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Abstract
The main purpose of this thesis is to study the hydrodynamic behavior of high viscous oil-water

flow within the ducts with variable cross-sectional area. Experimental investigation, theoretical
modeling and CFD simulation approaches were conducted. Another part of this thesis is devoted

to the high viscous oil-water-air mixture in a horizontal straight tube.

Experimental results on high viscous oil-water flow through sudden contraction and expansion
were discussed, the main flow parameters such as distributed and concentrated pressure drop,
flow pattern, and phase holdup were reported. Three pipe configurations for sudden expansion
(21-30 mm, 30-40 mm, and 30-50 mm) and one case for sudden contraction (30-21 mm) were
selected. The main flow patterns included core-annular and dispersed flows. It was concluded
that for the largest cross-sectional area change (30-50 mm), the dominant flow pattern resulted
dispersed flow, whereas core-annular flow was the major flow pattern in the other
configurations. The presence of sudden expansion caused the oil-water flow to be more
eccentric. A mechanistic model based on the Two-Fluid Model (TFM) for fully-developed Core-
Annular flow of oil-water mixtures was developed. A new correlation to compute water holdup
as a function of measured pressure gradient, superficial water velocity, rheological properties of

water was developed.

Two differential pressure flow meters (VFM and NFM) have been developed to measure
volumetric mixture flow rate. The mixture superficial velocity has been calculated by adoption of
the theoretical approach of Bernoulli’s equation and introducing the definition of discharge

coefficient from calibration curve.

CFD simulation of very viscous oil-water flow through measurement devices (VFM and NFM)
as well as sudden expansion was studied by means of commercial CFD code Fluent, most
important aspects of flow such as oil holdup, pressure gradients and flow patterns were
predicted. It was shown that, CFD simulation was able to predict the core eccentricity without oil
contact at the pipe wall during core-annular flow. This is consistent with flow visualization
observed experimentally. The concentrated pressure drop through the convergent section of the

VFM and NFM computed by CFD showed a very good agreement with experimental data.



The results of an experimental campaign devoted to three-phase flow of very viscous oil-water-
air mixtures in a straight horizontal pipe (40 mm i.d.) were reported. Slug body, elongated
bubble and total slug unit lengths were experimentally measured by optical probes. It was
concluded that superficial gas velocity has a considerable effect on slug body and bubble length,

that is, the higher the superficial gas velocity, the higher the slug body and bubble length.
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