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Abstract 

Several processes in fluvial hydrodynamics such as erosion, deposition, bed-forms, etc. are 

governed by bed-load transport. For several decades, many theoretical and experimental studies 

were devoted to increasing our understanding of the phenomenological aspects of bed-load 

transport and, in turn, prediction performance.  

The classical approach to bed-load transport, currently used in the engineering practice, relates 

the expected transport rate to the bulk properties of water flow and sediment. Uncertainties in 

the results provided by this approach have oriented the most recent research towards a deeper 

insight in particle motion by direct measurement and detailed analysis of sediment kinematics 

at small spatial and temporal scales. Most of these works have taken advantage of image-based 

methods, which are non-intrusive and can provide high-resolution data.  

The investigation of sediment kinematics may be approached from a Lagrangian or Eulerian 

point of view. The former follows the individual particles as they move, whilst the second 

accounts for a finite control volume and studies the transport properties within this volume. 

The present work was primarily aimed at investigating the kinematics of bed-load particles for 

weak transport conditions induced by one-dimensional turbulent flow. This study presents 

results from several laboratory experiments with the friction velocity ranging from 1.2 to 1.8 

times the threshold value for sediment transport. The runs were performed releasing bed-load 

particles over a fixed, rough bed, that was created gluing sediment grains over plates. Following 

that, image analysis was applied to track each moving particle along its trajectory. 

A conceptual framework was proposed to define the relevant kinematic quantities to be 

analyzed, for both the Lagrangian and Eulerian approaches. The starting point of the framework 

is dividing the particle history into two states, namely motion and stillness. For that, an 

appropriate criterion for identification was conceived, that is based on comparing the position 

of the particle at a certain instant with all the positions taken before and after that instant. 

Several Lagrangian and Eulerian kinematic properties were measured, including particle 

instantaneous velocity, hop length and duration, rest time, concentration of moving particles, 

entrainment and disentrainment rates, and solid discharge. Experimental limitations were 



recognized and addressed when possible. Scaling analysis was performed to conclude how 

measured values could depend on the size of the observation area. In addition, the dependency 

of the kinematic properties on the bed shear stress was investigated. Encouragingly, the 

Lagrangian and Eulerian estimates were in good agreement, supporting the unified framework 

that was used. An attempt was made towards interpreting the results in the light of the main 

expected physical mechanisms affecting the bed-load particle kinematics. 

In summary, the present study is structured as follows: 

Chapter 1 provides some theoretical background, and summarizes earlier findings on bed-load 

kinematics. 

Chapter 2 presents a novel descriptive/conceptual framework for the definition and 

measurement of Lagrangian and Eulerian indicators of bed-load transport.  

Chapter 3 describes the experimental conditions for the investigation of motion of bed-load 

particles over a fixed bed. 

Chapter 4 is devoted to particle tracking velocimetry (PTV). The chapter basically presents the 

methods used to track individual particles, with particular attention onto tracking mistakes and 

their correction. 

Chapter 5 accounts for the post-processing of particle tracking data, focusing on the definition 

of particle motion/rest as the basis for the measurements, and on the sensitivity of measured 

values to the chosen definition criterion. 

In chapter 6, Lagrangian quantities are studied, and results are compared with those reported 

in earlier investigations. The impact of a finite observation window on the values obtained for 

the quantities is also discussed. The innovation of this study is that experimental data will be 

analysed within the novel conceptual framework proposed in Chapter 2. Additionally, to the 

author’s knowledge this is the first study which investigates the impact of finite observation 

scale (experimental censorship) on resulting statistics. Measurements will also allow for the 

analysis of time of motion and time of rest which have previously received limited attention.  

Chapter 7 presents the analysis of the Eulerian quantities and of their scaling properties. 

In Chapter 8, the results obtained from the Lagrangian and Eulerian approaches are compared 

to prove the complementarity between the approaches. 

The final Conclusions provide the main outcomes of the work.     
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Chapter 1 Introduction  

1.1 Summary of flow characterization 

1.1.1 Flow type  

In open channel hydraulics, the flow type is characterized by the Reynolds number (Re), 

a dimensionless quantity defined as the ratio of inertial forces to viscous forces. Re is expressed 

as:  

Re /UL            (1.1) 

Where U is the bulk velocity, L is the characteristic length, and  is the kinematic viscosity. In 

open channel flow the commonly used characteristic length is the hydraulic radius / w pR A , 

the ratio of the flow area to the wetted perimeter. Thus, the Reynolds number for open channel 

flow is computed as Re /UR  . Depending on the different values of Re the flow is classified 

in the following types [e.g., French, 1985]: 

Laminar         Re < 500

Transitional    500 Re < 12500

Turbulent       Re > 12500




 
 

 

Laminar or viscous flow occurs for Re < 500 where the fluid velocity is low and viscosity of 

the flow overcomes the internal forces.  In this type of flow fluid particles move smoothly along 

the parallel paths. Re > 12500 represents a turbulent flow identified by random, unpredictable 

three-dimensional fluid motions. However, a flow in between (500 < Re < 12500) is known as 

transitional, a short-lasting phase where flow type intermittently changes between laminar and 

turbulent.  

https://en.wikipedia.org/wiki/Dimensionless_quantity
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1.1.2 Flow layers and Turbulent regime  

Experimental studies indicated that the flow field in open channels is divided into the following 

sub layers, representing distinctive characteristics (Fig. 1.1): 

1. Viscous sublayer / : It is the thin layer where flow is fully laminar without any 

turbulence (no velocity fluctuations) 

2. Buffer layer (mixing layer): in this layer, there is constant mixing of laminar and 

turbulent flow, and the flow is influenced by turbulence and viscosity. The thickness of 

this layer is almost five times the viscous sublayer. 

3. Turbulent wall shear layer (logarithmic layer): It is the layer (right on top of the buffer 

layer) wherein the Reynolds shear stress is predominant and the viscous shear stress is 

effectively negligible. Note that in this layer, Prandtl introduced the mixing length 

concept and found that the logarithmic law of velocity distribution (the log law of the 

wall) is preserved. Hence, this layer is also known as logarithmic layer. 

4. Turbulent outer layer: In this layer, large eddies produce a strong 3D mixing of fluid in 

flow. 

 

Figure 1.1 Classification of channel flow field in different layers [Dey, 2014]. 

Note that the distance up to the turbulent wall shear layer from the boundary is called inner 

layer. Traditionally, the turbulent flow field in open channels can also be classified into 

hydraulically smooth, transitional and rough flow regimes. This classification is based on the 

dimensionless shear Reynolds number: 



4 Introduction 

 

 

 

* *Re /su k            (1.2) 

Where *u and sk  are shear velocity and the boundary roughness height respectively. Following 

different values of *Re the flow regime is divided into: 

1. Hydraulically smooth flow *(Re 5) : In this kind of flow, the boundary roughness 

height sk is significantly smaller than the viscous sublayer thickness / and therefore 

velocity distributions in turbulent wall shear and outer layers are purely affected by the 

fluid viscosity (Fig. 1.2a) 

2. Hydraulically rough flow *(Re 70) : In this flow regime, the boundary (equivalent) 

roughness height is much larger than the viscous sublayer thickness (Fig. 1.2b). Near 

the boundary, the roughness produces eddies annihilating the viscous sublayer. The 

velocity distributions in turbulent wall shear and outer layers are affected by the 

boundary roughness, but not by the fluid viscosity. 

3. Hydraulically transitional flow *(5 Re 70)  : In this flow, the boundary roughness 

height is typically equal to the viscous sublayer thickness (Fig. 1.2c). The velocity 

distributions are dependent on the joint effect of the boundary roughness and the fluid 

viscosity. 

 

Figure 1.2 Sketch of different flow regimes: a) smooth, b) rough, and c) transition [Dey, 2014]. 

Empirical relationships for the height of different layers are summarized in Table. 1.1. 
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Table 1.1 Different ranges of viscous sublayer height based on empirical studies. 

Author  Year Height of the viscous sublayer 

/  

Height of the inner layer 

i  

Kırkgöz 1989 0.05  -0.14  0.5 -0.6  

Kundo and Choen 1990 *5 / u    

Nino and Garcia 1996 *5 / u  - 

ASCE Manual 2005 *11.6 / u   - 

 

1.2 Introduction to bed-load sediment transport 

    In nature, many of the changes in river morphology such as bank erosion and bed forms are 

governed by bed-load sediment transport [Yalin, 1977; Dietrich and Smith, 1984; Yalin and 

Ferreira da Silva, 2001]. In rivers with bed-flow interactions, when the flow-induced shear 

stress exceeds the threshold of motion bed-load transport is initiated. In this type of transport 

bed particles slide, roll, or travel in sequences of short jumps, known as saltation (Fig. 1.3). It 

is estimated that on average bed-load transport contributes up to 60% of total sediment flux 

transported in a river especially in gravel bed rivers [Métivier et al., 2004; Meunier et al., 2006; 

Liu et al., 2008], the rest correspond to suspended load and is out of the scope of this work. 

    The variables usually considered to characterize the flow field and transport of sediment are: 

the fluid density  , kinematic viscosity , the flow depth H , shear velocity *u , diameter of 

particle d and its density s , bed slope S ,  gravitational acceleration g , and sq  as the 

volumetric sediment transport per unit width and time. Using the Buckingham’s theorem, the 

following dimensionless equation can be obtained: 

* *,Re , ,S,s

H
q f

d

 

  
 

        (1.3) 

Where: *

3

sq
q

gd



      Dimensionless sediment transport rate per unit width (1.4) 
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2*
* u

gd
 


    Shields number    (1.5) 

3

Res

gd




    Settling Reynolds number   (1.6) 

( )s 




      Specific gravity of sediment   (1.7) 

Over the past decades, many studies have been devoted to exploring function f that best 

connects 
*q to the set of parameters in (1.3). Examples of such works are: theoretical studies 

of [e.g., Duboys, 1879; Einstein, 1950; Bagnold, 1956; Ashida and Michiue, 1973; Engelund 

and Fredsoe, 1976; Bridge and Dominic, 1984], experimental works of [e.g., Meyer‐Peter and 

Müller, 1948; Fernandez‐Luque and Van Beek, 1976; Wong, 2003; Recking et al., 2009] and 

field data analysis of [Bagnold, 1980; Gomez, 1991]. A summary of widely cited equations for 

bed-load transport is given in Table 1.2. 

 

 

 

Figure 1.3 Sketch of different sediment transport modes. 
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Table 1.2 Summary of well-known equations for bed-load transport. 

Authors Transport rate *q  Description  

Meyer-Peter and Müller (1948) 3/28( * * )c   Fit of experimental data 

Einstein (1950) * * 3/212 ( )cf    Theoretical origin 

 

Bagnold (1973) 

* *( )c

u

gd
 





 

Theoretical origin; u is the 

average particle velocity,  is 

friction coefficient 

Ashida and Michiue (1973) * * * *17( )( )c c      
Theoretical origin, and fit of 

experimental data 

Fernandez‐Luque and Van Beek 

(1976) 

* * 3/25.7( )c   Fit of experimental data 

Engelund and Fredsoe (1976) * * * *18.74( )( 0.7 )c c      
Theoretical origin 

Bridge and Dominic (1984) 
* * * *( )( )c c


   


   

Theoretical origin, and fit of 

experimental data;  is a fitting 

parameter 

Wong (2003) * * 3/23.97( )c   Fit of experimental data 

 

    Despite several equations proposed for bed-load transport, some general features among 

them are accepted: 

1. Many of the proposed relationships (Table 1.2) include a threshold of sediment motion 

below which the transport does not initiate. 

2. For conditions sufficiently far from the threshold, * *

c  , they all except Bagnold 

[1973] predict that 
3/2* *q  . Some studies [e.g., Meyer‐Peter and Müller, 1948; 

Einstein, 1950; Fernandez‐Luque and Van Beek, 1976; Wong, 2003] predict 
* * * 3/2( )

c
q     while others [e.g. Ashida and Michiue, 1973; Engelund and Fredsoe, 

1976; Bridge and Dominic, 1984] showed that * * * * *( )( )
c c

q       . 

 
In the recent decades, improvements in measuring techniques have enabled the direct 

measurement and detailed analysis of motion of bed-load particles (sliding/rolling or saltation). 
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These measurements can enhance our understanding of particle motion at grain scale as well 

as mechanism governing the process. Results of these measurements when combined with 

proper theoretical interpretation can also improve the prediction of bed-load transport models. 

Most of these works have taken the advantage of image-based methods, which are non-

intrusive and can provide high-resolution data. Examples of these techniques can be found in 

the pioneering studies of Francis [1973], Fernandez-Luque and Van Beek [1976], Drake et al. 

[1988]. This research line has been continuous up to present date. Example of more recent 

studies are: Bottacin-Busolin et al. [2008], Radice and Ballio [2008], Lajeunesse et al., [2010], 

Ramesh et al., [2011], Roseberry et al. [2012], Tregnaghi et al. [2012 a, b], Campagnol et al. 

[2013], Julien and Bounvilay [2013], Heays et al. [2014], Campagnol et al. [2015], Fathel at 

al. [2015], and Furbish et al. [2016]. 

     Investigation of bed-load transport kinematics can be obtained either throughout a 

Lagrangian approach which explores the motion of individual sediment, or Eulerian approach 

where several to many particles within a control volume are investigated. In the context of bed-

load sediment transport the two approaches correspond to following the trajectories of solid 

particles [e.g., Ancey et al., 2010; Lajeunesse et al., 2010; Campagnol et al., 2013; Heays et 

al., 2014; Fathel et al., 2015] and to characterizing the sediment transport properties at some 

place respectively [e.g., Nelson et al., 1995; Böhm et al., 2004; Garcia et al., 2007; Radice et 

al., 2013]. Typically, the Lagrangian approach is mostly used when dispersion of tracer 

particles comes into play [e.g., Lisle et al., 1998; Nikora et al., 2001 and 2002; Martin et al., 

2012; Hassan et al., 2013; Ancey and Heyman, 2014; Campagnol et al., 2015; Fan et al., 2016; 

Fathel et al., 2016], whereas the Eulerian approach is employed for the investigation of 

sediment fluxes [e.g., Frey et al., 2003; Singh et al., 2009; Radice et al., 2009, Cohen et al., 

2010; Turowski 2010; Furbish et al., 2012a; Ballio et al., 2014]. 

Dividing the Shields number by the critical shear number (computed using the critical shear 

velocity *

cu ) and taking the square root of the ratio, (1.3) can be rewritten as: 

*
*

*
,Re , ,S,s

c

u H
q f

u d

 
  

 
        (1.8) 
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In this way, the stage value * */ cu u  is one of the dimensionless groups of the functional 

relationship. Investigation of the kinematic properties of moving sediments as a function of 

these dimensionless parameters has been the core of several studies during the past decades.  

In this chapter, a general introduction to the Lagrangian and Eulerian kinematic properties of 

bed-load transport together with the key-findings of previous studies will be given. 

1.3 Lagrangian kinematic properties of bed-load moving 

sediment 

1.3.1 Entrainment  

    When the hydrodynamic forces imposed on the bed of loose sediment exceed the resistance 

of particle stabilizing forces, particles start to move. This is known as particle entrainment. In 

fluvial hydrodynamics particle entrainment is the initiating process of sediment transport. 

Many hydrodynamic changes such as dunes, ripples, erosion and deposition patterns all start 

with sediment entrainment. The hydrodynamic conditions just enough to initiate a particle 

motion is the threshold of motion and is an important element in the investigation of bed-load 

transport. Shields [1936] was a pioneer in studying the threshold condition for initiation of 

motion. He defined entrainment as a deterministic process in which the ratio between driving 

and stabilizing forces is the governing process of particle entrainment. The semi-theoretical 

approach proposed by Shields resulted in the first quantitative criterion to define entrainment 

based on the time averaged boundary shear stress. The deterministic approach was then 

followed by several other studies in which the incipient motion was theoretically defined by 

the analysis of the dynamic equilibrium of the forces acting on a grain [see e.g., Wilberg and 

Smith, 1987; Dey, 1999, 2003]. After the discovery of the turbulent structures in flow, the role 

of turbulence on sediment entrainment was highlighted. Several studies [e.g., Sutherland, 1967; 

Heathershaw and Thorne, 1985; Schmid, 1985; Papanicolaou et al., 2002; Zanke, 2003] 

indicated that high pressure fluctuations induced by burst events have a significant contribution 

to the entrainment of particles. 
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    In recent decades, with the improvement of measuring techniques particle entrainment was 

visually studied [Pilotti et al., 1997; Papanicolaou et al., 1999; Keshavarzy and Ball, 2000]. 

However, in order to analyze the experimental measurements, an operative definition of 

entrainment is necessary to identify when a sediment is effectively entrained and starts moving. 

The commonly used definition of entrainment for the analysis of experimental data was first 

suggested by Drake et al. [1988] who stated that: “Because some particles in repose vibrated 

or jostled against their neighbors without going anywhere, we defined entrainment 

operationally as continuous movement a net horizontal distance of one particle diameter”. 

Roseberry et al. [2012] considered a particle entrained, if it does not move back and forth over 

its stable position. Apparently, this second definition could be less restrictive than the previous 

one where a minimum distance is required for a particle to be entrained. 

1.3.2 Disentrainment  

    Disentrainment is the counter part of particle entrainment and occurs when fluid-induced 

forces are not intense enough to keep the particle at motion and thus particle is settled back on 

the bed to rest. In comparison with the entrainment phase, disentrainment occurs quickly 

[Roseberry et al., 2012] and this is the reason for the limited studies dealing with the definition 

of particle distrainment and observing mechanisms governing particle motion during this 

phase. The image-based study of Drake et al. [1988] is likely the first study that analyzed 

particle settlement. In their investigation particle disentrainment was defined as the “absence 

of net horizontal motion for 0.25 s or longer that follows displacement”. Additionally, they also 

found that based on the mode of transport disentrainment occurs differently. For sliding and 

saltating particles, interactions between moving particle and the larger grains settled on the bed 

cause the settlement whereas considering the rolling ones, particles disentrain mainly due to 

the decrease of the kinematic energy. However, Drake’s criterion, based on the absent time of 

motion is a subject to question because characteristic scale variable of particle motion is not 

included in this definition.  
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1.3.3 Intermediate trajectories  

        Nikora et al. [2002] proposed a conceptual model for the Lagrangian analysis of particle 

motion. The model explores three different ranges of scales: the local, intermediate and global 

range. The local range corresponds to the trajectories between the frequent collisions of a 

particle with the bed; the intermediate range corresponds to a trajectory bounded by two 

successive rests (from entrainment to disentrainment), and the global range comprises many 

intermediate trajectories. Global trajectories are by definition infinite and in practice due to the 

finite observation size their analysis is not straightforward. The present study primarily focuses 

on the intermediate (hop) properties of bed-load transport. 

Several fundamental studies of Lagrangian quantities, considered in this review are: Francis 

[1973], Abbot and Francis [1977], Niño et al. [1994], Lee and Hsu [1994], Hu and Hui [1996], 

Niño and García [1996], Niño and García [1998], Sechet and Le Guennec [1999], Ancey 

[2002], Lee et al. [2000, 2006], Lajenuesse et al. [2010], Ramesh et al. [2011], Martin et al. 

[2012] and Campagnol et al. [2013]. This section starts with the definitions of bed-load 

kinematic properties. Following that, previous findings regarding each kinematic variable will 

be discussed.  

1.3.3.1 Trajectory length  

   Fig. 1.4 summarizes the findings of previous studies for the variation of normalized 

trajectory length /pL d  with stage value * */ cu u . The trajectory of a saltating particle is usually 

measured as the distance a flying particle travels between two subsequent touches of the bed 

[e.g., Hu and Hui, 1996] whereas for sliding and rolling particles the trajectory is measured as 

the distance between two successive rests (hop) [e.g., Campagnol et al., 2013]. It should be 

noted that for rolling and sliding conditions, particles have relatively lower velocities compared 

to the bounding conditions, where a particle impacting the bed may maintain a significant 

velocity. As indicated in Figure 1.4 in all the experiments the ratio of * */ cu u lies between 0.7-

5 with the exception of Ramesh et al. [2011] who performed their experiments on a nearly 

smooth bed, and for conditions relatively higher than the incipient motion ( * */ cu u between 6 

and 22). 
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    In conclusion, findings of all researchers show a growing trend of the normalized trajectory 

length with shear velocity. Excluding the results of mixed modes of transport (sl/r/s) from 

comparison, it is demonstrated that trajectory lengths of saltating particles (labeled as “s” in 

the legend of Fig. 1.4) are in general longer than those for sliding and rolling particles (labeled 

as “sl/r”). In fact, rolling and sliding particles are in constant interactions with the bed and thus 

will be disentrained more quickly than the saltating ones where the interactions with the bed 

are minimized. Table 1.3 delivers a summary of experimental relationships found for the 

variation of normalized trajectory length with the stage value.  

 
 

Figure 1.4 Summary of variation of normalized length Lp/d with stage value * */ cu u . The tags next to the 

author’s names indicate the motion mode analyzed in the experimental work: sl – sliding; r – rolling; s – 

saltating. 

 

1.3.3.2 Trajectory mean velocity  

    The second property of a trajectory is the mean velocity of a travelling particle within its 

trajectory 
pV . Investigations of normalized velocity */pV u  as a function of stage value are 
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illustrated in Fig.1.5. An increasing trend (a power law with different exponents) was found 

for the variation of particle velocity with stage value. The measurements also indicated that the 

velocity of saltating particles is higher than those with sliding or rolling modes of transport. As 

enlightened for trajectory length this is due to the fact that saltating particles move at a distance 

from the bed which prevents them from subsequent interactions with the bed and thus particles 

move faster.  

Concerning the nature of the bed, Fig. 1.5 demonstrates that in experiments performed with 

fixed bed [e.g., Hu and Hui, 1996; Nino and Garcia, 1996; Abbot and Francis, 1997] particles 

are in general associated with higher velocities compared to the experiments conducted over 

an erodible bed [see e.g., Lajeunesse et al., 2010; Ramesh et al., 2011]. In a detailed analysis 

Lajeunesse et al. [2010] calculated the coefficient of velocity for particles moving over a 

mobile bed and compared the results with the fixed bed data of Abbot and Francis [1977] and 

Lee and Hsu [1994] and concluded that particles move faster over a fixed bed. 

Different relationships for the variation of trajectory averaged velocity as a function of shear 

velocity are also summarized in Table 1.3. 

 

Figure 1.5 Summary of variation of normalized velocity (
*/pV u ) with stage value 

* */ cu u . 

 



14 Introduction 

 

 

 

 

Table 1.3 Summary of derived relationships for trajectory length and average velocity. 

 

 

Authors Lp/d Vp /u* 

Francis (1973) - Dependency with * */ cru u  

Abbot and Francis (1977) Dependency with * */ cru u  1
*

* *
1       13.4 14.3

p

cr

V u
a a

u u

  
     
   

 

 

Lee and Hsu (1994) 

0.788
2

*
0.788

*
196.3 1

p

cr

cr

L u

d u

  
    
   

 

0.174
2

*
0.174 *

* *
11.53 1

p

cr cr

cr

V u
u

u u

  
    
   

 

 

Niño et al. (1994) 
2

*

*
2.3

p

cr

L u

d u

 
  

 
 

1
*

* *
1       6.8 8.5

p

cr

V u
a a

u u

  
     
   

 

Niño and García (1998) Dependency with Res
and

* */ cru u  - 

 

Hu and Hui (1996) 

1.720.70 *
0.86

*

1.800.94 *
0.90

*

Smooth bed: 76.74

Rough bed: 27.54

p s

cr

cr

p s

cr

cr

L u
g

d u

L u
g

d u









  
    

   

  
    

   

 

1
*

* *

1
*

* *

Smooth bed: 19.5 5.1

Rough bed: 11.9 5.2

p

cr

p

cr

V u

u u

V u

u u





 
   

 

 
   

 

 

Lee et al. (2000, 2006) 

 

Dependency with Res
and

* */ cru u  

 

Dependency with Res
and

* */ cru u  

Lajeunesse et al. (2010) * *( )
(70 2)

p cr

s

L u u

d V


   

* *( )
 

 4.4 0.2,   / 0.11 0.03

p c cr

s s

c s

V V u u
a

V V

a V V

 


   

 

Ramesh et al. (2011) Dependency with 
* */ cru u  Dependency with 

* */ cru u  

Campagnol et al. (2015) Dependency with
* */ cru u  Dependency with 

* */ cru u  
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1.3.3.3 Time of motion and time of rest 

    Bed-load transport is an intermittent process governed by sequences of alternating motion 

and stillness periods. Unlike several studies conducted for the trajectory length and its mean 

velocity, there is limited literature on the analysis of time of motion and rest. Papanicolaou et 

al. [1999]; Martin et al. [2012], and Campagnol et al. [2013] were possibly among the first 

studies who presented their results of trajectory duration. Regarding the measurements of 

particle rest, Niño and García [1998] is probably one of the few studies in which the time 

elapsed between sediment disentrainment and entrainment was measured. A summary of 

previous investigations of normalized time of motion and rest ( * /mt u d and * /rt u d , 

respectively) as a function of * */ cu u is given in Fig. 1.6. A clear trend for the variation of time 

of motion with shear velocity is not observed in Fig. 1.6a. On the other hand, Niño and García 

[1998] found that for jumping grains the mean value of normalized time of rest is between 10 

and 20 when * */ cu u changes from 0.95 to 1.16. The normalized value of time of rest is shown 

to be falling as * */ cu u increases (Fig. 1.6b). They also explored that the measured standard 

deviation of rt  was very high, lying between 80-112% of the mean resting time and decreasing 

as the values of shear velocity grew. 

 

 

Figure 1.6 Summary of variation of normalized a) time of motion and b) time of rest with * */ cu u . 
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1.4 Eulerian bed-load transport kinematics 

In the recent decades, increasing attention has been paid to the phenomenological aspects of 

bed-load sediment transport by shifting from large to grain scales to offer an insight into the 

mechanics of particle entrainment and transport fluxes. 

1.4.1 Entrainment and disentrainment rates 

An entrainment/disentrainment rate can be operationally determined by assessing if one or 

more particles have been entrained/disentrained from a certain area within a certain time 

interval [e.g., Van Rijn, 1984; Cao, 1997]. Entrainment/disentrainment rates (calculated as the 

total number of entrainment/disentrainment events within constant spatial and temporal 

domains) are on one hand related with suitably chosen control volumes and are therefore 

Eulerian quantities. On the other hand, they are related with particle start and stop; therefore, 

these rates could be computed only provided that each grain was individually tracked. 

Measurements were thus conducted in a Lagrangian way, but data on single particle motion 

were averaged using appropriate spatial and temporal support scales to obtain values for the 

Eulerian quantities of interest. 

1.4.2 Solid discharge  

    Understanding and providing quantitative prediction of sediment fluxes in river streams 

stand at the core of sediment transport studies and engineering practices. In spite of various 

studies during the past decades, due to the complexity of the process there are still huge 

uncertainties in the estimation of sediment transport rate. Typically, bed-load sediment 

transport rate is empirically correlated with near bed shear velocity. A comprehensive review 

by Chanson [1999] explores several equations that have been proposed for the prediction of 

the sediment transport rate (see examples in Table 1.2). An example of a pioneering work 

regarding this approach is Meyer-Peter and Müller [1948] who estimated the sediment fluxes 
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as a function of bed shear stress. As indicate earlier in Table 1.2 the shortcoming of this method 

is that the relationships found by different researchers sometimes result in sediment fluxes 

different by an order of magnitude. 

Particle visualization at small scales motivated several researchers to separate and individually 

investigate the key components that contribute to the sediment transport. Some [e.g., Beek, 

1976; Wiberg and Smith, 1987; Hu and Hui, 1996b; Lee et al., 2000; Garcìa et al., 2000; 

Seminara et al., 2002; Parker et al., 2003; Radice et al., 2006, 2010a; Ballio and Radice, 2007; 

Radice and Ballio, 2008] studied bed-load sediment flux as the product of the areal 

concentration of sediments and of the grain velocity.  

On a horizontal basis, the quantities are averaged over a reference bed area A, and then bed-

load transport is calculated as: 

50s A Aq C v d           (1.9) 

Where AC and Av are the areal concentration and the areal average velocity of moving particles 

and 50d is the representative particle diameter.  

1.4.2.1 Particle concentration and particle velocity 

Radice and Ballio [2008] investigated the double-average characteristics of sediment flux in 

one-dimensional bed-load transport and studied the variations of double average concentrations 

and velocities with stage values. Results of the cited work suggest that concentration once 

correlated with shear velocity is more variable than the velocity (Fig. 1.7). In a detailed 

analysis, Radice et al. [2009], studied the scaling analysis of moments of statistics for sediment 

concentration and showed that the mean value of concentration is scale invariant whereas the 

standard deviation decreases with larger support scales. They provided a mathematical 

derivation for the trend of variance and revealed that deviation from the trend is best explained 

by the spatial correlation. Results of scale dependency are presented in Fig. 1.8. 
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Figure 1.7 Variation of the mean values of concentration and normalized particle velocity with 
* */ cu u [Radice 

and Ballio, 2008]. 

 

Figure 1.8 Scale dependence of mean and standard deviation of concentration [Radice et al. 2009]. A represents 

the scale of observation. 
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1.5 Discussion  

Functional parameters involved in semi-empirical relationships for bed-load transport were 

studied in this chapter. A comparison among different experimental studies indicates that in 

general, higher values of stage result in longer travel distances between entrainments and 

disentrainments with an increase in trajectory velocities. It was shown that any growth in the 

shear velocity on the other hand, will decrease the particle’s resting time. Regarding the 

structure of the bed, experimental results indicated that velocity of particles moving over a 

fixed bed are higher than those over a mobile bed.  

Form a Eulerian point of view, scholars studied the main components of solid discharge 

(concentration and velocity) and investigations showed that the concentration of particles is 

more variable with shear velocity than the other component i.e. velocity of moving sediments. 

The average values of these quantities were also shown to be invariant of the spatial scale. 
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Chapter 2 Conceptual framework  

2.1 Introduction 

    As shown earlier in chapter 1, in spite of numerous studies dealing with Lagrangian and 

Eulerian bed-load kinematics, the lack of a general framework with univocal definitions of 

Lagrangian and Eulerian bed-load indicators is noticed. The existence of such framework helps 

to pile new findings instead of placing them side by side.    

Ballio et al. [2017] introduced a novel universal framework for the description and analysis of 

bed-load kinematics. In the proposed framework; (i) the sediment kinematics are described 

taking both the Lagrangian and the Eulerian approach, (ii) a set of relevant indicators is defined 

using various averaging methods and (iii) conceptual relationships among the key quantities 

are determined. 

Accounting for this framework, definitions and measurements of several quantities whose 

analysis have been already discussed (see sections 1.3 and 1.4) will be presented. From an 

operational point of view, the definitions and relationships presented in the framework are 

useful for analysing/interpreting results from experiments with bed-load sediment transport. 

As will be shown in the following chapters, this framework will be applied to experiments 

conducted in this study and subsequently Lagrangian and Eulerian bed-load kinematics will be 

investigated for a range of experiments with different stage values. 

2.2  General hypothesis 

This framework considers the transport of identical grains as one-dimensional bed load. These 

grains represent an arbitrary sample from the population of all the sediment involved in the 

process. For the sake of simplicity, grains are assumed to move only in the positive streamwise 
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x direction and all the properties of a particle (mass, volume, velocity, …) are attributed to its 

center of mass. The fundamental starting quantity is the time history of particle velocity, from 

which most of the variables commonly used in bed-load studies are derived. Lagrangian 

description of bed-load is based on the kinematics of individual particles; values are then 

integrated/averaged in space for the Eulerian description over a control volume. 

2.3 Lagrangian description 

 

Figure 2.1 Conceptual description of an i-th particle path by its position (x), velocity (u) and clipping function for 

motion (Mm). Properties of a j-th event (time of motion and rest, total duration, displacement length, instants of 

entrainment and disentrainment) are sketched. The long-dash lines mark an Eulerian observation window. 

   An individual particle is denoted with i and the total number of particles in the sample is N.  
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The streamwise position of a particle at any time t is denoted with x(i,t). For the i-th particle 

one can identify a succession of alternating periods of motion and rest. A single period of 

motion followed by a single period of rest together form an ‘intermediate event’ (hop) (Fig. 

2.1). J(i) indicates the total number of events in the observed history of the particle. The 

duration of the j-th event for the i-th particle is ∆t(i,j), and it can be further split into duration 

of motion and stillness, ∆tm(i,j) and ∆tr(i,j), respectively. Similarly, ∆x(i,j) represents the 

displacement of a particle i during an event j, which is known as ‘hop length’.  

Since at any instant, particle i may or may not be in state of motion, it is convenient to introduce 

a ‘clipping function’ Mm to quantify a particle state as: 

 
1 if particleis moving

,
0 if particleis not moving

mM i t





                (2.1) 

The clipping function Mm can be expressed as: 

     e d, H ( , ) H ( , )m

j
M i t t t i j t t i j    

   (2.2) 

where te(i,j) and td(i,j) identify the instants of entrainment (pickup) and disentrainment 

(deposition), respectively, for an event j, and H( ) is the Heaviside step function. (An example 

of a temporal evolution of Mm is shown in Fig. 2.1. The time derivative of Mm(i,t) is therefore: 

      ),,(),(),(δ),(δ
d

,d de tidtiejittjitt
t

tiM
jj

m

    (2.3) 

where δ is a Dirac delta function that can be used to define e(i,t) and d(i,t), i.e., entrainment 

and disentrainment functions, respectively. The total time of motion for a particle i during 

period T, is defined as Tm(i). Alternatively, ‘intermediate’ quantities can be used to express 

Tm(i) as: 

   



)(

1

,
iJ

j

mm jitiT .              (2.4) 
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The total time of rest for the particle i during T is then: 

   



)(

1

,
iJ

j

rr jitiT  (2.5) 

Assuming that T is large enough to disregard truncated periods of motion/rest at the beginning 

and at the end of the time window, it follows that for each particle i: 

     iTiTiT rm   (2.6) 

The corresponding relative time spent in motion, (herein also defined as porosity) T
m(i), (= 

time spent in motion/total observation time) is: 

 
 

 tiM
T

iT
i m

m
m

T ,  (2.7) 

One can also define an instantaneous relative number of particles in motion,  tm

N , (= number 

of moving particles/total number of observed particles), as: 

 
 

 

N

tiM

N

tN
t

N

i

m

m
m

N


 1

,

  (2.8) 

2.4 Eulerian description 

Consider a reference plan area A extending between two x-locations x1 and x2 = x1+L (Fig. 2.2). 

 

Figure 2.2 Sketch of a particle moving through the reference plan area A of the bed (bounded by x1 and x2). 



24 Conceptual framework 

 

 

 

To identify whether a particle i is within the reference area A, a Eulerian clipping function is 

defined as: 

 





tA

tA
tiM A

 at time withinnotisparticleif0

 at time withinisparticleif1
,  (2.9) 

The total number of particles within A at time t is expressed as: 

   



N

i

A
A tiMtN

1

,  (2.10) 

and the number of particles within A that are in motion at time t as: 

       
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The number of particles at rest within A at time t is: 

         
 
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Subsequently, the concentration of moving/still sediments over a certain near-bed area A at 

each instant are defined as: 
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Where d is particle diameter and w is the volume of a single particle. In a time series, Eulerian 

velocity at instant t is calculated by averaging the values of instantaneous velocity of all moving 

particles within A: 

  { }m m

A Au t u                        (2.15) 
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2.4.1 Eulerian variables: sediment discharge 

As shown earlier (1.9), Eulerian sediment fluxes can be calculated from the concentration and 

velocity of moving particles, the calculation of solid discharge within the framework is then: 

( ) ( )m m

A Aq C t u t d                 (2.16) 

(2.16) is a purely Eulerian quantity. 

2.4.2 Eulerian variables: sediment discharge passing a transverse line 

Consider again the reference plan area A in Fig. 2.2 with the transverse line xtl (Fig. 2.3). To 

verify whether a particle i passes this line within ∆t, a clipping function is introduced as: 

 
1 if ( , )  and ( , )

,
0 otherwise

tl tltl
x i t x x i t t x

M i t
  




       (2.17) 

 

Figure 2.3 Sketch of a particle moving through the reference plan area A of the bed (bounded by x1 and x2) A. xtl 

represents a transverse line perpendicular to the flow direction.  

Therefore, the total number of particles that pass the reference line can be expressed as: 
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Sediment flux across this line can be alternatively computed for any given ∆t as: 
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Where lr is the length of the reference line in the transverse direction. 

Averaging options 

The definitions presented above will be used to derive more information relevant for the 

relationships between Lagrangian and Eulerian description of sediment motion. This is 

achieved through various forms of averaging or filtering, which are applied to overcome the 

key issue of a spatial mismatch between the two descriptions (i.e. Lagrangian is pointwise, but 

moving; Eulerian is referred to a finite fixed spatial domain, thus involving spatial 

averaging/regularization). Therefore, the following options are available: 

Event averaging yields properties of motion of a single grain at the scale of individual hops: 

 
J

j
J 1

1
  (2.20)

 

Time averaging provides regularized / integrated properties of motion of a single grain or a 

set of grains and thus smoothes temporal fluctuations:  
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Sample averaging yields quantities that are averaged over a set of individual particles: 
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In the above equations   is a general quantity which may be associated with a time instant t, 

a particle i, and a motion event j. Furthermore, square brackets [ ] will be used to denote an 

expected value obtained by averaging over a large number of statistical realisations 

(ensembles). In ideal (uniform, stationary and ergodic) conditions, when the spatial and 

temporal windows and the number of ensembles are sufficiently large, all averaging options 

should produce identical statistics. However, experimental conditions always impose 

limitations (small averaging area, short observation time) and therefore results are filtered 

rather than being averaged quantities (the magnitude of a filtered quantity depends on the size 

of the averaging window). In such conditions, temporal and sample averaging may be used to 

complement each other, i.e. to increase the number of ensemble realisations and hence produce 

a better estimate of the expected values compared to what either of them would do on its own. 

Temporal and sample averaging can be considered together, and assumed to produce a single 

sample from the general population. A sufficiently large set of such samples yields the statistics 

for the general population, i.e. expected values.  

Using the arguments above, the expected value of the relative duration of motion (i.e. porosity 

for movement) is: 

  tiM mm , . (2.24) 

If the process is uniform in space and time (and ergodic) one can think that, for large T and 

large N, both time porosity and sample porosity converge to the expected value, i.e.  

mm

N

m

T   . (2.25) 

However, this is often difficult to achieve, so one can operationally combine time and sample 

averaging to make convergence quicker. Sample average of time porosity and time average of 

sample porosity converge, for sufficiently large T and N, to the expected value of porosity: 

  mm

N

m

T    (2.26)  

The expected porosity for movement gives the ‘large scale’ information about the particles’ 

activity, i.e. the percentage of time, on average, that particles spend in motion. In typical 

laboratory conditions, this porosity is difficult to measure because any particle is observed for 
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a limited (in space and time) portion of its trajectory. From a Eulerian perspective, one is 

interested in describing the state of motion within the reference area A. Therefore, relative 

number of moving particles within the reference area A is  tm

A , (=number of moving particles 

within A/total number of particles within A): 
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2.4.3 Entrainment / disentrainment 

Derivation of Eulerian entrainment and disentrainment functions, E(t) and D(t), from their 

Lagrangian counterparts is analogous to that presented for a number of particles in motion over 

A: 
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Note that summing of e(i,t) over either NA or NA
r gives the same result since an already moving 

particle cannot be entrained. For an analogous reason summing of d(i,t) over either NA or NA
m 

yields identical results. Temporal evolutions for E and D will be discontinuous, analogously to 

those for e and d described above. If previous definitions are averaged in time one obtains: 
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In the limit of big samples / long times T / uniformity condition where we can assume all 

trajectories to have the same time averages: 11  te , we simply obtain the intuitive 

result: 


A

A

N
eNE           (2.32) 

2.4.4 Eulerian variables: Einstein-type sediment discharge  

Suppose that   is the distance travelled by one particle within T. Under the condition of 

uniformity / long time / big samples the relationship between the sediment discharge and the 

Lagrangian variables is linked to the already derived relations: 
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(note that J is constant under the above conditions). At the end, we obtain: 
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which is the typical Einstein-type formulation for sediment discharge.  

2.5 Bridge between approaches 

As discussed above, the proposed framework enabled the quantification of several Lagrangian 

and Eulerian indicators at simple deterministic levels. It is however, important to mention that 

the two approaches complement each other, as they provide alternative descriptions of the 

process. For example, let one consider the sediment transport rate: it has been expressed in a 

fully Eulerian form as proportional to a bed-load sediment concentration and a sediment 

velocity (2.16) or in a Lagrangian-Eulerian form as proportional to a Eulerian entrainment rate 

and a Lagrangian hop length (2.34). A link between the approaches and conditions of 

equivalence for expressions 2.16 and 2.34 will be verified in the coming chapters when the 

framework will be applied to a series of experimental data.  
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Chapter 3 Experiments 

3.1 Introduction and facilities  

The experiments for the current study were conducted in a pressurized duct at the Hydraulic 

Engineering Laboratory of the Politecnico di Milano, Milan, Italy. The channel length is 5.8 

m, while the rectangular cross section is 0.4 m wide and 0.11 m high. A fixed-rough bed was 

employed by gluing two layers of sediment particles onto steel plates. A comparison of this 

fixed bed with a movable bed of the same material indicated the standard deviation for the bed 

elevation (representing bed roughness) was almost identical in both types of bed [Campagnol 

et al., 2015]. Uniform quasi-spherical Polybutylene Terephthalate grains (identical to the glued 

ones) with the dimension d = 3 mm and a density
3 31.27 10  /g kg m   were used for the 

experiments. For a better particle tracking, the entire bed was painted in black, while the bed-

load grains released into the channel were white (Fig. 3.4). A transparent lid covered the entire 

channel to eliminate picture distortion that could have been caused by a wavy free surface. The 

coverage of the flume resulted in a fully pressurized system. However, several studies [e.g., 

Ettema, 2008; Radice, 2009] confirmed that sediment transport mechanics does not 

significantly change as the flow becomes pressurized. Particle motions were recorded using a 

CCD camera installed on top of the flume. The constant flow discharge during each experiment 

was measured using a magnetic flowmeter attached to the pipe next to upstream tank (Fig. 3.1) 

and to regulate the entering flow, some tube sheets were installed at the duct inlet. A pipe 

transferred the water from the outlet into the inlet tanks in a closed loop. Experiments were 

performed for a range of discharges from Q12.1-23.1 l/s. In total, 18 experiments were carried 

out. 
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Figure 3.1 Sketch of experimental apparatus. 

3.2 Characterization of bed surface structure and velocity 

measurement 

3.2.1 Measurements of bed elevation, tools and operative procedure 

In general, the bed surface can be described as an area consisting of continuous random bed 

elevations ( , , )z f x y t where x and y are longitudinal (main flow direction) and transverse 

coordinates, and t  is the time. In the presence of a fixed-bed, the elevation is independent of 

time and is thus only a function of x and y position: ( , )z f x y . A Laser Distance Sensor was 

used to measure Vz  as the vertical distance between the bed surface and the laser and 

subsequently derive the bed elevation fluctuations. The device sends a pulse of laser light to 

the target and measures the electric voltage of the received signal V (Fig. 3.2). The voltage 

depends on the distance between the target and the receiver as well as the property of the 

environment through which the light passes. It is worth mentioning that, the device should be 

calibrated before any new application. To measure bed elevation bz a dry bed was used and the 

beam emitted by the laser distance sensor crossed just air. The calibration procedure was 

performed placing an object at a fixed increasing distance from the beam source and measuring 

the respective values of .V Tested distance ranged between 100 to 150 mm and it was increased 

with a spatial lag of 5 mm. The equation for the voltage to distance was then found as: 
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39.53677 103.26224vz V           (3.1) 

After laser calibration, the beam was installed on top of the flume and vertical distances vz and 

subsequently bed elevation b vz D z  (Fig. 3.3) was measured over a 50 mm long by 35 mm 

wide test section (Fig. 3.4). Measurements were performed along streamwise lines (L1- L8) 

with the resolution of 1 mm and spacing of 5 mm in the transverse direction corresponding to 

a total of 408 measured points (Fig. 3.4). The job was done manually by fixing the y position 

and shifting the laser distance sensor along the streamwise lines (L1- L8). An example of vz

measurements along the streamwise axis (L4) is given in Fig. 3.5. A three-dimensional sketch 

of bed elevations for the test section is given in Fig. 3.6.  

 

Figure 3.2 Application of Laser Distance Sensor for bed elevation measurements.  

Second to forth-order moments of statistics can provide necessary information to characterize 

the bed surface. The standard deviation of the elevations ( )bz indicates the range of 

fluctuations of bed elevation and is a measure of the vertical roughness scale [see Nikora et al., 

1998; Heritage and Milan, 2009; Coleman et al., 2011]. Skewness ( )k bS z can be used to assess 

the general shape of the bed surface. A positive skewness (Sk >0) shows that in general 
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measurements of bed elevation are higher than ( )bz  whereas the opposite prevails for Sk <0. 

Finally, kurtosis ( )u bK z provides the degree of the regularity of the bed structure. In other 

words, high values of kurtosis indicate that there are sporadic values of bz very different from 

the mean. For the measurements performed here, the standard deviation was computed as 1.28 

mm slightly less than half a particle size. The negative value of skewness (Sk=-0.19) shows that 

values of bz smaller than the average value of bed elevation are more probable. The computed 

value of kurtosis, Ku=3.2 represents the sporadic presence of relatively high values in the 

measurements of bed elevation. 

         

Figure 3.3 Sketch of vertical distance zb measurements. 

 

 

 

Figure 3.4 Test section 50 mm × 35 mm for bed elevation measurements. 
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Figure 3.5 Example of vertical distance zv measurements (L4). 

 

 

Figure 3.6 Bed survey test section 50 mm × 35 mm. 
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3.2.2 Time-averaged velocity profiles 

Two ultrasonic velocity profilers (UVP) with 81° orientation were used to measure vertical 

profiles of instantaneous streamwise u , and vertical components v  of flow velocity. Probes 

were placed at different locations on the top lid (Fig. 3.7) to cover the length of the channel 

and measure the velocity profiles for various positions. The time-averaged velocity profiles 

were then derived using measurements of instantaneous particle velocity. Fig. 3.8 shows the 

time-averaged velocity profiles at the centreline of the channel in Section 3, (Section 3-y200) 

where particle motion recording was carried out. As expected, the streamwise mean velocity 

profiles are similar to the theoretical one for plane channel flow. Obviously, knowing that the 

bottom of the duct is rough and the lid is smooth, the profile is not symmetrical and the mean 

velocity is higher close to the smooth boundary than to the roughened one.  

 

Figure 3.7 Locations of velocity measurements (field diamonds). Square box shows the location of particle 

motion recording. 
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Figure 3.8 Time-averaged streamwise velocity profiles (Section 3, Y200). 

3.2.3 Calculation of local shear velocity u* and bed shear stress τ 

Shear stress  acting on the surface of the bed material is the driving force in the transport 

process. It has always been a challenging task to determine bed shear velocity *u  and 

subsequently calculate shear stress in experimental flumes or field channels. Clauser [1954] 

proposed a practical method in which shear stress can be determined from the time-averaged 

streamwise velocity profile following a logarithmic equation:  

* *

0 1 2( ) ln ( ) ln ln
u u

u z z z C z C
 

        (3.2) 

Where (z)u is the time-averaged streamwise velocity at elevation z, 0.4  is the von Kármán 

constant and 0z  is the hydrodynamic roughness length. The time-averaged velocity data in the 

logarithmic layer can be fitted to (3.2) to calculate the coefficients 1C and 2C , and then, bed 

shear velocity *u can be determined from the value of 1C . Once *u  is obtained, the bed shear 

stress can be calculated as: 
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2*u      (3.3) 

An example of data fitting in the logarithmic layer to estimate *u  is given in Fig. 3.9. In this 

example, fitting the data by least-squares method, 1C  was estimated as 38.052 and subsequently

*u  was calculated as:  *

1 38.052 0.41 15.60 mm/su C       (3.4) 

 

 

Figure 3.9 Example of *u estimation by Clauser method, Q=14 l/s, S3Y200. 

The 95% confidence interval (CI) for the shear velocity estimation was computed using the 

following formula [Campagnol et al., 2013]: 
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In which N is the total number of data in the logarithmic layer for which the Clauser method 

was used, iu is the corresponding velocity for every single zi obtained from the velocity profile, 

and 1 2ln(z )iC C is the computed velocity using the least-squares fitting method. The shear 

velocities and the associated confidence intervals for the experimental discharges were 

computed regarding section (S3Y200) and results are presented in Fig. 3.10.  

 

Figure 3.10 Computed shar velocities at the center of recording section (S3Y200) for different experimental 

discharges. Bar plots indicate the 95% confidence intervals.  

As indicated in Fig. 3.10 shear velocity and flow discharge are positively correlated meaning 

that as the discharge increases the bed shear velocity and consequently bed shear stress also 
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increases. However, the shear velocity for the discharges of Q=12.1 and 13.1 l/s, might be 

underestimated. In fact, DOP calculates the velocity of tiny particles in the fluid based on the 

reflected echoes and as the intensity of dusts is not as much of those for higher discharges the 

computed values of velocity might be underestimated. Time averaged vertical velocity profiles 

for the range of performed discharges are depicted in Fig. 3.11.  Relatively low values of 

vertical velocities encourage that the flow is generally unidirectional. The hydrodynamic 

characteristics of the experiments are summarized in Table 3.1. 

 

Figure 3.11 Time-averaged vertical velocity (v) profiles at the centre of channel (S3Y200) 

Table 3.1 Hydrodynamic characteristics of experiments.  

( / )Q l s  ( / )U mm s  *

( 3 200) ( / )S Yu mm s  Re( )

 

Flow type *Re ( )  Turbulent regime 

12.1 272.7 7.45±2.92 2.83E4 Turbulent 22.35 Transitional 

13.1 295.5 10.98±3.85 3.07E4 Turbulent 32.94 Transitional 

14.1 318.2 15.60±2.72 3.30E4 Turbulent 46.80 Transitional 

16.1 363.6 17.86±1.49 3.78E4 Turbulent 53.58 Transitional 

18.1 409.1 20.66±2.26 4.25E4 Turbulent 61.98 Transitional 

20.1 454.5 24.48±2.06 4.73E4 Turbulent 73.44 Rough (fully developed) 

23.1 522.7 23.46±1.34 5.44E4 Turbulent 77.07 Rough (fully developed) 
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3.3 Incipient motion, transport capacity and particle feeding 

Preliminary experiments of Campagnol et al. [2012] estimated the transport capacity of the 

flume (maximum solid discharge transported by the flow) as: 

1.3

* 20.008 ( ) 1
c

Q
q

Q

 
  

 
        (3.7)  

in which q* is the dimensionless sediment transport per unit width and time, Q is the flow 

discharge and Qc =10 l/s is the threshold discharge for the initiation of motion. An ad hoc 

relationship between the calculated shear velocity and the critical shear velocity was found as

* */ /c cu u Q Q           (3.8) 

It is generally approved that the incipient sediment motion is not a well-defined condition [see, 

for example, Buffington and Montgomery, 1997]. In this study, the method proposed by Radice 

and Ballio [2008] was followed to experimentally estimate the threshold discharge. Volumetric 

sediment transport is calculated as: 

* 3*sQ q g d B           (3.9) 

Where *

sQ is volumetric sediment transport (mm3/s) 
( )s 




  is the specific gravity and B 

is the flume width (400 mm). 

Particle feeding was performed using an automatic impulsive feeder that repeatedly released a 

constant volume of sediment into the flume at a certain time interval (see again Fig. 3.1). The 

volumetric particle feeding rate is therefore: 

(1 ) /f slotQ V p t     (3.10)  

Where 3 3380 10 10 38 10 mmslotV      is the volume of the slot, p =0.33 is the calculated 

sediment porosity and t  is the time interval between each feeding action.  
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3.4 Experimental procedure 

Experiments were conducted for a range of * */ 1.2 2cu u   . Prior to start, the channel bed was 

cleaned from any dust and loose particles, the feeder was filled with white sediments and the 

pump was turned on. The discharge gradually increased to fill the inlet tank, and once the water 

arrived into the flume from the inlet tank, the discharge was raised and adjusted to the desired 

value for the sediment transport experiment. At this stage before particle feeding, the flow was 

running for 5-10 minutes to stabilize. After flow stabilization for each experiment particle 

feeding started and as soon as the first group of sediments approached the recording section, 

filming began at 32 fps. The duration of recording was 50 s for each experiment. Presented 

results are related with a focus area of 270× 200 mm2 in streamwise and transverse direction, 

respectively. Following (3.9) and changing the time interval t  experiments with different 

feeding rates could be carried out. Detailed characteristics of experiments are given in Fig. 3.12 

and Table 3.2. 

 

Figure 3.12. Experimental runs with respect to different discharges and feeding rates. 
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Table 3.2 Characteristics of feedings experiments. 

Experiments ( / )Q l s
 

* */ ucu  ( )t s
 

* 3 3( 10 / )

(2.2)

sQ mm s
 

* 3 3( 10 / )

(2.3)

fQ mm s
 

* */f sQ Q  

R1 18.1 1.8 19.8 2.49 1.28 0.52 

R2 18.1 1.8 39.6 2.49 0.64 0.26 

R3 18.1 1.8 9.6 2.49 2.65 1.06 

R4 20.1 2.0 14.4 3.63 1.76 0.49 

R5 20.1 2.0 28.8 3.63 0.88 0.24 

R6 20.1 2.0 57.6 3.63 0.44 0.12 

R7 16.1 1.6 17.2 1.56 1.48 0.94 

R8 16.1 1.6 34.4 1.56 0.74 0.47 

R9 16.1 1.6 68.8 1.56 0.37 0.24 

R10 14.1 1.4 30.6 0.84 0.83 0.99 

R11 14.1 1.4 61.2 0.84 0.41 0.49 

R12 14.1 1.4 122.4 0.84 0.20 0.25 

R13 23.1 2.3 10.0 5.76 2.54 0.44 

R14 13.1 1.3 54.0 0.55 0.47 0.85 

R15 13.1 1.3 108.0 0.55 0.23 0.43 

R16 13.1 1.3 150.0 0.55 0.16 0.31 

R17 12.1 1.2 94.4 0.31 0.26 0.85 

R18 12.1 1.2 150.0 0.31 0.16 0.54 
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Chapter 4 Image processing and particle tracking 

velocimetry (PTV) 

4.1 Introduction to the application of image processing in fluid 

dynamics 

In sediment transport studies, particle motion recording provides detailed information about 

the motion as well as quantitative information about the time evolution of particle position and 

velocity. Investigation of sediment transport throughout the observation of individual particles 

has been the core of many studies for decades [see e.g., Francis, 1973; Fernandez Luque and 

Van Beek, 1976; Drake et al., 1988; Bottacin-Busolin et al. [2008]; Radice et al., 2009 and 

2010; Lajeunesse et al., 2010; Ramesh et al., 2011; Roseberry et al., 2012; Campagnol et al., 

2013; Julien and Bounvilay, 2013;  Heays et al. 2014, Fathel et al., 2015; Furbish et al., 2016]. 

Particle image velocimetry (PIV) and particle tracking velocimetry (PTV) are the main 

techniques that have been introduced and developed over the last three decades to measure the 

two, and three-dimensional velocity fields of moving particles in the flow [see Smits and Lim, 

2000; Willet and Kompenhans; 1998 and Blackett, 1994]. The main principle of these 

techniques is grabbing video images of a lighten particle seeded flow to provide quantitative 

information about the flow field [Nokes, 2012]. In the present study, after conducting 

experiments of particle motion recording, (see Chapter 3) Streams package was used for 

particle identification and particle tracking velocimetry. An overview of Streams system with 

an example of its application on an experiment R10 (see Table. 3.2) are given in the following. 
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4.2 Overview of Streams system 

Streams, is a flow visualization and analysis tool developed in the Department of Civil and 

Natural Resources Engineering at the University of Canterbury. The software is written in 

Java© programming language and is built in graphical user interface. In Streams, particle 

identification and tracking is achieved through a sophisticated analysis environment [Nokes, 

2012]. Depending on the purpose of application, various algorithms can be used to process the 

raw data. Streams allows the user to import a sequence of images, detect particles and track 

them frame by frame providing Lagrangian information. In what follows, Streams core entities 

for a PTV analysis will be described.  

4.2.1 Image sequence 

Creating an image sequence is the initial step for any image-based analysis. Streams creates an 

image sequence from a series of frames captured by the recording device. Particle identification 

and tracking will be subsequently performed over the image sequence.  

4.2.2 Particle identification 

The term ‘particle’ stands for a region inside an image with different characteristics from the 

rest of the image. Particles in Streams are identified as neighbouring pixels with light intensities 

due to reflection higher than the background. Fig. 4.1 shows an example of an image in a 

sequence. Particle identification associated with the image is given in Fig. 4.2. Several 

algorithms are available for particle detection in Streams. For these experiments, a particle was 

detected for the pixels with intensities larger than a threshold defined by the user. An example 

of particle identification is illustrated in Fig. 4.2 in which over 100 particles were detected for 

the image (frame) in Fig. 4.1.  
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Figure 4.1 Sample of image within a sequence in Streams (Exp. R10). 

 

Figure 4.2 Sample of particle identification for the image sequence in Fig. 3.1. 

4.2.3 Principles of Particle Tracking Velocimetry (PTV) in Streams 

Having identified the existing particles in each frame, the next step is to connect the individual 

particles in subsequent frames and derive the full history of visualized particles. Tracking will 

result in Lagrangian information. In Streams Lagrangian paths are time series of particle 

position and velocity. It should be noted that the most challenging part of the PTV process is 

the tracking of individual particles from frame to frame. There are several techniques that can 
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be used, but each essentially ends to a decision-making algorithm that must select the “best 

match” between particles in two subsequent frames. A simple example of a match algorithm 

for particle in frame 1 is to pick among particles in frame 2 the one closest to the particle in 

frame 1.  

4.2.4 Particle matching process 

The first step in the matching process is to define a search window. In Streams, the search 

window is a rectangular region surrounding a particle in the first frame of the two being 

considered. Only particles located within this search window in the second frame are 

considered as possible matches to the particle in the first frame. Selecting a suitable search 

window will enhance the accuracy of matching process by limiting the candidates to a fraction 

of the total number of particles in the second frame. Once the match candidates have been 

identified for each particle in the first frame, Streams then calculates the costs of these matches 

using the costing strategies selected by the user. The user can assign a maximum matching cost 

(MMC) for each PTV analysis. Once the costing of individual candidates is calculated, Streams 

will then select the candidate with the lowest cost as a match to the particle in the previous 

frame. Therefore, setting of MMC is crucial for a successful analysis. If the given MMC is too 

low, correct matches will be missed. On the contrary, if the MMC is high several false 

candidates will be considered resulting in long computational times and possible mistakes in 

the matching process. Costing analysis also verifies that if a correct match in the next frame 

has not been associated with a particle, incorrect matches are not given a low cost. In fact, the 

best configuration of parameters is the one that all incorrect matches have costs exceeding the 

MMC. A total number of 16 different costings are available in Streams. Choosing the best 

MMC is a matter of conditions of experiments and practice. Depending on experimental 

conditions, for each test several matching costs were examined and the best was selected (see 

Table 4.1). Details of each costings can be found in Nokes [2012]. 
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4.2.4.1 Particle mismatch and joining Lagrangian path  

In general, due to the presence of many particles in PTV analysis, the matching process is not 

convenient and some of the results might be imperfect. In this respect, particles can be 

incorrectly matched, or not be even matched. Therefore, it is important to investigate the impact 

of such imperfections on the predicted results. The main reasons of particle mismatch are the 

presence of two and more adjacent particles in the search window as well as particle overlap. 

The mismatch results in the cut of particle paths where typically one path will finish at a certain 

time and location, and the second path will start closely within a few frames where the path 

was disconnected (see Fig. 4.3).  

 

Figure 4.3. Example of partially tracked particle, mismatch due to the presence of several particles in the search 

window (blue rectangular represents the search window). 

In this study, a full manual repairing was performed (R10a in Table 4.1) for the results of PTV 

analysis for experiment R10. The repairing provided a database of 321 correctly tracked 

particles. This database was used for the proof of concept to the framework introduced in Ballio 

et al. [2017]. Manual repairing was carried out as follows: 

After particle identification, (i) tracked paths of particles were obtained by a distance matching 

process. As already discussed, these paths were discrete (discontinues), and did not represent 

the full history of each particle, thus (ii) a visual tool was developed to track the path of 

individual particles to find where the mismatch or discontinuation occurred. (iii) among other 

paths, the one whose beginning was closest to the end path in (ii) was joined to the earlier one. 

Finally (iv) connected paths were visually verified to assure a correct repairing. Example of a 

fully tracked particle (repaired paths) is given in Fig. 4.4. 
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Performing a manual repairing was time-consuming, hence, for other experiments it was 

decided to rely on the joining Lagrangian path algorithm defined by Streams.  

The possibility of joining Lagrangian paths enables the user to connect the discrete paths that 

are corresponding to the same particle. However, it is important to mention that results of 

joining the Lagrangian paths were not always precise, and there were inaccuracies also in 

joining the segmented paths. Therefore, an accept/reject algorithm was introduced to achieve 

the best results from a PTV analysis using Streams.   

 

 

Figure 4.4 Example of a fully tracked particle.  

4.3 Validation algorithm, accept/reject method 

To perform the accept/reject method for the visual observation of particle path; 

(i) Image sequence, particle identification and tracking were performed in Streams (see 

different costing of matches for each experiment in Table 4.1) 

(ii) Joining Lagrangian path connected discrete segments to obtain the full Lagrangian 

path for each particle 

(iii) Finally, an in-house developed visual tool was used to accept/eject the particles 

paths from (ii) 
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Summary of the total number of accepted particle paths for each experiment is given in Table 

4.1. The validation rate was defined as the ratio between the total number of visually validated 

(accepted) paths and total number of detected paths. 

 

Table 4.1. Summary of validation process. 

Validated 

experiment 

Q 

(l/s) 

Applied Costings  No. of 

validated 

parths 

Validation 

 rate (%) 

R1 18.1 Distance + recent 

velocity 

971 58 

R2 18.1 Distance + recent 

velocity 

609 56 

R3 18.1 Distance + recent 

velocity 

1421 61 

R7 16.1 Distance + recent 

velocity 

416 64 

R8 16.1 Distance + recent 

acceleration 

398 62 

R10a 

(manually repaired) 

14.1 Distance + recent 

acceleration 

321 100 

R10 14.1 Distance + recent 

acceleration 

192 66 

R11 14.1 Distance + recent 

velocity 

187 68 

R12 14.1 Distance + recent 

velocity 

187 69 

R17 12.1 Distance + recent 

velocity 

60 82 
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4.4 Statistical stability of validated database  

Having obtained a database of validated particles for each experiment (Table. 4.1), the next 

step was to verify if the samples are statistically stable. For this purpose, hop length, hop 

averaged velocity, hop duration and hop rests were measured for each validated experiment 

and their datasets were randomly subsampled by half and 1/4 of the original population size 

(see chapter 1 for definitions and measurements). Following that a two-sample Kolmogorov-

Smirnov (K-S) test was performed for these measurements to check the statistical stability of 

the samples. 

In statistical analysis, the two-sample K-S test is used to find the equality between two 

cumulative distributions [Frank and Massey, 1951]. In other words, the test determines if 

samples come from populations with the same distribution. The two-sample Kolmogorov–

Smirnov test is defined as:  

, ' 'max ( ) ( )n n n nD F x F x          (4.1) 

Where  , 'n nD  is the maximum absolute difference with nF  and 'nF  as the empirical distribution 

function for the range of x for each dataset. n  and 'n  are the sizes of two samples respectively. 

The test is based on a null hypothesis 0h  assuming that there is no difference between the two 

distributions. The null hypothesis is rejected and at significance level   (the probability of 

rejecting the null hypothesis when it is true, 0.05,0.1,...  ) if,  

, '

'
( )

'
n n

n n
D c

nn



          (4.2) 

Where 
1

( ) ln( )
2 2

c


           (4.3)  

The results of the K-S test for the measured kinematics showed that the null hypothesis was 

not rejected at 0.05   for any of the kinematics and proved that samples are stable. This 
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stability is also shown in Figs. 4.5 and 4.6 where the cumulative distribution functions (CDFs) 

of hop-averaged quantities indicated that sub-sampling the datasets of measured kinematics did 

not significantly alter the distributions. 

Results of the K-S test for the nine validated experiments are given in Table 4.2. 

 

Table 4.2 Kolmogorov-Smirnov test results for hop related quantities. 

Kinematics 

 

Validated 

Exp. 

x  xu

 
mt  

rt  

, 'n nD  '
( )

'

n n
c

nn



  

, 'n nD  '
( )

'

n n
c

nn



  

, 'n nD  '
( )

'

n n
c

nn



  

, 'n nD  '
( )

'

n n
c

nn



  

R1 0.09 0.25 0.10 0.25 0.09 0.25 0.06 0.25 

R2 0.10 0.23 0.08 0.23 0.06 0.23 0.04 0.23 

R3 0.11 0.21 0.07 0.21 0.06 0.21 0.05 0.21 

R7 0.07 0.25 0.09 0.25 0.11 0.25 0.05 0.25 

R8 0.05 0.25 0.10 0.25 0.05 0.25 0.06 0.25 

R10 0.07 0.24 0.06 0.24 0.07 0.24 0.05 0.24 

R11 0.10 0.36 0.10 0.36 0.19 0.36 0.05 0.36 

R12 0.19 0.33 0.11 0.33 0.14 0.33 0.04 0.33 

R17 0.15 0.35 0.11 0.35 0.07 0.35 0.07 0.35 
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Figure 4.4 Cumulative Distribution Function of (CDF) hop length (left) and hop-averaged velocity (right) for 

the ¼, ½ and the full sample size. Distributions correspond to Experiment R1. 

 

Figure 4.5 Cumulative Distribution Function of (CDF) hop duration (left) and time of rest (right) for the ¼, ½ 

and the full sample size (Experiment R1). 
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Chapter 5 Post-processing of particle tracking 

data 

5.1 Introduction 

Improvements in measuring capabilities lead to more detailed information and consequently, 

new conceptual issues arise requiring appropriate consideration. Two main aspects are 

discussed in this chapter. First, having detected the position of bed-load particles at every 

instant (PTV results), a need emerges to recognize motion and stillness of particles. This is 

necessary as kinematics measurements including those introduced in Chapter 2 require 

identifying particle changes of state (from stillness to motion and vice versa). It should be also 

added in this respect that a third state might be introduced for particles vibrating around a 

certain position. These vibrations may be considered as actual movements or, differently, they 

may be considered as stillness and, consequently, filtered out. The second aspect addressed 

here, an approach stimulated by several different choices appeared in the literature, is the 

possibility to introduce a minimum length for a particle hop to be considered a significant 

contribution to downstream conveyance of sediment.  

5.2 Definition of motion and labelling  

The descriptive/conceptual framework presented in Chapter 2 identifies the full history of a 

(tracked) particle as a combination of successive instants of motions and rests representing the 

basis of bedload transport. Therefore, applying this conceptual method on experimental data 

for kinematics measurements requires ‘motion’ identification. In other words, a need emerges 

to detect at every instant (frame) if a certain particle is at motion or not (labels 1 and 0 
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respectively). Different methods were proposed for motion recognition. For instance, 

Roseberry et al. [2012] introduced a cut-off velocity and defined motions based on values 

higher than that. Differently, Seizilles et al. [2014] considered a particle in motion if the 

standard deviation of the position over 4 successive frames is higher than 0.1 d. In this study 

motion labelling was initially performed using a criterion proposed by Campagnol et al. [2013], 

according to which a particle can be considered in motion at a certain instant if its x 

(streamwise) position is smaller than the x positions taken in all the subsequent instants: 

  x x  for all ts Motion labeled (1) ti ti tif          (5.1) 

(5.1) was then modified and another possible definition of motion was introduced. The new 

definition of motion required the position of a particle to be lower than all the future positions 

as well as being higher than all the past positions: 

f x < x x  for all ts Motion labeled (1) ti t ti ti ti          (5.2) 

The new criterion, more restrictive than the previous one, obviously increased the possibility 

to label a particle as still. Comparison between the definitions is illustrated in Fig. 5.1. As 

indicated, total number of resting instants are in general higher for the new definition. 

 

Figure 5.1 Campagnol et al. 2013 definition of motion (left) modified definition of motion (right). 

The streamwise position (x) of one sample tracked particle from experiment R10a (see Table 

4.1) is given in Fig. 5.2. The corresponding time series of the stream-wise particle velocity (u) 

was characterized by temporal fluctuations. Both definitions of motion were applied to the time 
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evolution of streamwise and the clipping function M introduced in chapter 2 separated the 

instants of motion and rest (Fig. 5.2). A preliminary choice was made in both definitions to 

consider movements of a particle around a stable position as stillness. According to such a 

choice, the velocity series in Fig. 5.2 illustrated both neat motion and fluctuations that could 

be considered as vibrations to be filtered out. 

 

Figure 5.2 Sample of a tracked particle history: temporal evolution of particle position (x), velocity (u), and M as 

the status of the particle at each instant identified with the criterion of Campagnol et al. [2013] and the modified 

one (upper and lower diagram, respectively).  

5.3 Comparison of definitions  

In the following, the two definitions of motion were applied on particle tracking data from 

experiment R10a to measure some kinematics and compare the statistical results. 



5.3 Comparison of definitions 57 

 

5.3.1 Statistics of instantaneous velocities  

Figure 5.3 shows the Probability Density Function (PDF) of u for the statuses of stillness and 

motion identified with both the former definition of Campagnol et al. [2013] and the new 

criterion. The peak of the PDF for stillness (Fig. 5.3a) shows that most of the instantaneous 

velocities at rest fluctuate around zero. However, the right tail indicates that low probabilities 

of higher velocities also exist and they are related to particle shaking and short displacements, 

which were considered as stillness by the identification criteria. As one would expect, the 

instantaneous velocity values for motion are significantly higher (Fig. 5.3b), proving that both 

definitions depict a clear separation of the two populations. However, a comparison between 

the individual peaks of the PDFs in Fig. 5.3b and the right tails of the PDFs in Fig. 5.3a 

indicates that a large number of short displacements that were labelled as motion by the former 

criterion were instead identified as instants of rest by the new one. 

 

 

Figure 5.3 Probability Density Function (PDF) of instantaneous velocity for particles at rest (a) and motion (b) 

considering both the criterion of Campagnol et al. [2013] and the new one.  
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5.3.2 Statistics of hop length, hop duration and hop-averaged velocity 

The total number of hops detected by each definition of motion is summarized in Table 5.1 

together with the statistical properties (mean and standard deviation) of the hop-averaged 

kinematic quantities. The total number of hop lengths detected using the new criterion (240) 

was significantly lower than that (620) of hops detected by the criterion of Campagnol et al. 

[2013]. In addition, the first- and second-order statistical properties demonstrate how the 

different criteria for the definition of motion impacted the resulting values. The mean value of 

hop length increased using the new criterion, the same happening also for particle velocity and 

time of motion. The standard deviation of the samples also increased, but less than the mean 

value, thus resulting in a lower coefficient of variation. 

Table 5.1 Statistical moments (mean and standard deviation) of hop-averaged kinematic quantities for the 

criterion of Campagnol et al. [2013] and the new one. 

 Criterion by Campagnol et 

al. [2013] 

New criterion 

Number of hops 620 240 

mean(∆x)(mm)
 

16.2 41.5 

std(∆x) (mm)
 

40.4 56.3 

cv(∆x) (-) 2.5 1.36 

mean(u∆x) (mm/s)
 

20.7 50.7 

std(u∆x) (mm/s) 27.5 35.2 

cv(u∆x) (-) 1.33 0.69 

mean(∆tm) (s) 0.3 0.8 

std(∆tm) (s)             1.1 1.6 

cv(∆tm) (s)             3.67 2 

 

The PDF of ∆x obtained using the two criteria is presented in Fig. 5.4. The occurrence of the 
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shortest hop lengths was higher for the criterion by Campagnol et al. [2013] than for the new 

one. The PDFs of mt and xu  are illustrated in Figures 5.5 and 5.6, respectively. The PDF of 

mt  indicates how the new definition filtered short-duration motions. The PDF of xu  also 

presented a much bigger right tail and vanishing presence of very low values when the new 

criterion was used. 

 

Figure 5.4 PDF of hop length for the criterion of Campagnol et al. [2013] and the new one. 

 

Figure 5.5 PDF of time of motion for the criterion of Campagnol et al. [2013] and the new one. 
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Figure 5.6 PDF of hop-averaged particle velocity for the criterion of Campagnol et al. [2013] and the new one. 

The average of moving particles mN , Eulerian porosity m

A , total number of entrainments eN  

and disentrainments dN  and finally the average of entrainment and disentrainment rates E , 

D are given in Table 5.2. 

Table 5.2 Mean values of Eulerian quantities calculated by each definition of motion 

 

As presented in Table 5.2, the total number of particles at motion identified by Campagnol 

et al. [2013] is higher than those recognized by the modified definition of motion and as a result 

Eulerian porosity m

A also increases. The behaviour of porosity against those of other Eulerian 

measurements shows that the quantities are significantly correlated with porosity. As seen in 

Table 5.2, for example, with a 6 percent increase of porosity the entrainment and 

disentrainment rates were almost doubled. 

 
mN   m

A  
eN  

dN  ( / )E mm s  ( / )D mm s  

Campagnol et al. 

[2013] 

16.64 0.34 839 875 0.0043 0.0045 

Modified definition  15.56 0.32 379 419 0.0019 0.0021 
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5.4 Effect of using a threshold for hop length 

Some previous studies introduced a threshold for hop lengths to be included in the analysis of 

the bed-load sediment transport. For example, Drake et al. [1988] considered only hop lengths 

longer than one particle size, while Campagnol et al. [2013] used a threshold of 1/30 the 

particle size.  

Introducing a threshold might bias the data sample or, differently, a process might be self-

similar in relation to a threshold in certain ranges. The concept is qualitatively illustrated in 

Fig. 5.7, where an imposed threshold initially affects a statistical moment of a quantity, after 

that a self-similarity range is present, then the moment varies again. In principle, a threshold 

located in a self-similarity range would not bias the data; the opposite would happen for a 

threshold out of that range. 

 

Figure 5.7 Qualitative indication of sensitivity of a quantity to some threshold. 

Considering the new criterion for identification of motion, the sensitivity of the hop length 

∆x hop-averaged velocity u∆x and time of motion ∆tm was assessed to check the possibility to 

remove short hops. A series of thresholds (from 0.1 to 10 times the particle size) was introduced 

and the statistical behavior of the kinematic quantities was analyzed. Results are depicted in 

Fig. 4.8, demonstrating that the mean and median values of all the quantities constantly increase 

as the threshold becomes larger, while the standard deviation is gradually falling for the hop 

length and the mean velocity, while increasing for the time of motion. From the analysis, no 

self-similarity range could be recognized. The Cumulative Density Function (CDF) of hop 

length, hop-averaged velocity and time of motion was computed for different thresholds, and 

results are presented in Fig. 5.9. The CDF of the quantities progressively shifts right-wards as 



62 Post-processing of particle tracking data 

 

 

 

the threshold for ∆x is increased. This behaviour obviously reflects the fact that a larger 

threshold results in the absence of shorter hop lengths in the averaging sample. Therefore, a 

bias of the sample due to any chosen threshold was demonstrated, analogously with what was 

obtained for the moments of the distributions (Fig. 5.8).  

 

 

 

Figure 5.8 Statistical moments (mean, standard deviation, and median) of kinematic quantities using different 

thresholds for hop length: (a) hop length, (b) hop-averaged velocity, (c) time of motion.  
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Again, any choice is possible. The one preferred here is to use no threshold but, in addition, 

the important implication of the presented results is again that any statistical depiction of the 

sediment transport process must be accompanied by a clear description of the methods used 

for the analysis. 

 

 

 

Figure 5.9 CDF of quantities using different thresholds for hop properties: (a) hop length, (b) hop-averaged 

velocity, (c) time of motion. 
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5.5 Conclusions  

Conceptual/operational issues emerge when post-processing PTV data for bed-load sediment 

transport. Some of these issues were here highlighted and addressed on the basis of an 

experiment where image processing was applied to track the position of individual bed-load 

particles over time. Two issues considered are (i) definition of motion and stillness states for 

particles and (ii) possibility to introduce a minimum threshold for hop length. The sensitivity 

of resulting statistics of particle motion to different operational choices was explored. The main 

conclusions from the analysis of post-processing data are given in the following: 

1. A framework for analysis of particle kinematics requires identification of particle state, 

thus a clear definition for instants of motion and rest is necessary. 

2. The results of a statistical analysis indicated that data samples were highly affected by 

criteria chosen to recognize motion and stillness. 

3. Applying a threshold for minimum hop length also biased the data samples as no self-

similarity range could be detected. 

4. In general, it is strongly highlighted here that thorough description of the strategies used 

for analysis is essential to make any data set suitable for comparison with other ones. In 

the absence of such a description, it is impossible to interpret possible differences among 

data from different studies. 

5.6 General remark 

The above results prove that statistics of particle motion are highly sensitive to different post-

processing algorithms. The criterion to be privileged is an arbitrary choice of the researcher. 

Following a declared intention to filter out particle vibration, the modified criterion was here 

preferred. These considerations strongly call for thorough explanation of the post-processing 

algorithms used by any researcher, in the absence of which comparison among different data 
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sets would be majorly flawed. 
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Chapter 6 Lagrangian measurements 

Experiments conducted under different stage values 
* */ cu u  (see chapter 3) resulted in datasets 

obtained from automatic tracking of individual particle motions (see chapter 4). These rich data 

collections provide the basis for defining the underlying forms of the distributions of 

Lagrangian quantities described in Chapters 1 and 2. In this chapter, individual properties of 

several up to many particles will be put together to build the samples. “Statistical analysis” will 

then represent the form and moments of the distribution of these samples.  

Of particular interest, are the distribution of streamwise particle velocities, the distribution of 

particle hop distances and associated travel times, and the distribution of resting times. In the 

following sections, these distributions will be explored and the results will be compared with 

earlier works.  

6.1 Particle instantaneous velocity  

This section turns to the determination of the instantaneous velocity distribution for the moving 

and still particles, u1 and u0, respectively. Labels 0 and 1 refer to the clipping function defined 

in (2.1) and to the labelling procedure described in section 5.2. Instantaneous velocities are 

calculated based on displacements within subsequent frames as:  

, ,, i t t i t
dxu dx x x

t   


         (6.1) 

Several thousands of particle velocity values were obtained for each experiment. Samples of 

instantaneous velocity distributions for particles at rest and motion are given in Figs. 6.1 and 

6.2, respectively. Negative values represent particles vibrations around a fixed position. These 

vibrations were recognized as stillness when analyzed with the proposed criterion for definition 

of motion. Presented results indicate a separation between the distributions of moving and still 
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particles. Regarding particles at rest u0, the probability distribution function (PDF) is (almost) 

centered on zero.  

 

Figure 6.1 Probability distribution of instantaneous velocities for still particles u0. Results from Experiment R7. 

In contrast with Lajeunesse et al. [2010]; Rosebery et al. [2012]; and Furbish et al. [2016] who 

found an exponential form of distribution for the velocity of moving particles u1, a truncated 

Gaussian form of distribution approximated the results in this study (Fig. 6.2). The finding is 

consistent with those reported by Martin et al. [2012], Ancey and Heyman [2014] and Heays 

et al. [2014] who also found that a Gaussian function closely matched the distribution of 

particles at motion. Dissimilar forms of distributions for the velocity of moving particles are 

due to different experimental set-up and measurement techniques. For example, the definition 

of motion in this study recognized short vibrations as rest and thus small displacements and 

subsequently the associated velocities were excluded from the statistical analysis. On the other 

hand, the slower frame rate used in this study (32 fps), compared to for instance, the 250-fps 

data of Lajeunesse et al. [2010] could not capture the subtle changes at slower particle 

velocities. It is however important to note that the tails in either form of distributions (the 

truncated Gaussian or exponential laws) show that the highest measured particle velocity does 

not exceed the mean fluid velocity (U=363.6 mm/s is the mean fluid velocity for Exp. R7, see 

Table 3.1).  
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Figure 6.2 Probability distribution function for instantaneous velocities of moving particles u1 (Experiment R7) 

In Fig. 6.3 measurements of normalized particle velocity /u V
s
 for the full range of experiments 

are compared to those reported by five previous investigations. Here, V Rgd
s
  is the particle 

settling velocity. Lee and Hsu, [1994], and Abbott and Francis, [1977] tracked the motion of 

individual particles over a rigid non-erodible rough bed while the results of Fernandez-Luque 

and Van Beek, [1976], Nino and Garcia, [1994] and Lajeunesse et al. [2010] correspond to 

erodible beds. As indicated in Fig. 5.3 except for the value corresponding to the lowest point 

of 
*

/u V
s  found in this work, the average of particle velocities almost linearly increases with 

the stage value pointing the constant value of 
*

/u u . As described in chapter 3, the results of 

velocity measurements and shear velocity calculation using DOP2000 for the experiment with 

the lowest discharge (Q=12 l/s) were underestimated. This might best explain why the 

normalized value of (
*

/u V
s ) is slightly dispersed form the linear trend. A closer inspection also 

shows that particle average velocity in fixed bed experiments is higher than the experiments of 

erodible bed suggesting that particles entrained by the flow move faster over a fixed bed than 
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above a mobile one. 

 

Figure 6.3. Average particle velocity / su V  vs * / su V  measured by different researchers. FB represents a fixed 

bed and MB stands for a mobile bed configuration. 

6.2 Experimental censorship in measurements of hop properties 

As said earlier, particle motion recording offers high-resolution data for the statistical analysis 

of bed-load kinematics. Since the application of these techniques is growing it is therefore 

valuable to pay attention to what is truly being measured. Fig. 6.4 illustrates the sketch of 

experimental measurements. With special reference to intermediate range of scale and finite 

time and space domains, trajectories of tracked particles can be divided into complete and 

incomplete trajectories. Complete trajectories (also known as intermediate trajectory, and hop) 

are identified as trajectories for which motion from entrainment to disentrainment is entirely 

detected within the observation area. In contrast to complete trajectories, incomplete 

trajectories correspond to those that are only partially detected within the observation scale. 

Fig. 6.4 illustrates examples of complete and incomplete trajectories. It should be mentioned 
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that an incomplete trajectory is phenomenologically a segment of a complete one which, due 

to the finite observation scale, is non-completely observed and is therefore censored. In 

conclusion, one should bear in mind that during a visual experiment, due to the limited scale 

of observation complete hops are detected only for a portion of tracked trajectories and as a 

result, the associated measurements are biased by experimental censorship.  

 

Figure 6.4 Schematic illustration of hop measurements and experimental censorship. X is the total distance that 

each particle travels during its observation. 

First and second-order statistical moments (mean and standard deviation) together with 

coefficient of variation /cv    for hop related quantities (length, time of motion and velocity 

/ m

xu x t    ) were analyzed for a range of spatial scales in Fig. 6.5. The scale dependence of 

moments was investigated using the constant width (Ly=200 mm) and increasing the 

observation length in the streamwise direction (Lscale). The scale length was then normalized 

by the entire length of observation (270 mm).  

Fig. 6.5a and Fig. 6.5b demonstrate that when the observation scale is increased the average 

and standard deviation of hop lengths and hop durations also progressively grow, showing that 

enlarged observation areas enable the measurement of larger hop lengths and subsequently 

longer durations. The coefficient of variation remained constant after Lscale/Lframe=30. As 

depicted by Fig. 6.5c, in contrast to the behavior of hop length and hop duration, the mean and 
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standard deviation of hop averaged velocity are scale independent, suggesting that hop average 

velocity is invariant of scale. 

The scale analysis examined the impact of spatial censorship. Associated results (Figs. 6.5a 

and 6.5b) prove that the observation scale continuously censors the complete hop lengths and 

their durations, telling that further progress is required in determining the cost of this 

censorship. Roseberry et al. [2012], Fathel et al. [2015] and Furbish et al. [2016] were 

probably the first studies who mentioned experimental censorship, however they did not 

propose a strategy to compensate it. 

In the following, the statistical distribution of measured hop lengths and associated durations 

will be explored and the biased mean values of quantities will be calculated from their 

distribution. Ensuing the analysis of hop quantities, unbiased mean values will be then 

calculated using the method proposed by Ballio et al. [2017] and results will be compared with 

the biased measurements. Following that, the variations of unbiased and measured (biased) 

mean values of hop lengths and hop durations with shear velocity will be studied and results 

will be compared with previous literature investigations. To complete the investigation of hop 

properties, measurements of times of rest and the variation of their average values with shear 

velocity will be given. Please note that for a simplicity in terminology, herein, ( )   represents 

a complete hop property, and ( )incomplete   stands for an incomplete property.   refers to any 

hop related quantity. Measured properties are also called ‘biased’.  
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Figure 6.5 Scale analysis of hop measurements. a) hop length, b) hop duration and c) hop averaged velocity 

(Experiment R10).  

6.3 Hop length  

In this study, for the range of validated experiments over 700 complete and more than 5000 

incomplete trajectories were identified within the observation window (270×200 mm2). Figs. 

56.6 and 6.7 depict examples of the distributions of complete and incomplete hops in this study. 

Distributions are related with measurements in Experiment R10. First and second order 

statistical moments (mean and standard deviation) of measured hop lengths are given in Table 

6.1. 
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Figure 6.6 Probability distribution of complete hop lengths. Dashed line represents gamma distribution (Results 

from R10).  

As indicated in Fig. 6.6, a gamma function approximates the distribution of measured hop 

lengths in this study. Presented results are in consistence with the findings of Roseberry et al. 

[2012] who found a similar form of distribution in their visual experiments of coarse sand 

particles. With respect to other reported datasets, Lajeunesse et al. [2010] suggested a 

distribution with a mode at finite hop distance, Nakagawa and Tsujimoto [1980] suggested an 

exponential distribution and Fathel et al. [2015] and Furbish et al. [2016] reported a Weibull 

distribution. As stated by Martin et al. [2012] “other experiments…have found only 

exponential or gamma (hop distance) distributions [Hassan et al., 1991; Schmidt and 

Ergenzinger, 1992; Habersack, 2001; Lamarre and Roy, 2008]”.  

The distribution of data in Fig. 6.7 shows that incomplete hop lengths (which are indeed 

censored hops) are dispersed and their sizes vary from a few particle diameters up to 270 mm 

(identical to the length of observation). A comparison between Fig. 6.6 and Fig. 6.7 and the 

difference between the mean value of complete and incomplete hops (Table 6.1) clearly 

indicates that the observation scale used for measurements was relatively short compared to 

physical length of the process. This further suggests that, the mean values of complete hop 

lengths (see Table. 6.1) should be considered biased and Fig. 6.6 may not represent the true 
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form of distribution associated with complete hop lengths. 

 

Figure 6.7 Probability distribution of incomplete hop lengths (Experiment R10).  

In the present study, unbiased (true) values were inferred from the biased ones following the 

method proposed by Ballio et al. [2017]. In this method, the unbiased average of measurements 

is obtained using the full Lagrangian history (including complete and incomplete trajectories) 

of tracked particles and the number of detected entrainments. The proposed formula is: 

unbiased            i ex X N          (6.2)
 

where iX  is the total streamwise distance that particle i travelled within the observation scale 

(see Fig. 6.4) and e
N  is the total number of detected entrainments with respect to the same 

spatial scale. The variation of normalized value of biased (measured) and unbiased hop lengths 

(true ones) ( ) /biasedx d  , ( ) /unbiasedx d   with stage value * *

cu u together with a summary of 

previous investigations are given in Fig. 6.8. 
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Experimental results are scattered by almost two orders of magnitude. Despite the variations 

in the normalized value of biased hop length, a general consistency in the findings of different 

studies suggest that on average, complete hop length is increasing with shear velocity. Some 

studies [e.g., Lee and Hsu, 1994; Lajeunesse et al., 2010] pointed out a steep increase whereas 

the measurements of this work show a much slower growth and is rather consistent with the 

data of Ramesh et al. [2012] and Campagnol et al. [2013]. 

The ratio between the unbiased mean value and the biased average of hop lengths is 2.9 and 

17.7 for the lowest and the highest discharge respectively. This significant difference highlights 

the strong evidence of censorship in the measurements. Additionally, Fig. 6.8 shows that the 

ratio between the unbiased means and measured (biased) values of averaged hop lengths grows 

with shear velocity. This further demonstrates that experiments with higher stage values are 

subject to more imposed experimental censorships. 

 

Figure 6.8 Variations of biased and unbiased mean values of hop lengths with shear velocity, comparison among 

different literature data. 
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6.4 Hop duration (Time of motion) 

Probability distribution of time of motion for complete hops is given in Fig. 6.9. Martin et al. 

[2012], Fathel et al. [2015], and Furbish et al. [2016] reported that the distribution of hop 

travel times was best approximated by an exponential function. In this study, an exponential 

form did not match the distribution of hop durations. Despite the different types of distribution 

in the present study and the cited works a peak at origin was found similarly for all the 

measurements of hop duration suggesting the presence of many short intermediate trajectories 

in the experimental data. As discussed before, hop length measurements suffer from the 

experimental censorship and thus, by definition, measurements of their durations are also 

biased (see Fig. 6.4) and the validity of such distribution can be also questioned. 

 

Figure 6.9 Probability distribution of complete times of motion. Results from Experiment R10. 

Complete hop lengths were plotted against their times of motion in Fig. 6.10a in which the 

nonlinear relationship between hop length and its duration (also found by Fathel et al. [2015], 

and Furbish et al. [2016]) demonstrates an increase of complete hop length with the latter. As 

the first trend, hop lengths were growing rapidly for ∆tm=0-5s and for the second one much 

slower increase of hop length for ∆tm >5s was observed. Similar behavior becomes also obvious 
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from Fig. 6.10b where a steep increase of hop duration with hop averaged velocity is evident 

for ∆tm =0-5 and then the velocity nearly flattened out for ∆tm > 5s. Fig. 6.10 also shows that 

short travel times are in general associated with small hop lengths and small velocities where 

particles are in frequent interactions with the bed. Although the experimental setup did not 

enable side visualization, yet it is expected that the dominant types of bed-load transport for 

such hops were rolling and sliding. The longer times of motion, on the contrary, result in farther 

distances between entrainment and disentrainment when particles find the necessary time to 

reach higher velocities and overcome the interactions with the bed and consequently travel 

longer. The predicted dominant mode of transport for these conditions could be expected to be 

saltation.  

 

Figure 6.10 a) hop duration vs hop distance, b) hop duration vs hop averaged velocity. Data of all experiments. 

The correlational analysis makes one expect a cross-effect in censorship due to the finite 

imaging window size where long hop lengths and their associated durations are censored (see 

the tail in Fig. 6.10a). The longest time of motion in our experiments was measured as 3.2s, 

significantly shorter than the duration of recordings (50 s) suggesting that the time scale of 

observation did not bias the results.  

In order to evaluate the cost of spatial censorship, unbiased mean values of hop durations were 

also reconstructed as [Ballio et al., 2017]:  
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unbiased

m m

i et T N           (6.3) 

where 
m

iT  is the total duration of motion for particle i. The biased and unbiased averages of 

complete times of motion were normalized for each experiment
*( ) /mt u d  , and their 

variations with shear velocity are presented in Fig. 6.11.  

As shown in Table 6.1, and Fig. 6.11, the true mean value of time of motion is at least twice as 

large as the biased measurements. The variation of mean biased time of motion demonstrates 

a weak increasing trend with higher shear velocities whereas, the unbiased value of hop 

duration was associated with a steep rise. Results in the present study contrast with the 

dispersed data of Lajeunesse et al. [2010] where no specific trend was observed for the 

variation of hop duration.  

  

Figure 6.11 Variation of normalized averaged hop durations (biased and unbiased values) with shear velocity, 

comparison among different literature data. 
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6.5 Time of rest 

A literature survey indicated that little attention was paid to quantify particle resting time and 

most of previous observational studies focused on particle motion. In this study, the framework 

was used to measure times of rest between subsequent disentrainment and entrainment events. 

Probability distribution of resting times are shown in Fig. 6.12. A distribution with a peak at 

origin and a tail toward higher values was also observed for time of rest as the counter part of 

hop duration. A comparison between Fig. 6.9 and Fig. 6.12 indicates that in general, within the 

observation scale most of measured particle motions and rests are short in duration. 

Nevertheless, the longer tail in Fig. 6.12 suggests the existence of relatively long rests ( rt >9 

s) in contrast to the motion duration. The longest rest in this study was measured as 29 s 

suggesting that the 50 s of observation may not be enough to capture possible long rests and 

thus hop rests are suggestively biased by the time scale of experiments. The investigation of 

censorship for time of rest is out of the scope of the present study. The variation of normalized 

time of rest * /rt u d was analyzed for a range of increasing shear velocities in Fig. 6.13 

showing that the mean value of hop rest is decreasing for higher discharges. This finding is 

consistent with that of Nino and Garcia [1998] who expressed that the intensity of near bed 

turbulence increases with shear velocity, and as a result the resting particle is driven into the 

motion shortly after a disentrainment.  
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Figure 6.12 Probability distribution of complete times of rest. Results from Experiment R10. 

 

Figure 6.13 Variation of normalized time of rest with stage value. 
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6.6 Lagrangian time porosity 

From a Lagrangian standpoint, time porosity can specify the relative duration of motion and 

rest periods of a particle or a group of particles. Strictly speaking, the Lagrangian movement 

porosity T
m(i) could not be computed from (2.7) due to the limitations of the observation 

window where each particle was observed only for a fraction of the total time. However, one 

can operationally estimate the temporal porosity for a single particle as TA
m(i) ≈ TA

m(i)/TA(i), 

where TA
m is the total time of movement for particle i during the time it was detected within 

the observation area A. Figure 6.14 shows the probability distribution of TA
m. The plot 

indicates that TA
m = 1 is the most probable value, corresponding to particles that never 

experienced periods of rest within the measuring space-time window. This result is, however, 

not representative of the behavior of a particle and is again connected to the limited length of 

the observation area, hence generating a strong bias of the distribution. 

 

Figure 6.14 PDF of Lagrangian time porosity (Experiment R10). 

The next task is to estimate the asymptotic value m  for the Lagrangian time movement 

porosity. On the basis of the available data, the only possible expression among the alternatives 

discussed in chapter 2 is evaluating m  through{ }m

T A . Calculating the latter, a value of 0.724 
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is obtained. However, it should be noted that values for TA
m(i) for the different particles of the 

sample were not calculated over a unique T value, thus biasing a straightforward application of 

(2.22) that was derived under the hypothesis of the same observation time for all the particles. 

In other words, the limited observation area introduced the correlation (that was not embedded 

in (2.22) between the time spent within A and the time spent in motion. To overcome this, the 

sample average has to be operationally evaluated as: 

 

 






N

i

A

N

i

m

A
m

iT

iT

1

1  (6.4) 

In this way, a value of m  = 0.530 is obtained.  

The same procedure was applied to all the experiments. Variation of m  with shear velocity is 

given in Fig. 6.15 where an increasing trend is observed. This clearly sets out that higher fluid 

forces increase the relative duration which a particle spends in motion. 

 

Figure 6.15 Variation of Lagrangian porosity with stage value. 
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6.7 Synthesis  

Statistics of particle hops were obtained for all the performed experiments. Distributions were 

explored and mean values of the hop properties (length, duration) were computed from the 

distributions. However, many incomplete hops were observed when a particle crossed the 

boundaries of the observation area. Mean values computed above were therefore considered 

biased, because many particle hops had to be excluded from the samples as non-completely 

observed (incomplete trajectory). Unbiased average values of hop lengths and hop durations 

were calculated, and results proved that these values were significantly higher than measured 

(biased) ones, further highlighting the significant impact of censorship. The relatively long 

rests measured in this study suggested that the time scale of observation can also bias the results 

of time of rest. Biased mean values due to the spatial censorship were reconstructed for the 

range of experiments performed in this study, yet future studies should account properly for 

the impact of time censorship in the measurements of resting times. Lastly, using the arguments 

above, due to the impact of censorship it is difficult to accept if the reported results of different 

experimental studies (including those presented here) are truly representative of distribution 

forms of hop length and duration. 

Main findings of this chapter are summarized below: 

▪ A clear separation between the distributions of instantaneous velocities of moving and 

still particles indicated the efficiency of the proposed criterion for the definition of 

motion and rest  

▪ A comparison between the results of particle velocities indicated that on average 

velocity of entrained particles over a fixed bed configuration is higher than those related 

with a mobile bed. It was also observed that particle velocity increases with shear 

velocity 

▪ Scale analysis of hop length and hop duration indicated that the mean and standard 

deviation values increase as the spatial scale is enlarged. It also reflects how the finite 

image size biases the measurements of hop length and hop duration 

▪ The ratio between the biased and unbiased mean values, indicate that spatial censorship 

significantly alters the statistical results  



84 Lagrangian measurements 

 

 

 

▪ The average of biased and unbiased values of hop length and hop duration were found 

to be increasing with shear velocity. The unbiased values were associated with a much 

steeper trend   

▪ Correlational analysis suggested that short durations are in general associated with 

small hop lengths and small velocities while the longer time of motions were positively 

correlated with increased hop distances    

▪ Resting times were shown to be decreasing with increasing shear velocities, and 

additionally they were found to be impacted by the time scale of observation. 

▪ Lagrangian time porosity was increased with stage value showing that higher values of 

shear velocity increase the total duration of particle in motion 
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Chapter 7 Eulerian measurements 

One of the main goals of the investigation of bed-load kinematics at small scales is to derive 

primitive quantities whose combination results in the calculation of sediment transport rate. 

Compared to field conditions where the sediment transport rate is typically measured over 

relatively long temporal scales by traps or indirect systems [e.g., Garcia et al., 2000; 

Rickenmann and McArdell, 2007; Krein et al., 2008; Turowski, 2010], performing experiments 

in a controlled environment (such as flume experiments) provides unique resolution 

capabilities to measure the entrainment rates and fluxes of sediments over various temporal 

and spatial scales [e.g., Frey et al., 2003; Böhm et al,. 2006; Zimmermann et al. 2008]. In this 

chapter, a series of Eulerian indicators of bed-load transport defined in chapter 2 will be 

analyzed. Combined with the measurements of these quantities, their scaling properties will be 

investigated and results will be compared with previous literature findings.  

7.1 Entrainment/Disentrainment rates 

After labelling particle motion (see the criterion of labelling in section 5.2), instants of 

entrainment and disentrainment were determined (obviously, with a temporal resolution 

depending on the frame rate of the camera). As depicted by Fig. 7.1, for a single particle, 

transition from label 0 to 1 and transition from 1 to 0 identify particle entrainment and 

disentrainment events respectively. Let one consider one sample experiment, test R10. Several 

particles were present and thus entrainment and disentrainment events were distributed in time 

and in space. Fig. 7.2 shows the progressive number of entrainments and disentrainments. For 

the presented experiment, after 50 seconds of observation a total number of 161 entrainments 

and 169 disentrainments were detected. The higher number of disentrainments indicates that in 

overall the experiment was associated with a slight deposition of particles.  
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Figure 7.1 Definition sketch for particle motion (labels 0/1), and examples of entrainment event (upword arrow) 

and disentrainment event (downward arrow). 

 

Figure 7.2 Progressive number of entrainments and disentrainments (Experiment R10). 

7.1.1 Temporal variation of E and D  

The Lagrangian data on single particle motion were averaged using appropriate spatial and 

temporal support scales (A and ∆t, respectively, identifying an area of the bed and a sampling 

interval) to obtain values for the entrainment and disentrainment rates. Time averaged 

entrainment and disentrainment rates ( E and D ) were quantified as:  
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w w

E E D D
A A

           (7.1) 

Where E , D can be calculated based on any given ∆t from (2.30) and (2.31).  

An example of time evolution of the entrainment and disentrainment rates for experiment R10, 

is depicted in Fig. 7.3 considering A = 270×200 mm2 and different values of ∆t. The shorter 

time scale used (0.05 s) was only slightly larger than the camera frame (1/32 s) and resulted in 

very low values of eN and dN : for example, the E value computed with (7.1) for just one 

entrained particle was equal to 0.007. The larger temporal scale (∆t=0.7s), which is larger than 

the mean duration of measured intermediate trajectories in this experiment (see Table 6.1), 

obviously enabled more entrainment and disentrainment events to occur in a single time 

interval; a value of E equal to 0.005 would in this case correspond to 10 entrained particles. 

Decreasing the temporal scale of sampling introduces less averaging of the fluctuation pattern: 

the signal for the lower time scale is characterized by noticeable intermittency (defined as the 

presence of zero values in the time series for E and D) and higher spikes. In addition to the 

temporal scale, the spatial one also affects the fluctuation pattern of entrainment and 

disentrainment rates. This is illustrated by Fig. 7.4 which is the counterpart of Fig. 7.3: a fixed 

temporal scale of 0.4 s was used with two different spatial scales (A=25×200 mm2 and 

A=270×200 mm2). The width of observation in streamwise direction was constant. The low 

peaks at 0.003 for E and D correspond to just one particle for the smaller area; for the larger 

one, values of 0.005 would correspond to 6 entrained or disentrained particles. Evidently, as 

for times, a larger spatial scale produces more averaging of fluctuations and reduces the 

intermittency of the entrainment or disentrainment process.  
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Figure 7.3 Temporal variation of E and D for fixed spatial scale (A=270×200 mm2) and changing the time scale. 

 

Figure 7.4 Temporal variation of E and D for fixed time scale (∆t=0.4 s) and changing the spatial scale. 
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7.1.2 Scale dependence of moments of E and D 

The first and second-order statistical moments (mean and standard deviation) of E and D 

were systematically analyzed for a range of temporal and spatial scales. The dependency of 

moments on the temporal scale was investigated using the following ∆ts: 0.05, 0.1, 0.2, 0.5, 1, 

2, and 3 s; these time intervals were made dimensionless using the average duration of 

intermediate trajectories for the current experiment ( 0.61 t s  ) (see Table 6.1). The spatial 

averaging scale for the analysis was maintained constant and equal to 270×200 mm2. For the 

spatial scale analysis, a constant ∆t = 0.4 s was used and the following areas were selected: 

25×200, 50×200, 100×200, 150×200, 200×200, and 270×200 mm2. All these areas had the 

same width of 200 mm while the scale was enlarged by increasing the length in the stream-

wise direction (L) that was normalized by the average length of intermediate trajectory ( x

=47.49 mm). Results are depicted in Fig. 7.5 and Fig. 7.6. The mean values of E and D were 

found to be scale-independent, meaning that numbers of entrained and disentrained particles 

increase linearly with the spatial and temporal scale used for sampling. By contrast, the 

standard deviation of the quantities decreases for increasing scale, reflecting the fact that 

averaging NE and ND over larger samples results in lower fluctuations. In both plots a scaling 

exponent close to -0.5 was obtained. Radice et al. [2009] proposed a mathematical derivation 

to support this exponent, and also provided arguments on deviations from this trend. They 

showed that for a non-correlated quantity the trend for the variance is an analytical power law 

with -0.5 exponent, with the deviation of experimental points from such trend being the effect 

of correlation. The values of exponents show that the E and D fields are not significantly 

correlated within the range of scales explored here.  
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Figure 7.5 Statistics (mean and standard deviation) of E and D for different temporal scales and a fixed spatial  

 scale (A=270×200 mm2). 

 

Figure 7.6 Statistics (mean and standard deviation) of E and D for different spatial scales and a fixed temporal 

scale (∆t=0.4 s). 
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7.2 Concentration and velocity of moving particles 

Fernandez-Luque and Van Beek [1976], Seminara et al. [2002], Parker et al. [2003], and 

Radice and Ballio [2008] expressed the solid discharge as the product of the areal concentration 

of sediments and of the grain velocity. In the following, first, the Eulerian concentration and 

velocity components will be individually measured and investigated within the proposed 

framework. These measurements will be then ingredients to calculate the Eulerian solid 

discharge. Lastly, sediment flux passing a reference line will be systematically investigated. 

Experimental results in this study will be discussed considering a variety of scales, starting 

from a resolution of few particle diameters up to the entire scale of observation. 

7.2.1 Eulerian Particle concentration  

An example of temporal evolution of moving particles ( )m

AN t  (number of particles at motion at 

each instant within the spatial area) for test R10 is presented in Fig. 7.7. Moving particles 

fluctuate from a low number of about 20 particles to more than 58 particles, with an average 

of 37. Consistent with previous measurements [e.g., Roseberry et al., 2012; Ancey and 

Heyman, 2014; Fathel et al., 2015], the fluctuation pattern reflects the associated balance 

between entrainment and disentrainment.  
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Figure 7.7 Temporal evolution of moving particles (R10).  

 

Figure 7.8 Temporal variation of particle concentration C. Tests in order; R17, R8 and R10. 

An example of temporal evolution of dimensionless particle concentrations for three stage 

values are given in Fig. 7.8. For the lowest stage value 
* */ 1.2cu u   the concentration of resting 

particles is higher than those at motion suggesting that the associated shear velocity does 
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initiate motions for many particles. On the contrary, for the highest stage value 
* */ 1.8cu u   

most of the particles present in the observation domain are at motion. For the experiment with 

* */ 1.4cu u   there is an approximate balance between the moving and still particles. The 

corresponding scale A in Figs. 7.7 and 7.8, was initially chosen to be sufficiently large 

(270×200 mm2) so that during any small time-interval ∆t, the difference between particles 

entering and exiting the reference area was relatively low compared to the total number of 

particles present in the support scale A. 

Fig. 7.9 represents the mean and coefficient of variation (as the ratio of standard deviation to 

mean) as a function of stage value. Additionally, a comparison of the present data with the 

erodible bed experiments of Radice and Ballio [2008] and Radice et al. [2013] is given. 

Presented results indicate that the concentrations of moving particles increased by an order of 

magnitude for the range of explored stage values. That is because a higher value of shear 

velocity allows for more particles to stay at motion within the observation scale. This can be 

also depicted by Fig. 7.8 in which the balance between the number of resting and moving 

particles changes with shear velocity. Additionally, Fig. 7.9 shows that in the cited experiments 

with mobile bed configuration concentration of moving particles are on average higher than in 

the present study. This difference is due to the nature of mobile beds in which bed particles can 

be eroded and contribute to the transport flux. In all experiments, the coefficient of variation is 

decreasing with stage value.  
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Figure 7.9 Variation of a) average and b) coefficient of varriation of concentration with stage value. Note the log 

scale for cv(Cm). 

7.2.2 Eulerian particle velocity  

Fig. 7.10 indicates the fluctuation patterns of the Eulerian velocity associated with the 

concentration rates depicted in Fig. 7.8. Eulerian velocity ( )m

Au t is calculated as the average of 

instantaneous velocities of moving particles ( )m

AN t at each instant in the time series. As 

indicated in Fig. 7.10 with the increase of stage value, particle velocity also increases and the 

pattern of velocity fluctuation becomes smoother due to the averaging over more velocity 

values. 
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Figure 7.10 Temporal evolution of instantaneous velocity corresponding to concentrations depicted in Fig. 7.8. 

An example of autocorrelation functions of ( )m

AC t and ( )m

Au t is given in Fig. 7.11. Considering 

the integral scale of correlation, these functions decay at about 2 and 1, for the concentration 

and velocity respectively. A comparison between the autocorrelation functions and the time 

scale of observation in these experiments (50 s) suggest that quantities are not affected by the 

temporal domain of observation. The variation of normalized velocity 
*/m

Au u was also 

compared with stage values in Fig. 7.12. Presented results suggest that except for the point with 

the lowest discharge (
* */ 1.2cu u  ), particle velocity increases with stage values (The reason for 

the deviation of this point from the trend is described in section 3.2.3). This finding agrees with 

those obtained for the Lagrangian analysis of velocities (see Table 6.1).  

A comparison between Fig. 7.9 and Fig. 7.12 indicates that Eulerian concentration and velocity 

both increase with the stage value. However, the rate of growth is much higher for the 

concentration of particles. This is in agreement with the erodible-bed data of Radice and Ballio 
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[2008] who also observed that concentration is more variable with shear velocity. The trend of 

variation of Eulerian velocities in Fig. 7.12 is aligned with the earlier finding of Lagrangian 

analysis which showed that the velocity of moving particles is higher above a fixed bed 

compared to those obtained over an erodible bed. 

 

Figure 7.11 Autocorrelation functions of concentration and velocity (R10). 

 

Figure 7.12 Eulerian average velocity as a sfunction of stage. 
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7.2.3 Scale analysis of statistical moments of concentration and velocity 

First- and second-order statistical moments (mean and standard deviation) of C and u were 

systematically analyzed for a range of spatial and temporal scales (Fig. 7.13). Due to similar 

behavior of temporal and spatial scales on averaging the properties, only results of spatial scale 

analysis will be documented in this study. 

 The dependency of moments on the spatial scale was investigated using the same spatial 

support scales used in the analysis of E and D (see section 7.1). All these areas had the same 

width of 200 mm while the scale was enlarged by increasing the length in the stream-wise 

direction (L) that was normalized by the total length of the frame in streamwise direction (270 

mm).  

 

Figure 7.13 Statistics (mean and standard deviation) of C and u for different spatial scales.  

As exploited in Fig. 7.13 the scale analysis of sediment flux components indicates that under 

weak bed-load transport and spatially uniform conditions the mean values of concentration and 
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velocity are independent of the scale of observation. Additionally, it is shown that the standard 

deviation decreases for both parameters. The scaling exponent of -0.50 is similar to scale 

analysis of E and D, indicating that C is uncorrelated at least within the ranges of investigation 

whereas the 0.5 value of exponent for the velocity indicates some deviations mainly due to the 

spatial correlation of velocity field. 

7.3 Solid discharge across a line perpendicular to the flow 

direction 

This section explores the results of calculated sediment flux across a line perpendicular to the 

main flow (2.19). In addition, the spatial analysis of sediment fluxes will be given. 

 

Figure 7.14 Indication of the reference line for crossing. Flow from right to left. 

 

The temporal evolution of solid discharge was calculated for a range of Δt starting from Δt = 

0.05 s up to Δt =3 s. Results are presented in Fig. 7.15 where the length of the reference line 

was constant (B=200 mm). The line was positioned in the middle of the frame at X=135 mm. 

(Fig. 7.14).  

Fluctuations of patterns of sediment flux show that for small temporal scales the process is 

intermittent with significant number of zero sediment fluxes while for increasing Δt the total 

number of zero values in the time series of solid discharge reduces providing a much smoother 

pattern. This is similar to the findings of Campagnol et al. [2012] for mobile bed configuration. 
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Figure 7.15 Temporal evolution of sediment flux passing through the vertical line for different values of ∆t 

scales (Experiment R10).  

 

The temporal evolution of solid discharge was also calculated for a range of various transverse 

line lengths starting from B= 5 mm up to B =200 m. The scale B was centered in the middle of 

the reference line and was expanded to both sides. For this analysis, the time scale was constant 

as Δt = 1 s. Fig. 7.16 depicts that similar to various temporal scales, the increased length of 

reference line also flattened out the fluctuations of spikes. The scale dependence of mean and 

standard deviation of q was also verified for a range of spatial and temporal scales in Fig. 7.18. 

The dependency of moments on the spatial scale was verified for the following transverse line 

lengths B=25, 50, 100, 150, 200 mm whereas the dependency of moments on the temporal 

scale was investigated using the following ∆t= 0.05, 0.4, 0.2, 0.7, 3 s. 
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Figure 7.16 Temporal evolution of sediment flux passing through the vertical line for different values of B, and 

Δt = 1 s (Experiment R10).  

 

 
 

Figure 7.17 Spatial and temporal scale analysis of q (Experiment R10). 
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As depicted by Fig. 7.17, and in consistence with previous findings for other Eulerian 

quantities, the average of q is also independent of the temporal and spatial scales while the 

standard deviation is shown to be decreasing. A power law with the exponent close to -0.5 was 

also obtained for the scaling behavior of standard deviations, representing that fluxes are not 

correlated.  

7.4 Feeding rates and sediment fluxes 

Fig.7.18 shows a comparison among the feeding rates, sediment fluxes passing through a 

reference line in the middle of the frame, and Eulerian solid discharge. 

 

Figure 7.18 Various sediment fluxes. 

As depicted above only for the experiments with the highest stage value 
* */ 1.8cu u   the 

Eulerian sediment fluxes per unit width are almost identical to the values of feeding rates, while 



7.5 Discussion and conclusions 103 

 

for the rest of experiments fluxes of transport are lower. This comparison suggests that (3.7) 

might underestimate the transport capacity of the flume at low discharges.  

7.5 Discussion and conclusions  

Eulerian quantities of bed-load transport concerning various spatial and temporal reference 

scales were studied in this chapter. Temporal evolutions of entrainment and disentrainment 

rates, concentration and velocity, solid discharge over a reference line, and Eulerian fraction of 

movement were explored. Their variations with stage value were also analyzed. Scale 

variability was verified for the mean and standard deviation of four quantities (E, D, C, u, q). 

Finally, results of Eulerian measurements were compared with those obtained from a 

Lagrangian standpoint to prove the synergies between the two approaches. The main 

conclusions derived from the analysis are: 

▪ The time series for the explored quantities (E, D, C, u, q) show that quantities are highly 

fluctuating for small support scales, for which the intermittency of the sediment 

transport process clearly emerges and high spikes are detected. For increasing support 

scales, the fluctuation pattern becomes ‘smoother’ due to averaging over larger 

numbers of quantities. 

▪ The mean values of E, D, C, u, q are scale independent, whereas a scale dependency 

was found for the standard deviation of these parameters. 

▪ The trend of variation of the standard deviation of E, D, C, q with a support scale was 

well approximated by a power law with exponent of –0.5, suggesting that these 

quantities are self-uncorrelated, at least in the ranges of scales explored in this work. 

These findings are consistent with those obtained in earlier works considering the flux 

of sediment over mobile bed. 

▪ It was shown that the key components determining the average transport rate exhibit 

different behaviors when correlated to the bed shear stress: in particular, the sediment 

concentration is much more variable with bed shear stress than the sediment velocity 
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Chapter 8 Synergies between Lagrangian and 

Eulerian approaches 

In order to prove the synergies between the two approaches and prove the validity of the 

framework for analysis used in the present work, results for Lagrangian and Eulerian quantities 

are compared in this section. 

8.1 Instantaneous velocity 

Suppose that there are N active particles in the system. From a Lagrangian point of view, first, 

the time average of instantaneous velocities for each particle is derived. The average of these 

values (average over N particles) can be calculated as{ }u . From a Eulerian standpoint, the 

average instantaneous velocity of all the active particles at each instant in the time series ( )m

AN t

and afterwards the mean value of these averages can be calculated as ( )m

Au t  which is a time 

averaged velocity. In principle, the time average is equal to ensemble average: 

{ ( )} ( )m

Au i u t           (8.1) 

This relationship is verified in Fig. 8.1 where the measurement of velocity from the two 

approaches yield identical results.  
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Figure 8.1 Comparison of velocities from the two approaches. Each square represents the results of one 

experiment.  

8.2 Bulk description – Eulerian fraction of movement 

Figure 8.2 shows the time series of the fraction of particles moving within the observation 

window, A
m(t). Its time average is 0.539, which is very similar to the Lagrangian time porosity 

obtained from 
A

m

T =0.521   m

A t with 1.7 % difference. Fig. 8.2 indicates that both 

Lagrangian and Eulerian porosities provide identical results further proving the validity of the 

proposed framework. 
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Figure 8.2. Comparison of m

A and m

TA . 

8.3 Sediment flux 

Sediment fluxes can be related to descriptors of particle motion through two main approaches: 

i) q C u  (2.16), C is the concentration and u is the particle velocity. This is a purely Eulerian 

relationship which can be applied at any spatial scale, as discussed in Ballio et al. [2014]. 

ii) q E x  (2.34) where E is the average of (Eulerian) entrainment rate and x is the mean 

value of unbiased hop length identical to the entrainment rate calculated by (6.2). This is a 

mixed Eulerian-Lagrangian relationship which should be applied to scales larger than the hop 

lengths. The sediment flux was calculated using both equations (i) and (ii), and results are 

presented in Fig. 8.3.  
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Figure 8.3 Comparison between sediment flux q derived from (2.15) and (2.34). 

A comparison between the calculated sediment fluxes in this work, indicates that the two 

expressions are related. By comparing the different formulations, it is interesting to notice that 

the information on the quantity of moving particles is embedded either in the concentration C 

(space porosity) or in the entrainment rate E (time porosity).   

In summary, a comparison between the results of Eulerian measurements and those obtained 

from a Lagrangian standpoint in this chapter prove the synergies between the two approaches. 

 

 

 

 

 



 

 

 

Conclusions  

In this study, a novel conceptual framework was used to investigate the Lagrangian and 

Eulerian kinematic properties of bed-load sediment particles moving over a fixed rough bed. 

The framework defines a number of relevant quantities, including particle instantaneous 

velocity, hop length and duration, rest time, concentration of moving particles, entrainment and 

disentrainment rates, solid discharge. 

Laboratory experiments were performed where the particle motion was recorded from the top 

using a CCD camera, and a PTV analysis of the captured images was performed to provide the 

time evolution of particle position as the basis for the measurements. A significant part of the 

work was devoted to avoiding tracking mistakes in the data samples. For one experiment this 

was achieved by manually fixing the PTV errors. This operation was extremely time-

consuming; therefore, for the other experiments, a visual validation procedure was used 

removing wrong tracks from the data sets. 

The kinematic quantities were defined accounting for states of particle motion and rest. 

Therefore, a definition for motion recognition was given. Differently from some other studies, 

the criterion proposed for motion identification did not impose a velocity or displacement 

threshold to define particle motion, and was rather based on the stream-wise instantaneous 

position of a particle. A comparison between values measured using different criteria for 

motion identification showed that statistics of particle motion are sensitive to the criterion that 

one uses. This sensitivity cannot be avoided; however, its quantification may help analysis of 

experimental data coming from different sources. 

From a Lagrangian standpoint, distributions of instantaneous particle velocity were obtained 

for all the performed experiments. Distributions for still and moving particles were well 

separated, with some overlapping that was mostly related with particle vibration around a 



 

certain position. The shape of the obtained distributions was compared with analogous 

observations from the literature, suggesting that different operational conditions can lead to 

different distributions. In a following part of the analysis, statistics of particle hops were 

investigated. It was noticed that, due to the finite size of an observation area, many particle 

hops had to be excluded from the samples as non-completely observed; the measurements 

were, therefore, biased. An attempt was made to obtain better estimates of mean values for hop 

length and duration from the total travel length (or the total time of motion) for all the particles 

and the number of observed entrainment events. The estimates obtained in this way were 

significantly larger than those obtained from the sample of complete hops, and were shown to 

increase with shear velocity. Particle velocity also increased with the shear velocity, whereas 

the particle time of rest was decreasing. Due to the experimental censorship of particle hops, 

the distributions presented for hop properties (those reported by previous findings as well as 

those presented in this study) might not represent the true form of distributions. 

Eulerian measurements were performed with reference to suitably chosen spatial and temporal 

scales. The variability of the first and second moments of several parameters with the support 

scale was verified. Quantities like the entrainment and disentrainment rates, the areal 

concentration and velocity and the solid discharge are highly fluctuating for small support 

scales while for, the larger scales, the fluctuation patterns became progressively smoother. 

Consistently with the results of earlier works that considered the flux of sediment over a mobile 

bed, it was also found that, under the explored bed-load transport conditions, mean values of 

the mentioned quantities did not vary with the scale of observation, while for larger scales the 

standard deviation was decreasing by a power law with exponent of -0.5. This finding endorsed 

that these quantities are self-uncorrelated, at least in the ranges of scales explored in this work. 

It was shown that the key components of the average transport rate exhibit different behaviors 

when correlated to the bed shear stress: in particular, the sediment concentration was much 

more variable with bed shear stress than the sediment velocity. 

The results of some Eulerian measurements were compared with those obtained from a 

Lagrangian standpoint. Almost identical values were obtained for particle velocities, porosities, 

and sediment fluxes, proving the complementarity between the two approaches.  

 

 

 



 

 

 

Notation  

U = bulk velocity of the flow 

R = hydraulic radius 

d = diameter of particle 

w = volume of particle 

/  = viscous sublayer  

u* = shear velocity 

sk  = boundary roughness height  

*q  = Dimensionless sediment transport rate per unit width 

sq  = volumetric sediment transport per unit width  

Res  = Settling Reynolds number  

* */ cu u  = Stage value   

pL  = particle trajectory 

pV  = mean velocity of a travelling particle within its trajectory 

*  = Shields number  

AC  = areal concentration  

Av  = areal average velocity  

i = index for particle 

j = index for events 

t = time coordinate 



 

x = stream-wise coordinate 

x0 = location of a target line 

t0 = time at which a particle reaches a target line 

A = reference bed area 

L = stream-wise extension of A 

N = number of particles in the sample 

NA = number of particles within A 

m
AN  = number of moving particles within A 

r
AN  = number of particles resting within A 

J = number of events within observation of one particle 

T = total time of Lagrangian observation 

  = average over particle events 

  = average over time 

'  = deviation from a temporal mean 

   = average over particles 

 A  = average over particles within A 

Mm = clipping function for particle motion 

MA = clipping function for particle within AExpected values 

m  = expected value of porosity 

 = m+r, expected value of t 

m = expected value of tm 

r = expected value of tr 

 = expected value of u 

m = expected value of um 

 = expected value of x 



 

 

 

m

AC  = concentration of moving particles within A 

m

Au  = average velocity of moving particles within A 

D = disentrainment rate  

E = entrainment rate  

m
A  = Eulerian porosity 

m
N  = relative number of particles in motion  

m

T  = Lagrangian time porosity 

rl  = length of a reference (target) line 

q = sediment flux crossing a target line 

td = instant of disentrainment 

te = instant of entrainment 

Tm = total time of motion for one particle 

Tr = total time of rest for one particle 

u = instantaneous particle velocity 

ux = average particle velocity within a hop 

t = duration of a particle event (motion+stillness) 

tm = duration of a motion event 

tr = duration of a stillness event 

x = length of particle motion (or, hop length, or, displacement in a motion event) 

 = distance travelled by a particle within T 

vz  = measured vertical distance  

bz  = bed elevation 
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