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Abstract

As a result of their low manufacturing costs, good performance and their capabil-
ity to work in large pressure head ranges, external gear pumps have become widely
employed in a variety of applications: from hydraulic fluid power systems to the
petrochemical industry. The study presented here covers three important aspects
related to the two- and three-dimensional simulations of gear pumps when a finite-
volume method with a collocated grid is used (which is probably the most common
approach in commercial codes). First of all, large pressure heads and small gaps
in the gearing region result in extreme pressure gradients that significantly limit
the stability of the pressure-velocity coupling algorithms employed in the solution
of the fluid equations. Besides, results dependence on user-defined matrix solu-
tion parameters still exists in codes like OpenFOAM R©, which was the main CFD
tool selected for this thesis. Dealing with this problem, implementing alternative
pressure-velocity coupling algorithms and selecting the best compromise in accu-
racy and convergence speed is the first scope of this thesis. Secondly, when the 3D
simulation of helical pumps is considered, most available mesh motion algorithms
require cycles of mesh deformation and replacement, which results in a tremendous
computational cost. A simple, general and fully automatic approach to handle
the required mesh modification process in two- and three-dimensional gear pump
simulations (for both spur and helical gears) is presented here with the main aim
of minimizing the use of computational resources while maintaining generality and
ease of use. Finally, when a three-dimensional turbulent flow is considered, the
case complexity typically forces the use of the U-RANS approach, since a properly
resolved LES simulation would required excessive refinement leading to an enor-
mous computational cost. As a compromised solution, a hybrid model (belonging
to the so-called second generation U-RANS models) has been developed to over-
come some of the deficiencies of classical U-RANS approaches while achieving a
significant cost reduction over LES.

Keywords: helical gear pump, p-U coupling, dynamic mesh, hybrid turbulence
model
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Chapter 1

Objectives and scope

1.1 Introduction

External gear pumps (EGP) play a major role in the framework of positive dis-
placement turbomachinery [64]. Manufacturing simplicity and derived low cost,
robustness, high volumetric efficiency and large pressure head range (from low
pressure lubricating pumps to medium-high pressure open and close loop hydraulic
circuits), make external gear pumps a popular and reliable choice for a wide va-
riety of applications. While their rigid design gives them the ability to pump
high viscosity fluids in the petrochemical industry, the tight internal clearances
employed in their construction make them also well suited to handle applications
that require precise flow control, including among others: metering applications
of polymers, fuels or chemical additives.

Notwithstanding their relatively simple manufacturing, operation of gear pumps
involve many complex phenomena both from the mechanical and from the fluid
motion point of view. In fact, from the early models developed several decades
ago [12,83,142], experimental evaluation and numerical modeling of external gear
pumps has captivated the attention of many researchers. Available investigations
focus on different aspects of the operation of this type of pumps, considering
for instance the study of the inter-teeth pressure and forces distribution [32], fluid
leakage [102], noise production [55], cavitation [46] or the effects of teeth geometry
on the flow ripple [84].

1.2 Working principle

External gear pumps belong to the so called positive displacement pumps. As any
other fluid power system, their mission is to supply hydraulic energy to the fluid
from the mechanical energy introduced to the system typically by means of a shaft.
In particular, positive displacement pumps are characterized by the presence of
a suction side with an expanding cavity which brings fluid towards the pump,
and a discharge side with a collapsing cavity that impulses the fluid out of the
pump. This kind of systems are considered constant flow machines. Neglecting the
volumetric efficiency, typically very high, a positive displacement machine would
produce the same flow at a given speed independently of the discharge pressure.
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Figure 1.1: Definition of regions and energy transfer phases in an external gear pump

When a gear pump is used, the expansion and reduction of the volume is
obtained by means of two generally identical gearwheels that mesh and rotate
towards the suction chamber, as shown in Fig. 1.1. On the suction side, the fluid
is trapped between the gears and the casing of the pump. On the discharge or
pressure side, the fluid is squeezed out as the two gears rotate against each other.
The power is externally introduced to the pump through a drive shaft, connected
to the so-called ‘driving gear’, while the other one is dragged by meshing and
referred as ‘driven gear’. The simplicity of the system, involving a minimum
number of parts increases the reliability of this kind of pumps compared to others
with a more complex design. As a result, gear pumps can operate at high speeds
and up to moderate pressure heads. According to the working principle described
above, the energy transformation (mechanical to hydraulic) occurs in three phases
[27]:

• Suction: The motion of both gears generate an opening volume that is
continuously filled by the fluid. Inlet pressure, typically atmospheric, pushes
the liquid towards the vacuum created at the opening volume.
• Displacement: Volumes of fluid are trapped in the region between the gears

and the casing and are transported towards the discharge side.
• Impulsion: The volume containing the liquid is here reduced, impulsing the

fluid towards the outlet pump.

Among the most important parameters defining the operation of a gear pump
we can consider: pressure distribution on the teeth, presence of cavitation, pres-
sure and flow ripple and volumetric efficiency. These parameters determine both
the performance of the pump and the possible mechanical failure of the gears and
pump casing, typically related to a fatigue process.

In order to reduce the stress suffered by the gears and casing, indentation
of relief grooves is a common choice. These decompression slots (as shown in
Fig. 1.2) allow to improve the fatigue life of the different elements of the pump.
However they increase the liquid leakage, reducing the suction capability of the
pump by decreasing its volumetric efficiency.
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Figure 1.2: Decompression slots in the compensation plates of a gear pump [27]

In fact, the presence of relief grooves is of great importance when computing
the volumetric efficiency of the pump. This parameter depends mainly on the
following factors [27].

• Leakage: As shown in Fig. 1.3 fluid can find the way from the pressure side
to the suction side through several paths allowing us to define:

- Relief groove leakage: fluid from the meshing inter-teeth volume that
leaks trough the volume trapped between contact points, due to the
effect of the relief grooves.

- Axial leakage: Fluid passage between the gears and the side plates.
- Radial leakage: Movement of fluid through the teeth and the casing

towards adjacent inter-teeth volumes.

• Compressibility: For a real pump the volumetric efficiency is also a func-
tion of the fluid working conditions.

• Cavitation: when cavitation occurs volumetric efficiency can be drastically
reduced [27].

As it will be detailed in the next section (section 1.3), different simulation ap-
proaches will be more or less suitable for the correct prediction of the volumetric
efficiency. While cavitation will not be considered in the present study, the pro-
posed improvements will allow for a realistic estimation of the liquid leakage and
compressibility effects.

1.3 State of the art

Regarding numerical simulations, predictions of external gear pumps behavior
have been obtained from a variety of approaches. First of all, several mathemat-
ical and semi-empirical methods can be found in the literature. As an example,
Manring et al. [84] studied the theoretical mass flow though external gear pumps
neglecting leakages or cavitation effects. Others focused on the prediction of the
point where cavitation starts: Myllykylä [98] developed a semi-empirical method
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to determine suction capabilities of pumps before cavitation occurs and Kha-
laf [68] studied the performance of external gear pumps under marginal suction
conditions. Some other authors studied these pumps from the point of view of the
pressure pulsations. For instance, Eaton et al. [32] developed an analytical model
based on an equivalent hydraulic circuit to predict the pressure ripple. Edge and
Johnston [31] presented a method to estimate the flow ripple from pressure ripple
measurements. While mathematical models and theoretical derivations can pro-
vide accurate predictions in some cases, their applications is typically restricted
to very particular designs and difficult to generalize without the appropriate cal-
ibration.

The next degree of generalization consists in the use of very sophisticated 1D
models. Generally speaking, 1D codes model gear pumps by considering the fluid
region to be divided in control volumes, each of which represents the volume of
the fluid trapped between two teeth and the casing, or between the teeth of both
gears in the gearing region. Properties within the chambers are uniform and
the evolution of these properties depends on the interaction with the adjoining
chambers by variable orifices. Despite the extreme assumptions, successful de-
scription of the phenomena can be found for simple straight-cut gears [11,80,96].
The main drawbacks of these approaches are: the difficult description of the geo-
metrical volumes and throat areas a function of the shaft angular position for a
general user-given profile with given clearance values, and the lack of a detailed
description of the pressure distribution in the teeth. Besides consideration of
three-dimensional effects and the extension to helical gears becomes critical.

With the advent of low-cost large-scale computing, the use of Computational
Fluid Dynamics (CFD) has become a promising solution. A complete description
of the fluid region in the pump is now available without the need of extreme as-
sumptions or complex definitions of volume zones and throat areas. Besides CFD
is the only simulation tool that allows us to treat the problem in its full com-
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plexity, considering for instance three-dimensional effects, fluid compressibility,
turbulence, cavitation and fluid structure interaction. In CFD, the fluid region is
divided in discrete cells (computational mesh) where the governing equations are
solved [35]. Among the different methods available nowadays, the finite-volume
method is the preferred choice for many commercial codes for the solution of
the fluid motion conservation equations (Navier-Stokes equations). Finite-volume
methods are simple, robust and a natural choice when the partial differential
equations to be solved are conservation laws. Finite-volumes are based on the
enforcement of the integral form of the conservation laws in each of the small
control volumes defined by the computational mesh. Finite-volume methods can
further be divided as function of how the variables are stored in the computa-
tional grid. In the so called staggered grid arrangement, scalar variables (such as
density, pressure, enthalpy...) are stored in the cell centers of the control volumes,
whereas momentum variables (velocity) is stored at the cell faces. This method
benefits from a higher stability and robustness but substantially increases the
memory storage requirements and calculation time when compared to its alterna-
tive, the co-located grid arrangement [35]. In the co-located grid arrangement all
variables are stored in the cell centers, which significantly simplifies the implemen-
tation of solvers. This, together with the reduced memory storage requirements
has made co-located grid arrangement gain popularity in the recent years in both
general-purpose and commercial flow solvers. However some problems arise from
the use of co-located grids. In particular the most significant one is the so called
checkerboard pressure. Due to the nature of the Navier-Stokes equations, pressure
appears in the momentum equations inside a gradient term. The application of
central-difference spatial discretization to this term in a co-located grid, produces
a decoupling of pressure and velocity cell values, leading to saw-tooth oscillations.
As it will be explain in Chapter 2, this problem was addressed by using a tech-
nique proposed long ago, the momentum interpolation methods [112]. However
the typically required equations under-relaxation combined with the use of mo-
mentum interpolation methods can generate additional problems that had not
been addressed in the main CFD code used in this thesis, OpenFOAM R©, by the
time this work was performed.

When finite-volume methods with co-located grids are used for the simulation
of external gear pumps, the huge pressure gradients between adjoining lateral
chambers or in the gears meshing zone accentuate the pressure-velocity decoupling
problem and therefore the commented problems. The first part of the thesis will
focus on the study of Momentum Interpolation Methods (MIM) correcting these
problems, as well as their influence on the accuracy and convergence speed of
several pressure-velocity coupling algorithms, with the purpose of selecting the
most appropriate choice to be used in the simulation of gear pumps.

The second critical aspect considered in this thesis lies on the meshing process.
Given the complexity of the moving boundaries in the gears meshing region and
the narrow gear-to-gear and gear-to-casing gaps, mesh generation and motion is
critical. Arbitrary Lagrangian-Eulerian (ALE) formulations [28] are a common
choice and have been successfully applied in literature [14, 61, 133, 140]. In the
usual Eulerian method, equations including convective terms,are solved in a steady
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mesh. With a pure Lagrangian method the mesh moves with the fluid particles
and the convective term vanishes. ALE approach tries to adopt an intermediate
solution. However, when ALE methods are used, even if mesh deformation is
combined with local re-meshing, mesh quality frequently needs to be improved
and most authors rely on a mesh replacement strategy (see for example [13, 14,
69]). Regularly, an un-structured mesh is created for the initial position of the
gears. As the gears rotate, mesh points are displaced following the gears motion
and the quality of the resulting mesh is controlled. When the quality lies below
a given threshold, a new mesh is generated for that particular position of the
gears. Variables are then interpolated from one mesh into the other and simulation
proceeds with the new mesh, repeating the process. The approach is frequently
used due to its simplicity. However, it is clear that the mesh generation process
can consume a significant amount of computational power, since it needs to be
performed every small angle of gear rotation. Besides, interpolation of variables
between meshes generate numerical errors which are difficult to control, and a good
mesh quality in regions near contact points or circumferential clearance gaps is
hard to achieve.

The method can be however efficient when applied to spur gears (straight-cut),
since the 3D mesh generation can be simplified to the extrusion of a 2D mesh,
which is faster to create. This is not the case when helical gears are considered.
Some alternative methods are based on: dynamic non-structured mesh deforma-
tion with cells refinement/agglomeration [133] which requires a very small time
step not to reduce significantly the mesh quality; deformation of a block-structured
mesh based on a Laplacian equation solved in an un-structured mesh [140], which
requires therefore the management of two meshes in parallel with the related com-
putational cost; and mesh superposition [9], which suffers again from numerical
diffusion given by mesh-to-mesh interpolation. The difficulty when a helical gear
is considered increases significantly. In fact, some authors [59] even relay on a
series of spur gears rotated according to a helix angle, eliminating the smoothness
of the helical surface, leading to a simpler but not very realistic method. Other
commercial CFD software include the capabilities of generating a single structured
deforming mesh that adapts as the gears rotate. Typically the user has to define
an interface between the gears that is used for mesh generation purposes. Hav-
ing this idea in mind, Chapter 3 in this thesis will described a new mesh motion
strategy which tries to reduce to a minimum the number of parameters defined
by the user, while considering a general method that can be applied to spur or
helical gears with any user-given profile. In the same chapter, different options
for the treatment of the contact points between gears will also be described.

Last but not least, even if velocities in the chambers of the pump are no high
enough for the computed Reynolds number to be in the turbulent range, it has
been experimentally shown [15] that the stirring produced by the gears and the
associated variations of volume and pressure, result in an injection of energy that
cannot be dissipated by molecular viscosity and therefore makes turbulence arise.
In the simulation of turbulent flows, Direct Numerical Simulations (DNS) and
Reynolds Averaged Navier-Stokes simulations (RANS), or their unsteady coun-
terpart (U-RANS) represent the two extremes for turbulence modeling [35]. DNS
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is the most accurate and simplest approach from a conceptual point of view, as it
consists in solving all scales contained in the flow without any averaging or approx-
imation, thus incurring in the highest computational cost (wall time and hardware
resources such as processors and memory). On the other hand, RANS simulations
solve for the mean flow with an appropriate model for the turbulent energy trans-
fer among the various scales. Large Eddy Simulations (LES) lie between the two
extremes. LES is based on the numerical solution of large scales of fluid structures
combined with a proper modeling of the effect of small-scale motions. The strin-
gent requirements regarding computational grid size and time step make DNS and
very often LES too, impractical in most industrial applications, due to limitations
in processing power and storage capabilities. Reasonable computational cost and
acceptable accuracy make RANS modeling the most widely used approach. For
most applications either the geometry is too large or the Reynolds number too
high to leverage LES and U-RANS is the preferred method. As an example, com-
putational requirements in turbo-machinery simulations are increased by a factor
of of 105 − 107 when switching from U-RANS to LES [88]. However, RANS does
not solve for the unsteady flow structures, the intrinsic characteristic of turbulent
flows, and indeed it may fail to reproduce relevant flow physics for many engineer-
ing problems. Hybrid models try to bridge the gap between the two approaches
(U-RANS and LES) by controlling the amount of turbulent kinetic energy that is
modeled. Even if the statistical assumptions used in the derivation of RANS and
LES equations differ, they share significant similarities [44] that can be leveraged
in the derivation of hybrid models. The potential benefits of such approach can
be understood when considering the numerous hybrid models available in liter-
ature. Some of the most well-known ones include: Detached-Eddy Simulations
(DES) [125], Embedded LES (ELES) [21], Scale-Adaptive Simulations (SAS)
[91] and Partially Averaged Navier-Stokes (PANS) [49]. For the present thesis a

new hybrid model has been developed focusing on its application to external gear
pumps, leveraging the STRUCT model developed by Giancarlo Lenci [75].

1.4 Objectives

The main aim of this project is to provide advanced algorithms, all from the
point of view of the pressure-velocity coupling, mesh motion strategy and turbu-
lence modeling, to facilitate the study of external gear pumps with a co-located
grid finite-volume CFD approach such as OpenFOAM R©. In particular the main
contributions and objectives of the present thesis can be summarized as:

• Study and correction of the MIM used in OpenFOAM R© for the pressure-
velocity coupling algorithms in incompressible solvers.

• Study of the influence of MIM on the accuracy and convergence
speed of the solvers, aiming to determine the most appropriate solver for
the simulation of gear pumps.

• Development and implementation of a new mesh generation and mesh
motion strategy for the simulation of 2D and 3D (spur or helical) gear
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pumps. Such approach should be general (the same approach should work
for any user-given gear profile), it should minimize the number of user-defined
parameters and incur in the lowest achievable computational cost.

• Development and implementation of different models for the treatment of
the contact point between gears when the previously mentioned mesh mo-
tion strategy is used.

• Development of a hybrid turbulence model to reduce the computational
cost that would be derived from the use of LES approach, aiming to correct
some of the inherent deficiencies of U-RANS for applications such as 3D gear
pumps.

1.5 Organization

The logical organization of the thesis covers the objectives mentioned in section
1.4 in an structured manner.

- This chapter serves as an introduction. It defines the working principles of
external gear pumps and presents the main difficulties found when consider-
ing their study through CFD simulations.

- Chapter 2 covers the study of Momentum Interpolation Methods and its ap-
plication to the pressure-velocity coupling algorithms used in OpenFOAM R©

solvers. In particular the dependence of steady state solutions on velocity
under-relaxation factors and time step size is explained and the available cor-
rections are tested and applied to simple cases. As a next step the influence
of MIM in both accuracy and convergence speed of different p-U coupling
algorithms is evaluated and extracted conclusions are used to select the most
appropriate solver for the simulation of gear pumps.

- Chapter 3 minutely describes the developed mesh motion algorithms. Spe-
cial emphasis is given to the starting mesh generation tool, the topological
changes required in the mesh, and to its implementation in OpenFOAM R©.
Examples of its application to a variety of gear profiles are given in order
to show the capabilities of the approach. Furthermore, being linked to the
mesh motion strategy, the implemented algorithms for the treatment of the
contact point between gears is here described.

- Chapter 4 contains the work developed during a one-year visiting period at
Massachusetts Institute of Technology (MIT), where a new hybrid turbu-
lence model (STRUCT) was developed. The main idea behind the model is
described in detail and several variants of the model are introduced together
with their testing on simplified cases that resemble the physical phenomena
found in the flow through a gear pump. The base RANS model in which the
hybrid approach is based has also been implemented in a very different code
(the Spectral Element Method code Nek5000) at Argonne National Labora-
tory (ANL), as a first step in the implementation of the hybrid approach.
Notes on the partial results obtained during the two-month visiting period

8



1.5. ORGANIZATION

at ANL will also be given, to show the capabilities of the underlying RANS
model behind STRUCT.

- Chapter 5 shows examples of the application of the algorithms explained
above to one commercial gear pump taken as a reference. This comes from
the collaboration with a private company (whose name will not be given
for confidentiality reasons), interested in the developed algorithms for the
simulations of some of their gear pump models.

- Chapter 6 serves as a summary and proposes possible improvements of the
presented methods as well as future work to further approach the simulation
of gear pumps under more realistic conditions.

9





Chapter 2

P-U coupling algorithms

2.1 Introduction

Checkerboard pressure is one of the most significant problems arising from the use
of co-located grids for fluid dynamics simulations using the finite-volume method.
When a central-difference spatial discretization scheme is applied to the pressure
gradient in velocity equations, the decoupling of pressure and velocity cell values
leads to saw-tooth pressure oscillations. Aiming to face this problem, Rhie and
Chow [112] proposed a technique for momentum based interpolation of mass fluxes
on cell faces, imitating the staggered grid discretization. This interpolation is
based on formulating a discretized momentum equation for the face, so that the
computation of the driving pressure force involves the pressure value at the nodes
adjacent to the face in question, and therefore at the node itself. This technique
removes the pressure checkerboarding problem for the most part, which is the
reason of its wide acceptance and intensive use in unstructured grid solvers. This
Momentum Interpolation Method (MIM) underwent extensive development for
complex geometries [19], unsteady flows [17,67,118,143] or flows with large body
forces [18].

Velocity under-relaxation is usually required to achieve convergence. When this
is the case, the Original Momentum Interpolation Method (OMIM) by Rhie-Chow
presents some additional problems. Majumdar [82] and Miller et al. [92] indepen-
dently reported that solutions obtained with the original Rhie-Chow interpolation
method were dependent on the velocity under-relaxation factor. Furthermore, the
use of very small under-relaxation factors could make the checkerboard pressure
reappear. The corrected version of momentum interpolation proposed in [82],
termed as the Majumdar Momentum Interpolation Method (MMIM) completely
eliminates this dependency.

Additionally, Choi [17] was the first to report that original Rhie-Chow interpo-
lation is also time step-size dependent and proposed a correction similar to that
of Majumdar. However, some years later, Yu [143] showed that the correction
proposed by Choi did not cancel the dependence, and suggested an alternative
modification to eliminate the problem. Some other authors extended the deriva-
tions for the use of first and second order time discretization schemes. In partic-
ular, based on the work from Cubero and Fueyo [22], Pascau [103] proposed an

11
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alternative MIM that would correctly eliminate the time step dependency in a
more generalized approach.

In the current chapter the OMIM will be described and the dependence of
steady state solution on under-relaxation factors and time step size will be ex-
plained. Some of the proposed corrections available in literature will be imple-
mented and tested in the OpenFOAM R© technology, which will be used to evaluate
the importance and performance of the corrections. Once some conclusions have
been extracted on this respect, a systematic study of several MIM on the solution
accuracy and convergence speed will be applied to four well-known segregated
pressure-velocity coupling algorithms, namely, SIMPLE (Semi-Implicit Method
for Pressure Linked Equations) [105], SIMPLER (SIMPLE-Revised) [104], SIM-
PLEC (SIMPLE-Consistent) [29] and PISO (Pressure Implicit with Splitting of
Operators) [63].

2.2 Rhie-Chow OMIM

In the following section the OMIM will be described in detail. The dependency
of steady state OMIM solutions to the velocity under-relaxation factor (αu) and
time step size will be discussed. First, the steady equations will be analyzed to
show the dependence on αu while the time step dependence will be discussed later.

The governing equations for a steady laminar incompressible flow, in the ab-
sence of other body or external forces are:

∂

∂xi
(ρui) = 0 (2.1)

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ∂τij
∂xj

(2.2)

where xi is the cartesian framework, ui is the velocity component in the i coor-
dinate, p is the pressure and ρ denotes the density. Assuming a Newtonian fluid,
shear stress τij can be determined by:

τij = µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3µ
∂uk
∂xk

δij (2.3)

where µ is the dynamic dynamic viscosity and δij is the Kronecker delta. For the
sake of simplicity, the OMIM will be described in a two-dimensional orthogonal
grid as the one shown in Fig. 2.1.

Under this considerations, the conservation equation for a general flow variable
φ in the steady laminar case described above, in the absence of any source term,
can be written as:

∂

∂x
(ρuφ) + ∂

∂y
(ρvφ) = ∂

∂x

(
Γφ
∂φ

∂x

)
+ ∂

∂y

(
Γφ
∂φ

∂y

)
(2.4)

where u and v are the x and y components of the velocity field and Γφ is the
diffusion coefficient. Integrating Eq. (2.4) in the computational cell, and applying

12



2.2. RHIE-CHOW OMIM

Figure 2.1: Two-dimensional orthogonal grid. N, S, E and W correspond to neighbor cells of
cell P ; n, s, e and w denote cell P faces; ∆x and ∆y are cell P dimensions in the x and y spatial
coordinates; δyn, δys, δxe and δxw correspond to cell-center to cell-center distances from cell
P to neighbor cells

Green-Gauss theorem the semi-discretized form of the equation can be written as
follows:

∆y [(ρuφ)e − (ρuφ)w] +∆x [(ρvφ)n − (ρvφ)s] = (2.5)

∆x
[

Γn
δyn

(φN − φP )− Γs
δys

(φP − φS)
]

+∆y
[

Γe
δxe

(φE − φP )− Γw
δxw

(φP − φW )
]

where central differencing scheme has been used for diffusive terms. In the dis-
cretization of divergence terms, many schemes are available in literature (a group
of classical schemes includes: first-order upwind, second-order upwind, central
differencing scheme, QUICK [78]). Second and higher-order schemes have been
widely used in applications involving orthogonal and uniform meshes, but the sta-
bility of higher-order schemes for applications involving turbulent flows in com-
plex geometries is not guaranteed and convergence may be difficult to achieve.
For these applications, first or second-order methods are best suited.

Application of the first-order upwind discretization scheme to convective terms
of Eq. 2.5 yields the following final discretized form of Eq. (2.4).

APφP = AEφE + AWφW + ANφN + ASφS + bP (2.6)

13
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where

AE =Γe∆y
δxe

+ max(−ρue∆y, 0) (2.7)

AW =Γw∆y
δxw

+ max(ρuw∆y, 0)

AN =Γn∆x
δyn

+ max(−ρvn∆x, 0)

AS =Γs∆x
δys

+ max(ρvs∆x, 0)

bP =−max(ρue∆y, 0)(φe − φP ) + max(−ρue∆y, 0)(φe − φE)
−max(−ρuw∆y, 0)(φw − φP ) + max(ρuw∆y, 0)(φw − φW )
−max(ρvn∆x, 0)(φn − φP ) + max(−ρun∆x, 0)(φn − φN)
−max(−ρvs∆x, 0)(φs − φP ) + max(ρus∆x, 0)(φs − φS)

where deferred-correction procedure [35] is used for the term bP .
AP coefficients can be determined by

AP = AE + AW + AN + AS + Ab (2.8)

where Ab is the mass residual. The Ab term is usually dropped since divergence-
free conditions are required for the velocity field:

Ab = ρue∆y − ρuw∆y + ρvn∆x− ρvs∆x (2.9)

Eq. (2.8) is true as long as conservative discretization schemes are used [35].
It should also be noticed that a diagonally dominant matrix (AP ≥

∑
NB |ANB|

where NB refers to the neighbor cells of cell P ) is a sufficient condition for con-
vergence of iterative methods and the inequality must be satisfied at least at one
node [35].

In order to reach convergence under-relaxation factors are typically applied to
dependent variables to limit the change in consecutive iterations. From Eq. (2.6)
we can write the final value of φP as:

φP = αφ
AP

(AEφE + AWφW + ANφN + ASφS + bP ) + (1− αφ)φ0
P (2.10)

where superscript 0 is used for the quantities calculated at the previous iter-
ation and αφ is the under-relaxation factor for variable φ. Based on the above
discussion, Eq. (2.6) can be written as:

A′PφP = AEφE + AWφW + ANφN + ASφS + b′P (2.11)

where A′P = AP/αφ and b′P = bp + (1−αφ)
αφ

APφ
0
P .

Let us now consider the equation for x-component of the velocity field, u.
Before under-relaxation uP would follow an equation similar to Eq. (2.6). If the
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2.2. RHIE-CHOW OMIM

pressure term is separated from the source we can write:

uP =
∑
NB ANBuNB + bP

AP
− ∆y(pe − pw)

AP
(2.12)

which can also be expressed in general form:

uP = HP −DP (∇p)P (2.13)

where HP =
∑

NB
ANBuNB+bP
AP

, DP = ∆x∆y
AP

and (∇p)P is the x component of
the pressure gradient in cell P . Therefore, for the two contiguous cells E and P
we could write the following equations:

uP = (∑NB ANBuNB + bP )P
(AP )P

− ∆y(pe − pw)P
(AP )P

(2.14)

uE = (∑NB ANBuNB + bP )E
(AP )E

− ∆y(pe − pw)E
(AP )E

(2.15)

Mimicking formulation followed for uE and uP , Rhie-Chow proposed a pseudo-
equation for the face velocity ue:

ue = (∑NB ANBuNB + bP )e
(AP )e

− ∆y(pE − pP )
(AP )e

(2.16)

which can also be expressed as:

ue = He −De(∇p)e (2.17)

where He is the first term in the RHS of Eq. (2.17), De = δxe∆y
(AP )e and (∇p)e

is the x component of pressure gradient in face e. In the OMIM of Rhie and
Chow, unknown terms of RHS of Eq. (2.16) are obtained by linear interpolation
as follows:(∑

NB ANBuNB + bP
AP

)
e

=f+
e

(∑
NB ANBuNB + bP

AP

)
E

(2.18)

+ (1− f+
e )
(∑

NB ANBuNB + bP
AP

)
P

1
(AP )e

= f+
e

1
(AP )E

+ (1− f+
e ) 1

(AP )P
(2.19)

where f+
e is a weighting factor that for the mesh shown in Fig. 2.1 can be

determined as f+
e = ∆xP

2δxe . Therefore, Eq. (2.17) becomes:

ue = He −
( 1
Ae

)
∆y(pE − pP ) (2.20)

where the over-bar denotes linear interpolation.
A similar procedure can be applied for other face velocities of cell P . For the

sake of simplicity and brevity, this procedure is shown only for face e.
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Substituting Eq. (2.18) into Eq. (2.16), considering Eqs. (2.14) and (2.15),
and re-ordering terms we obtain:

ue =
[
f+
e uE + (1− f+

e )uP
]

− ∆y(pE − pP )
(AP )e

+
(
f+
e

∆y(pe − pw)E
(AP )E

+ (1− f+
e )∆y(pe − pw)P

(AP )P

)
(2.21)

The first term in the RHS of Eq. (2.21) corresponds to the linear interpolation
of cell values, while the last two terms can be regarded as a correction term that
smooths the pressure field, and removes the undesired checkerboard behavior.
Assuming De ≈ De and (D∇p)e ≈ De ∇pe, and considering Eqs. (2.13) and
(2.17), Eq. (2.21) can be re-written as:

ue = ue +De

(
∇pe − (∇p)e

)
(2.22)

which is the classical Rhie-Chow interpolation formula.
However, in general, under-relaxation is required for the momentum equations.

When considering under-relaxation, Eq. (2.14) becomes:

uP = αu (∑NB ANBuNB + bP )P
(AP )P

+ (1− αu)u0
P −

αu∆y(pe − pw)P
(AP )P

= αu

[
HP −

∆y(pe − pw)P
(AP )P

]
+ (1− αu)u0

P

= hP −
αu∆y(pe − pw)P

(AP )P
(2.23)

where hP = αuHP + (1− αu)u0
P . Similarly, for cell E we find:

uE = hE −
αu∆y(pe − pw)E

(AP )E
(2.24)

and hE = αuHE + (1− αu)u0
E.

If Rhie-Chow momentum interpolation is now introduced, following Eq. (2.20)
we can write:

ue = he − αu
( 1
Ae

)
∆y(pE − pP )

=
(
f+
e hE + (1− f+

e )hP
)
− αu

( 1
Ae

)
∆y(pE − pP ) (2.25)

Using definitions of hE and hP in terms of HP and HE, ue can be written as:

ue = αu

[
He −

( 1
Ae

)
∆y(pE − pP )

]
︸ ︷︷ ︸

Momentum interpolation

+(1− αu)
[
f+
e u

0
E + (1− f+

e )u0
P

]
︸ ︷︷ ︸

Linear Interpolation

(2.26)
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The above discussion makes it clear that the direct application of Rhie-Chow tech-
nique to the under-relaxed momentum equations would yield a solution that will
not converge to the desired momentum interpolation (first term), but will contain
a portion of linear interpolation. Therefore, when a small enough under-relaxation
factor is used, the second term in Eq. (2.26) will be the main contribution, and
pressure oscillations may re-appear, since no momentum interpolation is used.

In order to understand the time step dependency let us consider the transient
Navier-Stokes equations under the same assumptions of Eqs. (2.1) and (2.2):

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0 (2.27)

∂(ρui)
∂t

+ ∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ∂τij
∂xj

(2.28)

Following a similar procedure as the one used in the steady case, and using
implicit first order Euler scheme for the time derivative term, the discretized form
of x-velocity equation now yields:

AtP (uP − uk−1
P ) + AntP uP = AEuE + AWuW + ANuN + ASuS + bP (2.29)

where AtP = ρVP
∆t represents the part of the diagonal coefficient related to the time

derivative term, and AntP contains the rest of diagonal terms. bP contains now
all explicit terms except for the one coming from the discretization of the time
derivative term.

Before under-relaxation, separating the pressure term from bP , uP follows an
equation similar to (2.12)

uP =
∑
NB ANBuNB

AP
+ bP + AtPu

k−1
P

AP
− ∆y(pe − pw)

AP
(2.30)

where AP = AtP + AntP .
Considering now under-relaxation, the equation for x-velocity at P becomes:

uP =
αu
(∑

NB ANBuNB + bP + AtPu
k−1
P

)
P

(AP )P
− αu∆y(pe − pw)P

(AP )P
+ (1− αu)u0

P

=αu (∑NB ANBuNB +BP )P
(AP )P

− αu∆y(pe − pw)P
(AP )P

(2.31)

where BP now reads: BP = bp + AtPu
k−1
P + 1−αu

αu
APu

0
P

Considering the equivalent equation for cell E, a direct application of Rhie-
Chow momentum interpolation technique (following Eq. (2.16)) yields the follow-
ing equation for the face velocity:

ue = αu (∑NB ANBuNB +BP )e
(AP )e

− αu∆y(pE − pP )
(AP )e

(2.32)
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Bringing back the definition of BP and after some reorganization:

ue =

αu

[
f+
e

(∑
ANBuNB + bP

AP

)
E

+ (1− f+
e )
(∑

ANBuNB + bP
AP

)
P

− ∆y(pE − pP )
(AP )e

]
+ (1− αu)

[
f+
e u

0
E + (1− f+

e )u0
P

]
+ αu

[
f+
e

(AtP )E
(AP )E

uk−1
E + (1− f+

e )(AtP )P
(AP )P

uk−1
P

]
(2.33)

From Eq. (2.33) we can extract several conclusions. First, we can see that
even at convergence (where uP = uk−1

P = u0
P and uE = uk−1

E = u0
E) the previous

expression yields a value of ue that depends both on αu and on ∆t (let us remember
that ∆t is present in AtP and in AP ). Second, it should be noticed that when a
very small time step is used, the fractions involved in the last term of Eq. (2.33)
tend to unity:

lim
∆t→0

AtP
AP

= lim
∆t→0

ρVP/∆t
AntP + ρVP/∆t

= 1 (2.34)

Therefore face velocity tends to the linear interpolation ue = f+
e u

0
E + (1− f+

e )u0
P ,

which means that the pressure oscillations may re-appear for very small time
steps, even if velocity equations are not under-relaxed.

In the following sections two methods correcting these deficiencies of the OMIM
will be described. While some other of the alternatives introduced in section 2.1
have also been implemented, they will not be shown for the sake of brevity.

2.3 Majumdar MIM

In order to correct the under-relaxation factor dependency of the steady state
solution, Majumdar [82] forced the convergence of ue to the full momentum inter-
polation value by applying explicit relaxation on the face velocity:

ue = αu

[
He −

( 1
Ae

)
∆y(pE − pP )

]
+ (1− αu)u0

e (2.35)

Obviously, in an iterative procedure, ue will converge to the momentum interpo-
lation value, as described in Eq. 2.20. Expressing He in terms of HE and HP , and
these in terms of hE and hP , similarly to what has been done in Eqs. 2.23 and
2.24, it follows:

ue =
[
f+
e hE + (1− f+

e )hP
]

+ αu

( 1
Ae

)
∆y(pE − pP )

+ (1− αu)
[
u0
e − f+

e u
0
E − (1− f+

e )u0
P

]
(2.36)

where the second line of Eq. (2.36) is commonly known as Majumdar correc-
tion.
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2.4 Pascau MIM

Pascau [103] proposed an alternative MIM to be used in the solution of transient
problems when first or second order temporal discretization schemes are used. As
done in Eq. (2.29), the x-velocity equation can be reformulated for a general 1st
or 2nd order backward discretization scheme:

AtP (c0uP−c1u
k−1
P −c2u

k−2
P )+AntP uP = AEuE+AWuW+ANuN+ASuS+fxP (2.37)

where the term related to the pressure gradient in x-direction, ∆y(pe − pw), has
been denoted as fxP for simplicity, and c0, c1, c2 represent the time discretization
coefficients. From Eq. (2.37):

uP = αu

[∑
NB ANBuNB + bP
AntP + c0AtP

]
+ αu

[
fxP

AntP + c0AtP

]

+ αu

[
c1A

t
Pu

k−1
P

AntP + c0AtP
+ c2A

t
Pu

k−2
P

AntP + c0AtP

]
+ (1− αu)u0

P (2.38)

which can also be expressed as:

uP = αu
1 + c0βtP

[∑
NB ANBuNB + bP

AntP

]
P

+ αu
1 + c0βtP

fxP
AntP

+ αuc1β
t
P

1 + c0βtP
uk−1
P + αuc2β

t
P

1 + c0βtP
uk−2
P

+ (1− αu)u0
P (2.39)

where βP = AtP/A
nt
P . The face velocity is then reconstructed as:

ue = αu
1 + c0βte

[∑
NB ANBuNB + bP

AntP

]
e

+ αu
1 + c0βte

fxe
Ante

+ αuc1β
t
e

1 + c0βte
uk−1
e + αuc2β

t
e

1 + c0βte
uk−2
e

+ (1− αu)u0
e (2.40)

where the pressure gradient term is fxe = ∆y(pE − pP ), and βte is the linear
interpolation of βtP . It can be shown that this MIM is both under-relaxation
factor and time step size independent [22,103]. The proof will be omitted here for
the sake of brevity, and can be found in [103].

2.5 P-U coupling algorithms

Due to the simplicity of their implementation and the lower peak memory require-
ments, segregated pressure-velocity coupling algorithms are commonly preferred
nowadays over coupled algorithms. In this section four p-U coupling algorithms
for incompressible flows are described together with a summary of the iterative
procedure followed in each of them.
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2.5.1 SIMPLE

The SIMPLE algorithm (Semi-Implicit Method for Pressure Linked Equation)
[105] is probably one of the most used nowadays and it sets the basis for the
derivation of the rest of models that will be explained later. The basic idea of the
SIMPLE algorithm is to update velocity and pressure field in each iteration so
that continuity is always satisfied, and velocity equations approach progressively
their solution. To do this, a projection method is used. For simplicity, SIMPLE
equations will be shown for the case of OMIM.

At the beginning m-iteration, known pressure pm−1 is used to compute a veloc-
ity field u∗ by solving the velocity equation in the so called momentum predictor
step. For instance, the semi-discretized form of x-velocity is:

APu
∗
P =

∑
nb

Anbu
∗
nb + bP −∆y(pm−1

e − pm−1
w ) (2.41)

where the pressure gradient contribution to the source term has been separated
from the rest of source terms, represented in bP . Typically velocity-equation would
be under-relaxed, as explained in the OMIM section:

u∗P = αu (∑nbAnbu
∗
nb + bP )P

(AP )P
+ (1− αu)um−1

P − αu∆y(pm−1
e − pm−1

w )P
(AP )P

(2.42)

u∗P = αu (∑nbAnbu
∗
nb +BP )P

(AP )P
− αu∆y(pm−1

e − pm−1
w )P

(AP )P
(2.43)

Using the OMIM, face velocities will follow an equation similar to 2.25:

u∗e = αu (∑nbAnbu
∗
nb +BP )e

(AP )e
− αu∆y(pm−1

E − pm−1
P )

(AP )e
(2.44)

Since u∗ does not satisfy continuity, velocity has to be updated using a correc-
tion u′ so that um = u∗+u′. Pressure field is updated by adding a small correction
that should vanish as the solution approaches convergence pm = pm−1 + p′. Pres-
sure does not have its natural equation in incompressible flows, therefore, an equa-
tion for p′ is derived so as to guarantee that final velocity field um is divergence
free. At convergence, an equation similar to 2.45 should yield:

ume = αu (∑nbAnbu
m
nb +BP )e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(2.45)

Subtracting Eq. 2.44 from 2.45:

u′e = αu (∑nbAnbu
′
nb)e

(AP )e
− αu∆y(p′E − p′P )

(AP )e
(2.46)

In the SIMPLE algorithm the first term in the RHS of Eq. 2.46 is neglected
so that velocity correction becomes:

u′e = −αu∆y(p′E − p′P )
(AP )e

(2.47)

20



2.5. P-U COUPLING ALGORITHMS

This neglection is thought to be the main reason for the difficulty of SIMPLE
algorithm to achieve convergence in some cases. Using Eq. 2.47 face velocity
becomes:

ume = u∗e −
αu∆y(p′E − p′P )

(AP )e
(2.48)

Since u∗e is now known, following the same procedure for the other velocity com-
ponent v and for the rest of faces, one may use continuity equation to derive an
equation for p′. Eq. 2.1 can be integrated in the cell volume by using Green-Gauss
theorem leading to: ∑

e

ρueSe = 0 (2.49)

∆y(ρume )−∆y(ρumw ) + ∆x(ρvmn )−∆x(ρvms ) = 0 (2.50)
When Eq. 2.48 and similar equations for umw , vmn and vms are introduced in Eq.

2.50, an equation for p′ is obtained. Calculation of p′ allows us to correct pressure
and velocity fields. For pressure correction an under-relaxation factor is usually
introduced, so that new pressure becomes pm = pm−1 +αPp′. Cell center velocities
are computed by an equation derived from 2.48:

umP = u∗P −
αu∆y(p′e − p′w)

(AP )P
(2.51)

where p′e and p′w are obtained by linear interpolation of cell center values.
A slight variation of the SIMPLE algorithm (hereafter referred to as simpleP-

corr) can be considered where pressure equation is formulated directly to solve
for p and not for p′ (referred to as simple). In fact, substituting u∗e from Eq. 2.44
into Eq. 2.48:

ume = αu (∑nbAnbu
∗
nb +BP )e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(2.52)

where the first term in the RHS is the part of the velocity field without the pressure
term. Introducing Eq. 2.52 into continuity equation yields an equation for pm.
Now pressure will not be directly taken to be the calculated value of pm but it
will be relaxed following pm = αpp

m + (1 − αp)pm−1. New cell center velocities
would be computed as:

umP = αu (∑nbAnbu
∗
nb +BP )

AP
− αu∆y(pme − pmw )

AP
(2.53)

For the simulations shown in this thesis, pressure under-relaxation factor αp
has been set to 1− αu as recommended by [35].

2.5.2 SIMPLE-C

The SIMPLE-C (SIMPLE-Consistent) algorithm [29] tries to reduce the lack of
convergence of the standard SIMPLE algorithm by avoiding the brutal assumption
made from Eq. 2.46 to Eq. 2.47. It has shown to accelerate convergence in
problems where the pressure-velocity coupling is the main source of deterrent to
obtaining a solution. SIMPLE-C procedure is shown next.

21



CHAPTER 2. P-U COUPLING ALGORITHMS

From Eq. 2.46 we can derive the following:

(AP )eu′e = αu

(∑
nb

Anbu
′
nb

)
e

− αu∆y(p′E − p′P ) (2.54)

By subtracting ∑nbAnbu
′
e from both sides of the equation we reach:

(
(AP )e −

∑
nb

Anb

)
u′e = αu

(∑
nb

Anb (u′nb − u′e)
)
e

− αu∆y(p′E − p′P ) (2.55)

First term in the RHS of Eq. 2.55 is now neglected, leading to a new relation
between velocity and pressure corrections:

u′e = − αu∆y(p′E − p′P )
(AP −

∑
nbAnb)e

(2.56)

Face velocity now becomes:

ume = u∗e −
αu∆y(p′E − p′P )
(AP −

∑
nbAnb)e

(2.57)

By using this definition of face velocity in continuity equation we can again
obtain a pressure equation for p′. New pressure would be obtained from under-
relaxation pm = pm−1 + αpp

′ and cell center velocities are computed from an
equation derived from 2.57:

umP = u∗P −
αu∆y(p′e − p′w)
(AP −

∑
nbAnb)

(2.58)

Again, a slightly different version of the explained SIMPLE-C (simpleCPcorr)
can be obtained by deriving an equation for pm and not for p′ (simpleC ). Substi-
tuting u∗e from Eq. 2.44 into Eq. 2.57:

ume = αu (∑nbAnbu
∗
nb +BP )e

(AP )e
− αu∆y(pm−1

E − pm−1
P )

(AP )e
− αu∆y(p′E − p′P )

(AP −
∑
nbAnb)e

(2.59)

which can be transformed into:

ume =αu (∑nbAnbu
∗
nb +BP )e

(AP )e
(2.60)

− αu
(

1
(AP )e

− 1
(AP −

∑
nbAnb)e

)
∆y(pm−1

E − pm−1
P )

− αu∆y(pmE − pmP )
(AP −

∑
nbAnb)e

First two terms depend only on already calculated variables and can be com-
puted. Inserting ume into continuity equation yields an equation for pm. Then, as
it happened in SIMPLE, pressure is under-relaxed pm = αpp

m + (1 − αp)pm−1.
New cell velocities are computed as:
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umP =αu (∑nbAnbu
∗
nb +BP )

AP
(2.61)

− αu
(

1
AP
− 1
AP −

∑
nbAnb

)
∆y(pm−1

e − pm−1
w )

− αu∆y(pme − pmw )
AP −

∑
nbAnb

2.5.3 PISO

PISO (Pressure Implicit with Splitting of Operators) [63] is another derivation of
the standard SIMPLE algorithm. Once velocity and pressure have been corrected
with the standard simple procedure u∗∗ = u∗+u′, p∗∗ = pm−1 +p′, new corrections
(pm = p∗∗ + p′′, um = u∗∗ + u′′) may be considered to avoid neglecting the first
term in RHS of Eq. 2.46 which now becomes:

u′′e = αu (∑nbAnbu
′
nb)e

(AP )e
− αu∆y(p′′E − p′′P )

(AP )e
(2.62)

Since u′ has already been calculated, first term of the RHS can now be computed.
Following (um = u∗∗ + u′′), face velocity is now:

ume = u∗∗e + αu (∑nbAnbu
′
nb)e

(AP )e
− αu∆y(p′′E − p′′P )

(AP )e
(2.63)

Using again continuity equation (note that u∗∗e already satisfies continuity), Eq.
2.63 yields an equation for p′′. Cell pressure field is then updated to pm = p∗∗+p′′

and cell velocities are calculated as:

umP = u∗∗P + αu (∑nbAnbu
′
nb)

AP
− αu∆y(p′′e − p′′w)

AP
(2.64)

As explained before for the rest of algorithms standard PISO (known hereafter
as pisoPcorr) can be modified so that pressure equation solves directly for pm
(piso). After the first corrector step, u∗∗ and p∗∗ are linked by an equation similar
to Eq. 2.52:

u∗∗e = αu (∑nbAnbu
∗
nb +BP )e

(AP )e
− αu∆y(p∗∗E − p∗∗P )

(AP )e
(2.65)

Substitution of u∗∗e in 2.63 yields:

ume = αu (∑nbAnb(u∗nb + u′nb) +BP )e
(AP )e

−αu∆y(p∗∗E − p∗∗P )
(AP )e

−αu∆y(p′′e − p′′w)
(AP )P

(2.66)

which can also be expressed as:

ume = αu (∑nbAnbu
∗∗
nb +BP )e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(2.67)
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where again the first term in the RHS is the part of the velocity field u∗∗ not
containing the pressure term. Continuity yields now an equation for pm, which
should not be under-relaxed, and cell velocity can be then updated to:

umP = αu (∑nbAnbu
∗∗
nb +BP )

AP
− αu∆y(pme − pmw )

AP
(2.68)

2.5.4 SIMPLE-R

The SIMPLE-R (SIMPLE-Revised) algorithm [104] is another slight variation
of SIMPLE-like methods. For some particular flow problems, neglecting the∑
nbAnbu

′
nb terms in pressure correction equation produces too large pressure cor-

rections (which then require under-relaxation). It could also occur that initial
guess of pressure field is much worse than initial guess of velocity field. Using
standard SIMPLE algorithm, the good initial velocity field will be destroyed in
the momentum predictor step by using a wrong pressure field. To deal with these
situations, it is convenient to set a separate equation for pressure computation,
which will be solved at the beginning of the iteration, and to construct then a
pressure correction equation that will only be used to correct the velocity field.
Following these steps, a face velocity could be computed by using um−1:

ue =
αu
(∑

nbAnbu
m−1
nb +BP

)
e

(AP )e
− αu∆y(pmE − pmP )

(AP )e
(2.69)

If this face velocity is used in the continuity equation we obtain an equation for
pm. It is clear that no approximation has been made here and no term has been
neglected. Calculated pm is now used to construct and solve velocity equations:

(AP/αu) u∗P =
∑
nb

Anbu
∗
nb +BP −∆y(pme − pmw ) (2.70)

Once u∗ is known, Eqs. 2.48 and 2.50 can be used to derive a pressure correction
equation for p′, following the exact same steps of SIMPLE algorithm. However,
in this case, pressure is not corrected (p′ is not added to current estimation of p),
but it is only used to correct velocity field, following Eq. 2.51

For each of the solvers presented here, the introduced names correspond to
the OMIM (such as simpleC ), while they will be referred to as “solver name” +
Majumdar when MMIM is used (such as simpleCMajumdar).

2.6 Numerical experiments

In order to test the effect of the MIM used in the simulations, three simple test
cases have been selected. First of all, the consistency of Pascau correction is
tested in a transient case where the analytical solution can be found, the well-
known Taylor-Green vortex. Later on, accuracy of the several MIM is tested on
a lid-driven laminar cavity. Extracted conclusions are used to perform a more
systematic study in the same lid driven cavity case and finally to a more complex
case, the study of the flow around a NACA 0012 airfoil profile is chosen, to check
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the performance of some of the MIM when the convergence of the solvers might
be limited by that of the turbulence quantities equations. As pointed out by B.
Yu et al. [143], face velocities are used three times in the overall procedure of the
solution. They are used to determine the coefficients in the discretization of the
equation, they are used to derive the pressure equation and they are considered
in the mass residual coefficient if it is not dropped. According to their suggestion,
in all simulations shown here, the same procedure to calculate ue will be used for
all the three times it is required.

For each of the cases analyzed here, convergence of the solvers is checked by
calculating equation residuals for continuity and all velocity components equa-
tions. Convergence is assumed to be achieved when all normalized residuals go
below a given threshold. In OpenFOAM R© normalized residual for a given variable
φ following Eq. 2.6 are calculated as follows:

resφ =
∑N
i=1 | [APφP −

∑
nbAnbφnb − bP ]i |

normFactorφ
(2.71)

where the first summation is performed in all the cells and normalization factor
is calculated as:

normFactorφ =
N∑
i=1

∣∣∣∣∣∣
[
APφP −

∑
nb

Anbφnb

]
i

−
[
AP −

∑
nb

Anb

]
i

φref

∣∣∣∣∣∣+ (2.72)

+
N∑
i=1

∣∣∣∣∣∣[bP ]i −
[
AP −

∑
nb

Anb

]
i

φref

∣∣∣∣∣∣ (2.73)

where φref is a reference value for the field, calculated as mean value over the
total number of cells (φref = ∑

i [φP ]i /N). At convergence normalization factor
becomes normFactorφ = 2∑N

i=1 |[bP ]i|. Continuity error is computed as a volume
weighted average of the mass residual Ab calculated as explained in Eq. 2.9.

Simple linear matrix solvers have been used for all cases. Pressure and pressure
correction equations are solved with a Preconditioned Conjugate Gradient solver
(PCG), using diagonal incomplete-Cholesky preconditioner (DIC), while velocity
and turbulence quantities are solved using Preconditioned Bi-conjugate Gradient
solver (PBiCG) and Diagonal Incomplete LU preconditioner (DILU). Each outer
iteration, matrices are solved until an absolute residual of 10−12 or a relative
residual (compared to initial residual in present iteration) of 10−3 is achieved.

2.6.1 Taylor-Green vortex

In this section, the accuracy of the Pascau MIM is tested by solving the decay
of two-dimensional vortices, the so-called Taylor-Green problem. For this case,
Navier-Stokes equations can be analytically solved. Using a non-dimensional for-
mulation (considering unit viscosity ν = 1 and unit maximum initial velocity
umax|0 = vmax|0 = 1) the solution is given by:
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u(x, y, t) = −e−2t cos(x) sin(y)
v(x, y, t)− e−2t sin(x) cos(y)

p(x, y, t) = −e
−4t cos(2x) sin(2y)

4 (2.74)

The domain extension considered for this case is a square (of side L = 2π) domain
[0− 2π] × [0− 2π] and periodic conditions are applied at boundaries. Fields of
the analytical solution (used for initialization) are shown in Fig. 2.2.

Figure 2.2: Taylor-Green vortices analytical solution of u (left), v (center) and p (right) at t = 0

A simple orthogonal uniform mesh of 80 × 80 cells has been considered for
this case. MIM were first compared by analyzing the profiles of u(x), v(x), p(x)
at y = π/2 at different times. As an example Fig. 2.3 shows the comparison
between the two MIM when ∆t = 0.005tD, being tD = L/umax|0, when a second
order backward time discretization scheme is used.

Figure 2.3: Velocity and pressure profiles at y = π/2 for several times. Results are shown for
OMIM (◦ ◦ ◦); Pascau MIM (+ + +) in comparison with analytical solution (—)

In this case a transient SIMPLE algorithm is used: continuity and velocity
equations are iteratively solved as described in section 2.5.1 and time advances
when equations are converged achieving an absolute residual lower than 10−12.
This is a too small value for a realistic case but it is achievable in such a simple
academic problem. Under-relaxation factors for this case are αu = 0.8 and αp =
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0.2. For this example and the rest of cases in this section, second order Central
Differencing Scheme (CDS) has been used for the discretization of advection terms.

Given the very small differences between the solutions, the actual comparison
is evaluated by analyzing the differences between MIM in the prediction of peak x-
velocity at t = 0.5. Two p-U coupling algorithms are considered: PIMPLE (with
αu = 0.8 and αp = 0.2 ) and PISO (no under-relaxation). Besides, results are
shown for two time discretization schemes: first and second order Euler backward
discretization. The results as a function of the time step size are shown in Fig.
2.4
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Figure 2.4: Error in the determination of peak x-velocity at t = 0.5 for first order (+ + +) and
second order (♦♦♦) time discretization schemes, using OMIM (—) or Pascau MIM (− − −),
and PIMPLE (left) or PISO (right) p-U coupling algorithms

The comparison makes evident that the differences are minimum for any ∆t.
When using PISO algorithm no under-relaxation is used so that the differences
are only due to the time step dependence. When PIMPLE algorithm is used
both αu and ∆t dependencies could cause results to be different, but it has been
show that for this case the differences are not meaningful at all. While no sig-
nificant differences were obtained when Pascau correction was used in this case,
the implementation of solvers is much more complex (it requires the splitting of
velocity equation and the storage of many additional fields) and the extension to
the moving mesh case of the gear pump becomes critical. Therefore, and consider-
ing that the time step dependency is much lower that the under-relaxation factor
dependency (as already shown by many authors [22, 103, 143]), only Majumdar
correction for under-relaxation factor dependency will be analyzed in the rest of
cases.

2.6.2 Lid-driven cavity

The second study case is a two-dimensional laminar lid-driven cavity (as shown in
the schematic in Fig. 2.5) for Re = 1000 and Re = 5000. This case was chosen be-
cause it represents one of the simplest cases available. The simple geometry allows
us to use a perfectly orthogonal and uniform mesh and the boundary conditions
can be clearly specified. Therefore stability, accuracy and robustness depends
mainly on the MIM used for its solution. When the higher Reynolds number
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is used, even if the flow remains laminar, instabilities are more likely to appear
in the numerical solvers and this provides also important information about the
MIM used.

Figure 2.5: Cavity case geometry

Vertical velocity profiles at the center-line are considered for comparison with
respect to the benchmark solutions from Ghia et al. [47]. Different mesh types
have been studied, as shown in Fig. 2.6. Information regarding number of cells
and maximum non-orthogonality for those four meshes is shown in Table 2.1.

Figure 2.6: Mesh types tested for cavity case; from left to right: uniform orthogonal, non-uniform
orthogonal, triangles and unstructured hex-dominant

Table 2.1: Mesh characteristics for cavity case

Mesh Number of cells Maximum
non-orthogonality

Uniform orthogonal 2500 0
Non-uniform orthogonal 6400 0

Triangles 4862 37.6
Hex-dominant 48825 47.6

First, a comparison of OMIM and Majumdar MIM using the SIMPLE algo-
rithm is performed in a uniform mesh with increasing resolution. Results are
shown in Fig. 2.7.

Fig. 2.7a shows that if a 20 × 20 mesh is used, there is a 4% difference in
peak velocity between αu = 0.2 and 0.8. Dependency of the solution quickly
reduces with mesh refinement, while Majumdar correction completely eliminates
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Figure 2.7: Vertical velocity profiles along horizontal center-line for OMIM (thin lines) and
Majumdar correction (thick lines) for several under-relaxation factors: αu = 0.2 (−·−); αu = 0.5
(—); αu = 0.8 (· · · ). Results are compared to benchmark solution (◦ ◦ ◦). Mesh refinement
increases from left to right: 20× 20, 40× 40, 80× 80

the dependency. As shown in Fig. 2.7, for a resolution higher than 40 × 40 the
difference in the solution is insignificant.

If the error in the determination of vertical velocity at point (0.1548, 0.5) (peak
velocity location in the center-line for reference data) is represented with respect
to the number of cells for the uniform mesh case (Fig. 2.8), it becomes clear
that αu dependency of OMIM is almost negligible for a fine enough mesh, while
Majumdar solution is always independent of αu.
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Figure 2.8: Error in the determination of vertical velocity at (0.1548, 0.5) for OMIM (thin lines)
and Majumdar correction (thick lines) for several under-relaxation factors: αu = 0.2 (− · −);
αu = 0.5 (—); αu = 0.8 (· · · )

Given these results the study is now extended to the different pressure-velocity
coupling algorithms presented in section 2.5 and to the different meshes considered
in Fig. 2.6. It was first verified that for a given mesh, the solution obtained by
all the pressure-velocity coupling algorithms was the same for a fixed value of αu
with OMIM or for any value of αu if the Majumdar correction was applied.
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For the case of Re = 1000 convergence speed of each combination algorithm
- momentum interpolation method, has been checked for two possible values of
αu, 0.2 and 0.8, and for the four meshes described in Table 2.1. In particular,
the required number of iterations to achieve a residual lower than 10−6 for both
velocity components and continuity is represented in Fig. 2.9.

Figure 2.9: Required number of iterations to reduce all residuals below 10−6 when αu is fixed
to αu = 0.2 (grey) and αu = 0.8 (black). Results are reported for uniform (first), non-uniform
orthogonal (second), hex-dominant (third) and triangles (fourth) meshes

Analysis of Fig. 2.9 shows that no significant difference in terms of speed
of convergence is observed for this case and for the algorithms considered, and

30



2.6. NUMERICAL EXPERIMENTS

that Majumdar correction does not influence the convergence speed. For a given
mesh, number of iterations for all solvers is approximately the same, as far as
the same velocity under-relaxation is considered. Certainly, all cases with higher
under-relaxation factor (αu = 0.8) converge faster than those with a lower under-
relaxation factor (αu = 0.2). As a reminder, all PISO-derived and SIMPLER-
derived algorithms solve twice for a pressure correction equation, and no pressure
under-relaxation is performed, while for the rest of the algorithms pressure under-
relaxation is set to αp = 1 − αu and only one pressure correction equation is
solved.

When considering the pressure correction equation, solving for pressure cor-
rection p′ instead of a direct solution for pm slightly increases the number of
iterations until convergence. For a given solver, the influence of applying Majum-
dar correction does not show a clear trend. For instance, when considering the
non-uniform mesh, Majumdar correction accelerates convergence for αu = 0.2 for
almost all solvers but it has a negative influence when αu = 0.8. Considering the
hex-dominant mesh, the influence is the opposite, slightly positive for αu = 0.8
and slightly negative for αu = 0.2 .

When comparing solvers, SIMPLEC-like solvers tend to converge slightly faster
but again no clear trend is observed.

Taking into account the small differences found for Re = 1000, the study is now
extended to the case of Re = 5000. Firstly, mesh convergence of standard OMIM
and Majumdar correction is tested, using in this case either a uniform mesh or a
non-uniform orthogonal mesh. For this higher Reynolds case differences are more
evident. For the uniform orthogonal mesh, only coarse meshes allow solvers to
converge. Fig. 2.10 shows how solution changes with αu for fairly coarse uniform
meshes, while Fig. 2.11 shows the profiles with more refined non-uniform meshes.
Again, Majumdar correction completely removes the dependency as it can be seen
in Fig. 2.12 where errors in the determination of vertical velocity at (0.06072, 0.5),
corresponding to peak velocity in the solution reference, are shown.
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Figure 2.10: Vertical velocity profiles along horizontal center-line obtained with uniform orthog-
onal meshes for OMIM (thin lines) and Majumdar correction (thick lines) for several under-
relaxation factors: αu = 0.2 (− · −); αu = 0.5 (—); αu = 0.8 (· · · ). Results are compared to
benchmark solution (◦◦◦). Mesh refinement increases from left to right: 10×10, 15×15, 25×25
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(a) 40 × 40 cells
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(b) 60 × 60 cells
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Figure 2.11: Vertical velocity profiles along horizontal center-line obtained with non-uniform
orthogonal meshes for OMIM (thin lines) and Majumdar correction (thick lines) for several
under-relaxation factors: αu = 0.2 (− ·−); αu = 0.5 (—); αu = 0.8 (· · · ). Results are compared
to benchmark solution (◦ ◦ ◦). Mesh refinement increases from left to right: 40 × 40, 60 × 60,
80× 80
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Figure 2.12: Error in the determination of vertical velocity at (0.06070, 0.5) for OMIM (thin
lines) and Majumdar correction (thick lines) for several under-relaxation factors: αu = 0.2
(− · −); αu = 0.5 (—); αu = 0.8 (· · · ). Results are shown for uniform mesh (left) and non-
uniform orthogonal mesh (right)

Following the procedure of the previous case, convergence speed is evaluated for
the four meshes described in Table 2.1. As the Reynolds number increases, con-
vergence becomes more difficult and, depending on the value of under-relaxation
factor, it might not be achievable. It is also observed that, if convergence is
achieved, the solution is exactly the same as long as the same αu is used for any of
the algorithms, or Majumdar correction is applied. Number of iterations required
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to achieve convergence is represented in Fig. 2.13, where (-1) refers to cases that
do not converge.

Figure 2.13: Required number of iterations to reduce all residuals below 10−6 when αu is fixed
to αu = 0.2 (grey) and αu = 0.8 (black). Results are reported for uniform (first), non-uniform
orthogonal (second), hex-dominant (third) and triangles (fourth) meshes

With the exception of few cases (simplePcorr-simplePcorrMajumdar in non-
uniform orthogonal and hex-dominant meshes, and simpleR-simpleRMajumdar in
hex-dominant mesh), a large velocity under-relaxation factor αu = 0.8 helps the
convergence of the cases (which might not be achievable for αu = 0.2 as in the
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triangles mesh), or increases convergence speed (as in the non-uniform orthogonal
or the hex-dominant mesh). When considering Majumdar correction applied to
SIMPLE or SIMPLE-C, the general trend is that it slightly improves convergence
speed, even if the effect can be opposite for some combinations of mesh-αu. In
the selection of algorithm, SIMPLE-C is the most promising, with or without
Majumdar correction (considering than only one pressure correction equation is
solved for iteration).

Summing up, when fully converged results are achieved, Majumdar correction
eliminates αu-dependency, without changing convergence speed significantly. De-
pendency of OMIM on αu is quickly reduced as mesh refinement increases. When
several algorithms are considered, SIMPLE-C seems the most promising alterna-
tive to the standard SIMPLE algorithm. Under these considerations, effects of
momentum interpolation and p-U coupling algorithm will now be tested on a more
complex geometry where coupling between velocity field and turbulence variables
becomes important.

2.6.3 NACA 0012 airfoil profile

The turbulent flow (Re ≈ 6 · 106 based on the chord length) around a NACA
0012 airfoil profile is studied under incompressible conditions (M = 0.15). As
proposed in ERCOFTAC references, a structured C-grid of 14336 cells (225 ×
65 points with 129 points on airfoil surface) is employed, giving an approximate
average y+ ≈ 1 over the airfoil profile. Fig. 2.14 shows a representation of the
mesh, which satisfies the characteristics shown in Table 2.2.

Figure 2.14: Representation of the mesh used in NACA 0012 case

Table 2.2: Mesh characteristics for cavity case

Number of cells 14336
Max. non-orthogonality 77.2
Avg. non-orthogonality 10.2

Max. skewness 0.62

A free-stream turbulence intensity of 0.052% together with a free-stream turbu-
lent viscosity νt = 0.009ν are used to set the turbulence boundary conditions. First
order upwind spatial discretization is used for divergence terms of turbulence vari-
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ables and LUST (Linear Upwind Stabilized Transport) [141] is used for the con-
vective term in velocity equations. While velocity and pressure under-relaxation
are set to different values during this study, turbulence variables under-relaxation
factor has been fixed to 0.8.

Typical flow features are used for the evaluation of numerical solutions. In
particular, experimental results for pressure distribution [52], lift and drag coeffi-
cients [72] on the upper wall for different angles of attack (β) are used as reference.
The mesh used in this study is chosen after a mesh convergence analysis. Standard
SIMPLE (simple) algorithm with OMIM and αu = 0.7 is used with four increas-
ingly refined meshes; coarse (3584 cells), medium (14336 cells), fine (57344 cells)
and very fine (229376 cells) leading to the drag coefficient values and pressure
coefficient profiles shown in Figs. 2.16 and 2.15 for β = 0.
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Figure 2.15: Mesh convergence of pressure coefficient on upper wall: coarse(—); medium (−−−);
fine(− · −); very fine (· · · ). Results are compared to experimental results (◦ ◦ ◦)
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Figure 2.16: Mesh convergence of drag coefficient

According to this, medium mesh is selected for the study, since it is the coarsest
mesh for which mesh convergence is acceptable.
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As a starting point for momentum interpolation comparison, standard SIMPLE
algorithm with OMIM or MMIM is used to compute CP , CD and CL for a range
of angles of attack β: 0, 6, 12 and 15 degrees and for different values of αu: 0.2,
0.5 and 0.8. Fig. 2.17 shows the results obtained with OMIM while Fig. 2.18
shows the same results when Majumdar correction is considered in the solver. For
each case, simulation was run until a residual lower than 10−10 was achieved for
all variables.
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Figure 2.17: CL, CP and CD coefficients SIMPLE algorithm with OMIM for several angles of
attack β: 0, 6, 12 and 15 degrees. Results are shown for αu = 0.2 (− − −); αu = 0.5 (—);
αu = 0.8 (− · −)

While dependency of CL (Fig. 2.17a) and CP (Fig. 2.17b) on αu is negligible,
showing that calculated pressure field barely changes with αu, results for CD
(Fig. 2.17c) do change more significantly. It is observed that small variations in
velocity field produce larger variations in velocity gradients and therefore drag
force computation. This barely affects CL, for which pressure force is the main
contribution, but it does affect CD.
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Figure 2.18: CL, CP and CD coefficients SIMPLE algorithm with Majumdar correction for
several angles of attack β: 0, 6, 12 and 15 degrees. Results are shown for αu = 0.2 (− − −);
αu = 0.5 (—); αu = 0.8 (− · −)

When considering the same cases with SIMPLE algorithm and MMIM, depen-
dence of results on αu is almost completely eliminated (see Fig. 2.18) for the
level of convergence achieved in the simulations. In order to better evaluate how
much of the dependency is eliminated, a single case with β = 12 degrees (where
OMIM shows the highest dependency) is considered. Calculated CL and CD for
SIMPLE algorithm with and without Majumdar correction are shown in Table
2.3 and Table 2.4.

While for a standard convergence Majumdar correction only partially elimi-
nates the αu-dependence, when convergence is good enough, Majumdar correction
reduces the relative change in predicted value by two orders of magnitude. The
lack of convergence of a case due to turbulence could therefore limit the effect of
canceling under-relaxation factor dependency of the Majumdar correction.

We proceed now to evaluate how Majumdar correction affects the convergence

37



CHAPTER 2. P-U COUPLING ALGORITHMS

Table 2.3: Dependency of CD, CL on αu for a convergence of res < 10−7

Coefficient OMIM Majumdar

CL

αu = 0.2 1.2551915 1.2557273
αu = 0.8 1.2552688 1.2554411

Rel. Change 0.006 % 0.022%

CD

αu = 0.2 0.011967419 0.011588629
αu = 0.8 0.011548746 0.011450845

Rel. Change 3.498 % 1.189%

Table 2.4: Dependency of CD, CL on αu for a convergence of res < 10−12

Coefficient OMIM Majumdar

CL

αu = 0.2 1.2543421 1.2554539
αu = 0.8 1.2552675 1.2554399

Rel. Change 0.133 % 0.001%

CD

αu = 0.2 0.011948155 0.011446795
αu = 0.8 0.011549183 0.011451306

Rel. Change 3.339 % 0.039%

speed of each of the pressure-velocity coupling algorithms described in Section
2.5. For the case of β = 12 degrees, for each algorithm with or without Majumdar
correction, the number of iterations required to achieve residuals lower than 10−6

and 10−7 is computed for two values of αu: 0.2 and 0.8 and represented in Fig.
2.19.

Figure 2.19: Required number of iterations to reduce all residuals below 10−6 (top) or 10−7

(bottom) when αu is fixed to αu = 0.2 (grey) and αu = 0.8 (black)
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First it should be noted that SIMPLE-R algorithm did not converge to the
level of residuals considered here. For both simpleR, simpleRMajumdar, minimum
achieved residual for velocity equations was about 10−4. When comparing the rest
of cases, Majumdar correction tends to increase the required number of iterations
for a low value of αu, and has almost no effect when considering the larger value
of αu. SIMPLE-C is again the best performing algorithm here for both small and
large values of velocity under-relaxation factor.

2.7 Conclusions

In this chapter the Original Momentum Interpolation by Rhie-Chow, used to
cancel the checkerboarding pressure problem in co-located finite-volume codes,
has been explained in detail. Inherent problems to this approach have been
identified and some of the available solutions in literature to eliminate velocity
under-relaxation factor and time step size dependency have been implemented
and tested in OpenFOAM R©. Several pressure-velocity coupling algorithms have
also been considered (with the required implementation of some of them, which
were not available in the code by the time this work was developed).

The difficulty in the implementation of the time step dependency problem, its
complex extension to the dynamic mesh case present in the gear pump problem,
and the small influence observed in the study of the Taylor-Green vortex prob-
lem, drove us not into considering its application for the current study. Majumdar
correction for under-relaxation factor dependency has been implemented and has
shown to be able to correctly eliminate the αu dependency of the OMIM in simple
cases, with no significant influence on the convergence speed and a simple imple-
mentation. The analysis of a lid-driven cavity case showed that influence of αu is
almost negligible for a Reynolds number of Re = 1000 as far as the mesh refine-
ment is enough to approach the benchmark solution, while higher dependency is
found for a larger Reynolds number Re = 5000. In both cases Majumdar MIM
correctly eliminates the dependency but generates velocity profiles further from
the benchmark profiles. When a more complex case as a NACA 0012 airfoil pro-
file is considered, convergence of turbulence quantities makes full independence
of the solution with respect to αu not achievable. However, Majumdar correction
significantly reduces the difference in computed values of drag and lift coefficients.
In principle, Majumdar correction could be applied to any pressure-velocity cou-
pling algorithm. Simulations show that in general the correction does not greatly
modify the number of iterations required to achieve a given level of convergence.
When comparing pressure-velocity coupling algorithms, SIMPLE-C was the best
performing option for the numerical simulations carried out here.

Considering this, SIMPLE-C together with Majumdar MIM was selected to be
applied to gear pumps simulations, as a better performance and correct indepen-
dence from under-relaxation factors is expected.
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Chapter 3

Mesh motion strategy

3.1 Introduction

Probably the highest complexity in the CFD simulation of gear pumps is found
in the mesh motion strategy. CFD offers a promising alternative to the very
simplified approaches (theoretical, semi-empirical and 1D simulations) presented
in the first paragraphs of section 1.3, which are typically difficult to generalize
for a new given geometry and usually cannot provide an insight of the physical
phenomena taking place inside the pump. However, the complex motion of the
gears and the narrow clearances make mesh handling critical in the CFD approach.
While the mesh manipulation already presents difficulties when treated in a 2D
approximation, the case is inherently three-dimensional. The presence of axial
clearances, relief grooves and cylindrical inlet and exit pipes makes this point
clear, and it is even more obvious when a helical pump is considered. Computation
of the leakage is also extremely difficult given the very tight clearances involved.
As a matter of fact, most approaches available in literature are used to perform
simulations where clearances are much higher than the their realistic value, in
order to avoid the use of too refined meshes and the corresponding computational
cost [14, 27, 69]. The most common approach is the use of Arbitrary Lagrangian-
Eulerian formulations, as introduced in section 1.3. The problem is that they are
generally applied by considering the deformation of an unstructured mesh that
continues moving until its quality reduces excessively, moment in which it needs to
be replaced (see for instance [14]). The generation of a new mesh is both time and
memory consuming. If this needs to be performed often, the computational cost
is excessive. Even if the mesh generation process can be reduced for spur gears
(where a 2D mesh can be created and extruded to complete the 3D one) the process
is still expensive in the global computational cost of the simulation. Besides when
dealing with helical gears, that is not an option (some authors [59] considered the
use of a number of rotated spur gears to define the helical gear, but the lack of
accuracy of such approach is evident). Other methods that combine deformation
with mesh refinement-agglomeration suffer again from the computational cost
derived from a mesh modification process in which the number and/or addressing
of cells, vertices, and internal faces unavoidably change.

For any of the previously described methods, and some others mentioned in
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section 1.3, an additional problem arises when considering the interpolation of
variables from mesh to mesh. The errors introduced in this process are inevitable
and difficult to control.

Depending on the application, a proper estimation of the leakage and the
flow characteristics might not be necessary, reducing the stringency in the correct
description of the clearance gaps and relaxing the limitations on the time step.
This, together with the simplicity of most of these approaches explain their wide
application in literature.

In this chapter a new fully-automatic mesh motion strategy for the simulations
of gear pumps is presented. The main idea is to reduce the computational cost
and the mesh-to-mesh interpolation errors derived from the use of any of the
alternatives specified before, while maintaining a general applicability. The first
sections will introduce the operations involved in the dynamic deformation of the
mesh. After this, two possible methodologies for the treatment of boundary mesh
interfaces will be described, detailing the required topological changes. Then
the implementation of the method in OpenFOAM R© will be outlined. The last
sections will cover different strategies that have been implemented for an efficient
parallelization of the mesh with a proper performance of the proposed algorithm,
and several options for the treatment of the (one or more) contact point(s) between
gears. Throughout the chapter a set of examples of the applicability of the method
to several types of gear and tooth profiles will be provided.

3.2 Overview of the method

One of the main goals when considering a dynamic mesh handling method is to
reduce the mesh motion modification process while maintaining a good quality.
Mesh modification is not significantly time consuming as long as the number of
cells, points and faces remain constant and no reordering is required, or at least it
is kept to a minimum. For instance in the re-meshing method the regeneration of
the entire mesh, or a part of it, involves the calculation of the new vertices, faces
and cells. Progressive refinement or agglomeration of cells also alters the number
and addressing of cells, faces and points, leading to a tremendous increase in the
computational cost.

With this idea in mind, the best option we can consider is to reduce the mesh
modification to the motion of cell vertices. If only the point coordinates (actually
only some of the points) are modified, cells, points and internal faces labeling
remain constant and the mesh motion proceeds fast.

The proposed mesh motion algorithm considers the splitting of the fluid domain
in three mesh regions. Fig. 3.1 shows an example of the separation of regions in
the two-dimensional case. This case will be explain in detail and it will be further
extended to the three-dimensional case in section 3.7

The region “fixedCells” contains inlet and outlet ports, in which mesh points
are kept fixed. Cells around the gears are separated in “gear1” and “gear2”
regions. For all cells contained in “gear1” or “gear2”, vertices motion proceeds in
two steps, as shown in Fig. 3.2. From an “undisplaced” situation (Fig. 3.2a, which
is generated as described in section 3.4) a rigid rotation along the axis of each gear
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Figure 3.1: Definition of mesh regions

is first considered (arriving to Fig. 3.2b) and a projection (described in section
3.6) to a common interface is applied, avoiding overlapping cells, arriving to the
situation shown in Fig. 3.2c. The projection consists in scaling the points of each
gear down to a common line that lies always between the two gear boundaries.
This line will be called hereafter interface, and its calculation is explained in
section 3.5.

(a) Initial undisplaced mesh (b) Rotated mesh (c) Projected mesh

Figure 3.2: Mesh motion steps

Point coordinates of the “undisplaced mesh” are saved in memory during the
calculation. For a given time, the rigid rotation step will rotate these points an
angle equal to the integral of the rotational speed from the initial time up to the
current time. Thus, we avoid the accumulation of errors (which can be dangerous
given the low clearances), and we always have access to a “non-projected mesh” so
that we do not need to un-project the points. It should be stated that only a list
with the coordinates of the undisplaced points (belonging to “gear1” or “gear2”
zones) is saved in memory, and not the entire mesh, or the entire list of points.
Minimizing the memory requirements is important when considering a large case
like this.
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3.3 Profile geometry

The first step in the mesh generation process is the definition of the geometry, and
in particular the definition of the gear tooth profile. In general two options are
considered for this case (see Fig. 3.3). Either a classical involute or cycloid profile
can be selected, by providing the required parameters, or the user can define the
profile as a list of points. When that is the case, the user must also provide the
pitch diameter (Dp = 2Rp) together with the list of points.

Figure 3.3: Tooth profile: user-given list of points (left), involute profile (center), cycloid profile
(right)

If an involute profile is chosen, the definition is complete if the following pa-
rameters are defined: number of teeth (Z), pitch diameter (Dp = 2Rp), pressure
angle (α), addendum (Ad), dedendum (Dd), and fillet radius (r). Similarly the
cycloidal profile is determined by providing the number of teeth (Z), pitch diame-
ter (Dp = 2Rp), radius of the rolling circumference that generates both epicycloid
and hypocycloid parts of the profile (rge) (note that for two equal gears, equality
of rolling circumference diameter is a necessary condition for the profiles to be
conjugate) and fillet radius (r).

Besides, for any of the three cases mentioned, a fit in the manufacturing process
is assumed, and the lash can be specified by a backlash angle, and a clearance
distance d, as shown in Fig. 3.4.

backlash
d

Figure 3.4: Definition of backlash angle and d clearance, applicable to any of the described
profiles

The last parameter to be defined in any of the profiles chosen is intrinsic to CFD
simulations. The requirement of positive volume cells forbids us from simulating
the real contact between profiles. We are therefore forced to maintain a distance
between the gears that are supposed to be in contact and apply some external
model to avoid the fluid to move through the contact point. The separation
is defined by assuming the distance between centers to be enlarged from the
theoretical value (Dp) by a user specified value: spacing as shown in Fig. 3.5
(Note that the backlash angle is assumed to be zero in the figure for the sake of
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clarity).
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Figure 3.5: Definition of spacing distance, applicable to any of the described profiles

3.4 Undisplaced mesh generation

Once the profile is defined, the next step is the generation of an undisplaced mesh,
such as the one shown in Fig. 3.2a. Given the symmetry, the process starts with
the generation of the mesh corresponding to the user-provided half-tooth profile.
An application has been created in order to generate a block-structured mesh,
using user-defined number of cells and grading ratios, as shown in Fig. 3.6.

rCirc

nRad

nTheta

rThetarRad

rHeadTheta

nHeadTheta

nHeadRad

Figure 3.6: Mesh generation for involute or cycloid profiles (left), zoom of the top land region
(center) and closer zoom to the non-conformal interface (right)

Given the low clearances, a non-conformal interface is allowed in the top of the
tooth (land region), in order to reduce the number of cells between the top of the
tooth and the casing (see right side of Fig. 3.6), which could negatively influence
the convergence of the solver. For involute or cycloid profiles, the position of
the non-conformal interface is clear, given the sudden change in the steepness of
the profile. For user-defined rounded profiles a similar strategy is offered, but
the position of the interface is determined by an additional parameter (rsplit), as
shown in Fig. 3.7.

Furthermore, the number or cells and grading ratios (nTheta and rTheta for
instance) are not necessarily one single value. The user is allowed to divide the
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rCirc

nRad

nTheta

rTheta

rRad

nHeadTheta

Figure 3.7: Mesh generation for user-defined profiles (left) and zoom of the top land region
(center) and closer zoom to the non-conformal interface (right)

total length covered by nTheta cells (length denoted as lTheta) into intervals (lTheta=
[lθ1 , lθ2 ...lθk ]), where lθk represents a ratio of the total lθ (so that ∑k lθk = 1). With
this division the scalar values (nTheta and rTheta) become now vectors: nTheta=
[nθ1 , nθ2 ...nθk ] and rTheta= [rθ1 , rθ2 ...rθk ], so that the k fragment of the entire edge
(lθ) represents lθk of the total length, and contains nθk cells, whose spacing grows
according to the rθk expansion ratio. This is applied to the three edges (lTheta,lCirc
and lRad), as shown in Fig. 3.8. This allows the user to add some refinement near
the walls to create for instance a boundary layer both near the gears and near the
pump casing, or to distribute the cells in a more general way, in order to improve
the refinement in a given region if desired. On the other hand, the head cells are
always assumed uniformly distributed in the radial direction, and nHeadTheta and
rHeadTheta continue to be scalar values.

nTheta

lTheta

rTheta

nRad

lRad

rRad

nCirc 

   lCirc 

      rCirc

Figure 3.8: Intervals definition of grid spacing and expansion ratios

Additionally, the user is given the option of further improving the quality of the
mesh by reducing the non-orthogonality of the cells near wall boundaries (gears
or casing). Let us consider point P (see Fig. 3.9) in a mesh generated with the
algorithm described so far. Let us define r1 and r2 distances from P to O1 and O2
(r1 = |O1P| and r2 = |O2P|), and let us also consider tg1 and tg2, tangent lines
to the wall boundaries at points O1 and O2 respectively. If we wanted the edge
O2P to be orthogonal to tg2 (to reduce the non orthogonality of the cells near
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O2) we would need to move P to R2. Similarly to reduce the non orthogonality
near O1, P should be moved to R1.

Figure 3.9: Schematic explaining useful information for final improvement of undisplaced mesh

It is clear that moving P to R2 is important when P is close to O2, and moving
it to R1 is important when P is close to O1. In other words, the vicinity to the wall
should be emphasized when determine the weighting function that approximate P
to R1 or to R2. In order to mathematically express this, the function f(d) defined
in Eq. (3.1) and Fig. 3.10 is considered.

f(d) = 1− 1

1 + e
−k
(

d
dminkd

−1
) (3.1)

where k and kd are user-defined constants (with default values of 1 and 0.25) and
dmin is the distance of the mesh edge that joins O1 and O2.

Figure 3.10: Blending function

Using this function r1 and r2 are used to determine r′1 = r1f(r2)/f(0) and
r′2 = r2f(r1)/f(0). When the P is close to O1, r1 < r2. In that case f(r1)/f(0)
will be very small while f(r2)/f(0) will approach unity so that r′1 << r′2. Using
this information the final location of P (denoted as P ′) will be given by Eq. 3.2.

OP′ = OP + βa
f(min(r′1, r′2))

f(0)

(
r′2

r′1 + r′2
OR1 + r′1

r′1 + r′2
OR2

)
(3.2)

where O is the coordinates origin and βa is a user-defined parameter that deter-
mines the maximum allowable change. f(min(r′1, r′2) is used to ensure that points
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located far from both walls are not modified, and only non-orthogonality near the
walls is corrected.

It can be easily deduced from Eq. 3.2 that the location of P ′ will be closer to
R1 if P was initially closer to O1 and closer to R2 otherwise.

The described method is applied to all the interior points of the mesh. The
evolution from the initially described method with scalar definitions of nTheta,
rTheta, etc. to the intervals definition, to the non-orthogonality corrected mesh is
shown in Fig. 3.11.

Figure 3.11: Mesh improvements: initial mesh (left); interval definition of cells distribution
(center); improvement of non-orthogonality (right)

Once the initial half-tooth mesh is generated, this can be replicated until com-
pleting the entire gear. The second gear is obtained as a rotation and displacement
of the first. This method produces as a result the “undisplaced meshes” shown in
Fig. 3.12

Figure 3.12: Examples of complete “undisplaced” meshes: involute (left), cycloid (center) and
user-defined (right) profiles
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3.5 Interface calculation

As described in section 3.2 once the “undisplaced mesh” has been generated (Fig.
3.2a), it is rotated to the position determined by the current time (Fig. 3.2b).
Before proceeding with the last step (projection of the mesh to Fig. 3.2c), the line
on which to perform the projection needs to be created. We need to define a line
that always lies within the two gear walls for any given profile. Several alternatives
have been considered with this scope and will be individually explained next.

3.5.1 Complete interface

The first group of alternatives will include those methods that allow us to calculate
the entire interface in one single step. As an example, one of the methods that
could be considered for a rounded profile consists in building the interface by the
medium points of the segments joining “corresponding points”. The corresponding
point of the top of the tooth of one of the gears would be the closest valley of the
other gear. The medium point of this segment would be a point of the interface
(see Fig. 3.13). In order to determine these points, the list of points used to define
upper and lower gear boundaries could be directly the mesh vertices, or another
user-given list of points with increased point density.

point1 point2

pInter1a pInter2a

pInter1b pInter2b

Figure 3.13: Calculation of an interface based on medium points

To ensure the smoothness of the mesh after projection, the interface should
start from point1 and finish in point2 (see Fig. 3.13). Therefore some additional
correction is needed at the beginning and end of the interface line. The first
idea was to determine the intersections between the calculated interface and the
external circumferences with radius (Dp/2+Ad+d). The interface is then limited
to the central part between the intersections (between point1a and point2a in Fig.
3.14), and completed with arcs in both ends.

pInter1a pInter2a

Figure 3.14: Correction of the interface left and right limits

However, following the gear rotation, the arc used to complete the interface
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should change from the circumference centered in one of the gears to the one
centered in the other gear. In order to smooth this transition a blending function
is proposed. As shown in Fig. 3.15, if the interface calculated with middle points
is completed with an arc centered in the lower gear, curveA would be generated.
If it is completed with the arc centered in the upper we would arrive to curveB.

curveB

curveA

curveInterp
pInter1a

pInter1b

pInter2a

pInter2b

Figure 3.15: Final blending of the interfaces

As the gears rotate we would require a smooth transition from curveA to curveB.
This is achieved by considering a blending between the two as shown in Eq. (3.3).

curveInterp = λ curveA + (1− λ) curveB (3.3)

where λ is a blending parameter that depends on the position of the gears. This
relation is expressed as λ(Γ) where Γ (see Fig. 3.15) is the angle between the
vertical line and the line that joins the center of the lower gear with its first valley
at the right of point1.

Figure 3.16: Definition of blending factor λ(Γ): curveA weight (λ) (—); curveB weight (1 − λ)
(−−−)

The same strategy applies to the curve completing the interface in the vicinity
of point2. Parameters Γlim and ∆Γ determine when and how fast the blending
proceeds, and can be both specified by the user.

The described strategy works properly when smooth rounded profiles are con-
sidered, but it could fail when very low clearances are used. Therefore some other
alternatives were studied, as presented in the next section.
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3.5.2 Separated interface

The second method we propose consists in separating the profiles of the gears in
the gearing region in pairs of half-tooth profiles, as the ones marked in Fig. 3.17.
A “medium line” is calculated between each pair of half-tooth poly-lines, and is
then completed with arcs with the corresponding center. This methodology (as
shown in Fig. 3.18) is applied to the pairs in the inner part of the gearing region.
For the interface near point1 and point2 some additional blending is performed as
it will be explained later. The separation in pairs guarantees the applicability of
the method to gears with any number of teeth.

Figure 3.17: Definition of the separated interface method. A pair of half-tooth profiles has been
marked in the center of the figure

Figure 3.18: Definition of the single interface of a profile pair: medium line (left); arcs (medium);
complete single interface (right)

While the generation of the medium line can seem straight forward, a generally
applicable algorithm for any profile in any position of the gears is not so obvi-
ous. Two alternatives were found to perform properly for the tested profiles: the
hereafter called arcs method and the frechét method.

Arcs method

The arcs method starts by considering the half-tooth profiles with the same dis-
tribution of points of the gear wall boundary mesh vertices (without increased
point density). A series of arcs is then defined; starting from the top of one tooth,
an arc co-centered with the gear that tooth belongs to, is drawn until it intersects
the other profile. The intersection determines the end point of the arc, and the
medium point is the first point of the interface. The process continues with arcs
that keep using the same center and start in the points of each of the profiles.
The distance between the extremes of the arcs keeps reducing until a minimum
distance is found (near the contact point). When this happens arcs centered in the
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center of the other gear are considered and the process continues until all points
of both profiles have been used. The procedure is shown in Fig. 3.19. The use of
mesh vertices guarantees that the medium line will always lays between the two
profiles as long as gears wall boundaries do not overlap.

center1
center2

Figure 3.19: Definition of the arcs methodology

Fréchet method

The idea behind the fréchet method came from the so-called Fréchet distance, a
mathematical algorithm that allows the calculation of the similarity between two
polygonal curves. This algorithm has been further extended in literature for many
applications [8, 97] including for instance the determination of a “medium line”
that minimizes the maximum weak Fréchet distance to two given profiles [56].
However this method was found to be too time consuming for its application to
our problem. The proposed method (see Fig. 3.20) starts by considering the
profiles with a high enough point resolution (not only the gear wall boundary
vertices are considered). Examining two starting points (f1, f2, one from each
profile), the length of f1f2 is determined. Keeping f1 fixed, a new segment f1f ′2
is inspected. If the segment is shorter (|f1f ′2| < |f1f2|), next point in the profile
(f ′′2 ) is studied, leading to the segment f1f ′′2 whose length is compared to the last.
This process is repeated until the new segment becomes larger than the previous
(in the example |f1f ′′′′2 | > |f1f ′′′2 |). Medium points of first and last segments (m0
and m00) are then used to determine the middle point between them i0 which will
be part of the interface. After this process finishes for f1 (which was kept fixed),
the point of the last segment from the other profile (f ′′′2 ) becomes fixed and the
process is repeated. However, the determination of middle points mx and ix is
only considered when the fixed point belongs to profile used to determine the first
point m0. This avoids the generation of non-smooth interface curves.

It is clear that when this method is applied to diverging lines many more points
will be generated (the change of fixed point will occur more often). Therefore for
the case of tooth profiles (Fig. 3.20), the first step to consider is the determination
of a pair of points (one from each profile) for which the distance between them is
minimum (they will be near the contact point). Then the explained methodology
is applied moving towards each direction (diverging lines in both cases). Addi-
tional difficulties are found when considering the peculiar case of points near the
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limited 
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First point by 
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Figure 3.20: Definition of the fréchet method. Basic definition (left); application to an involute
profile (center); zoom (right)

top of one tooth. In fact the direct application of the method from the contact
point until the last point could generate problems. To avoid them, before the
method is applied, the profiles are limited as shown in Fig. 3.20, so that the part
of the profile including the fillet radius is not considered in the calculations. For
the part of the interface that has not been calculated due to this limited profile
two options are considered (the code will choose the most appropriate one): either
the last two calculated points of the interface are used to extrapolate the location
of the last one (as in case A in Fig. 3.20), or this particular point is calculated by
using the previously described arcs method (as in case B in Fig. 3.20). Notice
that if the extrapolation method (as applied in case A) was used in case B, the
determined location of the last point would be too close to the gear profile. In
this case the second method (the one actually applied in case B) is preferred.

While this method is more complex and slightly more time consuming, fréchet
is applicable to all: rounded, involute, or cycloid profiles, and possible problems in
the contact region when clearances are reduced can usually be solved by increasing
the point density in the profiles used for the determination of the interface.

Blending

With any of the two methods described above (arcs or fréchet), the medium
lines are generated and completed with arcs as it was explained in Fig. 3.17.
However, as it was shown with the “complete interface” calculation in section 3.5.1,
additional blending is required near point1 and point2. In this case the blending is
performed in a different way.
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Figure 3.21: Defnition of blending algorithm for “separated interface” method: curveA (left),
curveB (center), curveInterp (right)
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Following Fig. 3.21, arcs or fréchet methods would provide the central part
of the first curve, curveA (the length of this line is l in Fig. 3.21). For inner
“medium lines” these medium lines were completed with arcs of radius (Dp/2 +
Ad+spacing/2) (see Fig. 3.18). However as we approach point1, these arcs should
approach the external circumference arcs, of radius (Dp/2 + Ad + d). To make
this change smooth, the radius of the arcs (Rinterp) is progressively increased by
a blending function as shown in Eq. 3.4;

Rinterp = (Dp/2 + Ad) + γ(spacing/2) + (1− γ)d (3.4)
where γ is a coefficient reduces as the medium line approaches point1, following

Eq. 3.5.
γ = min(Cγl/L, 1) (3.5)

where l is the length of the medium line, L is the whole dept (L = Ad+Dd) and
Cγ is a user defined value which sets the speed and starting point of the blending.

Besides, the medium line should smoothly approach an arc to improve mesh
quality. As shown in Fig. 3.21, this is performed by creating other curve (curveB)
and defining the final interface as a blending (see Eq. 3.6).

curveInterp = γ curveA + (1− γ) curveB (3.6)
where γ is the same blending parameter previously defined in Eq. 3.5 and curveB

will be defined next. As the tooth approaches point1, the length of the medium
line (l) decreases, γ decreases and curveInterp approaches curveB. As shown in Fig.
3.21, curveB starts with an arc of radius (Dp/2 + Ad + d), until point qProj. This
point is determined by the projection of the point where the steepness of the
profile suddenly changes (for involute or cycloid, see Fig. 3.6), or the user defined
location of the non-conformal interface (see Fig. 3.7), (point q) in the external
circumference of radius (Dp/2 +Ad + d). Similarly point hProj is the projection of
point h in the circumference of radius Rinterp. The second part of curveB consists
of an arc which goes through hProj and qProj and whose center is located in the
line lineCenter, parallel to the line that joins point1 with the center of the lower
gear. Last part of curveB is just an arc of radius Rinterp. With this method we
ensure curveB will eventually turn into just an arc of radius (Dp/2 + Ad + d) and
therefore the final interface curveInterp will smoothly approach it too.

A similar strategy is performed when the tooth approaching point1 belongs to
the other gear, or when it is happening in the proximity of point2.

3.6 Mesh projection

Following the procedure introduced in section 3.2, last step to finally arrive to Fig.
3.2c is the mesh projection. The undisplaced mesh (section 3.4) has been rotated
and its cells need to be projected to the calculated interface (section 3.5). An
example of the projection process that will be explained in this chapter is shown
in Fig. 3.22.

Only the “radial edges” for which the last point lies within point1 and point2
are considered for projection. For example S1S2 is projected while Q1Q2 is not
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Figure 3.22: Mesh projection step for lower gear of a 2D mesh of an involute profile: non-
projected mesh (left), projected mesh (right)

modified (as shown in Fig. 3.22). Two possibilities for the projection algorithm
have been studied: linear or spline projection.

Linear projection

The basic projection method is based on scaling the list of connected cell vertices
following the line that joins the first and the last in the radial direction. As shown
in Fig. 3.23, the list of points {l1, ...ln} must be projected. First, intersection linter
between the straight line l1ln and the calculated interface is computed.

Figure 3.23: Linear projection

The entire list of points is then scaled so that the final position of point li, l′i
is obtained by Eq. 3.7.

l’i = ln + (li − ln) |linterpln|
|l1ln|

(3.7)

Even if fast, this simple method might fail when fine curved meshes are used,
since curved lines are becoming straight as shown in Fig. 3.24.

Figure 3.24: Example of application of linear projection: coarse mesh (left), fine curved mesh
(right)

Therefore other projection method could be based on scaling points in a similar
manner, but using as a reference a spline.
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Spline projection

The spline projection method works in the same manner as the linear one (see
Fig. 3.25).

Figure 3.25: Spline projection

However, in this case, the distances are calculated as the integrated length of
the spline segments. Thanks to this, the method would also work for fine curved
meshes, as shown in Fig. 3.26.

Figure 3.26: Example of application of linear projection: coarse mesh (left), fine curved mesh
(right)

With both linear or spline projection methods, one additional parameter is
considered. If the initial mesh has been generated with some user-specified grading
ratios for wall refinement, the application of such refinement in the zones where
the distance between gears is minimum would generate cells with extremely high
aspect ratio. To avoid this, the user is given the possibility to consider a uniform
distribution of points when the cells are located far from point1 or point2, and
the initial graded distribution of the undisplaced mesh when approaching these
points. The final location of each point will be a blending of both strategies,
using as blending factor χ = min(|linterpln|/(Ad + Dd), 1). Final position l”i is
then determined by Eq. (3.8).

l”i = ln + |linterpln|
|l1ln|

[
χ(li − ln) + (1− χ)(l1 − ln) n− i

n− 1

]
(3.8)

Further corrections

Any of the projection methods shown above can be further corrected in the vicinity
of point1 and point2. The projection of only some of the edges generates holes in
the mesh that cannot be easily handled by the interface boundary conditions;
therefore it is convenient to eliminate them. An easy way to solve the problem is
to make sure there is always one cell vertex in each of those points. For instance,
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looking at point1, after rotation of the non-projected mesh, the closest cell vertex
to point1 is selected and moved to the coordinates of point1. When the linear
projection is being used the rest of vertices in the radial direction can be moved
following Eq. 3.7 (see Fig. 3.27).

Figure 3.27: Projection of cell vertex to point1 when linear projection is used

When the spline projection is selected (see Fig. 3.28), and following the
notation introduced in Fig. 3.25) l1 is moved to l′1 = point1 by a vector d1
(d1 = point1− l1).

Figure 3.28: Projection of cell vertex to point1 when spline projection is used

For the rest of points {l2, l3...ln} the displacement di is scaled with their dis-
tance to ln according to Eq. 3.9 for the linear projection and the equivalent,
following the curved edge, for the spline projection.

di = d1
|liln|
|l1ln|

(3.9)

3.7 Extension to 3D meshes

So far the method has been applied to two-dimensional meshes. The extension to
three-dimensional straight-cut and helical meshes is straight forward. As a matter
of fact, the final outcome of the entire strategy for the two-dimensional case is a
map of displacement vectors for some of the vertices of the mesh. The method
is slightly different for straight-cut and helical meshes, so it will be explained
separately.

Straight-cut gear meshes can be generated by the extrusion of a 2D mesh. For
these cases, the calculated field of displacements can be applied to transform the
points of each z-level of the mesh, as shown in Fig. 3.29.

This would be the fastest 3D case scenario since no re-calculation is needed.
Interface and projection are calculated only once and the displacement field is
mapped to the rest of z-levels. In fact, in OpenFOAM R©, this is done even in the
two-dimensional case, since cells are always visualized as thee-dimensional and
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Figure 3.29: Application of the proposed method to a 3D straight-cut gear mesh

the two-dimensionality is applied when considering empty boundary conditions,
which in our case would be applied to the top and bottom faces in the z direction.

For helical gears, the non-projected mesh can be generated as a straight-cut
mesh (extruded from the 2D case), plus an additional rigid rotation of points
with respect to the gear axis depending on the pitch of the helix Ph. The angle
of rotation will be proportional to the difference in z coordinate between a given
point and the lower base of the gear, following Eq. 3.10, as shown in Fig. 3.30.

θi = 2π/Ph(zi − z0) (3.10)

Figure 3.30: Generation of non-projected mesh for helical gears

The interface calculation and projection algorithm can then be applied to each
z-level (see Fig. 3.31) with slight modifications.

Figure 3.31: Application of the proposed method to a 3D helical gear mesh

First of all, the map of displacements is different for each z-level and therefore
the calculation of interface and projection must be performed once for each z-level.
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For a given level zi the algorithm is exactly the same as in the 2D case, but it must
consider that the rotation angle for the given z is given by θi = θ+2π/Ph(zi−z0).

Secondly, the critical problem appears when considering the correction of mesh
holes near point1 and point2 (as explained in section. 3.6 for the 2D case). If we
focus on the cells near point1 (which represents a line in the 3D case, line1), if 2D
procedure is followed and only the closest vertex is moved to point1 at each z-level,
holes will still appear and very concave cells will be generated, as shown in Fig.
3.32.

Figure 3.32: Problem of vertex projection to point1 in the case of helical gear meshes

In this case, the problem is not only affecting the interface boundary condition,
but concave cells will also limit the convergence of solvers. In order to make the
gaps disappear, we need to make one of the edges of those cells become vertical,
and align it with line1. It must be only one edge per z-level, since otherwise we
would be generating zero-area faces, which are of course not accepted by the code.
As shown in Fig. 3.33, the proposed method consists in identifying the edges that
are crossing line1, choosing the one in the center (if more than one is crossing)
and projecting upper and lower vertices adequately to the point1 of the respective
z-level, for that edge to become aligned with line1.

Figure 3.33: Mesh overview before and after the correction: coarse meshes (left); fine meshes
(right)

As a consequence the previously concave cells become wedge-like cells as shown
in Fig. 3.34. The treatment of interface boundary conditions is simplified, and
the concavity of the cells is corrected, even if a little higher non-orthogonality
might appear for some cells.
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Figure 3.34: Application of the projection strategy in line1 and wedge-like generated cells

3.8 Fixed cells meshing

While the process explained so far applies to the generation and motion of all
cells contained in the gear1 and gear2 regions (see Fig. 3.1), no information has
been given regarding the meshing process of the fixedCells region. In fact, since
neither the cells nor the points or faces need to be modified during the simulation,
any generation strategy can be followed to mesh that region. As an example, Fig.
3.35 shows a block-structured 2D mesh generated with a commercial meshing tool,
while 3.36 shows two 3D meshes, block-structured and unstructured hex-dominant
respectively, generated with OpenFOAM R© blockMesh and snappyHexMesh utili-
ties.

Figure 3.35: Generation of fixedCells mesh region with a commercial mesh generator

Figure 3.36: Generation of fixedCells mesh region with open-source applications: blockMesh
(left) and snappyHexMesh (right)

Depending on the strategy followed for the topological changes in the mesh
(detailed in the next section), the fixedCells region might need to include layers
of cells between the circumferential boundaries of the rotating gear1 -gear2 and
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the casing of the pump. Furthermore, if the axial leakage needs to be simulated,
additional layers of fixed cells would be required at the top and bottom of the
rotating gears, as it will be detailed in section 3.10.

3.9 Topological changes

The proposed strategy is based on the separation of the the entire mesh in three
independently moving regions. The contact boundaries between these meshes
must be treated as interfaces. In its current version, OpenFOAM-dev offers two
alternatives to treat this kind of conditions: Arbitrary Mesh Interface (AMI)
and Arbitrary Coupled Mesh Interface (ACMI). While the former can be used to
communicate two simple non-conformal overlapping mesh boundaries, the latter
allows for the specification of a second boundary condition in the non-overlapping
region.

For the proposed method, communication between boundaries can be solved
using exclusively AMI conditions or both AMI and ACMI conditions. However,
even for the ACMI condition, OpenFOAM does not allow a given boundary to have
two interface conditions (one interface in the overlapping part with one boundary
and other interface condition in the non-overlapping part with another boundary).
While the code could have been extended to allow this kind of behavior, a much
easier solution was found, modifying the topology of the mesh in order to allow
faces to move within boundary patches, We should note here that the only change
of topology that we are considering is the motion of faces from one boundary to
another, which is computationally fast since neither internal faces, nor cells or
vertices are being modified.

3.9.1 AMI conditions

The first method, based on the use of AMI conditions, assumes that the region
of fixedCells (see Fig. 3.1) includes also some layers of cells in the space between
gear1 and the pump casing, as well as between gear2 and the casing (see Fig.
3.37).

Figure 3.37: Boundary definition for the use of only AMI conditions

Adding layers of cells of the fixedCells region all along the casing enables the
definition of an AMI condition between the moving gear1 and gear2 regions and
the steady fixedCells region. The boundaries circ1AMI and circ1OuterAMI can be
defined with AMI conditions. At the beginning of each time step, after moving the
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mesh, interpolation weights are updated. While equations are solved, variables are
interpolated using these weights from one boundary to the other each iteration.
Exactly the same procedure is followed for circ2AMI and circ2OuterAMI, and for
interface1AMI and interface2AMI since the same surface is covered by every pair of
boundary patches (the boundaries fully overlap in couples). However, as the gears
rotate (following the arrows in Fig. 3.37), faces located for instance in circ1AMI
should eventually be moved to interface1AMI, since they are not in contact with
faces from circ1OuterAMI any more, but they start overlapping faces of interface2AMI.
When the projection of cell vertices to point1 and point2 is performed, the change
of faces from one boundary patch to another is sudden. When this projection is
not performed, there will be a period where the face of circ1AMI will be located at
a position where it sees both faces from circ1OuterAMI and from interface2AMI. In
that case, for the sake of simplicity, when the projection weight are below 20%
Newman conditions (zeroGradient) are applied. The face is changed from one
patch to the other when the x coordinate of the face center changes its position
with respect to to the x coordinate of point1.

3.9.2 ACMI and AMI conditions

The second method, based on ACMI conditions, does not require the mentioned
layers of cells near the casing of the pump, since ACMI allows two boundary con-
ditions (an interface or, for example a nonSlipWall condition) for a given face in
a patch. A weighted sum of the conditions is applied as a function of the over-
lapping between the patch and the other interface patch. This is performed by
OpenFOAM R© by duplicating the faces in the ACMI boundary (see Fig. 3.38).
The previous circ1AMI is now two boundaries, circ1ACMI blockage and circ1ACMI -
couple, and the same happens with the other interface boundaries between gear1,
gear2 and fixedCells regions. If there is overlapping between circ1ACMI couple and
circ1OuterACMI couple, boundary is treated like a normal AMI interface. However
when a face in circ1ACMI couple, which is duplicated in the patch circ1ACMI blockage
does not overlap circ1OuterACMI couple, the condition to be applied is the corre-
sponding to a wall patch, for the given variable.
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Figure 3.38: Boundary definition for the use of ACMI and AMI conditions

Regarding the topological changes, a slight modification is now required. As
the gears rotate, faces which are for instance in circ1ACMI couple, and duplicated in
circ1OuterACMI blockage, should be moved to interface1AMI (let us remark that the
condition here is still AMI since no double boundary condition is required between
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interface1AMI and interface2AMI). The two changing faces (in circ1ACMI couple and
circ1ACMI blockage) are then transformed to one only face in interface1AMI.

The described strategy is applied in a similar way to the faces of circ2ACMI couple
and circ1ACMI blockage. In the vicinity of point2 a similar topological change needs
to be applied, since a single face from interface1ACMI would need to become two
faces, one belonging to circ1ACMI couple and other belonging to circ1ACMI blockage.

3.10 Velocity mapping for axial leakage estimation

In the three-dimensional simulation, in a first degree of approximation, the top and
bottom boundaries of gear1 and gear2 cell regions would behave as fixed walls. In
fact those faces would be in contact with the compensation plates (shown in Fig.
1.2) and therefore, as the mesh rotates the boundary condition to be applied to
those faces is simply a non-slip condition. However, if the axial leakage needs to be
estimated, the minimum space between the rotating gears and the fixed compen-
sation plates boundaries needs to be simulated. Fig. 3.39 represents an schematic
of such a case (distances have been magnified for visualization purposes).

upOuterACMI
upOuterACMI_couple

upOuterACMI_blockage

upACMI
upACMI_couple

upACMI_blockage

Figure 3.39: Simulation of the space between gears cells and compensation plates

The layers of cells separated from the upper boundary of the gears cells are
static. They can be created with the rest of the fixedCells region. The problem
arises when considering the boundary conditions of the bottom faces of this layers
of cells (upOuterACMI) , which is in contact with the top boundary of the gears cells
(upACMI). As the gears rotate, faces from upOuterACMI will either be in contact with
faces from upACMI (they should then behave as an interface allowing the fluid to
move through them) or they will not be in contact with any face, and should then
behave as a boundary. In the latter case, the boundary condition to be applied
would come from the rotating wall at the top of the gear. This can be treated in
OpenFOAM R© using the already mentioned ACMI conditions. However, in this
case, the boundary condition to apply to the upOuterACMI blockage faces is not
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just a zero velocity. In fact if we pay attention to the gears meshing region (see
Fig. 3.40), a face behaving as a moving wall in upOuterACMI blockage would need
a boundary condition that changes in time as the gears move.

Figure 3.40: Velocity mapping

This has been implemented by determining, for each face center and run-time,
whether its position lies on top of gear1 or on top of gear2 wall boundaries, and
assigning as boundary condition, the value corresponding to a solid rotation with
axis in the center of gear1 or that of gear2.

3.11 Implementation in OpenFOAM R©

The mesh motion strategy has been implemented in the -dev version of Open-
FOAM, following the rules of structured coding and avoiding code repetition.
The collaboration diagram for the generated classes is shown in Fig. 3.41.

gearPumpMotionTopoFvMesh

topoChangerFvMesh

dynamicFvMesh

polyTopoChanger PtrList< polyMeshModifier >

polyMeshModifier

patchChangingFaces

gearProfile

readSpline

cicloidal

involute

gearPumpInterfaceFunction

mediumPolyLineInterface

splitInterface method

arcs

frechet

gearPumpProjectionFunction

linearProjection

polyLineProjection

topoChanger_

GPIFPtr_

GPPFPtr_

GPPtr_

SIPtr_

Standard OpenFOAM classes

Implemented classes

Figure 3.41: Collaboration diagram of the implemented classes and connection with base Open-
FOAM classes

The main class gearPumpMotionTopoFvMesh derives from OpenFOAM R© class
topoChangerFvMesh. One of the benefits of doing this, is that any available solver
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in OpenFOAM R© can directly use the implemented classes without the need of
being re-compiled. This piece of code gains therefore versatility.

In gearPumpMotionTopoFvMesh a run-time selection (the user specifies in the
appropriate dictionary the class she/he would like to use) of a gearPumpInterface-
Function class, that determines the 2D interface for a given rotation angle, and
of a gearPumpProjectionFunction class that calculates the map of displacements to
project the undisplaced mesh to the current interface, is performed. The profile is
given by the class gearProfile that again can be selected run-time among any of the
previously mentioned: involute (involute), cycloidal (cycloidal) or a point list given
by the user (readSpline).

Regarding topological changes, OpenFOAM R© base class (topoChangerFvMesh)
contains a pointer to a list of polyMeshModifiers. The changes explained in sec-
tion 3.9 are implemented in the patchChangingFaces class, directly derived from
polyMeshModifier.

The operations performed by the main class can be summarized as follows.
First the mesh is loaded and names of cellZones, boundaries, profile selection, and
others are checked. Once the mesh has been checked, the labels of mesh points
must be organized in order to simplify the mesh projection algorithm, as it will be
explained later. Then the location of the undisplaced mesh points is determined.
This is all done in the constructor of the class. During the simulation, mesh is
updated by rotating the undisplaced points (saved in memory), determining for
each z-label the 2D interface, and projecting the points as it has been explained
previously. Once the point coordinates have changed the AMI and/or ACMI
boundary conditions are checked and, if required, the topological changes are
applied.

The movement of points can only be performed if their ordering is known.
Since the mesh could have been renumbered, an algorithm has been implemented
in order to create a hypermatrix of labels in which a point label can be found
(see Fig. 3.42) by providing the cellZone it belongs to (gear1 or gear2 ), the index
of its z-coordinate (zi), the tangential coordinate (ti) and the radial coordinate
(ri). This search is only done once in the constructor of the class and information
is stored and used thereafter. Even if the memory requirements slightly increase
because of these variables, the point search algorithm can be slow, so that it is
convenient to execute it just once.

Figure 3.42: Point labels organization
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Point search starts form a random point in the lowest z-level at the external
radial boundary (r = 0). Considering this as a reference (z = r = t = 0), any
other point can be located once the indexes are known following the solid line in
Fig. 3.42. As shown in Fig. 3.43, this is performed by locating points connected
to an initial one in the opposite face of a hexahedral cell. When the cell is not
hexahedral due to the presence of non-conformal interfaces (see Figs. 3.7 and 3.6)
face normal vectors (Sf,i) are used to determine the direction in which to proceed
with the point search.

Figure 3.43: Point research algorithm

As mentioned before, the undisplaced mesh is used in the motion algorithm.
Since the loaded mesh contains point coordinates which have been projected to an
interface, the projection needs to be undone in order to determine the coordinates
of the undisplaced mesh points. This is performed as follows (see Fig. 3.44). For
each z-level the first point before point1 (pointLeft at tangential index tpointLeft) and
the first point after point2 (pointRight at tangential index tpointRight) are identified.
The coordinates of all points between tpointLeft and tpointRight (with any radial
index r = 0...rMax) are replaced by the corresponding undisplaced location, which
is copied (rotated back) from the points before point that had not been projected.

Figure 3.44: Creation of unprojected mesh in the class constructor

Having access to all mesh information, gearPumpMotionTopoFvMesh is also used
to determine gear contact points locations (section 3.13), to map velocities for
axial leakage calculation (section 3.10) and to provide additional functionalities
required by some of the other classes exposed in Fig. 3.41.
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3.12 Parallelization

The way it has been described, the algorithm would works as long as it has access
to all the cells between a minimum and a maximum z-level and belonging to either
one of the gear cellZones or both. Therefore the maximum level or parallelization
obtained for a 2D mesh would be the one shown in Fig. 3.45.

Figure 3.45: Parallelization of a 2D mesh

Each of the gears is kept in a different processor while any algorithm can be
used to distribute the rest of cells of the fixedCells region.

When a 3D mesh is considered the parallelization can also be applied in the
z direction leading to the structure of processors shown in Fig. 3.46. Again, the
rest of the domain (fixedCells) can be decomposed following any other method.

Figure 3.46: Parallelization of a 3D mesh

The only required modification appears when the projection of cell edges to
line1 and line2 is considered in the case of 3D helical gears. In this case additional
communication between processors is required. As shown in Fig. 3.47, projection
or red edges leads to the situation shown in blue lines, where some points have
been projected by one of the processors but not by the immediately upper one.
Point synchronization between processors allows us to correct problematic points
leading to the green edges and reaching the final situation in Fig. 3.47.
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Figure 3.47: Point synchronization in 3D helical meshes with edge correction

The simple mesh decomposition method described so far does not produce
a properly balanced parallelization in terms of shared faces and points between
processors, even if the number of cells is homogeneously distributed between pro-
cessors. The main issue behind any other parallelization method is that, following
the algorithm used to determine the hypermatrix with point labels, we need the
local processor to have information about all the cells contained in a given gear
cellZone within two z-levels to create these matrices. If that is not the case, the
local processor cannot access such information from the neighbor ones and even if
it could, the process would be too time consuming. However a properly balanced
decomposition is required, particularly when such a large case is under study.

The proposed solution is the following. Since we cannot access the required
coordinates of some points from the local processor (because those points might
belong to cells that are not contained in it), and we would not like to load the
entire mesh from every local processor (that would be too time consuming), what
we can do is previously define two files containing a hypermatrix with the global
index structure (globalMatrixOfPoints) and coordinates (globalUndisplacedPoints) of the
undisplaced points in gear1 or gear2 regions (not all the points of the mesh) and
read those files from every processor. Once these files are read, each processor will
determine how much of this information it needs (depending on the cells contained
in it), reduce the size of these hypermatrices, and save the required information
to be used in its motion algorithm.

Fig. 3.48 explains the global hypermatrix size reduction. Let us consider a
case in which the parallelization proceeded so that one processor contains the
cells in blue in the left of the figure while other contains the cells in yellow.
globalMatrixOfPoints and globalUndisplacedPoints contain information of all the points
that would need to be modified in the entire mesh (points belonging to gear1
or gear2 regions), and are represented for the entire gray meshes at the left of
the figure. When the processor in blue reads these files it will see that the cells
it contains belong all to gear2, but it contains cells in all the zLevels. In that
case it will save the information of the hypermatrix of the entire gear2. On the
other hand, the yellow processor needs only some of the zLevels of gear2 and
some others of gear1, and that is the information it will save, as shown in the
right of Fig. 3.48. The mesh motion strategy proceeds so that the projection is
only computed when needed, and the interface is only calculated for the zLevels
it is required and only once for each zLevel (since the same interface is used to
compute projection of cells in gear1 and gear2 ).

An application has been created to determine or update the required files.
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Figure 3.48: New parallelization method and global hypermatrix size reduction

With this new method any kind of parallelization method could be applied to our
case.

3.13 Contact point treatment

One important problem in the use of the CFD approach for the simulation of gear
pumps is the treatment of the contact point, whose hydrodynamic mechanism has
itself concerned several authors [57, 58]. In real pumps, one of the gears drives
the other, and the contact between them occurs in one or more points (one or
more contact lines in the three-dimensional case). In fact, the contact ratio (εr)
is typically higher than one, which means that before a pair of teeth separate, the
contact between the next pair has started. This is particularly important when a
2D approach is considered, since decompression slots cannot be simulated and the
increasing pressure in the trapped volume when εr > 1 typically leads to numerical
instabilities. The most realistic way of simulating the contact point would be to
connect gear wall boundaries, reducing therefore to zero the spacing between
the gears. This method however would tremendously complicate the dynamic
mesh handling, since the topological changes to continuously attach and detach
the boundaries would substantially increase the computational cost. Besides, the
grid tolerances would make it difficult to ensure tangential contact between the
moving boundaries. Other approach that can be found in literature [14] is based
generating solid walls in inner faces of the domain. Typically this can be applied
when the re-meshing method is used as mesh motion strategy, since the contact
wall faces remain constant as the mesh deforms (the contact point is however
separating from the theoretical position in that case), and the location of these
faces can be corrected once a new mesh is generated substituting the current
one. If such a method was to be applied in the mesh motion strategy described
in this thesis, the topological change to reorder the faces (internal faces need to
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become wall boundary faces) would again induce a much higher computational
cost, significantly reducing the efficiency of the proposed method. Three possible
methods are considered to overcome these difficulties.

The first one is based on modifying the fluid viscosity in the vicinity of the
contact point, and it is a common approach in literature [13, 26,40]. If the liquid
dynamic viscosity is artificially increased in a small region around the contact
point, this would act as a solid spot, preventing the liquid to flow through, and
therefore modeling the real behavior. In [27], the artificially increased viscosity
linearly reduces as the distance of the cells to the contact point increases, until
the viscosity returns to the property of the liquid at a given distance from the
contact point. This approach does not allow the user many options to control how
fast she/he wants to increase the viscosity when approaching the contact point.
A better behavior can be obtained when the same idea is applied but a smoother
decaying function is used. For instance, in [13], the contact point is simulated in
OpenFOAM R© by considering a varying viscosity, which behaves as described in
Eq. (3.11).

νtot = ν + νcontact(d) = max(ν, νmaxf(d)) (3.11)

where νcontact is the additional viscosity, ν is the fluid kinematic viscosity, νmax =
kνν is the maximum value of the viscosity on the contact point (kν = 1000 in our
cases, is a user-defined constant) and f(d) is the same blending function described
in the mesh generation section in Eq. (3.1). In this case d represents the distance
from the cell center to the furthest gear and dmin is the minimum distance between
the gears, which in our case has been approximated by the spacing parameter.
Considering Eq. 3.1 and Fig. 3.10 it is clear that k controls the slope of the
curve, and therefore how fast we would like the artificial viscosity to increase,
while kd defines the extension of the contact point region, and therefore how far
from the actual contact point we would like the artificial viscosity to be high.
Too high values of k would lead to numerical instabilities due to the sudden and
strong variation of viscosity between a cell and its neighbors, while kd should be
kept as small as possible, as long as the fluid is stopped from flowing through
the contact point, to limit the region with artificially modified properties. For
instance, k = 5 and kd = 3 are suggested in [13]. The problem we found when the
proposed method was applied, is related to the way d is calculated. Castilla et
al. [13] determined d by using a modified version of wallDist OpenFOAM R© class.
In fact they used wallDist to determine the distance from every cell center to the
closest face in the gear1 wall patch (y1) and the to gear2 wall patch (y2), defining
d = max(y1, y2). Besides, in order not to consider an increased viscosity near
the backlash angle, where gears are close to each other but liquid should not be
impeded to flow, the x component of the vector pointing from every cell center to
the driving gear was considered, determining when the proximity of gears occurs
because of an actual contact point, and not because of the backlash clearance.

The described method has been implemented in OpenFOAM R©. However, it
was found that wallDist functions, based on calculating Poisson [34] or Eikonal [138]
equations, are approximate methods, whose accuracy diminishes with the degree
of mesh distortion; as soon as non-orthogonality or skewness of the mesh increases
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the validity of the method fails. When the method is applied with the proposed
mesh motion strategy, the presence of AMI interfaces also difficults the resolution
of the PDE that is solved to determine y1 and y2, leading to oscillations.

(a) Involute profiles

(b) Cycloid profiles (c) Rounded profiles

Figure 3.49: Instabilities in the calculation of d and νcontact oscillations

In Fig. 3.49 the method has been applied to involute, cycloid and rounded
profiles. The oscillations in the calculated distance d produces the same behavior
in νcontact, which leads to numerical instabilities. The class wallDist adds also the
possibility to correct the predicted distances for the boundary cells, where the
approximate distance is replaced by an explicit geometrical calculation. However,
the problem we are facing affects to inner cells, and therefore there is no parameter
we can modify to correct the distance calculation using that method. A possible
alternative is to consider a different method to determine the proximity of any
cell to the contact point.

The proposed alternative (the second contact point treatment we consider in
this thesis) consists in geometrically determining the location of the contact point
(or points), the minimum distance between gears for each of them (dcontact), and
manually calculating distances from every cell to it. Therefore in this case, the
variable d is not the distance to the furthest gear wall boundary any more, but
the distance from every cell center to the contact point under consideration. The
parameter dmin in Eq. (3.1) is still spacing but the new artificial viscosity is now
calculated according to Eq. 3.12.

νcontact(d) = kννf(dcontact)f(d) (3.12)
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where f(dcontact) will approach zero when dcontact is large, and will approach unity
when dcontact is smaller than kdspacing. In that case the viscosity blending for
each cell will be given by kνf(d).

In the three-dimensional case, the location of the contact point is determined
for each zLevel and the distance for the cells with vertices in zLevel and zLevel+
1 is calculated with respect to the expected position of the contact point, the
middle point between the contact determined at zLevel and the one determined
at zLevel + 1.

Since the profile could have been defined by the user by a list of points, there is
not analytical solution for the determination of the contact point, so a numerical
strategy must be employed. The approach we will follow is based on the fréchet
method that was described in section 3.5.2. As shown in Fig. 3.50, the minimum
distance between profile nodes is found, and the middle point of the projection
segment is considered as the contact point.

Figure 3.50: Contact point (Pcontact) and minimum distance (dmin) determination

The user can also decide to avoid the backlash zone (for the reasons explained
before), and to consider more than one contact point. For instance, when the
specified number of contact points to locate is three (see Fig. 3.51), the code
will look for the three locations where distances are minimum, corresponding to
different teeth pairs (avoiding in this case backlash zones), and will return the
location of those points together with the minimum distance found in each case.

Figure 3.51: Location of more than one contact point, avoiding backlash zone

It is clear that, even if contact does not exist yet (as in Pcontact,1) the point
should be identified so that the artificially increased viscosity is not added sud-
denly when the contact starts, but instead it smoothly increases in time, as the
distance reduces, to avoid numerical instabilities. Of course, this can occur as fast
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as the the user decides by controlling kd (artificially viscosity will start increasing
when dcontact starts approaching kdspacing ).

contactDist

Figure 3.52: Definition of contactDist and other variables in the proposed contact point treatment
formulation

Furthermore, in order to limit the cells in which the operation (Eq. (3.12))
is evaluated, the user can define a new parameter that restricts the application
of the increased viscosity to the cells withing a given distance (contactDist) from
the contact point (see Fig. 3.52). This is optional and added only to reduce the
computational cost, since cells far from the contact point will not see any increased
viscosity according to Eq. (3.12).

Fig. 3.53 shows the result of the application of the proposed method to a 2D
and a 3D case. The reader can notice how the the problem with νcontact oscillations
disappears.

(a) Two-dimensional case: scaled to the global νcontact range
(left); scaled to a minimum νcontact range (right)

(b) Three-dimensional case

Figure 3.53: Application of the proposed methodology to 2D and 3D cases
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The third and last method we could consider, is based on assuming the ex-
istence of an artificial porous media in the contact region. While the previous
algorithm is used to locate the cells within a given distance of the contact points,
OpenFOAM R© functions can be used to include explicit terms in the velocity equa-
tions that increase as a function of the maximum velocity reached in each cell.
For instance the power law porosity model can be applied to the cells within a
selected cellZone (the cells marked in red in Fig. 3.52). In that case the source
term added to the velocity equation is represented by Eq. (3.13).

S = −ρC0|u|C1−1u (3.13)

where C0 and C1 are user-defined constants that should be adjusted for the case
under study.

3.13.1 Implementation

The additional term in velocity equations for this last case is completely handled
by OpenFOAM R© and all the required modifications are in this case related to
selection of cells under the desired cellZone that should be updated every time
step.

When considering the other two options, the implementation in OpenFOAM R©

tries again to maximize the applicability of the implemented methods to any given
case. As a result, the additional terms that contain the extra viscous term, are
added to the velocity equations by using fvOptions, always present in the decla-
ration of the velocity equations in any OpenFOAM R© solver. The implemented
version works both in incompressible and compressible solvers. While the method
proposed by Castilla et al. [13] does not required any additional information from
the mesh main class (gearPumpTopoFvMesh), the new proposed method communi-
cates with it to obtain the list of contact points and minimum distances. When
the third method is used, the additional terms in the velocity equations are auto-
matically handled by OpenFOAM R© and all the required modifications are related
to the selection of cells under the required cellZone that should be updated every
time step. The collaboration diagram for the implemented classes is presented in
Fig. 3.54.

Figure 3.54: Collaboration diagram for contact point treatment implementations

3.14 Conclusions

The present chapter has introduced one of the main contributions of the thesis,
a new mesh motion strategy for the simulation of 2D and 3D spur or helical gear
pumps. Several options are given regarding the different algorithms involved in
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the strategy. In particular, based on the experience in the use of the code, the
separated interface methods is recommended: the arcs method has shown to be
superior when cycloidal or involute tooth profiles are considered, while the fréchet
was the preferred choice when smooth curved profiles were studied. Regarding
the mesh projection process, unless the computational cost needs to be kept to
a minimum, the spline projection should be applied, since it solves the problems
derived from the use of linear projection methods. When considering the topolog-
ical changes, if no extra complex modeling is added to the cases (compressibility,
cavitation...) the use of ACMI-AMI conditions improves the convergence of the
code and simplifies the meshing process. However the use of only AMI conditions
might be required if the pump under study has circumferential grooves that re-
quire therefore a non-circular boundary in the casing. Regarding parallelization
methods, for a small 2D case, the simple parallelization based on gear1, gear2 and
fixedCells cellZones is convenient. When a more complex and large 3D case is un-
der study, the benefits of a better balanced parallelization method overcomes the
increased memory requirements of saving additional files as explained on section
3.12. For the treatment of the contact point, among the implemented methods,
the one proposed by Castilla et al. has shown some limitations for our case,
and the one based on a explicit porosity source has shown to be difficult to ad-
just, therefore the second newly proposed method based on artificial viscosity is
recommended and has been used in the cases studied in this thesis.
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Chapter 4

Hybrid turbulence modeling

4.1 Introduction

The present chapter introduces a new developed hybrid turbulence model, based
on the STRUCT approach proposed by [75]. As introduced in section 1.3, hy-
brid models try to bridge the gap between Unsteady RANS and LES. Despite the
large amount of hybrid formulations available in literature, hybrid models have
not achieved a widespread adoption in engineering applications yet [75], possibly
because of the undesirable behavior observed in several applications (see for in-
stance lack of grid convergence [41,127], or significant deviation from experimental
results [24,53,123]). The scope of the proposed formulation is to address some of
the shortcomings observed in available hybrid models, namely: robustness, grid
convergence and ease of use. Unlike many of the available models, STRUCT does
not base its activation on the size of the computational grid (∆), but on locally
computed flow quantities. The activation of models based on ∆ recognizes zones
of valid applicability of LES-like mode. On the other hand, STRUCT looks for
those zones in which U-RANS assumptions loose their validity and therefore the
resolution of turbulent structures is necessary.

In this chapter U-RANS and LES approaches for turbulence modeling will
first be defined, together with their strengths and weaknesses. Then the rationale
behind the proposed STRUCT model will be identified and the different strategies
followed in the development of the model will be introduced. At the end of the
chapter several of the tests performed for the validation of the approach will
be presented, starting with the validation of the implementation of the baseline
RANS method behind STRUCT and finishing with the application of the several
versions of STRUCT.

4.2 Statistical description of turbulent flows

Let us consider the Navier-Stokes equations (NS) as presented in chapter 2: conti-
nuity equation (2.27) and velocity equations (2.28). Direct Numerical Simulations
will directly solve the NS equations for all scales of turbulence, with no need for any
additional model. However, as identified in the seminal work by Reynolds [110],
even if all the information from the DNS simulation of an engineering applica-
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tion was available, we would need to perform statistical operations to obtain
useful information. From an engineering point of view, averaged variables con-
tain the most relevant information and, therefore, different approaches have been
proposed in order to directly solve for statistical quantities and reduce the com-
putational burden, instead of performing the statistics after the simulation. This
averaging process certainly involves a loss of information and a derived modeling
error which will depend on the chosen closure. Nevertheless, the computational
resources needed for a stringent DNS are so extreme that the application to sim-
ulations other than limited small geometries with moderate Reynolds numbers is
impractical in most cases.

4.2.1 U-RANS models

Reynolds Averaged Navier Stokes equations are based on the definition of a
Reynolds averaging operator [108] for any quantity φ, hereafter denoted as · · ·,
with certain properties [129]. For instance the operator must be linear φ+ ψ =
φ + ψ, constant-preserving aφ = aφ, idempotent φ = φ and commutative with
space and time translations: ∂φ/∂x = ∂φ/∂x and ∂φ/∂t = ∂φ/∂t. The fluctua-
tions with respect to this mean are denoted with a prime: φ = φ+ φ′.

When applied to NS equations, non-linearities in the velocity equations gener-
ate an extra term, the Reynolds stress tensor −ρu′iu′j , that must be closed with
the RANS model τRANS

ij . Assuming an incompressible fluid with constant density
for simplicity, averaged velocity equations are shown in Eq. (4.1).

∂(ρūi)
∂t

+ ∂

∂xj
(ρūiūj) = − ∂p̄

∂xi
+ ∂

∂xj

[
µ

(
∂ūi
∂xj

+ ∂ūj
∂xi

)]
+ ∂

∂xj
τRANS
ij (4.1)

The operator can be defined in several manners: as the temporal mean for sta-
tistically steady flows, a finite-time temporal average for flows with slow variation
of statistical properties (slower than the characteristic turbulent time-scales), or
as a phase average for flows with some basic frequency. In general, the U-RANS
notation is applied whenever the computation is time-dependent.

The problem arises when this approach is directly applied without any re-
calibration of coefficients to a transient simulation, aiming at resolving some of
the unsteady features of the flow. When the unsteadiness is large in time and space
(much larger than the turbulence fluctuations), such as slowly varying boundary
conditions, the interaction between the significantly slower large-scale fluctuations
and turbulence can be neglected, and hence the application of such approach is
valid. However, when this difference in scales (hereafter called scale separation)
does not exists, U-RANS approach is typically unsuitable to handle the situation.
This is for instance the case of internal instabilities of the flow, such as bluff
body flows in which large vortical structures disintegrate into smaller structures
downstream. Even if a proper phase average can be defined for these cases, a
significant amount of the interaction is unresolved by the U-RANS approach which
can typically lead to errors even in the determination of the most insensitive
quantity for these cases, the vertex shedding frequency, given by the Strouhal
number (St) [113].

78



4.2. STATISTICAL DESCRIPTION OF TURBULENT FLOWS

A variety of models exists, providing different formulation for the closure prob-
lem. Typically this leads to a classification [119] depending on whether the
Reynolds stress tensor is directly related to the mean flow field by an algebraic
relation (algebraic equation models or zero-equation models) or with the aid of
transported parameters that define local turbulence quantities (transport equa-
tion models). Furthermore, transport models can be subdivided, attending the
number of transport equations required for the problem closure. Two-equation
models are currently the most popular choice both in academics and engineering
applications [111].

The Reynolds stress tensor, τRANSij is a second-order symmetric tensor that can
be decomposed in an isotropic and a traceless part:

ρu′iu
′
j = −τRANSij = 2

3ρkδij + aij (4.2)

where k is the turbulent kinetic energy (k = 1
2u
′
iu
′
i) and aij is the anisotropic

stress. The isotropic part is typically considered inside a modified pressure term
p̄m = p̄+ 2

3ρk.
A simple but common closure for aij consists in assuming that the effect of tur-

bulence can be represented by an increased viscosity that enhances the transport
of mass momentum and energy, the so-called Boussinesq eddy-viscosity assump-
tion [7]. This is mathematically expressed as the assumption of aij being aligned
with the resolved rate of strain tensor S̄ij = 1

2

(
∂ūi
∂xj

+ ∂ūj
∂xi

)
, through the eddy

viscosity µt.

aij = −2µtS̄ij = −µt
(
∂ūi
∂xj

+ ∂ūj
∂xi

)
(4.3)

Despite its extended use, this carries fundamental limitations. In fact the as-
sumption is not supported by experimental evidence [108] and does not hold even
for the simplest cases. As a result, even an optimal evaluation of the eddy vis-
cosity cannot translate into perfect results. However, its simplicity and numerical
stability justifies its industrial success. As it will be explained in section 4.3.2, a
higher order of approximation can be obtained by using the so-called non-linear
eddy viscosity models.

In general, U-RANS models do not have strong requirements on mesh quality
(much lower that those of LES). The required resolution is smaller both in the
inner domain and near the wall, where there are not mesh constraints in span-
wise and streamwise directions, and wall-functions can be applied to reduce the
constraints in the wall-normal direction. U-RANS can also benefit from the flow
symmetries, significantly reducing the computational cost. U-RANS converge
asymptotically to the modeled solution (not to the DNS solution) and, once a
reasonable convergence is achieved, they are not very sensitive to changes in the
grid size [136]. Moreover, U-RANS models are numerically very stable due to the
increased diffusivity. However, U-RANS models provide poor averaged results in
complex geometries when compared to LES. They perform poorly when the scale
separation assumption is not satisfied, and are unable to provide a description of
unsteady flow quantities.
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4.2.2 LES models

Large Eddy Simulation is based on the low-pass spatial filtering of the turbulent
motions with a mathematically well-established formalism [77]. The LES filtering
operator applied to a variable φ yields a smoothed counterpart 〈φ〉 in which the
scales smaller than the filter width (∆f ) have been removed, and a fluctuating
part φ′′ so that φ = 〈φ〉+φ′′. This filtering is represented by a convolution product
〈φ〉 = G ? φ, where G is the convolution kernel. Note that the filter G is not a
priori a Reynolds operator: in general 〈〈φ〉〉 6= 〈φ〉.

Similarly to the case of RANS modeling, the application of the filter to NS
equations produces an additional term (see Eq. (4.4)) that needs to be modeled
τLES
ij .

∂(ρ 〈ui〉)
∂t

+ ∂

∂xj
(ρ 〈ui〉 〈uj〉) = −∂ 〈p〉

∂xi
+ ∂

∂xj

[
µ

(
∂ 〈ui〉
∂xj

+ ∂ 〈uj〉
∂xi

)]
+ ∂

∂xj
τLES
ij

(4.4)
In most LES, the filtering operation is rather a concept behind the development

of the method than a explicitly applied procedure [38]. The filter size ∆f is
usually set equal to the grid size ∆ which therefore determines the cut-off scale
in the filter. For historical reasons, τLES

ij = −ρ (〈uiuj〉 − 〈ui〉 〈uj〉) is typically
referred to as subgrid-scale tensor. The strategy is to resolve most of the turbulent
kinetic energy of the flow, mainly contained in the large scale fluid structures or
eddies, which are highly affected by the geometry of the domain, while providing
a suitable model for the subgrid-scale motions, which can be considered similar
and statistically isotropic.

Most commonly used closures use again an eddy viscosity assumption. The
SGS tensor is modeled by Eq. (4.5)

τLESij − 1
3τ

LES
kk δij = 2µSGS 〈Sij〉 (4.5)

where 〈Sij〉 is the strain rate tensor of the resolved scales 〈Sij〉 = 1
2

(
∂〈ui〉
∂xj

+ ∂〈uj〉
∂xi

)
.

Typically the SGS viscosity explicitly is computed shown in Eq. (4.6).

µSGS = ρ(Cm∆)2OPm(〈u〉) (4.6)

where Cm is the constant associated to the model m and OPm is a differential
operator acting on the resolved velocity field.

The use of SGS models has some inherent limitations. In order to capture
most of the turbulent kinetic energy and the assumptions behind LES modeling
to be valid (such us the isotropy of SGS scales), the cut-off wave number must lie
within the inertial sub-range. Moreover, a wall-resolved LES simulation of indus-
trial applications, typically characterized by large complex geometries and high
Reynolds numbers, will not only limit the mesh resolution in the inner domain,
but stringent near-wall grid spacing is required all in the wall-normal (y+ ≈ 1),
streamwise (∆x+ ≈ 100) and spanwise (∆z+ ≈ 30) directions [116].

In general LES requires extremely fine good quality grids (sensitivity to cells
aspect ratio and non-orthogonality is higher for LES than for U-RANS). Besides,
even if LES should revert to DNS for a sufficiently refined grids, grid convergence
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can be non-monotonic for complex flows [126]. Their quality can also strongly
depend on the inlet resolved turbulence, for which synthetic eddy methods need
to be used if no other turbulent data is available, and on the choice of spatial
discretization schemes [86]. When the mesh is coarser than required, LES mod-
els will not revert to U-RANS, but will introduce significant errors and produce
nonphysical behavior. On the other hand, the potential accuracy of LES is much
higher than that of U-RANS models. Furthermore, LES can provide an accurate
description of unsteady flow quantities, interesting for many engineering applica-
tions (thermal fluctuations, vibrations etc.), which cannot be properly determined
by U-RANS.

4.2.3 Hybrid models

When considering Eqs. (4.1) and (4.4) the similarity between U-RANS and LES is
evident. Furthermore, the structural similarity is obvious when considering models
that use the eddy viscosity assumption (see Eqs. (4.5) (4.3)). The first hybrid
concept, the Very Large Eddy Simulations (VLES) was proposed by Speziale [130]
long ago, as a first attempt to extend the eddy-resolving capabilities to grids
coarser than those needed in LES. A variety of models have been proposed ever
since. However a universally accepted definition of what a hybrid model represents
does not exist yet. While many approaches combine U-RANS and LES closures,
some others with extended use (such as Scale-Adaptive Simulation (SAS) [91] or
Partially Averaged NS (PANS) [49]) do not imply any LES closures, while still
aim at achieving an intermediate behavior between U-RANS and LES. In general
however, hybrid models are usually designed to work on coarser grids than those
required for LES, and achieve a higher accuracy that what is possible through
U-RANS. Some studies show that the computational cost of hybrid methods is
reduced by a factor of 0.07Re0.46 when compared to LES [50]. The extensive list of
approaches available in literature makes it difficult to summarize the possibilities
of hybrid modeling. One example of categorization of hybrid models groups them
in three types, depending on the hybridization approach [51]: segregated models,
interfaced models and blended models.

In segregated models, also referred as zonal decomposition models [116], the
global computational domain is divided into subdomains before the start of the
computation. Some of them will be treated with the RANS method while others
will be computed using LES, creating therefore an embedded LES (ELES). Grid
resolution is relaxed in the RANS approach, which might also benefit from sup-
pressed spatial directions thanks to the statistical homogeneity of the flow. The
discontinuity between RANS and LES regions is artificially handled by coupling
conditions, one of the biggest issues in this kind of approach [39]. Examples of
such approach include the works presented by Quéméré et al. [109], Georgiadis et
al. [43], Davidson [23], Bagget [3] or Tucker et al. [137]. However the most famous
approach in this category is the Detached Eddy Simulation, proposed by Spalart
et al. [100,125,126], and its further corrections: Delayed Detached Eddy Simula-
tion (DDES) [124], Improved-DDES [54, 122], Shielded-DES [90], Stress Blended
Eddy Simulation [89]. In the same category we group models that split the use
of RANS and LES, not in the space domain but in the frequency domain, the so
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called Nonlinear Disturbance Equation Method proposed by Morris et al. [20,94].
The low-frequency or steady part is modeled by RANS, while the high-frequency
fluctuating part is computed by LES.

Interface and blended models are sometimes grouped in the same category,
universal models [116]. These models aim at reducing the resolved turbulent
kinetic energy dissipation induced by the U-RANS model, leading to a weaker
damping of high frequencies, which yields more irregular LES-like flow fields.
While blended models typically use an interface function (fI) for the transition
between U-RANS and LES: τij = fIτ

RANS
ij + (1− fI)τLESij (most clear example is

the formulation proposed by Germano [45]), blended models rescale the U-RANS
stress tensor by a function (fB) without the explicit consideration of the LES
tensor: τij = fBτ

RANS
ij (even if fB can be selected so that LES equations are

retrieved). An example of this last case is given by Speziale [131,132].
Other possible categorization groups together those models in which no grid

size dependence exists in their formulation. They were identified by Fröhlich
et al. [39] as second generation U-RANS models, as they can be interpreted as
extensions of the U-RANS closures. This is of major important in this thesis,
since the developed model belongs to this category. Two main examples should
be cited inside this group, PANS and SAS.

Partially Averaged Navier Stokes models (PANS) were first introduced in 2003
[49] and then described extensively by Girimaji [48]. The main idea is to decom-
pose flow variables in a resolved and a residual part using an arbitrary filter. This
is achieved by considering two user-defined parameters (fk,fε), that describe the
ratio between residual (unresolved) and total turbulent kinetic energy (fk = ku/k)
and turbulent dissipation rate (fε = εu/ε). Transport equations can then be de-
rived for the unresolved ku and εu. Note that these equations resemble the stan-
dard k− ε equations (4.8) with modified turbulent Prandtl numbers (σku and σεu)
and a modified constant in the dissipation term of εu equation, that become a
function of fk and fε. Using the eddy-viscosity assumption, the turbulent viscos-
ity is in this case computed as µt = Cµρk

2
u/εu. Other variants of a similar idea

can be found in the Partially Integrated Transport Model (PITM) by Schiestel
and Dejoan [117] or the Partially Resolved Numerical Simulation by Shih and
Liu [121].

Scale-adaptive Simulations (SAS) is other example worth mentioning, due to
its successful application to a variety of industrial flows. Developed by Menter et
al. [91], the model was born when revisiting the k − kL model by Rotta [114]. It
was found that the transport equation for the turbulent length-scale introduces
the second derivative of the velocity field and the Von Karman length scale (LvK)
appears as a natural length-scale. LvK is formulated based on the ratio of param-
eters corresponding to the first and second derivatives of the spatially resolved
velocity. For the sake of brevity let us only considered the application of the SAS
to the k − ω SST model [33]. In the SST-SAS model an extra production term
is added to the ω equation. This extra term, typically named QSAS increases the
turbulent dissipation frequency proportionally to (L/LvK)2, where L is the inte-
gral length scale (L =

√
k/β∗0.25ω), avoiding the regions with large gradients of k

or ω (such as boundary layers where the U-RANS behavior should be recovered).
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The activation of the model, and the subsequent decrease of turbulent viscosity
(derived from the increased dissipation frequency production term), occurs when
the modeled integral length scale exceeds the Von Karman length scale, a length
scale of the resolved velocity. In particular the model will activate in regions with
strong instabilities such as massively separated flows, while it will revert to the
standard k− ω SST in regions of stationary flow. One of the inherent limitations
of this model is that SAS will not produce a correct physical description unless
significant unsteadiness occurs in the resolved fields. In fact, the model was shown
to perform worse than the base k−ω SST in cases like an asymmetric diffuser [24],
where the mild separation caused by a slight adverse pressure gradient represents
a huge challenge for hybrid models.

4.3 STRUCT

In the present section the STRUCT formulation will be described. First of all,
the rationale and objectives of the model will be introduced, together with the
desirable behavior. Then the baseline RANS model will be explained in detail,
paying attention to the capabilities of NLEVM over classical linear models. In the
next section the different hybridization approaches proposed by Lenci [75] and the
alternative variants developed for this thesis will be defined. Finally a validation
of the implementation of the RANS model in simple academic test cases will be
presented, followed by more challenging test cases where different hybrid closures
will be studied, resembling the physical phenomena that they should be able to
model when applied to a gear pump.

4.3.1 Rationale

STRUCT aims at improving the robustness and grid convergence of available
hybrid models. The activation of STRUCT will not be based on the computa-
tional grid size belonging therefore to the previously introduced second generation
U-RANS models. In fact, unlike many of the hybrid approaches in literature,
STRUCT will not try to identify the regions in which mesh refinement is enough
to allow the activation of the LES-like behavior. On the contrary, the activation
will be based on identifying the zones where poor performance of the baseline U-
RANS model is expected, zones where resolution of flow structures is necessary.
For instance, when considering the previously introduced concept of scale sepa-
ration, U-RANS is expected to work properly when a sufficient separation exists,
but wrong behavior will be predicted otherwise (see section 4.2.1). STRUCT will
work by comparing resolved and modeled flow scales, and the overlap of these two
scales will trigger the activation of the model.

The objectives followed in the development of STRUCT were pointed out
clearly by [75] in the graphic representation shown in Fig. 4.1.

In Fig. 4.1 potential accuracy identifies the capabilities of the models to pro-
duce accurate time-averaged fields, while flow description is related to the ability
of the models to resolve complex spectral content of unsteady flows, one of the
main limitations of U-RANS approaches. Ease of use includes for instance, re-
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Figure 4.1: STRUCT goals compared to other classical approaches

ducing the necessity of case-dependent parameters, complex boundary conditions
(such as synthetic turbulent conditions for LES) or mesh quality constraints. Ro-
bustness, on the other hand, refers to the capability to tolerate small perturbations
in boundary conditions or numerical methods without this causing significant dif-
ferences in the results. The low computational cost is the main goal of hybrid
models as explained before, improving U-RANS results without incurring the the
mesh refinement limitations of LES. As it can be inferred from Fig. 4.1, the goal
of STRUCT is not to improve the flow description or accuracy with respect to
other available hybrid models, but to focus on reducing the computational cost,
ease of use and robustness.

4.3.2 NLEV RANS model

The accuracy of a hybrid model can substantially depend on the choice of the
underlying RANS model. As mentioned in section 4.2.1 one of the limitations
of many U-RANS models (and also LES closures) is the isotropic eddy-viscosity
assumption. The assumption of aij being aligned with S̄ij (see Eq. (4.3)) causes
very limited accuracy in complex flows including among others those involving
swirl [66], impingement [1], strong curvature [65] or turbulence-induced secondary
motions [93]. Besides classical linear models are obviously unable to predict
anisotropy even in simple cases [6]. It has been even proposed that linear U-RANS
should be replaced completely with NLEVMs in industrial applications [60]. The
choice of a nonlinear RANS closure is also common in hybrid modeling from the
very first hybrid approaches [130] and high-order models in LES have also proven
to increase accuracy [25].

As pointed out by Pope [107], the Boussinesq assumption has two downsides,
the limitations of an isotropic approach and the eddy-viscosity assumption itself.
Therefore in 1975 he introduced the so-called nonlinear eddy viscosity models
(NLEVM) to correct the former issue. These models are based on extending the
eddy-viscosity assumption by assuming that the anisotropy stress tensor responds
to the more general form described in Eq. (4.7).

aij = ρu′iu
′
j −

1
3ρu

′
ku
′
kδij = −2µtS̄ij + f(S̄ij, Ω̄ij, k, ε...) (4.7)

where f describes the nonlinear stress-strain relation, and is expressed through a
coordinate-invariant polynomial function of k, ε and the averaged velocity gradient
tensor (contained in the strain S̄ij and rotation Ω̄ij = 1

2

(
∂ūi
∂xj
− ∂ūj

∂xi

)
tensors).
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This explicit modification increases only slightly the computational cost of the
linear counterpart (no additional Partial Differential Equation (PDE) needs to be
solved, but provides increased accuracy in complex flows). Multiple variants exist
in literature with different definitions of f . Original models by Shih, Zhu and
Lumley [120], Lien et al. [79] and Speziale [128] are some of the most commonly
used.

In the case of STRUCT the cubic NLEVM proposed by Baglietto and Ninokata
[4, 5] has been selected. On the base of a physical interpretation of [120] they
reformulated the model coefficients to extend its applicability. The model uses
the well know two-equation k − ε model in a low Reynolds version. Transport
equations for k and ε are shown in Eq. (4.8).

∂(ρk)
∂t

+ ∂

∂xj
(ρūjk) = ∂

∂xj

[(
µ+ µt

σk

)
∂k

∂xj

]
+ Pk − ρε

∂(ρε)
∂t

+ ∂

∂xj
(ρūjε) = ∂

∂xj

[(
µ+ µt

σε

)
∂ε

∂xj

]
+ Cε1f1

ε

k
Pk − Cε2f2ρ

ε2

k
(4.8)

where Pk is the production of turbulent kinetic energy (see Eq. (4.9)) and the
turbulent viscosity (µt) is computed according to Eq. (4.10).

Pk = −ρu′iu′j
∂ūi
∂xj

(4.9)

µt = ρfµCµ
k2

ε
(4.10)

The low Reynolds formulation is achieved by the functions introduced in ε
equation (f1, f2) and the turbulent viscosity damping function (fµ). f1 and f2
were selected from the example of [79] based himself in the length-scale formulation
of Norris and Reynolds [101] and read Eqs. (4.11) and (4.12), while fµ was defined
following [4], as shown in Eq. (4.13)

f1 = 1 + 1
Pk

1.33
(
1− 0.3e−R2

t

)(
Pk + 2µ k

y2

)
e−0.00375Re2

y (4.11)

where Rt = k2

νε
and Rey = y

√
k

ν

f2 = 1− 0.3e−R2
t (4.12)

fµ = 1− e−0.029Re0.5
y −0.00011Re2

y (4.13)
The model is also assembled respecting the realizability constraints: non-

negativity of the turbulent normal stresses (u′iu′i ≥ 0, where index summation
rule does not apply) and Schwarz inequality between any fluctuation (u′iu′i u′ju′j ≥
u′iu
′
j

2). This is expressed as a non constant Cµ coefficient as shown in Eq. (4.14).

Cµ = Ca0

Ca1 + Ca2S̄∗ + Ca3Ω̄∗
(4.14)
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where S̄∗ and Ω̄∗ are dimensionless parameters, function of the averaged strain
and rotation tensors, as shown in Eq. 4.15

S̄∗ = k

ε

√
2S̄ijS̄ij , Ω̄∗ = k

ε

√
2Ω̄ijΩ̄ij (4.15)

The nonlinear strain-stress relation is then defined by Eq. (4.16):

aij =− 2µtS̄ij

+ 4fµk
(
k

ε

)2 1
Cnl6 + Cnl7S

∗3

 Cnl1

(
S̄ikS̄kj −

1
3 S̄kl S̄klδij

)
+ Cnl2

(
Ω̄ikS̄kj + Ω̄jkS̄ki

)
+ Cnl3

(
Ω̄ik Ω̄jk −

1
3Ω̄klΩ̄klδij

)
+ 8fµk

(
Cµ
k

ε

)3
 Cnl4

(
S̄kIΩ̄lj + S̄kjΩ̄li

)
S̄kl

+ Cnl5
(
S̄klS̄kl − Ω̄klΩ̄kl

)
S̄ij

 (4.16)

Well assessed values of coefficients appearing in the k− ε equations (Eq. (4.8))
are taken from Launder and Spalding [74] (as shown in Table 4.1), while the
coefficients appearing in the nonlinear formulation (Eqs. (4.16) and (4.14)) are
shown in Table 4.2

Table 4.1: Standard k − ε coefficients

σk σε Cε1 Cε2

1.0 1.3 1.44 1.92

Table 4.2: NLEVM coefficients

Ca0 Ca1 Ca2 Ca3 Cnl1 Cnl2 Cnl3 Cnl4 Cnl5 Cnl6 Cnl7
0.6667 3.9 1.0 0.0 0.8 11.0 4.5 -5.0 -4.5 1000 1.0

Hereafter the baseline model will be referred to as BagliettoNLEVM.

4.3.3 STRUCT models

As introduced in section 4.3.1 STRUCT hybrid formulation bases its activation in
the comparison of resolved and modeled scales. In particular frequency scales have
been chosen. A resolved scale (fr) is computed from the resolved velocity field,
while several options are considered for the definition of the modeled frequency
(fm). The model is then activated by following Eq. 4.17.
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µt =

µ
RANS
t fr < fm

φµRANSt fr ≥ fm
(4.17)

where µRANSt is computed according to Eq. (4.10) and φ is a reduction parameter
that represents how much of the total turbulent kinetic energy is resolved in the
selected structures.

The frequency scale for the resolved structures fr is then defined as a function
of the second invariant of the resolved velocity gradient tensor (II) following Eq.
(4.18).

fr =
√
|II| (4.18)

where II is determined as:
II = −1

2
∂ūi
∂xj

∂ūj
∂xi

(4.19)

The second invariant has been used by some authors to identify coherent struc-
tures [30,115], and is able to describe regions of poor U-RANS performance when
reaching the rapid distortion limit [75]. When used to activate the model, it also
allows us to describe regions of poor U-RANS performance because of the non
existence of scale separation. Besides, it will avoid the model activation in regions
of simple shear flow (such as near the walls), since fr will vanish impeding the
model activation.

Several versions of STRUCT have been proposed by [75], depending on the dif-
ferent definitions of fm and φ and they will be presented in the following sections.

Controlled STRUCT

The simplest version uses user-defined constant values of fm and φ. While an
estimation of fm can be obtained from a representative value of ε/k in a previously
computed U-RANS simulation, a robust value of φ = 0.6 is sufficient to enhance
accuracy over U-RANS [76]. In this case the model lacks completeness but it
serves to provide preliminary results.

STRUCTL

Increasing the degree of completeness of the model, Lenci [75] proposed a local
geometric averaging procedure for the determination of fm. Based on a Taylor
series expansion, fm is determined as fm = 1/tm where tm is computed following
Eq. (4.20).

tm = e
ln tm0+min

(
max

(
R2
10 ∇

2(ln tm0),− ln 2
)
,ln 2
)

(4.20)
where tm0 = k/ε is related to the locally computed modeled turbulent time scale
and R represents the averaging length, proportional to the modeled turbulent
length scale, as shown in Eq. (4.21).

R = CR
k3/2

ε
(4.21)
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where CR is a user-defined constant, and CR = 2 is suggested in [75].
In equation Eq. (4.20) we can appreciate that large variations of tm with respect

to tm0 are avoided by limiting the predicted value of tm (0.5tm0 ≤ tm ≤ 2tm0).
In this version however, φ parameter must still be provided by the user, and a
sufficiently small value (close to zero) is recommended φ = 10−10.

STRUCTT

Last step of completeness allows the closure of both fm and φ. STRUCTT uses
the generalized space-time Lagrangian average (based on the work from [87]) to
provide a transport equation (Eq. (4.22)) for tm (let us recall fm = 1/tm).

∂(tm)
∂t

+ ∂

∂xj
(ūjtm) = ∂

∂xj

[(
L2

T

)
∂tm
∂xj

]
+ Stm (4.22)

where T and L are respectively length and time modeled scales, locally defined as
shown in Eq. (4.23).

L =
√

0.09k
3/2

ε
, T = 1

β

k

ε
(4.23)

The source term in Eq. (4.22) is computed as shown in Eq. (4.24).

Stm = min
(

max
( 1
T

(tm0 − tm),−2tm
∆t

)
,
2tm
∆t

)
(4.24)

where ∆t is the simulation time step size, and is used to limit the change of tm in
its transport equation, increasing the stability.

Using the initial conditions tm|t=0 = tm0|t=0 and assigning tm = tm0 at bound-
aries, Eq. (4.22) allows us to determine the modeled frequency fm. The control
parameter φ is eliminated by replacing Eq. (4.17) with Eq. (4.25):

µt = µRANSt = min
(
fm
αfr

, 1
)

(4.25)

Recommended values for α and β are given in Table 4.3

Table 4.3: STRUCTT coefficients

α β
1.35 0.01

Other variants

The previously described versions were proposed by Lenci [75]. As it will be shown
in the results section, some downsides were found when testing these variants, and
some alternatives have been proposed.

First of all, the controlled version (STRUCT) is meaningful for initial tests, but
as explained before it is a non-closed model. The determination of an appropriate
φ parameter for a given case is not straight forward. Besides, a constant value of
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fm might not be appropriate for a case where very different turbulent scales can
be found in different parts of the domain under study. Therefore we can center
the discussion in the other two methods proposed by Lenci.

When considering STRUCTL, it was found that the the extension of the geo-
metric averaging distance (R) was sometimes excessive (see Fig. 4.27). In fact the
consideration of only local information to predict the behavior of tm somewhere
far from the local cell, leads to overestimation and underestimation of the geo-
metric average tm that gets limited by the explicit bounds in Eq. (4.20), leading
to an nonphysical checkerboarding activation of the model.

Some alternatives have been considered to deal with this problem. One option
is to consider a more local average. In the model we will call STRUCTL V
hereafter, integration length is given by the size of the local cell R = 3

√
V where

V is the volume of the local cell, and tm is still computed from Eq. (4.20).
Alternatively, one may think of using an arithmetic average instead of the

geometric averaging method described in [75]. By considering the polynomial
Taylor expansion of tm, the modeled frequency could be determined by:

tm = tm0 + R2

10∇
2tm0 (4.26)

where again R could be determined by the integral length scale R = CRk
3/2/ε, in

the model we will call STRUCTAt or by the local cell size R = 3
√
V in the model

we will refer to as STRUCTAt V.
The procedure could also be applied directly to the modeled frequency and not

to the time scale, following Eq. (4.27).

fm = fm0 + R2

10∇
2fm0 (4.27)

which leads to STRUCTAf and STRUCTAf V models, following the same
nomenclature explained above. Note that fm0 is defined as 1/tm0. Following the
idea of reducing the averaging integration length, the local average could also
be determined from a face reconstruction procedure, where only neighbor cells
information is considered as defined in the model STRUCTF (see Eq. (4.28)).

tm = 1
A

∑
i

Ai(tm0)i (4.28)

where A is the total area of the cell and (tm0)i is the value of local time scale tm0
interpolated at face i, of area Ai.

The problem of using face averaging or a small integration length is that, first
of all, the result will be dependent on the mesh size which is something we would
like to reduce. Second, for a small enough grid, the process has very limited effect,
and fm will be close to fm0 so that we are actually not considering any averaging
of the modeled scales. Besides, φ parameter must still be fixed by the user: the
model therefore remains open.

Some attempts to close these versions have been implemented, following the
viscosity damping expression shown in Eq. (4.25), but considering the differ-
ent options presented above for the determination of fm. Results were however
unsatisfactory and will not be presented in the thesis.
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Given the reasons exposed above, next ideas were applied to versions derived
from the closed STRUCTT model presented in section 4.3.3. When considering
Eq. (4.22) two terms appear in the right hand side (RHS) of the equation. Fol-
lowing the definitions of L and T in Eq. (4.23), the diffusion term (which we will
define as Dtm) can be expressed as shown in Eq. 4.29.

Dtm = ∂

∂xj

[(
L2

T

)
∂tm
∂xj

]
= ∂

∂xj

[
β

(
0.09k

2

ε

)
∂tm
∂xj

]
(4.29)

while the temporal dependent source term Stm , when no limitations are applied,
can be expressed as Eq. (4.30):

Stm = 1
T

(
k

ε
− tm

)
(4.30)

In the simulation performed in this thesis, when Dtm was compared to the
other source term Stm , it was found that the effect of the diffusion part can be
neglected, as it will be shown in section 4.5.2. All effects were caused by the time
dependent source term, which is actually the real Lagrangian average proposed
by [87]. Therefore, the first simplification we can perform is to consider only Stm ,
neglecting Dtm . Besides, the bounding limits on Stm were never applied (they were
proposed to guarantee stability if required, but this was never the case), so they
could also be avoided. In Eq. (4.30), T defines the length in time of the averaging
procedure. Instead of using the modeled time scale defined in Eq. (4.23), it was
proposed to use the resolved time scale as the time integration length T = 1/fr.
Integration is therefore extended in zones with high fluctuations, high variations
of the flow, where higher averaging is required. This modeled will be defined as
STRUCTT-Tfr.

The rest of the work employed in this topic was focused on the extension of the
model (initially intended to be applied to internal flows) to external aerodynamics
applications. In fact, inlet turbulence in these cases is usually characterized by
very low frequency fluctuations, which leads to very low fm and incorrect activa-
tion of STRUCT, that predicts a small value of fr but still higher than fm in zones
where no structures are present and no model activation should occur. To correct
these deficiencies, different alternatives were proposed for the determination of fr
from the resolved velocity field, in order to avoid the incorrect activation of the
model. Since the internal flow inside a gear pump is the application considered
in this thesis, no information will be given on the other variants of the modeled
developed during the PhD.

4.4 Implementation

The different versions have been again implemented in OpenFOAM R©, following
the rules of structured coding and avoiding code repetition. In this case, the
main class containing k and ε equations, as well as the definition of the nonlinear
part of the Reynolds stress tensor, has been implemented as a double template
class, to allow the user to define further developments using either RANS or LES
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approaches, and to conserve the same formulation for incompressible or compress-
ible cases. In our case no LES functions are needed and all models derive form
a instantiation of the double template class, that sets the turbulent model to be
a nonlinearEddyViscosity RAS model. The different versions implement their own
definition of fm and viscosity blending function, solving for the required variables
if necessary and defining their constants. The collaboration diagram is shown in
Fig. 4.2. A new user can always add additional versions without the need to
modify or re-compile any of the existing base classes.

Figure 4.2: Collaboration diagram of the turbulence classes implemented in OpenFOAM R©

Furthermore, the first steps for the implementation of STRUCT models in the
Spectral Element Method (SEM) code Nek5000 have also been taken. Nek5000
uses Galerkin projection methods and high-order Lagrange polynomial basis func-
tions with Gauss-Lobatto-Legendre points for efficient quadrature. It is highly
scalable, spectrally accurate and has been greatly optimized for parallel compu-
tations. Its efficiency and accuracy make it suitable to perform DNS and LES
calculations, which has been the main purpose of its use in the recent years. In
fact the code did not include any k− ε RANS model, so that the implementation
had to be done from the very beginning. In particular several low Reynolds lin-
ear and nonlinear k − ε models have been implemented in order to demonstrate
the performance of the baseline NLEVM model used in STRUCT in a code with
minimum numerical diffusion and high accuracy. Namely the low Reynolds linear
models by Launder and Sharma [73], Chien [16], Nagano and Tagawa [99] and
nonlinear models by Lien et al. [79] and Baglietto and Ninokata [4] (the one used
in STRUCT) have been implemented and tested. Not being related to the rest of
the work presented in this thesis, which was performed under the OpenFOAM R©

framework, the implementation in Nek5000 will not be commented here.

4.5 Numerical experiments

The results section will be divided in two parts. First, the correct implementation
of the nonlinear RANS model will be tested in simple academic tests, both in
OpenFOAM R© and in Nek5000, focusing on cases where the nonlinearity of the
models play an important role. In the second part several cases will be considered
for the tests of the different hybrid approaches explained before.
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4.5.1 NLEV RANS model

Three cases have been chosen in this section. First the classical turbulent channel
flow has been simulated, paying attention to the comparison with other linear
and nonlinear formulations, and observing the predictions of the anisotropy of the
Reynolds stresses in this simple case. Then two cases with turbulence-induced
secondary motions have been simulated: a fully developed square channel flow,
which was tested in Nek5000 and a rod bundle with a triangular array configura-
tion, tested in OpenFOAM R©.

Fully developed turbulent channel flow

The first case is the simplest wall-bounded turbulent flow, the flow in a plane
channel. Simulations have been carried out both in OpenFOAM R© and Nek5000.

The fully developed turbulent channel flow at Reτ = uτh/ν = 392.24, where
uτ and h refer respectively to the friction velocity and the channel half-width has
been studied in Nek5000. Moser DNS results [95] have been taken as a reference.
The domain has been simplified by considering only half of a 2D channel. Pe-
riodic conditions have been applied in the streamwise direction while symmetry
conditions are applied at the channel centerline. An explicit force is added in
the streamwise direction to maintain the same average velocity field as that of
the DNS results. First, two meshes (shown in Fig. 4.3) with the characteristics
shown in Table 4.4 have been considered to check the mesh convergence of Bagli-
ettoNLEVM. One single spectral element is considered in the streamwise direction
while 8 or 12 elements with progressively increasing size are considered in the wall
normal direction.

Figure 4.3: Meshes considered for channel flow case in Nek5000: coarse (left) fine(right)

Grid convergence is checked by studying the small variations observed in ve-
locity and turbulent kinetic energy profiles, shown in wall units in Fig. 4.4.

Given the simplicity and fast convergence of the case, the finer mesh has been
used to compare BagliettoNLEVM with other linear and nonlinear k − ε models
implemented in Nek5000, as well as the already available k − ω model. Fig. 4.5
and Fig. 4.6 show respectively velocity and TKE profiles.
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Table 4.4: Channel flow Nek5000 mesh characteristics

Mesh Number of
elements

Polynomial order y+

Coarse 8 6 1.0
Fine 12 8 0.1
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Figure 4.4: Mesh convergence of velocity (left) and TKE (right) profiles; coarse mesh (blue);
fine mesh (red); reference DNS (◦ ◦ ◦)
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Figure 4.5: Velocity profiles (left) and zoomed profiles (right) for several models in comparison
with reference DNS

The k−εmodels considered here differ mainly in two aspects: the linear/nonlin-
ear definition in the eddy viscosity assumption (Lien is the only nonlinear model
together with BagliettoNLEVM), and the damping functions used for the low
Reynolds treatment. When considering k and u profiles, the model by Nagano
and Tagawa seems to give the best compromise, predicting accurately both quan-
tities. BagliettoNLEVM is one of the best in the determination of the velocity
profile but is one of the worst when considering TKE.

If the different components of the Reynolds stress tensor are also considered,
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Figure 4.6: TKE profiles for several models in comparison with reference DNS

only nonlinear models are capable of capturing the anisotropy. When considering
linear models, the three normal stresses are coincident in one single line for each
of them.
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Figure 4.7: Reynolds stress tensor components: normal stresses u′u′, v′v′, w′w′ (left); shear
stress u′v′(right)

However it can be checked that only the general trend can be captured, and
none of the nonlinear models gave an accurate prediction near the walls. When
BagliettoNLEVM is compared to Lien, Fig. 4.7 shows that BagliettoNLEVM
gives more accurate prediction of the anisotropy.

OpenFOAM R© has also been used to perform similar simulations, in this case
at a higher Reynolds case Reτ = 642.54. DNS data from Iwamoto et al. is used
as a reference. One-dimensional case has been studied with the same boundary
conditions as those considered in Nek5000. Mesh schematic and characteristics
are shown in Fig. 4.8 and Table 4.5.1.
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Figure 4.8: OpenFOAM R© mesh for
channel flow

Number of cells y+

100 0.3

Table 4.5: Channel flow OpenFOAM R© mesh
characteristics

Fig. 4.9 shows velocity and TKE profiles for BagliettoNLEVM in compari-
son with other nonlinear model Lien, and two classical linear models available in
OpenFOAM R© that accept low Reynolds treatments: kOmegaSST and Launder-
SharmaKE.

Figure 4.9: Velocity (left) and turbulent kinetic energy (right) profiles for several models in
comparison with reference DNS

Results show in this case that all models give a good prediction of the velocity
field, even if perhaps BagliettoNLEVM separates a little more from the DNS
solution in the buffer layer, but it is by far the most accurate model in predicting
peak value and global profile of turbulent kinetic energy. Fig. 4.10 shows the
different components of the Reynolds stress tensor, testing the capacity of the
models to predict anisotropy of the flow (left) and shear stress (right).

It is clear here that BagliettoNLEVM gives much better prediction of the
anisotropy when compared to Lien, which however predicts shear stress more
accurately. Results are in agreement with similar tests of BagliettoNLEVM [5].

In general BagliettoNLEVM, seems to be a good compromise between accuracy
in the determination of velocity and TKE, and ability to capture the anisotropy
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Figure 4.10: Reynolds stress tensor components: normal stresses u′u′, v′v′, w′w′ (left); shear
stress u′v′(right)

of the flow. In the next cases we will consider situations in which this anisotropy
influences significantly the flow, leading to secondary motions.

Square channel flow

The fully developed turbulent straight square duct flow is a canonical problem
regarding turbulence-induced secondary flows. Anisotropy in the cross-sectional
plane generate net flows in the directions perpendicular to the bulk flow, the
so-called secondary flows, or flows of the second kind. These counter-rotating
streamwise vortices in the corner of the duct, with an associated velocity much
smaller than that of the streamwise flow, are caused by a fine balance involving
the gradients of the Reynolds stresses and the pressure gradient, being therefore
a challenging task for turbulence modeling. In this study, BagliettoNLEVM has
been used in Nek5000 to simulate a simplified two-dimensional square channel,
to test the capabilities to predict the secondary motions in a square channel at
Reτ = 2huτ/ν = 600 where uτ is computed by averaging wall shear stress over all
wall cells. DNS results by Huser and Biringen are used as a reference [62].

Figure 4.11: Nek5000 mesh (left) and schematic of turbulence induced secondary flows (right)

A 6 × 6 element mesh with 5th order polynomials has been used in Nek5000
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as shown in Fig. 4.11. Capabilities of BagliettoNLEVM to compute secondary
motions is tested by comparing streamwise and secondary velocity components at
several y locations with the reference DNS data, as shown in Figs. 4.12 and 4.13.
Profiles have been dimensionalized with the bulk velocity Uref .
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Figure 4.12: Streamwise velocity profiles at several y locations: BagliettoNLEVM(—) in com-
parison with reference DNS (◦ ◦ ◦)
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Figure 4.13: Secondary velocity profiles at several y locations: BagliettoNLEVM(—) in com-
parison with reference DNS (◦ ◦ ◦)

Furthermore, Reynolds normal stresses have also been computed and compared
to DNS reference data in Fig. 4.14.

Good agreement is found in streamwise and secondary velocity, with slight
under-prediction of the peak values of this last quantity. When comparing Reynolds
stress components, the trend is qualitatively captured adequately, in particular for
streamwise fluctuations. Relative importance between stresses seems also prop-
erly estimated by the model, even if significant errors are found when comparing
absolute values.

Similarly to the case presented here, next case will evaluate another flow in
which secondary flows appear, using for this case OpenFOAM R© code.
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Figure 4.14: Reynolds normal stresses profiles at several y locations: BagliettoNLEVM:√
u′u′/uτ (—)

√
v′v′/uτ (− · −)

√
w′w′/uτ (− − −); in comparison with reference DNS:√
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√
w′w′/uτ (444);

Triangular array rod bundle

The flow inside a tightly packed triangularly arranged rod bundle has been studied
in OpenFOAM R©. This is another simple configuration where anisotropy plays an
important role and simple models fail to reproduce the secondary flows and shear
stress distributions. This is a common configuration representative of the flow
inside tightly packed rod bundles of common use in nuclear power reactor cores
or in industrial heat exchangers. In particular the case under study is triangular
array with pitch to diameter ratio P/D of 1.17 at Re = 181200. The 2D domain
can be further reduced thanks to the symmetries (see Fig. 4.15a), arriving to
the mesh shown in Fig. 4.15b, where symmetry conditions are applied to all
boundaries excepting the cylinder wall, and whose characteristics are presented
in Table 4.6.

(a) Use of domain symmetries

(b) Rod bundle mesh

Figure 4.15: Domain reduction for the generation of final mesh in the rod bundle case
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Table 4.6: Triangular rod array mesh characteristics

Number of cells y+
max

2400 1.0

The secondary flows inside the sub-channel generate a more uniform distribu-
tion of axial velocity [5]. The accuracy of the model is first tested by comparing the
distribution of axial velocity in radial direction (normal to the wall) at θ = 30deg
(see Fig. 4.15a) with the experimental results from Mantlic et al. [85]. Analysis
is also extended to the comparison of wall shear stress. Results are shown in Fig.
4.16.
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Figure 4.16: Axial velocity profiles in radial direction at θ = 30 deg (left) and wall shear
stress (right). Results shown for BagliettoNLEVM (—) and Lien (− − −) in comparison with
experimental data (◦ ◦ ◦)

The adequacy of the model for this case is clear when considering the improve-
ment in the predictions with respect to Lien nonlinear model.

BagliettoNLEVM has in general proved to be capable of providing accurate
predictions in the academic cases studied here. It has also shown to be able to
capture the influence of the anisotropy on macroscopic variables such as velocity
and wall shear stress distribution in practical cases.

Once the proper behavior of the NLEVM has been tested, the study proceeds
with the simulations involving the different versions of STRUCT defined in section
4.3.3.

4.5.2 Hybrid models

In this sections the different models proposed in section 4.3.3 will be tested in a
variety of cases that have been selected either because they represent simplifica-
tions of some of the phenomena that take place inside a gear pump, or because
they are typical test cases for hybrid models, since typical RANS tend to fail due
to the limitations of such approach. For all cases incompressible conditions apply,
and reliable DNS or experimental data is used as a reference to compare models
predictions. When considering a simulation performed with a hybrid model, it is
worth mentioning the procedure followed to extract information about the veloc-
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ity mean fluctuations. When that is the case, the triple decomposition applies for
every instantaneous variable φ, as shown in Eq. (4.31).

φ =

φ︷ ︸︸ ︷
φ̂+ φ̃+ φ′′︸ ︷︷ ︸

φ′

(4.31)

where φ is the resolved variable and φ̂ is the time average. It is a widely accepted
approach in the validation of models to compare prediction of time averaged fields
and averaged fluctuations (second order moments). Considering for instance the
velocity field, a simulation will provide the time average of the resolved fields û
which will be used as an approximation of the actual average following Eq. (4.32).

û = ̂̂u+ ũ = û− û′′ ≈ û (4.32)

Similarly, velocity fluctuations are defined as the variance of u with respect to
time (û′u′) for velocity fluctuations the approximation in Eq. (4.33) is considered:

û′u′ = (u− û)(u− û)
∧

= ̂̃uũ+ û′′u′′ + 2 ̂̃uu′′ ≈ ̂̃uũ+ û′′u′′ (4.33)

where the first term of the approximation is obtained from the variance of the
resolved velocity with respect to the time average ( ̂̃uũ ≈ (u− û)(u− û)

∧

) and the
second term is obtained by averaging the modeled residual stresses (τ̂ij = −ρû′′i u′′j ).
These are very common assumptions.

Periodic hill

The flow over periodic hills is a common test case, typically intended for studying
LES models performance in the presence of separation and reattachment. It con-
sists of polynomial-shaped obstacles mounted on a flat plane with a recirculation
region in their wake. Highly resolved LES simulations [37] have been used as a
reference for this case. Mean streamlines and geometry details are shown in Fig.
4.17. Reynolds number based on bulk velocity Ub and hill height h is Re = 10595.

Figure 4.17: Streamlines of mean velocity field (left) and geometric parameters (right) of the
2D periodic hill configuration. Lx = 9h, Ly = 3.035h, Lz = 2h

Two meshes have been considered for this case as shown in Fig. 4.18 with the
characteristics shown in Table 4.7.

Upper and lower walls should be modeled using RANS due to the selection
of the resolved frequency parameter, that vanishes near the wall. They have
enough resolution to apply non slip velocity condition. For the rest of boundaries
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Figure 4.18: Coarse (left) and fine(right) meshes for periodic hill case

Table 4.7: Periodic hill case mesh characteristics

Mesh Number of cells Max.
non-orthogonality [deg]

y+
max

Coarse ≈ 82000 17 1.0
Fine ≈ 60000 14 0.5

periodic conditions apply, and an explicit pressure gradient has been added to the
velocity equations to maintain Ub mean velocity through the inlet-outlet patch.
Simulations are carried out using LUST [141] scheme for convective terms and
second order backward temporal discretization. Fields have been averaged for
at least 10 convective times in each simulation. Many simulations have been
performed and only some results will be shown here for the sake of brevity.

First, a 2D simulation was carried out to determine the reference fm0 re-
quired by the controlled STRUCT. Then standard BagliettoNLEVM, STRUCT,
STRUCTL and STRUCTT were tested in both meshes. As an example Figs. 4.19
and 4.20 show a comparison of the predictions of x and y-velocity profiles for all
four models in the coarse mesh.

Figure 4.19: Mean x-velocity profiles for standard models

It is clear that the RANS model provides the worst prediction of the separation
and reattachment of the flow and incurs in the highest error for both velocity
components. STRUCT and STRUCTT give in general similar predictions while
STRUCTL approaches that of BagliettoNELVM, worse than the rest. Fig. 4.21
shows the activation regions for the three hybrid models, represented by r. r is
the viscosity damping function in the case of STRUCTT, while it only identifies
activation regions in a binary fashion for STRUCT and STRUCTL.

It is worth noticing that only the controlled STRUCT generates activation
of the model in the right side of the domain where the slight increase of flow
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Figure 4.20: Mean y-velocity profiles for standard models

Figure 4.21: Activation regions for standard hybrid models in coarse mesh: STRUCT (top left);
STRUCTL (top right); STRUCTT(bottom)

strain overcomes the fixed modeled frequency, while it does not when the modeled
frequency is obtained by an averaging procedure (as in STRUCTL or STRUCTT).

Both streamwise and wall normal velocity profiles were sufficiently insensible to
mesh resolution in all cases and in good agreement with reference results. How-
ever, even if mesh convergence was achieved for the baseline BagliettoNLEVM
when considering the two 3D meshes presented before (differences in turbulent ki-
netic energy profiles were also minimum), it was found that the hybrid approaches
were significantly mesh dependent when considering k profiles. As an example,
Figs. 4.23, 4.24 and 4.25 show the mesh dependency of STRUCTT model, the
one for which the largest differences were found between the results obtained with
the coarse and fine meshes. STRUCTT activation regions for the two meshes is
shown in Fig. 4.22.

Figure 4.22: Activation of STRUCTT in coarse (left) and fine (right) meshes

Fig. 4.25 shows that in general, mesh refinement improves the prediction of
TKE, over-predicted in the coarse mesh in the middle of the channel. As shown
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Figure 4.23: Mesh dependence of x-velocity profiles for STRUCTT: coarse mesh (—); fine mesh
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Figure 4.24: Mesh dependence of y-velocity profiles for STRUCTT: coarse mesh (—); fine mesh
(−−−)
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Figure 4.25: Mesh dependence of TKE profiles for STRUCTT: coarse mesh (—); fine mesh
(−−−)

by Fig. 4.22, more structures are resolved in the fine mesh and this leads to an
improvement in the results.

While both results and activation regions for STRUCTL seem realistic, it was
noticed that activation of the model was not only due to physical issues but
there were also numerical problems involved. In fact, it was noticed that the long
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integration distance R used for the geometric averaging procedure (see Eq. (4.21))
was generating a checkerboard activation, due to the limitations of the average
defined in Eq. (4.20). This occurred in both coarse and fine meshes. For instance,
if a line in the streamwise direction is considered (see Fig. 4.26) profiles of fm and
fr can help us identified where activation occurs and why (see Fig. 4.27).

Figure 4.26: Activation along a streamwise line for STRUCTL in coarse mesh

Figure 4.27: Dimensionless frequency profiles (left) and activation and limitations (right) along
streamwise line

It can be derived from Fig.4.27 that if no averaging of fm0 was considered for
the determination of fm (then fm = fm0) activation would never occur in that line
since fr < fm0. Variations of fm0 in the vicinity of that streamwise line are small
but however the integration distance R computed with Eq. (4.21) is very large,
leading to a predicted value of fm far from the values of fm0 around the local cells,
and leading to the limitations of fm to the top value of 2fm0 (limitHi in Fig. 4.27)
or the bottom value of 0.5fm0 ((limitLow in Fig. 4.27). This huge oscillations cause
an artificial activation of the model (r = 1), only due to the averaging procedure
used, as defined in Eq. (4.20).

In fact, the integral length scale (l) is typically estimated by l = C3/4
µ k3/2/ε.

The integration distance is therefore R = CR/C
3/4
µ l ≈ 12l. We are using local

information to extrapolate the behavior 12l away form the local cell, which is the
cause of the unphysical activation. CR was probably assigned on the basis of opti-
mizing results in some other cases, however this case shows that the chosen value
is too large. In order to avoid this behavior we can either reduce the activation
region to a more logical value, or consider alternative averaging procedures, as
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described in the different variants proposed in section 4.3.3.
The main conclusions extracted from all the simulations and parametric stud-

ies of the different closures of STRUCTL-like models are given next. First for all
STRUCTL, STRUCTAt, STRUCTAt V, STRUCTAf or STRUCTAf V, integra-
tion distance should be kept sufficiently small to avoid spurious activation. As an
example Fig. 4.28 shows the activation and active limitations of fm for STRUCTL
when the integration distance is computed as C ′R times the integral length scale
(R = C ′RC

3/4
µ k3/2/ε) for different values of C ′R.

Figure 4.28: Activation and limitation regions for STRUCTL in coarse grid: C ′R = 1 (top);
C ′R = 2 (medium); C ′R = 10 (bottom)

When V-like models are used (R computed from cell size) no significant
changes are observed in activation regions. In fact R does not vary greatly in
the inner part of the domain, and using an integration distance based on R of
based on the grid size, which is quite uniform, does not produce a meaningful
difference as long as integration distance is similar. It was noticed that in V-like
models, upper limitations apply near the wall boundaries, which however does not
affect the activation of the model (see Fig. 4.29).

Results obtained with any of the models mentioned here were very similar as
long as the integration distance was kept to a small value. When comparing
standard STRUCTL, STRUCTAt or STRUCTAf in their standard form (using
CR = 2), with the V-like alternative: STRUCTF, STRUCTL V, STRUCTAt V
or STRUCTAf V with a small value of CR, for instance CR = 2, it can be noticed
that the nonphysical limitations worsen the performance of the first group of
models. For instance, Fig. 4.30 shows this comparison for velocities and TKE, in
the vicinity of zone where the highest differences were observed for each variable
in the coarse mesh. Even if differences are not very large, the figure shows how
models can be grouped in two categories that give similar results for the same
value of CR: those for which the integration distance is calculated as a function
of the cell size, therefore small, and those for which the distance is calculated as
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Figure 4.29: Activation and limitation regions for STRUCTL V in coarse grid: CR = 2 (top);
CR = 5 (medium); CR = 10 (bottom)

a function of the turbulent length scale, that suffer from limitations and generate
a higher error.
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Figure 4.30: x-velocity (left), y-velocity (center) and TKE profiles (right) for standard and
V-like models in coarse mesh

Similarly, the separate effect of the integration distance can be studied. For ex-
ample, Fig. 4.31 shows the effect on the results of variations of C ′R for STRUCTL,
when the integration distance is computed according to R = C ′RC

3/4
µ k3/2/ε.

Again, Fig. 4.31 shows that results improve progressively with the decrease
of C ′R, as the cells with limited fm disappear (see Fig. 4.28), even if profiles are
accurately captured in any case.

It could be argued that local turbulent time scale could possibly be used as
an approximation of fm without any averaging (fm0 = fm). However Lenci [75]
already tested this option and concluded that some kind of averaging is necessary.
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Figure 4.31: x-velocity (top), y-velocity (center), TKE (bottom) profiles (right) and zoomed
profiles (left) for standard STRUCTL: C ′R = 0.25 (− − −); C ′R = 0.5 (· · · ); C ′R = 1 (− · −);
C ′R = 2 (• • •); C ′R = 10 (—)

If this is true, the use of the alternative models proposed in this section could
behave as a too small averaging when mesh is refined. Besides, STRUCTL-like
models are still unclosed models, since the user must provide the φ parameter,
whose optimal value depends on the case.

Given the very small variations found in this case, the study is extended to
the analysis of the wall bounded flow around a square cylinder, where the vortex
shedding approximates also the physics of a similar vortex shedding in a gear
pump.

Flow around a square cylinder

In this section, the flow past a square cylinder is analyzed. This represents a
common example of flow with shedding and massive separation, typically used to
show the performance of hybrid models over U-RANS. U-RANS generally predicts
a single mode fluctuation, far from the complex spectrum evidenced experimen-

107



CHAPTER 4. HYBRID TURBULENCE MODELING

tally [88]. This case is also useful because the distinction between regions with
clear scale separation, and those in which model activation should be necessary,
is clear.

The case consists in a fully developed flow through a channel of width 14L
that encounters a square cylinder of side L in its center, as shown in Fig. 4.32.
Reynolds number based on the bulk velocity and square side is Re = 21400. Laser
Doppler Velocimetry (LDV) measurements performed by Lyn et al. [81] will be
taken as a reference for the comparison of velocity and velocity fluctuation profiles.

Figure 4.32: Square cylinder case geometry

As suggested [139] Lz = 5L has been chosen for the length of the domain in
the spanwise direction where periodic boundary conditions are applied.

The experimental domain has been enlarged in the x-direction, in order to
apply a uniform velocity boundary condition at inlet, that develops and matches
experimental results at x/L = −3, and to reduce the effect of the outlet bound-
ary condition, as suggested by [75]. The mesh used for the simulations extends
therefore from x/L = −35 to x/L = 31 and has been proved to produce mesh
converged results for the baseline U-RANS. The grid is illustrated in Fig. 4.33
together with the characteristics shown in Table 4.8.

Figure 4.33: Square cylinder case mesh

Table 4.8: Square cylinder case mesh characteristics

Number of cells Max.
non-orthogonality

[deg]
≈ 680000 43

Mesh resolution near the square cylinder walls has been increased to satisfy
y+ < 1 while classical wall functions are used in upper and lower wall boundaries,
ensuring y+ > 30 for their correct applicability. Preliminary U-RANS results have
been use to provide the reference turbulent frequency scaled fm0, required for the
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controlled STRUCT simulations. U-RANS and hybrid models simulations have
been averaged for about 4 convective times (considering the entire streamwise
length of 66L), which was shown to be enough to provide converged statistics.

Given the problems related to the use of STRUCTL explained before with the
large integration distance, and trying to avoid the mesh dependence if a small
integration distance is considered, or any of the suggested models (STRUCTAf,
STRUCTAt...) is used, all of which are still open models (φ is still a user-defined
parameter for all of them), the study of this case has been centered in completely
closed models, the ones derived from the STRUCTT version.

As a starting point, results obtained from the baseline BagliettoNLEVM are
compared to those obtained with STRUCT (where results improved as the pa-
rameter φ was reduced and therefore φ = 10−10 was used) and with the standard
version of STRUCTT. Fig. 4.34 shows the comparison of velocity profiles with
experimental data while in Fig. 4.35 the non-zero components of the Reynolds
stress tensor are compared to the reference LDV measurements.

Figure 4.34: x-velocity (top) and y-velocity (bottom) profiles comparison for: BagliettoNLEVM
(− · −); STRUCT (· · · ); STRUCTT(—)

It is clear that the performance of both hybrid approaches is much better than
that of the baseline nonlinear RANS model, which predicts an extended region
with unrealistic negative x-velocity. When comparing both hybrid approaches,
differences are minimum in velocity profiles and not clear when comparing velocity
fluctuations: while controlled STRUCT provides slightly better accuracy in the
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Figure 4.35: Velocity fluctuation profiles u′u′ (top); v′v′ (center); u′v′ (bottom). Comparison
of: BagliettoNLEVM (− · −); STRUCT (· · · ); STRUCTT(—)

determination of streamwise fluctuations, STRUCTT is marginally better when
the uv time co-variance is considered.

Activation of STRUCT and STRUCTT in a z section of the domain is shown
in Fig. 4.36, while Fig. 4.37 shows the comparison of instantaneous vorticity fields
obtained with the baseline U-RANS and those obtained with STRUCTT.

Activation contours show how the model activates in the zones where high
velocity deformation is expected. It also shows how the model would never activate
if the obstacle was not present leading to the RANS solution (which is accurate
enough) in the case of a pure channel flow. Furthermore the figures show how the
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Figure 4.36: Hybrid mode activation parameter for STRUCT (top) and STRUCTT (bottom)

large shedding structures decay into smaller ones, being finally dissipated, and
canceling the activation of the hybrid model near the outlet boundary.

Figure 4.37: Vorticity magnitude for BagliettoNLEVM (top) and STRUCTT (bottom)

Wen vorticity fields are compared, top contour plot of Fig. 4.37 shows how U-
RANS predicts a single mode, almost periodic pattern, not being able to capture
the breakdown of large vortices into smaller ones downstream of the obstacle as
expected, which does appear in the vorticity pattern showed by STRUCTT model.

Even if results were satisfactory for STRUCTT a more detailed study was
performed. Fig. 4.38 represents contour plots of the relevant frequency scales: fr,
fm0 and fm, while Fig. 4.39 shows the behavior of the same variables along the

111



CHAPTER 4. HYBRID TURBULENCE MODELING

domain centerline past the obstacle (y = z = 0 and x/L > 1).

Figure 4.38: Relevant frequency scales for STRUCTT instantaneous solution
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Figure 4.39: Relevant frequency scales for STRUCTT along centerline: fr (—); fm0 (− ·−); fm
(−−−).

Figs. 4.38 and 4.39 show that fm is not so much of an average of fm0. The small
value chosen for β parameter avoids significant variations of tm and consequently
fm remains close to its initial value, close to the initial condition of fm0 at the
starting point of the simulation. If we also pay attention to the different terms
involved in the additional equation solved for STRUCTT model (Eq. (4.22)), in
particular the source and diffusion terms Dtm and Stm , and we plot their values in
the centerline as done for the frequency scales, we obtain Fig. 4.40. The relative
weight of Stm is much higher than that of Dtm . This behavior is maintained in
the rest of cases studied. Therefore the model could be simplified by neglecting
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Figure 4.40: RHS terms in the equation for tm in STRUCTT model: Stm (—); Dtm (−−−)

Dtm . Furthermore, we would like fm to adapt faster to an average of fm0 in the
vicinity of the regions with resolved scales. This could be achieved by considering
the integration parameter in the Lagrangian average procedure to be T = 1/fr.
As mentioned in section 4.3.3 the model following these ideas has been called
STRUCTT-Tfr.

When the same α and β parameters are used, results are insensible to the
selection of the time scale T since, as explained before, fm remains approximately
equal to the initial value of fm0. In order to determine the best general behavior
of STRUCTT (without the diffusion term in tm equation) for the two possible
definitions of T : T = k/(βε) (from now on STRUCTT-Tkε) and T = 1/(βfr)
(STRUCTT-Tfr), a systematic study has been carried out, varying the parameters
α and β respectively in the ranges (0.5 − 2.0) and (0.001 − 1). The mean errors
in velocity fields and velocity fluctuations were computed considering all profiles
for which experimental data was available. Simulations will not be shown here for
the sake of brevity. This study has also been extended to the two other cases that
will be presented next: the diffuser case and the triple jet case. When considering
the diffuser case, it was found that a sufficiently high value of α was required to
guarantee the activation of the model and meaningful results. With this in mind
α = 2 was chosen for both models as the best compromise. Regarding the effect
of β, when T = k/(βε) behavior improved progressively for low values of β, even
if this means no actual averaging is performed in fm0. The optimum was therefore
β = 0.001. When T = 1/(βfr), optimum results were found with β = 0.1. The
simulations with STRUCTT-Tfr were also found less dependent on the choice of
α and β in the tested ranges.

Streamwise velocity and velocity fluctuation profiles for the optimum config-
uration of each model (STRUCTT-Tkε and STRUCTT-Tfr) are shown in Fig.
4.41.

For this case results are very similar to the ones shown before with the differ-
ent constants. STRUCTT-Tkε is slightly better predicting velocity profiles but
slightly worse in the determination of the x-velocity time variance profiles.

The two fully closed models will next be applied to two additional cases, with
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Figure 4.41: x-velocity (top) and velocity fluctuations (bottom) for STRUCT (− − −) and
STRUCTT-Tfr (—)

the selection of optimal constants explained before.

Asymmetric diffuser

The plane asymmetric diffuser is a classical case for the study of mild flow sepa-
ration against a slight adverse pressure gradient. The mild separation makes this
test challenging for hybrid models. For instance, Davidson [24] performed simula-
tions with the SAS using k−ω SST as baseline U-RANS and highlighted the poor
performance of the SAS model, which showed lower accuracy than the simulations
performed with the standard k−ω SST in the same mesh. The configuration that
will be studied here is shown in Fig. 4.42. A fully developed channel flow en-
counters a diffuser section with a slope of 10 degrees. The flow separates and a
recirculation region appears near the end of the slope. The Reynolds number for
the case considered here is Re = 20000, based on the height of the inlet channel
H and the bulk velocity Uref .

Two meshes have been studied for this case. A 2D mesh which will be used to
obtain steady state solution of linear and nonlinear RANS models and 3D one,
extrusion of the former in the spanwise direction a total of Lz = 3H, which will
be used to test U-RANS and hybrid models. Fig. 4.43 shows a representation of
them, together with the characteristics specified in Table 4.9.
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Figure 4.42: Asymmetric diffuser geometry

Figure 4.43: Asymmetric diffuser mesh

Table 4.9: Asymmetric diffuser mesh characteristics

Mesh Number of cells Max.
non-orthogonality [deg]

y+
max

2D ≈ 20400 7.8 0.13D ≈ 980000

Wall mesh refinement has been increased in an attempt for the models to
predict the separation point. Periodic conditions apply in the spanwise direc-
tion. A fully developed one-dimensional turbulent channel flow simulation (such
as the one shown in section 4.5.1), performed with BagliettoNLEVM, has been
considered to determine velocity and turbulence quantities profiles at the inlet
boundary. Hot wire anemometry measurements from Buice [10] will be used as
a reference. Anderson and Eaton [2] estimated the maximum random errors to
be 3% for averaged velocity profiles, 5% for velocity time variance and 10% for
velocity covariance.

First, simulations are performed with classical RANS models and BagliettoN-
LEVM in the two-dimensional mesh. Fig. 4.44 shows averaged velocity and
velocity fluctuations profiles in comparison with experimental data.

Linear and nonlinear k− ε models fail to predict the separation of the flow. In
fact for these models the flow never separates, and streamwise velocity is positive
in the entire domain. On the other hand k − ω SST predicts quite accurately ve-
locity and streamwise fluctuation profiles, but it over-predicts wall normal velocity
fluctuations and velocity co-variance. The nonlinear eddy viscosity assumption
does not seem to produce a significant improvement in this case.

When considering the performance of hybrid models it was first noticed that the
proposed STRUCTT-like models would not activate unless a sufficiently high value
of α was used. It seems that when α is not high enough, there are not sufficiently
large instabilities in the flow to trigger the hybrid model activation. According to
the study mentioned in the last case, STRUCTT-Tkε and STRUCTT-Tfr have
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Figure 4.44: Streamwise velocity (first) and velocity fluctuation profiles: uu variance (second),
vv variance (third) and uv covariance (fourth) for the two-dimensional simulations: k − ω SST
(—); Launder Sharma k − ε (−−−); BagliettoNLEVM (− · −); experimental data (◦ ◦ ◦)

been used, using the best globally performing parameters for each of them, to
solve the asymmetric diffuser case in the three-dimensional mesh. Activation of
both models is shown in Fig. 4.45.

Activation of STRUCTT-Tfr seems to be enlarged with respect to that of
STRUCTT-Tkε. In fact, for the latter, fm stays close to the initial fm0, taken from
the inlet channel flow, which is higher than the value downstream. STRUCTT-Tfr
adapts faster to the value downstream, providing a lower value of fm and there-
fore enlarging the activation of the model. As commented before, a parametric
study was perform to determine the parameters defining the best global behav-
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Figure 4.45: Hybrid models activation regions for diffuser case: STRUCTT-Tfr (top);
STRUCTT-Tkε (bottom)

ior of STRUCTT-Tkε and STRUCTT-Tfr. Fig. 4.46 shows how the velocity
fields predicted by STRUCTT-Tkε vary significantly more than those predicted
by STRUCTT-Tfr for different β values.
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Figure 4.46: Streamwise velocity profiles for STRUCTT-Tkε (top) and STRUCTT-Tfr (bot-
tom): β = 0.001 (—); β = 0.01 (−−−); β = 0.1 (− · −); experimental data (◦ ◦ ◦)

When the globally best combination of α and β are used for each models, the
results of velocity and velocity fluctuation profiles are shown in Fig. 4.47

Both models predict an early separation of the flow. STRUCTT-Tfr gives
a slightly better prediction of velocity profiles, but both cases improve signifi-
cantly the behavior of the baseline U-RANS, and also the results from k−ω SST.
When considering velocity fluctuations there is a clear overestimation of the ve-
locity variance and covariance peaks in the vicinity of the separation point. This
overestimation is however significantly smaller than the one obtained with other
classical hybrid approaches (see for instance [24]). Of the two models, STRUCTT-
Tfr ameliorates the over-predicted peaks obtained with STRUCTT-Tkε but does
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Figure 4.47: Streamwise velocity (first) and velocity fluctuation profiles: uu variance (second), vv
variance (third) and uv covariance (fourth) for the three-dimensional simulations: STRUCTT-
Tkε (−−−); STRUCTT-Tfr (—); experimental data (◦ ◦ ◦)

not fully correct the problem.

So far, models have been tested in cases characterized by similar physical phe-
nomena to the flow through a gear pump (separation of the flow in a curved
hump in the periodic hill, or vortex shedding around a square cylinder), and cases
typically complex for the performance of hybrid models (separation against mild
pressure gradient in the asymmetric diffuser). Last case will evaluate the capacity
of the model to predict oscillatory mixing of flow streams, in the so-called triple
jet case.
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Triple jet

Thermal striping is a complex phenomena of particular concern in the nuclear
engineering field. It arises when turbulent streams of different temperatures mix in
the vicinity of sensitive structural materials, generating temperature fluctuations
that can cause thermal fatigue. This has been intensively studied in light water
reactors (LWR) when considering coolant mixing in T-Junctions [106] and in
Sodium Fast Reactors (SFR) where the oscillatory mixing of hot sodium coolant
streams from the core sub-assemblies and cold sodium flows from control rod
channels and blanked fuel assemblies, can damage the upper-plenum materials
[42]. Accurate simulation of this phenomena is essential for design and operation
of nuclear reactors.

The configuration chosen here is a parallel triple jet sodium flow, presented as a
benchmark for striping phenomena by the Japan Atomic Energy Agency (JAEA)
under the name PLAJEST. This involves a large series or related experiments
[70, 71, 134, 135] which will be used as a reference for comparisons of velocity,
temperature and temperature fluctuations. The experimental setup is shown in
Fig. 4.48.

Figure 4.48: Schematic of the experimental setup for PLAJEST benchmark. Distances are
expressed in mm

Only one case will be studied, referred to as A1 iso-velocity case, for which the
experimental conditions are shown in Table 4.10.

Table 4.10: Experimental conditions for the triple jet case

Case Outer-slits/hot jets Center -slit/cold jet Mixture
Vh (m/s) Th (◦C) Vc (m/s) Th (◦C) Vm (m/s) ∆T (◦C) Tm (◦C)

A1 0.51 347.5 0.51 304.5 0.51 43 333.2

where Vh and Vc are the mean velocity of hot and cold jets and Vm is the
mean discharged velocity. Discharged temperature difference is simply defined as
∆T = Th − Tc and the mixed-mean temperature is estimated as Tm = (VcTc +
2VhTh)/(3Vm).

The computational domain and mesh schematic is shown in Fig. 4.49, while
mesh characteristics are shown in Table 4.11. A very coarse mesh has been con-
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sidered in this case in order to show the applicability of the models in such case
and the improvements with respect to the baseline U-RANS, in a mesh created
for this type of approach. The origin is placed at the center of the cold jet on the
nozzle outlet and on the partition plate wall surface. Liquid sodium density, heat
capacity and transport properties have been expressed as a polynomial function of
temperature, as described in [36]. Walls are treated with wall functions, ensuring
the proper behavior of these and they are considered well isolated. Lateral and
top boundaries are treated as outlet boundaries as recommended by [144]. Fully
developed turbulent flow has been considered at the different inlet boundaries.

Figure 4.49: Schematic of the computational mesh

Table 4.11: Periodic hill case mesh characteristics

Number of cells Max.
non-orthogonality [deg]

y+
min y+

max

≈ 8300 31 45 230

RANS models, as expected, are not able to predict properly temperature fluc-
tuations [144], which forces the use of U-RANS and LES techniques. Here we will
analyze the performance of the selected STRUCTT-like methods in comparison
with U-RANS solutions.

Fig. 4.50 shows the predicted temperature contours at the middle section
(x/D = 4.5 where D = 20 mm is the nozzle width) for BagliettoNLEVM,
STRUCTT-Tkε and STRUCTT-Tfr.

While predictions of the two hybrid models considered here are similar, differ-
ences with the baseline RANS model are obvious. BagliettoNLEVM predicts a
much larger diffusion of temperature, probably due to high estimation of turbulent
viscosity that enhances the mixing of coolant flows. Regarding the comparison of
hybrid approaches, Fig. 4.51 shows the activation regions for both models, which
are again very similar.

In order to compare the models, experimental measurements of mean velocity,
temperature and temperature fluctuations in the center plane (x/D = 4.5) at
z = 100 will be used. Simulation results have been averaged for over 10 seconds.
All velocity components are normalized with the discharge velocity Vexit = 0.51
m/s. Temperature is normalized according to Eq. (4.34).
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Figure 4.50: Velocity magnitude (top) and temperature (bottom) contours: BagliettoNLEVM
(left), STRUCTT-Tkε (center); STRUCTT-Tfr (right)

Figure 4.51: Hybrid model activation regions: STRUCTT-Tkε (left); STRUCTT-Tfr (right)

T ∗ = T − Tc
∆T (4.34)

Temperature fluctuation are compared by determining the normalized temper-
ature fluctuation intensity (TFI ∗), defined with a normalization of the root mean
square of T , as shown in Eq. (4.35)

TFI ∗ = Trms
∆T (4.35)

Fig 4.52 shows the comparison of averaged velocity and mean temperature and
temperature fluctuations along the described centerline.

Results for hybrid models are again superior to those of nonlinear U-RANS.
It appears that BagliettoNLEVM overpredicts turbulent viscosity producing ex-
cessive mixing, that translates into under-prediction of velocity and temperature
profile peaks. If we focus on the velocity fields, results of both hybrid models are
very similar. Non of them succeeds into capturing the trend of horizontal and ver-
tical velocities near y = 0 probably due to insufficient mesh resolution. Magnitude
of vertical velocity fluctuations is slightly over-predicted but still close to the ex-
perimental value. Both hybrid models capture accurately the mean temperature
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Figure 4.52: Comparison of x-velocity (left), z-velocity and z-velocity fluctuations (center) and
temperature and temperature fluctuations (right) along centerline (x/D = 4.5) at z = 100 mm:
BagliettoNLEVM (· · · ); STRUCTT-Tkε (—); STRUCTT-Tfr (−−−); experimental data first
set (◦ ◦ ◦); experimental data second set (♦♦♦)

distribution and they predict the right trend in temperature fluctuations even if
the peaks of these are slightly over-predicted by both models. BagliettoNLEVM
fails to predict even mean temperature profiles.

4.6 Conclusions

In the present chapter new hybrid models have been presented. On the basis of
the STRUCT model developed by Lenci [75] several alternatives have been pro-
posed and tested. The chapter introduces the theory behind hybrid models and
gives some notes about some of the most typically used ones nowadays. Atten-
tion is then paid to the description of BagliettoNLEVM, the baseline nonlinear
RANS model of STRUCT, on the rationale behind STRUCT approach and on
the different versions of STRUCT proposed by Lenci. The implementation of
the nonlinear model is first tested in several academic cases, focusing on those
which are challenging for linear models and for which nonlinear models should
improve the results. BagliettoNLEVM has proved to provide accurate predictions
of velocity and turbulent kinetic energy in the considered academic cases, and to
improve the description of turbulence anisotropy when compared to other classical
alternatives. Given these results, the different versions of STRUCT are tested in
a variety of cases. Failure of some of the approaches for some cases leads to the
proposition of alternative models. In particular STRUCTT-Tfr, a derivation of
the STRUCTT version of STRUCT, has been proposed and compared to the lat-
ter, giving equal or better results and being based on more physical assumptions.
Both have been proved to always improve accuracy with respect to the baseline
U-RANS solution, in cases with increasing complexity. Some of the cases chosen
here resemble the phenomena found in a gear pump and therefore the model is
proposed for its use in the simulation of three-dimensional gear pumps.
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Application examples

5.1 Introduction

This chapter will provide some examples of the application of the methods pro-
posed in previous chapters to the simulation of gear pumps. Since the project was
developed in collaboration with a gear pump manufacturing company, one of their
helical gear pumps has been selected for this study. In particular an oil pumping
external gear pump of reduced dimensions, wiht z = 7 teeth, with a large range of
pressure head and velocity working conditions will be analyzed. Due to confiden-
tiality reasons, neither the profile nor the working conditions, geometry details or
fluid properties will be given, and results will be referenced to unspecified random
parameters which will be denoted by a star ‘∗’. For brevity only some examples
of the performed simulations will be given.

Regarding p-U coupling a transient SIMPLE-C method with Majumdar correc-
tion will be applied to all simulations. With respect to the mesh motion strategy,
the rounded profile of the studied pump is a clear example for which fréchet
method is preferred. Interface boundary conditions are treated with the AMI-
ACMI boundaries as described in section 3.9.2. The generalized parallelization
method described in section 3.12 has been used together with scotch decompo-
sition. The new method proposed in this thesis for the treatment of contact
points (section 3.13) has been used for all cases unless stated otherwise. Laminar,
classical linear models or BagliettoNLEVM (section 4.3.2) have been used for tur-
bulence modeling as specified in each case. Absolute pressure and total pressure
have been fixed respectively at inlet and outlet boundaries depending on the work-
ing conditions in each case, and mass flow and torque have been computed and
compared when possible to experimental data. The lack of extensive experimen-
tal measurements makes it difficult to provide a clear validation of the proposed
strategy, however working condition maps of the gear pump under study will be
provided together with the simulation predictions, and observed tendencies will
be given for other parameters, for which no experimental results were available.
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5.2 2D cases

This section provides a broad analysis of different working conditions of the studied
gear pump. The speed of the calculations allow us to perform a large number of
simulations to study different parameters.

5.2.1 Mesh dependency

As a starting point, laminar simulations of the 2D simplification of the helical
pump have been performed. Geometric variables are shown in Fig. 5.1 while
Fig. 5.2 shows two of the meshes used in this section, whose characteristics are
specified in Table 5.1.

Figure 5.1: Two-dimensional gear pump geometry

In the 2D simulations the pump is assumed to be infinitely long in the z
direction and therefore the behavior would be the corresponding to spur gears.
When comparing to real measured data, results will be scaled in the z-direction
assuming a Lz length that is selected to maintain the same inlet area as the real
case (its details cannot be provided), following Eq. (5.1).

πD2
i

4 = DiLz (5.1)

Figure 5.2: Two-dimensional gear pump meshes

Inlet and outlet boundaries have been placed far from the region of interest
(Li = Lo = 9Rp) to guarantee that the vicinity of the boundary is not affecting
the results. Mesh characteristics obviously change as the mesh moves and deforms.
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Table 5.1: Characteristics of 2D gear pump meshes

Mesh Number
of cells

Max.
non-orthogonality

[deg]

Avg.
non-orthogonality

[deg]

Max.
Skewness

Coarse ≈ 21800 62 16 2.21
Fine ≈ 58700 65 12 2.6

The given parameters are determined by the worst conditions at which each mesh
was found in its movement. Initial mesh was generated trying always to pass
OpenFOAM R© checkMesh application, which guarantees an adequate performance
of the solvers.

Given the symmetry of the 2D mesh, all results are periodic, with a periodicity
that is given by T/(2Z) where T is the rotation period of each gear, as obtained
by the rotational speed n. Fig. 5.3 shows for instance the integrated volumetric
flow through the pump, per unit length in z direction q, when the pump runs
at n/n∗ = 1500 under a pressure head of ∆p/∆p∗ = 150, computed in each of
the meshes for d/d∗ = 10 and spacing/spacing∗ = 20, after a steady fluctuations
range has been reached. No contact point treatment is considered in this case.

Figure 5.3: Volumetric flux through the 2D pump: coarse mesh (−−−); fine mesh (—)

While the maximum and minimum mass flow is similar between the two meshes,
the oscillations magnitude and position change with the mesh resolution. However
the averaged volumetric flow per unit length for these two meshes are respectively
q̂coarse/q

∗ = 4.731 and q̂fine/q
∗ = 4.704.

Integration of pressure and viscous forces at gears wall boundaries allow us to
determine the total torque M per unit length for each mesh at each time step, as
shown in Fig. 5.4.

Large oscillations are observed in the time evolution in torque for both meshes.
In fact, the main contribution comes from pressure forces. Large pressure oscilla-
tions probably due to the convergence of the solver lead to similar oscillations in
the computed torque. When integrating the torque and computing the time av-
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Figure 5.4: Total torque at gear wall boundaries: coarse mesh (−−−); fine mesh (—)

erage values, M̂coarse/M
∗ = 5.7517 and M̂fine/M

∗ = 5.763 are obtained for coarse
and fine mesh respectively.

The difference in mass flow and torque (and therefore power) is in the order of
0.2%.

If the contact point is properly treated in the fine mesh, the results differ
greatly. Fig. 5.5 shows the comparison of volumetric flow per unit length with
and without the point treatment, while Fig. 5.6 shows the velocity vectors in the
vicinity of the contact point.

Figure 5.5: Volumetric flux through the 2D pump: with contact point treatment (− − −);
without contact point treatment (—)

Given the low computational cost the fine mesh has been chosen for further
analysis, and contact point treatment will always be used hereafter.
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Figure 5.6: Flow through contact point: with contact point treatment (left); without contact
point treatment (right)

5.2.2 Internal clearances

As explained in section 1.2, one of the parameters that can significantly influences
the volumetric efficiency of a pump are the internal clearances that lead to the
radial leakage. This strongly depends on the manufacturing process. Typically
clearances can range from 1 to 20 µm. When the fine mesh is considered at
n/n∗ = 1500, ∆p/∆p∗ = 239 and spacing/spacing∗ = 20, and radial clearance d
is varied, volumetric flow and total torque (considering already Lz length units in
the z-direction) vary according to Fig. 5.7.

Figure 5.7: Volumetric flow and total torque as a function of circumferential clearance d

The simulations provided the expected tendency. For the same pressure head,
a higher clearance reduces the pump delivered flow and the required power.

When simulations at d/d∗= 5, 15 and 20 are considered at the same exact angle
and velocity fields are extracted at one of the limits between chambers (see Fig.
5.8).

When the velocity in tangential tc-direction, Ut is represented as a function of
the distance to the gear wall rc in the normal direction, Fig. 5.9 can be obtained.

Two conclusions can be extracted from Fig. 5.9. First, the parabolic shape
of the profiles informs of a laminar flow, as expected in such a reduced section.
Secondly, the integration of those curves determines the loss of output flux of the
pump, one of the contributions to reduce the volumetric efficiency, and it can be
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Figure 5.8: Schematic of the region around the studied clearance section

Figure 5.9: Tangential velocity at clearance: d/d∗ = 5 (—); d/d∗ = 15 (· · · ); d/d∗ = 20 (− · −)

deduced from Fig. 5.9 that it drastically increases with d.
When selecting the artificial separation defined as spacing, no difference was

found in the results when it was varied in the same range as d if the contact point
was treated.

5.2.3 Turbulence modeling

Two turbulence models have been tested in this case: k−ω SST and BagliettoN-
LEVM. For this particular case and working conditions the results did not vary
much with the model chosen when considering global variables as the averaged
flux, for which differences were in the range of 1%. This does not imply however
that larger differences might exist when studying other working conditions, pump
designs or structure or generated vortices.

Fig. 5.10 shows a comparison of the contours of turbulent kinetic energy for
the two turbulence models selected here, while Fig. 5.11 compares the average
flux through the pump as determined by the simulations performed with no model
(laminar), k − ω SST or BagliettoNLEVM.

Two main conclusions can be inferred from these results. First, vortex shedding
coming out of the pump as a result of the gear motion do generate production of
energy that cannot be dissipated by the laminar viscosity, leading to the prediction
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Figure 5.10: Turbulent kinetic energy contours for k−ω SST (left) and BagliettoNLEVM (right)

Figure 5.11: Averaged flux through the pump in laminar and turbulent cases

of a non zero turbulent kinetic energy. Second, the similar profiles in the mass flux
ripple informs that turbulent does not play an important role in this particular
case.

5.2.4 Power-torque performance map

In this section simulations with the fine mesh have been carried out considering
fixed spacing/spacing∗ = 20 , d/d∗ = 10 and no turbulence model, in a several
working conditions, varying the pressure head and the rotational speed of the
pump independently. Fig. 5.12 shows for instance the evolution of velocity and
pressure fields when rotational speed is kept fixed and output pressure is rised.

At higher output pressure the extension of the wake in the center of the outlet
channel seems to be reduced. In fact, a reduction of the total mass flow is also
expected as the pressure rises, since this causes a reduction on the volumetric
efficiency.

Similarly, Fig 5.13 shows the change in velocity contours while Fig. 5.14 com-
pares the volumetric flow evolution when different rotational speeds are considered
for the same pressure head.
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Figure 5.12: Velocity (top) and pressure (bottom) contours for pump simulations at n/n∗ =
1500. Cases from left to right correspond to: ∆p/∆p∗ = 50, 100, 150 and 250

Figure 5.13: Velocity contours for pump simulations at ∆p/∆p∗ = 50 varying the rotational
speed: n/n∗ = 1000 (left), 1500 (center), 2000 (right)

Figure 5.14: Volumetric flux for pump simulations at ∆p/∆p∗ = 50 varying the rotational speed:
n/n∗ = 1000 (blue), 1500 (red), 2000 (green) togehter with the mean value (· · · )
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The rotation velocity seems to have a reduced importance on the scaled vol-
umetric flow estimation. The flow ripple is similar for the three cases, for the
particular pump under study.

The computation of pressure and viscous forces determines again the total
torque required for both gears, the sum of which can be compared to the exper-
imental value. When this is performed at the several working conditions tested
here, Fig. 5.15 is obtained, where torque and power are plot against their experi-
mental value in the real three-dimensional pump.

Figure 5.15: Power-torque performance map. Power (—) and torque (−−−) are represented as
a function of the rotational speed n for increasing pressure head: ∆p/∆p∗ = 50, 100, 150, 200,
250. Comparison between simulation results (colored) and experimental results (black)

The two-dimensional simulations provide reasonable agreement with experi-
mental data, even if some major differences can be found. First while torque
variation with rotational speed is minimum in the real pump, the simulation pro-
vides in general an increase in the required torque for increasing velocities. It
should also be commented that the error in the estimation of torque and power
increases for increasing pressure heads. We should always consider that these are
two-dimensional simulations, an artificial extrapolation of the real pump behav-
ior. The real pump is helical, it has pressure relief groves, cylindrical inlet and
outlet pipes and some additional three-dimensional effects (such as axial leakage
for instance) cannot be taken into account. In any case two-dimensional simula-
tions can provide an approximation of the expected power-torque maps and the
behavior of the pumps when design parameters or operation conditions are varied.

5.3 3D case

In this section some information regarding the three-dimensional simulation of the
gear pump will be provided. While temporal limits did not allow me to perform
the all the required tests, the starting point is given and future work will be
described in order to continue the work started here.

A block structured mesh has been generated for the fixedCells region using
OpenFOAM R© blockMesh utility, while the helical gears region has been created
with the method presented in section 3 using the parameter d/d∗ = 10 and
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spacing/spacing∗ = 20. Fig. 5.16 shows an schematic of the entire mesh, whose
characteristics are specified in Table 5.2.

Figure 5.16: Three-dimensional gear pump mesh

Table 5.2: Characteristics of 3D gear pump meshes

Number
of cells Max.

non-orthogonality
[deg]

Avg.
non-orthogonality

[deg]

Max. Skewness

≈ 1.42M 67 19 1.88

The complexity of the fixedCells mesh region increases when the 3D case is con-
sidered. Since this fixed part also needs to be modified when studying the influence
of some of the parameters (such as d or spacing), a script using OpenFOAM R©

blockMesh application has been creating in order to automatically generated the
mesh by providing input parameters such as d, spacing, pipe lengths and diame-
ters.

The conditions n/n∗ = 1500, ∆p/∆p∗ = 250 have been used to start the
simulation. The current state is shown in Fig. 5.17.

Pressure distribution is obviously similar for the different planes considered
since the chambers are connected in the helical structure. No significant vortical
structures appear at this point yet. When considering the inlet pipe, flow moves
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Figure 5.17: Pressure contours with velocity glyph and velocity colored streamlines

towards the open sections in the top and bottom of the pipe before entering
the gears region. Further details and analysis could be performed as it will be
commented in the future work section (section 6.4).
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Chapter 6

Conclusions

This final chapter intends to serve as a summary of the developed strategies, the
performed simulations and the results obtained in the thesis. The main contri-
butions are divided in three different sections: the improvements in the pressure-
velocity coupling algorithms for co-located grids in the finite-volume framework,
the developed mesh motion strategy, topological changes and contact point treat-
ment methods, and the leveraged hybrid turbulence model. These will be followed
by a section suggesting possible future lines of research to continue this work.

6.1 Pressure-velocity coupling

Finite-volume methods are probably the most common choice in the field of CFD,
in particular when considering commercial software. Furthermore, within these
methods, co-located grids are typically employed in order to reduce the memory
storage requirements of the alternatives. The most important problem associated
with this kind of approach are the nonphysical pressure oscillations, the so called
checkerboarding problem, due to the applied discretization methods and the na-
ture of the Navier-Stokes equations. This problem was addressed long ago by
applying the Original Momentum Interpolation by Rhie-Chow. This approach is
of common use nowadays, but it has some inherent limitations that have not been
undertaken in codes like OpenFOAM R©, which still suffered from these limitations
at the time this thesis work was performed.

In this thesis the OMIM has been analyzed and two of the inherent problems
have been identified, namely: the dependence of the steady state solutions on ve-
locity equations under-relaxation factors and the time step size dependency. Avail-
able corrections for both problems have been found in literature and have been
successfully implemented in OpenFOAM R©. The study of the Taylor-Green vortex
problem demonstrated the small influence of the latter issue (the time step size
dependency), and the increased computational cost and difficult generalization for
moving boundary problems, reason for which it has not been considered for the
rest of the study. Regarding the under-relaxation factor dependency, the Majum-
dar correction has been implemented and tested in the simple two-dimensional
lid-driven cavity case at two Reynolds numbers and in the NACA 0012 airfoil
profile, proving to correctly eliminate the limitation of OMIM.
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Other aspect to consider when dealing with incompressible Navier-Stokes equa-
tion is the pressure-velocity coupling algorithm. During this thesis the list of clas-
sical algorithms accessible in OpenFOAM R©: SIMPLE and PISO, has been en-
larged with some alternatives available in literature: SIMPLE-C, SIMPLE-R. A
systematic study on the accuracy and convergence speed of each algorithm in com-
bination with OMIM with or without Majumdar correction has been performed.
SIMPLE-C proved to converge equally or faster than the rest of algorithms con-
sidered here while Majumdar correction did not show to affect the number of
iterations required to achieve convergence. Therefore, SIMPLE-C with Majum-
dar correction was selected to be applied to the rest of simulations performed in
this thesis.

6.2 Mesh motion strategy

Mesh motion is probably the most complex problem to face in the simulation of
gear pumps. The intricacy of the gears motion and the tight clearances make
gear pumps a difficult challenge for CFD simulations. In fact, in order to avoid
this difficulty many researchers consider sophisticated 1D models, whose lack of
physical accuracy and difficult generalization impedes their wide application in the
field. The most common alternative is the use of ALE formulations with mesh
deformation and re-meshing. The induced mesh-to-mesh interpolation errors and
the computational cost of such approach motivated the development of a new
mesh motion strategy as defined in chapter 3.

A fully automatic mesh motion strategy has been developed with the aim of
reducing the computational cost of the mesh manipulation steps in the application
to external gear pumps, while maintaining general applicability and ease of use.
The proposed strategy is based on the rotation and deformation of single mesh
blocks corresponding to each gear. A synthetic algorithm determines a line/surface
between the two gears in the meshing region, which is used as a reference for a mesh
projection process. Difficulty arises when considering the interaction between the
different mesh blocks. Boundaries between mesh blocks should allow the free flow
of the fluid from one block to another. The motion of the different mesh blocks
generates the need of the boundary conditions applied to a given face to be changed
as the simulation proceeds. This is performed by applying topological changes to
the mesh, avoiding any required interaction of the user. Further modifications of
the algorithm have been proposed in order to ensure its operation for any given
parallelization methods, so as to provide a good balance of cells and faces processor
distribution to guarantee a proper scalability.

The utilities presented here, allow not only for the mesh motion, but also for
the generation of the initial mesh, for which quality can be controlled by adjusting
cells distribution, near wall refinement and non-orthogonality reduction near wall
boundaries. The method has been tested in spur and helical two- and three-
dimensional gears, with a variety of profiles: involute, cycloidal and user-defined
rounded profiles.

Finally in chapter 3 a new method has been proposed to treat the contact
point between gears. In order to reduce the computational cost that would be
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derived from topological changes in internal faces, alternative methods have been
studied to impede the flow from going through gear-to-gear gap in the vicinity of
the contact point. Difficulties were found in the application of a strategy proposed
in literature when very small realistic clearances were used, and this inspired the
development of an algorithm, based on smoothly increased viscosity, to handle
the problem. This is can be applied to both two- and three-dimensional meshes
with one or more contact points/lines and with any given gear profiles.

6.3 Hybrid turbulence modeling

In the recent years, experimental evidence has proved that the stirring produce by
the gears motion generate energy that cannot be dissipated by molecular viscosity
and make therefore turbulence arise. While DNS and LES could be prohibitively
expensive from the computational point of view, inherent limitations of U-RANS
methods when applied to cases with no clear scale separation motivated the de-
velopment of a hybrid model. In Chapter 4, the hybridization technique named
STRUCT has been implemented and tested in OpenFOAM R© together with its
baseline nonlinear RANS model, BagliettoNLEVM, which has also been imple-
mented and tested in Nek5000 SEM code. Several versions of the model were
available in literature and the first task was to analyzed and test them in several
study-cases.

The nonlinear eddy viscosity model BagliettoNLEVM, was found to provide
accurate description of mean velocity and turbulent kinetic energy fields in a set of
academic cases, and to provide better prediction of the anisotropy of the Reynolds
stress tensor, when compared to other classical RANS models. In particular the
classical fully developed turbulent channel flow was first analyzed, followed by
some more complex cases, where the non-linearities in the strain-stress relation
of turbulent fluctuations generate the so called secondary motions, namely: the
turbulent square channel flow and the flow in a triangular array rod bundle.

Additional cases were then considered for the testing of hybrid approaches.
While controlled STRUCT is an open model (case-related information is required
for the model to work properly), STRUCTL version was found to fail in some
simple cases due to the use of local information to extrapolate behavior far from
the local cell. Some alternatives have successfully been tested but introduced ad-
ditional mesh dependency and still relayed on case-related parameters. Therefore
the close version, FTT, was considered and tested. It was found that the some
of the terms in the additional equation proposed for STRUCTT played no actual
role in the cases and therefore could be removed. Additionally, alternative time
scales could be used in the model derivation to provide more a physical behavior.
Following the extracted information, a new closed version, named STRUCTT-Tfr
was proposed in this thesis and has proved to provide equal or better behavior
than the predecessors in the cases considered.

The choice of test-cases has been made attending to their complexity and/or
searching similar physical phenomena than that of the flow through a gear pump.
In particular the flow a period hill considers flow separation in a smoothly curved
hill (similar somehow to the rounded profiles in a gear pump). The flow past
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a square cylinder is used to study the vortex shedding structures coming out of
the interaction, resembling again those generated by the motion of gears in the
pump. Finally two more complex cases have been considered, the separation
against a slight adverse pressure gradient in a plane asymmetric diffuser, typically
challenging for hybrid models, and the thermal striping phenomena in a triple jet,
where the interaction of turbulent structures determine the mixing of different
temperatures streams.

6.4 Final conclusions and future work

In conclusion, algorithms in the fields of pressure-velocity coupling, mesh motion
strategies and turbulence modeling have been developed, aiming at providing
the tools to facilitate the study of external gear pumps in the co-located grid
finite-volume code OpenFOAM R©. Without any previous work in this field in
OpenFOAM R©, this thesis sets the basis to encourage a further test and analysis,
with the final goal of providing the most realistic simulation of an external gear
pump.

The current work could be extended following the next research lines:

• Use the provided tools to complete the simulation of the three-dimensional
pump considering decompression slots and circumferential grooves and test
the influence of those in the predicted volumetric efficiency.

• Evaluate numerically the relative importance of radial and axial leakage with
and without pressure relief grooves.

• Test the performance of the proposed hybrid model for this application, in
comparison with traditional U-RANS approaches.

• Analyze the influence of pressure boundary conditions and test test differ-
ent approaches to simulate the effect of the discharge circuit and how this
influences the predicted performance parameters of the pump.

• Evaluate the importance of the liquid compressibility, in particular for the
two-dimensional studies where no pressure groof can be simulated.

• Compare the performance of the proposed mesh motion strategy against
traditional re-meshing approaches.

• Use the proposed tools to extend the study to solve for the energy transfer
with additional Fluid Solid Interaction (FSI) methods.

• Test the capabilities of the method to predict risk of cavitation, and in a
further analysis, perform the multiphase simulation to compare predictions.

• The gears in the pump are subjected to radial forces, due to which the gear
axes follow orbits instead of being fixed in space. The mesh motion strategy
could also be slightly modified to take into account the this kind of motion
and the effect of these considerations on the predictions could be analyzed.
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• Once the method has gained sufficient maturity the study could also be
extended to determine the noise produced by vibrations caused by pressure
oscillations.
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