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ABSTRACT 

Climate change is severely altering the Alpine environment. Temperature rising and 
extreme precipitation events are deeply affecting the hydrological regime, reducing water 
availability and altering inflow seasonality. Moreover, reduced snowfall and warmer 
climate are accelerating glaciers retreat, causing the permanent loss of the main freshwater 
source in the Alps. Alpine hydropower systems are operated based upon hydrologic and 
socio-economic conditions and are thus vulnerable to climate changes. The central role of 
hydropower as key flexible and renewable source in the energy market is urging the 
scientific community to search for mitigation measures. The need for adaptation of 
hydropower operations to future changing conditions requires the generation of realistic 
information that hydropower decision maker may include in policy design, regarding the 
future hydrological regimes and long-term impact on catchment components. In this 
thesis, we assess climate change impact on the Alpine hydropower, focusing on a case 
study in the Italian Alps. We carry out the assessment on the real case study of Cancano-
San Giacomo hydropower system, located in Adda river basin. We apply the traditional, 
top-down climate change impact study approach, known in the literature as “scenario-
based” approach. Local climate change projections are derived from high-resolution 
EURO-CORDEX scenarios using statistical downscaling technique. Local climate 
projections are then employed to feed Topkapi-ETH model, a distributed physically based 
hydrological model that is used to reproduce the Adda river basin response to climate 
change. This model allows monitoring multiple outputs, both distributed maps and point 

specific time series, concerning different hydrology aspects. Topkapi-ETH simulations 
provide us inflow projections and ice pack maps and runoff. Inflow time series are used to 
assess the historical and future impact of climate change on the hydropower. More 
precisely, we first evaluate the vulnerability of historical operating policy to new inflow 
conditions. We then assess the adaptive capacity of the operating policy including inflow 
projections in policy design. The advantages are estimated by evaluating the enhancement 
in reservoir operation comparing adaptive policies performances to historical operating 
policy.  
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RIASSUNTO 

Il cambiamento climatico sta gravemente alterando l’ambiente alpino. Il regime idrologico 
risente dell’aumento delle temperature e dell’intensificazione degli eventi piovosi estremi, 
che influiscono sulla disponibilità d’acqua e sulla stagionalità degli afflussi. La riduzione 
delle precipitazioni nevose e un clima generalmente più caldo accelerano inoltre il ritiro 
dei ghiacciai, causando la perdita permanente di una delle principali riserve di acqua dolce 
delle Alpi. I sistemi idroelettrici situati nelle Alpi operano seguendo driver idrologici e 
socio-economici e sono quindi vulnerabili al cambiamento climatico. L’idroelettrico 
costituisce una delle principali fonti di energia rinnovabile e la sua flessibilità gli 
conferisce un ruolo centrale nel mercato energetico: queste considerazioni stimolano la 
ricerca di misure di mitigazione del cambiamento climatico. La necessità di adattare le 
politiche di gestione a questi cambiamenti richiede la generazione di informazioni 
realistiche riguardo il regime idrologico futuro e gli impatti a lungo termine sulle 
componenti del bacino idrografico. Queste informazioni possono essere interessanti per il 
gestore idroelettrico e possono essere incluse nel processo di ottimizzazione delle 
politiche. In questa tesi si valuta l’impatto del cambiamento climatico sull’ambiente alpino 
e sui sistemi idroelettrici, ponendo l’attenzione agli effetti sulle riserve idriche naturali 
permanenti presenti nel bacino e alla capacità di adattamento al cambiamento climatico 
dell’idroelettrico. Analizziamo il caso di studio reale del sistema idroelettrico di A2A, 
situato nel bacino del Lago di Como nelle Alpi italiane, impiegando l’approccio classico 
per gli studi d’impatto noto come “scenario-based”. Le proiezioni climatiche a scala locale 
sono generate partendo dagli scenari EURO-CORDEX ad alta risoluzione applicando un 
downscaling statistico. Le proiezioni climatiche locali sono utilizzate nelle simulazioni di 
Topkapi-ETH, un modello distribuito fisicamente basato che riproduce la risposta del 
bacino del lago di Como al cambiamento climatico. Questo modello consente di ottenere 
diversi output riguardo svariati aspetti dell’idrologia, sia in forma di mappe che di serie 
temporali. Le simulazioni di Topkapi-ETH forniscono le proiezioni dell’afflusso al 
serbatoio nel futuro oltre che le mappe di spessore e le serie di deflusso dei ghiacciai. Le 
serie di afflusso sono utilizzate per modellizzare le operazioni del serbatoio nel contesto 
storico e nella valutazione degli impatti futuri del cambiamento climatico. Più 
precisamente, in primo luogo si valuta la vulnerabilità della politica storica alle nuove 
condizioni di afflusso. In un secondo momento, si valuta la capacità di adattamento della 
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politica del sistema idroelettrico, includendo le proiezioni future di afflusso 
nell’ottimizzazione della politica. Il vantaggio dovuto all’informazione d’afflusso futuro 
viene quantificato valutando il miglioramento delle prestazioni del sistema gestito con le 
politiche adattative rispetto alle prestazioni della politica storica.  
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1 
INTRODUCTION 

1.1 SETTING THE CONTEXT 

Climate change is a phenomenon that has been taking place along all the 20th 
century. According to McCarthy et al. [2001] “Most of the observed warming over the last 
50 years is likely to have been due to the increase in greenhouse gas concentrations. […] 
Human activities [...] are modifying the concentration of atmospheric constituents [...] that 
absorb or scatter radiant energy.” Earth radiation energy accumulates in the oceans and in 
the atmosphere, causing rising temperatures and extreme precipitation events 
intensification, which significantly affect natural and human environments. In the recent 
years scientific community started to show interest in this topic, producing a wide variety 
of studies to quantify climate change magnitude in terms of main drivers and climatic 
variables variations and impacts on environment and human activities. In order to monitor 
the phenomenon the Intergovernmental Panel of Climate Change (IPCC), an international 
body for assessing the science related to climate change, was instituted. Its scope is “to 
provide policymakers with regular assessments of the scientific basis of climate change, 
its impacts and future risks, and options for adaptation and mitigation.” [Moss et al., 2008] 

The main results of these studies are collected in the Fifth Assessment Report 
(AR5) and show that climate change affects significantly the entire hydrological cycle. A 
considerable rise in average temperature has been detected during the 20th century 
[Hartmann et al., 2013] and is likely to proceed also in the 21st. Moreover, temperature 
changes are expected to be uneven all over the world:  larger warming will occur over land 
compared to oceans and will be more marked in boreal hemisphere [Collins et al., 2013]. 
Elevate average temperature causes glacier shrinkage [Kaser et al., 2010], determining 
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ultimately a sea mean level rise [Marzeion et al., 2012]. Although precipitation average 
pattern is consistent with temperature ones [Collins et al. 2013], Frei et al. [2006] reports 
of growth of precipitation extremes in different areas of the globe. Several studies showed 
that the intensification of heavy precipitation events could occur even in regions that are 
undergoing to mean precipitation decrease [Katz and Acero, 1994]. Other extreme events, 
such as floods, droughts, heat wave and hurricanes, were investigated as a reliable climate 
change indicator [Katz and Brown, 1992]. Although this topic is still under debate, climate 
change may also cause an intensification of precipitation both in frequency and magnitude 
increasing inland flood risk [Bindoff et al., 2013, Gao et al., 2006]. In the meanwhile, 
subtropical dry climates are experiencing severe droughts that will intensify in 21st 
century, leading to increase displacement of people [Pachauri et al., 2014]. Climate change 
is also modifying natural environments: Parmesan and Yohe [2003] study on biosphere 
reveals that ranges of plants and animals are moving in response to recent changes in 
climate. Allen et al. [2010] research highlights that “increases in the frequency, duration, 
and/or severity of drought and heat stress associated with climate change could 
fundamentally alter the composition, structure, and biogeography of forests in many 
regions”. 

Giorgi [2006] recognized some regions more sensitive to climate change: among 
them the Mediterranean region and the Alps. Alpine regions regimes are likely to be 
affected more then others since they are characterized by a high presence of snow and 
glaciers and are more sensitive to climate conditions [Zierl and Bugmann, 2005; Beniston, 
2003]. In temperate Alpine climate, the hydrological regime is mostly snow-melt 
dominated and relies on glacier reserves and abundant winter snowing: snow accumulates 
on the glaciers during the winter and melt in spring constituting the main water 
contribution to rivers runoff [Huss 2011; Barontini et al., 2009] Main precipitation events 
mostly concentrate in spring and autumn, while summers are dry. Temperature rising is 
strongly altering water cycle: temperature at high elevations have increased up to 2°C 
since 1900, three times the observed global-average in 20th century warming [Beniston, 
2003] determining an anticipation of the melting season and decrease in snow cover 
[Gobiet et al., 2014; Beniston, 2012; Beniston et al., 2011]. High temperature also 
undermines general ice sheet equilibrium, accelerating glacier retreat [Haeberli and 
Beniston, 1998] and glaciers are expected to lose form 50% to 90% of their volume in the 
21st century [Beniston et al., 2012]. Severe reductions are also affecting precipitation 
regimes. Alps have been described as the “Water tower of Europe” by Mountain Agenda 
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in 1998 because Alpine water runoff contributes twice as much to the four major European 
rivers runoff [Huss, 2011].  

During the last century, Alpine territory has been exploited for hydropower 
purposes. Hydropower is the fist source of clean energy worldwide. It was estimated 20% 
of the energy produced originate from hydropower [Castelletti et al., 2008] and regulated 
dams intercept more than 20% of the waters, globally [Giuliani et al., 2016]. Thanks to its 
flexibility, hydropower storage plays a key role in the integration of intermittent 
renewable energy sources in the energy network [Schaefli, 2015; Gaudard et al., 2014a]. 

Hydropower uses water force to produce energy and is thus sensitive to water 
availability. The modifications of the hydrological regime could impact also on these 
energy production systems.  

Various hydropower system configurations exhibit different weakness [Schaefli, 
2015]. Run-of-the-river power plants use natural or diverted water flow to produce energy, 
exploiting low hydraulic heads. Any change in river flow regime, especially in extreme 
droughts and decreasing average flow conditions, will have immediate impacts on this 
power plants. These systems consist of a regulated reservoir, built by barring a stream 
with a dam, and one or more power plants hydraulically connected to the reservoir. Water 
released from the reservoir is conveyed to the power plant, where is used to move the 
turbine and produced energy. After that, water is released to the river without volume 
losses. Storage power plant move large volumes of water in space and time: they collect 
catchment runoff in the reservoir during the snow-melting season to release to produce 
energy when it is more convenient. Water availability and energy prices mainly influence 
the operational rule of the reservoir. In Alpine environment, the moments of accumulation 
and exploitation of the resource are out-of-phase on yearly basis, as energy production is 
shifted to winter when energy demand is high, while reservoir inflow is abundant in 
spring. The impact of climate change on the water cycle is likely to affect the hydropower 
systems, mostly in regions largely relying on natural storage as glacier and snowpack. 
Glacier shrinkage and snow precipitation reduction will lower water availability 
threatening hydropower interest [Diolaiuti et al., 2012; Huss, 2011]. Van Vliet et al. 
[2016] estimated 61-74% of worldwide hydropower would experience reduction in power 
system capacity due to global warming.  
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1.2 OBJECTIVE OF THE THESIS 

The objective of the thesis is to assess the impact of climate change on future 
hydrology and on hydropower in a power plant in the Italian Alps. As Schaefli [2015] 
remarks, impact studies need to be case specific, because they refer to peculiar 
hydrological, technical and socio-economic conditions. We carry out the analysis on the 
real case study of A2A power system, an Alpine storage hydropower system in the upper 
Adda river basin in the Italian Alps. We want to answer the main questions:  

• How will local Alpine climate change in the hydropower system catchment 
during the 21st century? 

• How will the historical operating rule of the hydropower system behave in a 
changed climate? 

• In case of worsening, can we improve power system operations, adapting 
management rules to new inflow conditions? What’s the value of the new 
inflow information?  

 
 We follow the top-down workflow classically adopted in climate change impact 

studies. The first stage is the analysis of climate change scenarios, which refers to the 
EURO-CORDEX project and to the IPCC Fifth Assessment Report. High resolution 
projections of air temperature, precipitation and cloud cover transmissivity are first 
downscale to reproduce site-specific climatic features, then fed into the hydrological 
model of the catchment Topkapi-ETH. We first evaluate the impact of these drivers on the 
hydrological regime simulating the inflow to the reservoir in future conditions with. 
Moreover, we exploit the distributed physically based model potential to understand the 
most relevant changes which the catchment components might undergo in climate change, 
focusing in particular on glaciers retrain.  

We then move to the hydropower system characterization, first modeling the main 
features of the operating rule of the reservoir under historical inflows and prices. We then 
force the hydropower historical operating rule with future inflows to assess the impact that 
climate change could have on the system; in this thesis prices are supposed to remain 
unchanged in future condition to focus on hydrological impact. This experiment highlights 
the vulnerability of the power system to climate change. These impacts have already been 
explored in literature [Maran et al., 2014; Beniston et al., 2011; Gaudard et al., 2014b; 
Barontini et al., 2009; Schaefli et al., 2007; Alfieri et al., 2006].  
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A second objective of the thesis is to highlight the fundamental role of 
hydrological forecasts under future conditions. In a changing context, forecast 
information, such as inflow, can enhance system operations [Anghileri, 2014; Pianosi and 
Soncini-Sessa, 2009; Georgakakos and Graham, 2008], both in close and far future. 
Historical operating rule is designed for a specific hydrological regime and can’t adapt 
when the system deviates from that hydrological conditions. Instead, enlarging the 
information sets considering inflow forecast in operating rule design, hydropower system 
may become more adaptive and reliable to future climate [Denaro et al., 2017; Culley et 
al., 2016; Castelletti et al., 2008; Hobbs et al., 1997]. In other words, the use of new 
forecast information can improve reservoir operation in future context, adapting the 
operational rule to climate change. Through operating rules comparison, we can measure 
the value of the forecast, i.e., how useful forecasts are from the point of view of the 
decision making process. Adaptive capacity of reservoir power system has been only 
partially explored in literature. Most of the studies approach compares “no-forecast” 
situations, usually associated to historical operations, to “perfect forecast” conditions, in 
which complete information is considered in the operative rule [Anghileri, 2014]. We start 
from this approach, comparing the historical operational rule (no-forecast) to inflow 
complete information operational rule, in present and future. The second situation is 
unrealistic, since the decision-maker might likely know only partial information: in 
literature, several studies consider this option by degrading perfect inflow information. 
Instead, we include more realistic inflow scenarios, produced with the hydrological model 
in the design of operative rule adapted to future conditions. The comparison between 
adapted rules and historical one in future context allows estimating the value of the 
information.  

1.3 THESIS’ STRUCTURE 

The thesis is organized as following: in Chapter 2 explain the methodology and 
precise further the scope of the thesis; we also provide a wide description of the tools we 
employ in the following. In Chapter 3 the case study on upper Adda river basin and A2A 
power system is presented. In Chapter 4 and 5 we focus on the implementation and 
validation of the tools described in Chapter 2: in Chapter 4 we focus on climate change 
scenarios of the meteorological variables and inflows projection production; in Chapter 5 
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the implementation of the model of reservoir operations is explained. In Chapter 6 we 
comment the results concerning climate change in the Alps first and the impacts of climate 
change on the hydropower system. Eventually, Chapter 7 summarizes the path of this 
study, the main findings, its limitations and further research opportunities. 
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2 
METHODOLOGY AND TOOLS 

Hydropower systems have been proved to be vulnerable to climate change. Storage 
power plants shift production capacity in space and time, accumulating water in the 
reservoir, which is then released to produce energy when the situation is more convenient. 
Reservoir release is defined on according to socio economic drivers (energy demand, 
energy prices), natural drivers (inflow forecast, glaciers’ dynamics) and operational and 
normative constraints (min/max production, minimum environmental flow). High inflow 
season and high prices periods occur out of phase on yearly basis: water coming from 
snow-melting is stored in spring, when prices and demand are low, to use it for energy 
production in winter, when natural inflow would be low but energy and prices demand are  

Fig. 2.1 – Top-down approach framework. On the left: framework of the top-down approach according to 
[Wilby et Dessay 2010]; on the right: flow chart that will be followed in the thesis. 
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at peak. In Alpine region inflows are highly influenced by precipitation and 
temperatures, which trends are changing due to global warming. As already explained, we 
follow a top-down approach [Wilby and Dessai, 2010], which moving from global scale to 
local scale “follows a step-wise approach and quantifies indicators of physical 
vulnerability based on scenarios of future socio-economic change that are used as inputs to 
a series of hierarchical models.” [Dessai et al., 2004]. Figure 2.1 illustrates its principal 
phases.  

Future society’s impact scenarios are used to compute green house gases (GHGs) 
emission scenarios, which in their turn are fed into climate models to produce global 
climate change scenarios of the main climatic variables. The scenarios are refined 
simulating climatic models on the regional scale. We enter the framework at this level 
(“Scenarios downscaling” box in figure 2.1): we further refine climatic scenario spatial 
scale and assess their hydrological impact using a hydrological model. We then move to 
local impact to the object of our research: the storage hydropower system. We assess the 
historical operational rule response to climate change and we search for adaptation 
measures for the hydropower system changing the reservoir operational rule. 

The framework is further specified in figure 2.2. The figure shows two main 
working areas: the quantification of the climate change scenarios and the computation of 
the operating optimal policy for the hydropower system. The quantification of climate 
change is essentially the estimations of future inflow to the reservoir. We start from high-
resolution global scale scenarios of the main meteorological variables, which are provided 
by EURO-CORDEX project. We downscale the scenario to adapt the scenarios to our case 
study scale, in order to better describe site-specific phenomena and further enhance spatial 
resolution. We need a hydrological model of the catchment to reproduce its response to 
climate change. We use exploit the potential of a physically based spatially distributed 
model that allows exploring the impacts of climate change on different components of the 
catchment. Feeding the hydrological model with meteorological variables scenarios we 
obtain inflow projections that will be used in the next phase. Beside the impact on future 
inflows, we focus on glacier dynamics. Glaciers retreat is a phenomenon widely accepted 
in the scientific community. They constitute a key permanent source of freshwater and the 
evaluation of their volume could be important information for hydropower decision 
makers, both in present and future. 

In the policy design phase, represented in purple box in figure 2.2, we produce a 
model to describe reservoir operation. We suppose a rational decision-maker, who decides  
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Fig. 2.2 – The framework adopted in this study. In the red boxes, top-down approach is adopted to 

quantify climate change in the Alpine environment. Starting from high-resolution meteorological 
variables scenarios at global scale, we downscale the scenarios to introduce local scale effects that 
are not described by global climate models. We simulate the hydrological model of the catchment 
with the climate change scenarios, obtaining projected inflow to the reservoir and glacier thickness 
and discharge data to monitor their evolution. In purple box, management policies of the reservoir 
are designed. We design the operating rule of the reservoir in historical conditions (BAU), the 
operating policies adapted to future inflow condition (ADA) and two benchmark policies, which 
represent present and future perfect knowledge of the inflow (BP). The performances of the 
operating policies are evaluated in terms of HP production and revenue from electricity sale. The 
policies for the systems are computed and compared in present conditions (black arrows) and 
under future scenarios (red arrows). 
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the release from the reservoir at each time-step to maximize his own objectives, 
regulates the reservoir. In our case, we suppose the decision-maker wants to maximize 
energy production and the revenue from energy selling: these will also be the indicators 
with which we can evaluate hydropower system performances. As already explained, the 
main drivers that force decision-maker decision are water availability and energy prices, 
but in this thesis we focus only on the hydrological aspect, neglecting energy prices future 
changes.  

Since we consider two objectives for the decision-maker, we set up a Multi-
Objective decision problem. In designing policy, the inflow can be characterized in 
stochastic manner: we suppose the inflow probability density function at each time-step is 
estimated before taking the decision. This reproduces decision-maker uncertainty towards 
inflow in a realistic way, and for this reason in this thesis we refer to this policy’s class as 
“operating policies”. Further detail on this topic will be given in the dedicated 2.2 section.  
We use recorded inflow time-series (black solid arrows in figure 2.2) in designing the 
historical operating policy, called Business As Usual (BAU) now on, since it reproduces 
the main features of the currently operating rule of the hydropower system. We evaluate 
historical performances, in terms of revenue and energy productions, feeding BAU policy 
with observed inflow time-series (black dashed arrows in figure 2.2). We then simulate 
BAU policy with inflow projections obtained in the previous phase. The comparison 
between historical and future performances of the BAU allows assessing policy 
vulnerability to climate change. The daily trajectories of storage and release, which we 
will also call generically “reservoir dynamics”, are computed and compared as well to 
detail the reason of the performances differences. 

In order enhance the hydropower system operations, we introduce inflow 
projections in policy optimization (red solid arrow in figure 2.1). We thus design operating 
policies for the reservoir adapted to climate change that will be referred ADA so on. ADA 
policies are simulated with future inflow compared to BAU policy under climate change 
conditions (red dashed arrows). This comparison highlights how much advantage the 
operating policy can take from including the inflow forecasts in the decision making 
process, thus defining the “adaptive capacity” of the BAU policy.  

The operating policies are also compared to Benchmark Policy (BP), both in 
historical and future conditions. BP policies are computed supposing that the inflow at 
each time-step is known before taking the decision. These policies constitute an upper 
bound to BAU adaptive capacity because they represent the best optimal policy that can be 
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designed for that system representation. The space individuated by non-adaptive BAU 
policy and the BP policy is the “space of improvement” of the BAU policy.  

In order to perform the experiments described we need three main tools: the climate 
change scenarios, the hydrological model and the model of reservoir operations. They are 
described in the following sections. 

2.1 CLIMATE CHANGE SCENARIOS 

Climate change scenarios quantify global warming phenomena and play a central 
role in impact assessment studies, because they are necessary to quantify future water 
availability to the reservoir.  

Moving from future society’s projections in terms of anthropic pressure, economic 
trends and technology development, Green-House Gases (GHG) emissions are computed. 
The Representative Concentration Pathways (RCPs) are Green House Gases concentration 
trajectories introduced by the IPCC [AR5, 2014]. They describe possible climate futures 
in term of radiative forcing values relative to the pre-industrial period. Radiative forcing is 
defined as cumulative measure of human emissions of GHGs from all sources expressed 
in Watts/m2. The new RCP scenarios describe future changes in balance between 
incoming and outgoing radiation to the atmosphere, caused by GHGs that compose it. 
RCPs substitute the Special Report on Emission Scenarios (SRES) projections published 
in 2000, used in IPCC Third Assessment Report and Fourth Assessment Report. The new 
scenarios, rather than using storylines of GHGs concentrations linked to unique 
assumptions about patterns of economic and demographic growth, use radiative forcing 
trajectories, which may result from a combinations of different demographic, economic 
and technology future conditions. In principle infinite RCPs scenarios can be produced 
with this assumption, and a selection process was necessary. The IPCC Working Group III 
used these criteria in 2007 to identify four main RCPs (figure 2.3). The four RCPs 
(RCP2.6, RCP4.5, RCP6, RCP8.5) are named after the radiative forcing values relative to 
pre-industrial values (+2.6, +4.5, +6.0 and +8.5 W/m2) they reach at the end of the 
century. Since climatic models require data on concentrations of GHGs in the atmosphere, 
the research community coupled each RCP to a specific GHGs emission scenario. This 
step was needed to make RCPs suitable for climate modeling and comparable with the old 
SRES scenarios (see table 2.1).  
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Fig. 2.3 – On the left radiative forcing trends relative to pre industrial levels. Grey area indicates the 98th 
and 90th percentiles (light/dark grey) of the literature [Van Vuuren et al., 2011]; on the right, 
emissions scenarios associated with RCPs according to IPCC AR5 [Fuss et al., 2014] 

 

 

Tab. 2.1 – RCPs features resume table 

 
Radiative 

forcing [W/m2] 
Corresponding 

SRES 
Pathway by 

2100 
Reference bibliography 

RCP 2.6 2.6 – Decline Van Vuuren et al., 2006, 2007a; 

RCP 4.5 4.5 B1 Stabilization 
Clarke et al. 2007; Smith and Wigley 2006; 

Wise et al. 2009; 

RCP 6 6 B2 Stabilization Fujino et al. 2006; Hijioka et al. 2008; 

RCP 8.5 8.5 A1F1 Rise Riahi et al. 2011, 2007;  

 
 
 RCPs are adopted as input to Global Circulation Models (GCMs) to obtain 
meteorological variables scenarios at global scale for the 21st century. GCMs are 
mechanistic, spatially distributed models describing the phenomena that take place in the 
atmosphere. Since their first appearance in 1956, GCM description was enriched with 
models of the oceans, cryosphere, land surface composition and elevation and anthropic 
pressure (figure 2.4). GCMs are defined over a broad 3D grid in space, which varies from 
a model to another, and hourly time resolution (figure 2.5). Starting from measured 
boundary condition, climatic variables of interest such as temperature, pressure and 
precipitation are computed in each cell of the grid at each time-step. The uncertainty due 
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to system complexity requires a frequent update of the boundary conditions to obtain 
accurate forecasts.  

A GCM can provide reliable prediction information on scales of about 100km grid. 
The coarse resolution of GCMs makes it impossible to use GCMs output for a direct 
analysis of the impacts. The results need to be downscaled at a finer grid. There are 
various and complementary techniques of downscaling, mainly grouped in two families: 
dynamical downscaling and statistical downscaling. Dynamical downscaling techniques 
are performed nesting a Regional Climate Model (RCM) in a GCM (figure 2.6). Regional 
Climate Models have the same purpose and structure of GCMs. They work on a finer grid 
on a relatively small domain, allowing a more accurate description of orography, land use 
and small-scale phenomena. 

Fig. 2.4 – Evolution of GCMs components description. Models grew more sophisticated over time, 
incorporating clouds, land surface features, ice, and other elements descriptions. 

 
For such reasons dynamical downscaling is more effective and particularly 

important where the landscape changes shape frequently (e.g. on the coastal line and in the 
mountains) where local phenomena are pronounced and more relevant than global ones. 
The outputs of the GCM serve as boundary condition to run the RCM. The output yielded  
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Fig. 2.5 – On the left: approximated grid of a GCM; on the right GCM scheme – source: IPCC 
 
 

 

Fig. 2.6 – Scheme of nesting RCM in GCM. RCM shows a finer grid than GCM and mountain regions and 
coastal shapes are well developed and characterized.  
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by RCMs simulations are dynamically downscaled meteorological variables. RCMs 
typically employ a 25km resolution grid.  

In this thesis we use EURO-CORDEX scenarios, which have been obtained as 
described. The flourishing on climate modeling in past decades was not followed by an 
equal number of studies on models reliability, limits and strengths. Coordinated Regional 
climate Downscaling Experiment (CORDEX) project was born to provide a unique and 
worldwide-recognized framework mainly focused on dynamical downscaling procedures 
and provides climate change scenarios for the 21st century [Giorgi et al., 2009]. The 
scenarios produced in European domain are grouped in the EURO-CORDEX project. 

For our applications a further downscaling is required. Its scope is to achieve a 
further finer spatial resolution; moreover, EURO-CORDEX scenarios carry the biases 
both of the GCM and RCM model used in their computation, which more than other errors 
affect the result of the analysis [Chen C. et al., 2011; Chen J. et al., 2011]. Sharma et al. 
[2007] demonstrate a second statistical downscale can greatly enhance local scenarios 
quality. Statistical downscaling techniques are applied to dynamically downscaled 
scenarios provided by RCMs. They link the state of variables representing a large scale 
(GCM or RCM grid scale) predictors and the state of other variables at smaller scale, as 
for example the catchment scale (the predictands). A simple and effective statistical 
relation describes the nexus between predictors and predictands. Observation data are 
always required in order to estimate the statistical relation. Several types of statistical 
downscaling techniques have been proposed: delta change method [Hay et al., 2000], 
neural network [Olsson et al., 2001], analog method [Zorita and Von Storch, 1999], 
weather generator [Wilks and Wilby, 1999], and unbiasing method [Deque, 2007]. In the 
present study, we adopt Quantile Mapping [Boé et al., 2007], which will be described in 
detail in Chapter 4. 

Statistical downscaling allows removing the biases originally present in GCMs 
output and gaining site-specific information. Predictors and predictands usually represent 
the same physical variable, but it is not strictly necessary, since the relation between them 
is merely mathematical. These techniques are also flexible and computationally 
inexpensive. The drawbacks are that the quality of the result is strongly dependent on the 
quality of the observation and the length of the available historical data [Boé et al., 2007]. 
Moreover, they rely on stationarity of the correction assumptions, which supposes that the 
estimated relation between predictor and predictands remains unchanged in time. This 
aspect will be further deepened in Chapter 4. The climatic scenarios we use in this thesis 
are presented in detail in Chapter 4 and analyzed in Chapter 6. 
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2.2 TOPKAPI-ETH 

The impact of climate change on hydrological regime can be valued using a 
physically based model that accurately reproduces the hydrologic cycle. Topkapi-ETH is 
the hydrologic model adopted in the present work. Topkapi-ETH (Topographic Kinematic 
Approximation and Integration model) was originally developed by Todini and others [Liu 
and Todini, 2006; Ciarapica and Todini, 2002; Liu and Todini, 2002], then enhanced at 
the department of Hydrology and Water Resources Management, in the Institute of 
Environmental Engineering of the Federal Institute of Technology in Zurich.  

This spatially distributed model presents a regular grid where the smallest 
computational element is the single grid cell. The main processes that are modeled in 
Topkapi-ETH are shown in figure 2.7. Each grid cell receives water from up to three 
upstream cells and provides water to a single downstream cell. The model vertical 
discretization of belowground consists of three layers. The deepest layer is implemented 
as a linear reservoir to reproduce the behavior of slow components such as fractured or 
porous rock aquifers, while the first two layers, implemented as non-linear reservoirs, 
represent deep and shallow soil. Topographic gradients connect the grid cells to the 
surface and to subsurface. The potential infiltration rate is calculated with an empirical 
formula and saturation excess or infiltration processes regulate the runoff.  

The topographic effects on radiation (particularly significant in mountainous 
terrains) are regulated as described in Corripio [2003]. Priestly Taylor equation [Priestley 
and Taylor, 1972] regulates evapotranspiration and a monthly correction is applied to 
distinguish between different land uses. Snow and ice-melt are computed with an 
empirical temperature index model, which employs only shortwave radiation and air 
temperature [Pellicciotti et al., 2005; Carenzo et al., 2009]. Compared to other mechanistic 
hydrological models, Topkapi-ETH does not represent all the hydrological processes in a 
detailed and rigorous manner [Fatichi et al., 2013], but can reasonably be regarded as a 
compromise between hydrological process representation and computational time for large 
catchment. Moreover the latest upgrades of Hydrology and Water Resources Management 
department at ETH Zurich allow including some artificial infrastructures such as 
reservoirs, river diversions and water abstractions in the model setup. Topkapi-ETH must 
be fed with the values of air temperature, cloud cover transmissivity and precipitation for 
each grid cell at the temporal and spatial resolution selected for the model simulation. 
Further spatial inputs must be included in the model 
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Fig. 2.7 - Scheme of Topkapi-ETH structure at grid cell level.  
 

setup: a digital elevation map of the catchment, a soil map, a land use map, and a 
map of the glaciers. Several output time-series are available: water volume in upper 
subsurface layer, effective saturation in upper sub-surface layer, effective saturation in 
lower subsurface layer, effective saturation in groundwater aquifer, channel flow, flow in 
upper subsurface layer, flow in lower subsurface. Optional spatial outputs, such as 
precipitation, snow and ice cover, evapotranspiration and many others, are also available 
as average over the yearly period or in established time. 

Topkapi-ETH purpose for this thesis is to compute the inflow scenario to the 
reservoir for 21st century when fed with the downscaled scenarios of meteorological 
variables. Moreover, thanks to its inner distributed nature, we can analyze in detail other 
key variable of the hydrological cycle and monitor the evolution of glaciers under climatic 
forcing. The results of TE simulations are shown and analyzed in Chapter 6. 

2.3 RESERVOIR OPERATIONAL MODEL 

The reservoir operational model we implement in this thesis is a normative model 
[Soncini-Sessa et al., 2007], which focuses on the decision-making problem as an 
optimization problem, renouncing to an accurate description of the physical system. : 
According to this category of models, the decision maker is represented as a rational agent 
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that wants to maximize one or more utility functions. Utility functions usually represent 
measurable criteria that the decision maker uses to rank different decisions/options.  
The criteria we suppose the decision-maker follows are the maximization of the energy 
production and the maximization of the revenue by energy selling. Production is related to 
water availability only, while revenue is also linked to the price of energy. We thus 
suppose the only drivers that force decision-maker decision, are the energy price at the 
time of the decision and the inflow, which reflects the water availability. We thus set up a 
Multi-Objective optimization problem. We use Dynamic Programming (DP) algorithms 
[Soncini-Sessa et al., 2007] to solve the Multi-Objective problem. 

Dynamic Programming can be used in a variety of problems with really broad 
conditions (step-cost and object separability, uncorrelation of the inflows), which are 
satisfied in our case, as explained in Chapter 5. Given the disturbances of the system as 
input (i.e. inflow and energy price), DP computes the optimal decision, the volume of 
water to release from the reservoir, at each time for the whole optimization horizon. The 
output of optimization is the reservoir optimal policy. The approach to uncertainty is a key 
feature in DP algorithms and will be exploited in the experiments of this thesis. 
Disturbances take place and vary continuously in time, but the model considers them to be 
discrete in time. Their value is settled at the end of the time-step they refer, while the 
decision has to be taken at the beginning of the time-step in order to manage the system. 
That’s the intrinsic uncertainty associated to disturbances, from which this name comes 
from. In Deterministic Dynamic Programming (DDP) disturbances realization is supposed 
to be already known at the moment the decision is taken. We can optimize a DDP policy 
only knowing inflow time-series. This approach figures out an ideal experiment that is 
impossible to reproduce in reality, but establishes the best decision that could be taken 
using a fixed disturbances realization. In other words DDP constitute an upper limit to the 
performances of any other policy designed for that system and for this reason is used to 
design the Benchmark Policies (BP) we introduced at the beginning of the chapter. 
Stochastic Dynamic Programming (SDP) instead supposes that at the moment the decision 
is taken we only know a statistical representation of the disturbance, its probability density 
function. SDP policy can be most likely applied in reality, thus the operating policies 
(BAU and ADA) are computed with this algorithm. The policy designed with SDP 
algorithm is not designed for a specific disturbance realization, but for a specific statistical 
characterization of the inflow. SDP policies can thus absorb natural variability of the 
inflow and to a certain degree, even slight variations introduced by climate change. 
Further information about DP can be found in literature [Castelletti et al., 2010; Castelletti 
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et al., 2008; Soncini-Sessa et al., 2007; Nandalal and Bogardi, 2007]. The implementation 
of the hydropower system policies is explained in Chapter 5 while the results are 
commented in Chapter 6. 
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3 
CASE STUDY 

3.1 ADDA RIVER BASIN 

Lake Como, also called by Latin Lario, is a natural lake with glacial origins located 
in the southern part of the Alps (figure 3.1). With a surface of 145 Km2 and a volume of 
23.4 km3, it’s the third largest Italian lake, following Lake Garda and Lake Maggiore, and  

Fig. 3.1 – Lake Como catchment. Italian territory is highlighted in yellow, Swiss territory in red. 
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the first for perimeter length (about 185 Km). It’s also the deepest Italian lake, with 
its 410m, and also one of the deepest in Europe. In the mountains upstream the lake, 
several torrential tributaries rise: Mera, Varrone, Pioverna and Adda are the main ones. 
Adda river in particular rises on Italian Alps at the border with Switzerland in the area of 
Bormio and flows trough Valtellina territory. It’s major tributary of the lake, with an 
average discharge of 88 m3/s at Fuentes, and its only emissary, which ultimately joins the 
Po River. Considering Olginate as closing section, the Lake Como catchment has an area 
of 4550 km2, of which 2598 km2 belong to upper Adda river basin closed at Fuentes. 90% 
of the catchment territory is Italian, while the remaining 10%, constituted by Val 
Bregaglia and Val Poschiavo, lays in Swiss territory.  

Since the construction of the Olginate dam in 1946, Lake Como has been a 
regulated lake, with the main purpose of water supply for the numerous downstream 
agricultural districts and flood mitigation on the lakeshores.  

The basin is characterized by a typical mixed snow-rain dominated typical, which 
shows two streamflow peaks in late spring and autumn due to snow-melting and 
precipitations respectively, and relatively low average streamflow in winter. Adda river 
basin is also highly glaciarized, with a cover of more than 88km2 of ice sheets.  

Fig. 3.2 – Map of the main features of A2A system and Lake Como catchment. 
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Since the 1920s, the upstream Adda river area has been exploited with the 
construction of many dams for hydropower production purposes (figure 3.2). Valtellina 
complex hydropower system counts 14 main reservoirs and 71 hydropower plants and is 
managed by four main energy companies: A2A, Enel, Edison and Edipower. The total 
storage capacity of the artificial reservoirs sums up to 545Mm3, twice the operative 
volume of Lake Como (254Mm3 [Denaro et al., 2017]). The presence of the reservoirs in 
Adda river basin largely affects the inflow regime: in spring, hydropower retains 
snowmelt water that would naturally flow to the lake and releases high water volume to 
produce energy in winter, when natural inflow to Lake Como would be naturally low. 

3.2 A2A HYDROPOWER SYSTEM 

A2A hydropower system is one of the most important in Valtellina, with an annual 
energy production of 1.7 TWh and 10 power plants. Its construction begun in the 40s to 
satisfy the electricity demand of Milano. The power network is fed by the two contiguous 
reservoirs, Cancano and San Giacomo (figure 3.3), located in Fraele valley, which collect 
the waters of several nearby basins through a massive diversion facility.  

Fig. 3.3 – Fraele valley with Cancano (on the back) and San Giacomo (in the front) reservoirs.  
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Fig. 3.4 – San Giacomo dam (top) and Cancano dam (bottom)  
 

The higher reservoir, San Giacomo (top figure 3.4), was built in 1950 at 1951.5 m 
a.s.l. with a storage capacity of 64 Mm3. It collects the waters diverted by the streams 
Gravia, Frodolfo, Alpe, Zebrù, Forcola, and Braulio, which rise in Forni glacier on the 
Cevedale-Ortis group, together with the first part of Adda river. From 1964, up to 90 Mm3 
per year are diverted into San Giacomo Lake from the River Spoel, which waters would 
naturally flow to Danube catchment. 

Lake Cancano (figure 3.4 bottom) was built in 1956 below San Giacomo reservoir, 
at 1902 m a.s.l. with a maximum capacity of 123 Mm3. It receives water directly from 
Lake San Giacomo and from the channel Viola. The catchment of the two reservoirs has 
an area of 36 Km2, but considering the connected basins it goes up to 322.3 Km2. The 
whole hydropower system covers an area of more than 1000 km2, exploiting a 1800m 
hydraulic head and more than the 90% of the meteorological waters of upper Adda basin. 

These two big artificial reservoir directly feed the power plant of Premadio, built in 
1956, which has an installed capacity of 226 MW and a maximum penstock capacity of 
41.06 m3/s. Downstream of the power plant of Premadio, the run-of-the-river power plants 
of Grosio, Lovero and Stazzona are located in cascade (figure 3.5). The hydropower group 
constitutes the 90% of the installed capacity of A2A hydropower system. Grosio power 
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plant has an installed power capacity of 480 MW and is fed by the residual water of 
Premadio power plant, in addition to waters of Vallecetta, Massaniga, Vindrello, Eita and 
Sacco torrents. Lovero power plant has been in operations since 1948 with a maximum 
capacity of 49 MW and exploits mainly the residual waters of Grosio. Lastly, Stazzona 
power plant, the older, was put into operation in 1938, with an installed power of 30 MW.  

 

Fig. 3.5 – Scheme of A2A hydropower system in Alta Valtellina 
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The waters from Lovero and from the Adda river feed the last plant. The power 
system is put into operation when prices are high and water availability can sustain 
production. Agenzia Regionale per la Protezione Ambientale (ARPA) Lombardia provides 
reservoirs cumulative storage and release historical data in 1975-2014 period. Net inflow 
time-series was derived by ARPA by inverting the mass balance of the reservoir, 
considering the storage as the sum of the reservoirs storages. The inflow data to the 
reservoir is considered to be the sum of all the diverted inflows to the single reservoirs.  

Hourly energy price data referred to 2005-2014 period are provided by GME 
(Gestore del Mercato Energetico). As already mentioned, prices future variation are 
excluded from this thesis analysis in order to focus on the hydrological aspect of the 
assessment. For sake of completeness, an insight on energy price formation on the energy 
market and prices pattern is given in the next section.  

3.2.1 Energy prices 

Since 2004 the energy Italian market has been liberalized. The electricity prices are 
defined hourly at the energy exchange on the basis of operators’ supply and demand. The 
market is managed by GME, the authority for electricity and gas spot trading in Italy. If 
there is no congestion related to maximum transmission limits of energy in the national 
grid the so-called PUN (Prezzo Unico Nazionale) represents the national energy price, 
otherwise the market is divided into zones where different prices are defined. The results 
of this market separation allow energy operators to compete in smaller areas. 

 

Fig. 3.6 –Renewable resources growth in Italy in terms of gross inland consumption compared to all 
products energy consumption – source: European Commission  
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Another important revolution in Italian market is due to renewable resources 
introduction. The adoption of the 20-20-20 EU Directive (Climate Action and Renewable 
Energy Package) in 2007 will ensure EU to meet its climate and energy target for the year 
2020. The objectives of the plan are the reduction of the 20% of greenhouse gas emissions 
with respect to 1990 levels, 20% of total EU energy coming form renewable sources and 
the improvement of the power plants efficiency of the 20%. Renewable energy sources, 
mostly solar and wind power, have entered the market massively since 2009, as shown in 
fig 3.7. The rapid increase of renewable sources shares led Italy to meet and overcome its 
target of 17% of renewable sources production (fig. 3.6). 

 

 

Fig. 3.7 –Renewable source portfolio in term of consumption; in bold, the share of hydropower in 
percentage  – source: European Commission  

Fig. 3.8 –Merit order effect diagram  
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The mechanism of formation of the price is based on energy demand and supply. 
Supply curve is related to marginal production cost, which grows really slowly with the 
amount of energy produced for renewable energies. In fact, once the power plants are set, 
renewable energies have little marginal production cost. On the contrary, traditional 
energy technologies have a considerable marginal production cost, due to the cost of the 
fuel and the maintenance. Since supply curve on Italian market is organized according to 
marginal cost of the technologies, renewable sources, which have almost zeroed marginal 
costs of production, have a lower supply curve than traditional technologies. The total 
supply curve shifts down towards lower costs, thus meeting the demand curve at a lower 
market price. The overall effect of the massive renewable energy sources entry in the 
market is the reduction the energy price in the market: this phenomenon is known as merit 
order effect (figure 3.8) In order to better represent the merit order effect, prices used for 
policy design in the historical condition refer to 2009-2014 period, and thus inflow period 
is selected as well. This choice is also reasonable in future conditions because the 
contribution of renewable sources to the energy panel is likely to increase in future 
[Elleban et al., 2014]. Daily energy prices exhibit a great variability in several time 
intervals (figure 3.9 upper box). In the most productive periods for industries and services, 
energy demand increases and consequently the prices on the energy market. Three main 
periodical patterns can be found in the price series: a daily one, the alternation between 
weekdays and weekends and inter-annual variations. The bottom box in figure 3.9 shows 
prices weekly cycle: prices are generally higher during working days than in weekends 
and holidays, according to working schedule; in the same box the pattern on yearly basis 
shows high prices in winter and summer, which are respectively determined by working 
schedule and heating and by air conditioning, while prices lower significantly in spring. 
On daily basis the variation between daytime and nighttime is also marked, with peaks in 
energy demand at about 10 and 19 (figure 3.9, central box). All these trends will probably 
undergo to changes due to the variation of the energy mix, which will probably include 
increases in renewable sources shares, further lowering energy prices.  
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Fig. 3.9 – Price time-series and periodical patterns. Mean daily price series in 2009-2014 is showed in the 
top panel. The central panels show the daily trend using an average on hourly basis, where price 
exhibit a day-night variation due to working time. Weekly and annual trends are shown in the third 
panel. Weekly cycle is well highlighted by the alternation of high prices during weekdays and low 
prices in the weekends, while in bold the annual trend, with winter and summer demand enhances, 
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4 
CLIMATE CHANGE  

SCENARIOS 

Climate change information at local scale is necessary to estimate how climate 
change could impact on hydropower system and to develop suitable adaptation and 
mitigation strategies for the future. Future climate is expected to be warmer and with 
scarcer precipitation regimes. Higher temperatures are accelerating glacier melting and 
penalizing snow accumulation. Such changes will alter the hydrological regime as well, 
reducing water availability for the reservoir. Moreover, higher temperature will anticipate 
the timing of snow-melting, anticipating the peak of the hydrograph.  

Temperature and precipitation daily projections provided by climatic models allow 
us simulating future water availability. Local temperature and precipitation projections 
adopted in the following work are derived by EURO-CORDEX scenarios. As already 
mentioned, CORDEX constitutes a worldwide recognized framework mainly focused on 
dynamical downscaling procedures, providing climate change scenarios for the 21st 
century. According to CORDEX framework, GCM are forced with RCPs and initial 
condition to evaluate global scenario for climate change in terms of interesting 
atmospheric variables. A nested RCM is used to downscale the projection to a finer scale, 
adapting it to regional specific conditions. The scenarios produced in European domain 
are grouped in the EURO-CORDEX project. 

 Within the EURO-CORDEX scenarios ensembles, only RCPs 4.5 and 8.5 driven 
were considered in the analysis. RCP4.5 was developed in the United States by the Joint 
Global Change Research Institute. In RCP 4.5, also referred to as “stabilization scenario”, 
radiative forcing is stabilized shortly after 2100 without reaching the peak during the 21st 
century [Van Vuuren, 2011; Thomson et al., 2011; Clarke et al., 2007] and the green 
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house gases emissions projections associated are diminishing after a peak in 2040. 
Emission mitigation policies may be imposed to meet scenario requirements. Scientific 
community believes this scenario will be the most likely to occur in future thus it’s 
commonly adopted in literature to investigate the long-term response to stabilizing the 
radiative forcing. RCP8.5 was developed in Austria at the International Institute for 
Applied System Analysis. RCP 8.5 corresponds to a high greenhouse gas emissions 
pathway excluding any mitigation strategy adoption [Riahi et al., 2007]. Radiative forcing 
reaches 8.5 W/m2 and its stabilization is expected after the end of the century, about at 12 
W/m2. RCP 8.5 is considered an upper bound for RCPs taken into account by IPCC and 
it’s included in the analysis as the worst-case scenario. The projections are affected by 
“model configuration” uncertainties, which are associated to RCMs and GCMs imperfect 
descriptions of atmospheric phenomena. In order to filter uncertainty, three ensemble 
projections computed by different institutions are considered: Danish Meteorological 
Institute (DMI), Koninklijk Nederland Meteorologish Instituut (KNMI), Swedish 
Meteorological and Hydrological Institute (SMHI). In the table 4.1 the GCM-RCM 
combinations, considered in this thesis, are presented.  

 
Tab. 4.1 – GCM-RCM combination for the production of the scenarios used in the thesis 

Institute Global Circulation Model Regional Circulation Model 

DMI EC-EARTH HIRHAM5 

KNMI HadGEM2-ES ESRACMO22E 

SMHI CERFACS-CM5 RCA4 

 
These scenarios are provided at a high spatial resolution of 12.5 Km (0.11 degree). 

The scenarios were chosen between the 22 considered in Culley et al. [2016], who 
analyzed the maximum operational adaptive capacity of Lake Como systems with respect 
to future hydro meteorological states. These scenarios have proven to provide good and 
robust adaptation scope for Lake Como performances both in close and middle term. They 
also exhibit different statistics that allow us to capture variability between the scenarios. 
The original European domain is cut over the region of interest, the Lake Como 
catchment. Each EURO-CORDEX scenario consists of a control period, a retrospective 
historical simulation fed with the meteorological variables in the period 1951-2005, and 
the proper projection in 2006-2100, both performed on daily basis.  
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Overall, our analysis considers six scenarios for each climatic variable, which will 
be named by variable, the institution and RCP used for the simulation (e.g. DMI4.5). The 
spatial resolution is still too coarse for the analysis of the impacts. Moreover, we need to 
remove GCM and RCM biases to enhance the quality of the local projections. We thus 
statistically downscale RCM scenarios to provide local projections for daily air 
temperature, precipitation and cloud cover transmissivity.  

4.1 STATISTICAL DOWNSCALING 

Murphy [1999] highlights that though dynamical and statistical downscaling 
approaches generate similar reproductions of current climate, they can differ significantly 
in their projections of future climate. Bias correction of the climate model output by 
statistical downscaling is needed to assure meaningful results in subsequent applications. 
Statistical downscaling (SD) techniques are based on the evidence that local climate is  

conditioned both by large-scale circulation, described by GCM-RCM, and small 
scale characteristics, mainly represented by topography, land-use or land-sea contrast. 

 

Fig. 4.1 - Scheme of bias correction using QM. Cdf stands for empirical Cumulative Distribution Function. 
The subscript o, f, c stand for the historical observation, the climate scenario model output and the 
control simulation respectively. For the value xf(d) of the variable x in the day d in the climate 
scenario, the corresponding seasonal cumulative frequency Pc(xf(d)) where P(x) = Pr(X ≤ x) is 
searched in the calculated cdf of the climate control simulation. After that, the value of x such as 
Po(x) = Pc(xf(d)) is searched on the cdf of the historical observations. This final value (xfcorr(d)), is 

used as the corrected value of xf(d) - [Boé et al., 2007] 
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The latter is not adequately described by RCMs, despite high resolutions. SD 
techniques establish some empirical relationship linking large-scale information 
(predictor) and local small-scale variables (predictand) in historical climate. The relation is 
then applied to the scenarios to derive the local climate projections. In order to perform 
SD we thus need three elements: the scenario, control period time-series and the 
observations of the local time-series. 

 The predictor is usually the same variable of the predictand, but in principle could 
be any variable physically linked to the predictand: we use the same variable scenarios 
provided by EURO-CORDEX.  

Several types of statistical downscaling techniques have been proposed in 
literature: delta change method [Hay et al., 2000], neural network [Olsson et al., 2001], 
analog method [Zorita, 1999], weather generator [Wilks and Wilby, 1999], unbiasing 
method [Deque, 2007]. In this thesis, we applied quantile mapping (QM) technique. First 
introduced by Wood et al. [2004], QM technique uses a statistical transformation to find a 
correction function f between predictands and predictors. The method consists of two 
distinct phases:  

• Calibration: a function f between observed data cumulative density function 
(cdf) (O) and control scenario cdf (C) is calibrated.  

𝑂 = 𝑓′(𝐶) [4.1]  

• Projection: the calibrated correction function f is applied to the scenario data 
(F). A linear interpolation is applied between two percentiles. We thus obtain 
the downscaled projection (F’).  

𝐹′ = 𝑓′(𝐹) [4.2]  

 QM was chosen as a computationally inexpensive, easy to implement and flexible 
method [Gudmundsson et al., 2012; Boé et al., 2007; Deque, 2007]. It allows removing 
the biases ordinarily present in GCMs output and gaining site-specific information. This 
method could also be applied both to annual and monthly period to better capture 
variability of the bias during the year. Since uncertainty linked to the periodicity is proven 
to be marginal compared to other sources (e.g. GCM uncertainty), in this thesis QM is 
applied only to the annual periodicity [Chen C. et al., 2011; Haerter et al., 2011]. 

The drawbacks of this method are that, as all the functional approaches, QM could 
undergo over fitting problems. Moreover, the quality of the result is strongly dependent on 
the quality of the observation and the length of the available historical data [Boé et al., 
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2007]. If a forecast value exceeds the quantiles computed a constant correction equal to 
the 99th or 1st quantile is applied.   

 This might happen in climate change and could result in a not accurate description 
of extreme events. Gudmundsson et al. [2012] shows also that orographic effect rather 
limits the quality of the results in the downscaling. At last, QM as all the other SD 
techniques, relies on the assumption of stationarity of the correction, which means that the 
correction function estimated on the control period remains unchanged in future. This 
hypothesis is necessary in order to apply the correction also to distant periods in time. 
Frias et al. [2006] demonstrate the hypothesis can be partially verified, while the extensive 
adoption of the method in literature tested the method’s robustness [see e.g. Piani et al., 
2010a; Hanssen-Bauer and Førland, 2001; Nieto et al., 2004]. 

Observations time-series are provided by ARPA Lombardia meteorological 
network, which collects daily precipitation, temperature and cloud cover transmissivity 
data. In this thesis we consider data series recorded in 9 stations for precipitation, 4 for 
temperature and 1 for cloud cover transmissivity. We choose the stations considering the 
longer time-series, the higher completeness of the data and the best spread positions on 
catchment territory. The maps in figures 4.2 and 4.3 show the position of precipitation and 
temperature stations respectively, while cloud cover transmissivity time-series was 
measured in Sondrio.  

 
Tab. 4.2 – List of meteorological variables stations 

Precipitation [mm] Temperature [°C] Cloud cover transmissivity 

Le Prese Bormio Sondrio 

Cancano Tirano  

Santa Caterina Valfurva Colico  

Alpe Entova Lecco  

Samolaco   

Bormio   

Oga San Colombano   

Aprica   

Colico   
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Fig. 4.2 – Precipitation stations considered in upper Adda river basin 
 

 
Fig. 4.3 – Temperature stations considered in upper Adda river basin 
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Control data must consistently overlap observations to derive their quantile-
quantile function, which is not our case. Observation data are complete in period 2004-
2013 and the series is too shot to accurately estimate the correction function, for which at 
least 30 years observations are advised [Anghileri et al., 2011; Wilby and Dessay 2010, 
Boé et al., 2007]. The flexibility of the method opens to a variety of QM variations which 
were explored in literature, testing short series or a cascade of downscale on different 
temporal scales [Haerter et al., 2011; Piani et al., 2010a; Piani et al., 2010b]. Its robustness 
allows us to implement it calibrating the function between control period and scenarios 
and applying it the correction to the observation period (figure 4.4).  
 

 

Fig. 4.4 – Scheme of the implementation of QM used in this study. In the calibration phase, the correction 
function is derived by comparing the quantiles of the scenario and the control. The scenario is split 
into three 30-years-long periods in order to analyze close term (2006-2035), middle term (2036-
2065) and long term (2066-2095) climate change effect. The considered control period 1976-2005 
is 30-years-long as well. Each correction in short, middle and long term is applied to the same 10-
years-long observation time-series, producing three periods for each scenario (close future, middle 
term future, far future), each carrying the statistics of the scenario it was calibrated with.  

 
For each variable, calibration phase is performed on 30-years-period: control 

period (1976-2005) is considered while the scenario is split in time periods (figure 4.4). 
This division allows to better analyze the impact of close term, middle term and long term 
climatic changes. We estimate the correction for each couple control period – scenario in 
the three periods, then we apply the corrections to the same 10-years-long observation to 
obtain the downscaled projections (green bar in figure 4.4). In other words, in our analysis 
10-years-long projections represents the statistics of a 30-years-long future period. In this 
way, the calibration reproduces global climate change trends in long and short run that are 
superimposed to the local circulation effect given by the observation.  
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Fig. 4.5 – Example of the calibration function (blue) for Bormio temperature. SMHI RCP8.5 at middle term 

(2036-2065) control and scenario are used for calibration. In red, we test the accuracy of the 
downscale: the downscaled control quantiles and the observations quantiles must be equal and line 
up on the bisector  

Fig. 4.6 – Example of the calibration function (blue) for Bormio precipitation. SMHI RCP8.5 at middle term 
(2036-2065) control and scenario are used for calibration. In red, we test the accuracy of the 
downscale: the downscaled control quantiles and the observations quantile must be equal and line 
up on the bisector.  
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QM calibration describes the functional relation between the statistics of future 
climatic variables and historical climatic variables. This implementation supposes the 
statistics of the control period are the same as the observations ones. We can thus apply 
the calibrated function to generate future local scale projections. In other words, we can 
imagine performing a downscale in time, applying future statistics on present climatic 
series.  

In figures 4.5 and 4.6 the correction functions (blue) for Bormio temperature and 
precipitation in the middle-term future are given as example. Projections derived from 
SMHI8.5 for all the climatic variables are shown in figure 4.7 as example. Temperature 
and precipitation refer to Bormio station, cloud cover transmissivity to Sondrio. The 
growing trend in temperature, cloud cover transmissivity and precipitation introduced by 
climate change is evident in the series: the further periods exhibits greater corrections than 
the previous ones. 

 

Fig. 4.7 – Influences of QM on the meteorological variables in different time periods. On top and in the 
middle, downscaled SMHI RCP8.5 scenarios of temperature and precipitation for Bormio and on 
the bottom cloud cover transmissivity SMHI RCP8.5 scenario for Sondrio station are shown. The 
time periods of the scenario are indicated in color: close future (statistics 2006-2035) in yellow, 
middle term future (statistics 2036-2065) in red, far future (statistics 2066-2095) in blue.  
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QM daily values of the variables are simply scaled by a magnitude factor.  For this 
reason statistical downscaling better performs with continuous variables as temperature  
Tab. 4.3 – Average of the yearly minimum and maximum temperature and precipitation in every station and 

average over the whole time-series. Data are divided in the three time periods to better 
understand the trend in the data set.  

Observed temperature 2004-2013[°C]   Observed precipitation 2004-2013 [mm] 

Minimum Maximum Average  Minimum Maximum Average 

-4.58 27.78 11.79  0 59.42 2.56  

 
 DMI RCP 4.5 

temperature[°C] 
KNMI RCP 4.5 
temperature[°C] 

SMHI RCP 4.5 
temperature[°C] 

 Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Min -4.03 -3.05 -2.86 -3.55 -2.42 -1.88 -3.15 -2.11 -1.52 

Max 28.67 29.42 29.94 28.49 31.25 31.11 28.86 30.23 30.36 

Avg 12.45 13.22 13.56 12.60 14.40 14.40 12.79 13.74 13.74 
          

 DMI RCP 8.5 
temperature[°C] 

KNMI RCP 8.5 
temperature[°C] 

SMHI RCP 8.5 
temperature[°C] 

 Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Min -3.90 -2.61 -1.44 -3.12 -2.00 -1.03 -3.57 -1.46 0.41 

Max 29.36 29.60 31.44 29.63 31.06 34.25 28.76 29.65 32.82 

Avg 12.77 13.46 13.46 13.28 14.83 14.83 12.55 13.79 13.79 

 
 DMI RCP 4.5 

precipitation[mm] 

KNMI RCP 4.5 

precipitation[mm] 

SMHI RCP 4.5 

precipitation[mm] 

 Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Max 61.20 61.77 64.88 63.04 58.49 61.94 62.74 62.27 64.29 

Avg 2.57 2.57 2.57 3.08 2.74 2.74 2.66 2.61 2.61 
          

 DMI RCP 8.5 
precipitation[mm] 

KNMI RCP 8.5 
precipitation[mm] 

SMHI RCP 8.5 
precipitation[mm] 

 Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Close 
future 

Middle 
term  

Far 
future 

Max 59.89 63.94 64.49 60.84 61.64 63.78 61.90 64.44 65.34 

Avg 2.45 2.83 2.83 2.93 2.86 2.86 2.62 2.81 2.81 

 
and cloud cover transmissivity. The correction of precipitation is a delicate 

problem [Haerter et al., 2011]: it’s more difficult to draw conclusions for changes in total 
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precipitation due to phenomenon intermittency and noise, because statistical downscaling 
only concerns precipitation intensity, not affecting frequency of the events of the series 
(figure 4.7). The scaling factor for precipitation grows with precipitation intensity: in table 
4.3 we can see mean precipitation is more or less constant in the three periods. This result 
is in agreement with Frei et al. [2006], who confirmed an intensification of extreme events 
in climate change context and a not appreciable variation of average total precipitation 
[see also Gao et al., 2006]. Main differences in precipitation downscaled series are due to 
GCM/RCM models, which differ for the response in the basic intensity and occurrence of 
precipitation events.  

General results we obtain are consistent with literature ones. Several studies [e.g. 
Beniston et al., 2011; Beniston, 2003] agree the climate change will increase the 
temperatures on the Alps. Our analysis shows mean temperature rises in the three time 
periods will be respectively +0.82°C, +2.00°C and 2.11°C for RCP.45 and +1.08°C, 
+2.24°C, +2.24°C for RCP8.5. This result reflects Beniston [2003] findings of a 2°C 
temperature rise in some locations of the Alps. Temperature increase leads also to higher 
water to snow precipitation ratio. Consequently, an accelerated and conspicuous ice 
melting phenomenon will take place as well, which in its turn will lead to ice volume 
shrinkage first, then fragmentation and the premature disappearance of the glaciers 
[Diolaiuti et al., 2012; Huss et al., 2010; Haeberli and Beniston, 1998].  

4.2 HYDROLOGICAL RESPONSE SIMULATIONS 

In order to transform meteorological variables in catchment runoff we need a 
hydrological model that reproduces the physical processes that occur in Alpine 
hydrological cycle. This model is Topkapi-ETH (TE now on), introduced in section 2.2, 
which more specifically describes Adda river basin. Its spatially distributed inner structure 
of the model allows to assess the hydrological response to future climate in any interesting 
closing section of the basin and to perform spatial analyses on river network, glaciers, and 
hydropower reservoirs. We implement the model with 250 m2 spatial grid and a daily 
temporal resolution. 

For each cell, TE requires as inputs daily precipitation, air temperature and cloud 
cover transmissivity observations, as well as maps describing various spatial features of 
the basin. Since the calibration of the model goes beyond the purposes of the thesis, we’re 
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not dwell on details on the description of the mentioned maps. We advise the reading of 
Giudici [2016] for further information about calibration.  

We conducted six simulations, given by the combination of RCPs and GCM/RCM, 
in which the three scenarios of air temperature, precipitation and cloud cover 
transmissivity were given as input. In order to provide a proper initial condition to any 
future simulation, we can reasonably assume continuity between the three periods 
statistics. Meteorological variables series were thus constructed joining 2004-2013 
observations and the three 10-years-long projections reproducing 2006-2035, 2036-2065 
and 2066-2095 statistics. 

We then performed a 40-years horizon simulation with daily time-step. TE allows 
to record different hydrological variables as output, both in form of point specific time-
series and spatially distributed layers. We mainly focus on daily inflow to A2A reservoirs 
time-series, which provide the input to our reservoir operational models, and glacier 
volume maps for each year of the horizon. Since ice sheet component is really sensitive 
and exhibit a very rapid reaction time to changes in climate, glaciers play a key role in 
understanding the impact of climate change on the catchment hydrological behavior and 
the influences on Cancano reservoir inflow series. Moreover, their permanent character 
makes them a pillar of Alpine hydrology and the main long-term source of water for 
hydropower, thus constituting an important information for A2A decision-maker.  

Considering the combination of GCM/RCM, the RCP they processed and the three 
time periods, we obtain an ensemble of 18 10-year-long inflow series. The results of the 
simulation are discussed in section 6.1.  

4.3 VALIDATION 

We first validate our QM implementation by checking the accuracy of the DS: if 
the technique is properly performed, the quantiles of the downscaled control should equal 
the quantiles of the observation. This is our case as shown in figures 4.5 and 4.6 (red 
points). We can thus reasonably assume this implementation of QM produces reliable time 
series.  

We then validate TE results by comparing TE inflow simulation, forced with 
meteorological variables observations on 2004-2013, with observations inflow time-series 
on the same period. The comparison is showed in figure 4.8. The hydrograph is mainly 
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dominated by snow-melting, which starts in April and lasts for the whole spring, and 
autumnal precipitations, concentrated in November, while during the rest of the year the 
inflows are small. The hydrological model well reproduces the current average pattern of 
the inflows while it mostly fails in peak overestimation, in capturing the second peak and 
in smoothing the low inflow signal.  

Table 4.4 highlights once more that TE simulation overestimate the yearly inflow, 
and thus is likely overestimating also inflow future projections. Anyway, this effect might 
be compensated in our analysis by the fact the inflow time-series we consider in historical 
policy design (2008-2014) is characterized by abundant inflow, thus placing the scenarios 
and present inflow in a common wet condition. 

The quality of TE simulation can be considered satisfying for this thesis purposes. 

Fig.4.8 – A2A power system inflow: cyclostationary mean of the observation (blue) compared with the same 
average of TE inflow simulation (red), forced with meteorological variables observations on 2004-
2013. 
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Tab. 4.4 –Comparison of yearly inflow water volume [Mm3] in the historical period. TE inflow simulation, 
inflow observation in 2004-2013, inflow observation on 2008-2014. The latter observation will be 
used for subsequent policy design For each time interval the average cyclostationary water 
volume [Mm3] is calculated from daily inflow time-series. The comparison between observation 
and TE simulation in 2004-2013 confirms that the simulation overestimate the overall volume of 
inflow. On the other hand, comparing the observation of 2004-2013 period and 2008-2014, which 
is the period we are considering for policy design in present conditions, we can see 2008-2014 
inflow are particularly high, compensating the overestimation effect introduced by TE.  

 
Topkapi-ETH 

simulation  
2004-2013 

Observation 
2004-2013 

Observation 
2008-2014 

Mean yearly 
water volume 

[Mm3] 
387.91 371.00 418.87 
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5 
HYDROPOWER 

OPERATIONAL MODEL 

In order to quantify the impact of climate change on the hydropower system, we 
need a model of the hydropower reservoir operation.  

In first place, the complex A2A hydropower system is simplified to reduce 
computational effort. The two reservoirs are treated as an equivalent reservoir of 180Mm3 
of storage capacity, which is the sum of the physical reservoirs storage. The inflow to the 
reservoir is the sum of all the diverted inflows to the single reservoirs while we indicate as 
release the Premadio turbined flow time-series. As regards the downstream power plants 
hydraulic scheme, we refer to an equivalent power plant as well. Its maximum capacity is 
Premadio plant (41.06 m3/s), since is the only plant directly connected to reservoir, while 
the others exploit also other water sources. All the other technical features and net head of 
each power plant are summarized in a energy conversion coefficient, provided by A2A, 
which allows to compute the energy produced in each power plant for a unit of turbined 
flow. The equivalent energy conversion coefficient is computed as the sum of the 
coefficients of the single power plants (3.365 KWh/m3) [Amodeo and Anghileri, 2007]. 
 

Tab. 5.1 – Main technical features of A2A power plants 

Power plant 
Installed capacity 

[MWh] 
Maximum capacity of 

the turbine [m3/s] 
Energy conversion 

coefficient [KWh/m3] 

Premadio 226 41.06 1.522 

Grosio 480 83.33 1.4 

Lovero 49 59.10 0.235 

Stazzona 30 40.06 0.208 
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Fig. 5.1 – Conceptual A2A system structure and its reduction.  
 
In this thesis, we model the A2A reservoir operation using a normative approach, 

which describes the decision making process as an optimization problem. The decision 
maker is considered a rational agent who maximizes a given utility function. Utility 
functions represent measurable criteria that the decision maker uses to rank different 
decisions/options. The decision maker objectives we consider in our case study are 
revenue and production, to be maximized on the year on daily basis. We suppose a 
rational agent would release water at maximum turbine flow capacity only in the most 
profitable hours of the day, when prices are high. The choice of releasing or keeping water 
volumes in an hour or another generates the conflict between the two objectives. The 
release decision is univocally related to the number of operating hours per day and the 
decision can be interpreted how many hours per day the decision maker should release at 
maximum flow  

𝑢! =   
𝑄!"#! ∙ ℎ!

24  [5.1]  

where  𝑢! is the decision, 𝑄!"#! = 41.06  𝑚!/𝑠 is the maximum turbine capacity, ℎ!  is the 
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number of turbine operating hours. It’s important to highlight that the hourly release is 

fixed at 41.06m3/s, while the volume of water released in ℎ!  hours from the reservoir is 
averaged over the daily time-step. Reservoir release is defined on according to two main 
disturbances: inflow and energy prices.  

The production is calculated on daily base by multiplying the hourly production, 
supposed to be constant, by the number of functioning hours of the turbine 

𝐸! =     𝜓  𝑄!"#! ∙ 3600 [5.2]  

𝑔!!!! =     𝐸! ∙   ℎ!   [5.3]  

where 𝐸! is the energy produced in one hour of turbine functioning, 𝜓 = 3.365  [𝑘𝑊ℎ/
𝑚!]   is the energy conversion coefficient of the turbine and ℎ! are the number of operating 

hours of that day.   𝑔!!!  !    𝑀𝑊ℎ  is the daily production in the time interval [t,t+1). 
Since water is released on the most profitable hours of the day, the decision also 

depends on the prices. Energy price is a disturbance of the system and, since we’re dealing 
with a problem with yearly periodicity, we need to define the drivers in a cyclostationary 
way. Using hourly data provided by GME in the period 2009-2015 we generate the 
cyclostationary matrix of the prices by averaging (figure 5.2).  

Fig. 5.2 – Cyclostationary matrix of the prices. Mean energy prices on the period 2009 – 2015 are averaged 
and cumulated from the lowest to the highest profitable hours 
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Each cell i contains the cumulate price of the most profitable i hours of the day of 
the anthropic year, a non-leap year of 364 days starting on Monday. The anthropic time 
allows keeping distinct weekdays from weekends to mark the weekly pattern. The matrix 
is derived by averaging weekdays in a moving average with 5 days windows amplitude, 
while no window is used weekends. Everyday prices are then ordered form the highest to 
the lowest and cumulated. Higher cumulated prices are associated to longer intervals of 
production, but the longer the turbine works, the lower is the marginal price associated to 
the last working hour.  

The revenue is then obtained multiplying the production by the cumulate price of 
energy for the respective operating hours. 

𝑔!!!! =     𝐸! ∙ 𝑝!,!! [5.4]  

in which 𝑔!!!!  is the daily revenue [€] and 𝑝!,!! the cumulate price of the t-th day of the 

anthropic year for a number ℎ!  of operating hours of the turbine.  
We thus set up a Multi-Objective decision problem. As mentioned in section 2.3, 

we solve the optimization problem adopting Dynamic Programming (DP). DP founds on 
the solution of Bellman equation  

𝐻!∗ 𝑠! = max
!!

E
!!!!

[  𝐺! 𝑠! ,𝑢! , 𝑒!!! + 𝐻!!!∗ (𝑠!!!)] [5.5]  

in which 𝐻!∗ 𝑠!  is the optimal cost-to-go at stage t, only depending on the value of the 
state, the storage, at the same time-step,   𝐺! 𝑠! ,𝑢! , 𝑒!!!  is the step-cost of the t-th stage, 
and E

!!!!
is the expected value over the disturbances. Bellman equation exploits the multi-

stage conformation of the problem to compute its solution in a recursive way, by 
proceeding backwards from the final stage to the initial one. The result of the DP 
optimization is provided as a look up table containing the optimal cost-to-go associated to 
𝑠!. The optimal cost-to-go is the sum of the step-costs associated to the optimal decision 
taken in each stage from 𝑠! to the final stage.  

DP application is based on the main assumption of the separability of the objective, 
which in its turn derives from step-cost separability. The step-cost expresses the cost 
produced in the transition from st to st+1 by a given decision. In order to be separable a 
step-cost must be a function of variables related to [t, t + 1) time interval only and the 
same must hold for the objective. At each stage, the step-cost   𝐺! 𝑠! ,𝑢! , 𝑒!!!   depends on 
the state of the system, the release decision and the inflow. For convention, 𝑒!!!referst to 
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the inflow occurring in the interval [t, t+1), after the moment in which the decision is 
taken. 

  𝐺! 𝑠! ,𝑢! , 𝑒!!!  is a linear combination of the step-costs showed in 5.3 and 5.4., 
which makes it separable.  

In order to apply DP algorithm, the system must be an automation, i.e. the sets in 
which the state, control and disturbances assume their values, are finite for every t. It is 
therefore necessary to implement their discretization. 

Storage grid considers 59 states spacing from 0 to 200Mm3. An irregular 
discretization, thinner to the extremes of the active volume (which is the volume in which 
the regulator can freely establish the release decision) of the reservoir, is adopted to better 
describe water scarcity and water spillage conditions. As previously explained, control 
discretization is strictly linked to turbine functioning description. It ranges from 0 to 
41.06m3/s, which is the turbine maximum flow capacity, within 24 steps. The 
discretization is reported in table 5.1. 

 
Tab. 5.2 – Discretization of the feasible decision set 

Working hours 
per day 𝒉𝒕 

[h/d] 

Release 
decision ut 

[m3/s] 

Working hours 
per day 𝒉𝒕 

[h/d] 

Release 
decision ut 

[m3/s] 

Working hours 
per day 𝒉𝒕[h/d] 

Release 
decision ut 

[m3/s] 
0 0.00 9 15.40 18 30.80 
1 1.71 10 17.11 19 32.51 
2 3.42 11 18.82 20 34.22 
3 5.13 12 20.53 21 35.93 
4 6.84 13 22.24 22 37.64 
5 8.55 14 23.95 23 39.35 

6 10.27 15 25.66 24 41.06 
7 11.98 16 27.37   
8 13.69 17 29.08   

 
Inflow discretization ranges from 0 to 120 m3/s, which is the maximum inflow 

occurring in historical observations or inflow projections, with a step of 1 m3/s. As already 
mentioned in chapter 2, we implement DP in two forms, deterministic (DDP) and 
stochastic (SDP), which mainly differ for the approach to the disturbances. DDP requires a 
perfect knowledge of the inflow, i.e. the inflow is know before the decision is taken, and is 
thus implemented using a time-series of the inflow. It provides an optimal control for each 
day of the design horizon of the policy.  This policy represents an ideal experiment that 



Chapter 5 Hydropower operational model 
 

 48 

allows evaluating the upper boundary to DP policies performances. For this reason, we 
will refer to DDP policies as Benchmark Policies (BP).   

SDP implementation requires a statistical description of the disturbances, which is 
given as the probability distribution of the inflow to the reservoir. We suppose the inflow 
probability has the functional form of a lognormal. Using inflow time-series, the 
parameters of the lognormal (mean and standard deviation) are computed with a moving 
window of 40 days on cyclostationary basis on the anthropic year (364 days) Given this 
inflow representation, the solution of the SDP problem provides a cyclostationary policy. 
Unlike DDP, SDP is not designed for a specific inflow realization, but for a specific 
statistical characterization of the inflow. SDP can thus absorb natural inflow variability 
and reproduces realistically the decision-maker partial knowledge at the moment in which 
the decision is taken. For this reason, SDP policy better reproduces the operating policy of 
the hydropower system.  

In order to solve the Multi-Objective problem, we must reduce the problem to a 
Single-Objective one, adopting an aggregation method. The step-costs [5.3] and [5.4] are 
aggregated by the weighting method, which consists of a weighted sum of the individual 
step-costs according to arbitrary weights 

  𝐺! 𝑠! ,𝑢! , 𝑒!!! =    𝜆! ∙ 𝑔!
!

 [5.6]  

𝜆! = 1
!

   [5.7]  

which sum up to 1. The two extremes are optimized according to a single objective 
problem, giving complete priority to revenue or production, while the other combinations 
of weights give 8 intermediate ranking of the two objectives. Each weights combination 
represent an alternative to the decision maker. 

 
Tab. 5.3 –Weights associated to the different alternatives 

Weights of the 
revenue 1 0.9 0.5 0.4 0.3 0.1 0.05 0.01 0.001 0 

Weights of the 
production 0 0.1 0.5 0.6 0.7 0.9 0.95 0.99 0.999 1 

 
The problem is solved applying Bellman equation [5.5] recursively, getting the policy of 
the hydropower system.  
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Fig. 5.3 – Minimum and maximum instantaneous release curves for the Cancano-San Giacomo equivalent 
reservoir 

 
Each policy must be simulated in order to obtain hydropower system performances 

and the reservoir dynamics (release and storage trajectories). The model of the reservoir is 
based on mass balance equation at daily time step  

𝑠!!! =    𝑠! + 𝑒!!! − 𝑟!!! [5.8]  

𝑟!!! = min  (max 𝑄!"#,𝑢! ,𝑄!"#)   [5.9]  

where 𝑠! , 𝑒!!! and  𝑟!!!  are respectively storage [m3], daily net inflow [m3/s] and daily 
release [m3/s] at the same time-step.  

Release is bounded by the curves of minimum and maximum instantaneous release 

(fig 5.3). For each storage 𝑠!, they express the maximum and minimum release in the 
time-step on the basis of the instantaneous inflow. Since the inflow 𝑒!!!is know only in 
discrete time-steps, the instantaneous release curves must be integrated over the time-step 
to obtain the minimum and maximum release curves. The curves describe storage-release 
relation, implicitly describing the operative features of the reservoir. For each couple 

(𝑠! , 𝑒!!!) we can thus define the maximum and minimum release 𝑄!"# and 𝑄!"#. 
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The performances of the system, mean daily revenue and mean daily production, are 
defined by the objectives values, computed as  

𝐽! =   
1
𝐻 𝑔!!

!

!!!

 [5.10]  

𝐽! =   
1
𝐻 𝑔!!

!

!!!

   [5.11]  

where 𝑔!!and 𝑔!!are the step-cost defined in [5.3] and [5.4] and 𝐻 is the simulation 
horizon.  

The objectives define a bi-dimensional space, called objective space. For every 
decision 𝑢 the two objectives are the components of a vector  

 which individuate a point in the objective space. Each point is associated with a specific 
objectives ranking and constitutes an alternative. In its turn, each alternative is associated 
to an optimal policy. The ensemble of the optimal policies points in objective space 
constitutes a sampling of the Pareto front, which constitute a simple and effective visual 
way to value and compare the overall performance of the hydropower system for different 
alternatives. 

5.1 VALIDATION OF THE HISTORICAL OPERATIONS 

In order to validate the model, deterministic (DDP) and stochastic (SDP) policies 
are optimized and simulated in the historical period, i.e. 2008-2014. The perfect 
knowledge of the inflow in DDP context allows us to conduct an ideal experiment, from 
which we can gain the maximum optimal performance for each alternative. The stochastic 
approach used in SDP optimization produces an operating policy, which could be adopted 
to regulate the reservoir. The Pareto fronts of the two policies, as well as the historical 
performance of the system, are shown in figure 5.4. Best alternatives tend to place in top 
right corner. In first place, SDP frontier has overall worst performances than DDP, due to 
deterministic approach to the disturbances of the latter. The distance in the objective space 
between the two frontiers is thus the improvement space defined in Chapter 2. SDP 
operations can be enhanced towards DDP performances including other information in 
policy design (e.g. forecasts, snow cover, glaciers state, temperature forecasts and so on).  

𝐽 = 𝐽! 𝑢 , 𝐽! 𝑢  [5.11]  
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Fig.5.4 – Pareto front for the Multi-Objective stochastic (SDP - blue) and deterministic (DDP -orange) 
policies. The arrows indicate the improvement direction of the objectives. In red, the performances 
of the decision maker obtained using the recorded release series.  

 

Further analyses on this result are shown in chapter 6. Referring to the frontier extremes, 
we can measure the distances in percentages, which are reported in table 5.4. The numbers 
suggest the performances of SDP are already pretty good and the improvement space is 
small. SDP front shows distinctly the trade-off between the objectives introduced by mean 
of the weights. Raising the importance of production compared to revenue, the points of 
the front move to better productions lowering the revenue. The alternatives with weights 
on the revenue between 1-0.3 show a contextual enhance both in revenue and production 
performances. The shape of this part of the Pareto front is probably linked to the fact that  
 
Tab. 5.4 – Improvement space for SDP policy in historical simulation: the distance in terms revenue and 

production between the extremes on the SDP frontier and their corresponding extremes on DDP 
is measured in percentages.  

Objective 
improvement 

Revenue 
extreme 

Production 
extreme 

Revenue [%] 3.49 4.62 

Production[%] 3.92 3.27 
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2008-2014 period is a wet one compared to average conditions, because of 
abundant precipitation. Following our assumption, the conflict between the objectives 
stands out in water scarcity conditions, because the alternative use of water becomes more 
important, while in condition of abundant inflow, the more we produce the more the 
revenue. The conflict on SDP is very clear when the weight given to revenue is lower than 
0.3, which is when we put our attention on mostly production. The push on energy 
production leads to longer turbine operating time intervals: water is thus allocated in the 
hours of the day in which the marginal hourly price is low, with limited profits. In the last 
part of the frontier the production doesn’t increase with consistent loss on the revenue 
objective: the points of the frontier with this characteristic are called semi-dominated.  

DDP shape is much different from what expected: only the extremes are clearly 
distinguishable and the shape is almost vertical. All the points representing the 
compromise alternatives collapse in the revenue extreme and the production extreme is 
semi-dominated by the revenue extreme: all the alternatives yield the same production 
objective’s value. This means that even optimizing the policy according to production 
objective only, the production doesn’t improve, while the revenue decreases. In other 
words, the optimization of revenue objective provides also the maximum production 
objective value possible, because there’s no conflict between the objectives (table 5.5). 
 

Tab. 5.5 – Conflict between the objectives for SDP and DDP policies in historical simulation: the distance in 
terms of revenue and production between the extremes on the SDP frontier and on DDP is 
measured in percentages. The spread between the extremes points of the frontier indicates the 
magnitude of the conflict in action: greater distances are index of consistent conflicts between the 
objectives. Focusing on production, the conflict with revenue is already meager in SDP 
experiment and in DDP the conflict on production is fatherly reduced.  

Objective 
improvement SDP DDP 

Revenue [%] 8.17 4.38 

Production[%] 0.63 0.15 

 
Because of the lack of conflict in deterministic experiment, we reduce the Multi-

objective problem to a Single Objective one. Since the production objective is already 
optimized when revenue maximization is optimum, we focus on revenue maximization.  

In figure 5.5 the dynamics of the Single Objective policies for the hydropower 
system are compared.  

Keeping in mind the yearly trend of prices, the reservoir is used to store water 
during spring to release it during summer and winter, when the prices are high. Storage 
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DDP and SDP trajectories diverges mainly in the first part of the year, when the inflow is 
low and the reservoir is emptying. The release trajectories in the same period are 
comparable until the point in which the reservoir is empty in SDP while in DDP has still 
residual water to exploit: this phase is the one that marks the major difference in the DDP-
SDP performances. During the filling phase, the trajectories show that both the policies 
well intercept the spring peak of the inflow, as well as the historical records. However, it’s 
important to see how in May SDP release trajectory slightly start rising previously and 
before the DDP ones. This is due to DDP complete information about peak timing, which 
can vary from year to year and is not known to SDP. SDP can rely only on the statistical 
probability distribution of the inflow, which describes the average time peak over the 
period of calibration of the distribution. Overall, SDP dynamics tend to equal DDP ones 
both in release and in storage. 

We lastly compare SDP trajectories (red in figure 5.5) and the historical operating 
rule dynamics (blue in figure 5.5) and their performances in terms of objective’s values. 
As regards performances, SDP yields much better revenue than historical operating rule 
(figure 5.4). SDP well follows the weekly pattern presented by historical operating rule 
release during the whole year. Moreover, historical release exhibits two main variations 
from DP trajectories, both in storage and release, in September and November, which are 
not due to low prices or water availability. We presume these deviations in trajectories 
reflect secondary objectives of the decision maker that are not modeled in our problem. 
Because of the exploitation of water reserve during these periods, the historical operating 
rules can sustain lower release from February to April.  

The comparison between the recorded trajectories and SDP ones shows that 
revenue objective is sufficient to describe decision maker behavior and once more 
supports the reduction to a Single- objective problem. Since SDP patterns well follow the 
operative rule of the reservoir, we will refer to SDP policy in historical period as Business 
as Usual (BAU) policy.  
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Fig.5.5 – Dynamics of the reservoir operated under Single-Objective SDP and DDP, compared to observed 
trajectories. Cyclostationary mean inflow with moving average of 20 days window on the top, mean 
cyclostationary storage with moving 20 days window in the middle, mean cyclostationary release in 
the bottom square. DDP and SDP trajectories refer to the ones optimized and simulated with the 
inflows, while “History”(blue) refers to the recorded trajectories of the operative rule of the 
reservoir.  
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6 
RESULTS AND DISCUSSION 

6.1 CLIMATE CHANGE ON THE ALPS 

Future climate is going to alter consistently the hydrology of the Alpine 
environment. In Chapter 4 we have described how climate change scenarios are 
downscaled to reproduce Adda river basin climatic conditions. Then the hydrological 
model Topkapi-ETH was used to simulate the inflow to the reservoir under changing 
climate and the impacts of climate change on the hydrological cycle. We remind that the 
projection is split in three periods, named close future, middle term future and far future, 
which represent scenarios statistics respectively for the periods 2006-2035, 2036-2065, 
and 2066-2095. In this paragraph we discuss the peculiarities and trends of the inflow 
projections as well as glaciers evolution monitoring.  

In figure 6.1 and 6.2 the inflow projections to A2A reservoir are showed for all the 
scenarios. Close future patterns are similar to historical ones, both in timing and water 
volumes: this means we don’t expect any significant change in hydrology until 2035. 
Moving towards the end of the century, we can observe a general anticipation of the 
snowmelt peak and a diminishing of the associated water volume, particularly evident in 
DMI and SMHI scenarios, followed by increasingly dry summers, highlighted in KNMI 
scenarios. On average, snowmelt peak in close future anticipate the current ones by only a 
few days, while in middle term future and far future, peak anticipation can reach even over 
30 days, shifting from late June to early May. Moreover, the snow-melting season seems 
to last longer in the far future than at present. These results have been confirmed in several  
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Fig.6.1 – A2A power plant inflow for the scenarios RCP 4.5. All time series are averaged with a moving 
window of 10 days amplitude. Close future (2006-2035), middle term future (2036-2065) and far 
future (2066-2095) characteristics are represented respectively in red, yellow and purple lines. For 

a quick comparison, TE simulation of current inflow (2004-2013) is reported as well (blue line). 
Close future pattern doesn’t differ significantly from historical inflow. All the scenarios exhibit an 
anticipation of the peak due ice melting and a sensible reduction in the yearly volume. The latter is 
particularly marked in KNMI scenarios, the former in DMI. All the scenarios agree in a growth of 
the inflow in November.  
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Fig.6.2 – A2A power plant inflow for the scenarios RCP 8.5. All time series are averaged with a moving 
window of 10 days amplitude. Close future (2006-2035), middle term future (2036-2065) and far 
future (2066-2095) characteristics are represented respectively in red, yellow and purple lines. TE 
simulation of current inflow (2004-2013) is reported as well (blue line). Close future pattern 
doesn’t differ significantly from historical inflow. Compared to RCP 4.5 scenarios, inflow exhibits 
the same changes, but  water volumes and peak values are further diminished, while November 
inflow gains importance in the yearly balance 
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Tab. 6.1 – Peak anticipation in the different scenarios. The day of the year of the peak of the mean 
hydrograph of each scenario per period is reported, as well as the average over the scenarios per 
period.  

 RCP 4.5 RCP 8.5 

Periods Present Close 
future 

Middle 
term future Far future Close 

future 
Middle 

term future Far future 

DMI 175 170 148 148 170 148 135 

KNMI 175 175 148 139 170 139 126 

SMHI 175 170 148 135 170 148 126 

Average 175 172 148 140 170 145 129 
 

 

Tab. 6.2 –Yearly water volume [Mm3] per period in each scenario. For each period the average 
cyclostationary water volume [Mm3] is calculated as in table 6.3. Yearly water volume derived 
from observation in 2004-2013 is reported as comparison. The yearly water volume projections 
are likely overestimated by TE, but show an evident diminution moving towards far future.  

 DMI KNMI SMHI 

Periods RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Present 371.00 371.00 371.00 371.00 371.00 371.00 

Close future 394.14 389.64 361.88 358.46 410.50 400.53 

Middle term 
future 366.51 401.21 307.80 308.87 371.94 392.94 

Far future 384.27 383.08 289.24 278.68 350.85 369.97 

 

 

Tab. 6.3 – Variations in yearly water volume [Mm3] between periods in percentage for each scenario. The 
comparison of all the scenarios highlight the reduction of inflow water volumes moving towards 
far future, but not in a uniform way. The decrease is more conspicuous and monotonous in KNMI 
scenarios, while DMI and SMHI show an increased water volume in close future (within 20135) 
to decrease in the subsequent period. All RCP 4.5 scenarios show the most consistent diminution 
takes place in middle term future (2036-2065), while in RCP8.5 the most consistent decrease is 
shifted in far future period (2066-2095). 

 DMI KNMI SMHI 

Periods RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Close future 
 vs Present 1.60 0.45 -6.71 -7.59 5.82 3.25 

Middle term future  
vs Close future -7.01 2.97 -14.94 -13.83 -9.39 -1.90 

Far future  
vs Middle term future 4.84 -4.52 -6.03 -9.78 -5.67 -5.85 
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studies on Alpine catchments of comparable dimensions and characteristics 
[Clarvis et al., 2014; Anghileri , 2014; Beniston et al., 2011]. Another interesting feature 
of future patterns is the inflow increase in November, also confirmed in literature [e.g. 
Anghileri, 2014], which is due to autumnal precipitation. Comparing the two peaks, we 
can see the second one will assume an increasing importance at the end of the century. In 
RCP 8.5, which represents extreme condition projections, the changes in the hydrograph 
highlighted hitherto are further stressed. 

As regards inflow volumes, the main properties of inflow projections are 
highlighted in tables 6.1, 6.2 and 6.3, which compare the changes in yearly water volume 
of the inflow in the different time intervals of the scenarios.  

All the scenarios agree the volume of available inflow is going to decrease in the 
21st century. KNMI exhibits the strongest inflow reductions (table 6.3), more consistently 
moving towards far future, without showing appreciable differences between RCP 4.5 and 
8.5. In DMI and SMHI the volume decrease is not monotonous, both in RCP 4.5 and 8.5: 
in close future the water volume is increasing to diminish in next periods. In all the RCP 
4.5 scenarios, the decrease is concentrated in the middle term period, while in RCP 8.5 
scenarios the most important reduction moves to far future.  

Fig.6.3 – Cyclostationary mean temperature (first row) and cumulative precipitation (second row) for SMHI 
RCP4.5 (red) SMHI RCP 8.5 (yellow) and observations in 2004-2013 (blue) on the upper Adda 
river basin, computed with 20 days moving window. The three periods are highlighted from left to 
right. Moving towards far future, both temperature and precipitation are rising and the difference 
between RCPs becomes more marked. 
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(a) 

(b) 
Fig.6.4 – Maps of glacier thickness the end of the four periods. The maps have been produced simulating 
SMHI RCP 4.5 (a) and SMHI RCP 8.5 (b) scenarios with Topkapi-ETH model. Glacier shrinking is evident 
in Bernina (in the middle on the north side) and Ortis-Cevedale (north-east side of the basin) groups.  
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Further analyses are conducted on SMHI scenarios, which well represent both peak 
anticipation and summer volume decrease. To explain these variations, we exploit TE 
potential as a spatially distributed physically based model. The model can provide 
multiple output, both distributed maps and point specific time series, concerning different 
hydrology aspects. Here we focus our attention on glacier pack. Glaciers are an important 
permanent storage that strongly affect the runoff regime. They recharge in winter 
accumulating snow that melts in the summer months providing a considerable runoff. 
Temperature rise causes an anticipated melting of the snow cover, which explains peak 
anticipation. The warmer climate melts the snow cover much rapidly than in past, causing 
a more consistent melting of the ice pack, which is left uncovered during the summer. Ice 
pack contribution to runoff is thus more appreciable at the end of the summer. When 
permanent ice pack is lost, we observe a consistent reduction in inflow volumes in 
summer time. Moreover, although precipitation is slightly rising too, higher temperature 
will favor liquid precipitation instead of snow falling: the winter snow pack will be 
smaller, thus affecting also ice pack accretion. Beniston [2003] showed the snow-line is 
likely to move up 150m per each degree of temperature rise. Overall, warmer temperatures 
and scarce snow accumulation conditions favor glacier-shrinking phenomenon, which has 
been widely treated in literature [Diolaiuti et al., 2012; Beniston, 2012; Huss 2011; Huss 
et al., 2010; Horton et al., 2006; Beniston, 2003; Haeberli and Beniston, 1998]. According 
to Diolaiuti et al. [2012], in 1991-2003 main Lombardy glaciers have already lost 25km2 
of cover. In close future, the most part of runoff contribution will come from small 
glaciers (<5km2), which are common in Valtellina territory and are more sensitive to 
temperature changes. In the middle period, big glaciers will be affected by climate change, 
experiencing fragmentation first and retreat after (figure 6.5). RCP 4.5 shows the glacier 
shrinkage peak will take place within 2065, while in RCP 8.5 the peak will be reached 
within 2095. In both cases, the glaciers are likely to disappear by the end of the 21st 
century. These results are in line with other studies findings [Marzeion et al., 2012; 
Beniston , 2012]. 
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Tab. 6.4 – Analysis of glacier data in Adda river basin. Each statistics is calculated at the end of each 
period i.e. 2013, 2035, 2065, 2095 and derived from the maps in figure 6.5. Cover area is 
computed for each period, then the percentage of remaining ice cover and volume compared to 
2013 and the variation between consequent periods and are computed.  

  SMHI RCP 4.5 SMHI RCP 8.5 

Periods Present Close 
future 

Middle 
term future 

Far 
future 

Close 
future 

Middle 
term future Far future 

Area [km2] 80.5 61.75 33.9375 18 62.875 36.5625 9.5 
Comparison to 

present [%]  76.71 42.16 22.36 78.11 45.42 11.80 

Variations 
between 

periods [%] 
 -23.29 -45.04 -46.96 -21.89 -41.85 -74.02 

 

Tab. 6.5 – Analysis of glacier data in Adda river basin. Each statistics is calculated at the end of each 
period i.e. 2013, 2035, 2065, 2095 and derived from the maps in figure 6.5. Mean volume is 
computed for each period, then the percentages of remaining ice volume compared to 2013 and 
the variation between consequent periods and are computed.  

  SMHI RCP 4.5 SMHI RCP 8.5 

Periods Present Close 
future 

Middle 
term future 

Far 
future 

Close 
future 

Middle 
term future Far future 

Avg Volume 
[Mm3] 3676.10 1676.51 396.48 89.94 1768.81 485.76 31.10 

Comparison to 
present [%]  45.61 10.79 2.45 48.12 13.21 0.85 

Variations 
between 

periods [%] 
 -54.39 -76.35 -77.32 -51.88 -72.54 -93.60 

 
Tab. 6.6 – Analysis of Forni glacier group data. Each statistics is calculated at the end of each period i.e. 

2013, 2035, 2065, 2095 and derived from the maps in figure 6.6. Cover area and mean volume 
are computed for each period, then the percentage of remaining ice cover and volume compared 
to 2013 and the variation between consequent periods and are computed.  

 

  SMHI RCP 4.5 SMHI RCP 8.5 

Periods Present Close 
future 

Middle 
term future 

Far 
future 

Close 
future 

Middle 
term future Far future 

Area [km2] 14.625 14.5625 11.6875 4.75 14.5625 11.6875 1.9375 
Comparison to 

present [%]  99.57 79.91 32.48 99.57 79.91 13.25 

Variations 
between  

periods [%] 
 -0.43 -19.74 -59.36 -0.43 -19.74 -83.42 

Avg Volume 
[Mm3] 40.10 27.85 10.87 3.10 28.59 11.16 0.80 

Comparison to 
present [%]  69.44 27.12 7.72 71.30 27.82 2.00 

Variations 
between 

periods [%] 
 -30.56 -60.95 -71.53 -28.70 -60.98 -92.82 
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Fig.6.5 – Cyclostationary mean temperature (first row) and cumulative precipitation (second row) for SMHI 

RCP4.5 (red) SMHI RCP 8.5 (yellow) and observations in 2004-2013 (blue) in Cancano-San 
Giacomo drainage basin, computed with 20 days moving window. Moving towards far future, both 
temperature and precipitation are rising and the difference between RCPs becomes more marked. 

 

 
Fig.6.6 – Mean yearly runoff volume released from Forni glacier, computed with 5 years moving window. 

Solid lines represent the total volume released by snow pack ice pack, dashed lines represent the 
release by ice sheet only. The series have been produced simulating SMHI RCP 4.5 (blue lines) and 
SMHI RCP 8.5 (red lines) scenarios with Topkapi-ETH model. Simulation of the observed drivers is 
reported in black.  
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 (a) 

(b) 

Fig.6.7 – Maps of glacier thickness at present and the end of the three periods – focus on Forni glacier. The 
maps have been produced simulating SMHI RCP 4.5 (a) and SMHI RCP 8.5 (b) scenarios with 
Topkapi-ETH model. The dashed line represents Forni extension at the end of 2013.   
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Since 90% of A2A reservoir inflow is diverted from streams that originate from 
glacier’s runoff, it’s worth to focus on the impacts of climate change on the main glacier 
in Cancano-San Giacomo basin, Forni glacier group. Located between 2541-3544m a.s.l. 
in the east end of Alta Valtellina, with its 12km2 it’s one of the biggest Italian glaciers 
[Diolaiuti and Smiraglia, 2010]  and its runoff constitutes a significant inflow volume for 
A2A reservoirs system.  

In figure 6.5 climatic conditions that force Forni glacier’s dynamic are shown, 
while Forni glacier’s evolution is shown in figure 6.7. As confirmed in other studies’ 
results, the glacier will loose most of its volume and surface around 2040-2050. The trend 
in the runoff series (figure 6.8) grows until end of the middle term period (2040-2050) to 
decline in far future. Shrinkage accelerating phenomenon is responsible for the initial 
increase in runoff regime: as long as the permanent ice pack stores water, high 
temperature will favor its release from the glacier. When eventually the glacier is 
completely depleted, its contribution to runoff becomes negligible for the inflow. This 
explains the severe lack of water during summer months. Moreover, the runoff series 
confirms the snow pack is reducing from 2040-2050 as well, because high temperature 
will create unfavorable conditions for snowing even at high altitudes, and the reduction is 
more stressed in RCP 8.5 than in RCP 4.5. 

6.2 IMPACT OF CLIMATE CHANGE ON A2A 

HYDROPOWER SYSTEM 

Climate change will affect the hydrological system of upper Adda river territory and 
Cancano-San Giacomo reservoir inflow. As explained in chapter 5, the currently operating 
policy (BAU) has been design using historical inflow statistics (2008-2014). Since future 
climatic conditions will be consistently different from historical ones, BAU policy might 
not be able to guarantee the same hydropower system performances as in history.  In this 
section we explore the impacts of the new hydrological regimes on energy production. For 
this purpose, we simulate the hydropower system using BAU policy under future inflow 
projections. The performances of the system in terms of revenue are expressed in table 
6.7. Changes in the inflow conditions cause a decrease in the hydropower performance for 
all the scenarios considered. In particular the decrease in hydropower revenue is due to the 
reduced water availability. In fact the worsening is more severe in middle term future and 
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far future, when the yearly volume of inflow is conspicuously reduced. The extreme 
conditions represented by RCP 8.5 scenario experience further volume reduction than 
RCP 4.5 average condition. The impact in close future is smaller than in middle term and 
far future, because close future inflow distribution is quite similar to historical one. It’s 
interesting to note that, although the water availability rises in DMI and SMHI close future 
(see table 6.2), BAU yields worst performances than in historical period. This is mainly 
the effect of snow-melting timing, which is anticipated by 5 days on average (table 6.1). 
On the contrary, KNMI scenarios, which experience -7% in yearly water volume in the 
first period but not an evident peak anticipation, perform much worse than DMI and 
SMHI. This consideration once more confirms performances degradation is mainly due to 
inflow volume reduction. For sake of brevity, now on we show the results on SMHI 
RCP4.5 and SMHI RCP8.5 scenarios only, which better reflect literature findings about 
change in the inflow regime and well summarize both the characteristics of DMI and 
KNMI scenarios. 

 
Tab. 6.7 – BAU performances in terms of mean daily revenue [thousands €] in present and future. The 

operating policy has been optimized on 2008-2014 inflow series and the cyclostationary matrix of 
the prices, then has been simulated on present inflow series (first row) and on the future periods 
inflow series (following rows).  

 DMI 
RCP 4.5 

DMI 
RCP 8.5 

KNMI 
RCP 4.5 

KNMI 
RCP 8.5 

SMHI 
 RCP 4.5 

SMHI 
 RCP 8.5 

Present 
(2008-2014) 304.82 304.82 304.82 304.82 304.82 304.82 

Close future 288.48 285.75 267.61 265.59 299.12 292.70 
Middle term 

future 268.47 291.19 230.82 231.25 271.92 285.54 

Far future  281.29 279.52 218.87 210.73 258.81 269.82 

 
Tab. 6.8 – Variation between the referring period and present performances of the BAU policy [%]. 

 DMI 
RCP 4.5 

DMI 
RCP 8.5 

KNMI 
RCP 4.5 

KNMI 
RCP 8.5 

SMHI 
 RCP 4.5 

SMHI 
 RCP 8.5 

Close future -5.36 -6.26 -12.21 -12.87 -1.87 -3.98 
Middle term 

future -11.93 -4.47 -24.28 -24.14 -10.79 -6.33 

Far future  -7.72 -8.30 -28.20 -30.87 -15.10 -11.48 
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(c) 

Fig.6.8 – Reservoir dynamics with BAU policy in history and future. Inflow storage and release from the 
reservoir relative to close future (a), middle term future (b) and far future (c) are displayed, for 
SMHI RCP 4.5 (left) and SMHI RCP 8.5 (right). In all the figures, cyclostationary average inflow 

in future period (in color) and in historical (blue) are compared in the upper boxes; cyclostationary 
average storage dynamics computed with moving average of 20 days window is displayed in the 
middle boxes while cyclostationary release dynamics is shown in the bottom boxes. In storage and 
release trajectories boxes, blue lines indicate BAU policy simulated in historical conditions, 
colored lines indicate BAU policy simulated with future conditions, gray lines the BP in historical 
conditions. 

 

In order to better understand BAU policy vulnerability to climate changes we 
compare BAU policy reservoir dynamics under historical and future inflow (fig 6.8). 

Water availability in future decreases conspicuously and future BAU releases (color 
in figure 6.8) is increasingly reduced moving towards far future. It’s worth highlighting 
BAU policy behavior in the period of the spring snow-melting peak (half April - June): in 
this period future release are always higher than historical ones. BAU policy in fact is 
designed to intercept the peak of historical inflow, which is higher and more consistent 
than future ones, beyond occurring later in the year. When the small peak of the new 
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inflow arrives, the policy tends to release water immediately, expecting further inflows in 
the following days. Because of this mechanism BAU policy will not be able to intercept 
future inflow, with evident consequences on the storage trajectories.  

BAU policy is optimal for the inflow condition it was designed for. The statistical 
description of the inflow guarantees a slight flexibility to the policy, which we can notice 
in DMI and more in SMHI scenarios. However, when the hydrological regime changes, 
the performances might not be optimal anymore. We thus observed an overall 
performance reduction.  

6.3 ADAPTIVE CAPACITY 

BAU policy has been designed to operate in 2008-2014 inflow regime, with good 
water availability, also stored in the ice pack, and an abundant peak from April to July. 
We’ve explained in chapter 2 that the decision maker could greatly benefit of forecasts 
information that might enhance design reservoir operating policy and thus the 
performances of the hydropower system. Since these conditions are mutating during the 
century, a straightforward strategy to improve future performance of A2A power system is 
adapting the operating policy to climate change by using inflow projections. In particular, 
inflow scenarios were used to compute a new probability density fucntion of the inflow to 
re-optimize the policy: we will refer to this policy as adapted (ADA) policy. We can thus 
test how A2A power system will behave in future conditions if the decision-maker 
chooses to adopt the ADA policy.  

In figure 6.9 reservoir dynamics are compared for ADA policies and BAU policy 
simulated in future conditions, as well as future BP policy. We remind the benchmark 
policy is the optimized via DDP considering a perfect knowledge of the inflow. It provides 
the best performance for the A2A hydropower system in the DP family of policies.  
As regards release dynamics, we can notice an overall diminishing of release volumes 
moving from close future to far future, which is naturally linked to inflow scarcity. The 
ADA policy pattern follows very well the BP one, failing mostly in April-May, at the end 
of the production period and before the occurring of inflow peak. In this period, in fact the 
storage is almost empty, but thanks to the perfect description of inflow, BP policy has still 
stored water to continue producing, thus showing higher release than ADA and BAU 
policies.  
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(c) 

Fig.6.9 Reservoir dynamics with ADA policies in future. Inflow storage and release from the reservoir 
relative to close future (a), middle term future (b) and far future (c) are displayed, for SMHI RCP 
4.5 (left) and SMHI RCP 8.5 (right). In all the figures, cyclostationary average inflow in future 

period (in color) and in historical (black) are compared in the upper boxes; cyclostationary 
average storage dynamics computed with moving average of 20 days window is displayed in the 
middle boxes while cyclostationary release dynamics is shown in the bottom boxes. In storage and 
release trajectories boxes, blue lines indicate BAU policy simulated under future inflow scenarios, 
colored lines indicate ADA policy optimized and simulated with future inflow scenarios, gray lines 
the BP in future conditions. 

 
Comparing the reservoir dynamics of the ADA policy and of BAU policy, the 

former outperforms the latter mostly in snow-melting period: BAU is designed for a later 
snow-melting inflow to the reservoir and fails in capturing and saving the entire melting 
peak from its beginning. This behavior leads to reduced water availability in summer, 
which affects the release from August to October. Comparing the three period, we can 
appreciate how the most evident change will occur in middle term future, from 2040s. In 
this period releases generally decrease, which is accentuated also in far future period. 
Although the tendency to store water in spring to release it in winter is still visible, storage 
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pattern is deeply altered. Inflow volume reduction reflects again in reduced storages for all 
the policies: considering that in the first period the maximum storage can reach 180Mm3, 
we observe a reduction of more than 30Mm3 in middle term and far future. Historical 
storage pattern is characterized by two well distinct phase of accumulation and storage 
from May to November and the emptying phase during winter, when prices are high.  
While in present and close future, accumulation phase starts in May to end in August and 
can sustain the whole year production (fig. 6.9a central), it will take place respectively 
about 15 days and a month earlier in middle term and far future conditions (fig. 6.9b and 
6.9c central). In middle term future, when inflows are still enough to sustain both 
production and accumulation, the two phases yearly pattern is maintained, while in severe 
water scarcity of the third period water reserves are used also to support summer 
production (note the deflection in storage pattern in ADA line fig. 6.9c central). November 
precipitations will constitute a source of water of increasing importance both for 
accumulation for winter and immediate energy production, while in present conditions 
they’re immediately allocated to energy production. BAU policy shows extreme 
difficulties in following BP pattern. Moreover, BP trajectories in consistent periods are 
almost insensitive to RCP 8.5 and RCP 4.5 scenarios differences, while the greater 
uncertainty associated to RCP 8.5 affect both BAU policy and ADA policies.  

Analyzing revenue performances, BP and BAU policy simulated under inflow 
projections in consistent periods constitute an upper and lower boundary to ADA policies. 
Both BAU and ADA are operative policies optimized via SDP algorithm: ADA policies 
are an evolution of BAU policy and are designed considering inflow projections. The 
importance of taking into account the new inflow conditions in the design of the operating 
policy can be measured by comparing the improvement of the ADA polices performances 
respect to the BAU policy in future conditions ones: we refer to this difference as 
“adaptive capacity” (AC) of the BAU policy 

𝐴𝐶! =
𝐴𝐷𝐴! − 𝐵𝐴𝑈!

𝐴𝐷𝐴!
∙ 100 [6.1]  

where the subscript T indicates the period which the simulation refers to, with T equal to 
close future, middle term future or far future. The difference in performances between the 
BAU policy simulated under changing conditions and future BP policy allows evaluating 
the complete improvement space (IS).  
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Fig.6.10 – Improvement space (left) and adaptive capacity (right) of BAU policy for SMHI RCP4.5 and 
SMHI RCP8.5 in the different periods: gray refers to history, orange to close future, purple to 

middle term future, green to far future. 
 

𝐼𝑆! =
𝐵𝑃! − 𝐵𝐴𝑈!

𝐵𝑃!
∙ 100 [6.2]  

 
The improvement space can be filled by policy designed considering other information 
(inflow forecast, snow cover thickness, glacier state and son on), e.g. the ADA policies.  

Figure 6.10 shows the BAU improvement space and adaptive capacity. More 
precisely, historical IS (gray) has been computed comparing the historical operating rule 
(i.e. the simulation of observed release trajectory) to BP optimized and simulated in 
historical period. Future IS is evaluated comparing BAU policy simulations under future 
inflow and future BP. Historical IS is quite consistent: the currently operating rule could 
gain 20835€/day adopting a perfect description of the inflow. On the other hand, it’s 
important to underline that the historical operating rule is optimized also considering other 
drivers that were not included in our analysis (e.g. energy price or the secondary interest 
we mentioned in chapter 5). IS in future it’s generally smaller: in absolute terms, the 
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added revenue is on average +7840€/day, +8222€/day and +8437 €/day in the three 
periods respectively. This means that, although the remarkable differences in reservoir 
storage and release trajectories, in terms of daily revenue BAU and BP are quite close. 
Reduction in water availability strongly affect future BP performances, with an average 
loss of 25600€/day from historical to future conditions: little improvement space tells 
there’s no way to contrast future losses due to water availability reduction using only 
forecast inflow information. This result is confirmed also by adaptive capacity (right in 
figure 6.10).  

Overall AC is practically negligible (+0€/day, +320€/day, +500€/day respectively 
in absolute numbers). Strong inflow reduction in future deeply affects both BP and ADA 
policies, flattening the performances. As expected, we can see the more yearly inflow 
pattern changes the higher the AC is. In close future, AC is zero, meaning that ADA 
policy doesn’t offer any advantage respect BAU policy. In another perspective, BAU 
policy will be competitive with adaptive ones until about 2040s, which is the period the 
glacier will undertake a considerable shrinking. AC is higher for far futures, and in 
particular under RCP 8.5 scenario. Although little, the AC of BAU policy in middle term 
future and far future is more marked. As we’ve explained in section 6.2, in these periods 
the hydrological regime changes considerably and the snow-melting peak timing will be 
anticipated of more than 30 days on average because of warmer temperatures. ADA 
policies mainly adapt to this aspect of the new inflow description, better intercepting the 
waters deriving from snow cover and glaciers runoff.  

6.4 ENERGY PRICES PROJECTIONS POTENTIAL 

Hydropower operations are mainly driven by water availability and energy prices. 
A central assumption in this thesis assessment is neglecting energy prices future changes 
to focus on hydrological condition alterations. However, prices have a considerable 
influence on hydropower reservoir operations, maybe even more than inflow. In this 
section an insight of energy prices information is given. In out thesis, energy prices are 
included in the reservoir operations design considering a cyclostationary average, the 
matrix of the prices, derived by averaging from 2009-2015 hourly price series. The matrix 
reproduces in a simple manner the main trends in observed prices series and can thus be 
interpreted as the simplest descriptive model of the prices. We can reasonably suppose  
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Fig.6.11 – Prices modeling room for improvement. On the left, BP optimized with cyclostationary matrix of 
the prices (blue) and with observed prices (red) are normalized respect to historical release series 
simulated with observed prices (HRS). On the right, BP is compared to BAU policy simulated with 
observed prices and historical revenue series simulated with the observed prices.  
 
better information regarding socio-economic drivers could enhance hydropower 

system performances, as well as hydrological information.  
We thus use energy prices time series to obtain a preliminary estimation of the 

value of price information in the historical period. We first focus on the total value of 
perfect information. We design a BP policy that considers both socio-economic drivers 
perfect knowledge and inflow perfect information in policy design. This BP is compared 
to BP designed respect to inflow information only. The performances of the two policies 
are normalized to the historical simulation of observed release series performances, then 
compared. The result is shown in figure 6.11 (left). The decision maker can gain up to 
10% including also prices in policy design. The difference between the columns (+2,67%) 
highlights the gain in revenue yielded by price information only. In absolute terms, perfect 
price information can generate 31886 € per day. The room for improvement offered by 
price modeling seems to be quite consistent. 

 On the right in figure 6.11, revenue in historical condition is computed for BP, 
BAU and observed release series. BAU policy is optimized with the cyclostationary 
matrix of the prices and simulated under historical price series. The comparison between 
BAU and BP performances allows understanding the space of improvement of BAU. In 
absolute values BAU policy could improve its performances of 19697€ per day. In order 
to improve BAU performances, price future projection could be included in policy design, 
using the same approach applied to find mitigation measures to climate change.  

Gaudard et al. [2013] demonstrate that a comprehensive approach that integrates 
hydrological and socio-economic aspect might be able to mitigate hydropower losses. 
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Energy prices are mainly influenced by energy demand and supply and by the 
energy generation portfolio used in the market. The transmission network configuration 
plays an important role too, causing congestion in energy transmission in intensive 
production areas that can separate energy market in isolated sub-markets with different 
energy prices. The increasing adoption of renewable sources and the need of reduction of 
fossil fuel technologies will probably lead to lower energy prices. Distribution networks 
are likely to be improved, moving towards faster and more efficient energy transmission. 
Forecasting prices scenarios in not an easy task: models have to consider several different 
aspect in prices formation and each market follows its own rules. Price scenarios can be 
simulated using model of the energy market reproducing the main drivers and 
technological implementations above described [ Schlecht and Weigt, 2014a; Schlecht and 
Weigt, 2014b]. However, prices scenarios are still an open research question: the number 
of available and reliable detail energy market models is very limited.  
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7 
CONCLUSIONS 

In this work we assess the impact of climate change on the Alpine hydrological 
regime and hydropower. We carry out the assessment on a real case study, A2A 
hydropower system, located in the upper Adda river basin. More specifically, we first 
evaluate the how climate change is going to affect the hydrological regime of the upper 
Adda river basin in order to understand future water availability for the power system, 
paying particular attention to glaciers evolution in the 21st century. We then focus our 
attention on the impacts of climate change on hydropower, first establishing the operating 
rule for the power system reservoir in historical period. We test the vulnerability of the 
historical operating rule impact of future hydrological regime and search for mitigation 
measures to future hydrological conditions. We improve power system operations 
including in policy design forecasted information concerning future inflows in order to 
adapt the system to future hydrological conditions. Eventually we estimate the value of 
forecast to the A2A power system decision maker.  

In first place, we need to model future climate. Starting from high-resolution data 
from EURO-CORDEX scenarios, we downscale temperature, precipitation and cloud 
cover transmissivity series to local scale via quantile-mapping technique, obtaining 
meteorological variables scenarios for the period 2006-2095. In literature, climate change 
has been proven to make remarkable changes in future Alpine environment. The trends 
described in literature are confirmed by our projections: temperature rising, reduced 
snowing and increasing of precipitation extreme events. The hydrological model of the 
Adda river basin fed with meteorological variables projections in several locations 
provides the inflow projections to A2A reservoir. Future inflow trends exhibit changes 
both in timing of the snow-melting period, which is anticipated (from few days in the 
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close future to a month in far future on average), and in yearly water volume availability, 
which is significantly reduced (+4%, -3.44%, -7.63% respectively in the three periods). 
The initial increase in water availability in close future is due to a consistent loss in 
permanent glacier. An analysis conducted on the whole glacial system in Adda river basin 
and focused on Forni glacier confirms literature forecasts: climate change is threatening 
glacier system, because high temperature is causing reduction in snow covers and 
consistent ice pack melting. Small glaciers are going to disappear within 2030s, while 
from 2040s climate change will severely affect major glaciers as Forni. Beyond these 
results, this work allowed us to establish a framework to analyze in detail future climate 
scenarios and produce a wide range of hydrological variables forecast that could be highly 
informative and useful to hydroelectric companies to adapt their operating rules (e.g. 
glacier long-term state). 

In order to understand how climate change will influence A2A power system, we 
first set a model of the hydropower reservoir operation using a normative approach, which 
describes the decision making process as an optimization problem. We consider a Multi-
Objective optimization problem, maximizing the energy production and revenue. 

The Multi-Objective problem is solved using Dynamic Programming. Respect to 
inflow uncertainty, we solve Dynamic Programming in its Stochastic form (SDP) and in 
the Deterministic one (DDP), providing optimal management policies that reflect the 
behavior of a rational hydropower agent in deterministic and stochastic situations. SDP 
supposes a statistical description of the inflow is known at the moment the optimal release 
decision is taken, while DDP supposes a perfect knowledge of the inflow at the moment of 
taking the decision. SDP policy thus reproduces the operating policy (BAU and ADA) 
while DDP (BP) represents an ideal experiment to be used ad upper benchmark to 
compare SDP performances.  

SDP and DDP policies are optimized and simulated on historical inflow (2008-
2014). The performances are measured in terms of daily revenue and energy production 
and reservoir dynamics (storage and release) are compared as well. In first place, the 
conflict between the objectives was found to be really small in SDP policy and completely 
absent in the deterministic context. We thus reduced the Multi-Objective problem to a 
Single-Objective one focusing on revenue only.  

The simulation of recorded release and SDP operating policy yield comparable 
revenue performances and the patterns of reservoir dynamics are quite similar. SDP model 
can thus well reproduce the main dynamics describing the behavior of the decision-maker.  
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We then answered the question of how current operating policy will behave in 
future hydrological conditions. Historical SDP policy optimized on 2008-2014 inflow 
series, which we refer to as BAU, is simulated under future inflow projections. The results 
show historical policy will maintain still acceptable performances in close future period 
(2006-2035) to worsen its performance in middle term (2036-2065) and far future (2066-
2095). Revenue will decrease from 2-13% in close future, 4-24% in middle term future 
and 8-31% in far future, depending on the scenario. BAU policy fails in capturing 
melting-peak, experiencing water scarcity during the summer and autumn. These results 
are due to SDP sensitiveness to inflow pattern description. SDP is designed according to 
the historical inflow conditions: when this condition slightly change, the policy can still 
adapt to different inflow regime without consistent degradation in performances thanks to 
its statistical description of the inflow. When inflow conditions strongly differ from the 
conditions the policy was designed for, the policy is not able to adapt to new inflow 
conditions, degrading its performances. Moreover, BAU policy is really vulnerable to 
inflow availability decrease, which will be increasingly severe due to permanent glacier 
melting.   

In climate change the inflow pattern changes considerably moving towards future. 
A straightforward idea suggests updating inflow information to enhance SDP 
performances. We thus solved the problem forcing both SDP and DDP with future inflows 
scenarios, producing adaptive operating policies (ADA) and their respective future 
benchmark (BP). ADA policies better capture inflow peak timing, storing all the available 
inflow volume, while November rains will become an important source of water 
especially in far future conditions.  

We analyze the adaptive capacity of the BAU policy, defined as the variation in 
percentage between BAU policy performances simulated under future inflows and ADA 
policies ones. Adaptive capacity gives an estimation of forecast inflow information value, 
more specifically it quantifies the enhancement in policy operations due to the 
introduction of the forecasts. Adaptive capacity is really reduced (on average 0%, +0.1%, 
+0.2% in the three periods): newly introduced information allows mitigating snow-melting 
anticipation, better capturing the spring inflow peak, but could not mitigate in any case the 
consistent reduction in water volumes. 

 We also compared BP policies performances to BAU policy ones in future 
conditions, in percentage as well: this is the total space of improvement of BAU policy. 
Improvement space quantifies the enhancement in policy operations due to perfect 
knowledge of inflow, which is the most accurate description of inflow possible. Adaptive 
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policies (e.g. ADA) optimized considering other information in policy design, could fill 
the gap between BAU policy and BP, enhancing the performances of BAU policy. Our 
ADA simple policy only considers inflow projections. Total improvement space is really 
reduced, both in historical and future conditions (3%, 2.67%, 2.95%, 3.49%). The 
decrease in water availability affects both BP and BAU policies: this leads to BP revenue 
decreasing to BAU revenue levels. Although the value of inflow forecast increases in 
future periods, because of conspicuous hydrological changes, the value of inflow forecast 
information to hydropower decision-maker seems to be rather small. In order to obtain 
further improvement in performances of the ADA policies, a more accurate description of 
inflow could be provided, by introducing a parameter to model melting-season starting 
date or by a more accurate modeling of inflow variability. Other information, such as 
glaciers state or snow-pack thickness, could be directly included in policy design to adapt 
it to future conditions. 

Moreover, hydropower could benefit of socio-economic forecasted information. 
Water availability and energy prices are the main drivers leading the reservoir operations. 
In this thesis, we focused on hydrological impact neglecting prices change in future. 
Future prices pattern are likely to change in future.  

We estimate the value of price complete information in historical period comparing 
BPs optimized and simulated with inflow and prices time series or inflow only. 
Preliminary results show that the value of price information only is comparable to inflow 
information one. Energy prices, modeled in this thesis by a simple cyclostationary 
average, could be modeled in more sophisticated ways and used in policy design to 
enhance hydropower system performances. Future prices are likely to significantly differ 
both in magnitude and pattern to historical one. The increasing importance of renewable 
changes on the market and more efficient transmission network are likely to produce 
lower future prices. Prices scenarios can be produced using transmission network models 
that describe the main drivers influencing price formation, but this is not a simple task, 
and reliable and accessible prices scenarios are difficult to obtain. 

However, socio-economic driver influence on A2A hydropower system is an 
interesting aspect that shall find room in a more comprehensive analysis. 

 



 

 81 

BIBLIOGRAPHY 

Alfieri, L., Perona, P., & Burlando, P. (2006). Optimal water allocation for an Alpine hydropower 
system under changing scenarios. Water resources management, 20(5), 761-778. 

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., ... & 
Gonzalez, P. (2010). A global overview of drought and heat-induced tree mortality reveals 
emerging climate change risks for forests. Forest ecology and management, 259(4), 660-684. 

Amodeo, E., Anghileri, D., Sessa, R. S., & Weber, E. (2007). Conflitto tra uso irriguo e idroelettrico 
delle acque del Lario. Rapporto interno, 51, 7. 

Anghileri, D., Pianosi, F., & Soncini-Sessa, R. (2011). A framework for the quantitative assessment 
of climate change impacts on water-related activities at the basin scale. Hydrology and Earth 
System Sciences, 15(6), 2025. 

Anghileri, D. (2014). Management of multi-purpose reservoirs under climate change: impact 
assessment and adaptation strategies. 

Barontini, S., Grossi, G., Kouwen, N., Maran, S., Scaroni, P., & Ranzi, R. (2009). Impacts of 
climate change scenarios on runoff regimes in the southern Alps. Hydrology and Earth System 
Sciences Discussions, 6(2), 3089-3141. 

Beniston, M. (2003). Climatic change in mountain regions: a review of possible impacts. Climatic 
change, 59(1), 5-31. 

Beniston, M., Stoffel, M., & Hill, M. (2011). Impacts of climatic change on water and natural 
hazards in the Alps: can current water governance cope with future challenges? Examples from 
the European “ACQWA” project. Environmental Science & Policy, 14(7), 734-743. 

Beniston, M. (2012). Impacts of climatic change on water and associated economic activities in the 
Swiss Alps. Journal of Hydrology, 412, 291-296. 

Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N., Gutzler, D., ... & Mokhov, 
I. I. (2013). Detection and attribution of climate change: from global to regional. 

Boé, J., Terray, L., Habets, F., & Martin, E. (2007). Statistical and dynamical downscaling of the 
Seine basin climate for hydro‐meteorological studies. International Journal of 
Climatology, 27(12), 1643-1655. 

Carati, F. (1958). L ’impianto idroelettrico di Premadio (Sondrio). 

Carenzo, M., Pellicciotti, F., Rimkus, S., & Burlando, P. (2009). Assessing the transferability and 
robustness of an enhanced temperature-index glacier-melt model. Journal of 
Glaciology, 55(190), 258-274. 

Castelletti, A., Pianosi, F., & Soncini-Sessa, R. (2008). Water reservoir control under economic, 
social and environmental constraints. Automatica, 44(6), 1595-1607. 



Bibliography 
 

 82 

Castelletti, A., Galelli, S., Restelli, M., & Soncini‐Sessa, R. (2010). Tree‐based reinforcement 
learning for optimal water reservoir operation. Water Resources Research, 46(9). 

Chen, C., Haerter, J. O., Hagemann, S., & Piani, C. (2011). On the contribution of statistical bias 
correction to the uncertainty in the projected hydrological cycle. Geophysical Research 
Letters, 38(20). 

Chen, J., Brissette, F. P., & Leconte, R. (2011). Uncertainty of downscaling method in quantifying 
the impact of climate change on hydrology. Journal of Hydrology, 401(3), 190-202. 

Ciarapica, L., & Todini, E. (2002). TOPKAPI: A model for the representation of the rainfall‐runoff 
process at different scales. Hydrological Processes, 16(2), 207-229. 

Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., & Richels, R. (2007). Scenarios of 
greenhouse gas emissions and atmospheric concentrations. US Department of Energy 
Publications, 6. 

Clarvis, M. H., Fatichi, S., Allan, A., Fuhrer, J., Stoffel, M., Romerio, F., ... & Toreti, A. (2014). 
Governing and managing water resources under changing hydro-climatic contexts: The case of 
the upper Rhone basin. Environmental Science & Policy, 43, 56-67. 

Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., ... & Shongwe, 
M. (2013). Long-term climate change: projections, commitments and irreversibility. 

Corripio, J. G. (2003). Vectorial algebra algorithms for calculating terrain parameters from DEMs 
and solar radiation modelling in mountainous terrain. International Journal of Geographical 
Information Science, 17(1), 1-23. 

Culley, S., Noble, S., Yates, A., Timbs, M., Westra, S., Maier, H. R., ... & Castelletti, A. (2016). A 
bottom‐up approach to identifying the maximum operational adaptive capacity of water 
resource systems to a changing climate. Water Resources Research, 52(9), 6751-6768. 

Denaro, S., Anghileri, D., Giuliani, M., & Castelletti, A. (2017). Informing the operations of water 
reservoirs over multiple temporal scales by direct use of hydro-meteorological data. Advances 
in Water Resources, 103, 51-63. 

Déqué, M. (2007). Frequency of precipitation and temperature extremes over France in an 
anthropogenic scenario: Model results and statistical correction according to observed 
values. Global and Planetary Change, 57(1), 16-26. 

Dessai, S., Adger, W. N., Hulme, M., Turnpenny, J., Köhler, J., & Warren, R. (2004). Defining and 
experiencing dangerous climate change. Climatic Change, 64(1), 11-25. 

Diolaiuti, G., Bocchiola, D., D’agata, C., & Smiraglia, C. (2012). Evidence of climate change 
impact upon glaciers’ recession within the Italian Alps. Theoretical and Applied 
Climatology, 109(3-4), 429-445. 

Diolaiuti, G., & Smiraglia, C. (2010). Changing glaciers in a changing climate: how vanishing 
geomorphosites have been driving deep changes in mountain landscapes and 
environments. Géomorphologie: relief, processus, environnement, 16(2), 131-152. 



Bibliography 
 

 83 

Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, 
future prospects and their enabling technology. Renewable and Sustainable Energy 
Reviews, 39, 748-764. 

Fatichi, S., Rimkus, S., Burlando, P., Bordoy, R., & Molnar, P. (2013). Elevational dependence of 
climate change impacts on water resources in an Alpine catchment. Hydrology and Earth 
System Sciences Discussions, 10(3), 3743-3794. 

Frei, C., Schöll, R., Fukutome, S., Schmidli, J., & Vidale, P. L. (2006). Future change of 
precipitation extremes in Europe: Intercomparison of scenarios from regional climate 
models. Journal of Geophysical Research: Atmospheres, 111(D6). 

Frias, M. D., Zorita, E., Fernández, J., & Rodriguez‐Puebla, C. (2006). Testing statistical 
downscaling methods in simulated climates. Geophysical Research Letters, 33(19). 

Fujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2006). Multi-gas mitigation analysis 
on stabilization scenarios using AIM global model. The Energy Journal, 343-353. 

Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., ... & Le Quéré, C. 
(2014). Betting on negative emissions. Nature Climate Change, 4(10), 850-853. 

Gao, X., Pal, J. S., & Giorgi, F. (2006). Projected changes in mean and extreme precipitation over 
the Mediterranean region from a high resolution double nested RCM simulation. Geophysical 
Research Letters, 33(3). 

Gaudard, L., Gilli, M., & Romerio, F. (2013). Climate change impacts on hydropower 
management. Water resources management, 27(15), 5143-5156. 

Gaudard, L., & Romerio, F. (2014a). Reprint of “The future of hydropower in Europe: 
Interconnecting climate, markets and policies”. Environmental Science & Policy, 43, 5-14. 

Gaudard, L., Romerio, F., Dalla Valle, F., Gorret, R., Maran, S., Ravazzani, G., ... & Volonterio, M. 
(2014b). Climate change impacts on hydropower in the Swiss and Italian Alps. Science of the 
Total Environment, 493, 1211-1221. 

Georgakakos, K. P., & Graham, N. E. (2008). Potential benefits of seasonal inflow prediction 
uncertainty for reservoir release decisions. Journal of Applied Meteorology and Climatology, 
47(5), 1297-1321. 

Giorgi, F. (2006). Climate change hot‐spots. Geophysical research letters, 33(8). 

Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the regional 
level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58(3), 
175. 

Giudici, F. (2016). Advancing reservoir operation description in physically based hydrological 
models. 

Giuliani, M., Anghileri, D., Castelletti, A., Vu, P. N., & Soncini-Sessa, R. (2016). Large storage 
operations under climate change: expanding uncertainties and evolving 
tradeoffs. Environmental Research Letters, 11(3), 035009. 



Bibliography 
 

 84 

Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., & Stoffel, M. (2014). 21st century 
climate change in the European Alps—a review. Science of the Total Environment, 493, 1138-
1151. 

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Downscaling RCM 
precipitation to the station scale using statistical transformations–a comparison of 
methods. Hydrology and Earth System Sciences, 16(9), 3383-3390. 

Haeberli, W., & Beniston, M. (1998). Climate change and its impacts on glaciers and permafrost in 
the Alps. Ambio, 258-265. 

Haerter, J. O., Hagemann, S., Moseley, C., & Piani, C. (2011). Climate model bias correction and 
the role of timescales. Hydrology and Earth System Sciences, 15(3), 1065-1079. 

Hanssen-Bauer, I., & Førland, E. (2001). Verification and analysis of a climate simulation of 
temperature and pressure fields over Norway and Svalbard. Climate Research, 16(3), 225-235. 

Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y. A. 
R., ... & Soden, B. J. (2013). Observations: atmosphere and surface. In Climate Change 2013 
the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of 
the Intergovernmental Panel on Climate Change. Cambridge University Press. 

Hay, L. E., Wilby, R. L., & Leavesley, G. H. (2000). A comparison of delta change and downscaled 
GCM scenarios for three mountainous basins in the United States. JAWRA Journal of the 
American Water Resources Association, 36(2), 387-397. 

Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masio, T., & Kainuma, M. (2008). Global GHG 
emission scenarios under GHG concentration stabilization targets. Journal of Global 
Environment Engineering, 13, 97-108. 

Hobbs, B. F., Chao, P. T., & Venkatesh, B. N. (1997). Using decision analysis to include climate 
change in water resources decision making. Climatic Change, 37(1), 177-202. 

Horton, P., Schaefli, B., Mezghani, A., Hingray, B., & Musy, A. (2006). Assessment of climate‐
change impacts on Alpine discharge regimes with climate model uncertainty. Hydrological 
Processes, 20(10), 2091-2109. 

Huss, M., Jouvet, G., Farinotti, D., & Bauder, A. (2010). Future high-mountain hydrology: a new 
parameterization of glacier retreat. Hydrology and Earth System Sciences, 14(5), 815. 

Huss, M. (2011). Present and future contribution of glacier storage change to runoff from 
macroscale drainage basins in Europe. Water Resources Research, 47(7). 

Kaser, G., Großhauser, M., & Marzeion, B. (2010). Contribution potential of glaciers to water 
availability in different climate regimes. Proceedings of the National Academy of 
Sciences, 107(47), 20223-20227. 

Katz, R. W., & Brown, B. G. (1992). Extreme events in a changing climate: variability is more 
important than averages. Climatic change, 21(3), 289-302. 

Katz, R. W., & Acero, J. G. (1994). Sensitivity analysis of extreme precipitation 
events. International journal of climatology, 14(9), 985-999. 



Bibliography 
 

 85 

Liu, Z., & Todini, E. (2002). Towards a comprehensive physically-based rainfall-runoff 
model. Hydrology and Earth System Sciences Discussions, 6(5), 859-881. 

Liu, Z., & Todini, E. (2005). Assessing the TOPKAPI non‐linear reservoir cascade approximation 
by means of a characteristic lines solution. Hydrological processes, 19(10), 1983-2006. 

Maran, S., Volonterio, M., & Gaudard, L. (2014). Climate change impacts on hydropower in an 
Alpine catchment. Environmental Science & Policy, 43, 15-25. 

Marzeion, B., Jarosch, A. H., & Hofer, M. (2012). Past and future sea-level change from the surface 
mass balance of glaciers. The Cryosphere, 6(6), 1295. 

McCarthy, J. J., Canziani, O. K., Leary, N. A., Dokken, D. J., & White, K. S. (2001). Impacts, 
Adaptation and vulnerability. Third Assessment Report of the Intergovernmental panel on 
climate change, working Group, 2. 

Moss, R., Babiker, W., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., ... & Jones, R. N. (2008). 
Towards New Scenarios for the Analysis of Emissions: Climate Change, Impacts and Response 
Strategies. Technical Summary. Intergovernmental Panel on Climate Change, Geneva, 25 pp.  

Murphy, J. (1999). An evaluation of statistical and dynamical techniques for downscaling local 
climate. Journal of Climate, 12(8), 2256-2284. 

Nandalal, K. D. W., & Bogardi, J. J. (2007). Dynamic programming based operation of reservoirs: 
applicability and limits. Cambridge university press. 

Nieto, S., Dolores Frías, M., & Rodríguez‐Puebla, C. (2004). Assessing two different climatic 
models and the NCEP–NCAR reanalysis data for the description of winter precipitation in the 
Iberian Peninsula. International Journal of Climatology, 24(3), 361-376. 

Olsson, J., Uvo, C. B., & Jinno, K. (2001). Statistical atmospheric downscaling of short-term 
extreme rainfall by neural networks. Physics and Chemistry of the Earth, Part B: Hydrology, 
Oceans and Atmosphere, 26(9), 695-700. 

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., ... & Dubash, N. 
K. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III 
to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 151). 
IPCC. 

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across 
natural systems. Nature, 421(6918), 37. 

Pellicciotti, F., Brock, B., Strasser, U., Burlando, P., Funk, M., & Corripio, J. (2005). An enhanced 
temperature-index glacier melt model including the shortwave radiation balance: development 
and testing for Haut Glacier d'Arolla, Switzerland. Journal of Glaciology, 51(175), 573-587. 

Piani, C., Haerter, J. O., & Coppola, E. (2010a). Statistical bias correction for daily precipitation in 
regional climate models over Europe. Theoretical and Applied Climatology, 99(1-2), 187-192. 

Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., & Haerter, J. O. 
(2010b). Statistical bias correction of global simulated daily precipitation and temperature for 
the application of hydrological models. Journal of Hydrology, 395(3), 199-215. 



Bibliography 
 

 86 

Pianosi, F., & Soncini‐Sessa, R. (2009). Real‐time management of a multipurpose water reservoir 
with a heteroscedastic inflow model. Water resources research, 45(10). 

Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation 
using large-scale parameters. Monthly weather review, 100(2), 81-92. 

Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and 
environmental development under climate stabilization. Technological Forecasting and Social 
Change, 74(7), 887-935. 

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., ... & Rafaj, P. (2011). RCP 8.5—A 
scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2), 33. 

Rimkus, S. (2013). Documentation and user guide to the hydrological model TOPKAPI-ETH.  

Schaefli, B., Hingray, B., & Musy, A. (2007). Climate change and hydropower production in the 
Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrology 
and Earth System Sciences Discussions, 11(3), 1191-1205. 

Schaefli, B. (2015). Projecting hydropower production under future climates: a guide for decision‐
makers and modelers to interpret and design climate change impact assessments. Wiley 
Interdisciplinary Reviews: Water, 2(4), 271-289. 

Schlecht, I. and H. Weigt (2014a). “Linking Europe. The role of the Swiss electricity transmission 
grid until 2050.” In: Social Science Research Network.  

Schlecht, I. and H. Weigt (2014b). “Swissmod. A model of the Swiss electricity market.” In: Social 
Science Research Network.  

Sharma, D., Gupta, A. D., & Babel, M. S. (2007). Spatial disaggregation of bias-corrected GCM 
precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrology and 
Earth System Sciences Discussions, 11(4), 1373-1390. 

Smith, S. J., & Wigley, T. M. L. (2006). Multi-gas forcing stabilization with Minicam. The Energy 
Journal, 373-391. 

Soncini-Sessa, R., Castelletti, A., and Weber, E. (2007). Integrated and Partecipatory Water 
Resources Management: Theory, volume 1A.  

Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., ... & Edmonds, J. A. 
(2011). RCP4. 5: a pathway for stabilization of radiative forcing by 2100. Climatic 
change, 109(1-2), 77. 

Van Vliet, M. T., Wiberg, D., Leduc, S., & Riahi, K. (2016). Power-generation system vulnerability 
and adaptation to changes in climate and water resources. Nature Climate Change, 6(4), 375-
380. 

Van Vuuren, D. P., Weyant, J., & de la Chesnaye, F. (2006). Multi-gas scenarios to stabilize 
radiative forcing. Energy Economics, 28(1), 102-120. 

Van Vuuren, D. P., Den Elzen, M. G., Lucas, P. L., Eickhout, B., Strengers, B. J., Van Ruijven, B., 
... & van Houdt, R. (2007a). Stabilizing greenhouse gas concentrations at low levels: an 
assessment of reduction strategies and costs. Climatic Change, 81(2), 119-159. 



Bibliography 
 

 87 

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... & Masui, 
T. (2011). The representative concentration pathways: an overview. Climatic change, 109(1-2), 
5. 

Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., & Mearns, L. O. (2004). 
Guidelines for use of climate scenarios developed from statistical downscaling 
methods. Supporting material of the Intergovernmental Panel on Climate Change, available 
from the DDC of IPCC TGCIA, 27. 

Wilby, R. L., & Dessai, S. (2010). Robust adaptation to climate change. Weather, 65(7), 180-185. 

Wilks, D. S., & Wilby, R. L. (1999). The weather generation game: a review of stochastic weather 
models. Progress in physical geography, 23(3), 329-357. 

Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., ... & Edmonds, J. 
(2009). Implications of limiting CO2 concentrations for land use and 
energy. Science, 324(5931), 1183-1186. 

Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of 
dynamical and statistical approaches to downscaling climate model outputs. Climatic 
change, 62(1), 189-216. 

Zierl, B., & Bugmann, H. (2005). Global change impacts on hydrological processes in Alpine 
catchments. Water Resources Research, 41(2). 

Zorita, E., & Von Storch, H. (1999). The analog method as a simple statistical downscaling 
technique: comparison with more complicated methods. Journal of climate, 12(8), 2474-2489. 

 

 


