼ p(xt|ut, x

(m)
t−1)

w
(m)
t ← p(zt|x(m)

t )

X t ← X t + ⟨x(m)
t , w

(m)
t ⟩

end for
for all m := 1 to M do

draw i with probability ∝ w
(i)
t

add x
(i)
t to Xt

end for
return Xt

end function

sampling is done from the distribution p(xt|ut, x
(m)
t−1). Then the second step

calculates for each particle x
(m)
t its importance factor (weight) w

(m)
t , which

is the probability of zt under the particle x
(m)
t . Finally the third step adds

iteratively the new samples with the correspondent weights to the set X .
In the second cycle the algorithm implements the resampling or impor-

tance resampling. Thus it draws with replacement M particles from the
temporary set X t. The probability of drawing each particle is given by its
importance weight. Resampling transforms a particle set of M particles in-
to another particle set of the same size. By incorporating the importance
weights into the resampling process, the distribution of the particles chan-
ge: whereas before the resampling step, they were distributed according to
bel(xt), after the resampling they are distributed (approximately) according
to the posterior bel(xt) = ηp(zt|x(m)

t )bel(xt). In fact, the resulting sample set
usually possesses many duplicates, since particles are drawn with replace-
ment and the particles that are not contained in it tend to be the ones with
lower importance weights.

The importance resampling is the main feature of the particle filters, in
fact it allows to draw particles from a known distribution, called proposal
distribution, and iteratively update them according to their relative weights
until the set of sample approximate enough correctly the target distribution,
bel(xt). The weight of a particle represent the similarity between the proposal
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(a)

(b)

Figura 3.1: Illustration of importance resampling in particle filters: (a) Instead of
sampling from f directly, we can only generate samples from a different density, g.
Samples drawn from g are shown at the bottom of this diagram. (b) A sample of f is
obtained by attaching the weight f(x)/g(x) to each sample x.

and the target function computed in it. Thus

w
(m)
t =

f(x
(m)
t )

g(x
(m)
t )

(3.5)

where f is the target distribution and g is the proposal one. The resampling
step is easily synthesized in the Figure (3.1).
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The approximation errors in particle filters are unavoidable since the set
of sample is a discrete distribution while the target distribution is a continuos
one. In particular, there are four complimentary sources of approximation
error, each of which gives rise to improved versions of the particle filter.

1. The first approximation error relates to the fact that only a finite num-
ber of particles are used. This introduces a systematic bias in the
posterior estimate. Thus, it is fundamental to use an high number of
particles M in order to limit the degree of approximation.

2. A second source of error in the particle filter relates to the randomness
introduced in the resampling phase. In particular, the resampling pro-
cess induces a loss of diversity in the particle population, which in fact
manifests itself as approximation error. Such error is called variance
of the estimator: Even though the variance of the particle set itself
decreases, the variance of the particle set as an estimator of the true
belief increases. Controlling this variance, or error, of the particle filter
is essential for any practical implementation.

3. A third source of error pertains to the divergence of the proposal and
target distribution. In fact, the more they are different the more the
algorithm must iterate to approximate the target. Thus, the efficiency
of the particle filter relies crucially on the match between the proposal
and the target distribution. If, at one extreme, the sensors of the robot
are highly inaccurate but its motion is very accurate, the target distri-
bution will be similar to the proposal distribution and the particle filter
will be efficient. If, on the other hand, the sensors are highly accurate
but the motion is not, these distributions can deviate substantially and
the resulting particle filter can become arbitrarily inefficient.

4. A fourth and final disadvantage of the particle filter is known as the
particle deprivation problem. When performing estimation in a high-
dimensional space, there may be no particles in the vicinity to the
correct state. This might happen because the number of particles is
too small to cover all relevant regions with high likelihood, but it is not
the only reason. In fact, also for M enough high during the resampling
there is a probability greater than zero (due to the random nature)
that all the particles near the true state are wiped out.
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In conclusion the particle filters performance strongly depends on the number
of particles used, that obviously is very difficult to be pre-estimated. Thus,
it is usually tuned during the experiments. In particular, the complex is the
state space the higher should be the number of particles.

3.1.3 Graph-based approaches

The development of graph-based approach in robotics starts in 1997 when
Lu and Milios [9] propose a graph-based solution to the SLAM problem. In
fact, in the recent years graph-based has been heavily applied to the SLAM
problem since it allows to formulate the problem in a very intuitive way.
As we will see better in the SLAM section, 3.4, the basic formulation using
a graph represent the robot poses as nodes while the landmark parametri-
zation builds the edge. Thus, if a landmark is visible from a certain pose,
then an edge is added between the two poses. The state estimation problem
is then formulated as a max-likelihood optimization over the built graph in
which the goal is to find the configuration of robot poses and landmarks
such that the joint likelihood of all the observations is maximum. The graph
structure allows to exploits many statistical tricks, especially regarding the
joint probabilities since the nodes connections impose the dependency and
independency of the variables. Common statistical graph based approaches
are the Bayesian networks (belief networks), the Markov networks and many
others [10]. The graph state estimation to be solved requires a large non-
linear, least-squares, optimization problem. For this reason the greatness
of the optimization method is very important for the efficiency and the ap-
plication of a graph-based algorithm. In fact, Graph-based approaches are
nowadays considered superior to conventional Bayesian solutions [11] , but
they needed some major advancements in sparse linear algebra [12] to beco-
me competitive from the point of view of computational complexity. For a
modern synthesis of these optimization methods see [13].

The advent of graph techniques in SLAM slightly changed the perspective
from the state estimation point of view: while filters typically model state
estimation as a recursive process performed measurement-per-measurement
and the state consists of the latest robot pose and all the landmarks, graph-
based approaches attempt to estimate the full robot trajectory, and thus a
(long) sequence of robot poses together with the landmark positions form
the whole set of measurements. This notion was already present in other
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approaches [14] which never found a robotics application due to the counter
intuitive structure. From the SLAM formulation the graph approach has
been generalized even further, considering hyper-graphs, called factor graphs
[15] that allows a more flexible graph building. We illustrate them in section
3.3.2. Thanks to this very generic graph many powerful tool for multi-sensor
fusion has been developed [16]. In particular we will explain in details a tool
called ROAMFREE that will solve for us the sensor fusion problem.

3.2 Odometry estimation

We just wrote about the importance of odometry estimation in complex
scenarios, thus also in our one. The odometryăis the use of data fromămotion
sensorsăto estimate change in position over time. It follows that the goal of
the odometry estimation is to estimate as well as possible the pose (position
and orientation) of the robot given the sensor acquisitions and the initial
pose of the robot in a certain time interval.

3.2.1 Odometry

The simplest method to compute the odometry is only numeric. The stan-
dard odometry estimates the distance travelled by measuring how much the
wheels have turned, thus it integrates the velocity measurements over the
time. The computation differs according to the number and the shape of
wheels mounted on the robot. The simplest case is a single freely rotating
wheel that, if considered with ideal conditions, implies to cover a distance
on the ground of 2πr for each rotation, where r is the radius of the wheel.
In practice, even the behavior of a single wheel is substantially more com-
plicated than this. In fact, there are many variable factors that can create
error, such as the wheels that are not necessarily mounted so as to be per-
pendicular, nor are they aligned with the normal straight-ahead direction of
the vehicle. In addition to these issues related to precise wheel orientation
and lateral slip, there can also be insufficient traction that leads to slipping
or sliding in the direction of the wheels motion, which makes the estimate of
the distance travelled imprecise. Then other factors arise due to compaction
of the terrain and cohesion between the surface and the wheel (as we stated
in Chapter 2).
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Figura 3.2: ICC identification

Each wheeled mobile robot (WMR) to be able to move must have a point
around which all wheels follow a circular course. This point is known as
the instantaneous center of curvature (ICC) or the instantaneous center of
rotation (ICR). In practice it is quite simple to identify the ICC because it
must lie on a line coincident with the roll axis of each wheel that is in contact
with the ground, see Figure 3.2. Thus, when a robot turns the orientation
of the wheels must be consistent and a ICC must be present otherwise the
robot cannot move.

A WMR can only moves on a plane and thus it has three degrees of
freedom represented by the three component of the pose (x, y, θ) where (x, y)

is the position and θ is the heading or orientation. The ability to have
complete independent control over all these three parameters depends on the
disposition and the number of wheels and usually mobile robots dont have
a complete control. Thus, they are obliged to perform complex maneuvers
in order to reach a desired pose (i.e. car parking). Referring to our case,
we now describe the type of kinematic of our robot, in order to understand
what are the motion that it can or it cannot do. Our robot moves with a
skid-steering kinematic that is a derivative of the differential drive kinematic.

3.2.2 Differential drive odometry

Differential drive is probably the simplest possible drive mechanism for a
ground contact mobile robot. Often used on small, low-cost, indoor robots
such as the TurtleBot [17] or Khepera [18], larger commercial bases such as
the Robuter [19] utilize this technology as well. As depicted in Figure 3.3 ,
a differential drive robot consists of two wheels mounted on a common axis,
thus parallel, controlled by separate motors.
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Figura 3.3: Example of differential drive robot

Figura 3.4: Differential drive robot

Consider how the controlling wheel velocities determine the vehicles mo-
tion. For each of the two drive wheels to exhibit rolling motion, the robot
must rotate around a point that lies on the common axis of the two drive
wheels. By varying the relative velocity of the two wheels, the point of this
rotation can be varied and different vehicle trajectories chosen.

At each instant in time, the point at which the robot rotates must have
the property that the left and right wheels follow a path that moves around
the ICC at the same angular rate ω, and thus

ω(R + l/2) = vr

ω(R− l/2) = vl,

where l is the distance along the axle between the centers of the two wheels,
the left wheel moves with velocity vl along the ground and the right with
velocity vr , and R is the signed distance from the ICC to the midpoint
between the two wheels. Note that vl , vr , ω, and R are all functions of
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time. At any instant in time, solving for R and ω results in

R =
l

2

(vl + vr)

(vr − vl)
, ω =

vr − vl
l

.

A number of special cases are of interest. If vl = vr , then the radius R is
infinite, and the robot moves in a straight line. If vl = −vr , then the radius
is zero, and the robot rotates about a point midway between the two wheels,
that is, it rotates in place. This makes differential drive attractive for robots
that must navigate in narrow environments.

For other values of vl and vr , the robot does not move in a straight line
but rather follows a curved trajectory about a point a distance R away from
the center of the robot, changing both the robots position and orientation.

The kinematic structure of the vehicle prohibits certain vehicle motions.
For example, there is no combination of vl and vr such that the vehicle can
move directly along the wheels common axis.

A differential drive vehicle is very sensitive to the relative velocity of the
two wheels. Small errors in the velocity provided to each wheel result in
different trajectories, not just a slower or faster robot. Differential drive
vehicles typically use castor wheels for balance. Thus, differential drive ve-
hicles are sensitive to slight variations in the ground plane. This limits their
applicability in non-laboratory environments.

To compute a robots position x in the idealized error-free case with a
velocity vector dx/dt, we use

x =

∫ tf

t0

dx

dt
dt,

where the motion takes place over a time interval t0 through tf . More
generally, for motion information from higher-order derivatives (such as ac-
celeration) we can integrate repeatedly to recover position. This also implies,
however, that errors in the sensing or integration process are manifested as
higher-order polynomials of the time interval over which we are integrating.
For discrete motions, where positional change is expressed by a difference
vector δi , we can compute the absolute position as

x =
∑

δi.

Let us explain with some details the odometry computation (Forward
kinematics) for differential drive robots.
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Figura 3.5: Differential drive robot motion from pose (x, y, θ) to (x′, y′, θ′)

Suppose that the robot is at some position (x, y) and facing along a line
making an angle θ with the x axis 3.4. Through manipulation of the control
parameters vl and vr , the robot can be moved and take on different poses.
Since vl and vr and hence R and ω are functions of time, it is straightforward
to show that if the robot has pose (x, y, θ) at some time t, and if the left and
right wheels have contact velocities vl and vr, respectively, during the period
t→ t+ δt, then the ICC is given by

ICC = (x−Rsin(θ), y +Rcos(θ)),

and at time t+ δt the pose of the robot is given byx′

y′

θ′

 =

cos(ωδt) −sin(ωδt) 0

sin(ωδt) cos(ωδt) 0

0 0 1

x− ICCx

y − ICCy

θ

+

ICCx

ICCy

ωδt

 . (3.6)

Equation (3.6) describes the motion of a robot rotating a distance R about
its ICC with an angular velocity given by ω. See Figure 3.5.

By integrating (3.6) from some initial condition (x0, y0, θ0), it is possible
to compute where the robot will be at any time t based on the control
parameters vl(t) and vr(t), that is, to solve the forward kinematics problem
for the vehicle. In general, for a robot capable of moving in a particular
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direction θ(t) at a given velocity V (t),

x(t) =

∫ t

0

V (t)cos(θ(t))dt

y(t) =

∫ t

0

V (t)sin(θ(t))dt

θ(t) =

∫ t

0

ω(t)dt,

(3.7)

and for the special case of a differential drive vehicle,

x(t) =
1

2

∫ t

0

(vr(t) + vl(t))cos(θ(t))dt

y(t) =
1

2

∫ t

0

(vr(t) + vl(t))sin(θ(t))dt

θ(t) =
1

l

∫ t

0

(vr(t)− vl(t))(t)dt,

(3.8)

3.2.3 Skid-Steering odometry

The skid-steering kinematic (see Figure 3.6) is an evolution of the differential
drive, in the sense that it tries to maintain its simplicity while it is physically
a more robust model. With this motion model the robot requires slippage of
the wheels while it turns. Like differential drive, skid-steering leads to high
maneuverability [20][21] , and has a simple and robust mechanical structure,
leaving more room in the vehicle for the mission equipment [22][23]. In
addition, it has good mobility on a variety of terrains, which makes it suitable
for all-terrain missions. However, this locomotion scheme makes it difficult
to develop kinematic and dynamic models that can accurately describe the
motion. It is very difficult for the skid-steering kinematics to predict the exact
motion of the vehicle only from its control inputs. As a result, the kinematics
models with pure rolling and no-slip assumptions for non-holonomic wheeled
vehicles cannot apply in this case. Furthermore, other disadvantages are that
the motion tends to be energy inefficient, difficult to control, and the tires
tend to wear out faster [24]. Thanks to the work of Wang et al. [25] we can
give a coarse explanation of which are the mathematical differences with to
the differential drive model and how the skid-steering can be approximated
to it.

First of all we make three assumptions: (i) the mass center of the robot
is located at the geometric center of the body frame; (ii) the two wheels of
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Figura 3.6: Skid-Steering robot

each side rotate at the same speed (wl = w1 = w2 and wr = w3 = w4); (iii)
the robot is running on a firm ground surface, and four wheels are always in
contact with the ground surface.

Then consider the Figure 3.6 and the Equation (3.8). By deriving this
latter we obtain vx

vy
wz

 = f

[
wlr

wrr

]
, (3.9)

where v = (vx, vy) is the vehicle’s translational velocity with respect to its
local frame, wz is its angular velocity and r is the radius of the wheels.

When the robot moves we observe the presence of more ICRs: ICRl,
ICRr, ICRG that are respectively of the left-side tread, right-side tread,
and the robot body. We define the coordinates of the ICRs respect to the
local frame as (xl, yl), (xr, yr) and (xG, yG). All the treads share the same
angular velocity wz. Thus,

yG =
vx
wz

(3.10)

yl =
vx − wlr

wz

(3.11)
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yr =
vx − wrr

wz

(3.12)

xG = xl = xr = −
vy
wz

(3.13)

From Equations (3.8) to (3.11) the kinematics relation (3.7) can be
represented as: vx

vy
wz

 = Jw

[
wlr

wrr

]
, (3.14)

Where the elements of matrix Jw depend on the tread ICR coordinates:

Jw =
1

yl − yr

−yr yl
xG −xG

−1 1

 (3.15)

If the mobile robot is symmetrical, we can get a symmetrical kinematics
model (i.e., the ICRs lie symmetrically on the x-axis and xG = 0), so matrix
Jw can be written as the following form:

Jw =
1

2y0

 y0 y0
0 0

−1 1

 (3.16)

where y0 = yl = −yr is the instantaneous tread ICR value. Noted that
vl = wlr, vl = wrr for the symmetrical model, the following equations can
be obtained: 

vx =
vl + vr

2

vy = 0

wz =
−vl + vr

2y0

(3.17)

Noted vy = 0, so that vG = vx. We can get the instantaneous radius of the
path curvature:

R =
vG
wz

=
vl + vr
−vl + vr

y0 (3.18)

A non-dimensional path curvature variable λ is introduced as the ratio of sum
and difference of left- and right-sides wheel linear velocities [26] , namely:

λ =
vl + vr
−vl + vr

(3.19)
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Figura 3.7: Skid-Steering and differential drive equivalence

and we can rewrite Equation (3.16) as:

R = λy0 (3.20)

We use a similar index as in Mandows work [27], then an ICR coefficient χ

can be defined as:
χ =

yl − yr
B

=
2y0
B

, χ ≥ 1 (3.21)

where denotes the lateral wheel bases, as illustrated in Figure 3.6.
χ indicates the approximation from the differential drive ideal kinematic.

In fact, χ is equal to 1 when there is no slippage and thus when the model
corresponds to the ideal differential drive. Therefore, for instantaneous mo-
tion, there is kinematic equivalences between skid-steering and ideal wheel
vehicles. This means that the skid-steering can be approximated to the dif-
ferential drive and that the approximation can be done increasing the wheel
separation in the differential drive formulae as shown in Figure 3.7. This
approximation is very important, and we will exploit it in order to have a
simple but correct motion model in our final solution.
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3.3 Sensor fusion frameworks

In this section we illustrate two real tools that solve the sensor fusion problem
producing as output an filtered odometry.

3.3.1 Robot_Localization

The standard odometry estimation as already written, presents many pro-
blem and its simplicity it is not enough especially for real complex scenario.
The first alternative that we report can be found in the robot_localization
package [28]. This package is one of the most adopted tool for the sen-
sor fusion odometry estimation for its excellent tradeoff among performance,
complexity and reliability. it is an efficient solution that is built for the ROS
framework with a generic structure that can be configured for many different
cases. For these reasons it is widely adopted in the robotic community. It
performs state estimation in 3D space, allows for an unlimited number of sen-
sors, supports multiple standard ROS message types, and allows per-sensor
control of which message fields are fused with the state estimate. Another im-
portant feature is the continuos estimation, thus each state estimation node
begins estimating the vehicle state as soon as it receives a single measure-
ment, if there is a long period in which no data is received the filter continues
to estimate the robot state via an internal motion model. The type of sensors
that it supports are the odometry sources (encoders), the IMUs (gyroscope,
accelerometer, heading) and GPS sensors. Currently the package is compo-
sed of more ROS nodes (the ones we tried are better described in Chapter 4):
two state estimation nodes, one using exploiting UKF (Unscented Kalman
Filter) and the other EKF, plus another node for the GPS conversion. The
core node is the one implementing the Extended Kalman Filter (EKF) and
so we describe its logic.

Extended Kalman Filter oppure EKF node

The EKF formulation and algorithm is very known and can be found in the
theoretical background of many fields different from robotics. Here some
articles explaining it [29][30][31]. The final goal of the EKF is to estimate
the odometry. Thus, the process can be described as a nonlinear dynamic
system, with

xt = g(ut, xt−1) + ϵt, (3.22)
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where xt is the robots system state (i.e., 3D pose) at time t, g is a nonlinear
state transition function, and ϵt is the process noise, which is assumed to be
normally distributed. The 15-dimensional state vector, x, comprises the vehi-
cles 3D pose, 3D orientation, and their respective velocities and accelerations.
Rotational values are expressed as Euler angles.

x = (X, Y, Z, roll, pitch, yaw, Ẋ, Ẏ , Ż, ˙roll, ˙pitch, ˙yaw, Ẍ, Ÿ , Z̈)

Additionally, the sensors measurements have the form

zt = h(xt) + δt, (3.23)

where zt is the measurement at time t, h is a nonlinear sensor model that
maps the state into measurement space, and δt is the normally distributed
measurement noise.

The first stage in the algorithm, shown as equations (3.24) and (3.25), is
to carry out a prediction step that projects the current state estimate and
error covariance forward in time:

µt = g(ut, µt−1). (3.24)

Σt = GΣt−1G
T +R. (3.25)

In this interpretation, g is a standard 3D kinematic model derived from
Newtonian mechanics. The estimate error covariance, Σ, is projected via G,
the Jacobian of g, and then perturbed by Q, the process noise covariance.

Then the filter correction step is the following:

K = ΣtH
T
(
HΣtH

T +Q
)−1

. (3.26)

µt = µt +K (zt −Hµt) . (3.27)

Σt = (I −KH) Σt (I −KH)T +KQKT . (3.28)

The Kalman gain is calculated using the observation matrix, H, the mea-
surement covariance, R, and Σt. Then the gain is used to update the state
vector and covariance matrix. To promote filter stability by ensuring that Σt

remains positive semi-definite the Joseph form covariance update equation
(3.27) is exploited.

The standard EKF formulation specifies that H should be a Jacobian
matrix of the observation model function h. To support a broad array of
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sensors, Moore makes the assumption that each 15sensor produces measu-
rements of the state variables we are estimating. As such, H is simply the
identity matrix. A core feature of EKF node is that it allows for partial up-
dates of the state vector. This is critical for taking in sensor data that does
not measure every variable in the state vector, which is nearly always the
case. In practice, this can be accomplished through H. Specifically, when
measuring only m variables, H becomes an m by 15 matrix of rank m, with
its only nonzero values existing in the columns of the measured variables.

3.3.2 ROAMFREE

The name ROAMFREE stays for Robust Odometry Applying Multi-sensor
Fusion to Reduce Estimation Errors. Thus, as can be deducted, it is a tool
able to solve the sensor fusion problem and the odometry estimation, but it
could be used also for more extended scopes.

Framework Overview

It is a flexible and modular framework designed to deliver to mobile robo-
ts and unmanned vehicles developers (i) off-the-shelf position and attitude
tracking, (ii) intrinsic, extrinsic, and kinematic parameters self-calibration
capabilities. In ROAMFREE the information fusion problem is formulated
as a fixed-lag smoother whose goal is to track not only the most recent pose,
but all the positions and attitudes of the mobile robot in a fixed time win-
dow: short lags allow for real time pose tracking, still enhancing robustness
with respect to measurement outliers; longer lags allow for online calibration,
where the goal is to refine the available estimate of sensor parameters.

The core of ROAMFREE lies in a software module that keeps and up-
dates the probabilistic representation of the sensor fusion problem in terms
of a factor graph, composed of pose, sensor parameter nodes and sensor er-
ror models connecting them. Other modules, such as the outlier rejection
module, which detects and exclude incoherent sensor readings from the esti-
mation, and inference algorithms performing state estimation, operate upon
this representation. The factor graph allows to deal with an arbitrary num-
ber of multi-rate sensors, i.e., different sensors producing readings at different
rates, having non-constant frequencies of operation, and possibly producing
out-of-sequence data. The framework is completely independent from the
hardware of the robot, in fact it abstracts the real sensors with some general
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logic sensors which can be configured in order to correctly represent the real
ones. Each logic sensor is characterized by a parametric error model specific
for its domain. ROAMFREE is very modular and can be used with ROS.
Unfortunately, currently the public implementation of RF as a ROS node
is yet primitive and very unstable. For this reason in our solution we have
implemented the ROS node from scratch.

Factor graph filter

As anticipated the core of RF stays in the factor graph filter. We have writ-
ten about the basic concepts of graph-based approaches in 3.1.3 and we show
these approaches are really good for high-dimensional problem, such sensor
fusion. The graph represent the full joint probability of sensor readings gi-
ven the current estimate of the state variables, representing its factorization
in terms of single measurement likelihoods. The nodes in the factor graph
contain all the robot poses in a given time window, and the sensor calibra-
tion parameters, such as gains, biases, displacements or misalignments. The
factors represent measurement constraints: each factor is an hyper-edge and
connects multiple pose and calibration parameters nodes. Whenever a new
sensor reading is available a new factor instantiated according to the type of
the information source, and inserted into the graph and it is connected to
the pose and sensor parameter nodes required to evaluate the measurement
likelihood. The number of nodes to which the factor is linked depends on
its domain. Since the sensor fusion problem is formulated as a non-linear
optimization, an initial guess is needed for the new state variable. If the
sensor reading provides enough information, a prediction for the new robot
pose can be obtained based on the latest available estimate and on the sensor
reading itself. Otherwise, the measurement handling is delayed until such in-
formation becomes available. Moreover, as new pose nodes are inserted into
the graph, old ones have to be removed so that the length of the fixed-lag
window remains constant. This causes old factors to be removed as well. To
avoid the loss of information, old nodes are marginalized and an new factor
is inserted over their Markov blanket [32] in a way such that it is equivalent
to the lost edges, in the neighborhood of the current node estimates. The
filter usually estimates the pose by means of max-likelihood estimation over
the joint distribution, which can be efficiently done by means of non-linear
optimization algorithms. An example of a factor graph is shown in Figure
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Figura 3.8: An instance of the pose tracking factor graph with four pose vertices ΓW
O (t)

(circles), odometry edges eODO (triangles), two shared calibration parameters vertices
kθ and kv (squares), two GPS edges eGPS and the GPS displacement parameter S(O)

GPS .

3.8.
The advantages of the factor-graph formulation are manifold. First of

all, it is general and flexible with respect to the nature, and multiplicity,
of information sources; indeed, if we need to add a new sensor to the ar-
chitecture, this reduces to insert further edges into the pose-graph, once a
proper likelihood function has been defined for such measurement domain.
Second, it allows to apply non-linear optimization algorithms that are aware
of the manifold state variables belong to. Moreover, it allows to solve both
the offline parameter calibration and the real-time pose tracking problems;
the latter case indeed simply restricts the max-likelihood estimation, i.e.,
the non-linear optimization, to a subset of the robot poses. Finally, out-of-
sequence and delayed measurements do not constitute an issue, as it might
be the case in Bayesian approaches; they are simply associated to the proper
pose nodes, according to their timestamps.

Error models

As stated before RF is based on some generic logical sensors, each of which
is represented by its specific error model. All the error models starts from a
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common definition,
ei(t) = ẑ(t; x̂Si

(t), ξ)− z + η (3.29)

where ẑ(x) is a measurement predictor computed as a function of the incident
nodes, in particular x̂Si

(t) is the extended state for the sensor frame Si in
which are indicated the motion (velocity and acceleration), the position and
the orientation of the sensor respect to the world frame and ξ is the vector of
parameters relative to the sensor. Then, z is the actual sensor reading and
it is directly associated to the corresponding factor, finally η is a zero-mean,
Gaussian noise encoding measurement uncertainty. Equation (3.29) yields
the difference between the expected sensor reading given the robot state and
calibration parameters at time t, and the actual measurement produced by
the sensor. It can be observed that zero-mean error e(t) is obtained when
the prediction of the sensor reading matches the actual one.

The specific form of the measurement predictor ẑ(x) depends on the type
of measurement we are considering. The available measurement domains
are: (i) absolute position and/or orientation, (ii) linear and angular velocity
in sensor frame, (iii) acceleration in sensor frame, (iv) vector field in sensor
frame, (v) landmark pose with respect to sensor.

Each logical sensor implementation introduces a different set of parame-
ters ξ to model domain specific sources of distortion, bias or other quantities
which have to be known to evaluate the predictor. In addition, there is a
fundamental parameter for the logical sensors, the covariance matrix. In fact,
this parameter is the most incisive for the correct computation of the state
estimation. It indicate how much confidence the filter must put on a certain
measure, thus how much is expected to be good the sensor acquisition. Tu-
ning this parameter we can decide to give more importance to data coming
from certain sensors. Thus, based on the scenario and on the greatness of the
hardware you need to find the correct values in order to rely more on great
sensor and give lower importance to the bad ones. Sometimes, it can happen
that there is a sensor which is working perfect except for some instants in
which it provide very worst measurements. RF, as said before, implements
also an outlier rejection, in particular it implements a method called robust
kernel. This techniques allows to set a parameter which indicates what is the
threshold of acceptable values for a certain sensor (a kind of restrict domain).
When the threshold is overpassed the error model of the sensor pass from
quadratic to linear, thus the measurement is considered less respect the other
sensors data. Thanks to this method, when it happens a case like the one
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Figura 3.9: ROAMFREE estimation schema.

just mentioned, the outliers are less influent on state estimation and so they
do not cause big errors.

Optimizations

RF implements two optimization algorithms: Gauss-Newton and Levenberg-
Marquardt. In order to use them the sensor fusion problem must be refor-
mulated as a non-linear, weighted, least-squares optimization. A complete
schema of the RF functioning is shown in Figure 3.9

Consider the error function ei(xi, η) associated to the i-th edge of the
hyper-graph and defined as (3.29). Thus, ei is a random vector and its
expected value is approximated as ei(xi, η) = ei(xi, η)|η=0. Since ei can in-
volve non-linear dependencies with respect to the noise, its covariance Ση is
computed by means of linearization,

Σei = Ji,ηΣηJ
T
i,η|xi=x̃i,η=0 (3.30)

where Ji,η is the Jacobian of ei with respect to η evaluated in η = 0 and in the
current state estimate x̃i. Equation (3.30) shows the mathematical impact
of the sensors covariance Ση. In fact, being multiplied with the squared
Jacobian and it directly influences the error estimation. Then, A negative
log-likelihood function can be associated to each edge in the graph, which
stems from the assumption that zero-mean, Gaussian, noise corrupts the
sensor readings. Omitting the terms which does not depend on xi, for the
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i-th edge this function reads as,

L(xi) = ei(xi)Ωeiei(xi) (3.31)

where Ωei = Σ−1
ei

is the information matrix of the i-th edge. The solution
for the information fusion problem is given by the assignment for the state
variables such that the likelihood of the observations is maximum,

P = argmin
x

N∑
i=1

L(xi) (3.32)

It is possible to observe that this is a non-linear least-squares problem where
the weights are the information matrices associated to each factor. If a
reasonable initial guess for x is known, a numerical solution for P can be
found by means of the popular Gauss-Newton (GN) or Levenberg-Marquardt
(LM). Due to the mathematical complexity we do not report here the details
of the two algorithms.

3.4 Simultaneous Localization And Mapping (SLAM)

The objective of simultaneous localization and mapping (SLAM) is to build
a map and to locate the robot in that map at the same time. We should
clarify that for the SLAM problem, it does not matter if the robot moves
autonomously or is controlled by a human. The important thing is to build
the map and locate the robot correctly. The most basic way to locate a robot
is using odometry, but we have written in 3.2 the problem is that odometer
error accumulates as the robot moves. Eventually, the error is so large that
odometry no longer gives a good estimate of the state of the robot. Then
the robot must make observations of some references in the environment to
correct the odometer error, assuming the references are static. When the
robot returns to observe, these references can reduce the accumulated error.
The main work of the SLAM method is to correct the estimation of the
robot state and the map. On the other hand, the SLAM is a chicken-and-
egg problem because the robot needs a map to locate itself and the map
needs the localization of the robot to build a consistent map. Thus SLAM
methods must be recursive. Thus, the reason why the SLAM problem is so
difficult is because errors in robot and map states affect each other, producing
inconsistent maps. In the following section, we will give an overview of several
SLAM methods.
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From a probabilistic perspective, there are two main forms of the SLAM
problem, which are both of equal practical importance. One is known as
the online SLAM problem: It involves estimating the posterior over the
momentary pose along with the map:

p(xt,m|z1:t, u1:t) (3.33)

Here xt is the pose at time t, m is the map, and z1:t and u1:t are the measu-
rements and controls, respectively. This problem is called the online SLAM
problem since it only involves the estimation of variables that persist at time
t. Many algorithms for the online SLAM problem are incremental: they di-
scard past measurements and controls once they have been processed. The
second SLAM problem is called the full SLAM problem. In full SLAM, we
seek to calculate a posterior over the entire path x1:t along with the map,
instead of just the current pose xt:

p(x1:t,m|z1:t, u1:t) (3.34)

The difference between the two is that full SLAM computes the state only
one time while online SLAM compute it incrementally.

There exist many methods implementing the full or the online SLAM,
but in general every SLAM method must do three tasks: (i) Landmark de-
tection. The robot must recognize some specific objects in the environment;
they are called landmarks. It is common to use a laser range finder or ca-
meras to recognize landmarks, such as corners, lines, trees, etc. (ii) Data
association. Detected landmarks should be associated with the landmarks
on the map. Because landmarks are not distinguishable, the association may
be wrong, causing large errors on the map. Besides, the number of possible
associations can grow exponentially over time; therefore, data association is
a difficult task. (iii) State estimation. It takes observations and odometry to
reduce errors. The convergence, accuracy, and consistency of the state esti-
mation are the most important properties. Thus, the SLAM method must
maintain the robot path and use the landmarks to extract metric constraints
to compensate the odometer error.

The major difficulties of SLAM are the following:

• High dimensionality. Since the map dimension always grows when
the robot explores the environment, the memory requirements and
time processing of the state estimation increase. Some submapping
techniques can be used to solve it [33][34][35].
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• Loop closure. When the robot revisits a past place, the accumula-
ted odometry error might be large. Then the data association and
landmark detection must be effective to correct the odometry. Place
recognition techniques are used to cope with the loop closure problem
[36][37].

• Dynamics in environment. State estimation and data association can
be confused by the inconsistent measurements in the dynamic environ-
ment. There are some methods that try to deal with these environments
[38][39].

In particular we concentrate on laser-based SLAMs. These employ a laser
range finder which scans generate the occupancy grid maps of the environ-
ment. The laser scans relevant objects and tries to associate them to the
ones in the map by comparing different scans (scan matching) in order to
extract the constraints fundamental for the mapping and the localization of
the robot. This problem is also called front-end problem and is typically
hard due to potential ambiguities or symmetries in the environment.

3.4.1 Gmapping

Gmapping is a laser-based SLAM algorithm as described by Grisetti et al
in 2007 [40]. It is the most widely used SLAM package in robots world-
wide. This algorithm has been proposed by Grisetti et al. and it is a
Rao-Blackwellized Particle Filter (RBPF) SLAM approach.

Rao-Blackwellized particle filter

In 3.1.2 we have written the basic versione of the PF, now we describe the
optimized version RBPF for SLAM problems.

Let us start from Equation (3.34) and factorize it as

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1) (3.35)

This factorization allows to first estimate only the trajectory of the robot and
then to compute the map given that trajectory. In particular p(m|x1:t, z1:t)

can be easily computed using mapping with known poses since x1:t and z1:t
are known.
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The RBPF occupancy grid SLAM works as follows, if new control data
ut from the odometry and a new measurement zt from the laser scanner is
available:

1. Determine the initial guess x
′(i)
t , based on ut and the pose, since the

last filter t update xt−1 has been estimated.

2. Perform a scan matching algorithm based on the map m
(i)
t−1 and x

′(i)
t .

If the scan matching fails, the pose x
(i)
t of particle i will be determined

according to a motion model, otherwise the next two steps will be
performed.

3. If the scan matching is successfully done, a set of sampling points
around the estimated pose x̂

(i)
t of the scan matching will be selected.

Based on this set of t poses, the proposal distribution will be estimated.

4. Draw pose x
(i)
t of particle i from the approximated Gaussian

distribution of the improved proposal distribution.

5. Perform update of the importance weights.

6. Update map m(i) of particle i according to x(i) and zt.

A more detailed introduction to learn occupancy grid maps and the Rao-
Blackwellized particle filter can be found in the Algorithm 5 reported and
in Algorithm 5. The RBPF solves the depletion problem, described in
3.1.2 by implementing an adaptive resampling technique, which is performed
only when it is needed. The authors also proposed a way to compute an
accurate distribution by taking into account not only the movement of the
robotic platform, but also the most recent observations. This decreases the
uncertainty about the robots pose in the prediction step of the PF. As a
consequence, the number of particles required decreased since the uncertainty
is lower, due to the scan matching process.

3.4.2 Graph-based methods

These methods use optimization techniques to transform the SLAM problem
into a quadratic programming problem. The historical development of this
paradigm has been focused on pose-only approaches and using the landmark
positions to obtain constraints for the robot path. The objective function to
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Algorithm 5 improved RBPF for map learning

Require:
St−1, the sample set of the previous time step
zt, the most recent laser scan
ut−1, the most recent odometry measurement

Ensure:
St, the new sample set
St = {}
for all s(i)t−1 ∈ St−1 do

⟨x(i)
t−1, w

(i)
t−1,m

(i)
t−1⟩ = s

(i)
t−1

// scan-matching

x
′(i)
t = x

(i)
t−1 ⊕ ut−1

x̂
(i)
t = argmaxx p(x|m(i)

t−1, zt, x
′(i)
t )

if x̂
(i)
t = failure then
x
(i)
t ∼ p(xt|x(i)

t−1, ut−1)

w
(i)
t = w

(i)
t−1 · p(zt|m(i)

t−1, x
(i)
t )

else
// sample around the mode
for all k = 1 to K do

xk ∼ {xj | |xj − x̂(i)| < ∆}
end for
// compute Gaussian proposal
µ
(i)
t = (0, 0, 0)T

η(i) = 0

for all xj ∈ {x1, ..., xK} do
µ
(i)
t = µ

(i)
t + xj · p(zt|m(i)

t−1, xj) ·

p(xt|x(i)
t−1, ut−1)

η(i) = η(i) + p(zt|m(i)
t−1) ·

p(xt|x(i)
t−1, ut−1)

end for
µ
(i)
t = µ

(i)
t /η(i)

Σ
(i)
t = 0

for all xj ∈ {x1, ..., xK} do
Σ

(i)
t = Σ

(i)
t +(xj−µ

(i)
t )(xj−µ

(i)
t )T ·

p(zt|m(i)
t−1 · p(xt|x(i)

t−1, ut−1)

end for
Σ

(i)
t = Σ

(i)
t /η(i)

// sample new pose
x
(i)
t ∼ N (µ

(i)
t ,Σ

(i)
t )

// update importance weights
w

(i)
t = w

(i)
t−1 · η(i)

end if
// update map
m

(i)
t = integrateScan(m

(i)
t−1, x

(i)
t , zt)

// update sample set
St = St ∪ {⟨x(i)

t , w
(i)
t ,m

(i)
t ⟩}

end for
Neff = 1∑N

i=1 (w̃
(i))2

if Neff < T then
St = resample(St)

end if

optimize is obtained assuming Gaussianity. Since this methods are based on
a factor graph, they are able to remember better the old sub-maps and the
old localization and thus results more accurate respect to other approaches.
Their main disadvantage is the high computational time they take to solve
the problem. So they are suitable to build maps off-line. Some methods
are: GraphSLAM [41], Square Root SLAM [42], and Sliding Window Filter
[43]. pagine 15-20 di "State Estimation and Optimization for Mobile Robot
Navigation"

KartoSLAM

KartoSLAM is a graph-based SLAM approach developed by SRI Internatio-
nals Karto Robotics, which has been extended for ROS by using a highly-
optimized and noniterative Cholesky matrix decomposition for sparse linear
systems as solver. A graph-based SLAM algorithm represents the map by
means of a graph. In this case, each node represents a pose of the robot
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along its trajectory and a set of sensor measurements associated to that po-
se. These nodes are connected by arcs which represent the robot motion
between successive poses. At each new node, the global map is computed
by finding the spatial configuration of nodes which is consistent with the
constraints deriving from the arcs. In the KartoSLAM version available for
ROS, the Sparse Pose Adjustment (SPA) algorithm is responsible for both
scan matching and loop-closure procedures . The higher the number of land-
marks, the more amount of memory is required, but in case of large-scale
environments, graph-based SLAM algorithms are usually more efficient than
other approaches.

Google’s Cartographer

Googles Cartographer provides a real-time solution for indoor and outdoor
mapping in the form of a sensor equipped backpack that generates 2D grid
maps with a r = 5 cm resolution. Laser scans are inserted into a submap at
the best estimated position, which is assumed to be sufficiently accurate for
short periods of time. Scan matching happens against a recent submap, so
it only depends on recent scans, and the error of pose estimates in the world
frame accumulates. To achieve good performance with modest hardware
requirements, this SLAM approach does not employ a particle filter. To cope
with the accumulation of error, it regularly run a pose optimization. When
a submap is finished, that is no new scans will be inserted into it anymore,
it takes part in scan matching for loop closure. All finished submaps and
scans are automatically considered for loop closure. If they are close enough
based on current pose estimates, a scan matcher tries to find the scan in the
submap. If a sufficiently good match is found in a search window around
the currently estimated pose, it is added as a loop closing constraint to the
optimization problem. By completing the optimization every few seconds, the
experience is that loops are closed immediately when a location is revisited.
This leads to the soft real-time constraint that the loop closure scan matching
has to happen quicker than new scans are added, otherwise it falls behind
noticeably. This has been achieved by using a branch-and-bound approach
and several precomputed grids per finished submap.

As it can be expected the algorithm implemented by Googles Cartogra-
pher is significantly more heavy with respect to gmapping and Karto SLAM,
but it is more accurate as it is expected by its complex formulation.
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3.5 Localization

Robot localization is the problem of estimating a robots pose relative to a
map of its environment. This problem has been recognized as one of the most
fundamental problems in mobile robotics [44]. The mobile robot localization
problem comes in different flavors. The simplest localization problem is po-
sition tracking. Here the initial robot pose is known, and localization seeks
to correct small, incremental errors in a robots odometry. More challenging
is the global localization problem, where a robot is not told its initial pose,
but instead has to determine it from scratch. Even more difficult is the kid-
napped robot problem [45], in which a well-localized robot is tele-ported to
some other place without being told. This problem differs from the global
localization problem in that the robot might firmly believe itself to be so-
mewhere else at the time of the kidnapping. The kidnapped robot problem
is often used to test a robots ability to recover from catastrophic localization
failures.

Localization can be seen as a problem of coordinate transformation. Maps
are described in a global coordinate system, which is independent of a robots
pose. Localization is the process of establishing correspondence between the
map coordinate system and the robots local coordinate system. Knowing
this coordinate transformation enables the robot to express the location of
objects of interests within its own coordinate frame (knowing the pose of
the robot is sufficient to determine this coordinate transformation, assuming
that the pose is expressed in the same coordinate frame as the map). Unfor-
tunately the pose can usually not be sensed directly. It has therefore to be
inferred from data. A key difficulty arises from the fact that a single sensor
measurement is usually insufficient to determine the pose. Instead, the robot
has to integrate data over time to determine its pose.

In the context of robot localization, the state xt of the system is the
robots position, which is typically represented in a two-dimensional Cartesian
space and the robots heading direction, xt = (xyθ). The state transition
probability p(xt|xt−1, ut−1) describes how the position of the robot changes
using information ut collected by the robots wheel encoders. The perceptual
model p(zt|xt) describes the likelihood of making the observation zt given
that the robot is at location xt.
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3.5.1 AMCL

The adaptive Monte Carlo localization (AMCL) is a method to localize a
robot in a given map. It is a concrete implementation of the particle filter
with some modifications. Also, it is an adaptive algorithm of the Monte
Carlo localization, because the count of used particles is not fixed. The
decision of how many particles are used is based on KLD-Sampling (Kulback-
Leibler-Divergence). KLD-Sampling is described in [46] or [47]. Algorithm 6
describes the AMCL. It requires the set of particles of the last known state
Xt−1, the control data ut for prediction and the measurement data zt and the
map m for the update. The algorithm returns the new state, represented by
a set of particles.

An advantage of the AMCL is, that this filter implementation is able to
solve the global localization problem, the kidnapped robot problem, as well
as localization tracking. Notice, the AMCL can use an arbitrary resampling
technique. A second advantage of the AMCL is, that it is able to recover from
localization errors by adding random particles to the set Xt after a specified
decade (see: lines 13 and 14).

AMCL is adopted by many robotics since it is implemented in a ROS
package. In this latter it allows to set many configuration parameter (see
[48]), we will see the most important in the next chapters.
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Algorithm 6 Adaptive variant of Monte Carlo Localization
procedure AMCL(Xt−1, ut, zt,m)

static wslow, wfast

X t = Xt = ∅
for all m := 1 to M do

x
(m)
t = SampleMotionModelOdometry(ut, x

(m)
t−1)

w
(m)
t = MeasurementModel(zt, x

(m)
t ,m)

X t = X t + ⟨x(m)
t , w

(m)
t ⟩

wavg = wavg +
1
M
w

(m)
t

end for
wslow = wslow + αslow(wavg − wslow)

wfast = wfast + αfast(wavg − wfast)

for all m := 1 to M do
with probability max (0.0, 1.0− wfast/wslow) do

add random pose to Xt

else
draw i ∈ {1, ..., N} with probability ∝ w

(m)
t

add x
(i)
t to Xt

endwith
end for
return Xt

end procedure



4.
Navigation system for the GRAPE
robot

In this chapter we describe the navigation system that we designed for the
GRAPE robot. We start justifying the choice of the robot platform and
the sensors that we decided to adopt. Then we provide an overview of the
structure of the solution we propose. In particular, we take advantage of the
ROS visualization tools, in order to show the entire architecture through a
set of graphs. Then, in a top-down fashion, we detail the different subsystems
that compose the navigation system: the simulation module in section 4.4,
the GRAPE robot module in section 4.3, the odometry estimation and sensor
fusion module in section 4.5, the mapping module in section 4.6 and the
autonomous navigation module in section 4.7.

4.1 GRAPE robot

The GRAPE robot (Figure 4.1) is, in the current version, a skid-steering four
wheeled mobile robot based on the Husky platform [49]; It sports a frontal
Hokuyo laser range finder and a Velodyne Puck on the extern, and inside
it hosts a common PC with Wifi module and an IMU sensor. In addition,
the robot mounts a robotic arm, the Kinova Jaco2 [50], plus a vertical sensor
support to which a GPS antenna and a Zed stereo camera are fixed. We
provide a brief description of the listed in sensors in Table 4.1 and we report
their technical specification in Appendix B.

Type Model Note
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GNSS OEMstar + gps-
701-gg antenna

This sensor will provide two types of da-
ta sources for localization. A standalone
GNSS + EGNOS positioning solution and
raw data to be fused with external sour-
ces in a differential solution to reduce the
expected error of a low-cost GPS recei-
ved. Galileo compliant receivers will be
evaluated in a later stage of the project

Laser 2D Hokuyo
UTM-30LX-EW

An outdoors tested, 30m range, 270o FOV
scanning laser mounted horizontally in the
front of the vehicle in order to detect plan-
ts (i.e. trunks) and potential obstacles.
This laser will also be used to build a map
of the static elements of the environment
and use such map in order to refine ro-
bot position estimate through an Adap-
tive Monte Carlo Localization (AMCL)
algorithm.

IMU Xsens Mti -10 Inertial data are used to complement at
higher frequency the position information
provided by the GNSS. Their estimate of
robot motion drifts over time, but this
can be compensated by sing sensor fusion
techniques such as Kalman Filtering or
windowed pose graph optimization, e.g.,
through the ROAMFREE sensor fusion
library.

Stereo
camera

Stereolabs Zed HD
An outdoors tested, 30m range, 270o FOV scanning laser mounted horizontally in the front of the vehicle in order to detect plants (i.e. trunks) and potential obstacles. This laser will also be used to build a map of the static elements of the environment and use such map in order to refine robot position estimate through an Adaptive Monte Carlo Localization (AMCL) algorithm.

Lidar 3D Velodyne puck lite

Tabella 4.1

The choice of the Husky platform has been enforced by the GRAPE
project specifications. Indeed, the project partner Eurecat (Spain) has been
in charge of providing the physical platform. The choice has fallen on Husky
for many reasons; First, it is designed to work outdoor and it is quite resistant



Capitolo 4. Navigation system for the GRAPE robot 57

Figura 4.1: GRAPE robot prototype

to the different weather condition, but especially, it mounts four knobby
wheels with a skid-steering behavior that, as written in section 3.2.3, are
suited for rough terrain navigation. The second reason is its shape, indeed
it is composed by a body which can host the wiring, the onboard PC and
some sensors and in general it is highly customizable while being easy to be
transported given its weight and size. The third reason is that the Husky’s
company provides an updated open-source repository in which are stored the
ROS packages implementing all the basic function of the robot.

4.2 Navigation system overview

Being in the contest of field robotics, the aim of our navigation system is to
be innovative but also reliable since it has to guarantee to work in a difficult
scenario like the vineyard one. Usually, the terms innovation and reliability
generate a kind of duality, an example is the beta release of a software. Thus,
it is very difficult, in general, to obtain an innovative and reliable system. For
this reason we set up the navigation system construction in an incremental
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Figura 4.2: ROS standard navigation stack

way. We started from a simple but very stable solution, and then we added
one piece at time until we reached the final architecture we are presenting in
this section.

The implementation of such approach has been possible thanks to the
ROS structure (see Appendix A), in fact, as illustrated in the appendix, it
allows to create very modular solutions in which the different components
can be easily added or deleted. In principle, we attempted to build a general
solution, which could be adapted to other scenarios without much effort. At
the end the proposed solution is highly configurable, and we tuned all the
parts to reach the best configuration in our specific case.

The basic solution from which we started is the standard ROS navigation
stack which is reported in Figure 4.2. Our navigation system follows this
schema, especially it maintains its modularity. Based on it, we can explain
our navigation system logic by analyzing the logical blocks in the figure:

Odometry source The odometry source provides the estimated odo-
metry (explained in section 3.2), thus the robot position with respect to its
starting pose. The source can be a single sensor, usually the wheel encoders,
or it can be a sensor fusion system which integrates more sensors data to
generate a more accurate odometry. During the project we investigated and
compared three different source: (i) simple wheels encoder node; (ii) EKF
sensor fusion node; (iii) Factor graph filter sensor fusion node. The sensors
that we merged in (ii) and (iii) are the wheels encoder, the IMU and the
GNSS. Thanks to the ROS modularity these three methods can be easily
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switched, in particular we are interested in comparing the (ii) and (iii) which
are more accurate and reliable with respect to (i). We show the filters com-
parison in the next chapters. We made these methods live together; the
odometry is published both as a value in a topic and as a frame in the TF
tree. In particular the odometry frame links the global frame (usually map
frame) and the robot frame.

Sensor sources This block refers to the sensors able to perceive the
robot external environment: the lasers (Hokuyo, Velodyne). Laser scan data
or point cloud data are sent to the Navigation stack for mapping the environ-
ment or to localize the robot in it. Furthermore they are used to create the
local costmap which is an occupancy grid sub-map which describes the ob-
stacles surrounding the robot. In the final navigation architecture only data
coming from the 2D frontal laser are used, indeed the cost of a 3D LIDAR
might be too high for a final product so we were interested in validating if a
2D source is sufficient to allow for robust navigation on rough terrains.

TF (transformation frames) TF defines the relationships between
coordinate frames (either between sensor frames and robot frame or robot
frame and odometry frame etc). The geometry behind this roto-traslations
is implemented by the tf ROS package. We report the complete explanation
of the TF library in Appendix C.

Amcl and map server These two blocks are optional in the stan-
dard navigation stack, but they are necessary for the autonomous navigation.
They are strictly connected, in fact the map server is responsible to provide
a static map of the environment, while amcl is the localization method, thus
it localize the robot in the map. It tries to adjust the odometry frame (to
which robot pose is referenced) with respect to the map frame exploiting the
laser scans.

Local and Global Costmaps The local and global 2D costmaps con-
tain the information representing the projection of the obstacles in a 2D
plane (the ground), as well as a security inflation radius, i.e., an area around
the obstacles to guarantee that the robot will not collide with any objects,
no matter what is its orientation. These projections are associated to a cost,
and the robot objective is to achieve the navigation goal by creating a path
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with the least possible cost. While the global costmap represents the whole
environment (or a huge portion of it), the local costmap is, in general, a
scrolling window that moves in the global costmap in relation to the robot
current position and it is updated online with the incoming laser scans.

Local and Global Planners Local and global planners do not work
the same way. The global planner takes the current robot position and
the goal and traces the trajectory of lower cost with respect to the global
costmap. The local planner is responsible for updating the global trajectory
in case that obstacles not present in the costmap are detected by the robot.
It generates a new trajectory which avoids these obstacles and that deviates
the least possible from the global trajectory.

Base controller The base controller has the function to convert the
velocity commands, which indicate the linear and angular velocity of the
robot into the corresponding motor velocities of the robot (e.g., motor of the
single wheel). It is the output block of the navigation stack since it receives
velocity commands generated by the planners and it produces a command
that makes the robot actually move.

The final navigation system that we built is shown in Figure 4.4. There,
we can observe how the logical blocks described above are present also in
our solution. We split the architecture in three macro-modules each of which
solve a different problem. In the next sections we explain the detailed func-
tioning of these three modules (GRAPE robot module, Sensor fusion and
odometry estimation module and autonomous navigation module), in addi-
tion we explain other two modules: the simulation module and the SLAM
module which can be substituted, respectively to the GRAPE robot module
and to the autonomous navigation module.

Looking at the Figure 4.4 we can also note the presence of some nodes
that are shared between the modules, some of them are crucial while some
others have a secondary importance respect to the navigation but they are
needed to make possible the connection between more important nodes.

• teleop_twist_joy: The purpose of this node is to provide a generic
facility for tele-operating Twist-based ROS robots with a standard joy-
stick. This node provides no rate limiting or autorepeat functionality.
It subscribes to the Joystick messages (not reported in the figure) and
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Figura 4.3: Example of the transformation frames during the navigation of a robot

translates them into velocity commands. Then it publishes the velocity
commands in a topic (/joy_teleop/cmd_vel in figure). The presence
of this node is important since the Joystick is fundamental for emer-
gency cases. It allows to manually intervene when the robot is stuck
or when something is not working properly.

• /twist_mux: This node subscribes to a list of topics publishing geome-
try_msgs/Twist messages and multiplex them using a priority-based
scheme. It also supports timeouts for each input and locking by means
of topics that publish std_msgs/Bool messages. Priority is currently
given to manual operation which overrides the velocity command sent
by the autonomous navigation system.

• /tf: It publishes the transformation between frames that are broadca-
sted by other nodes. Then it create the TF tree using the received TF
(the tf tree of our architecture is shown in the Figure 4.5).

4.3 GRAPE robot module

In this section we illustrate the nodes and the most important topics which
allow ROS to interface with the robot hardware: sensors and actuators. The
Figure 4.6 shows a simplified version of the rosgraph of such module.
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Figura 4.4: Final navigation system architecture. Circles are nodes while rectangle are
topics. The graph is simplified of some nodes or topics for clearness reason
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Figura 4.5: TF tree relative to the final architecture

• /Husky_velocity_controller/cmd_vel : Its a ros_controller topic
which publishes the linear and the angular velocities that are listened
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/navLaser/scan

/tf

/latlon

/husky_wheels_encoder

/xsens/imu

/xsens/mag

/GRAPE_robot/husky_velocity_controller/cmd_vel

/status /joint_states

Figura 4.6: The hardware interface rosgraph. For clarity reasons some driver nodes has
been omitted

from twist_mux node. It is the input for the robot wheel actuators.

• /joint_states : This topic publishes the current states of the robot
joints, thus it give information about the current configuration of the
moving components of the robot. This topic can be used to update the
some TFs.

• /xsense/imu and /xsense/mag: The first topic corresponds to the
gyroscope and accelerometer sensor while the second represents the
magnetometer. Both topics publish the readings of the sensors with a
fixed rate. In particular the topic relative to the imu publishes messages
in which it specifies the gyroscope data the accelerometer data, but also
an heading(orientation) estimate which is intrinsically computed in the
sensor driver. We do not use this value in our proposed solution, since
being an estimation we do not know its error model, and thus we cannot
optimize it correctly using ROAMFREE.

• /latlon: it publishes the GPS readings in LLA (Latitude, Longitude,
Altitude) coordinates.

• /Husky_wheels_encoder: It publishes the rotational velocity of the
right and left side wheels. The rotational velocity is internally compu-
ted in the encoder driver starting from the number of tick measured
directly by the encoder. Being a skid-steering robot, it publishes only
one velocity for each side. It suppose that same side wheels have same
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/front/scan

/ground_truth/state

/navsat/fix

/husky_velocity_controller/odom

/imu/data

/imu/mag

/gazebo/husky_velocity_controller/cmd_vel

/status /joint_states

Figura 4.7: Gazebo simulation node and its topics

rotational velocity. In practice each wheel has its own actuator (mo-
tor), thus the velocity could be slightly different even between same
side wheels.

• navLaser/scan: This topic is created by the Hokuyo laser node (not
in figure). It publishes messages of the type sensor_msgs/LaserScan.
This scans should represent 270◦ of the environment, in practice we
reduced this range by few degrees because it intercepts the robot body.

4.4 Simulation module

In this section we show (see Figure 4.7) which are the differences between a
simulated robot and a real one from the system architecture point of view. It
can be observed that the two modules can be swapped without compromise
other part of the system. This allows to work with the same methods both in
simulation and in real tests. In field robotics the importance of the simulation
is even more accentuated since it is difficult and expensive to test the system
performance directly on the field.

• /gazebo: It represents the integration of Gazebo simulation in ROS en-
vironment. It communicates with other nodes through Gazebo plugins
topics (see Figure 4.7).

• /ground_truth/state: This topic publishes the correct (ground truth)
pose of the robot in the simulation environment. It specifies the ro-
bot position with respect to the map frame which in this case corre-
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sponds with the odom frame (the ground truth does not have error in
localization).

• /Husky_velocity_controller/odom: It has the same scope of
/Husky_wheels_encoder described above, thus provide wheels odome-
try, but in this case instead of publishing the wheels rotational velocity
it publishes directly the robot linear and angular velocities. It is a
kind of pre-odometry estimation computed only with the wheel enco-
ders acquisitions. We use it only in the simulation solution since here
it is implemented directly in the official Gazebo plugin for the Husky
robot or in our real solution when the robot_localization package is
adopted.

•

• /imu/data and /imu/mag: These are the topics relative to the simula-
ted IMU sensors. We exploited the hector_gazebo_plugins package
which provides common sensors gazebo plugins that are highly confi-
gurable. In fact they allow to set the noise, the rate and may other
parameters.

• /navsat/fix: This topic is relative to the GPS sensor plugin. Thus it
publishes the LLA coordinate of the robot. Again it is taken from the
hector_gazebo_plugins package.

4.5 Sensor fusion and odometry estimation module

This module contains the main logic of our navigation system. In Chapter
3 we explained the theory behind the odometry estimation and the sensor
fusion, in particular we highlighted how a correct estimation of the odometry
is fundamental for the navigation or mapping module in order to wok pro-
perly. For this reason we dedicated to the implementation, configuration and
tests the majority of the time. We reasoned about which should be the best
method to integrate our sensors, differing in accuracy, reliability, acquisition
rate and type of domain measured.

As mentioned in 4.1 the GPS is a really important source when the sa-
tellite signal is strong enough, thus we tried to emphasize the GPS advan-
tages while limiting its drawbacks. We exploited this intuition both in the
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/tf /initial_pose_node

/odometry/roamfree

/latlon /nmea_to_enu

/husky_wheels_encoder /raroam_node

/xsens/imu /imu_throttle_node

/xsens/mag /mag_throttle_node

/initialPose

/enu

/imu/data

/imu/mag

(a)

/tf_static

/navsat_transform_node

/ekf_localization_odom

/ekf_localization_gps

/tf

/odometry/gps

/husky_velocity_controller/odom

/odometry/filtered_our

/latlon /odometry/filtered_gps

/imu/data

(b)

Figura 4.8: The sensor fusion and odometry estimation node in the two variants. (a)
shows our ROS implementation of ROAMFREE (the raroam_node), (b) represents the
nodes of robot_localization.

robot_localization configuration and in the ROAMFREE implementa-
tion. In this latter, thanks to the graph-based approach and to the outlier
rejection module intrinsic of ROAMFREE we are able to limit the influence
of the GPS when it provides bad measurements. Then, about the IMU ex-
ploitation we have reasoned on its importance for the orientation estimation.
In fact, the gyroscope and the magnetometer, if correctly configured, gives
the right orientation of the robot. This is very important since the most
difficult part of the navigation in the vineyard is turning between two vine
lines. During this movement there are few references in terms of landmarks
and the robot data coming from the wheels encoder are not accurate due to
the variability of the slippage of the different side wheels.

The wheel encoders are important during the straight navigation especial-
ly supposing an acceptable terrain. Indeed, they become a bad information
source if the robot is stuck or if it stuck against an obstacle. In these case
the third not mentioned component of IMU, the accelerometer performs a
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fundamental role. It is able to give information about the robot acceleration,
that is zero when the robot is blocked.

As in the previous module we illustrate the tasks of the nodes shown
in Figure 4.8. We start from the ROAMFREE implementation depicted in
Figure 4.8a:

• /raroam_node : This node implements a factor graph based filter ex-
ploiting ROAMFREE (hereafter abbreviated as RF). /raroam_node
builds the factor graph filter combining wheel encoders, accelerometer,
magnetometer, gyroscope, and GPS sensor (in ENU coordinates). The
result is an estimated odometry that considers all the cited sensors and
which is expected to be robust to sensor noise or missing measuremen-
ts. The published odometry topic is /odometry/roamfree and refers
to the frame odom_r. This node represents the core of our sensor fu-
sion and odometry estimation system, as explained in section 3.3.2 it
optimizes the error models in the factor graph to obtain an accurate
odometry. Thus, the grade of accuracy depends also on the number of
optimization iterations that is arbitrarily decided and on the length of
the integration window (fixed lag).

• /nmea_to_enu : This node translates a global position expressed in
terms of LLA (Longitude, Latitude, Altitude) to one expressed in ENU
(East, North, Up) relative to a new frame arbitrarily decided (usually
the frame is fixed geographically near to the robot operation position).
Thus the GPS absolute position becomes a relative position. This helps
the math and the measurements fusion.

• /imu_throttle_node and /mag_throttle_node: These nodes are two
ROS throttle nodes. A throttle node reduces the frequency of a
desired topics, thus it subscribes the desired topic and it re-publish the
messages that arrives nearest to its frequency rate. It ignores all the
other messages. So /imu/data and /imu/mag correspond to the limited
rate version of /xsens/imu and /xsens/mag respectively. This node is
required in our solution, because the RF factor graph has only a master
sensor which publishes the pose nodes and all the other factors nodes
have to be added with a lower or equal rate with respect to the master
sensor frequency.
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• /initial_pose_node : This node computes the initial pose of the ro-
bot given the sensors measurements. To do this, it requires an absolute
position (x, y, θ), thus it extract the (x, y) position from the GPS sensor
and the orientation θ from the magnetometer. It listen these sensors
for an arbitrary time interval (usually 30sec or 1min), in order to have
a more reliable and smooth initial pose. The initialization is required
from RF, which use it to create the first pose node in the factor graph
filter. If the initialization is completely wrong then RF, since it uses
an optimization algorithm, struggles to reach fast the correct estima-
tion. If there is not this node, the initialization must be done manually
through a ROS parameter.

Considering the robot_localization variant in Figure 4.8b:

• /ekf_localization_GPS: This node is the core odometry estimation
node in the considered architecture. As in /raroam_node it takes sen-
sors measurements in input and publishes a final odometry through
the topic /odometry/filtered_GPS which refers to the broadcasted
frame odom_g. It implements an EKF filter (see section 3.3.1) with
which it merge the different sources data. In particular the sources
are the GPS, /odometry/GPS, the imu /imu/data, the wheels odome-
try /Husky_velocity_controller/odom and another filtered odome-
try /odometry/filtered_our. The reason of the latter is its reliability,
in fact it can happen to loose of the GPS signal, in such cases it is useful
to robust the estimation with an odometry that is already estimated
from multiple sensors but not from the GPS.

• /navsat_transform_node: This node is also part of the ro-
bot_localization package, and its scope is similar to nmea_to_enu,
except for the fact that it produces a GPS position encapsulated in a
nav_msgs/Odometry message that refers to the robots world frame.

• /ekf_localization_odom: This node is very similar to
/ekf_localization_GPS, the only difference is that it doesn’t
exploit the GPS acquisitions. The final odometry computed is
published through the topic /odometry/filtered_our and refers to
the broadcasted frame odom_f.
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/tf

/map
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/tf
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Figura 4.9: The SLAM_node in the three variants. (a) Gmapping, (b) Google’s
Cartographer, (c) KartoSLAM.

4.6 Mapping module

The SLAM module is needed when the robot goal is to map the environment.
In our project we expect to map the vineyard once and then let the robot
navigate autonomously with the created map. During the mapping the robot
is manually driven along the vineyard lines both in simulation and in real
tests. As mentioned in the previous chapter we tried three different SLAM
tools: gmapping, Google’s cartographer and kartoSLAM. In our definitive
architecture the tool chosen is gmapping, but we now show how these three
tools can be easily swapped. In fact, it is enough to observe Figure 4.9 to
confirm this statement.

Since they have the same kind of subscribed and published topics we
describe the logic functioning of a generic SLAM_node representing all of them.

• SLAM_node: This node is able to create a map and simultaneously
localize the robot in it, exploiting the robot estimated odometry and
the laser sensor. As it can be observed in Figure 4.9 there is no trace
of any estimated odometry topic, and the only subscribed topics are
/tf and (/navLaser_scan) relatives to the laser scans. This is because
SLAM algorithms take advantages of the estimated odometry in terms
of TF, thus their aim (as explained deeply in 3.4) is to adjust the
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/initialpose
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Figura 4.10: The autonomous navigation module

odometry frame respect to the map frame in order to match the laser
readings with the position in the map.

4.7 Autonomous navigation module

This module is is able to make the robot navigate autonomously. It respects
the standard ROS navigation stack (Figure 4.2) structure. In fact, it is com-
posed by the three nodes /map_server, /amcl and /move_base. We decide
to adopt this standard structure since it is highly used in the ROS commu-
nity and thus, it has shown extensively its great performance and reliability.
Furthermore, both the /amcl and the /move_base package allow for an in-
finite number of possible configuration since they have many configuration
parameters. We tuned only some of them since the performance with most
of the default values resulted to be acceptable (we show the parameters va-
lues we used in the next chapters). The fact that standard values perform
quite well is not casual since, especially for /amcl, in the documentation it
is specified that the default parameters values have been chosen after a very
long tuning phase.

As for the other modules we analyze the nodes in Figure 4.10.

• /map_server: It loads the map we indicate and it publishes it in the
topic /map.

• /amcl: This node is able to localize the robot in a map exploiting
data from the laser and the estimated odometry (in terms of TF).
Thus it broadcasts the transformation between the map frame and the
odometry frame.
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• /move_base: This node performs all the tasks needed to make the
robot navigate autonomously. In fact it publishes the local and the
global costmaps which are used by the planner to create a valid path
to reach the desired goal. This node publishes also the plans created
by the local and the global planner.



5.
Simulation Experiments

Building robot navigation system needs a lot of experiments, thus is very
important to have a method to make tests without working directly on the
real robot. This method is the simulation.

The first thing that we need to virtually reproduce is the working environ-
ment of the robot, the vineyard. In addition, since the aim of the simulation
is to make trusted tests, we have to build a world that correspond to a worst
case scenario. This means to build a simulated vineyard in which the vines
a similar to the real ones for dimension and shape and the ground have to
be rough.

After the environment is fundamental to create an appropriate model of
the robot. Usually, for commercial robots the 3D model is provided by the
seller. Further, especially for research, are often used the same robots (also
to have a valid comparison with other research works), thus their simulation
models are diffused in the robotics community. When this does not happen
a new robot model have to be created from scratch (there exist some specific
editors). The simulation model of the robot must contain also all the desired
sensors. For this latter as for the commercial robots, is often present a ready-
to-use package in which is possible to specify the amount of measurements
error. Usually the simulated sensors noise is generated with a Gaussian
distribution.

5.1 Gazebo simulator

For the simulation we used Gazebo simulator. Gazebo can simulate multi-
body dynamics, including interactions between bodies such as impact, using
several existing physics engines. In Gazebo, both the robot model and en-
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vironment model must be defined. Thus it allows to create 3D models of
arbitrary environments and robots and their sensors. Figure 5.1a shows an
example of a 3D model of the environment and a 3D model of the GRAPE
robot.

To create a 3D model of a robot, the Unified Robot Description Format
(URDF) file format can be used. URDF is a XML based description format. In
general, the root link for the description is the base of the robot. All the
leaves of this tree are sensors, wheels and other components. Using the XML
macro language xarco, the creation of such URDF is simplified. For example,
if all wheels of a robot are equals in physical properties and looking, a macro
for the them can be created and you has only to specify where each wheel
have to be set by calling it with the xacro.

In addition, 3D models of an arbitrary shapes can be included via the
use of COLLADA files. COLLADA is also a XML based description language, like
URDF, but it is used for 3D models of building and other objects. COLLADA
files can be imported into the Simulation Description Format SDF files of
Gazebo, which is also XML based. SDF is the internal format of Gazebo to
store the different models and worlds.

Simulating open kinematic chains has been fairly well established in Ga-
zebo. However, simulating closed chain mechanisms presents some technical
challenges. Closed kinematic chains consist of a series of rigid bodies connec-
ted by joints, where a child link connects back to the parent link. They are
typically used to generate a desired output motion or force at one link from
the input at another link, and are the basis of many mechanisms.

The main advantage of Gazebo is that it easily interfaces with ROS.
Indeed Gazebo is treated as a ROS node describing the hardware layer (as
illustrated in section 4.4). ROS then communicates with these simulated
hardware nodes. This approach allows for a physical system to be simulated
in conjunction with the robot control algorithms. The sensors are simulated
in Gazebo through the plugins which specify their technical features and
their behavior. In the ROS structure, these plugins result to be topics that
are published by Gazebo node, as shown in the Figure 4.7 in the previous
chapter.

Finally a consideration about the Gazebo performance; in fact, when it
is used with the GUI and a complex model is simulated in it, it becomes a
very heavy process for the PC and often this reduces the simulation rate. If
this decrease too much the simulation results unusable for activity in which
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human interaction is required.

5.2 Simulation models

As mentioned in the previous section, an object is added to the simulation
through a descriptive model which indicates its parameters. It follows that
objects which have a not well-defined shape in the reality are more difficult
to be modeled and often this leads to the creation of a simpler model that
acceptably approximate the real one.

We can summarize the problems linked to the simulation phase as pro-
blems of this thesis due to the difficult reproduction of the real world, ac-
centuated in some scenario (like our) and problems due to the not complete
reliability of the simulated results (common problem in the whole research
world).

5.2.1 Environment and robot models

The simulation environment consists of an irregular terrain that simulates
the rough vineyard soil, and three rows of vines, Figure 5.1a. We used a
3D vine model without leaves since the dispenser deployment is done after
pruning tasks. The irregular terrain is a rectangular surface created using
an heightmap file; it consists of the repetitions of a 129x129px image which
stores, in each pixel, the height value of the corresponding point in the real
terrain map. This produces small variations of the height in certain parts of
the surface, resulting in an irregular surface (see Figure 5.1b). For rendering
purposes the heightmap is sided by a texture that reproduces the appearance
of a real vineyard terrain.

To simulate the vineyard plants, we used a 3D vine model. Our scenario
has 3 rows of vines (16 plants per row), with 1m of separation between each
plant, see Figure 5.1b. We followed the standard distribution that we usual-
ly find in real vineyards. This environment can challenge the fluidity of the
simulation execution (it becomes too heavy), so we built also a downsam-
pled version of it in order to manage the daily simulations with a standard
computer. We simplified the irregular terrain to be composed by 33x33px
patches instead of 129x129 (or 17x17 for some specific simulation) and the
vine model has been downsampled in terms of number of faces. The result
is a lightweight environment having the appearance in Figure 5.2.
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(a)

(b)

Figura 5.1: The environment model simulated in Gazebo

The robot model we used in simulation is really similar to the real proto-
type except for some differences due to the fact that we changed the position
of the sensors in the GRAPE robot during the last field tests. The robot
model is based on the Husky URDF model with the additions of our sensors.

5.3 Odometry filter and sensor fusion evaluation

In this section we show the tests we have done to determine the best sen-
sor fusion odometry estimator and the results we obtained by these tests.
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(a) (b)

Figura 5.2: The difference between the accurate vine model (a) and downsampled
model (b)

The tools we compared are robot_localization and ROAMFREE, which im-
plement two different state estimation approaches (EKF and factor-graph
filtering respectively).

5.3.1 Evaluation procedure

Before comparing the two methods we describe here the method by which
evaluate their performance. This is not a simple operation; there exist many
articles [51] in which navigation or mapping tools comparison is done but
each of them adopts a different evaluation metric. In general, there is not a
standard way to compare two odometry estimators.

We decided to adopt a very practical method. To understand it, we have
to remember the definition that we gave for the localization problem in sec-
tion 3.5. We stated that localization can be seen as a problem of coordinate
transformation. Reasoning in this direction we can evaluate an odometry
estimator based on the distance between the odometry frame and the global
frame (map frame). Actually if you think about this evaluation metric, it
corresponds to measure how much the pose estimated in the odometry esti-
mation is far from the real pose of the robot in the map. Thus, we must have
a ground truth localization which indicates the real position of the robot.
In simulation this can be obtained by publishing through Gazebo the actual
robot pose in the simulated environment and its reference frame.
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We have another problem in evaluating the distances between multiple
odometry frames. This problem regards the TF tree structure, in fact inser-
ting into it many odometry frames all connected to the robot frame is not
possible. The tree, to remain a tree, cannot allow multiple parent nodes.
Thus the only way to have multiple odometry sensors living simultaneously
is to have one of them as parent of the robot frame and the others as sons of
the robot frame. To do this we have to invert the transformation published
by odometry estimators except for the one we want to have as parent for the
robot frame.

To clarify the reasoning which can seems difficult if explained with words,
we take advantage of Figure 5.3. There, the odom frame is published by the
node /odom_bl_tf which is a node that takes in input the ground truth pose
and broadcast its frame. The frames relative to the three methods we are
comparing (two of them are different configurations of robot_localization)
are published in the inverse form and are the sons of the robot frame
base_link.

5.3.2 Tests and Results

During the development of the architecture we made many trials to find the
best configuration for the sensor fusion odometry estimators. First we tuned
the robot_localization estimator in order to find the most stable configu-
ration. In this estimator there are not many parameters to be tuned, since
even if it has a lot of parameters only few of them really influence the method
performance.

The most influential parameters are relatives to the EKF sensor fusion
algorithm, in fact they can specify which dimensions of the state vector are
affected by each sensor, and the type of integration and the admitted delay of
the measurements etc.. To have a complete view of such parameters, consult
the official documentation of the package at [52].

After the inclusion of robot_localization in our system, we started ex-
perimenting with ROAMFREE. Here the configuration resulted significantly
more difficult since all the parameters in RF strongly influence its perfor-
mance. In particular we struggled with the tuning of the sensors covariances;
indeed from section 3.3.2 we know the sensors covariance importance in the
error computation, thus even a small variation of the covariance of a sensor
causes a relevant impact to the model performance. If the covariance is high
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Figura 5.3: TF tree of the simulation evaluation architecture

the sensor has little consideration, viceversa if it is small the sensor highly
influences the state estimation. So, to reach good performance we have to
give high importance to accurate sensors and low importance to others. Be-
sides the covariance another important parameter is relative to the outlier
rejection (see 3.3.2). This parameter is called robust_kernel. After ex-
tensive testing we found a very good configuration of ROAMFREE for the
simulation case.

In the tests we made we have adopted the evaluation procedure ex-
plained above, in Figure 5.4 we reports the results obtained from the
comparison between /ekf_localization_odom, /ekf_localization_gps
and /raroam_node. Observing the figure it is clear the supremacy of the
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ROAMFREE respect to robot_localization. In addition the final result is
the one expected, because we have odom_r that is the nearest frame to map,
then the second nearest is odom_g and the third is odom_f. This shows the
importance of the GPS that helps especially during the emergency cases.

5.4 Mapping

Once we ascertained the best method for the odometry estimation, we started
the analysis to find the best way to map the environment (the one in Figure
5.1). To this aim, we tried in the architecture composed by the Gazebo nodes
and odometry estimation nodes, different SLAM methods.

The simulated environment, even if it is as real as possible, represents a
very optimistic scenario respect to the real one. In fact, mapping it correctly
resulted to be very easy, so much that we used a primitive version of the
architecture in which there were robot_localization in the variant without
GPS. We used this architecture since this test has been one of the first we
have done and thus at that time we did not have developed the ROAMFREE
node or the robot_localization with GPS.

However the results we obtained excellent. We show the map built with
the mentioned architecture in Figure 5.5.

5.5 Autonomous navigation

The last task we tested in simulation is the autonomous navigation. As for
the mapping task in simulation, also here we have not encountered much
problems. In fact, we made the robot autonomously navigate in the simula-
ted vineyard, only by introducing the standard amcl and move_base to the
architecture described in the previous section. We do not report the results
obtained with this simple structure because even if they are quite good, we
get better ones by trying the final architecture.
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Initial state start of emergency

mid of emergency, about 10sec after
the start

End of the emergency

Before turning End state, after the turn and another
emergency case

Figura 5.4: Odometry estimator comparison. odom_r is the frame relative to
/raroam_node, odom_g is relative to /ekf_localization_gps and odom_f is relative
to /ekf_localization_odom



Capitolo 5. Simulation Experiments 82

Figura 5.5: Map of the simulated vineyard, made with gmapping and ekf (wheels+imu)
odometry estimatot



6.
Field test validation

In this chapter we explain how we tested our navigation system with the real
environment data and the results we obtained.

6.0.1 Field test methods

In general two ways to test a ROS architecture with real data exist, the first
is to go directly on the field and run the robot there, the second is to go
only one time on the field acquire and save the data about the environment
and then use it offline. This latter can be done thanks to the rosbag pac-
kage with which we can save in files called bags the messages published by
the topics we are interested to. The two ways have different pro and cons.
In particular referring to our case, testing the system directly on the field
has the advantages that we can try different hardware version of the robot
(i.e., different sensors dispositions) and we can put the robot autonomous
navigation in practice, on the other hand transporting the robot and all the
technical stuffs to the field is usually very expensive and uncomfortable.

In our case the testing location and the GRAPE robot are situated in
a different country (Spain), thus going on the field means to organize an
expedition; moreover since the testing location corresponds to a vineyard it
is not easy to work with PCs and other devices which require electric power.
On the other hand, making tests using the bagged data allows to repeat the
test as much as desired and so it allows to try different system structures or
configuration without an extra effort. The main limitation of offline testing
is that the data is always the same, thus there exists the risk to find a system
configuration which overfit the data (it works good with the bag data and
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bad with new data), and further there is not the possibility to change some
hardware configuration if needed.

In our case we used both the ways, in fact we first exploited a bag to
develop our final system, adding a module at the time and testing its impact
with the bag data, until we reached the final solution we describe in chapter
4, then we have organized an expedition and went to the vineyard with the
GRAPE robot where we validated (with additional parameters tuning) our
navigation system.

In the bag we used during the first tests the GRAPE robot runs con-
tinuously along four vine lines. In particular it goes back and forth along
two consecutive lines, then at the end of the second line it bypass one line
and goes in the next line, from here it runs again a back and forth path
between two consecutive lines. The GRAPE robot used to acquire this bag
does not correspond to the current prototype, specifically in the hardware
module of the ROS architecture there are some differences. In fact, in the
bag we do not have the /husky_wheels_encoder, but we only have the
/husky_velocity_controller/odom, and there is not any topic publishing
the magnetometer readings.

This bag has been acquired during the winter (February 2017) when the
vegetation is bare, that is also the period in which the robot is expected
to work by the GRAPE project requirement. Afterwards we have done the
vineyard validation tests during the summer (July 2017). Thus the testing
environment in the two periods was quite different.

Since in real scenario is almost impossible to have a ground truth of the
robot position, we did not repeated the evaluation procedure (5.3.1) adopted
in simulation. Instead we decided to compare the two sensor fusion odometry
estimators using the mapping tests, i.e., by comparing the accuracy of the
maps generated with the same SLAM method. We show the test details and
results in section 6.2.

6.1 Vineyard environment

The vineyard we used for tests has been granted by a Spanish winery called
MasLlunes. It is situated in Catalunya, north-east of Spain. We show the sa-
tellite photo of the vineyard in Figure 6.1a. In this picture it can be observed
that the MasLlunes vineyard respects the standard vineyard structure, in fact
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(a) (b)

Figura 6.1: The MasLlunes vineyard. (a) is a satellite view, (b) shows the vine lines
and the ground

it is composed by many long straight parallel lines of vines with a constant
inter-line distance (2,50 meters). Each line is long about 100 meters.

The terrain of the vineyard is very irregular, due to the repeated passage
of agricultural vehicles. The irregularity is even more accentuated in the
summer period when the ground is more friable and there are many weeds
that rapidly grow in it. Then, a similar situation happens also for the vi-
ne plants, that during the winter are completely bare and do not have side
branches, while in the summer are densely populated by leaves and the bran-
ches are grown in all directions. The summer vineyard situation is shown in
Figure 6.1b.

6.2 Mapping

In the mapping tests we verified both the different SLAM methods, and the
two sensor fusion odometry estimators. We start analyzing the comparison
tests between robot_localization and ROAMFREE. As anticipated before,
this comparison has been evaluated relying on the mapping results obtained
with the same SLAM method. We mainly performed such tests using the
data of the winter bag.

The first thing we noted using real data was the huge difference in terms
of perceived noise between the simulation environment and the real environ-
ment. In addition, in simulation we forced the presence of noise by generating
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it with Gaussian distributions, while the real data does not follow any known
distribution, turning out to be more unpredictable.

The presence of such noise led, as expected, to a decrement of the perfor-
mance of our system. We partially (to obtain the same performance of simula-
tion is impossible) solved this performance drop by deeply tuning and optimi-
zing the configuration of our estimators. Nevertheless, for robot_localization
estimator the presence of a lot of noise in the sensors readings does not af-
fects much its configuration since it has only a small bunch of parameters
that really influences the result of the estimation. For this reason the con-
figuration we adopted for robot_localization on real data is very similar to
the one we used for simulation tests. This feature can be seen as a prove
of the generality of the estimator and thus an advantage. In practice it is
not, conversely it is an important limit for the estimator that is not much
adaptable to the increasing complexity of the environment.

The high noise strongly affected the ROAMFREE implementation and
configuration. Indeed, spent much effort in setting the covariance of each of
the sensors we adopted. We have seen in section 3.3.2 and in section 5.3.2
that the covariance is fundamental for the state estimation. Thus, analyzing
the noise of each sensor, we found, after many attempts a good configuration
of RF. We made this analysis thanks to a Matlab viewer available in the
RF repository, which is able to visualize the trajectory estimated by RF, the
trajectory drawn by the GPS readings (if GPS sensor is added to the factor
graph) ,and, for the enabled sensors (sensors present in the factor graph), it
shows the acquisitions and the relative estimated error. We report in Figure
6.2 the snapshot of the Matlab viewer after the complete execution of the
bag using the final configuration of RF.

Observing the figure it can be noted how much the RF estimation is good,
in fact the trajectory drawn coincides almost perfectly with the one actually
done by the robot. To confirm this we can also look at the similarity with the
path drawn by the GPS, that in this bag is RTK with fixed solution (accu-
racy range 10-30cm) and observe that it almost coincides with RF estimated
trajectory. During the testing phase, we mainly worked with the gmapping
package, since it is the most adopted laser SLAM method in robotics, al-
though in indoor scenarios. This package, explained in section 4.6, contains
many configuration parameters. Most of the parameters regards the particle
filter, and among them we identified some that are really significant for our
experiments. We now list these parameters:
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Figura 6.2: Matlab viewer snapshot

• minimumScore (float, default: 0.0) = 600: Minimum score for consi-
dering the outcome of the scan matching good. If enough high it can
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avoid jumping pose estimates in large open spaces when using laser
scanners with limited range (e.g. 5m).

• srr (float, default: 0.1) = 0.01: Odometry error in translation as a
function of translation (rho/rho).

• srt (float, default: 0.2) = 0.01: Odometry error in translation as a
function of rotation (rho/theta).

• str (float, default: 0.1) = 0.01: Odometry error in rotation as a
function of translation (theta/rho).

• stt (float, default: 0.1) = 0.03: Odometry error in rotation as a
function of rotation (theta/theta).

• delta (float, default: 0.05) = 0.03: Resolution of the map.

This configuration of gmapping relies much more on the odometry, in fact
the four parameters srr, srt, str and stt specify the entity of the odome-
try estimation error. Decreasing them means to give more relevance to the
estimated odometry, that we know to be good thanks to RF.

For the slam_karto package we adopted the default configuration,
since all the other configurations we tried, produced worse maps, the
cartographer configuration, presents many parameters which allow to use it
for odometry estimation and SLAM simultaneously. We set these parameters
in order to have a standard SLAM method which uses the odometry frame
and the laser measurements. In addition we enabled the use of the online
correlative scan matcher since it produce clearer maps. Analyzing the maps
previously reported some considerations can be derived.

First of all, the superiority of RF with respect to robot_localization is
evident, since all the maps built using it are clearly better than the ones
obtained using the EKF filter.

The comparison between the SLAM approaches is quite more controver-
sial. As a general remark we consider Gmapping to be the best algorithm in
our scenario, since it is the most stable, though in the created map obstacles
are not perfectly defined and sometimes a slightly curved map is generated.
Indeed, Cartographer creates perfect maps in terms of accuracy and obsta-
cles, but it is less reliable than Gmapping as sometimes it completely fails
the generation of the map. This behavior is caused by the fact that Carto-
grapher is a graph-based SLAM algorithm forcing scan-matching, when there
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(a) (b) (c)

Figura 6.3: Maps of the MasLlunes vineyard built using robot_localization. (a) Kar-
toSLAM (Feb), completely wrong, (b) Google’s Cartographer (Feb), the map presents
some erroneous lines in the lower part, (c) Gmapping (Feb), acceptable map, even if
slightly curve, but this usually does not interfere with the localization algorithm
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(a) (b) (c)

Figura 6.4: Maps of the MasLlunes vineyard built using ROAMFREE. (a) KartoSLAM
(Feb), there are some inaccuracies and it is not acceptable without manual cleaning,
(b) Google’s Cartographer (Feb), it is a perfect map, (c) Gmapping (Feb), it is very
good and straight
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is not enough matching between two adjacent sub-maps the error created is
significant (as it can be seen in the map obtained with robot_localization).
This problem affects, even in a heavier way, the KartoSLAM algorithm being
a graph based algorithm like Cartographer. This problem is evident in the
robot_localization map. Maps produced by the Gmapping algorithm are
not as accurate as the one produced by the other algorithms in terms of
details, but they are more consistent. In terms of computational complexity
Cartographer (executed with online correlative scan matching) is much more
heavy than the other ones. As a consequence, if executed on a standard PC
it needs to run the data bag with a reduced rate.

Comparing the maps created using February and July data, we can con-
clude that the main differences come from the different vegetative state of
the vineyard. In fact, in February there are no lives on the vines and only
small weeds on the terrain, while in July the vines are full of leaves and the
grass on the terrain is more developed. In addition the soil cohesion changes,
causing robot wheels skid in a different way. Nevertheless we have been able
to generate maps in both conditions as it was aimed by the project.

6.3 Autonomous navigation

During the real vineyard tests the complete navigation architecture was in-
stalled and successfully tested on the robot platform. Autonomous navigation
tests at MasLlunes were carried on for one day and a half during which we
collected experimental data in order to continue the tuning and testing of
the navigation algorithm in the lab. During this period we also made tests
related to the other work-packages of the projects, including field monitoring
and manipulation.

These preliminary tests on the field, indeed this was the outcome of the fir-
st integration of the hardware and software, have shown very promising resul-
ts regarding mapping and localization. However they have also shown some
issues related to the planner which were not identified in the simulations.

Indeed, the move_base global planner needs a very high inflation of the
obstacles in order to avoid planning paths that go through vine rows. This
high inflation, on the other hand, generates issues with obstacles which are
very small in the real scenario, but become bigger in the costmap such as
weeds and long grass. In the February tests this was no evident since the
weeds and grass were cut and the the vineyard was not alive, during July
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field test this issue has raised. In the next months we plan to face this issue
by trying different solutions, among these a possible identification of rows in
the vineyard to be considered when planning so not to require the excessive
costmap obstacle inflation. A second problem identified for the planner is
due to the fact it it has been developed for a differential drive robot while,
as we already mentioned, our robot has a skid steering kinematics. As a
consequence, the planner has a recovery procedure, in case the robot is lost
(the robot is not sure about its localization in the map), in which it makes
the robot turning on itself, but the skidding kinematics does not allow for
a perfect turn around the robot center and, coupled with the shape of the
wheels ( knobby wheels ), it causes a wrong motion of the platform. In this
case a different recovery procedure has to be implemented.

As a general comment, we can conclude that we are very satisfied about
the navigation stack and its tuning for the GRAPE scenario, during the
tests the localization worked properly, as the robot only a few times got
lost in the almost two days of trials. For the odometry estimator and the
SLAM node still some improvements are possible, for instance by adding
the magnetometer measurement and optimizing the fusion parameters, but
most of the effort will be devoted during the integration phase is solving
the planner problems previously mentioned above To provide the reader an
example of the planner issues and how they have been faced during the field
tests we summarized here some crucial moments of the video using some
screenshots:
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Figura 6.5: Map of the MasLlunes vineyard in July, built using ROAMFREE and
Gmapping
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(a)

(b)

(c)

Figura 6.6: Maps of the MasLlunes vineyard built using robot_localization. (a) Kar-
toSLAM (Feb), completely wrong, (b) Google’s Cartographer (Feb), the map presents
some erroneous lines in the lower part, (c) Gmapping (Feb), acceptable map, even if
slightly curve
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(a)

(b)

(c)

Figura 6.7: Maps of the MasLlunes vineyard built using robot_localization. (a) Kar-
toSLAM (Feb), completely wrong, (b) Google’s Cartographer (Feb), the map presents
some erroneous lines in the lower part, (c) Gmapping (Feb), acceptable map, even if
slightly curve



7.
Conclusions and future work

This thesis was aimed at building a reliable navigation system for a mobile
robot which needs to autonomously navigate in vineyards. We can identify
three main challenges faced during the development of such system and how
we accomplished these:

• The variability of the vineyard environment influences significantly the
perception of the robot, since the presence of a rough terrain, the pre-
sence of an active vegetation, and the presence of variable weather
conditions generate noise in sensor data. A system using only one sen-
sor is not reliable for this case, we need to exploits different type of
sensor giving a different view of the world for the filtering of the noise
and we fused them.

• The integration of multiple sensors requires a complex method able
to merge the sensors acquisitions and use them to accurately estimate
the robot pose. Our navigation system adopt a factor graph model
to accomplish this task, ROAMFREE as method for sensor fusion and
odometry estimation.

• The adaptation of indoor methods to outdoor scopes has been our last
challenge our system try to readapt localization method such as AMCL
and SLAM methods such as Gmapping, Cartographer and KartoSLAM
that are designed mainly for indoor robot, but with an appropriate
odometry estimation and a proper TF tree they can obtain good results
also in different scenario as the vineyard is.
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The resulting navigation system has proved his reliability first in simula-
tion and then when it has been installed on a real robot and used in a real
vineyard. In particular validation has highlighted some strengths:

• An accurate and robust pose estimate

• The ability to build navigable map even in complex/harsh/rough
environments

• A flexible structure which components can easily be exchan-
ged/swapped/switched to complete different tasks

It has also shown some limits:

• The difficulty in autonomous navigation due to unexpected obstacles

• Problems in the correct path planning both for global and for local
costmap

• Wrong localization recovery behavior

In conclusion we can assert that we are satisfied by the obtained results
and that the thesis has reached the prefixed goal. However, we listed some
defects that should be fixed in the next future.

Some ideas for the future are

• Implement a planner specific for skid-steering robots.

• Integrates a vision component in the system able to recognize
dangerousness of the obstacle individuated by frontal sensor.

• Building of an elevation mapping of the terrain in order the relieve
holes etc in case therer area
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A.
Introduction to ROS

Robot Operating System (ROS) is used in this thesis as the robotic midd-
leware. It is used to develop and test implementations of the mapping system
discussed in Chapter 4. According to the ROS website1, "ROS is a flexible
framework for writing robot software. It is a collection of tools, libraries,
and conventions that aim to simplify the task of creating complex and ro-
bust robot behaviour across a wide variety of robotic platforms". ROS is a
completely open-source, community driven project that is used by many uni-
versities, companies and hobbyists worldwide. ROS needs to run on top of an
existing Operating System (OS), and is primarily targeted at Ubuntu. The
ROS system is very modular; the minimum set of packages is formed by the
ROS base installation. It can be extended by any ROS packages as desired.
A common set of packages is captured in the ROS full desktop install, which
contains of the base and a set of commonly used packages such as packages
for simulation and visualization. In addition to the official Ubuntu releases,
experimental releases exist for many other systems including OS X, Windows,
Raspberry Pi, and embedded systems through OpenEmbedded. ROS can be
run in a distributed way over multiple computers, communicating over TCP.
Official support is also provided for several robots such as the PR2 and Tur-
tlebot, which are controlled by a computer running Ubuntu. ROS provides
hardware abstraction, low-level device control, implementations of commonly
used functionality, communication between processes, and package manage-
ment. Packages provide functionality such as controlling movement of the
robot, generating odometry infor- mation, reading and processing sensor da-
ta from e.g. a Kinect, camera or laser range sensor, keeping track of a robots
joint configuration, etc. Packages can also provide more high level functio-
nality such as SLAM implementations, object recognition, 3D simulation,
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compatibil- ity layers to enable the use projects like Point Cloud Library
(PCL) and Open Computer Vision (OpenCV), etc. The basis for ROS was
laid at Stanford University, where the robotic middleware Switchyard was
developed in 2007. Switchyard was further developed under the name ROS
by the com- pany Willow Garage (a robotics research institute/incubator).
ROS saw is first official release, ROS 1.0, in January 2010. Since then, many
releases followed. For this thesis, the 10th official release named Kinetic Ka-
me is used, released in May 2016. In the last years, ROS has quickly grown in
popularity and an increasing number of projects, companies, and universities
seem to be using it. For example, the ambitious STRANDS project, which is
in many ways a successor to the CogX project, is using it. Also, the ROCS
toolkit by Pronobis which forms the basis of the work presented in [Pronobis
and Jensfelt, 2012], is expected to be released soon for ROS5. ROS can use
the Player/Stage, Gazebo and MORSE projects for (multi)robot simulation.
Gazebo is capable of simulating full 3D worlds including physics and usual-
ly only a few adaptations are needed to run a real world ROS system in
simulation.

A.1 ROS concepts

A good overview of the ROS concepts can be found on the ROS website6.
ROS divides these concepts in three different levels: the ROS filesystem level,
the ROS computation graph level, and the ROS community level.

A.1.1 ROS filesystem

ROS uses various concepts at your local filesystem level, including:

• Packages: At the level of the computers local filesystem, ROS organizes
functionality in packages. Packages contain files that together give the
package functionality, such as exe- cutables (called ROS nodes), sour-
ce code, cmake files, ROS message type definitions, ROS service type
definitions, roslaunch files, configuration files, etc. Packages contain
a manifest file (package.xml) that provide all the metadata about the
package.

• Metapackages Metapackages are empty packages that only have depen-
dencies on a set of other packages. Metapackages are used to collect a
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set of packages that together provide some functionality. By installing
a metapackage, all relevant packages will get installed, similar to how
this is sometimes done by apt-get.

• Workspaces and overlaying ROS installs to your /opt folder. The Indigo
release for example installs to /opt/ros/indigo. The ROS packages that
are installed under this folder should not be edited by the end user.
Instead, the end user should create a so called workspace, usually in
your home folder. This workspace overlays the packages in /opt/ros:
you can create your own packages here, add packages (manually or
through a VCS) from other people, or check out original ROS packages
from Github for example to make your own changes to it. An overlay,
such as your workspace, has a higher precedence than everything that it
overlays (e.g. /opt/ros/indigo). That is, you can install the gmapping
package through apt-get (which will end under opt), and later add
the Github version to your own workspace and make some changes
to the code. ROS will now ignore the gmapping package under opt,
as it gives priority to the version in your own workspace. You can
even chain multiple workspaces using overlaying. Additionally, you
can install multiple ROS releases at the same time. Switching releases
or workspaces is as easy as sourcing a bash script (which you usually
make part of your .bashrc file). Although multiple workspaces can be
active at the same time, only one ROS release can be used at the same
time.

• Launch files An important kind of file are .launch files, which are execu-
ted by roslaunch. These XML based files specify ROS nodes (see next
Section) that should be launched, to- gether with parameters. The fi-
les can also include (import) other launch files, and can control many
advanced settings such as remapping topics, interpreting passed argu-
ments (through command line or launch file inclusions), etc. Launch
files form a convenient way to start ROS functionality and are found in
many packages to ease the use of the packages. By inclusion of other
launch files, a launch file can be a very powerful tool that allows to
start up a full, complex system.
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A.1.2 ROS computation graph

The ROS computation graph is the peer-to-peer network of processes that
together process all data. Figure (ref) shows the structure of such a graph.
Master The ROS master is the process that governs the network and provides
name regis- tration and lookup to the rest of the processes. Nodes Nodes7
are the processes of the graph. The gmapping package for example contains
a gmapping node (executable). Packages can contain multiple nodes. Nodes
communicate with other nodes through messages and services, and can be
configured using parameters. Nodes are generally programmed in C++ or
Python. LISP is also official supported, while experimental support for Java
and several others is available as well. Parameters ROS works with global and
private parameters. Private parameters are passed to nodes when they are
launched and are only accessible to that node. Global parameters are stored
in the parameter server and are accessible by all nodes at any time. Glo-
bal parameter names are of the format /<parent1>/<parent2>/<name>,
e.g. /gmapping/map_update_interval. A name can consist of zero or mo-
re parents. Messages Messages are used for communication between nodes.
Messages are simple data structures (similar to C structs), existing of typed
fields. Messages can be exchanged through topics or services. Topics Nodes
can publish messages to topics. Other nodes can subscribe to such topics.
A topic will always contain messages of only one type. Topics can receive
messages from multiple publishing nodes and can have multiple subscribing
nodes. Topics are named in the same way as global parameters. An example
is a SLAM node that publishes an occupancy grid map as a message to the
/map topic. A navigation node can subscribe to /map to use this map for
planning a path. Services Services work on a request / reply basis, whereas
topics work on a publish / subcribe basis. A node (called the client) can
send a request as a message to a service. The node that provides this service
then responds with a reply message. Nodes that provide a service provide
such a service under a name, which is named like a global parameter. Ser-
vices always have only one node offering the service, and it can only serve
one client at a time. Other tools ROS can record message data and play it
back later using the command line tool rosbag. This is especially useful for
collecting real-world sensor measurements and playing that data back again
later for development and testing. Another important tool is the command
line tool rqt, which offers a set of various GUIs. A very useful one is the
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rqtgraph, which generates a graphical representation of all the nodes and
topics of the currently running system. Lastly, the rviz node (which is part
of the rviz package) can be used to visualize a variety of data. One can
add all sorts of windows to enable visualization of certain types of data. For
example, one can add a window showing the map generated by SLAM, a
window that shows the robot, a window that shows laser scan data (reading
sensor_msgs/LaserScan messages on the /scan topic), a window showing a
planned path for navigation, etc. All windows are combined in one 2D or 3D
view.

A.1.3 ROS community

ROS is strongly driven by its community. The wiki provides a lot of do-
cumentation, including installation instructions, beginner tutorials and do-
cumentation for packages. ROS Answers (answers.ros.org) is a Q&A site
for asking ROS related questions and can prove very use- ful from time to
time. Furthermore, ROS provides all kinds of tools and documentation to
stimulate contributions by the community. There are tools to ease the crea-
tion/generation of documentation, tools to generate package wiki pages, to
automatically test and update package builds, there is a bug ticket system,
there is a ROS Enhancements Proposals (REPs) system, there are tools and
guidelines to use Github (the officially preferred VCS), etc.



B.
Sensors specifications

B.1 Xsens MTI-10 IMU

Inertial measurement units (IMU) will be used to obtain orientation and
acceleration of the system. The selected model is a MTI-10 series, from
XSense.
The following table shows the sensors specifications of the IMU:

Gyroscopes Accelerometers
Typ Max Typ Max

Standard full range +/- 450◦ /s - 50 m/s2 -
Bias repeatability (1 yr) 0.2◦/s 0.5◦/s 0.03 m/s2 0.05m/s2
In-run bias stability 18◦/h - 40 µg -
Bandwidth (-3 dB) 415 Hz N/A 375 Hz N/A
Noise density 0.03degree/s/

√
Hz 0.05◦/s/

√
Hz 80 ◦g/

√
Hz 150 µg/

√
Hz

Non-orthogonality 0.05 deg 0.05 deg
Non-linearity 0.03% FS 0.1% FS 0.03% FS 0.5% FS

Magnetometer
Typ Max

Standard full range - +/- 80 µT
Noise density 200 µG/

√
Hz -

Non-linearity 0.1% FS -

Tabella B.1
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B.2 IMU sensors specification

The following table shows the systems specifications of the IMU:

Input voltage 4.5-34V or 3V3
Typical power consumption 480-570 mW
IP-rating IP 67 (encased)
Temperature -40 to 85 ◦C
Vibration and shock MIL STD-202 tested; 2000 g for 0.5 ms
Sampling frequency 10 kHz/channel (60 kS/s)
Output frequency Up to 2 kHz
Latency < 2 ms
Interfaces RS232/RS485/422/UART/USB (no converters)
Standard full range gyro 450 ◦/s (1000 ◦/s available as an option)
Standard full range acc 50 m/s2 (150 m/s2 available as an option)
In-run bias stability gyro 18◦/h
Bandwidth gyro 415 Hz
Bandwidth acc 375 Hz

Tabella B.2
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B.3 Hokuyo sensors specification

The selected model is a Hokuyo UTM-30LX-EW from Hokuyo. This laser
is a small, accurate, high-speed device for outdoor robotic applications. The
next table summarizes the technical data of the laser:

Product Name Scanning Laser Range Finder
Model UTM-30LX-EW
Light Source Laser Semiconductor λ = 905nm Laser Class 1
Supply Voltage 12VDC ± 10%
Supply Current Max: 1A, Normal : 0.7A
Power Consumption Less than 8W
Detection Range and Detection Object Guaranteed Range: 0.1 ∼ 30m (White Kent Sheet)

Maximum Range : 0.1 ∼ 60m
Minimum detectable width at 10m : 130mm (Vary)

Accuracy 0.1 10m : ±30mm, 10 30m : ±50mm (White KentSheet)
Under 3000lx : White Kent Sheet: ±30mm (0.1m to 10m)
Under 100000lx : White Kent Sheet:±50mm (0.1m to 10m)

Measurement Resolution and Repeated Accuracy 1mm 0.1 10m : σ 10mm, 10 30m : σ 30mm (White Kent Sheet)
Under 3000lx : σ = 10mm (WhiteKent Sheet up to 10m)
Under 100000lx : σ = 30mm (White Kent Sheet up to 10m)

Scan Angle 270◦

Angular Resolution 0.25◦ (360◦/1440)
Scan Speed 25ms(Motor speed : 2400rpm)
Interface Ethernet 100BASE-TX(Auto-negotiation)
Output Synchronous Output 1- Poin
LED Display Green: Power supply.Red: Normal Operation

(Continuous), Malfunction(Blink)
Ambient Condition(Temperature, Humidity) -10◦C ∼ +50◦C

Less than 85%RH (Without Dew, Frost)
Storage Temperature -25∼75◦C
Environmental Effect Measured distance will be shorter than the

actual distance under rain, snow and direct sunlight
Vibration Resistance 10 ∼ 55Hz Double amplitude 1.5mm in each X, Y, Zaxis for 2hrs.

55 ∼ 200Hz 98m/s2 sweep of 2min ineach X, Y, Z axis for 1hrs.
Impact Resistance 196m/s2 In each X, Y, Z axis 10 times
Protective Structure Optics: IP67 (Except Ethernet connector )
Insulation Resistance 10MΣ DC500V Megger
Weight 210g (Without cable)
Case Polycarbonate
External Dimension (WxDxH) 62mmx62mmx87.5mm

Tabella B.3
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B.4 GPS Novatel OEMstar receiver

The selected model is a OEMstar receiver by Novatel. The OEMStar mea-
sures only 46 by 71 mm, accepts an input voltage between 3.1 and 5.25 VDC
and consumes less than 500 mW. This makes the OEMStar an attractive
choice for use in robotics applications.

General Info Length (mm) 71.00
Width/Diameter (mm) 46.00
Height (mm) 13.00
Weight (g) 18.00
Typical Power Consumption (W) 0.36

Constellation GPS + GLONASS
SBAS capable

Tracking Max Num of Frequency Single
Number of Com Ports LVTTL 2 + USB Device 1

Performance

Accuracy (RMS)
Single Point L1 1.5m
SBAS 0.7m
DGPS 0.5m

Tabella B.4
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B.5 Stereo camera: Zed

Zed camera from Stereolabs is a stereo camera up to 2K resolution. This
sensor may be used for navigation purposes being able to obtain a rough 3D
reconstruction of the entire vineyard. The specifications of this sensor are:
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Features

High-Resolution and High Frame-rate 3D Video Capture
Depth Perception indoors and outdoors at up to 20m
6-DOF Positional Tracking
Large-scale 3D Mapping using ZEDfu

Video Mode Frames per second Output Resolution
2.2K 15 4416x1242
1080p 30 3840x1080
720p 60 2560x720
WVGA 100 1344x376

Depth

Depth Resolution
Same as selected video
resolution
Depth Range
0.7 - 20 m (2.3 to 65 ft)

Depth Format
32-bits
Stereo Baseline
120 mm (4.7")

Motion

6-axis Pose Accuracy
Position: +/- 1mm
Orientation: 0.1 ◦

Frequency
Up to 100HZ

Technology Real-time depth-based visual
odometry
and SLAM

Lens
Wide-angle all-glass dual lens with reduced distortion
Field of View: 110◦ (D) max.
f/2.0 aperture

Sensors

Sensor Resolution
4M pixels per sensor with
large 2-micron pixels
Sensor Size
1/3" backside illumination
sensors
with high low-light sensitivity
Camera Controls
Adjust Resolution,
Frame-rate, Exposure,
Brightness, Contrast,
Saturation, Gamma,
Sharpness and White
Balance

Sensor Format
Native 16:9 Format
for a greater horizontal field
of view
Shutter Sync
Electronic Synchronized
Rolling Shutter
ISP Sync
Synchronized Auto Exposure

Connectivity

Connector
USB 3.0 port with 1.5m
integrated cable
Power
Power via USB
5V / 380mA

Mounting Options
Mount the camera to the ZED
mini tripod or use its 1/4"-20
UNC thread mount
Operating Temperature
0◦C to +45◦C (32◦F to 113◦F)

Size and Weight
Dimensions
175 x 30 x 33 mm (6.89 x
1.18 x 1.3")

Weight 159 g (0.35 lb)

Tabella B.5
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B.6 3D Lidar: Velodyne Puck Lite

In order to obtain a more precise 3D reconstruction of the vineyard, we
equipped the robot with a 3D Lidar system from Velodyne. This sensor
provides a 360o point cloud using a 16 rotating lasers.

Features VLP-16
Channels 16
Range 100m
Accuracy +/- 3cm
Data Distance/Calibrated Reflectivities
Data rate 300,000 pts/sec
Vertical FOV / Resolution 30◦ / ∼2.0◦

Horizontal FOV / Resolution 360◦ / 5Hz: 0.1◦, 10Hz: 0.2◦, 20Hz: 0.4◦

Input Voltage 9-32 VDC
Power 8W
Environmental IP67
Operating Temperature -10◦ to 60◦ C
Size 104mm x 72mm
Weight 0.83kg

Tabella B.6



C.
TF library

The TF library was designed to provide a standard way to keep track of
coordinate frames and transform data within the entire system such that in-
dividual component users can be confident that the data is in the coordinate
frame that they want without requiring knowledge of all the coordinate fra-
mes in the system. As robotic systems get more and more complicated, being
able to focus on precisely the task frame and only the relevant coordinate
frames becomes critical. Most robotic systems are fusing data from many
different sensors with different coordinate frames Instead to explain only the
/tf topic we decide to describe entire TF library, since it is very useful to
know it is structure to better understand the three main problem that we
face: odometry estimation, localization and SLAM. In general the scope of
the TF is to provide the geometric relation between two different frames (see
Figure 4.3). The TF library can be separated into two different parts. The
first part is disseminating transform information to the entire system. It is
called broadcaster. The second part of the library, the listener, receives
the transform information and stores it for later use. The second part is then
able to respond to queries about the resultant transform between different
coordinate frames. There are often several different sources of information
regarding the various coordinate frames in a system. Each of these sources
of information is often connected to hardware and produce data(e.g sensor
values, actuator feedback) at different frequencies, and could potentially be
connected over a link with non-trivial latency or packet drops. As such the
TF library must accept asynchronous inputs and be robust to delayed or lost
information.

The TF library is designed to be a core library of the ROS ecosystem.
To be able to support ROS applications it needed to be robust to distribu-
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Figura C.1: A view of all the standard TF frames in Willow Garages PR2 Robot with
the robot meshes rendered transparently and the edges of the tree hidden. The RGB
cylinders represent the X, Y, and Z axes of the coordinate frames.

ted computing environments with unreliable networking and non negligible
latency. The design is also influenced by the need to communicate using
anonymous publish subscribe message passing.

The library needs to be able to provide a transform between two coordina-
te frames at a requested time. If data is not available the library provides the
user with an appropriate error and not return invalid data. It does not assu-
me that the system have a constant structure, so it also provides the ability
to dynamically change the relationships between frames including adding,
removing, and changing connections between coordinate frames. Transforms
and coordinate frames can be expressed as a graph with the transforms as
edges and the coordinate frames as nodes. The graph can exist with one
or more disconnected subgraphs and the transform can be computed bet-
ween nodes within the subgraphs, but not between disconnected subgraphs.
Transforms are inherently directed. To traverse up an edge the inverse of
the transform can be used. However, with an arbitrary graph, two nodes
may have multiple paths between them, resulting in two or more potential
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net transforms making the result of the query ambiguous. To avoid this the
graph must be acyclic.

Then To provide quick look ups the tree must be quickly searchable.
Limiting the graph to a tree enables fast searching for connectivity. This
becomes important as graph complexity increases. TF tree is designed to
be queried for specific values asynchronously. A tree structure also has the
benefit of allowing for dynamic changes to the structure without using extra
information except the directed graph edges. When an edge is published to
a node referencing a different parent node, the tree will resolve to the new
parent without extra information. Each update to the edge of the tree is
specific to the time at which it was measured. Likewise, queries against the
tree are required to have a specific time at which to make the look up. To
make this possible, a history of the values of an edge of the graph is stored
in a chronologically sorted list to enable quick look up. Data is stored for a
specified duration and within that period it can be expected to be able to
query for a net transform within the TF tree. To be able to operate, all data
which is going to be transformed by the TF library must contain two pieces
of information: the coordinate frame in which it is represented and the time
at which it is valid.
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