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Abstract

Audio is one of the most effective and convenient methods of communicating

information. Nowadays, many personal devices like PDAs, mobile, tablets

demand spatial audio reproduction to be achieved on personal devices.

One of the most popular ways to achieve spatial audio reproduction is

using the headphone to reproduce the sound signal processed by the Head-

related transfer function (HRTF). HRTF describes the spectral modifications

that are characteristics of a source in a given location with respect to the

listener. The time-domain equivalent of this transfer function is known as

Head Related Impulse Response (HRIR).

As confirmed by many studies, HRTFs are highly idiosyncratic due to

their strong dependence on the listener’s anatomy and personalized head-

related transfer functions (HRTFs) are essential for presenting authentic

spatial audio through binaural rendering. However, measuring personalized

HRTFs for every user is a tedious task and requires a specialized equipment.

It is necessary for us to find out an alternative technique of HRTF personal-

ization

In this work, we introduce a simple and effective HRTF personalization

method. Our method is based on weighted anthropometric sparse represen-

tation with preprocessing and postprocessing methods. We follow a strong

assumption that the HRTF of a group can be represented using the same

representation as is for the anthropometry.

Unlike, previous sparse representation methods, our method assigns dif-

ferent weights to different anthropometric features depending on their rele-

vance.
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All the experimentation presented in this study is done on CIPIC database

e. We also compared the results of our approach with traditional sparse rep-

resentation and three different closest-match based approaches. Our results

demonstrate that by using only 17 anthropometric features, our method can

outperform all previous approaches resulting an average spectral distortion

value of 5.53 dBs.







Sommario

Audio e uno dei metodi piu efficaci e piu convenienti per comunicare le infor-

mazioni. Al giorno d’oggi, molti dispositivi personali come PDA, cellulari,

tablet richiedono riproduzione audio spaziale da realizzare sui dispositivi per-

sonali.

Uno dei modi piu diffusi per ottenere la riproduzione audio 3D e uti-

lizzare la cuffia per riprodurre il segnale sonoro elaborato dalla funzione di

trasferimento della testa (HRTF). La funzione di trasferimento a testa cor-

relata (HRTF) descrive le modifiche spettrali che sono caratteristiche di una

sorgente in una data posizione rispetto all’ascoltatore. L’equivalente del do-

minio di tempo di questa funzione di trasferimento e conosciuto come Head

Related Respulse Response (HRIR).

Come confermato da molti studi, i HRTF sono altamente idiosincratici

a causa della loro forte dipendenza dall’anatomia degli ascoltatori e dalle

funzioni personalizzate di trasferimento della testa (HRTFs) sono essenziali

per la presentazione di audio spaziale autentico tramite rendering binaurale.

Tuttavia, la misurazione di HRTF personalizzati per ogni utente e un compito

noioso e richiede una attrezzatura specializzata. E necessario per noi scoprire

una tecnica alternativa di personalizzazione HRTF

In questo lavoro introdurremo un metodo di personalizzazione HRTF sem-

plice ed efficace. Il nostro metodo e basato su una rappresentazione ponder-

ata antropometrica pesata con metodi di precaricamento e postprocessing.

Seguiremo un forte presupposto che l’HRTF di un gruppo puo essere rapp-

resentato utilizzando la stessa rappresentazione che e per l’antropometria.

A differenza dei metodi di rappresentazione sparse precedenti, il nostro
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metodo assegna pesi diversi a diverse caratteristiche antropometriche a sec-

onda della loro pertinenza, tutte le funzionalita antropometriche utilizzate

possono essere misurate da tre immagini scalate di soggetto.

Tutta la sperimentazione e fatta sul database CIPIC. Abbiamo confrontato

i risultati del nostro approccio con la rappresentazione sparsa in precedenza

disponibile e individuando i tre diversi approcci basati su match-match. I

nostri risultati dimostrano che utilizzando solo 17 funzioni antropometriche,

il nostro metodo puo superare gli approcci precedenti con una media valore

di distorsione spettrale di 5,53 dB.
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Chapter 1

Introduction

1.1 Introduction

Audio is one of the most effective and convenient methods of communicating

information. As many personal devices like PCs, mobile, tablets become

ubiquitous, the demand to create an immersive aural experience through

these personal devices is growing, which makes the spatial audio area become

a popular area of research.

One of the most popular topics in the spatial audio area is the spatial

audio reproduction. Binaural listening experiences can be created by using

headphones, stereo speakers or 5.1 loudspeaker systems [1]. Many spatial

audio reproduction systems have been introduced in previous studies. Those

systems can be divided into two classes[2]: One is the stereo loudspeaker

system, the speakers will reproduce the sound in the corresponding direction.

The other one is headphones-based spatial audio reproduction[3], the signal

of the sound processed by the Head-related transfer function (HRTF) will be

reproduced by the headphone.

Spatial hearing is the result of the interaction between the acoustic wave-

field and the listener’s anatomy, which causes wave scattering, reflection, and

diffraction. These phenomena modify the spectral content of the sound signal

in a direction dependent fashion and introduce a wide variety of cues which
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enable the listener to localize the location of the sound source. The interac-

tion between sound-field and listener’s body can be encoded by a complex-

valued and direction dependent transfer function, known as Head Related

Transfer Function (HRTF). The time-domain equivalent of this transfer func-

tion is known as Head Related Impulse Response (HRIR).

Having the HRTF in hand enables us to reproduce the spatial audio over

headphones. However, as confirmed by many studies, HRTFs are highly

idiosyncratic due to their strong dependence on the listeners’s anatomy. It

means the best performance can only be guaranteed by using individualized

HRTFs [4, 5]. Here we visually from the frequency domain to observe the

differences bewteen four subjects’HRTF in the same direction, as shown in

Fig. 1.1.

Figure 1.1: The HRTF spectrum of 4 different subjects from CIPIC database in the

same direction

Unfortunately, measuring the HRTFs is very cost expensive and time-

consuming and is limited to few labs[6, 7, 8]. This result in prevention of
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its use in consumer applications. It necessitates to find an easy to use and

effective method to produce a personalize HRTF.

Considering the dependence of the HRTFs on the anatomy of the listener,

many efforts has been made on personalizing the HRTFs based on anthropo-

metric features. Anthropometric features include the measurements of the

anatomy, such as head width, height and depth, pinna and concha height

and width etc.

Studies in [9, 10] proposed that the simplest possible approach to achieve

the HRTF personalization is to use the anthropometric features to select the

closest match from the database of non-individualized HRTFs. However, the

closest match doesn’t guarantee a good performance in all cases because it

can return only one of the non-individualized HRTFs and does not let the

user adjust the HRTF magnitudes.

Moreover, studies in [11, 12, 13, 14] find the relationship between the an-

thropometric features and the HRTFs. Many of these approaches try to find

a linear relationship between anthropometric features and HRTFs. While

studies [15, 16] investigate nonlinear simple relationships using neural net-

works. However, the performance of all these approaches depends on the

choice of the selected features.

Recently, authors in [17], proposed a new HRTF personalization method

based on sparse representation. The assumption is that the magnitude of

HRTF can be described using the same sparse representation as the an-

thropometric features in the training data. Base on this strong assumption,

HRTF of a new listener can be synthesized by sparse representation of its

anthropometric features and the HRTFs in the database.

Unlike previous sparse representation based approaches, which considered

all anthropometric features equally important, we assign weight factors to

reflect the relative influence of anthropometric parameters in the calculation

of sparse representation. The results show that this method can result in an

improved performance in personalization when compared to other methods

resulting in an average value of SD 5.53 dbs between actual and synthesized

HRTFs.
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1.2 Motivation

Broadcasting three-dimensional (3D) video content has been around for a

while and geneally a stereo audio is transmitted with the video. video. How-

ever, a rich immersive experience demands for synthesizing of the 3D sound

[1]. YouTube has deployed this technology in 2016 and its online videos can

provide such experience. This is one of the key areas which is expected to

grow in the future. Another market where a dire need is perceived is the

gaming world. Games with 3D sound synthesis are not a matter for past,

rather a pushing demand to provide better virtual sound experience is grow-

ing day-by-day.

Nowadays, many personal devices like PDAs, mobile, tablets demand spa-

tial audio to be delivered on personal devices. One of the most popular ways

to achieve spatial audio reproduction is using the headphone to reproduce

the sound signal processed by the Head-related transfer function (HRTF)[18].

HRTF describes the spectral modifications that are characteristics of a source

in a given location with respect to the listener. So it plays an important role

in spatial audio reproduction techniques.

However, as the strong relationship between HRTF and personal anthro-

pometry, even a small difference of anthropometric shape and size can create

a significant influence on HRTFs for sound location. Perceptual distortions

may occur in spatial hearing using generic HRTFs without the individual dif-

ference. Therefore, it is necessary to personalize HRTFs. As we already know

the difficulty of HRTF measurements and the strict requirement of measure-

ment experiment. The measurement of HRTF can not be widely used, it is

necessary to look for an alternative way to do the HRTF personalization.

Due to the inherent relation between HRTFs and anatomy of a person,

anthropometric data are widely used for HRTF personalization[9]. The pro-

cess requires usually to create a model and train it on the databases of

non-individualized HRTFs in hand. Then this model can be used to select

the closest matching HRTF from the database or synthesize a new HRTF.

There are two main problems of HRTF personalization based on anthro-

pometric measurements:
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First is the complexity of the anthropometric measurements. Although

it’s much simpler for us to measure the anthropometric features than to mea-

sure the HRTF, Some anthropometric data, such as the pinna rotation angle

and pinna are angle etc, still need to be measured in precise measurement

tools and it is still a time-consuming work. These limits the widely used of

HRTF personalization. It demands to select the key anthropometric features

and to measure features in a simple way.

Second is the accuracy of the HRTF personalization. As many former

studies in[11, 19, 20], the closest match based approach can lead to a sig-

nificant difference between the original HRTF and the matched HRTF. This

may lead to a blurred sound image and result in many psychoperceptual

errors.

1.3 Objective

The objectives of this thesis are summarized as follows:

• To apply a weight calculation approach to reflect the different relevance

of anthropometric features.

• To use the most relevant and easily measurable anthropometric features.

• To supply a more accurate HRTF personalization method based on

anthropometric features.

1.4 Organization of the thesis

Chapter 2 provides an overview of the spatial audio, HRTF, the measure-

ment of HRTF. and the state of articles of HRTF personalization approach.

Furthermore, different types of HRTF personalization methods will be dis-

cussed.

Chapter 3 explains our HRTF personalization approach. First, the se-

lection and acquisition of anthropometric feature will be introduced. Then
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the preprocessing methods for anthropometry features and HRTFs will be

discussed. Last is the calculation of sparse representation with weighted an-

thropometric features, including the calculation of anthropometric weights.

Chapter 4 talks about the implement and experiment steps, including

database selection and evaluation criteria selection and the performance of

our approach. Also, we compare the results of our approach with previ-

ously available sparse representation and finding the closest-match based

approaches.

Finally, chapter 5 summarizes the major contribution of this thesis and

suggests future work to be developed.



Chapter 2

Background

2.1 Spatial Audio

Recently a lot of interest has been seen in the spatial audio area. The def-

inition of spatial audio can be found in [2]: Spatial audio is the perception

of sound in 3D space and anything else related to such a perception, includ-

ing sound acquisition, production, mastering, processing, reproduction, and

evaluation of the sound, it can also be called as three dimensional (3D) audio.

One of the most popular topics in the spatial audio area is the sound

localization. Humans are capable to perceive and localize sound in 3D-space.

many previous studies describe the three dimensions of sound localization as

distance, azimuth, and elevation[2], as shown in Fig. 2.1. The distance refers

to the length of the direct path from the sound source to the centre of the

head. The horizontal plane is the plane which is horizontal to the ground

at ear-level height. Median plane is a vertical plane which is perpendicular

to the horizontal plane and with the same origin at the center of the head.

The azimuth is the angle between median plane and the path from the sound

source to the centre of the head. The elevation is the angle between horizontal

plane and the path from the sound source to the centre of the head[2]. These

three dimensions can also be divided into two aspects of perceived localization

such that the direction of the sound source(include azimuth and elevation)

and the distance between the centre of head and sound source.
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Figure 2.1: The coordinate system for sound localization [2]

For sound localization, human brains combine various cues from per-

ceived sound and other sensory information, such as visual images[2]. In-

teraural time difference (ITD) and Interaural level difference (ILD) are the

most important cues on sound direction localization[21]. ITD refers to the

difference of time that the sound arrives the left ear and right ear from the

sound source and ILD represents the difference in loudness and frequency

distribution between the two ears, as illustrated in 2.2.

As [22] introduced, ITD represents the ability of a person to measure

the interaural difference at low frequencies. ILD is mainly caused by the

attenuation of the sound levels in the ear further to the source due to the

head shadowing effect, compared to the ear nearer to the source. Therefore,

ITD is more important in low frequency and ILD is more important in high

frequency. [2].

However, ILD and ITD are not guarantee to work for all cases. As we

can obtain the same value of ITD and ILD from the sound source in a con-

ical surface[23], it will lead to many perceptual errors, such as front-back

confusions[24]. The spectral cue can be used to help perceive the accurate

elevation directions. Due to the relevance between spectral cues and the an-

thropometry of the listener, the idiosyncrasy anthropometry of the subject

makes spectral cues individual.[22]
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Figure 2.2: The example of ITD and ILD [2]

2.2 Head related transfer function

The sound waves emitted by the sound source are scattered by the head,

pinna, and torso. The physical process can be regarded as a acoustic filtering

system, whose characteristics can be obtained by the system’s frequency

domain transfer function description. HRTF is the frequency domain transfer

function of this acoustic filtering system. In [25], HRTF has been defined as:

HL = HL(r, θ, φ, ω, a) = PL(r, θ, φ, ω, a)/P0(r, ω) (2.1)

HR = HR(r, θ, φ, ω, a) = PR(r, θ, φ, ω, a)/P0(r, ω) (2.2)

where PL and PR are sound pressures in the listener left and right ear.

P0 is a sound pressure at the head center point without the head.
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In general, HL and HR is the function of the elevation angle of the sound

source θ, the azimuth angle of the sound source φ, the distance from the

sound source to the center of the head r, and the angular frequency of the

acoustic wave ω. HRTF is independent on the distance of the sound source

r only if the source is in the far-field.

Otherwise, the anatomy of different people are not the same, such as

head width, height and depth, pinna and concha height and width etc, which

lead to the idiosyncrasy of people’s HRTF. The parameter a in the function

represents the individual features.

The time-domain equivalent of this transfer function is known as Head

Related Impulse Response (HRIR), It is the inverse Fourier transform of the

HRTF.

(a)HRIR of subject003 (b)HRIR of subject010

(c)HRTF[dB]of subject003 (d) HRTF[dB]of subject010

Figure 2.3: HRIR and HRTF for two subjects in the same direction [19]
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Figure 2.4: HRIR and HRTF(azimuth dependence) for one subject [21]

Figure 2.5: HRIR and HRTF(elevation dependence) for one subject [21]
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2.3 The measurement of HRTF

Having the HRTF in hand enables us to reproduce the spatial audio over

headphones. However, as confirmed by many studies, HRTFs are highly id-

iosyncratic due to their strong dependence on the listeners’s anatomy[9].

Even a small difference of anatomy can create a significant influence on

HRTFs for sound location. Perceptual distortions may occur in spatial hear-

ing using generic HRTFs. Therefore, the best performance can only be guar-

anteed by using individualized HRTFs [4, 5].

As early as the 1940s, researchers have already tried to measure HRTF,

but most of these measurements were just focus on the horizontal plane or

median plane, or can not be used as general data because of the low accuracy

of measured data[26]. Nowadays, The measurement of HRTF is currently a

subject of much research, a variety of measurement methods for acoustic

system transfer functions can be used for HRTF measurements. The actual

measurement can obtain high precision personalized HRTF. Many research

institutions and universities have already set up some HRTF database, such

as CIPIC database[6], SYMARE database[8].

HRTF is usually measured in a acoustically conditioned environment.

An anechoic room with speakers placed in a spherical pattern is used. The

listener is seated at the center point of this virtual sphere, such that the

imaginary line passing through his ears is through the diameter[6]. In prin-

ciple, all speakers are at equal distance from the listener, as illustrated in

Fig.2.6.

High-quality earphones are placed inside each ear canal of the listener,

which record the stimulus generated from the speakers[27], as shown in

Fig.2.7.

Once the setup is ready, speakers are energized one-by-one with a wide

band signal based on Golay codes. The goal of such a signal is to cover all the

frequencies and also discriminate the fine delays in propagation using its auto

correlation property[28]. Measurements are taken and are post processed to

generate the Head Related Impulse Response (HRIR)[6]. In this process,

all the artifacts of the room are mitigated and a pure impulse response is
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Figure 2.6: HRTF measurement setup at Sound and Music Computing (SMC) Lab,

COMO, Polimi



16 Chapter 2. Background

Figure 2.7: The position of Microphone in HRTF measurement [28]

obtained. Precision and accuracy of such a response matters a lot as the 3D

sound generation solely relies on it. This HRIR is transformed into frequency

domain, resulting in an HRTF.

However, there are some limitations of HRTF measurements, such as

cost-consuming, time-consuming and lack of flexibility, which limited the

widespread use of HRTF. For this reason, finding an alternative method to

personalize HRTF is important.

2.4 HRTF personalization

2.4.1 HRTF personalization using closest-match

Closest-match base on the differences of anthropometric features

differences

In order to achieve prediction of personalized HRTF rapidly, a closest-match

method base on the CIPIC database has been introduced in [6]. The brief idea

of this method is to find out the subject whose physiologic structure is most
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similar to the test one and return this subject’s HRTF as the personalized

HRTF of the test subject.

The method is based on finding the closet-match to the outer ear shape of

the test subject using a set of seven pinna features, as illustrated in Fig.2.8.

Figure 2.8: The pinna features used in HRTF personalization [9]

This method achieved the purpose of quick personalization. However,

due to the diversity of anatomy, using pinna shapes involved in matching,

which will lead to some errors.

Also, as we have pictures of the ear in the CIPIC database. So some

image processing algorithms can be use to match the pictures and find the

closest match

Closest-match base on the PCA

In [20], the closest-match method has been improved by using principal com-

ponent analysis(PCA)[29] and correlation analysis to select out the key an-

thropometric features. Then, these key anthropometric features will be used

to select out the closest HRTF in CIPIC database.

In this methods, PCA has been used to calculate the relevance of the

anthropometric features. As the result of principal component analysis, the

PC weights can be used to run the regressions on the anthropometric features

and select the more relevant features. The selected features can be used to

make the closest match in the database.
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The parameter E has been defined as the measurement of similarity in

[20]:

E =
M∑
m=1

(d̂m − dm)2

σ2
m

(2.3)

where d̂m corresponds to the m-th anthropometric feature of the test subject,

dm corresponds to the m-th anthropometric feature of the subject in database

and σm is the variance of the m-th anthropometric feature in the database.

However, due to the diversity of anthropometric feature, using a small

number of anthropometric measurements involved in matching, which will

lead to some errors. More importantly, the closest match doesn’t guarantee

a good performance in all cases because it can return only one of the non-

individualized HRTFs and does not let the user adjust the HRTF magnitudes.

Closest-match base on the notch frequencies

Authors in [11] exploits the use of a revised pinna reflection model on a 2-D

image as a selection mechanism for HRTFs.

According to McAulay-Quatieri partial tracking algorithm, the three main

frequency notches of a specific median-plane HRTF can be extracted by cal-

culating the distance between a point lying approximately at the ear canal

entrance and each point lying on the three pinna contours thought to be

responsible for pinna reflections.

Then, with the HRTF data in CIPIC database, each subject can obtains

three frequency notches. The test subject need to take the picture of ear,

three contours’notch can be confirmed from the picture. Compare these three

notches with the notches in the database, the HRTF set in the database whose

mismatch is the lowest will be selected as the closest-match HRTF.
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2.4.2 HRTF personalization using sparse representa-

tion

Recently, authors in [17] proposed a new HRTF personalization method based

on sparse representation.

The sparse representation method based on a strong assumption that the

magnitude of HRTF can be described by the same sparse representation as

the anthropometric features in the training data.

Base on this assumption, a new subject’s HRTF can be synthesized by

sparse representation of its anthropometric features and the HRTFs in the

database.

The basic steps of this method are shown in Fig. 2.9: First, looking for

a sparse vector β that represents the test subject’s anthropometric features

as a linear combination of the anthropometric features from the database.

Then apply this sparse vector on the HRTF from the database to synthesize

the HRTF of the test subject.

The experiment results in [17]show that this method can improve the

personalization performance.
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Figure 2.9: Block diagram of the proposed sparse representation[17]



Chapter 3

Overview of the System

In this chapter, we will describe the architecture of the HRTF personaliza-

tion approach based on the weighted sparse representation of anthropometric

measurements step by step, as illustrated in Fig.3.1

Figure 3.1: Block diagram of HRTFs personalization using weighted sparse represen-

tation of anthropometric features

In all previous sparse representation techniques [17, 30], the anthropo-

metric parameters are considered equally relevant. Also, authors in [17, 30]

consider both anthropometric measurements of left ear and right ear as a
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single vector when determining a new subject’s sparse representation. As a

consequence, each subject only has one sparse representation of anthropo-

metric features.

However, it is not the case. Some of the features are more relevant than

the others[11]. For example, pinna features are the mostly more relevant

than the shoulder. Also, the anthropometric measurements of left ear and

right ear can be different.

Our contributions are twofold. First, assign weights of the anthropometric

features using partially on-off strategy using the approach described in [19]

and use these weights to devise a weighted sparse representation approach.

Second, give each subject two separately sparse representation for both left

ear and right ear in our work.

As the anthropometric measurements are on different scales and are from

different ranges, some preprocessing and postprocessing methods for anthro-

pometric data and HRTF data has been introduced in [30]. Then, authors in

[30] presented the best performance combination of those processing meth-

ods. We follow these suggested preprocessing and postprocessing methods in

our work.

Now we will discuss the detail of each step in this system.

3.1 Anthropometry

3.1.1 Anthropometric feature selection

The study in [19] reported that 19 anthropometric parameters (one pinna)

can be directly measured using only three scaled pictures as illustrated in

Fig. 3.2. All these 19 anthropometric parameters are listed in Table 3.1.

However, the value of x5 and x7 are usually too small to be measured in

the picture. For this reason, we only use the remaining 17 anthropometric

parameters.
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(a) side view

(b) front view (c) ear area

Figure 3.2: Anthropometric parameters can be measured from side view, front view

and ear area[19]

3.1.2 Anthropometric feature acquisition

As authors in [6] has explained that anthropometric measurements can be ob-

tained from still photos by placing a measurement tape behind the ear while

capturing the photos, as illustrated in Fig. 3.3. It allows those distances and

sizes not included in the anthropometry data to be determined. Therefore,

we can calculate the ratio of the picture and then use this ratio and the

length of anthropometric features on the picture obtain the measurement of
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Var Measurement Var Measurement

x1 head width d1 cavum concha height

x2 head height d2 cymba concha height

x3 head depth d3 cavum concha width

x4 pinna offset down d4 fossa height

x5 pinna offset back d5 pinna height

x6 neck width d6 pinna width

x7 neck height d7 intertragal incisure width

x8 neck depth

x9 torso top width

x10 torso top height

x11 torso top depth

x12 shoulder width

Table 3.1: 19 Anthropometric parameters can be measured from scaled picture

anthropometric features as follow:

Ratio =
ls
lp
, A = Ratio · Ap (3.1)

where ls represents the standard length of the item. ls is the measured

length on the picture. Ap is the measured length of anthropometric features

on the picture. A is the measurement of anthropometric features.

(a)5cm long measurement tape (b)ruler

Figure 3.3: The example of scaled picture [6]
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Recently, authors in [31, 19]presented another method of anthropometric

feature acquisition from the three scaled pictures. A photographic studio

has been set up and all the parameters of this photographic studio are fixed,

such as the type of the camera, the distance from testing subject to the focal

plane, the power of fluorescent lamps, the distance between halogen lamps

etc. Details are shown in Fig. 3.4

Figure 3.4: Top view of the photographic studio [19]

After setting up this photographic studio, all test subjects only need to

take pictures of three different views. Due to the ratio of each photograph

taken in this photographic studio has already been known, all 19 measure-

ments of anthropometric features can be calculated.
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However, even though the method introduced by [19] can achieve higher

accuracy in anthropometric measurements, it is still cost and time-consuming

to set up the photographic studio.

3.2 Preprocessing for Anthropometry Feature

According to many HRTF databases with anthropometric measurements,

the scale of different anthropometric features are different. It is necessary

for us to adjust those anthropometric data measured on different scales to a

notionally common scale, which means normalization[32]. Normalization can

also reduce the complexity and error in the calculation of weighted sparse

representation.

Authors in [30]introduced three different types of preprocessing methods

for anthropometric features and use the normalized anthropometric param-

eters At instead of using their scalar magnitudes Ao directly, including:

• Min-Max: each anthropometric feature subtracts the minimum value

in the set of anthropometric features and divided by the difference between

the maximum value and the minimum value in this set of anthropometric

feature.

At =
Ao −min[Ad]

max[Ad]−min[Ad]
(3.2)

As =
A−min[Ad]

max[Ad]−min[Ad]
(3.3)

where Ad = [A Ao]. A corresponds to the original anthropometric parame-

ters of all subjects in the database. As is max-min normalized anthropometric

parameters A in the database, the value of each element in As should in the

range of 0 to 1 .

• Standard score: each anthropometric feature subtracts the mean

value in the set of anthropometric feature and divided by the standard devi-

ation of this set of anthropometric feature, as insulated in Fig. 3.5 .
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At =
Ao −mean[Ad]

std[Ad]
(3.4)

As =
A−mean[Ad]

std[Ad]
(3.5)

where Ad = [A Ao]. A represents the original anthropometric parameters

of all subjects in the database. As is the result of standard score of the

anthropometric parameters A in the database.

• Standard deviation: each anthropometric feature divided by the stan-

dard deviation of this set of the anthropometric feature directly.

At =
Ao

std[Ad]
(3.6)

As =
A]

std[Ad]
(3.7)

where Ad = [A Ao]. A corresponds to the original anthropometric param-

eters of all subjects in the database. As is the standard deviation of the

anthropometric parameters A in the database.

Figure 3.5: Standard score normalization of anthropometric data distribution (a) orig-

inal distributions, (b) after subtracting the mean and (c) after dividing by the standard

deviation [19]

As [30] already compared these three type of preprocessing methods for

anthropometric data and introduced that use the standard score of anthro-
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pometric parameters has the best performance. That’s why we select the

calculation of Standard score as the preprocessing method in this work.

3.3 Preprocessing for HRTF

As many studies have suggested that the performance of personalization

method heavily depends on the choice of initial representation of HRTF[30,

11].Except using HRTF magnitude directly, log magnitude and power of

HRTF can also be used as the representation of HRTF. It is necessary for us

to choose a type of preprocessing method for HRTF data.

• Log magnitude of HRTF:

H[dB] = 20 log10 |H| (3.8)

• Power of HRTF:

Hpower = [H]2 (3.9)

The steps of preprocessing method of HRTF data as shown in Fig. 3.6.

First, we calculate HRTFs from HRIRs by computing the 256 point FFT,

then we follow the suggestion in [30] by using log-scale magnitude can result

in an improved performance. In our work, we used dB scale HRTFs instead

of complex amplitude HRTFs.



3.3. Preprocessing for HRTF 29

(a)HRIR

(b)HRTF(256 point FFT) (c) HRTF[dB]

Figure 3.6: Preprocessing steps of HRTF data: from (a) to (c)

Figure 3.7: Block diagram of weight calculation
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3.4 Sparse representation method for HRTF

personalization

3.4.1 Introduction of weights for anthropometry fea-

tures

Unlike the previous sparse representation based approaches [17, 30], which

considered all anthropometric features equally important, we assign weight

factors to the anthropometric parameters depending on their relevance. The

weights are calculated using the approach presented in [19], as illustrated in

Fig.3.7. For each subject in CIPIC database, we use 25 out of 27 anthro-

pometric parameters in weight calculation( x14 height and x15 seated height

are excluded). We did this to achieve a more general representation of the

relevance of the anthropometric features. In order to adjust anthropometric

parameters on different scales to a common scale, we normalize these 25 sets

of anthropometric measurements with min-max method:

A(i)
n =

A(i) −min[A(i)]

max[A(i)]−min[A(i)]
∀i = 1, 2, ..., 25 (3.10)

where A
(i)
n corresponds to the i-th set of normalized anthropometric param-

eters, A(i) corresponds to the i-th set of anthropometric parameters.

In order to obtain all possible combinations of 25 anthropometric pa-

rameters, partially on-off strategy has been used. So one anthropometric

parameter only have two types of situations: included or excluded. There-

fore, one subject has 225− 1 = 33, 554, 431 different possible combinations of

anthropometric parameters (excluding the situation where all parameters are

outside the combination). Then, we compare subjects in pairs by calculating

the difference between their combinations as follow:

DI(i,j,k) = ‖
∑

A(i,k)
n −

∑
A(j,k)
n ‖, ∀k = 1, 2, ..., 225 − 1, (3.11)

where DI(i,j,k) corresponds to the difference between sum of i-th subject and

sum of j-th subject in k-th combination.
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Next, we calculate the average spectral distortions (SD) of HRTFs be-

tween all subject pairs:

SD(H(i), H(j)) =

√√√√ 1

D

1

N

D∑
d=1

N∑
n=1

(20 log10

‖H(i,d)(n)‖
‖H(j,d)(n)‖

)2 (3.12)

where H(i,d) corresponds to i-th subject’s HRTF in d-th direction. N is the

number of frequency bins and is equal to 128. D is the number of directions

and is equal to 1250. Then we obtain a matrix of average spectral distortions

SDS×S, where S = 35 is the number of total subjects in considered for the

experiments.

After then, we calculate the correlation between possible combinations of

anthropometric parameters and the spectral distortion:

ρ(i,k) = corr(DI(i×35,k), SDi×35)) (3.13)

where ρ(i,k) corresponds to the Pearson’s correlation coefficient of i-th subject

in k-th combination, DI(i×35,k) corresponds to the difference matrix between

sum of i-th subject and sum of other 35 subject in k-th combination, SDS×S,

represent the average spectral distortions matrix between i-th subject and

other 35 subject.

If a combination gives the biggest value of ρ, we can define this combi-

nation as the best anthropometric combination for i-th subject. Finally, we

can obtain a total of 35 best anthropometric combinations.

Then, anthropometric feature’s weight can be measured by the frequency

of occurrence of this anthropometric parameter in all best combinations:

W (i) =
t(i)

S
(3.14)

whereW (i) corresponds to weight of i-th anthropometric feature t(i) is number

of times of i-th anthropometric parameter occurred in all best combinations

and S is the number of best combinations and is equal to 35.
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In the weight vector W = [W (1),W (2), ...,W (F )], each element corresponds

to the weight of a anthropometric paramter, F is the number of anthropo-

metric parameters we used and is equal to 25.

3.4.2 Sparse representation of anthropometry features

The basic assumption in our approach is that, the HRTF data is in the

same relation as these anthropometric features. Then, the sparse vector

of anthropometric features can be used directly to synthesize this subject’s

synthesis.

We used sparse representation, to estimate the standard score of the new

subject’s anthropometric parameters As, as a linear superposition of the

standard score of the anthropometric parameters of the users in the database

[17]:

At ≈ βAs (3.15)

where As is the standard score of the anthropometric parameters A in the

database.

In the sparse vector β = [β(1), β(2), ..., β(S)]T , each element corresponds to

the weight of a subject in linear superposition.

Thus, the problem of looking for an optimal sparse vector can be consid-

ered as a minimization problem:

β = arg min
β

(‖W (At − βAm)‖22 + λ‖β‖1), β(i) ≥ 0, (3.16)

where W represents the weights of different anthropometric parameters.

As suggested by [30], we added a non-negative constraint on the β as recom-

mended, e.g. β(i) ≥ 0.

The regularization parameter λ of this minimization problem is a non-

negative parameter.
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3.4.3 Postprocessing for sparse vectors

As the sum of the beta vector which we obtain from the minimization problem

as Eq. 3.16 may not be 1. In order to make sure the magnitude of the HRTF

stays the same[30], we normalize the values of the Beta vector such that the

sum of the beta vector is equal to 1.

β(i)
m =

β(i)∑S
s=1 β

(s)
(3.17)

3.4.4 HRTF synthesis

As the assumption in [17] that the HRTFs can be represented using the

same sparse representations as the anthropometric features. Once we get the

normalized sparse vector βm, we can directly apply it to the log-scale HRTF

data HdB in the database.

Ĥ[dB] =
S∑
s=1

β(s)
m H

(s)
[dB] (3.18)

However, the new synthesized HRTF Ĥ[dB] is in dB scale, so we need to

transfer the synthesized result into the scalar magnitude. The comparison

between new synthesized HRTF and original HRTF are presented in Fig. 3.8

Ĥ = 10
Ĥ[dB]

20 (3.19)



34 Chapter 3. Overview of the System

(a) subject003

(b) subject022

Figure 3.8: The comparison between new synthesized HRTF and original HRTF

3.4.5 Regularization parameter

Authors in [30] suggested, adding the only one parameter λ into the mini-

mization problem can prevent over-fitting[33]. The model of over-fitting are

shown in Fig 3.9. So a number of λ need to be tested by using the anthro-

pometric measurements and measured HRTFs in the database and one will

be selected as the optimal value of λ [34].

To find the value of λ, we can solve the minimum problem in Eq.3.16

using Least Absolute Shrinkage and Selection Operator (LASSO)[35]. Select

the λ which results in the smallest cross-validation error as the optimal one.

We used root mean square error as cross validation measure here as in eq

4.2.
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In order to match the scale of λ to preprocessed anthropometric param-

eters and tune the value of λ easily, we normalize λ as [30] suggested:

λ =
λ0

1− λ0
‖At‖22 (3.20)

where At corresponds to preprocessed anthropometric parameters of the new

subject. In this case by tuning the value of λ0 from 0 to 1, we can obtain

any nonnegative value of λ.

Figure 3.9: An example of the over-fitting model[36]
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Chapter 4

Implementation and Results

In this chapter we will analyze the performance of our proposed approach.

We used spectral distortion as the evaluation criteria and apply leave one out

cross-validation approach [37]to build up the evaluation protocol. We also

compared the results of performance with the previous sparse representa-

tion methods [17] and other three closest-match based HRTF personalization

methods[12, 19, 20].

4.1 Database Selection

In order to compare the performance of our proposed approach with pre-

vious sparse representation techniques and other three closest-match based

HRTF personalization, we need to select a suitable HRTF database with

anthropometric measurements.

After considering many HRTF database containing anthropometry data[6,

8, 17, 25, 38, 39], as presented in table 4.1, we choose CIPIC database as the

database in our work.

CIPIC database is a publicly available database of HRIRs that also con-

tains measured HRIRs for 45 different subjects for 1250 different directions.

CIPIC database can be obtained online and the number of anthropometric
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HRTF databse Year subjects Direction anthro features

CIPIC[6] 2001 45 1250 27

Nishino et al [38] 2005 86 72 9

Xie et al[25] 2007 57 72 17

TUM LDV[39] 2013 35 2160 8

Microsoft Research[17] 2014 250+ 512 52

SYMARE[8] 2014 61 393 3D model

Table 4.1: List of HRTF databases with anthropometric measurements

features is large enough for sparse representation calculation. More impor-

tantly, CIPIC also contain the pictures of the pinna, which can be used to find

the closes match[12]. However, only 35 subjects have all 27 anthropometric

data, so we only use the data of these 35 subjects in this work.

Figure 4.1: Loud speaker positions for the HRIR measurements in cipic database.(a)

front view (b) side view [6]
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4.2 Evaluation Criteria

4.2.1 Spectral Distortion

To compute the difference between synthesized HRTFs Ĥ and the origi-

nal HRTFs H of the test subject, we employed a widely used error metric,

spectral distortion, as our evaluation criteria.[11, 17]. Eq. 4.1 shows the

expression to compute the spectral distortion SD.

SD(d)(H, Ĥ) =

√√√√ 1

N

N∑
n=1

(20 log10

‖H(d)(n)‖
‖Ĥ(d)(n)‖

)2 [dB] (4.1)

where H(d) represents the original and ˆH(d) is the synthesized HRTF in d-th

direction. N is the number of frequency bins in considered frequency range,

in our research N is equal to 128.

Then we can use the root mean square error (RMSE) to compare the two

sets of HRTFs for all 1250 directions:

SD(H, Ĥ) =

√√√√ 1

D

D∑
d=1

(SD(d)(H, Ĥ))2 [dB] (4.2)

where D is 1250 in CIPIC database.

4.2.2 “The Best” and “The Worst” baselines in CIPIC

As we want to compare the performance of our approach with three different

closest-match methods introduced by [19, 40, 20], we calculate “The Best”

and “The Worst” average spectral distortion baselines for these 35 subjects

in CIPIC database in all 1250 directions[17].

When a subject successfully selects one other subject which has the min-

imum average spectral distortion difference to it, this selection is defined as
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“The Best”. On the contrary, “The Worst” result here represents the choice

which results in the largest spectral distortion.

The results are presented in Table 4.3. The result depict that in case

of using the closest-matching approach the best and worst results will be

bounded by the values of “The Best” and “The Worst” baselines.

4.3 Evaluation Protocol

We set up our evaluation protocol based on leave one out cross-validation

approach(LOOCV)[37], as presented in Fig. 4.2. This approach works on a

simple idea. Suppose we have a set of n subjects. For every trial we take one

of these subjects as our test subjects while the remaining of the n-1 subjects

will be regarded as the train subjects.

Figure 4.2: The basic schematic display of LOOCV

Among all 45 subjects present in CIPIC database, only 35 of these sub-

jects have all 27 anthropometric measurements. So for our studies we consider

only this subset of users. Each of 35 subjects will be taken out one by one as

the test subject and the remaining 34 subjects will be regarded as the train

subjects at the same time.

Having both the anthropometric and HRIR data in hand, the first thing

we did was to calculate the relevance weights of the anthropometric features.

For this purpose we used the partial on-off method. For further details on
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how this method works, readers are invited to read section 3.4.1. Unlike the

previous studies, we did the weight calculation for both ears seperately.

Then these subjects will be selected out one by one as the test subject.

We can find a sparse representation of the test subject’s anthropometric

features as a linear superposition of the anthropometric features of the re-

maining subjects in the database. After that, the test subject’s HRTF can

be synthesized by using the β vector and HRTF data in the database.

We will calculate the average spectral distortion between synthesized

HRTFs and original HRTFs. The average value of these 35 average spectral

distortions can be regarded as the evaluation value of HRTF personalization

performance in these 35 subjects from CIPIC database.

The three closest matching based methods are also evaluated using the

same steps.

4.4 Results and discussion

The results of our experiments are presented in Table 4.2, Table4.3 and

Table4.4. We also present these results in in Fig 4.3, 4.4 and 4.5 for more

intuitive comparison.

Left Ear Right Ear Average

Weighted Parameters (17) 5.5235 5.5351 5.5293

Unweighed Parameters (17) 5.6298 5.6359 5.6328

Unweighed Parameters (27) 5.5770 5.5707 5.5738

Table 4.2: Spectral distortion values for sparse representation approach for different

setups

Results presented in Table 4.2 and Fig 4.3 show that the average spectral

distortion of weighted sparse representation using 17 anthropometric parame-

ters is 5.53dB, which is better than the unweighed sparse representation even

when 27 anthropometric parameters are used(5.57dB) and that of unweighed

sparse representation using 17 anthropometric parameters (5.63dB).
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Figure 4.3: Result of spectral distortion of different sparse representation methods. 1

weighted sparse representation of 17 parameters, 2 unweighted sparse representation

of 17 parameters, 3 unweighted sparse representation of 27 parameters;

Left Ear Right Ear Average

Weighted Parameters (17) 5.5235 5.5351 5.5293

Pinna reflection[40] 7.3403 7.3403 7.3403

Closest-match using PCA[20] 7.6287 7.1844 7.4065

Weighted closest-match[19] 7.5451 7.2239 7.3845

Table 4.3: Average spectral distortion in all 1250 directions of weighted sparse repre-

sentation of 17 parameters, closest-match method using pinna reflection, closest-match

method using PCA selection, closest-match method using weighted anthropometric

parameters in [dB]
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Figure 4.4: Result of spectral distortion of different HRTF personalization methods. 1

weighted sparse representation of 17 parameters, 2 closest-match method using pinna

reflection, 3 closest-match method using PCA selection, 4 closest-match method using

weighted anthropometric parameters

Left Ear Right Ear Average

Weighted Parameters (17) 5.5235 5.5351 5.5293

“Best” baseline 6.2306 6.0317 6.1311

“Worst” baseline 9.5628 9.0821 9.3324

Table 4.4: Average spectral distortion of weighted sparse representation of 17 param-

eters and the “Best” and “Worst” baselines in CIPIC database in [dB]
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Figure 4.5: Result of spectral distortion of different HRTF personalization methods.

1 weighted sparse representation of 17 parameters, 2 the “Best” baselines in CIPIC

database, 3 the “Worst” baselines in CIPIC database
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Obviously, even though we use less anthropometric parameters, our ap-

proach still provides better results. More importantly, we can not directly

obtain all these 27 anthropometric parameters through three scaled pictures,

but all these 17 anthropometric parameters we used can be acquired from

three scaled pictures of the subject. These results also proved that by consid-

ering the relevance of different anthropometric parameters the performance

of HRTF personalization can be improved.

Results presented in Table 4.3 and Fig 4.4 show that the average spec-

tral distortion of closest-match method using pinna reflection is 7.34dB, the

average spectral distortion of closest-match method using PCA selection is

7.40dB, and the average spectral distortion of closest-match method using

weighted anthropometric parameters is 7.38dB. These results indicated that

our proposed approach outperforms the three closest-match methods.

Considering “The Best” baseline (6.13dB) and “The Worst” baseline

(9.33dB), we can first find out that the result of all these three closest-

match based methods are in the range of “The Best” baseline and “The

Worst” baseline. It can be proved that the result of “The Best” baseline can

represent the ideal result that the closest match can ever be reached.

However, we find that the average spectral distortion of weighted sparse

representation using 17 anthropometric parameters is lower than “The Best”

baseline. Because using closest match based methods can return only one of

the non-individualized HRTFs in the database and does not let the user ad-

just the HRTF magnitudes, which may nor perform the best. Using weighted

sparse representation method can adjust the HRTF magnitudes according to

the anthropometric features of the test subject, which can acheive a better

result.
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Chapter 5

Conclusion and Future work

5.1 Concluding remarks

In this work, we introduced a simple and effective HRTF personalization

method based on weighted sparse representation with preprocessing and post-

processing methods.

Our work is defined in the field of HRTF personalization base on an-

thropometric features. We use 17 anthropometric features to personalize the

HRTF. All of these features can be measured from subject’s three scaled pic-

tures. Using the partial on-off approach we calculated the weights for every

anthropometric feature. The weights reflect the relevance of every feature

in the process of personalization. We investigated that using some simple

pre and post processing techniques can result in a better performance of the

personalization method. We selected spectral distortion as the experimental

evaluation criteria and applied leave one person out cross-validation approach

to do the experiment.

Finally, we compared our proposed approach with previous sparse rep-

resentation using 27 anthropometric parameters. Even though we use less

anthropometric parameters, our approach still provides better results.

We also compared proposed approach with other closest-match based per-
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sonalization methods. The result of experiment indicated that our approach

outperforms the three closest-match methods.

5.2 Future work

Although the subjective tests shows that our approach outperforms almost

all previous personalization methods but it still needs to be verified using

perceptual localization testing.

The future work includes to reproduce the meaning 3D audio content

using the HRTFs from our personalization method and run some psycho

perception tests. We also aim to set up a simple mobile phone app for listen-

ers which can be used to measure the anthropometric feature and provide a

personalized HRTF.
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Appendix A

The result of 25

anthropometric features’ weight

factor in CIPIC database

The results of 25 anthropometric features’ weight factors in CIPIC database

are presented in Table. A.1. Each anthropometric feature has two different

weight factors. All these weight factors are in the range of 0 to 1. The higher

the weight factor is, the more relevant this anthropometric feature is.



Var Measurement Left Ear Right Ear

x1 head width 0.5714 0.5429

x2 head height 0.5143 0.4857

x3 head depth 0.5714 0.5429

x4 pinna offset down 0.4286 0.3429

x5 pinna offset back 0.1429 0.1143

x6 neck width 0.2000 0.2857

x7 neck height 0.5429 0.3714

x8 neck depth 0.4286 0.6286

x9 torso top width 0.2286 0.1714

x10 torso top height 0.4000 0.4857

x11 torso top depth 0.3143 0.0857

x12 shoulder width 0.5429 0.4286

x13 head offset forword 0.6857 0.6571

x16 head circumference 0.2857 0.1143

x17 shoulder circumference 0.4286 0.4857

d1 cavum concha height 0.3143 0.2571

d2 cymba concha height 0.1429 0.1714

d3 cavum concha width 0.2000 0.2857

d4 fossa height 0.5714 0.6286

d5 pinna height 0.1429 0.0857

d6 pinna width 0.6286 0.4000

d7 intertragal incisure width 0.4286 0.3143

d8 cavum concha depth 0.1429 0.4571

θ1 pinna rotation angle 0.5143 0.5429

θ2 pinna flare angle 0.4000 0.8000

Table A.1: The result of 25 anthropometric features’ weight factor in CIPIC database
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Figure A.1: Head, torso and pinna measurements in CIPIC database [41]
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Appendix B

The result of 5 subjects’ sparse

representation in CIPIC

database

The result of 5 subjects’(subject003, subject010, subject018, subject020 and

subject027) sparse representation in CIPIC database are present in Table.

B.1 and Table. B.2. Each column represent a sparse vector of a subject.

These sparse vectors are the solutions of minimization problems in Eq. 3.16.

The subject’s sparse vector can be used to synthesize the HRTF of this

subject with the HRTF data in the CIPIC database.



Subject003 Subject010 Subject018 Subject020 Subject027

0.0203 0.0201 0.0327 0.0345 0.0247

0.0319 0.0360 0.0344 0.0255 0.0293

0.0317 0.0289 0.0237 0.0188 0.0306

0.0232 0.0301 0.0309 0.0331 0.0297

0.0301 0.0260 0.0318 0.0441 0.0344

0.0316 0.0312 0.0302 0.0266 0.0257

0.0219 0.0274 0.0409 0.0319 0.0278

0.0389 0.0408 0.0299 0.0138 0.0275

0.0299 0.0234 0.0298 0.0217 0.0297

0.0275 0.0381 0.0205 0.0393 0.0284

0.0344 0.0234 0.0275 0.0251 0.0323

0.0308 0.0323 0.0295 0.0265 0.0279

0.0266 0.0316 0.0257 0.0268 0.0267

0.0334 0.0322 0.0360 0.0364 0.0254

0.0234 0.0343 0.0301 0.0464 0.0203

0.0307 0.0311 0.0271 0.0284 0.0374

0.0320 0.0363 0.0291 0.0309 0.0280

0.0363 0.0249 0.0301 0.0203 0.0331

0.0216 0.0333 0.0289 0.0345 0.0366

0.0297 0.0267 0.0283 0.0242 0.0256

0.0214 0.0292 0.0233 0.0136 0.0277

0.0319 0.0340 0.0290 0.0449 0.0339

0.0341 0.0224 0.0239 0.0258 0.0230

0.0223 0.0289 0.0279 0.0323 0.0365

0.0239 0.0259 0.0287 0.0225 0.0268

0.0316 0.0261 0.0281 0.0167 0.0264

0.0386 0.0267 0.0293 0.0405 0.0268

0.0429 0.0250 0.0341 0.0359 0.0307

0.0263 0.0369 0.0352 0.0184 0.0366

0.0269 0.0264 0.0340 0.0331 0.0323

0.0295 0.0228 0.0276 0.0149 0.0288

0.0293 0.0360 0.0315 0.0338 0.0229

0.0254 0.0263 0.0220 0.0454 0.0300

0.0285 0.0238 0.0267 0.0317 0.0348

Table B.1: The result of 5 subjects’ sparse representation of left ear
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Subject003 Subject010 Subject018 Subject020 Subject027

0.0166 0.0156 0.0343 0.0292 0.0243

0.0358 0.0354 0.0343 0.0250 0.0265

0.0291 0.0286 0.0249 0.0206 0.0311

0.0224 0.0264 0.0311 0.0197 0.0243

0.0286 0.0295 0.0302 0.0540 0.0387

0.0292 0.0367 0.0272 0.0188 0.0252

0.0240 0.0238 0.0354 0.0222 0.0297

0.0386 0.0357 0.0247 0.0210 0.0272

0.0303 0.0184 0.0349 0.0224 0.0311

0.0291 0.0321 0.0193 0.0346 0.0322

0.0292 0.0262 0.0294 0.0321 0.0273

0.0352 0.0280 0.0261 0.0186 0.0249

0.0288 0.0266 0.0288 0.0371 0.0302

0.0286 0.0365 0.0370 0.0181 0.0287

0.0217 0.0338 0.0266 0.0549 0.0215

0.0371 0.0276 0.0287 0.0361 0.0347

0.0332 0.0399 0.0294 0.0240 0.0268

0.0283 0.0275 0.0302 0.0384 0.0358

0.0231 0.0259 0.0304 0.0315 0.0341

0.0316 0.0357 0.0286 0.0277 0.0291

0.0195 0.0338 0.0210 0.0172 0.0325

0.0342 0.0322 0.0336 0.0333 0.0242

0.0377 0.0187 0.0216 0.0193 0.0291

0.0202 0.0303 0.0281 0.0385 0.0288

0.0291 0.0239 0.0307 0.0268 0.0307

0.0250 0.0334 0.0258 0.0305 0.0330

0.0413 0.0326 0.0310 0.0516 0.0279

0.0359 0.0267 0.0334 0.0253 0.0306

0.0260 0.0404 0.0378 0.0296 0.0369

0.0322 0.0227 0.0341 0.0318 0.0285

0.0262 0.0290 0.0268 0.0176 0.0332

0.0299 0.0377 0.0323 0.0301 0.0236

0.0294 0.0228 0.0228 0.0351 0.0279

0.0312 0.0242 0.0277 0.0255 0.0279

Table B.2: The result of 5 subjects’ sparse representation of right ear
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