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Abstract

This work discusses the design and implementation of Robo3, a web game
to teach programming skills, to be used as a supplement during introductory
programming courses. The game helps students to visualize and understand
the effects of the code they write; at the same time it allows the instructor to
easily author levels on the topic of their choice and to gather data on players’
performance, which can be visualized in aggregate form by a companion
dashboard environment.





Sommario

Questa tesi discute la progettazione e l’implementazione di Robo3, un gioco
web volto a insegnare a programmare, il cui scopo è di essere usato come
strumento di supporto nei corsi di introduzione alla programmazione. Il
gioco permette agli studenti di vedere e capire gli effetti dell’esecuzione del
codice da loro scritto; allo stesso tempo, permette a chi tiene il corso di
creare facilmente nuovi livelli sugli argomenti che ritiene utili e raccoglie
dati sull’andamento dei giocatori, che possono poi essere esaminati in forma
aggregata tramite un ambiente dashboard specializzato creato appositamente.

Gli ultimi anni hanno visto una crescita nell’importanza data alle com-
petenze informatiche e di programmazione, che sempre più vengono usate da
molti nella vita di tutti i giorni. In aggiunta a ciò si è assistito a un incremen-
to nell’uso e nell’efficacia di metodi di insegnamento alternativi, come l’uso
di giochi applicati all’ambito in questione, in funzione di supporto all’inse-
gnamento tradizionale. Alla luce di questi aspetti è stato deciso di progettare
e sviluppare Robo3. Dopo uno studio attento e accurato della letteratura
scientifica correlata e degli esempi commerciali di giochi sulla programmazio-
ne, si è stabilito che gli aspetti importanti di tale gioco devono essere rivolti
sia ai giocatori, che possano così vedere con i propri occhi gli effetti del co-
dice che scrivono, sia a coloro che tengono i corsi in questione, che possano
facilmente creare livelli personalizzati sugli argomenti che ritengono adatti e
possano esaminare i dati che il gioco raccoglie, in modo da poter monitorare
l’andamento dei propri studenti sotto molti aspetti diversi.

Questa tesi discute dettagliatamente tutte le scelte di design che portano
al raggiungimento di tali obiettivi progettuali, oltre a fornire una panoramica
sul gioco in sé e sull’ambiente dashboard associato.
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Chapter 1

Introduction

1.1 General scope

In recent years there has been a rise in the awareness given to the importance
of learning and developing skills related to programming and, more generally,
to analytical and computational thinking. In a world where technology is
pervasive and computers are used in many tasks during both life and work,
the benefits related to knowing how to think, design and write a piece of
code grow year by year. There have been awareness campaigns and efforts
to bring the topic of computer science and programming to school curricula,
such as the week-long 2013 Hour of Code initiative, promoted by the Code.org
foundation in the United States.

The use of serious or applied games for educational and training purpose
is also becoming pervasive and it has often shown to be successful (Rajara-
vivarma, 2005), (Drake and Sung, 2011), (Lee, 2013). While not able to fully
substitute traditional teaching strategies, this approach has proven valuable
as a supplementary learning method, allowing students to see and apply what
they learn in the classroom under a different light, from a different perspect-
ive, or just plainly in a more relaxed and fun setting, all of which contributes
to the alternative learning experience. Coupling the two approaches can thus
provide many benefits.

1.2 Purpose of this work

The aim of this thesis is to discuss the design and the development of Robo3,
a web game to supplement the teaching of introductory programming courses,
designed after a careful study of similar examples from scientific literature
and related games from the commercial world. Key points of Robo3 include:
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• allowing students to visualize the consequences of the code they write
in the game world, providing a concrete representation for abstract
concepts, strengthening understanding and retention;

• the possibility for the instructor to quickly and easily author new levels,
so that these may always be strictly related to the topic they wish to
focus on;

• the gathering of data related to how players fare while playing, such
as which levels they were able to complete and metrics related to their
solutions, coupled with an online dashboard to aggregate and show
these data through appropriate graphical representations, providing the
instructor with up-to-date feedback.



Chapter 2

State of the art

This chapter provides an overview of games from the scientific literature that
have been developed with the express purpose of teaching programming skills
and computational thinking abilities. Then, the most important commercial
games available today that cover the same topic are presented. Finally, some
remarks and a brief analysis of the games presented is provided as a guideline
for the design choices in the reminder of the thesis.

2.1 Why to use games?

Using games as a reinforcing and exercising tool for teaching programming
skills and analytical thinking can be very beneficial for students. In fact,
games allow to better visualize concepts that might otherwise be perceived
as too abstract. They also help to familiarize with knowledge and methods
that would maybe be tedious to study in the standard fashion, offering a cycle
of challenges and rewards that propels the learning experience forwards with
less perceived effort and fatigue.

These benefits are extensively discussed in the literature: Lee (2013),
Lee, Ko and Kwan (2013) and Lee and Ko (2011) discuss how using game
approaches, like presenting programming tools as human-like characters, may
improve a student’s retention, interest and speed; Theodoropoulos, Antoniou
and Lepouras (2016) present the results of a study on 70 Greek high-schoolers
that correlates the different cognitive styles of the students with how success-
fully they learn from serious games for teaching programming.

Rajaravivarma (2005) studied how notorious word and number games
(such as Jeopardy or Hangman) can be of value for teaching skills related to
computer science and computational thinking, and similarly Drake and Sung
(2011) discuss the use of several board games to introduce and demonstrate
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concepts related to programming such as data structures.
While not properly a game, and thus less related to this analysis, Scratch1

exemplifies very well how using games for teaching can be beneficial. De-
veloped by the MIT Media Lab, it is a visual programming language asso-
ciated with a browser-accessed environment that allows to create interactive
stories, animations and small games. Such a game-like approach is much
more captivating than the traditional way of studying for an introduction to
programming topics.

Another approach that successfully employs game-like methods is the
one carried on by the CS Unplugged project2, a collection of free learning
activities that teach computer science topics through games and puzzles that
use cards, string, crayons and physical activity, aimed at younger students.
It was explicitly designed to allow to learn computational abilities without
any prior knowledge in programming.

2.2 Programming games in the literature
By examining the games proposed in the scientific literature it is possible
to distinguish two general trends. The first is to design games whose aim is
to help and aid programming skills by focusing on the act of writing code,
on the syntax of the programming languages, on the written language itself,
allowing students to familiarize themselves with the actions they will carry
out while programming in the real world and maybe to feel less intimidated
by the act. The second trend is to design games that take a more abstract
point of view on the problem, often disregarding the act of writing code
and focusing on the skills related to problem-solving and analytical thinking.
Both trends are analyzed and discussed in the following subsections.

2.2.1 Games for writing code

Many of the games created and analyzed in the literature focus on the syntax
of programming languages and the act of writing code. A certain number of
authors have produced games that are focused on teaching one single pro-
gramming language. Mitamura, Suzuki and Oohori (2012) present a show-
case of four games for learning programming concepts: the first three are
very narrowly focused on learning the syntax of Java, while the fourth has a
much broader scope and consists in moving a character in several top-down
levels by entering a small program detailing its movements. Eagle and Barnes

1https://scratch.mit.edu
2csunplugged.org

https://scratch.mit.edu
csunplugged.org
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(2009) present the game Wu’s Castle, made with RPG Maker, where play-
ers visually interact with loops and similar structures and may change them
interactively, following a C-like syntax. Anderson and McLoughlin (2007)
present a 3D game-environment where a sheep is controlled by writing code
in C-Sheep (a subset of ANSI C) or via graphical programming. Paliokas,
Arapidis and Mpimpitsos (2011) present a game employing the LOGO lan-
guage, where one controls a 3D spaceship by entering commands and seeing
the resulting behavior. Jordine, Liang and Ihler (2014) present a mobile
game for learning Java. Sierra et al. (2016) present a mobile RPG-like game
where one controls a character that explores a world through programming
in Java.

As it can be seen, there are many examples of proposals of serious games
for teaching specific programming languages. Other authors advocate for
more universal approaches. Thus Serrano-Laguna et al. (2015) state that,
even if using games to teach programming has been successfully used in many
cases in the literature, all games so far proposed are narrow in their scope.
Since, however, it is stated that writing code is an essential part in learning
how to program, they advocate for the construction of a general game en-
gine able to handle any possible language and different kinds of games with
minimal configuration, where the games consist of typing small programs to
solve each level. They provide one example of a game implemented with such
engine and two case studies to test its effectiveness.

While certainly effective, this syntactic approach has been deemed too
focused on the act of writing code and not enough on the broader and more
abstract analytical thinking abilities required for programming.

Related to this specific point is the study by MacLaurin (2011) on Kodu, a
3D game where players control robots by writing rules for triggered actions.
Stolee and Fristoe (2011) have analyzed 346 user-made Kodu programs to
examine which programming concepts can be learned. While the rules that
one writes in Kodu are still textual in nature, its approach is a step towards
teaching more abstract concepts without leaving them implicit in the act of
writing code.

2.2.2 Games for teaching concepts

There are other proposals of games less focused on teaching syntax and how
to write code and more in teaching programming concepts. Masso and Grace
(2011) present Shapemaker, an augmented reality card game (played on a
table-based tactile interface) where the core concepts of programming are
learned while explicitly avoiding the added complexity of having to learn
burdensome syntax and typing code: while players are still lead to famili-
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arize with syntax, this is achieved without the effort that using a real lan-
guage would entail. Schmitz et al. (2011) discuss a browser game resting
atop a back-end made by several online services, made to train its player
in IT skills. Sajana, Bijlani and Jayakrishnan (2015) present a game made
of several minigames, each dedicated to a different aspect of programming
(data structures, control flow and so on). Horn et al. (2016) analyze the use
of GrACE, a game for middle school children tailored at teaching not the
craft of programming but abstraction and computational thinking through
the solution of minimum spanning tree procedural problems. Kazimoglu et
al. (2012) present the the game Program your robot, specifically developed to
teach computational thinking.

2.2.3 Surveys in the literature

There have been some surveys in the literature on the topic of games for
teaching concepts related to programming and computer science. Gibson and
Bell (2013) conducted a survey on games to teach computer science topics
in general, concluding that the coverage of topics is very patchy and incom-
plete. More to the point, Vahldick, Mendes and Marcelino (2014) produced
a study presenting a classification and examination of the skills required by a
programmer that can be trained by appropriate games and a survey of those
games that exist in the literature. As conclusions, it is noted that those
games do not adapt themselves to different skill levels as the student learns
and grows, do not allow more than one language and provide no feedback
during the gameplay experience, only after it has ended.

2.3 Commercial programming games
While the genre is not vast or popular by any means, there are several com-
mercial programming games. Their aim is not to teach, but to challenge the
player with programming puzzles: as a result, while they can be valuable in
teaching, what they offer is a series of challenges, often very difficult, that
usually require good programming skills to be solved in the first place instead
of teaching them.

Lightbot3 (Danny Yaroslavski, 2008) is a game where players control a
robot that can move around a chessboard and activate specific tiles on the
ground, lighting them; the player can control the robot by writing a program
with symbolic instructions (see Figure 2.1). Programs are limited in size and
consist of one main and two secondary parameterless functions, allowing for

3http://lightbot.com

http://lightbot.com
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Figure 2.1: Lightbot

Figure 2.2: Cargo-Bot
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Figure 2.3: Human Resource Machine

Figure 2.4: Shenzhen I/O
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recursive calls, which are actually the only way to obtain loop-like control
flows; the game also includes a break instruction in some of the different
versions released. Each instruction can receive a colored conditional flag,
meaning that it is executed only if the robot is standing on a tile of the
same color of the conditional flag. There is no form of input/output and
no state, except for the position of the robot on the chessboard and the
lighting of tiles. The programming model is thus very abstract and very
much akin to functional programming. Lightbot was analyzed by Gouws,
Bradshaw and Wentworth (2013), who developed a framework for evaluating
the effectiveness of computational thinking material and used this game as a
case study, concluding it performs very well according to their metrics. It was
also re-implemented for the Hour of code initiative promoted by Code.org4.
This new implementation maintains most of the core mechanics but overhauls
both the user interface and the level design, becoming more of a teaching
game and less of a simple puzzle game.

Cargo-Bot5 (Two Lives Left, 2012) is a mobile (iOS) game where the
player controls a crane to shuffle colored boxes around, by writing a program
with symbolic instructions (see Figure 2.2). The programs are very limited
in size, but the game offers up to four parameterless functions, allowing for
recursion much in the same way Lightbot does. Colored conditions may be
applied on single symbols to activate them only when the crane holds a box
of the same color or holds nothing (marked symbols get otherwise skipped).
The crane has very limited movement, and program state is represented
by its position and by the disposition of boxes on different platforms. It
can be argued that boxes act as variables of sorts, but only their position is
mutable, not their color. Cargo-Bot was deemed useful for teaching recursion
by Tessler, Beth and Lin (2013), who discuss the effort made to re-implement
it for browsers (with permission from the developers). This study also briefly
analyzes Lightbot as another similar game.

Human Resources Machine6 (Tomorrow Corporation, 2015) is a multi-
platform game where one instructs an office employee on how to move letters
and numbers from an input conveyor belt to an output conveyor belt (see
Figure 2.3) by writing a program in an assembly-like language where each
instruction is a symbol-like block (no typing is needed: whole instructions
are selected from a menu). Being based on simple assembly, it lacks any form
of function call, but it offers low-level conditional and unconditional jump in-
structions. Input is read and removed from an automatically-refilled register,

4code.org
5https://twolivesleft.com/cargobot
6https://tomorrowcorporation.com/humanresourcemachine

code.org
https://twolivesleft.com/cargobot
https://tomorrowcorporation.com/humanresourcemachine
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and output is deposited in a similarly self-emptying register. There are also
several work registers available, with operations to store and retrieve, and
even a dedicated pair of instructions to treat the work registers as an indexed
array. Values may be both integers and characters. Allowed operations are
addition and subtraction.

Spacechem7, Infinifactory8, TIS-100 9 and Shenzhen I/O10 are all made by
the same producer, Zachtronics, and thus present strong similarities. All are
released for computers. The strongest similarity among these games is that
they all rate the player’s solutions based on three metrics: time (simulation
cycles elapsed), program size (usually symbol count) and execution memory
footprint (varies with the game); then compare it against the solutions of
other players, so that one can instantly receive, after a level ends, a feedback
on how well their solution was compared to other players. Other similarities
are smaller and less interesting and relate to game design, such as with the
execution modules of TIS-100 and Shenzhen I/O.

Spacechem (2011) challenges the player with designing the sequence of
operations to manipulate atoms and molecules in a science-fiction-like indus-
trial setting. Overall, it is more related to industrial automation than to pure
programming. Abstracting from the industrial presentation, code is repres-
ented by symbols on a 2D surface, connected by a colored line, executed when
an actuator that travels the screen along the the line encounters them. Lines
must loop by design to create repetitive execution patterns. Conditions are
obtained through symbols that may change the direction of movement for
the actuator. Input structures must be fetched from an input area, trans-
formed to output structures and transferred to an output area to win. State
is represented by the position of atoms on the screen. Operations on data
is through symbolic manipulation instructions such as binding or separating
atoms in molecules.

Infinifactory (2015) maintains the industrial automation setting, this time
in 3D. The player must construct an industrial pipeline that assembles simple
blocks in complex structures by combining very simple block-like machines.
Similarly to Spacechem, code is represented by the disposition of the building
blocks that make up the factory, such as conveyor belts, pistons and welders.
Input structures must be fetched from an input area, transformed to output
structures and transferred to an output area to win. State is represented
by the position of the blocks in the factory. Operations on data is through
symbolic manipulation machines, such as welders to join two blocks, cutters

7http://www.zachtronics.com/spacechem
8http://www.zachtronics.com/infinifactory
9http://www.zachtronics.com/tis-100

10http://www.zachtronics.com/shenzhen-io

http://www.zachtronics.com/spacechem
http://www.zachtronics.com/infinifactory
http://www.zachtronics.com/tis-100
http://www.zachtronics.com/shenzhen-io
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to separate them or other that alter their shape.
TIS-100 (2015) requires the player to repair an old and corrupted command-

line computer system by solving assembly programming challenges. Code is
written by typing in a written assembly-like language. Program size is lim-
ited by the dimensions of small input areas, in the form of programmable
modules, but there are up to twelve such modules, each connected to its
neighbors. Each can thus represent a different function, lacking the language
any form of function call. The connections among modules are through re-
gisters and the execution is parallel by design, since each module executes
asynchronously and blocks only when waiting in read mode on a register or
once its execution terminates. Conditional and unconditional jumps allow
low-level loops and conditional constructs. Several input registers automat-
ically read from several input streams and bring in integer values. In order
to complete a level, specific values must be written into one or more output
registers in a specific sequence. As mentioned, program size for each mod-
ule is limited to a handful of instructions, and moreover each module offers
only one work register, one backup register and (up to) four input/output
registers. Allowed operations are addition and subtraction.

Shenzhen I/O (2016) maintains some core concepts from TIS-100, being
based on designing integrated circuits by assembling electronic components
and small programmable CPUs to create complex behaviors (see Figure 2.4).
The main differences with TIS-100 are that the typed assembly language that
the CPU components accept is richer, there are many non-programmable
modules doing specific things and the connections among each piece of the
puzzle must be decided by the player. Program size is limited, but the
circuit allows as many CPUs and components as there is space to fit. The
result is usually a complex entity made of several parallel interconnected
programmable modules, each connected by the player through registers and
buses to some of its neighbors. Conditional and unconditional jumps allow
low-level loops constructs and there are dedicated "test" instructions and a
block label syntax for implementing conditional constructs. There are several
input registers to automatically read from several input streams and bring in
integer values. In order to complete a level, specific values must be written
into one or more output registers in a specific sequence. There are different
registers according to module type, but usually one work register and some
input/output ones. Operations are addition, subtraction, multiplication and
other basic mathematical functions.

The programming styles present in these commercial games are either very
abstract or very low-level: there is no trace of the middle ground of a modern
high-level syntax. Moreover, as mentioned, they are meant as challenges
rather than teaching tools: the difficulty often spikes unpredictably and the
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last levels are exceedingly complex, especially for someone who should learn
how to program. For example, both TIS-100 and Human Resource Machine
have the last level that requires writing an assembly program to sort several
zero-terminated sequences of integers.

2.4 Conclusions
This chapter has analyzed and discussed several proposals in the scientific
literature, corroborated by some examples of commercial products, for the
problem of using games to teach programming skills and analytical abilities.
A comparison of the different approaches highlights some possible disadvant-
ages for games focused on the act of writing code, which might be confusing
and tricky for learners and might even carry the risk of missing the broader
point, which is learning how to solve a problem in one’s mind before setting
out to write its implementation. Of the commercial games analyzed, Lightbot
and Cargo-bot follow more closely these precepts. As discussed, however, the
programming paradigm that even the commercial game follow is probably
too abstract or too low level or lacking in certain programming constructs.



Chapter 3

Conceptual design

This chapter reports the design choices that have been made in the creation
of Robo3 and contains a detailed description of all its elements, as well as a
discussion of these design choices.

3.1 Overall design

3.1.1 High level design concepts

Of the two approaches present in the literature and in the commercial world,
as discussed in chapter 2, the one that focuses less on the act of writing code
and more on the high-level structure of the program has been chosen. While
they are not in contrast, the chosen one offers probably less disadvantages
for the learning student, since it abstracts away from the little details of how
to write code and allows the player to focus on the problem itself, training
the broader and more abstract capabilities of how to think and organize
programs.

3.1.2 Game description

The game presents several levels, each being focused on a particular concept
or aspect of programming. In each level, the player has to control a robot
on a tiled surface and program it to move some colored cubes around. The
program is written by putting specific symbols inside regions of the screen
that represent the program itself. Each symbol is an instruction with a well-
defined meaning. Once the player starts the simulation by clicking on the
Run button, the instructions are read one at a time and used by the game to
control the robot accordingly. The cubes in the level are organized in stacks,
each stack standing in a certain tile. The robot can pick up the topmost cube
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Figure 3.1: An overview of the main game screen: in white the main viewport,
in yellow the function panels, in red the instruction toolbox, in green the
simulation controls, in blue the camera controls

and drop it in any other tile, possibly on top of the existing stack for that
tile. The cubes must be carried to certain marked tiles in certain patterns
to successfully complete the level. The player must thus write the program
that correctly builds the required output sequences of cubes starting from
the input sequences. An overview of the game is depicted in Figure 3.1.

3.1.3 Inspiration sources

The game design draws its heaviest inspiration mainly from Lightbot and
Cargo-Bot. As in Lightbot, the player writes a program through symbolic in-
structions, which control and move a robot on a tiled surface, and as in Cargo-
Bot, the player writes a program to shuffle pre-existing stacks of colored cubes
to obtain the required output sequences. One of the key design differences,
though, is the inclusion of a specialized loop symbol in the instruction set,
whereas both the aforementioned games only allowed loop-like structures to
arise through recursion.
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3.2 Game elements

3.2.1 Overview

A view of a typical game screen is shown in Figure 3.1. This is the main
screen for the game and it is structured so that there is no need for the player
to look at other screens during gameplay. It is divided in different parts:

• main viewport: it shows an isometric view of the game world, visual-
izing the whole level. The robot stands on top of a tiled floor (which
may change shape depending on the level). Stacks of cubes also stand
on top of the same tiled floor. The robot may move around on these
tiles, pick the cubes up and drop them;

• function panels: the place where the player must insert the instruction
symbols to compose its program. It offers one main function and several
secondary functions;

• instructions toolbox: allows to drag the instruction symbols to the
function panels;

• simulation controls: allow to start and stop the simulation and to select
its speed;

• camera controls: allow to move the viewport around the level.

3.2.2 Levels

The robot moves on a tiled floor. Each step in a certain direction moves the
robot of exactly one tile. Thus, the robot is always centered on exactly one
tile. Similarly, tiles can contain cubes.

Some tiles start with cubes already on them, but any tile may accept
dropped cubes. So-called validation tiles, which are visually different from
standard tiles, represent the areas where the robot must carry cubes in a
certain pattern in order to complete the level. This pattern is shown by
having the tile contain the ghost outline of the requested cube stack.

Levels data is separate from the rest of the game and may be freely
edited by the designer without need of touching the program, allowing for
easy authoring of new levels according to need.
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(a) Forwards (b) Backwards (c) Rotate clockwise

(d) Rotate counter-
clockwise (e) Pick-up (f) Drop

(g) Loop (h) Function call

Figure 3.2: Instructions and their symbols

3.2.3 Cubes

Cubes are the elements that must be moved around by the robot in order to
complete a level; they can be picked up and dropped by the robot and they
are organized in stacks: when picking a cube, the topmost one is picked, and
when dropping a cube, it is deposited on top of the stack. There is exactly
one stack of cubes per tile. Any tile can thus accept dropped cubes, and any
cube can be picked up and moved elsewhere. Cubes are present in the game
world and cannot be created by the player. They can however be destroyed:
if the robot picks up a new cube while already holding another one, the held
one is destroyed and the new one replaces it.

Cubes are colored, in six different tints: red, orange, yellow, green, blue,
purple. Cubes of the same color are functionally identical for the game: if an
output sequence requests a red cube, for example, any red cube will satisfy
that request.

3.2.4 Instructions

There are eight different instructions with well-defined meanings, represented
by symbols that get selected from a certain panel and brought over to the
code panels to compose the program that the robot will follow. Symbols can
be dragged and dropped and freely reordered. They are listed in Figure 3.2.
Their meaning is as follows:

• forwards : moves the robot in the direction it is facing by exactly one
tile;
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Figure 3.3: The different conditions applied to the forwards instruction

• backwards : moves the robot in the direction opposite to the one it is
facing by exactly one tile;

• rotate clockwise: rotates the robot of 90° clockwise, making it face
another direction;

• rotate counter-clockwise: rotates the robot of 90° counter-clockwise,
making it face another direction;

• pick-up: picks up a cube from the top of the stack of the current tile,
if there are any, and keeps it with its hands. This cube is now being
carried by the robot and will follow it when it moves around. If there
is already a cube being carried when picking up a new cube, the old
one is destroyed;

• drop: drops the carried cube (if present) on top of the cube stack for
the current tile;

• loop: jumps back in execution to a previous instruction. What instruc-
tion to jump to can be selected by the player. An arrow visually binds
the loop symbol with the destination symbol. The jump is uncondi-
tional and the program never terminates if no condition is associated
to this symbol (see subsection 3.2.5). It is akin to a do/while loop;

• function call : calls one of the other functions. Function call executes
exactly as expected: calls can be recursive and once a call terminates
execution continues from the next symbol.

There is one code panel dedicated to a main function. This is the starting
point for the execution. There are also some other secondary function panels,
each associated with a specific function.

3.2.5 Conditions

Conditions are applied to instruction symbols rather than being a symbol
themselves. They are represented by the instruction symbol, normally black
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on white background, changing up to both colors. A conditioned symbol gets
executed only if the condition evaluates to true, otherwise it gets skipped.
Conditions perform a check on the color of the cube that is being currently
held by the robot (or, in the case of the pick-up and drop instructions, on
the color of the cube that is on top of the stack of the current tile). There
is a condition color for each cube color (red, orange, yellow, green, blue,
purple), which means that the instruction gets executed only if a cube of
that specific color is present, and there is the rainbow color, which means
that the instruction gets executed if any cube is present. There is also the
possibility of negating a condition: negated solid colors evaluate to true if
there is not a cube of that color and the negated rainbow condition evaluates
to true if there are no cubes at all. See Figure 3.3 for an overview of the
different conditions and their negated versions.

Conditions are essential when using the loop instruction, because the
simple loop symbol represents an unconditional jump, leading to non-terminating
programs.

3.2.6 Simulation

Once the player has written the program that solves the level, it must run. By
clicking on the appropriate button, the player can start the simulation. While
running, each instruction is sequentially read, interpreted, and its effects are
passed to the robot. After a brief delay, which allows the player to see the
results of each instruction, the next one is read and the cycle repeats. The
currently executing instruction is highlighted in the code panels, to allow an
even easier visualization of what is happening. Different selectable simulation
speeds allow the player to look closely at the effects of their program on the
world or to quickly skip over parts they already know.

At the end of the simulation, the validation step takes place, checking the
cubes on the validation tiles against the expected sequence. Programs that
do not terminate never enter the validation steps and are thus invalid. The
designer can moreover choose to limit the maximum number of computation
cycles allowed in a solution: programs that exceed this number are forcefully
terminated and considered invalid.

3.2.7 Test cases

In order to force the player to write the code that solves the general problem
instead of the specific case of a level (thus discouraging reliance on the specific
disposition and order of cubes), each level supports an unlimited number of
test cases. Each test case is made by a sequence of input cube stacks and a
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sequence of expected output cube stacks. Floor shape cannot change from
one test case to the other, nor the position of the validation tiles.

What the player sees when loading a level is the first test case. Once the
simulation runs, if the first test case is successful, the next one is fetched, if
present, and the simulation restarts from the beginning with the new con-
figuration of inputs and outputs, but maintaining the same program. This
process continues until all test cases have been successfully exhausted or a
single test case returns with a wrong result: in such a case, that single test
case is shown again to the player, to highlight the problem, and the simula-
tion terminates unsuccessfully.

By aptly configuring different test cases, the designer can obtain a level
that forces the player to think more broadly in order to develop a general
solution.

3.3 Discussion
The stated aim of the game is to help the teaching of programming skills and
analytical thinking abilities by being paired as a reinforcement and exercising
tool along with a more traditional, introductory course to computer science
and programming. The game should thus cover similar topics, presenting a
programming environment where the same concepts can be found. This has
lead to the choice of an instruction set containing the high-level concepts of
loops and function calls, as opposed to an assembly-like language that would
only have presented conditional and unconditional jumps.

Following one of the two approaches discussed in chapter 2, the game
avoids focusing on writing code by hand or on the syntax of existing lan-
guages, but rather provides a programming toolbox made of functional blocks,
so as to abstract away from the subtleties of the act of writing code, allowing
the full attention of the player to focus on the program they are creating.
This is achieved by having the code being made by a composition of well-
defined instruction symbols.

The game environment allows the player to see the results of the code
they created. This is achieved by having the robot visibly execute all of the
instructions, meaningfully modifying the state of the world (i.e. the cubes
and their disposition).

Finally, the game leads to the development of critical and analytical think-
ing capabilities that allow to think of a solution in general terms. This is
achieved by requiring several variations of the same level to be solved, through
different test cases.





Chapter 4

Level design

The design of levels in Robo3 is inspired by the typical exercises that are
presented in introductory programming courses. Such exercises can be clas-
sified according to the following thematic groupings:

• simple deterministic sequences;

• conditions;

• loops;

• array and data structure manipulation;

• functions;

• recursion;

• files and streams.

4.1 Design implications
The programming environment offered by Robo3 is not the same as that of
a typical programming language such as C. Some preliminary considerations
are due when approaching the topic of level design.

4.1.1 Colors and stacks

Cubes are colored and colors lack both an order relation and arithmetic
operators, excluding most of the standard exercises about numbers, but they
do allow equality checks: as a result they are very similar to characters, so
exercises about string manipulation are useful as a design source.
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There are moreover strong similarities between stacks of cubes in and
input/output streams, such as the fact that input streams only allow non-
random access to the next element in queue, much like input stacks do, or
the fact that cubes can be taken and manipulated but not created, only
destroyed, so exercises on data streams are another good design source.

4.1.2 Complexity

Levels of Robo3 that specify a fixed size for the input stacks (particular
cases) are easier to solve than the ones that do not (general cases), since
these latter necessarily require the use of iteration constructs and conditional
checks, while for the former a player can just unroll the loop and repeat the
necessary instructions the correct number of times. If this is not the intended
behaviour, the designer should aptly configure the test cases of a level to
avoid fixed-sized input stacks. On the other hand, levels that explicitly allow
a non-looping solution due to this may be beneficial to teach introductory
topics.

4.1.3 Ease of authoring

Particular care was taken to separate the level specification from the rest
of the game. Levels are defined in textual data files that the game then
reads and interprets, allowing an easy authoring of new levels without need
of changing the game code.

4.2 Sample levels

This section details several typical exercises inspired by the categories defined
previously, lists their possible implementations in the C language and presents
sample levels of Robo3 that cover the same topics.

4.2.1 Hello world

Simple deterministic sequences are defined as very simple programs that ex-
ecute linearly, without any form of control flow constructs. The simple Hello
world program, that prints the phrase “Hello, world!” on the screen, is one
such example. What this program does is writing a constant string to the
output stream. Another similar example would be a greeter program, where
the program asks for the user’s name and then prints a tailored greeting:
in this case, the program acquires some data from the input stream and
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void main ( )
{

int num;

s can f ( "%d" , &num) ;
p r i n t f ( "%d" , num) ;

}

Figure 4.1: Code specification for simple deterministic sequences

Figure 4.2: Sample level and solution for simple deterministic sequences
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\ begin { l s t l i s t i n g }
void main ( )
{

FILE ∗ s1 , ∗ s2 ;
int num;

/∗Acqu i s i t i on o f the streams . . . ∗/

s can f ( "%d" , &num) ;
i f (num >= 0)
{

f p r i n t f ( s1 , "%d" , num) ;
}
else
{

f p r i n t f ( s2 , "%d" , num) ;
}

}

Figure 4.3: Code specification for for conditions

then writes it to the output stream. The barebone specification that im-
plements this pattern acquires one integer from standard in and prints that
same number to standard out. Such a program is, of course, of limited use,
but it is a first step towards familiarizing with programming. It employs the
simplest possible form of input/output, executes sequentially and terminate.
See Figure 4.1.

Keeping in mind the similarities between streams and cube stacks, we can
easily design the simplest Robo3 level that requires to move one cube from
the input tile to the output tile. See Figure 4.2. Much as is it helps a novice
familiarize with the language and with new concepts, such a program is also
helpful in a game environment for the same reasons: it allows the player to
learn how to use the game.

4.2.2 Property comparison

Typical introductory exercises on conditional constructs ask the user to check
if a particular property of some input data is true or false: a number is posit-
ive, a character is alphabetic, a year is a leap year and so on. As mentioned,
cube colors lack a total order relation and therefore typical comparison exer-
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(a) First test case

(b) Second test case

Figure 4.4: Sample level and solution for conditions
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void main ( )
{

int num;

do
{

s can f ( "%d" , &num) ;
p r i n t f ( "%d" , num) ;

}
while (num != 0 ) ;

}

Figure 4.5: Code specification for loops (1)

cises, such as finding the maximum of two or three numbers, are not possible.
Maintaining the parallel between stacks and streams, checking a property in
Robo3 would lead to carrying the cube to a different validation tile, meaning
writing the data to a different output stream. See Figure 4.3.

An implementation in the game requires the use of several test cases.
Each test case has exactly one input cube, for example either red or non-red.
There are two distinct validation tiles: the first requests the red cube if the
input cube is red and the second requests the non-red cube if the input cube
is non-red; they do not otherwise request anything. Thanks to the different
test cases, the player is forced to write a program that transports the cube
in the first validation tile if it is red and in the second validation tile if it is
not. See Figure 4.4.

4.2.3 Input stream copy and reversal

Let us consider a program that processes a sequence of integers coming from
an input stream. The length of the sequence is unknown, but it is, for
example, zero-terminated. This is a textbook case of an exercise requiring a
loop to acquire the data. The simplest operation that can be done on the
input data is replicating it on another output stream, maintaining order. See
Figure 4.5.

A more complex program would ask to reverse the sequence before writing
it out. This requires memorizing each value in an appropriate data structure
and then reading them in reverse. For simplicity’s sake, we can assume that
there is an upper bound on the length of the sequences. See Figure 4.6.

Due to the nature of stacks, the level of Robo3 that implements the first
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void main ( )
{

int num, i , j ;
int buf [ 1 6 ] ;

i = 0 ;
do
{

s can f ( "%d" , &num) ;
buf [ i ] = num;
i++;

}
while (num != 0 ) ;

j = i − 1 ;
while ( j >= 0)
{

p r i n t f ( "%d" , buf [ j ] ) ;
j−−;

}
}

Figure 4.6: Code specification for loops (2)

Figure 4.7: Sample level and solution for loops (1)
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Figure 4.8: Sample level and solution for loops (2)

pattern is the reversal of an input stack; similarly, the level that implements
the second pattern is the movement of an input stack, maintaining order.
This behaviour makes sense when one considers that what would be the first
element for an input stream rests on top of an input stack of cubes, while
what would be the first element for an output stream stays on the bottom of
an output stack.

In the first case, the difficulty is all in understanding how to structure
the loop so that it breaks when there are no more cubes. This is achieved by
having the condition on the loop check if there is any cube still in the hands
of the robot. Since it is a do/while loop, this requires a few adjustments to
the structure that one might intuitively draw having a while loop in mind.
See Figure 4.7.

In contrast with the C specification, the second case is still very easy and
only requires to apply the solution for the first case twice. Conceptually, of
course, the player still has to use an intermediate data structure as temporary
storage. See Figure 4.8.

4.2.4 Functions

Functions in Robo3 are parameterless, so they are mostly useful as a code
reuse tool. They do have, however, an interesting interaction with conditions:
since conditions are applied symbol-by-symbol, wrapping some instructions
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Figure 4.9: Sample level and solution for functions

in a function and applying a condition to that function is similar to having
a condition on a whole block of code. This allows more complex behaviours,
such as, for example, a version of the level described in subsection 4.2.2
with an unbounded number of input cubes: in fact, it is possible to use two
functions, each bringing the held cube to a different place and then making
the robot come back to the starting position, which could not otherwise be
done due to how conditions work. See Figure 4.9.

4.2.5 List fill

The lack of numbers in Robo3 prevents from having indexed arrays in the
game. Stacks are the native data structure. It is possible, however, to mimick
other kinds of structures, such as lists.

Let us consider a program that appends an element to the end of a linked
list. Lists are not accessed by index but by traversal, so to reach their tail
one must scan the whole list. See Figure 4.10.

The corresponding level works thanks to the property of conditional
checks applied to the pick-up instruction, which checks the topmost cube
of the tile stack instead of the held cube. This can be used to find the
nearest free tile. See Figure 4.11. Managing this representation of a list in
the game is easier than in C, since Robo3 allows to abstract away from com-
plex details like pointers and memory allocation. Going back to the starting
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void append ( node_t ∗ l i s t , int num)
{

node_t ∗node = mal loc ( s izeof ( node_t ) ) ;
node −> next = NULL;
node −> value = num;

while ( l i s t −> next != NULL)
{

l i s t = l i s t −> next ;
}

l i s t −> next = node ;
}

Figure 4.10: Code specification for data structures

Figure 4.11: Sample level and solution for data structures
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int COUNT = 5 ;

void main ( )
{

act ( ) ;
}

void act ( )
{

COUNT−−;
p r i n t f ( " F i r s t part o f the c a l l . \ n" ) ;
i f (COUNT > 0)
{

act ( ) ;
}
p r i n t f ( "Second part o f the c a l l . \ n" ) ;

}

Figure 4.12: Code specification for recursion

tile to pick another cube and repeat the procedure is quite inelegant in this
solution. A cleaner approach is to use recursive function calls, as discussed
in subsection 4.2.6.

4.2.6 Stack-based counter and recursive stream copy

Since Robo3 functions are parameterless, recursion loses some of its power.
The game does however fully support recursive calls of functions and keeps
track of the whole call stack. Since stack-based Push Down Automata are
notoriously able to count, it is easy to see how one could use this property
to execute certain actions an undefined number of times and then, once a
breaking condition occurs, to execute other actions the same number of times.

There is no meaningful related programming exercise in the C language,
since for the simpler cases there is no real reason to use the call stack to keep
track of a number when one can just increase a counter; real-life applications
of the benefits of this technique are rather complex. The code in Figure 4.12
is however a proof of concept for this behaviour.

Lacking other options, using the call stack to count becomes much more
useful in Robo3. A level that easily uses this property is one where there are
at least two possible input tiles (in different test cases) arranged in a line, so
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Figure 4.13: Sample level and solution for recursion (1)

Figure 4.14: Sample level and solution for recursion (2)
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that the robot does not know a priori how far to go. Using recursion, it is
possible to write a program that allows the robot to move forwards until a
cube is found, pick it up and then move backwards of the same number of
steps. See Figure 4.13.

The special case of tail recursion notoriously boils down to looping. The
same stream copy or stack reversal level presented in subsection 4.2.3 can
also be quite elegantly solved with tail recursion, as depicted in Figure 4.14.

4.3 Conclusions
The design choice of a simplified programming model has both advantages
and disadvantages. While it is true that the language is easier to understand
and use as a result, it is also true that the lack of meaningful exercises
soon leads to a brisk increase in level complexity due to the lack of certain
elements such as numbers and indexed arrays, which would allow a wider
level design space. In fact, the last levels presented in this chapter employed
the properties of advanced data structures such as lists and stacks.





Chapter 5

Dashboard

In order to allow the instructor to keep track of the progress of the students
playing Robo3, a data gathering system has been integrated into the game.
Robo3 sends messages to a remote server on certain specific game events;
these messages are then retrieved and displayed in aggregated form by a
companion dashboard environment. The whole system allows for a deeper
understanding of users’ progress and opens the door to more complex analyses
over time.

5.1 Data model
Each time a user performs an action that is deemed relevant, the game com-
poses and sends a message to a remote server. These messages will then
be downloaded and processed by the dashboard in order to be graphically
shown.

5.1.1 Game events

There are four events that generate messages:

• entering a level (ENTER);

• exiting a level (EXIT );

• failing a simulation in a level (FAILURE );

• successfully completing a level (SUCCESS ).

The game sends exactly one message every time one of these events takes
place. ENTER and EXIT messages allow to keep track of user movement
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and time spent inside levels, while FAILURE and SUCCESS messages allow
to keep track of user behaviour and successes.

5.1.2 Game messages

A message is structured as follows, containing several different fields:

• message type: identifies the event that spawned this message (ENTER,
EXIT, FAILURE, SUCCESS );

• user identifier: a unique identifier associated to each user, likely the
same identifier used by the institution holding the course Robo3 is
used in;

• timestamp: records the moment the message was created and sent;

• level name: the level related to the fired event (the one just started for
ENTER, the one just left for EXIT and where failure and success took
place for FAILURE and SUCCESS );

• level session unique identifier: newly and uniquely associated by the
game to each level every time the user enters inside it; allows easier
matching of ENTER and EXIT messages to compute time spent inside
a level. All messages generated during the same level session have the
same value for this field.

Messages generated by a SUCCESS event contain some additional fields:

• solution: a complete listing of all instructions composing the successful
solution to the level, including all data related to conditions, loops and
function calls;

• cycles: the average over all test cases of how many simulation cycles
(program steps) were necessary to complete the level with the user
program;

• instructions: how many instructions compose the solution. While re-
dundant (one could obtain this value from the solution field), it allows
to slightly optimize the processing of data done by the dashboard;

• functions: how many functions compose the solution. While redundant
(one could obtain this value from the solution field), it allows to slightly
optimize the processing of data done by the dashboard.
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Figure 5.1: Sample chart for the number of plays

5.2 Dashboard design

The goal of the companion dashboard environment is to offer a flexible data
visualization tool, so as to allow analyses on game use and player perform-
ance, progress and perceived difficulty. The dashboard is a web application
that connects to the remote storage server, fetches all stored messages, pro-
cesses them and builds a variety of charts on several different topics. All
charts are interactive and allow the data they show to be filtered according
to different metrics, like time period, user or level. The dashboard is organ-
ized in several different parts, each dedicated to certain charts. They are
detailed in the following subsections.

5.2.1 Time spent playing

Three charts detail how much time users spend on levels. The first shows
the total time spent inside a level, the second shows the average user time
inside the level and the third shows the total number of plays that a level
had. They consist of column charts, with a column on the x-axis for each
level and the y-axis dedicated to the aforementioned values. They can be
filtered so as to show data only from certain time ranges, from certain users
or from certain levels. See Figure 5.1 and Figure 5.2.
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Figure 5.2: Sample chart for the total playtime

5.2.2 Successes

Two charts detail how easy a level is for players. The first shows the percent-
age of successes over all attempts at solving the level, the second shows how
many players successfully completed that level at least once. They consist
of column charts, with a column on the x-axis for each level and the y-axis
dedicated to the aforementioned values. They can be filtered so as to show
data only from certain time ranges, from certain users or from certain levels.
See Figure 5.3.

5.2.3 Solutions content

Three charts detail summarize the content of user solutions. The first shows
how many instructions, and of which kind, were used for the level, the second
shows how many function calls were (directly) recursive versus how many
were not and the third shows how many instructions were conditioned versus
how many were not. They consist of stacked column charts, with a column
on the x-axis for each level and the y-axis dedicated to the aforementioned
values. They can be filtered so as to show data only from certain time ranges,
from certain users or from certain levels. See Figure 5.4.



5.2 Dashboard design 51

Figure 5.3: Sample chart for the success probability

Figure 5.4: Sample chart for the instructions count
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Figure 5.5: Sample chart for cycles performance

5.2.4 Solutions performance

Three charts for each level detail the performance of user solutions using
different metrics. The first shows the cycles elapsed, the second shows the
instructions count and the third shows the functions count. They consist of
column charts, with a column on the x-axis for each unique value in solutions
and the y-axis dedicated to how many solutions achieved that particular
value. They can be filtered so as to show data only from certain time ranges
or from certain users. See Figure 5.5

5.2.5 User overview

This part of the dashboard repeats all charts previously described, but filters
them so as to only show data pertaining to a specific user.



Chapter 6

Conclusions

This thesis discussed the design and implementation of Robo3, a web game
to help the teaching of programming skills and analytical thinking abilities.
Its purpose is being paired as a reinforcement and exercising tool along with
a traditional introductory programming course; its focus is both on helping
students learn by visualizing the effects of the code they write and on help-
ing instructors to easily design appropriate levels and gather useful data on
students’ behaviour.

An analysis of the scientific literature and of the commercial games avail-
able allowed for a comparison of different approaches, highlighting advantages
and disadvantages of each, leading to the choice of a higher-level approach for
Robo3, where the player does not write the code directly with a real-life syn-
tax but uses atomic symbols to compose a program. An effort was made to
provide an instruction set that, at the same time, is easy to use and provides
the structures of modern high-level languages, like function calls and loops.
Support for different test cases in each level also allows the instructor to
force the players to think of their solutions in general terms, training critical
thinking abilities.

The design choice of not including the handling of numbers in the game
has allowed to simplify the instruction set, making it easier to learn and
use. It has also, however, reduced the design space for levels, preventing
many of the standard exercises found in typical introductory courses to be
implemented as levels. This has resulted in a rather steep increase in difficulty
once leaving the more trivial exercises behind, due to the lack of indexed data
structures such as arrays.

The game is naturally paired with a dashboard environment that allows
the instructor to easily visualize all data gathered by the game on the per-
formance of players. This allows the instructor to analyze the results, per-
form meaningful comparisons and make informed choices when guiding the
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learning process.

6.1 Future development
Robo3 has been designed to constantly gather data on the performance of
its players, but time constraints have prevented from actually employing it
on the field and carrying out a campaign of analysis to test its actual impact
on the learning experience. This aspect should certainly be investigated,
especially since its purpose is being used in the real world by instructors for
introductory programming courses.

In order to further expand the ease of use of the whole system, in the case
of formal adoption from one such course, the game might be integrated with
the institution’s own authentication system, allowing to keep better track of
the performance of students that use it. In a similar fashion, the dashboard
environment might be expanded as needed to support the visualization of
new forms of aggregate data, empowering the analysis tools offered to the
instructor.

Further developments on the game itself may include the expansion of
the instruction set and the inclusion of numbers in lieu of or in addition
to colors, allowing for a more diverse set of exercises, to better train other
aspects taught in the courses or to smooth out the difficulty curve of the
levels. Such an extension should of needs however to be carefully designed
and validated through user studies, as discussed.
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