
 

 

 
POLITECNICO DI MILANO  
DEPARTMENT OF ENERGY  

DOCTORAL PROGRAM IN ELECTRICAL ENGINEERING 
 
 
 
 
 
 

BATTERY ENERGY STORAGE SYSTEMS: 
MODELLING, APPLICATIONS AND DESIGN CRITERIA  

 
 
 
 
 

Doctoral Dissertation of:  
Claudio Brivio 

 
 
 
 

Supervisor:  
Prof. Marco Merlo 

 
External advisor: 
Dr. Vincenzo Musolino 

 
Tutor:  
Prof. Alberto Berizzi 
 
The Chair of the Doctoral Program:  
Prof. Gabriele D’Antona 

 
 
 
 

2017 – XXX Cycle 



 

  



 

 

 
 
 
 
 
 
 
 
 
 

A mia madre e mio padre 
  



 

iv 

 



v 

 

Abstract 
 
 
Nowadays, the specific costs of battery energy storage systems (BESSs) are 

decreasing exponentially and at the same time their installations are increasing 
exponentially. BESS are in fact becoming pivotal in the development of several 
heterogeneous industrial sectors like energy, automotive, electronics, telecom etc. 
However, BESS performances (energy density, power density, efficiency, lifetime) 
cannot be assumed expandable from one application to another and from one technology 
to another. Therefore, methods and models have to be developed to end up with a proper 
design criteria for the selected application. 

The General objective of the thesis is to contribute in expanding the knowledge about 
BESSs by focusing on appropriate methodologies capable of linking the technological 
studies with the economic analyses required in real life applications. The dissertation is 
centred on electrochemical batteries, considering power electronics well-established with 
respect to both industrial applications and mathematical modelling. Specific objectives 
of the thesis are: the development of a reference framework related to technologies, 
performances and modelling of BESS; the proposal of innovative BESS models 
representing dynamic and aging phenomena; the development of proper methodologies 
to analyse the techno-economic performances of BESS when deployed in stationary 
applications.  

The work is theoretical, numerical and experimental. A theoretical framework serves 
to identify and formulate the correct BESS models. The experimental activities are 
fundamental in developing and tuning the models. The numerical analyses, based on field 
data, are needed to test and validate the models on real applications. These themes are 
specifically developed for lithium-ion battery technology and stationary applications. 

The first part of the thesis offers the reference framework about BESS and is based 
on literature analyses together with experimental activities. Chapter 2 gives an overview 
on electrochemical storage options (expected performances, market share, costs) with 
special attention to Li-ion technology. Chapter 3 presents experimental measurements on 
three different Li-ion chemistries. Energy density, power density and efficiency are used 
to discuss BESS performances in real applications. Chapter 4 proposes a literature review 
on battery modelling which are categorized into four general different approaches: 
electrochemical, analytical (empirical), electrical and stochastic. Two main tasks are 
identified for battery models: the estimation of operating conditions (i.e. SoC estimation), 
the estimation of the lifetime (i.e. SoH estimation).  

The second part of the thesis offers the modelling framework about BESS. Chapter 5 
provides the main theoretical pillars necessary for a proper electrical modelling process. 
Chapter 6 represents the main element of originality. A novel electrical model for Li-ion 
technology is developed that reproduce the dynamic response of battery cells as a 
nonlinear function of the Soc. The model is composed of impedance blocks which have 
clear links with the underlying electrochemical phenomena. The model parameters are 
determined by a specific testing procedure based on EIS and OCV measurements which 
are applied to a commercial lithium-ion cell. The model is validated in the time domain 
and shows excellent capability in estimating the voltage at the device terminals, 
efficiency, power and energy density under different operating rates and SoC. Chapter 7 
investigates lifetime modelling of BESS. Aging tests are carried out on Li-ion technology 
and used to discuss the main degradation effects. Three lifetime modelling approaches 
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are proposed which are linked to experimental measurements and characterized by a 
different degree of complexity. 

The third part of the thesis offers the design framework about BESS by bridging the 
modelling phase with stationary applications. Chapter 8 deals with a grid-tied application 
that is the Primary Control Reserve. A proper methodology is proposed which includes: 
a specific control mechanism; an unconventional droop-control law and proper BESS 
models derived from the previous chapters. The procedure has been applied to the Italian 
context. Simulations show that different BESS models highly affect the reliability 
evaluation. Differently from simplified models (i.e. empirical models), the adopted 
electrical model can evaluate the impact of the high stressful rates of the application. The 
carried techno-economic analyses show that this fact can bring to a 20% variation in the 
BESS optimal design, which can highly impact on investment decisions. The analyses 
are based on real measurements taken at the Politecnico di Milano within the framework 
of the IoT-StorageLab. The methodology is proposed in the form of a computational tool 
in MATLAB®Simulink® named BESS4PCR. Chapter 9 deals with the design of off-grid 
power systems for rural electrification in Developing Countries. A novel sizing 
methodology is proposed which is composed of separated blocks addressing the different 
sizing phases: data elaboration, load and source profiles formulation, modelling of the 
main components (e.g. BESS) and their simulation, heuristic optimization method to 
formulate the robust design from a technoeconomic perspective. The procedure has been 
applied to design a PV+BESS microgrid system in supplying power to a rural village of 
Tanzania. Also in this case, simulations show that different BESS models can bring to 
different sizing results, especially if very simplified empirical models (based on 
literature/manufacturers data) are adopted. However, given the less stressful application, 
proper empirical models (i.e. based on laboratory test) can bring to a similar conclusion 
with respect to more complex electrical models. This fact provides a great opportunity in 
energy planning analyses like the one proposed because it can reduce the simulation time 
by more than ten times. The analyses are based on real data gathered within the 
framework of the Energy4growing project. The methodology is proposed in the form of 
a computational tool in MATLAB® named Poli.NRG (POLItecnico di Milano –Network 
Robust design). 
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Estratto in Lingua Italiana 
 
 
Oggigiorno le installazioni di Sistemi di Accumulo a batteria (SdA) sono in aumento 

esponenziale, mentre i loro costi specifici diminuiscono in egual misura. Gli SdA stanno 
infatti assumendo un ruolo sempre più cruciale nello sviluppo di svariati ed eterogenei 
settori industriali come il settore energetico, il settore automobilitstico, l'elettronica, le 
telecomunicazioni, ecc.. Tuttavia, le prestazioni stimate degli SdA (densità di energia, 
densità di potenza, efficienza, vita utile) non possono essere assunte constanti e 
trasferibili da un'applicazione all'altra o da una tecnologia all'altra. Pertanto, è necessario 
utilizzare metodi e modelli corretti per definire criteri di progettazione adeguati per 
l'applicazione selezionata. 

L’obiettivo generale della tesi è quello di contribuire ad ampliare la letteratura di 
riferimento sui SdA con particolare attenzione allo sviluppo di metodi e modelli 
appropriati che possano fare da ponte fra studi prettamente tecnologici e le analisi tecno-
economiche richieste nelle applicazioni reali. La tesi è focalizzata sulle batterie 
elettrochimiche, considerando l’elettronica di potenza ormai matura sia dal punto di vista 
tecnologico sia della modellazione matematica. Gli obiettivi specifici sono: lo sviluppo 
di un background di riferimento sulle tecnologie, le prestazioni e la modellazione degli 
SdA; la formulazione di modelli innovativi di SdA per rappresentare i fenomeni dinamici 
e d’invecchiamento; lo sviluppo di metodologie adeguate per analizzare le prestazioni 
tecno-economiche dei SdA quando impiegati in applicazioni stazionarie. 

Il lavoro si basa su attività teoriche, numeriche e sperimentali. Le attività sperimentali 
sono state fondamentali per sviluppare e affinare i modelli. Le analisi numeriche, basate 
su dati reali raccolti sul campo, sono state necessarie per testare e validare i modelli in 
applicazioni reali. Questi temi sono sviluppati specificamente per la tecnologia delle 
batterie agli ioni di litio e per applicazioni stazionarie. 

La prima parte della tesi offre un quadro di riferimento sugli SdA e si basa sull’ analisi 
della letteratura insieme ad attività sperimentali preliminari. Il capitolo 2 offre una 
panoramica sulle opzioni di accumulo elettrochimico (prestazioni, quote di mercato, 
costi) con particolare attenzione alla tecnologia agli ioni di litio. Il capitolo 3 
approfondisce le performance dei SdA grazie a misurazioni sperimentali su celle agli ioni 
di litio. Densità energetica, densità di potenza ed efficienza sono utilizzati come 
indicatori chiave per discutere delle prestazioni degli SdA in applicazioni reali. Il capitolo 
4 propone una revisione bibliografica circa la modellazione degli SdA che si articola in 
quattro approcci: elettrochimici, analitici (empirici), elettrici e stocastici. Sono 
identificati due compiti principali ai quali i modelli di batterie devono assolvere: la stima 
delle condizioni operative (cioè la stima dello stato di carica, SoC), la stima della vita 
utile (cioè la stima del SoH).  

La seconda parte offre un quadro di riferimento per quanto concerne la modellazione 
dei sistemi di accumulo. Nel capitolo 5 vengono esposti i principali elementi teorici 
necessari per sviluppare modelli con approccio elettrico. Il capitolo 6 raccoglie il 
principale elemento di originalità della tesi: un nuovo modello elettrico per le celle agli 
ioni di litio capace di riprodurne la risposta dinamica come funzione non lineare dello 
SoC. Il modello è composto da impedenze equivalenti, caratterizzate da un chiaro nesso 
con i relativi fenomeni elettrochimici che intendono rappresentare. I parametri del 
modello sono determinati da una procedura specifica basata su misurazioni di 
spettroscopia di impedenza e di scarica a vuoto. Il modello è validato nel dominio del 
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tempo e dimostra una grande accuratezza nello stimare la tensione ai terminali del 
dispositivo, l'efficienza, la densità di potenza e la densità energetica a diverse correnti e 
SoC. Il capitolo 7 approfondisce la modellazione della vita utile dei SdA. Risultati da 
prove sperimentali sono presentati e utilizzati per discutere i principali effetti di 
degradazione. Tre approcci di modellazione della vita utile sono quindi proposti, 
caratterizzati da un diverso grado di complessità. 

La terza parte della tesi ha l’obiettivo di creare un ponte fra le attività di modellazione 
e le applicazioni stazionarie. Il capitolo 8 approfondisce un'applicazione stazionaria 
connessa alla rete: la regolazione primaria di frequenza (RPF). Viene proposta una 
metodologia di studio appropriata che include: un controllore specifico, una legge di 
statismo non convenzionale e modelli di SdA adeguatamente sviluppati sulla base dei 
risultati dei precedenti capitoli. La procedura è stata applicata al contesto italiano. Le 
simulazioni mostrano che l’uso di modelli diversi di SdA influenza la valutazione 
dell’affidabilita. A differenza dei modelli semplificati (i.e. modelli empirici), il modello 
elettrico sviluppato riesce a valutare l’impatto delle condizioni operative molto 
“stressanti” determinate dalla particolare applicazione. Le analisi tecno-economiche 
mostrano che questo aspetto impatta su una variazione del 20% del dimensionamento 
ottimale, fatto che può drasticamente impattare sulle valutazioni di investimento. Le 
analisi sono basate su misurazioni reali effettuate presso il Politecnico di Milano 
nell'ambito dello IoT-StorageLab. La metodologia è proposta in forma di strumento 
computazionale in MATLAB®Simulink® denominato BESS4PCR. Il capitolo 9 riguarda 
invece l’analisi di sistemi off-grid per l'elettrificazione rurale nei Paesi in via di sviluppo. 
Si propone una nuova metodologia composta da blocchi distinti che affrontano 
separatamente le diverse fasi del dimensionamento: l’elaborazione dei dati provenienti 
dal contesto; la formulazione di appropriati profili di carico e di produzione; la 
modellazione dei componenti principali dell’impianto (SdA e PV) e loro simulazione, 
l’uso di un metodo di ottimizzazione euristico per formulare il dimensionamento 
“robusto” sulla base delle prestazioni tecno-economiche ottenute; La metodologia 
proposta è quindi applicata per dimensionare una microrete composta da PV+SdA per 
fornire alimentazione elettrica a un villaggio rurale della Tanzania. Anche in questo caso 
risulta evidente come diversi modelli di SdA influenzino il dimensionamento finale, in 
particolar modo quando sono utilizzai modelli empirici semplificati (i.e. basati su dati di 
letteratura o datasheet). Ciononostante, data l’applicazione meno “stressante”, si mostra 
come un modello empirico opportunamente sviluppato (i.e. basato su dati di laboratorio) 
possa condurre a risultati finali molto simili a quelli ottenibili con un ben più complesso 
modello elettrico. Questo fatto rappresenta una notevole opportunità in analisi 
energetiche come quella proposta in quanto può ridurre i tempi di simulazione di più di 
dieci volte. Le analisi si basano su dati reali raccolti nell'ambito del progetto 
Energy4growing. La metodologia è proposta in forma di strumento computazionale in 
MATLAB® denominato Poli.NRG (POLItecnico di Milano - Network Robust desiGn). 
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Main acronyms used in the text 
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SEI Solid Electrolyte Interface 
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CHAPTER  1 

 
 
 
 

1 Introduction and Motivations 
 
 
 
This doctoral thesis copes with proper models and design criteria for battery energy 

storage systems (BESSs). This theme is specifically developed for lithium-ion battery 
technology and has been tested and validated in real life case studies. 

The general objective is to contribute expanding the knowledge about BESSs with 
particular attention on appropriate methods and models which are necessary to link the 
technological studies with the necessary economic analyses required in real life 
applications. Specific objectives are: the development of a reference framework about 
technologies, performances and modelling of BESS; the proposal of innovative BESS 
models to represent dynamic and aging phenomena; the development of proper 
methodologies to analyse the techno-economic performances of BESS when deployed in 
stationary applications. 

The work is theoretical, numerical and experimental. A theoretical framework is 
needed to identify and formulate the correct BESS models according to the different 
available technologies. The experimental activities are fundamental to develop and tune 
the models. The numerical analyses, based on field data is needed to test and validate the 
models on real applications. 

1.1 Background 

The thesis theme refers to the field of research in “Battery Energy Storage Systems 
(BESSs)”. Though the topics might appear more related to the disciplines of chemistry, 
science of material, physics and the related engineering fields, nowadays experts from 
energy, electrical, electronics and transports sectors are asked to play an important role 
to bridge the gap between the technology and the final use. While the technological 
development is connected to the discoveries of new materials and chemistries, the 
investment evaluation and system design must be linked to the final application or service 
the BESS is asked to provide 

For this reason, there is an increasing demand of a more “systemic approach” to the 
topic of energy storage. The different know-hows should merge to create an effective 
multidisciplinary layer of analysis that ranges from electrochemical studies to final 
system design. For instance, electrochemical cells’ producers might be asked to provide 
more information about the performance of their products, being also open to the 
diffusion of databases and international standards that simplify the work of engineers. 
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Similarly, the same engineers are asked to abandon simplified approaches of analysis that 
clearly do not match with the technology’s features. Only in this way, it might be possible 
to perform the right techno-economic assessments and to develop the right business 
models able to conform to the specific final application. 

This is even more true when observing that BESS are becoming pivotal in the 
development of several and heterogeneous industrial sectors like energy, automotive, 
electronics, telecom etc. By looking at the rise in the global battery manufacturing 
capacity in the near future, projections say that lithium-ion cells’ production is set to be 
of about 280 GWh in 2021, i.e. to double the installed capacity in only five years (100 
GWh in 2016) [1]. This huge increase in battery demand can be explained by the fact that 
some of the aforementioned industrial sectors are the market response to some of the 
most intriguing challenges of our today’s society [2], [3]: 
 The transition towards a Renewable Energy Systems (RESs) based energy sector. 

Recently, the Paris agreements set out the common goal to limit the global warming 
and identified the ways in which this can be achieved [4]. One issue is related to the 
further increase of RESs penetration in the electricity sector. In EU-28 the energy 
production from Renewable Energy Systems for Electricity (RES-E) has increased 
from 12% of total production in 1990 (mainly hydro power plant) to 28% of 2014 
(with the addition of PV and wind power plants) and, globally, RES are expected to 
cover the 60% of the new installed capacity up to 2040 [5], [6]. This fact represents a 
tremendous challenge because it is commonly accepted that RESs in the form of 
scattered distributed generators are creating new challenges for grid operators [7]–
[11]. Their integration into existing grids affects the optimum power flow 
computation and brings about problems of congestion, safety and reliability, events 
unpredictability, power quality, voltage and frequency control and system economics 
[12]–[16]. In this context, BESS could be a viable technical solution to maximize the 
local consumption of RES electricity and/or to provide ancillary services to the grid 
like primary and secondary control reserves, spinning reserve, voltage control, load 
levelling and peak shaving [17]–[20]. This is confirmed by the increase of stationary 
projects worldwide during the last few years. Figure 1.1 shows nearly an exponential 
increase of BESS installation over the last 10 years. 

 The rural electrification of Developing Countries (DCs): 
Extending electricity supply in rural areas of DCs represents one of the issues to be 
faced in order to provide modern energy services to those 1.2 billion of people who 
until 2013 did not have access to electricity [22]. The features of these areas introduce 

 
Figure 1.1 BESS stationary project installations over time [21] 
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economic and technical constraints to the implementation of traditional technologies 
based on the centralized electrification approach [23]. This means that the strategy for 
scaling up access to electricity mostly aims at integrating small-scale RES-based off-
grid systems in local micro-grids ready to be connected once the national grid will be 
available. Even in this frame, BESS could be an effective technology to exploit the 
potential of RES [24]–[26]. Off-grid systems can benefit from the use of BESS to 
mitigate both short-term fluctuations (to ensure the instantaneous power balance) and 
intermediate-term energy deficiency which are typical consequences of 
unpredictability of RES. 

 The rise of electric vehicles: 
Electrified road transport has been the first choice adopted for mobility purposes at 
the beginning of 20th century. It was then totally replaced by the petroleum-fuelled 
internal combustion engine (ICE) mainly for cost and technical reasons (vehicle 
autonomy mainly). Nowadays, several Countries are considering again electric 
vehicles (EVs) based on batteries. Governments have established goals for the 
diffusion of EVs, aiming at reducing CO2 emissions while strategically decreasing 
fossil fuel dependency. Several studies are therefore forecasting a huge increase of 
EVs sales (Figure 1.2-A) in the next few years that are projected to reach 20 million 
units in 2020 [28]. As a result, the automotive industry is the main driver of recent 
BESS technological developments. BESS on EVs is decisive for two main issues: (i) 
the driving range depends on the advancements in the cell performances, especially 
on the energy and power densities; (ii) the total cost of ownership (TCO) depends on 
the battery price to evaluate the CAPEX and on the lifetime of the battery pack to 
evaluate the OPEX (replacement cost mainly). While the first issue is mainly 
technological: new cell chemistries are needed to meet the performance requirements, 
the second one is mainly a problem of production costs. The increasing demand from 
the automotive sectors is answered by an increasing production of cells from 
manufacturers and this is causing a drop in the specific costs thanks to economy of 
scale. Figure 1.2-B shows the notable numbers of lithium-ion cells: Specific cost of 
leading technologies has more than halved in 5 years passing from 800 €/kWh of 2010 
to 400 €/kwh of 2015. The same cost is projected to reach around 200 €/kWh in 2020 
[1] thanks to a constant learning rate (-24%) that will influence also the other 
industrial sectors. Given the assumptions, IEA states that EVs are projected to be 
cheaper than regular ICE by 2026 when the TCO will be lower even in the case of a 
short investment period of 5 years (the typical period owners have a car).  

 
Figure 1.2 A: Global electric vehicles sales over time [27]; B: Cost of Li-ion battery packs in 
automotive sector [1] 
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Within this frame, this thesis deals with the definition of proper models and design 
criteria for BESS. This theme is specifically developed for lithium-ion battery technology 
and properly taking into account the implementation in real-life study cases. Two main 
observations can be recognized as general motivations of this research theme: 
 BESS is pivotal to promote development in different industrial sectors. However, 

performances cannot be assumed expandable from one application to another. 
Energy/power densities, efficiencies, lifetime are application dependent and their 
right estimation affect the design criteria. Proper models are needed to evaluate the 
right BESS performances for the specific final use. 

 The design process of BESS is not straightforward and there are several issues that 
can be investigated with a different degree of details. Therefore, specific methods and 
models can be used to tackle these issues. Specifically, the suggested models should 
be able to estimate SoC (State of Charge) and SoH (State of Health) indicators 
accepting a different level of precision according to the specific application the model 
is used for. 

1.2 Motivational example and problems formulation 

This thesis contributed to the research activities of the electric power system research 
group at the Energy Department of the Politecnico di Milano. Thanks to the group 
network with private sector, research centers, NGOs and other academia, it was possible 
to actively collaborate on several projects that highlight how the BESSs are becoming 
fundamental in the future energetic scenario. To cite the most important: 
 Energy4Growing. This project, started in October 2013 and finished in October 2015, 

funded by the Polisocial Award. It aimed at studying, developing and deploying a 
hybrid Micro-Grid to supply power to a school in a rural area of Tanzania, completely 
detached from the national grid. The deployed BESS (lead-acid technology) played a 
pivotal role because it allowed to fulfil essential loads during nights like the security 
lights for resident schoolchildren, which were rarely guaranteed before the 
commissioning was made in the framework of Energy4Growing project. For more 
details about the project, we recommend the reader to refer to Appendix A 

 IoT-StorageLab. This project, that started in 2016 partially funded by the Politecnico 
di Milano Research office, is devoted to the research on the Internet of Things(IoT) 
concept. The new laboratories facilities aim at creating a suitable environment for the 
research, design, development and test of IoT solutions, with specific reference to 
energy and power system applications. BESSs represent one of the most interesting 
topics studied in the project. The analyses of BESS behaviour during real-operation, 
the deployment of advanced control strategies to increase the effectiveness to the final 
application, the study about shared control mechanisms to integrate multiple BESS 
with one single managing logic are just some of the opportunities provided thanks to 
the project. For more details about the project, we recommend the reader to refer to 
Appendix B. 
Moreover, a relevant part of the research activities has been devoted to experimental 

measurements and modelling of BESS with specific focus on Li-ion cells. This was 
possible in the framework of the collaboration between the Politecnico di Milano (DoE 
department) and CSEM-PV Center (Swiss Center for Electronics and Microtechnology). 
All the measurements have been taken with cutting edge machineries at the Energy 
Storage Research Center (ESReC) located in Nidau (CH). Specifically, two different 
periods abroad have been spent at CSEM facilities to carry on experimental 
measurements: (i) April-September 2016 – dynamic modelling of Li-ion cell; (ii) 
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February 2017 (2 weeks) – set-up of aging tests on Li-ion cells. 

Motivational example 
By analysing the outcomes coming from the different projects/collaborations, some 

issues were raised. Significant question marks have emerged about the real BESS 
performances when deployed in real on-the-field applications. Measurements at ESReC 
lab highlight deviations in performances in between datasheet performances and “real-
life” operations. If neglected, these variations could affect the reliability in the final 
application, jeopardising the investment. 

As a flashy example (more analyses in the thesis’s body), Figure 1.3 shows a 
comparison in the performances in between three different lithium-ion BESS that were 
measured in the framework of the collaboration between the Politecnico di Milano and 
CSEM-PV Center (details will be presented in chapter 3). By looking at the trends, one 
can easily conclude that BESS designers should not underestimate the differences in 
performances of the different available technologies.  Each of them responds differently 
to changes in external conditions. The specific application that determines the severity of 
operations, together with the environmental conditions have to be taken into account in 
the design phase.  

In general, energy density and power density are the most meaningful indicators used 
to compare the ability of different electrochemical devices in sustaining long periods of 
charge/discharge conditions or in providing to high currents peaks, given the same size 
of installation. Then, energy efficiency is used to understand the reliability of the 
technology in storing electricity. It is well accepted that new technology like lithium-ion 
BESS are standing at higher values of performances if compared to former technology 
like lead-acid BESS. 

However, Figure 1.3-A shows the huge variability of the energy density of lithium-
ion BESS with ambient temperature. All technologies underperform at very low 
temperatures and perform better at higher temperature. Figure 1.3-B shows an equally 
significant variation in the energy efficiency with the current rate. Even lithium-ion BESS 
can exhibit very low efficiencies. Losses can be more than 20% for some specific 
conditions. 

This remarkable dependency from the operating conditions could have clearly a 
strong impact in the investment evaluation. Much attention is being paid to the capital 

 
Figure 1.3 Measurements of Energy density (A) and Energy efficiency (B) trends on 3 different 
lithium-ion cell technologies (LNCO, LFP and LTO). 
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costs (CAPEX) of BESS, in particular to the initial investment. However, the total cost 
of ownership of BESS includes other factors such as, in some cases, air conditioning to 
maintain the system in its operating temperature range, and in all cases by the cost of 
electricity lost over a charge/discharge cycles. Both are determined by the efficiency of 
the battery. BESS designers should then pay attention to the specific application for 
which the battery will be asked to work.  

Energy density, power density and efficiency are strongly linked to the operating 
conditions. Similarly, lifetime of electrochemical devices is affected by many variables. 
It is well known that the available energy of a cell decreases with different cycling 
conditions. In some condition, the cell can last thousands of cycles while in other 
conditions only hundreds. This fact impacts decisively on the operational costs (OPEX) 
evaluation since it is based on the right evaluation of the expected lifetime to account for 
replacement costs.  

Problems formulation 
As emerged in the previous sections, several problems can be identified as main 
motivation of this thesis work. Table 1.1 summarizes the identified areas of analysis 
which are required to tackle the different issues: 
1. Glaring differences in the performances are present among the different 

electrochemical technologies and, within the same technology, among the different 
chemistries. In general, different chemistries address different needs (e.g. energy vs. 
power). This should be considered when facing real applications because it will 
impact on the cost analysis and on the technical suitability. Consequently, a first area 
of study is the analysis of the different technology by differentiating them in terms 
of macro-area of performances (i.e. energy/power densities, efficiency, cost, 
durability) to acquire a picture of the overall technological situation. 

2. Wide difference in performances requires the understanding of the main processes 
behind BESS operations. This means to identify the typical electrochemical 
processes (conduction processes, redox reactions, diffusion processes) that describe 
the overall response of an electrochemical device. Consequently, the second area of 
study is the analysis on the underlying theory of battery to capture the relationship 
between the real-time operation conditions and the overall BESS performances. 

3. Substantial differences in the performances emerge in operations. The same device 
will perform differently if the operating and external conditions are changed. Factors 
like temperature, SoC variations, current rates affect how the same device perform 
and how long it will last. From an application perspective, this create lots of 
uncertainties as regards to the expected on-service reliability and expected lifetime. 
It is not plausible to measure and map all the performances of the selected device in 
all the possible conditions. Right models must play the role to represent the 
electrochemical device in its working characteristics. In this way, any kind of final 

Table 1.1 Selected areas of analysis about BESS within the PhD work 
1 Analysis of the different technology from a application perspective 
2 Analysis of the theoretical framework that is required to identify the main working 

characteristics 
3 Analysis of typical representative models both from electric and energetic perspectives 
4 Transfer of knowledge into suitable models 
5 Analysis of proper design strategies/tools that embraces a correct quantitative 

representation of BESS performances 
6 Analysis of the impact of proper modelling on the design phase and model selection 
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application can be simulated and the final design can be trusted. Consequently, a 
third area of analysis is the identification of the typical models used to represent 
BESS and to acquire the state of the art of the possible methodologies (energy 
analyses, electrical modelling, etc..). 

4. BESS is not only a matter of electrochemical cells. Together with Battery 
Management Systems (BMS) and inverters, they normally constitute what is 
commonly called and sold as “battery systems”. BMS play the role of controlling the 
different cells forming a battery module, while the inverter establishes the interface 
with the external world: loads, grids etc.. On the one hand, by including these 
elements in the modelling phase, the level of the analysis goes increasingly towards 
the final application perspective, on the other hand it increases the computational 
effort of the model. Consequently, a forth area of analysis rely on transferring the 
main findings into suitable models to be used for application evaluation. This means 
usually to find the right balance between a required level of accuracy and an 
acceptable time of elaboration. 

5. Once a model is built, the next issue relies on the design analyses that allow to built 
reliable information about the BESS design for a specific application. In this case the 
context is of great importance because the complexity of the modelling should be 
linked to the level of details required to make a decision. For instance, planning 
analyses for off-grid systems that look at the right size of BESS from an energetic 
perspective are completely different from analysis of reliability for UPS services. 
The surrounding model might be the same but the level of details should be different. 
Consequently, the fifth area of study relies on the development of proper tools for 
the correct BESS design that embraces correct models.  

6. Modelling of BESS highly influence the design analyses. Simplified models can give 
approximate evaluation in very fast time while a very complex model can give very 
precise information in a longer time. Consequently, the last area of analysis stands in 
the evaluation of the impact of a different modelling approach onto the design phase.  

1.3 Methodology 

As already highlighted, the issues which have just been introduced represent the typical 
topics which concern BESS modelling and design from a final application perspective. 
This thesis addresses the above issues by tackling them from three different methodology 
frameworks which aim at answering separately three main questions. 
 Framework of reference: which theoretical framework and models should be 

considered to correctly describe BESS functioning? 
 Modelling framework: How can BESS be properly modelled from an electrical 

perspective? 
 Design framework: Which methodologies/tools can be developed to assess proper 

design of BESS in real application? 
Figure 1.4 shows a schematic overview of the whole methodological frame. The 
introduced frameworks correspond to a different block of analysis:  
The background analysis that is defined by: 
 Analysing the different storage technologies available on market. This analysis 

serves to create a solid background about the main magnitudes that describes 
electrochemical storage systems. In the thesis, the focus is not general but tailored 
to the final application. The different technology are discussed and compared in 
terms of possible fields of application. 

 Analysing experimentally the performances of different BESS technologies to 
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effectively deepen the main characteristics and to define the parameters needed to 
properly measure BESS behaviours. These parameters formulation is an essential 
step for the approach adopted in the PhD thesis. 

 Analysing the state of the art of the modelling approaches present in literature. 
This analysis is worthy and necessary in any research work since it creates the 
term of reference to which compare the proposed work. Moreover, it allows to 
describe the typical models features and make use of the most interesting one for 
the following phases of modelling and design development 

2. The Modelling analysis which is divided by five macro-blocks which represent five 
tasks to be faced totally or partially depending on the degree of precision that is 
needed in the BESS modelling process: 

 The study of the underlying theoretical fundamentals is needed to understand the 
different working conditions and to develop a proper modelling phase. The 
investigation is carried out starting from the basics of the electrochemical 
phenomena. This step is inevitable in order to build a significant model for the 
analyses of the next phases. 

 The cell modelling focuses the attention on the founding element of any 
electrochemical device. With this assumption, we mean that the full 
representation of the dynamic response of the cell is assumed as pivotal for any 
further step of development. Then, the same model can be simplified to adapt to 
the specific analyses required for the final application. 

 The Battery Management System (BMS) modelling is required to scale up from 
the purely cell model to the battery pack level. BMS is responsible for: (i) 
evaluating and monitoring the SoC and SoH of the battery pack; (ii) protecting 

 
Figure 1.4 Schematic overview of the structure adopted to organize the typical topics 
concerning BESS correct modelling and design from final application perspective 

Framework 1: background analysis

Framework 2: Modelling analysis

Framework 3: Design analysis

Stationary application

Grid-tied Off-grid

Automotive application

(P)HEV BEV

Portable application

Electronics Health

Other applications

UPS Marine
Aerospace

Technology Overview 

Performance analyses Modelling approaches

Underlying physics 

Lifetime modelling

BMS modelling Interface converter
 modeling 

Cell modelling



1.3  Methodology  

 

21 
 

the battery from over-currents, over-pressures, faults and preventing it from 
operating outside safe values of voltages and temperatures; (iii) balancing and 
equalizing the charge levels of the different cells inside the battery pack which 
can behave differently due to variability in the manufacturing process of the cells. 

 The interface converter modelling is required to move then from the battery pack 
to the integrated battery energy systems level. Several commercial BESS are sold 
as integrated systems which couples battery packs with inverters. Given the 
specific application, the role of the inverter is to determine the specific 
charge/discharge profile to be adsorbed or injected by the battery. Therefore, it 
has to communicate in a close way with the BMS.  

 The lifetime modelling: once the battery modelling is ended in all its constituting 
elements, the lifetime modelling is also needed to properly evaluate the system 
degradation over time. This aspect is fundamental especially for design purposes 
because any investment evaluation closely depends on the accuracy in the lifetime 
estimation of BESS. 

3. The Design analysis that can be assessed once the context of the final applications is 
defined. Different applications require different services from BESS, but different 
services bring to distinct charge/discharge profiles that impact on the performances 
and on the design phase. As highlighted at the beginning of this chapter, some major 
industrial sectors are interested by diffusion of BESS. In terms of the applications we 
can distinguish between: 
 Stationary applications: that define those installations made for energy purposes. 

Two macro-areas can be further identified in terms of the different required 
approach in the design phase: (i) grid-tied BESS that are normally deployed for 
grid-support services on utility scale (from hundreds of kWh to tens of MWh) or 
for consumer use on domestic scale (maximum tens of kWh); (ii) off-grid BESS 
that are usually coupled with RES systems to provide electricity to remote areas 
of the world in the form of small stand-alone systems (maximum tens of kWh) to 
micro-grid (maximum hundreds of kWh). 

 Automotive applications: that define all those applications made for mobility 
purposes. Taking EVs as a term of reference, three main categories can be 
distinguished (i): Hybrid electric vehicle (HEV) that uses small BESS (< 5 kWh) 
to recover braking energy leaving to ICE the main traction role; (ii) plug-in hybrid 
electric (PHEV) vehicle that couples BESS of medium size (5-20kWh) with ICE; 
(iii) battery electric vehicle (BEV) that use bigger BESS (20-100 kWh) being full 
electric. Given the different concepts, different design assumptions on BESS have 
to be made. 

 Portable applications: that define applications of small size. Electronics devices 
represents the main market sector. Laptops, mobile phones, tablet are just some 
of the commercial products that contain an electrochemical cell to power the 
device. In this case, given the small size of the BESS (tens of Wh), the cost is not 
an issue while the performance in terms of charging time and SoC estimation are 
of relevant importance. For this reason, the approach to BESS design is 
completely different from stationary and automotive applications. 

 Other applications: that comprehend all those applications that cannot be included 
in the above categories. For instance, Uninterruptible Power Supply (UPS) that 
constitutes a huge market especially for the secondary and tertiary sectors. Finally, 
also the marine and aerospace applications are interested in BESS development 
given their intrinsic off-grid nature coupled with other design requirements (e.g. 
weight in aerospace application). 



 Introduction and Motivations 

 

22 

1.4 Thesis Outline and Contributions 

This thesis is a compilation of results published in scientific journals and conferences. It 
addresses some of the blocks of the three frameworks of analysis. With reference to the 
structure already proposed (Figure 1.4), the contributions are illustrated in Figure 1.5 and 
summarized in the following. 

The thesis is divided into three parts: 
 Part I: Battery Energy Storage Systems: a Comprehensive Review which addresses 

the topics constituting the Background analysis framework 
 Part II: A Novel Electrical Model for Lithium-Ion Cells which address some of the 

topics constituting the Modelling analysis framework 
 Part III: From Modelling to Applications: Approaches to BESS Proper Design which 

address some of the topics constituting the Design analysis framework 
Part I is based on literature analyses combined with experimental activities which 

were necessary to synthetize and capitalize the main important aspects of BESS’s 
behaviour that are needed for a proper BESS modelling and design phase. 

Part II represents the main element of originality of the thesis. Starting from 
theoretical fundamentals, a novel electrical model for lithium-ion cells based on 
experimental measurements is presented, discussed and validated. Lifetime modelling 
elements are also proposed to create a wider background useful for application-oriented 
analyses, techno-economic analyses and investment evaluations. 

Part III bridges the modelling phase with final applications, emphasizing BESS design 
criteria. Two different stationary applications are discussed that show how proper BESS 
model can influence the design conclusions. Specifically, the proposed novel model is 

 
Figure 1.5 Summary of the thesis’ contributions 

Technology Overview 
Chapter 2

Part 1: Battery Energy Storage Systems: a Comprehensive Review 

Performance analyses 
Chapter 3

Modelling approaches
Chapter 4

Underlying physics 
Chapter 5

Part 2: A Novel Electrical Model for Lithium-Ion Cells 

Lifetime modelling
Chapter 7

Part 3: From Modelling to Applications: Approaches to BESS Proper Design 

BMS modelling Interface converter
 modeling 

Stationary application
Grid-tied
Chapter 8

Off-grid
Chapter 9

Automotive application

(P)HEV BEV

Portable application

Electronics Health

Other applications

UPS Marine
Aerospace

Cell modelling
Chapter 6



1.4  Thesis Outline and Contributions  

 

23 
 

compared with traditional or well-established literature approaches. Therefore, each 
chapter of this part is structured according to: context analysis, the description of the 
BESS model, case study presentation, discussion. Overall, the analyses of part III are 
centred on electrochemical batteries, considering power electronics well-established with 
respect to both industrial applications and mathematical modelling. Nevertheless, power 
electronics could impact on electrochemical cells performances: this is one of the 
possible future development of the PhD work. 

Chapter 2: Overview on Storage systems: from technologies to stationary 
applications 
This chapter introduces the technology: BESS are among the most promising Electrical 
Energy storage technologies. The aim is to give a general overview about storage options, 
but with more focus on BESSs and Li-ion chemistries. The different available cathode, 
anode and electrolyte materials are presented. Expected performances, market share, 
producers and costs are used to compare the different BESS technologies. Finally, the 
whole discussion is contextualized for stationary uses: typical features of storage 
technologies are matched with the requirements of the final applications. This is to 
understand the feasibility of BESS in addressing the needs of the today’s electric power 
system scenario in terms of expected performances and reliability. 

Chapter 3: Performance evaluation of lithium-ion cells 
This chapter deals in depth with BESS performances. Experimental measurements are 
presented about a technological comparison among three different Li-ion chemistries. 
Energy density, power density and efficiency are discussed in different testing conditions 
(temperature, SoC, operating rate). The analyses are carried out at cell level by following 
the IEC 62660-1 international standard in parallel with novel testing procedures. Finally, 
tests results about real application are presented and discussed. The final purposes are: 
(i) to understand the impact of the final applications on expected BESS performances and 
(ii) to create a reference of comparison for the analysis and development of a critical 
bibliographic review which aim at identifying the appropriate mathematical models 
capable of representing the dynamic behaviour and final performances measured in the 
laboratory. 

The results have been capitalized in the following publications: 

C. Brivio, V. Musolino, P.-J. Alet, M. Merlo, A. Hutter, C. Ballif, Analysis of lithium-
ion cells performance, through novel test protocol for stationary applications, 6th 
International Conference on Clean Electrical Power, Santa Margherita Ligure, (2017). 
410-415. 

C. Brivio, V. Musolino, P.-J. Alet, M. Merlo, A. Hutter, C. Ballif, Application-
independent protocol for predicting the efficiency of lithium-ion battery cells in 
operations, Journal of Energy Storage, (Under-review) 

C. Brivio, M. Delfanti, D. Falabretti, M. Merlo, M. Moncecchi, V. Musolino, I sistemi di 
accumulo elettrochimico: prospettive ed opportunità. Libro bianco dei sistemi di 
accumulo elettrochimico ANIE-RSE 2017. 

Chapter 4: Review of approaches to battery modelling 
This chapter reviews approaches to battery modelling. Literature review on battery 
modelling (mainly at cell level) is presented. The models have been grouped into four 
general different approaches: electrochemical models, analytical (empirical) models, 
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electrical models and stochastic models. Moreover, two main tasks are identified for 
battery models: the estimation of the operating conditions (i.e. SoC estimation), the 
estimation of the lifetime (i.e. SoH estimation). These two main aspects create the 
frameworks of discussion through which the modelling approaches are deepened and 
compared. 

Chapter 5: Physics of battery for impedance based modelling 
This chapter provides the main theoretical pillars which are necessary for a proper 
electrical modelling process. The underlying physics about electrochemical cells 
functioning is deepened. Main novelty is represented by the approach used to link 
electrochemical phenomena to electrical modelling building process. Equivalent 
impedance representation is proposed for each phenomenon, which must be 
characterized by clear links in between the characterizing equation and the derived 
circuital element in the electrical model. 

Chapter 6: Novel electrical model for Lithium-ion cell 
This chapter presents a novel electrical model for Li-ion technology. The model is 
developed in the frequency domain by means of EIS measurements and is based on the 
theoretical framework of the previous chapter. The presented model is composed of 
impedance blocks connected in series and it accounts for the dynamic response of 
lithium-ion cells as a nonlinear function of SoC. Each block is derived from a specific 
electrochemical equation linked to the battery operations. The Model’s parameters are 
determined by a specific procedure that is presented and applied to a commercial lithium-
ion cell (lithium nickel oxide). Finally, validation of the model has been carried out in 
the time domain to understand the capability of the model in estimating the voltage at the 
device’s terminals, efficiency, power and energy density under different operating rates 
and SoCs. 

The results have been capitalized in the following publications: 

C. Brivio, V. Musolino, M. Merlo, C. Ballif, Novel impedance-based model for lithium-
ion cells: bridging the gap between electrical and electrochemical approaches, IEEE 
transactions on energy conversion, (under-review) 

Chapter 7: Elements on lifetime modelling  
This chapter investigates about lifetime modelling of BESS. The objective is to extend 
the dynamic modelling analyses of previous chapters by including elements of lifetime 
modelling. This serves to create a wider background useful for application-oriented 
analyses, techno-economic analyses and investment evaluations. The proposed 
modelling approaches are directly linked to experimental measurements on Li-ion 
technology. First, the aging testing procedure developed expressly to test Li-ion cells at 
different cycling conditions is presented; then, the test results are presented and used to 
discuss about the main aging effects; finally, three lifetime modelling approaches with 
different degrees of complexity are detailed. 

Chapter 8: BESS for grid-tied applications: PCR service 
This chapter deals with a first promising grid-tied stationary application for BESS: the 
Primary Control Reserve ancillary service. The objective is to identify the presence of 
business cases for the discussed application. A proper methodology is proposed which 
includes: specific control mechanism to change BESS working conditions in agreement 
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with external signals; unconventional droop-control law that takes into account BESS 
specific features; proper BESS models derived from previous chapters. The procedure 
has been applied to the Italian context. Simulations are run to discuss about: the influence 
of different BESS models in the evaluation of reliability for PCR service; the correct 
BESS design from a techno-economic point of view; proper control mechanisms to 
increase BESS availability. 
The analyses are based on real measurements taken at the Politecnico di Milano within 
the framework of the IoT-StorageLab. The methodology is proposed in form of a 
computational tool in MATLAB®Simulink® named BESS4PCR. 

The results have been capitalized in the following publications: 

C. Brivio, S. Mandelli, M. Merlo. Battery energy storage system for primary control 
reserve and energy arbitrage, Sustainable Energy, Grids and Networks; (2016). 6:152-
165. 

D. Falabretti, M. Moncecchi, C. Brivio, M. Delfanti, M. Merlo, V. Musolino, IoT-
oriented management of distributed energy storage for the primary frequency control. 
2017 IEEE International Conference on Environment and Electrical Engineering and 
2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 
(2017). 1-6. 

Chapter 9: BESS for off-grid applications: PV-BESS systems for rural 
electrification 
This chapter deals with a second stationary application for BESS. The focus is on off-
grid power systems for rural electrification in Developing Countries (DCs). The aim is 
to address the robust design of off-grid systems by including the majority of available 
inputs of these contexts. A novel sizing methodology is proposed which is composed of 
four blocks which separately face the different design phases: (i) the data inputs gathering 
block provides a methodology to collect field data as regards to weather condition and 
load demand; (ii) the inputs processing block elaborates the inputs to obtain load and 
sources profiles over the entire lifetime of the plant; (iii) the system modelling and 
simulation block models the main components (i.e. BESS), simulates different off-grid 
system configurations and evaluates the related techno-economic performances; (iv) the 
output formulation block finds the most robust design for the targeted context through 
specific optimization methods. The procedure has been applied to size a PV+BESS 
microgrid system to supply power to a rural village of Tanzania. Simulations are run to 
discuss about: the impact of different BESS model on the system energy design; the 
evaluation of the correct system design by accounting for different scenarios of load 
evolution. 
The analyses are based on real data gathered within the framework of the 
Energy4growing project. The methodology is proposed in the form of a computational 
tool in MATLAB® named Poli.NRG (POLItecnico di Milano –Network Robust design) 

The results have been capitalized in the following publications: 

C. Brivio, M. Moncecchi, S. Mandelli, M. Merlo, A novel software package for the robust 
design of off-grid power systems, Journal of Cleaner Production, (2017), 166 (2017) 
668-679. 

S. Mandelli, C. Brivio, M. Moncecchi, F. Riva, G. Bonamini, M. Merlo, Novel 
LoadProGen procedure for micro-grid design in emerging country scenarios: application 
to energy storage sizing. Energy Procedia. 135 (2017) 367-378. 

S. Mandelli, C. Brivio, E. Colombo, M. Merlo, Effect of load profile uncertainty on the 
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optimum sizing of off-grid PV systems for rural electrification, Sustainable Energy 
Technologies and Assessments. 18 (2016) 34–47. 

S. Mandelli, C. Brivio, E. Colombo, M. Merlo, A sizing methodology based on Levelized 
Cost of Supplied and Lost Energy for off-grid rural electrification systems, Renewable 
Energy 89 (2016) 475–488. 

S. Mandelli, C. Brivio, M. Leonardi, E. Colombo, M. Molinas, E. Park, et al., The role 
of electrical energy storage in sub-Saharan Africa, Journal of Energy Storage. 8 (2016) 
287–299.  

M. S. Carmeli, P. Guidetti, S. Mandelli, M. Merlo, R. Perini, G. Marchegiani, D. Rosati, 
C. Brivio, R. Di Molfetta. Hybrid Micro-Grid experimental application in Tanzania. 5th 
International Conference on Clean Electrical Power, Taormina, (2015). 534-541. 

S. Nassuato, G. Magistrati, G. Marchegiani, C. Brivio, M. Delfanti, D. Falabretti, et al., 
Distributed Storage for the Provision of Ancillary Services to the Main Grid: Project 
PRESTO, Energy Procedia. 99 (2016) 182–193.  

M. Mauri., M.S. Carmeli, M. Merlo, C. Brivio. M. Mbuya, Neural network based load 
forecasting and fuzzy logic EMS for Ngarenanyuki school microgrid. IEEE International 
Symposium on Power Electronics, Electrical Drives, Automation and Motion 
(SPEEDAM), (2016) 321-326. 

Barbieri J, Colombo E, Ndma Mungwe J, Riva F, Berizzi A, Bovo C, et al. Set4food 
guidelines on sustainable energy technologies for food utilization in humanitarian 
contexts and informal settlements. Energy Department – Politecnico di Milano. 2015. 
ISBN: 978-88-941226-0-2 

Chapter 10: Conclusions  
A summary of thesis contributions is given to the reader. 
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Part I: Battery Energy Storage 
Systems: a Comprehensive 
Review 
 
 
Part I of the thesis offers the reference framework about BESS and is based on literature 
analyses combined with experimental activities which are necessary to synthetize and 
capitalize the main important aspects of BESS’s behaviour, which are needed for a proper 
BESS modelling and design phase. 

Chapter 2 gives a general overview about storage options with more focus on 
electrochemical systems and Li-ion chemistry. Expected performances, market share, 
costs are used to compare the different BESS technologies with specific attention on 
stationary applications.  

Chapter 3 concentrate in depth on BESS performances thanks to experimental 
measurements on three different Li-ion chemistries (LNCO, LTO, LFP). Energy density, 
power density and efficiency are discussed. Tests results about real application 
(frequency regulation) are presented and discussed.  

Chapter 4 proposes a literature review on battery modelling which are categorized into 
four general different approaches: electrochemical models, analytical (empirical) models, 
electrical models and stochastic models. Two main tasks are identified for battery 
models: the estimation of the operating conditions (i.e. SoC estimation), and the 
estimation of the lifetime (i.e. SoH estimation). These two main aspects create the 
frameworks of discussion through which the modelling approaches are detailed and 
compared. 
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CHAPTER  2 

 
 
 
 

2 Overview on Storage systems: 
from technologies to stationary 
applications 

 
 
 

Electrical energy is the product of conversion from a primary energy resource. It has 
several advantages, it is: (i) easy to transport once the proper infrastructure is built (i.e. 
electrical grid) with high efficiency, (ii) clean in the place of final use, (iii) easy to convert 
into other forms of energy: chemical, mechanical, etc. For this reason, a close nexus 
exists between the electrical consumptions and the GDP of a Country [23].  

In the past, the storage of electrical energy was not convenient because of lower 
system efficiency: it was better to consume electricity when produced. Today, the 
emerging of new needs and applications (see Section 1.1), are changing the framework 
making valuable the storage choice.  

BESSs are just one of the possible storage options. They belong to the broader family 
of Electrical Energy Storage (EESs), which collect all those technologies that are used to 
store electrical energy. ESS technologies can be classified, according to literature [3], 
[29], [30], following different methods based on their function, response time and 
suitable storage duration. However, the most widely used method is based on the form 
of energy stored in the system (Table 2.1).  
 Mechanical Energy storage (MES) to which belong flywheels (FES), pumped hydro 

plants (PHS) and compressed air systems (CAES); 
 Chemical Energy storage (CES) that include batteries (BES), fuel cells storage 

systems (FC) and Flow-batteries (FB) 
 Electric or Magnetic storage (EMES) that include supercapacitors (SCES), Super 

conducting magnetic coils (SMES); 
 Thermal Energy storage (TES) to which belong hot-thermal (HTES) and cryogenic 

(CrES) energy storages. 
This chapter is structured with a succession of specific insights: after a brief review 

of all the EES technologies (Section 2.1), the review will focus on BESS options (Section 
2.2), with specific attention on Li-ion chemistries (Section 2.3). Finally, the most used 
technologies will be discussed from a final application perspective (Section 2.4). 
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2.1 Electrical Energy Storage technologies 

Mechanical Energy Storage Systems 
Pumped hydro storage 

PHS is the most widely used (99% of world-wide installed electrical storage capacity) 
among the EES technology and it boasts a high technical maturity. PHS, which uses 
gravity to store energy, contributes about 3% of global generation capacity [3], [31]. A 
typical pumped hydro storage system uses two water reservoirs at different higher levels 
to pump water during off-peak hours, from the lower to the higher reservoirs. PHS system 
has a long history, the first one was built in Italy and Switzerland in the 1890s [32]. The 
efficiency of PHS ranges from 70% to 85% and the power rating from 1 MW to 3 GW 
with more than 40 years of lifetime [33], [34]. One limitation of pumped hydro storage 
is the dependence on topographical conditions and on an adequate supply of water [30], 
[35]. 

Compressed air energy storage  

Compressed air energy storage (CAES) is another EES technology that, in terms of 
bulk energy storage plant available today, is the second in order after PHS technology. 
CAES can provide power output of over 100 MW with a single unit [30], [35]. This 
system uses air, at high pressure, as a storage medium. Electricity is used to compress air 
and store it in a reservoir, as cavern aquifers, abandoned mines [36]. When electricity is 
needed, the stored air is used to run a gas-fired turbine-generator, the electricity produced 
is delivered back onto the grid.  The first utility-scale CAES plant was installed in 
Germany in 1978 [37], [38]. CAES has an estimated efficiency of 70% with an expected 
lifetime of about 40 years [39]. If, from one side, CAES has the advantage of a large 
capacity, on the other side, the major disadvantage to implement large-scale CAES plants 
is the identification of geographical locations. 

Flywheel energy storage  

FES is a system that stores electrical energy in the form of rotational kinetic energy. 
It included five main components: a flywheel, a group of bearings, a reversible electrical 
motor/generator, a power electronic unit and a vacuum chamber (which helps to reduced 
self-discharge losses) [40]. The amount of energy stored is proportional to the angular 
velocity reached. FES operates in charging and discharging mode: during the charge 
mode, a motor is used to accelerate a big rotating mass (flywheel); during the discharge 
mode, the kinetic energy is extracted by a generator driven by the inertia of the flywheel, 
resulting in a deceleration of the rotating mass. FESs can be classified in low speed FESs 
which rotate below 6×103 rpm, and high speed FES which can run up to about 105 rpm 
by exploiting advanced component material [30]. The key features of FES are: limited 
maintenance cost, cycle stability, long life, high power density, wide operating 
temperature range and environmental compatibility. However, these systems have a very 
high rate of self-discharge due to air resistance and bearing loss. In about 5-10 hours up 

Table 2.1 Electrical Energy Storage technologies classification 
MECHANICAL ELECTRO-MAGNETIC CHEMICAL THERMAL 
Pumped Hydro  Capacitors Batteries High-Temperatures 
Compressed Air Super Capacitors Fuel cells Cryogenic 
Flywheels Super conducting 

magnetic coils 
Flow-Batteries  
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to 50% of stored energy can be lost  [41]. For this reason, flywheels perform well when 
used in applications which demand high power for short periods together with a high 
number of charging-discharging cycles. 

Electro-Magnetic Storage Systems 
Capacitors 

CS allow a direct storage of electricity. They are composed of, at least, two electrical 
conductors separated by a thin layer of insulator (as ceramic, glass or plastic film) called 
dielectric. During the charge phase, energy is stored in an electrostatic field. The 
maximum operating voltage of a CS is dependent on the breakdown characteristics of the 
dielectric material. Capacitors show high power density and they can perform several 
thousand of charge/discharge cycles with a high efficiency and without material 
degradation [29]. Nevertheless, CS has limited capacity, low energy density and high-
energy dissipation due to self-discharge. For these reasons, capacitors are used in power 
quality applications as high voltage power correction.  

Supercapacitors  

SCES, also known as double-layer capacitors (DLC) or ultracapacitors, are composed 
by two conductor electrodes, an electrolyte and a porous membrane separator. In SC, the 
energy is stored in form of static charge on the surface between the electrolyte and the 
two conductor electrodes. Compared to conventional capacitors, SC have higher energy 
storage capabilities by approximately two order of magnitude (⁓ 20 Wh/kg) [29]. The 
energy storage capacity of SCES is directly proportional to the square of its voltage: 

 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1
2
𝐶𝐶𝐶𝐶2     (2.1) 

where C is the capacitance of the SCES. Supercapacitors have both characteristics of 
conventional CS and batteries. The main features of SC are: long cycling times (more 
than 105 cycles), very fast charging and discharging capability (due to low inner 
resistance, unlike traditional CS), high reliability, no maintenance, operation over a wide 
temperature range and high cycle efficiency (about 84%-97%) [3]. However, they have 
high self-discharge rate per day, about 5%-40%, and high capital cost, 6000 $/kWh [42]. 
Since the energy stored must be used quickly, SCES are suited for short-term storage 
applications, but not for large-scale and long-term energy storage.  

Superconducting magnetic energy storage  

SMES systems store energy in a magnetic field generated by the flow of a direct 
current (DC) in a superconducting coil, which is cryogenically cooled below its 
superconducting critical temperature. SMES are mainly composed by: a superconducting 
coil unit, a power conditioning subsystem and a cryogenically cooled refrigerator system 
[43]. The energy stored in SMES is represented by the following equation: 

 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1
2
𝐿𝐿𝐿𝐿2     (2.2) 

where L and I are current and inductance of the wire. Among the superconducting 
materials the most commonly used is the Niobium-Titanium (NbTi) that operates at a 
very low temperature of about 9.2K [44]. Superconducting coil can be classified in two 
groups: low temperature superconducting (LTS) coils which work at 5 K and high 



 Overview on Storage systems: from technologies to stationary applications 

 

32 

temperature superconducting (HTS) coils which work at 70K. The main features of 
SMES are: high power density, very quick response time (millisecond), very quick 
discharge time, high cycle efficiency (from 85% to 95%) and long lifetime (more than 
30 years) [30]. Theoretically the energy in SEMS can be stored indefinitely (as long as 
the cooling system is operating), however this is limited by the energy demand of the 
refrigerator system. This storage system has a high capital cost (up to 10000 $/kWh) and 
highly day self-discharge (10%-15%) [45], [46]. 

Thermal Energy Storage Systems 
Thermal Energy Storage System (TES) comprises a variety of technologies that store 

electric energy in the form of heat in insulated containments [47]. TES systems are 
currently under research and are usually composed of: a storage medium in a reservoir, 
a packaged chiller or built-in refrigeration system, piping, pumps and controls. TES, 
depending on the range of operating temperature, can be divided into cryogenic energy 
storage and high-temperature energy storage. 

Cryogenic energy storage  

CrES uses a cryogen to obtain the electrical and thermal energy conversion [48], [49]. 
CrES main feature are: high energy density (100-200 Wh/kg), low capital cost and a 
relative long storage period. Nevertheless, CrES has a low efficiency, about 40%-50% 
[29]. 

High-temperature  

HTES convert electricity into high-temperature heat (about 500°C). An electrical 
heater generates the charging process. Heat is stored in a thermal storage (magnesium 
oxide bricks or molten salt). During discharge, the heat is extracted from the thermal 
storage to generate steam that drives a turbine to produce power [41].  

Chemical Energy Storage Systems 
CES include batteries (BES), fuel cells systems (FC) and Flow-batteries (FB). In this 

sub-section, a brief overview about all of them is presented. Afterwards, in section 2.2 
and section 2.3, the attention will be moved to BES systems. The different available 
technologies will be deeply discussed and compared, with special focus on Lithium-ion 
chemistries. 

Battery Energy Storage 

If Alessandro Volta, Luigi Galvani, and Benjamin Franklin were alive today they 
probably would be mesmerized by the different types of battery and how much they have 
evolved from their original inventions and discoveries. Nowadays, BES, also known as 
rechargeable (secondary) batteries, are one of the most used EES technologies to the 
point that they have permeated industries and everyday life activities and devices. There 
are several existing types/technologies of BESS to choose from. The wide assortment of 
technologies is directly linked to the wide range of applications in which they can be 
used. For this reason, they have attracted huge attention from public and private sectors 
in the last decade, both for research and industrial development. Section 2.2 will detail 
the functioning, characteristics and opportunities of the main BESS technologies 
available on the market. Moreover, section 2.3 will go deeply into details of one specific 
technology that is the Lithium-ion chemistry. Given their high performance together with 
the huge decreasing costs, they are actually forecasted to play a relevant role in the future 
energetic panorama. 
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Flow Batteries 

FBs store energy in one or more electroactive species, which are dissolved in liquid 
electrolytes. The electrolytes are contained in external tanks and they can be pumped 
through the electrochemical cell that converts chemical energy directly to electricity and 
vice versa. The system is based on the reduction-oxidation reactions of the electrolyte 
solutions. The power capability of the FB system is dependent on the size and design of 
the electrochemical cell, while the volume of electrolytes determines the energy 
capability. An important feature of FB systems is the low self-discharge thanks to the 
electrolytes stored in separated and sealed tanks. Moreover, FB can release energy 
continuously at a high rate of discharge for up to 10 hours [50]. The main drawback is 
the low gravimetric energy density due to the massive plant configuration needed. FB are 
differentiated based on the electrolytes and onto the electrochemical reactions. The ones 
knows mostly are:  
 Vanadium Redox Flow Batteries (VRB), which store energy using vanadium redox 

couples (V2+/V3+ in the negative half-cell and V4+/V5+ in the positive half-cell). These 
are stored in mild sulphuric acid electrolytes. During the charge/discharge cycles, H+ 
ions are exchanged through the ionic selective permeable polymer membrane. The 
cell voltage is about 1.4–1.6 V and the efficiency can be up to 85% [51]. Main features 
of VRB are the quick responses (faster than 1 ms) and the possibility of operating for 
10000-16000 cycles [52]. However VRB presents low electrolytes stability and high 
operating costs [53].  

 Zinc Bromine Flow Batteries (ZnBr) are based on zinc and bromine elements, which 
are the reactive component of aqueous electrolyte solutions stored in external tanks. 
The main characteristics of ZnBr batteries are: the relatively high volumetric energy 
density (30-60 Wh/l), the cell voltage (1.8 V), the estimated lifetime of about 10-20 
years, the discharge duration up to 10h [54]. Nevertheless, ZnBr batteries present 
some disadvantages: material corrosion, dendrite formation, relatively low efficiency 
(65%-75%) and they operate in a narrow temperature range [55]. 

Fuel cells 

The fuel cell is an electrochemical energy conversion device, not a storage mean. For 
this reason, it is often confused with the fuel-cell based storage system (FC) which is the 
storage solution composed by an electrolyser, a hydrogen storage tank and the fuel cell. 
The idea is to use “excess” electricity (from RES for instance) to produce hydrogen via 
electrolysis. Hydrogen is then stored under pressure in tanks for an unlimited time. When 
requested, hydrogen and oxygen flow into the FC where an electrochemical reaction 
takes place, resulting in heat releasing and electricity generation. Until now, no 
commercial fuel-cell based storage systems are present for electricity purposes. This is 
because cycle efficiency is tremendously low and cost is high. 

2.2 Battery Energy Storage Systems 

The main element of a BESS is the electrochemical cell. Number of cells are 
connected in series or in parallel to constitute a battery of the chosen capacity and voltage.  

A typical electrochemical cell is composed of (Figure 2.1): 
 The anode that gives electrons to the load and is oxidised during the electrochemical 

reaction. 
 The cathode accepts electrons and is reduced during the reactions. 
 The electrolyte (solid, liquid, or viscous) that provides the medium for transfer of ions 

between the two electrodes. 
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 The separator between positive and negative electrodes for electrical insulation. 
During the discharge phase, the electrochemical reaction provides the electrons (i.e. 

current) to sustain the loads and therefore the cathode is the “+” terminal while the anode 
is the “-“ terminal. During the charge phase, the reverse reaction occurs by applying an 
external voltage source; therefore the cathode is the “-” terminal while the anode is the 
“+“ terminal. 

The several possible chemical reactions, which are listed in Table 2.2, differentiate 
the available technologies and result in a wide spectrum of available performances 
(energy density, power density, efficiency), lifetime and costs Table 2.3. Overall, BESS 
can be classified according to the main element involved in the chemical reaction. We 
can identify lead-based, lithium-based, Nickel-based and Sodium-based BESS. 

 
Figure 2.1 Schematic diagram of rechargeable batteries working principles [56].  

Table 2.2 Chemical reactions and cell voltages of main BESS technologies 
Type Anode and Cathode reactions Cell voltage 
Lead-Acid Pb +  SO4

2− ↔ PbSO4 + 2e− 
PbO2 +  SO4

2− + 4H+ + 2e− ↔ PbSO4 + 2H2O 2.0 V 

Li-ion (graphite anode) LiXXO2 ↔ Li1−nXXO2 + nLi+ + ne− 
C + nLi+ + ne− ↔ LinC 3.6 V 

Nickel-metal-hydride 
(NiMH) 

Ni(OH)2 + OH− ↔ NiOOH + H2O + e− 
H2O + e− ↔ 0.5H2 + OH− 1.2 V 

Nickel-cadmium (NiCd) Cd + 2OH− ↔ Cd(OH)2 + 2e− 
2NiOOH + 2H2O + 2e− ↔ Ni(OH)2 + 2OH− 1.2 V 

NaS 2Na ↔ 2Na+ + 2e− 
xS + 2e− ↔ xS2− 2.0 V 

NaNiCl2 2Na ↔ 2Na+ + 2e− 
NiCl2 + 2e− ↔ Ni + 2Cl− 2.6 V 

VRB (Flow battery) V4+ ↔ V5+ + e− 
V3+ + e− ↔ V2+ 1.4-1.6 V 

ZnBr (Flow battery) 2Br− ↔ Br2 + 2e− 
Zn2+ + 2e− ↔ Zn 1.8 V 
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Lead-acid  
Lead-acid battery is the most mature, well known and widely used BESS type. Lead-

acid batteries are used in all industrial applications, from telecommunications system to 
automotive but also in naval and submarine applications. The first rechargeable lead-acid 
battery was developed by Gaston Planté, who began experiments in 1859 towards 
development of a commercial storage battery. In the first decade of the 20th century, lead-
acid batteries found use in the new-born automobile market as prime movers for electric 
vehicles; however, this application faded as gasoline ICE became the favoured prime 
movers for vehicles. The technology re-entered the automotive market in the 1920s for 
starting batteries. Lead-acid battery technology continues to dominate the rechargeable 
battery market to the present day. 

There are different types of lead-acid batteries, each appropriate for specific 
applications. Although all types of lead-acid batteries follow the same basic chemical 
reaction, they can vary widely in terms of cost, method of manufacture and performance. 
The main components are: cathode made of PbO2, anode made of Pb, electrolyte that is 
sulphuric acid. Lead-acid batteries have fast response times, small daily self-discharge 
rates (<0.3%), low capital costs and a service life which can reach up to 6-15 years [19], 
[46], [58]. However, they have a relatively low cycling times (1500 cycles at 80% of 
DoD), very low gravimetric and volumetric energy density (25-50 Wh/kg, 50-90 Wh/L) 
and very poor performance at a very low temperature [30]. 

There are two main categories of lead-acid batteries: flooded or vented types (VLA), 
in which the electrodes are immersed in reservoirs of excess liquid electrolyte; and sealed 
or valve-regulated types (VRLA), in which electrolyte is immobilized in an absorbent 
separator or in a gel. These two types are significantly different in terms of design, 
manufacturing, operating characteristics, life expectancy, and cost. 
 VLA batteries are the traditional form of lead-acid batteries and continue to form the 

bulk of the market, due to their use in automotive sector and in most industrial 
applications. There are three general types of VLA: starting, lighting and ignition 
batteries, deep-cycle or traction batteries, and stationary batteries. 

 VRLA batteries are constructed and operated quite differently from VLA, due to their 
starved electrolyte design. The electrolyte is contained within an absorbent separator 
or a gel to prevent migration out of the cell. VRLA batteries typically have shorter 
service life than conventional flooded lead-acid designs. These batteries have found 
application in portable electronics, power tools, and uninterrupted power supplies 

Table 2.3 Characteristics of different BESS technologies. Costs refer to year 2015 [30], [57] 
 Lead-Acid Ni-Cd NiMH NaS NaNiCl2 Li-ion 

Cell voltages [V] 
Nominal 
(voltage limits) 

2 
(1.8-2.4) 

1.2 
(1-1.5) 

1.2 
(1-1.5) 

2 
(-) 

2.6 
(-) 

2.4-3.8 
(1.8-4.2 

Energy density: 
Gravimetric [Wh/kg] 
(Volumetric [Wh/l]) 

25-50 
(60-70) 

40-80 
(50-150) 

30-80 
(140-300) 

90-120 
(345) 

100-120 
(160-190) 

60-260 
(130-600) 

Power density: 
Gravimetric [W/kg] 
(Volumetric [W/l]) 

60-180 
(100) 

150 
(2110) 

250-1000 
(400) 

- 
150-160 

- 
150 

500-3000 
(1200-6500) 

Cycle-life 300-2000 1000-2500 500-1500 2500-4000 2500-3000 700-7000 
Operating temp. [°C] -20/+60 -40/+60 -20/+60 300/400 300/400 -40/+60 
Cost [€/kWh] 100-200 350-750 150-250 300 100-250 200-1900 
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(UPS), and in a few large applications such as forklift batteries. There are two types 
of VRLA batteries, depending on how the electrolyte is immobilized, the absorbed 
glass mat (AGM) VRLA and the gelled electrolyte VRLA (often known as gel cells). 
In order to improve lead-acid battery performances, while maintaining their low 

systems cost, new innovating materials are under R&D. For instance, carbon-enhanced 
electrode is increasing the energy density up to 150 Wh/kg and the coupling with carbon 
supercapacitor is creating new advanced hybrid lead-acid batteries [59]. 

Nickel-based battery 
The positive characteristics of nickel-electrode batteries have been recognized since 

Thomas Edison introduced the first commercial nickel-iron battery a century ago. Nickel-
based batteries are composed by the association of nickel with different material, leading 
to the production of a variety of technologies, each with its own advantages and 
disadvantages. 

There are five main battery technologies that use the nickel-electrode: nickel-iron 
(NiFe, the first designed to replace lead-acid battery), nickel-cadmium (NiCd, the most 
common), nickel-hydrogen (NiH2, often used for aerospace applications), nickel-metal 
hydride (NiMH, the most promising option), and nickel-zinc (NiZn, the least mature of 
Nickel-based technologies). Among all Nickel-based battery options, NiCd and NiMH 
are the most used in today market. 

Nickel-cadmium battery 

Nickel-Cadmium (NiCd) batteries are the most common nickel-electrode batteries in 
the utility industry today [60]. NiCd battery uses nickel hydroxide and metallic cadmium 
as the two electrodes and an aqueous alkali solution as electrolyte. This technology 
presents two main weaknesses: the use of cadmium and nickel, which are toxic heavy 
metal, and the so-called “memory-effect”. Production, use, and disposal of NiCd batteries 
are carefully monitored. The industry has made significant efforts to promote recycling, 
so that all cadmium from the battery industry is recovered. Concerning the “memory-
effect”, this means that the available capacity of the battery can be dramatically decreased 
if the battery is charged after being only partially discharged. This effect is correctable 
through a reconditioning process in which the battery is fully discharged and then 
recharged [61]–[63].  

Nickel-metal Hydride battery   

Nickel-metal Hydride (NiMH) battery is an outgrowth of NiH2 technology. It is 
similar to NiCd battery, but with hydrogen as the negative electrode. In NiMH batteries, 
the hydrogen is absorbed in a metal alloy, which is usually a complex mix of elements. 
These batteries have good gravimetric and volumetric energy densities: around 70-100 
Wh/kg and 170-420 Wh/l respectively, better that those of NiCd batteries [64], [65]. 
Moreover, they have a reduced “memory-effect” and are more environmental friendly 
(no cadmium). NiMH batteries have replaced NiCd in relatively low-current applications, 
including portable computers, cellular phones, and camcorders, but not in high-rate 
applications such as power tools. The production of large NiMH batteries has been 
limited, in part due to the difficulty of manufacturing the metal-hydride complex [66]. 

Molten-salt battery 
Sodium-sulfur battery 

Ford Motor Company is credited with initial recognition of the potential of the 
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sodium-sulfur battery based on a beta-alumina solid electrolyte in the 1960’s.  
The main features of NaS battery are the high volumetric energy density (150-300 

Wh/l), almost zero daily self-discharge, long cycle capability (2500 cycle upon 90% 
DoD) and long discharge period (about 6 h) [36], [67]. NaS battery works in the 
temperature range of 300-350°C. During discharge, the sodium (negative electrode) is 
oxidized at the sodium/beta alumina interface, forming Na+ ions. These ions move 
through the beta alumina solid electrolyte and combine with sulfur that is reduced at the 
positive electrode to form sodium pentasulfide (Na2S5), which is immiscible with the 
remaining sulfur thus forming a two-phase liquid mixture. After consuming all the free 
sulfur phase, the Na2S5 becomes converted into single-phase sodium polysulfides with 
progressively higher sulfur content (Na2S5-x). 

NaS batteries are economic and with limited maintenance cost, thanks to the material 
of construction that is affordable and also recyclable. However, the main weaknesses of 
these batteries are high capital cost, high operational temperature requirement and high 
operational hazard due to use of metallic sodium, which is combustible if exposed to 
water. R&D is focused mainly on enhancing the cell performances and on decreasing the 
high temperature operating constrains. 

The main application are in the electric utility distribution grid support, wind power 
integration, and grid services [36]. One of the largest single installations of NaS batteries 
is the 34 MW Rokkasho wind-stabilization project in Northern Japan which has been 
operational since 2008. Moreover, the capability to provide prompt and precise response 
makes NaS useful for applications in grid power quality regulation. For these reasons, 
just a few years ago, NaS batteries were considered as one of the most promising 
candidate for EES applications. Nowadays, the progress in Lithium-ion technology has 
reduced the interests in NaS technology. 

Sodium Nickel Chloride (NaNiCl2) battery 

Sodium nickel chloride battery is also known as the ZEBRA battery, because it was 
invented in 1985 by the Zeolite Battery Research Africa Project (ZEBRA) group at the 
Council for Scientific and Industrial Research (CSIR) in Pretoria, South Africa. 

During the charging phase, salt (NaCl) and nickel (Ni) are transformed into nickel-
chloride (NiCl2) and molten sodium (Na). The chemical reaction is reversed during 
discharge. The electrolyte is a fully dense ceramic material, similar to NaS battery, which 
provides fast transport of sodium ions and ensures the electrical insulation between anode 
and cathode. Cells are hermetically sealed and packaged into modules of about 20 kWh 
each. 

ZEBRA batteries are high-temperature battery devices like NaS, they operate in a 
temperature range of 270°-350°C. They present moderate energy density and power 
density: 94-120 Wh/kg and 150-170 W/kg respectively [68]. The main advantages of 
sodium nickel chloride battery are good pulse power capability, cell maintenance, very 
little self-discharge and relatively high cycle life.  

Lithium-based battery 
Nowadays, Li-ion based BESS are dominating the market of portable devices and 

currently are a pivotal technology for the development of several industrial sectors (e.g. 
EVs and RES-E).  

The history of Li-battery began with the use of Li-metal as anode. Li was found to be 
the most electropositive (–3.04 V versus standard hydrogen electrode) as well as the 
lightest metal. This eases the design of storage systems with high energy density. The 
first non-rechargeable Li-cells based on Li-metal was assembled in the 1970’s [69]. The 
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key step for the first rechargeable Li-ion battery was the discovery of intercalation 
compounds which were found to react with alkali metals in a reversible way. In 1976, 
Whittingham, while working at Exxon, produced the first rechargeable Li-battery with 
cathode of layered TiS2 (the best intercalation compound available at the time) and anode 
of Li-metal [70]. However, the commercialization of this battery failed due to problems 
of Li dendrite formation and short circuit upon extensive cycling and safety concern 
(explosion hazards) [69]. In the same period, Besenhard, Yazami, and Basu discovered 
that graphite, also with a layered structure, could be a good candidate to reversibly store 
Li by intercalation/deintercalation. Goodenough was then the first to propose the use of 
layered LiCoO2 as high energy and high voltage cathode materials in 1981 and 
manganese spinel as a low-cost cathode material in 1983 [71]. In 1987, Yohsino et al. 
presented a patent on a prototype cell using carbonaceous anode and LiCoO2 as a cathode 
[72]. However, the mass commercialization of these batteries started only in 1991 by 
Sony, who started to use Li-ion cells in personal electronic devices (e.g Walkman). The 
cells used by Sony had a maximum voltage of 4.1 V and an energy density of 80 Wh/kg 
[73]: considerably higher than Ni-Cd or NiMH cells, which were already commercialized 
for the same purposes. Other progresses were made from that time especially in the 
discoveries of new cathode and anode materials able to improve the performances (e.g. 
at the moment of the thesis writing energy density of lithium-ion cells can reach up to 
300 Wh/kg), like the introduction of low-cost cathode of LiFePO4 by Goodenough in 
1996. Nowadays, R&D is still ongoing to improve Li-ion batteries available on the 
market and to introduce new disruptive innovations like Li-air or Li-Sulfur batteries. 

Overall, lithium-ion BESS present better performances if compared to competing 
technologies as Ni-Cd, NiMH and lead-acid technologies. The main features of Li-ion 
cells are: high operating voltage (3.7 V on average), high gravimetric and volumetric 
energy density, no memory effect, low self-discharge rate (less than 20% per year) and 
operation in a wide range of temperature [73]. As well-known, the main drawback is 
represented by its high cost. However, as showed in Figure 1.2-B, a relevant cost 
reduction is ongoing, boosted by the automotive sector. 

The following sections will firstly detail the functioning and main characteristics of 
lithium-ion technology. Secondly, it will detail the different available chemistries that 
are competing on the market from different perspectives: performances, costs, lifetime, 
safety and leading manufacturers. Finally, a brief overview about the future prospects 
will be presented. 

2.3 Lithium-ion technology 

There are four main types of lithium-ion cell form factors: cylindrical, prismatic, 
button, and pouch (or polymer) cells. Cylindrical and prismatic cells are commonly made 
of “laser-welded” aluminium cans and consist of liquid electrolyte. Pouch (or polymer) 
cells use a soft laminate casing. The pouch type cell has become the standard in many of 
the portable power applications such as smartphones and tablets due to their thin form 
factor [74]. The button cells are small and inexpensive to build; they reach high voltage 
because the cell is stacked into a tube. Button cells have no safety vents and can only be 
charged at a very low current rate. Nowadays, most of the button cells in use are not 
rechargeable and they are found only in devices like calculators, watches, car keys and 
memory backup. 

Regardless of the form factor, a typical lithium-ion battery contains four main 
components: cathode, anode, separator and electrolyte. As regards to the electrodes, the 
cathode is an aluminium foil in many designs that is coated with the specific active 
cathode material, while the anode is a copper foil which is coated with a specific active 
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anode material. These two-coated foils are kept separate through the use of a separator 
material most often made of some type of polypropylene (PP) or polyethylene (PE) 
plastic. This forms the jellyroll, which is then inserted into the container or housing. This 
can be a metal can, a plastic enclosure, or a metal foil-type pouch. Finally, the electrolytic 
liquid is injected into the assembly which is then hermetically sealed. 

Cathode Materials 

The cathode materials are transition metal oxides having lithium. They represent the 
major source of Li-ions [76]. Ions must be able to diffuse freely through their crystal 
structure in order to classify them as cathode materials. The morphology of the crystal 
structure could be: one-, two-, or three-dimensional, and it determines the number of 
dimensions in which li ions are able to move. Cathode materials currently in use, can be 
divided in:  
 Layered rock salt structure materials (two-dimensional crystal morphology). The 

most common example is lithium cobalt oxide (LiCoO2), but also lithiated nickel as 
lithium nickel cobalt aluminium oxide (LiNiCoAlO2) or lithium nickel manganese 
cobalt oxide (LiNiMnCoO2). They are characterized by high structural stability; 
however, they are costly (due to their limited resources) and hard to synthetize. 

 Spinel structure materials (three-dimensional crystal morphology). The main member 
of this category is lithium manganese oxide (LiMn2O4), which enables Li-ions to 
diffuse in all three dimensions. LiMn2O4 is one of the oldest compounds researched 
and still widely used. Spinels advantages are: lower cost and lower environmental 
impact than layered rock salt materials, but on the other side they provide lower 
energy density. 

 Olivine structure materials (one-dimensional crystal morphology). The main 
compound of this category is lithium iron phosphate (LiFePO4). They are non-toxic 
and they show lower capacity reduction during lifetime. 
In 1995 when mass production of the lithium-ion battery had just started, LiCoO2 was 

the dominant cathode material, with the spinel LiMn2O4 occupying only a small part of 

 
Figure 2.2 Four different form factors of commercially available lithium-ion cells: (a) 
cylindrical, (b) prismatic, (c) button, (d) pouch [75] 
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the total market. LiCoO2 predominance has been gradually declined due to considerations 
of cost and resource availability. By 2010, the market share for LiCoO2 had declined to 
40% while other materials like LiNiMnCoO2 had increased considerably [73]. In 2016, 
LiFePO4 and LiNiMnCoO2 occupied the 36% and 26% respectively, whereas LiCoO2 
decreased to 21% (Figure 2.3). 

Overall, cathode materials occupy 35% of the total cost of cells [57]. Therefore, the 
cost reduction of cathode materials is a pursued strategy by cell manufacturers to increase 
competitiveness. For this reason, manganese and iron-based cathode materials are 
replacing the widely used LiCoO2: Mn and Fe are cheaper than Co due to their naturally 
abundant amounts [78]. 

Anode Materials 

Currently, most anodes are carbon-based, however there are other types of anodes: 
lithium titanium oxide (which has been successfully commercialized) alloying-metal and 
amorphous. Current anode materials market share (i.e. raw production) are reported in 
Figure 2.3. 
 Carbon-based anode. Carbon is still the anode material of choice; it allowed Li-ion 

battery to become commercially viable more than 20 years ago. Electrochemical 
activity in carbon comes from the intercalation of Li between the graphene planes, 
which offer good 2D mechanical stability, electrical conductivity, and Li-ion 
transport. Carbon has the joint properties of low cost, abundant availability, low 
potential vs Li, high Li diffusivity, high electrical conductivity, and low volume 
change during charge/discharge processes. Commercial carbon anodes can be divided 
into two types: graphitic carbons, which have large graphite grains, and hard carbons, 
which have small graphitic grains [79]. 

 Lithium titanium oxide (Li4Ti5O12). Lithium titanate nanocrystals on the anode 
surface instead of carbon has been recently introduced into the market. Advantages 
are the high thermal stability (i.e. safety) and unequalled cycling capabilities. The 
main drawbacks are the high cost of titanium and the low voltage when coupled with 
any cathode materials [79]. 

 Alloying-metals. They are elements which electrochemically alloy and form 
compound phases with Li. They can have extremely high volumetric and gravimetric 
capacity, but they suffer from huge volume change which can cause serious damage 
(fracturing) and hazards [80]. Among the top studied Li-alloy anodes it is possible to 
mention: Li-Al (lithium aluminium) that suffer severe fracturing; Silicon which has 

 
Figure 2.3 Cathode and anode active materials raw productions in 2016 by type [77] 
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low potential vs Li, abundance, low cost, chemical stability, and non-toxicity; 
Selenium which has similar properties with Silicon except a lower gravimetric 
capacity; Germanium which does not suffer from fracturing even at larger particles 
sizes but it is too expensive for most practical application; Zinc, cadmium and lead 
which have good volumetric capacity but suffer from low gravimetric capacity. 

 Amorphous: This type of anode uses oxides in which Li2O are formed on the initial 
charging of the battery. The Li2O acts as a ‘glue’ to keep particles of the alloying 
material (such as Silicon or Selenium) together [81]. Drawbacks of Li2O is the low 
electrical conductivity and the large voltage hysteresis. 

Electrolytes 

The electrolyte is a mixture of organic solvents, additives and electrolytes salt 
compound which create a solution. Electrolyte acts as a conductor allowing the Li-ions 
to move between the anode and the cathode. The common solvents are a mixture of cyclic 
carbonate esters, such as ethylene carbonate and propylene carbonate, and linear 
carbonate esters, such as dimethyl carbonate and diethyl carbonate [73]. Functional 
additives are used to provide different functionality within the cell (e.g. flame-resistant 
solutions). Additives are specific and different from one manufacturer to another; 
forming one of the key areas of intellectual property of cell makers. Finally, two are the 
main choices for electrolyte salts: LiPF6 (90%) and LiBF4 (10%) [57]. 

Apart from liquid electrolyte, a new generation of bonded electrolyte have spread into 
the market. This is commonly linked to the so-called Li-ion polymer (LiPo) cells. LiPo 
cells cannot be considered a unique cell chemistry since they use identical cathodes (they 
can be built on many cathode/anode materials: LCO, NMC, LMO etc.) and anode 
material and contain a similar amount of electrolytes. The only difference with 
“traditional” lithium-ion cells is the use of a gelled-electrolyte [69]. Pouch cells are often 
identified as being LiPo cells. 

Separators 

The separator is a thin piece of material; usually made from PP or PE plastic, which 
separates the cathode and the anode while enabling ions to pass through. The separator 
material must be able to withstand the often-corrosive electrolytes environment while 
still maintaining the isolation of the two electrodes within the cell. If the two halves of 
the electrode come into contact, an internal short circuit will occur, causing a cell failure. 
Some manufacturers are beginning to integrate ceramic-layered separators in their cells 
as it enables higher temperatures and increases the safety. This also tends to improve the 
power rate capability of the cells by reducing the internal resistance [57] 

Li-ion chemistries 

Nowadays, many different chemistries that use different combinations of anode and 
cathode materials are competing in the market. Each of them has its own electrical and 
economical characteristics. Six are the principal Li-ion cell chemistries that are described 
below and summarised in table 2.4. 
 LCO (LiCoO2 -Graphite). The lithium cobalt oxide based battery is a mature battery 

technology characterized by high energy density. LCO is the most popular chemistry 
used in portable electronic devices due to its excellent charging/discharging rate and 
high energy density. A typical LCO cell has a nominal voltage of 3.7 V. Concerns 
with thermal stability and general safety make LCO not suitable for several 
applications like automotive [82].  
Main manufacturers: Sony and Kokam. 

 LMO (LiMn2O4-Graphite). The lithium manganese oxide based batteries have the 
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highest nominal voltage of 3.8 V. However, LMO cells have an energy density that is 
on average 20% less than the ones of LCO chemistry. Other key features of LMOs 
are high thermal stability, lower cost and improved safety. The drawbacks are lower 
energy and power densities, short cycle life and high capacity losses. 
Main Manufacturers: Hitachi, Sanyo, GS Yuasa, LG Chem, Samsung, Toshiba, 
Altairnano.  

 NCA (LiNiCoAlO2-Graphite). The lithium nickel cobalt aluminium oxide based 
battery has a nominal voltage of 3.6 V and a better safety characteristic if compared 
with LCO-based battery. NCA chemistry present one of the highest performance in 
terms of power density and energy density.  
Main Manufacturers: SAFT, PEVE, AESC. 

 NMC (LiNiMnCoO2-Graphite). The lithium nickel manganese cobalt oxide based 
battery show a nominal voltage of 3.6 V. The cathode is composed of cobalt, nickel 
and manganese in different formula. The most commonly used NMC composition 
contains equal amount of all three metals (i.e. Ni1/3 Mn1/3 Co1/3). NMCs have good 
energy density and lifetime. 
Main manufacturers: PEVE, EIG, Hitachi, Sanyo, LG Chem, Samsung, GS Yuasa, 
Boston Power, Kokam. 

 LFP (LiFePo4-Graphite). The lithium iron phosphate based battery has a voltage of 
3.3 V, sensibly lower than the other chemistries mentioned above. However, LPF cells 
show a flat voltage profile that enhances the usage window. Moreover, this chemistry 
is the one with the lowest environmental impact among all the lithium-ion chemistries 
[83]. LFP is considered to be a leading chemistry of the future being suitable for 
stationary, automotive and back-up power applications because of their characteristics 
of high safety, good thermal stability and good lifetime. 
Main manufacturers: A123, BYD, GS Yuasa, SAFT, EIG, Lishen. 

 LTO (Li4Ti5O12-various). The lithium titanium oxide based battery is using a lithium 
titanate nanocrystals on the anode surface, instead of carbon. The cathode can be 
LMO or NMC. Using titanate instead of carbon at the anode represents an advantage 
since they can enhance the charge capabilities (i.e. sustaining higher currents) [87]. 
The main disadvantage are: (i) the very low voltage level that decrease sensibly the 
energy density if compared to other chemistries; (ii) the high specific cost that is 

Table 2.4 Characteristics of different chemistries of lithium-ion batteries. Cost refers to cell price 
for utility-scale applications [84]–[86] 
 LCO LMO NMC LFP NCA LTO 
Cathode material LiCoO2 LiMn2O4 LiNiMnCoO2 LiFePo4 LiNiCoAlO2 Various 
Anode material Graphite Graphite Graphite Graphite Graphite Li4Ti5O12 
Cell voltages [V] 
Nominal 
(voltage limits) 

3.7 
(3-4.2) 

3.8 
(3-4.2) 

3.6 
(3-4.2) 

3.3 
(2.5-3.65) 

3.6 
(3-4.2) 

2.4 
(1.8-2.85) 

Energy density: 
Gravimetric [Wh/kg] 
(Volumetric [Wh/l]) 

110-190 
(250-450) 

100-120 
(250-265) 

150-220 
(325) 

90-120 
(220-250) 

200-260 
(210-600) 

60-80 
(130) 

Power density: 
Gravimetric [W/kg] 
(Volumetric [W/l]) 

600 
(1200-3000) 

1000 
(2000) 

500-3000 
(6500) 

1400-2400 
(4500) 

1500-1900 
(4000-5000) 

750 
(1400) 

Cycle-life 500-1000 700-1000 2000-3000 >3000 >1000 3000-7000 
Operating temp. [°C] -20/+60 -20/+60 -20/+55 -20/+60 -20/+60 -40/+55 
Cost [€/kWh] 200-400 300-850 450-850 350-1150 250-950 550-1900 
Market launch [y] 1991 1996 2008 1996 1999 2008 
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limiting LTO diffusion, probably due to the current limited market share (Figure 2.3). 
The main advantages of LTO are: (i) the highest cycling performances; (ii) the high 
thermal stability in both charge and discharge state [88]; (iii) the tolerance of low 
temperatures. These characteristics make LTO a promising candidate for the future 
especially for applications that demand high power: automotive but also stationary 
applications. 
Main manufacturers: Altairnano, Toshiba, EIG, Leclanché. 
Radar plot of Figure 2.4 resumes the findings of previous sections by comparing the 

different available chemistries along six dimensions: energy density [Wh/kg], power 
density [W/kg], safety, efficiency, lifetime, cost and environmental impact. If we avoid 
focussing on the costs (a common issue among all lithium-ion chemistries), three 
chemistries seem to be the most promising for the near future: NCA, LFP and LTO. NCA 
appears to be the right choice when the requirements are on performances (energy 
density, power density and efficiency), LTO appears to be more suitable when long 
lifetime and safety are of main concern, while LFP seems to be preferable in term of 
overall environmental impact that consider damages to human-health, damages to 
ecosystems and recyclability [89]. 

In this frame, Chapter 3 will present a detailed analysis about Li-ion cells 
performances. A technological comparison is carried out through specific laboratory 
testing procedures. Three different chemistries: LFP, LTO and LNCO (very similar to 
NMC) are tested and compared as regards to their measured energy densities, power 
densities and efficiencies. Moreover, the same performances are evaluated also in case 
of real application (i.e. stationary application). 

Future prospects of lithium-ion technology 

In order to further advance in the science and technology of lithium batteries 
improvements in safety, environmental sustainability and energy content are needed. 
Apart from evolutions in the cathode and anode materials structures (Silicon for the anode 
and LiNi0.5Mn1.5O4, LiMO2 and Li2MnO3 for the cathode are expected to be the most 
promising materials for the near future [90]), new disruptive technologies are draining 
attentions and resources of many research centres around the globe. 

A very promising option (at early stage of development) is the lithium-air, (Li2O2, Li-
air) battery. This chemistry produces voltages of between 1.7-3.2 V and consists of a 

 
Figure 2.4 Comparison of Li-ion battery chemistries. Author’s elaboration based on [84], [89] 
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positive electrode of porous carbon and a negative electrode of lithium metal. By reacting 
lithium directly with oxygen from air, an incredibly high theoretical energy density (up 
to 13 kWh/kg) can be reached [91]. The main remaining challenges are: (i) the air quality, 
since the technology accept only very pure air that need to be filtered; (ii) the death 
syndrome that involves the formation of films producing barriers for the reactions; (iii) 
the very poor cycle life that currently reaches only 50 cycles [92]. 

Another promising candidate for high energy systems is the lithium-sulfur based 
battery (Li2S, Li-S). Li-S has a cell voltage of 2.10 V and uses lithium metal as a negative 
electrode and sulphur as the positive electrode (instead of oxygen) in order to produce 
solid Li2S (instead of solid Li2O2). Li-S is claimed to reach very high gravimetric and 
volumetric energy density of 2500Wh/kg and 2800Wh/l together with greater efficiency 
than the Li-air battery cells [69], [83]. Due to the low cost of sulfur, Li-S batteries have 
the potential to compete with the more established Li-ion chemistries. The main 
challenge is the limited cycle life of only 40–50 charges/discharges as sulphur is lost 
during cycling by reacting with the anode. Nevertheless, there already exist two 
manufacturers that claim to have solved the issue: Oxys Energy and Sion Power.  

Finally, a fascinating evolution of the lithium battery is represented by the use of 
organic materials. Organic compounds are very attractive for positive electrodes because 
no expensive metal is used. The challenge is to exploit organic lithium battery electrode 
materials that can be synthesized by green chemistry from biomass, which is easily 
recyclable [83]. 

2.4 BESS performances for stationary applications 

 Previous sections have provided a full overview about the state-of-art of ESS 
technologies. However, this is not sufficient for system engineers since the main issue is 
to identify which technology is the most suitable for the different final application. In this 

                                                      
1 As detailend in section 2.1, with FCs we intend fuel-cell based storage systems: the storage 

system composed by electrolyser, a hydrogen storage tank and the fuel cell. The overall efficiency 
is then the result of the efficiencies of each single component. FCs efficiency are always <40%. 

 
Figure 2.5 Comparison about energy density, power density and cycling efficiency for various 
EES technologies [11], [30], [93]1 
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section, an overview of this theme is proposed with focus on stationary applications. 
In general, it is well accepted that no single EES technology can meet the requirements 

for all possible applications. Selection of ESS is based on the assessment of the 
characteristics of the different EES options against the requirements of the specific 
application. 

Figure 2.5 compares ESS in terms of their typical energy densities, power densities 
and efficiencies. Energy densities and power densities are crucial when the size of ESS 
is of main concern. The higher the two indicators are the lighter and performant the BESS 
will be. Li-ion technology is the most positioned to the top-right of the graph: they have 
the best combination of energy/power performance available in the market to date. Good 
cycle efficiency is fundamental when the application is very stressful and prolonged in 
time. Efficiency has been continuously improved in time for all available technologies. 
As regards of BESS technologies, Li-ion batteries occupy the first position (η > 90% in 
standard conditions) followed by Nickel-based batteries (η > 85%), Molten-salt batteries 
(η > 80%) and lead-acid batteries (η > 75%). 

In Table 2.6 and Figure 2.6 the focus is more on characteristics of BESS for industrial 
applications. Table 2.6 resumes the typical power rating, discharge time (i.e. typical 
capacity can be determined) and cycling factors of EES technologies. These three indices 
are more or less associated with the EES category. EMEST usually bring limited power 
(hundreds of kWs) and limited discharge time (secs) coupled with almost infinite cycling 
performances (> 105). MEST are good for very high power (hundreds of MWs) demand 
and long discharge time (hours) with high cycling capabilities (> 104). BESS can range 
widely in term of power (from ten of kWs to hundreds of MWs) and storage durations 
(from minutes to hours) being suitable for various applications, but they have 
considerably lower cycling capabilities if compared to other EES technologies (< 104).  

Figure 2.6 resumes these statements by comparing the typical power and energy 
ratings in the same graph. The nominal discharge time at power rating is also shown 
within the range seconds-months. A mention deserves to be made about lithium-ion 
technology that is shown to occupy the wider area on the graph. This means a high 
suitability of Li-ion BESS for final applications. By merging the different areas in the 
figure, it is possible to derive a capability area for EES plants which should be matched 

 
Figure 2.6 Comparison of Power/Energy ratings with discharge time at power rating for various 
EES technologies [2], [11], [30], [93] 
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with the areas belonging to stationary applications. 
By considering the entire value chain of electrical systems, EES can be classified in 

terms of their discharge duration [93]. If seconds to minutes, they are used for achieving 
power quality, if minutes to hours for bridging power, if several hours for energy 
management. Within these categories, it is possible to highlight some key stationary 
applications (Table 2.5) that represent actual opportunities for EES [17], [30], [35]: 
 Renewable integration: to minimize intermittency of RES by time-shifting production 

and dispatching. The storage is used to optimize the RES production in terms of 
supply quality and value. The typical size of application can be from hundreds of kW 
(distribution networks) to tens of MW (Transmission level). The discharge duration 
can be in the range of some minutes to some hours. 

 Load levelling: to balance the large fluctuations associated with electricity demand 
and to smooth intermittent generation. The energy is stored during off-peak periods 
and used for the application. The capacity is typical at the MW level and it requires 
high energy efficiency since the charge/discharge periods can last several hours. 

 Spinning reserve: to reduce requirements on idle generators that are dedicated to take 
over of any sudden failure of major generator. Reserve capacity used to keep the 
system balanced. The installations are usually in the range of MW. The chosen 
technology must respond immediately (few seconds) and have the ability of 

Table 2.5 Typical Key characteristics of various stationary applications [2], [11], [30] 
Application Size Discharge duration Cycles/day Response time 
Renewable 
integration 

MW level Mins - hours 0.5-2 Secs to minutes 

Load levelling 
 

MW level Hours - Mins 

Spinning reserve 
 

Hundreds of MW Mins – hours 0.5-2 Few seconds 

Customer-side 
Peak-shaving 

kW level Mins - hours 1-20 Mins 

Primary Control 
Reserve  

MW level Mins 5-25 < 1min 

Voltage support 
 

Tens of MW Secs – Mins 10-100  ms to secs 

Energy arbitrage 
 

Tens of MW Hours 0.25-1 > 1 hour 

Off-grid kW to MW Hours - days 0.75-1 < 1 hour 

Table 2.6 Typical key characteristics of EES technologies [30], [94], [95] 
technology Power Rating 

[MW] 
Storage 
duration 

Cycle-time Calendar life 
[years] 

Response 
time 

Super capacitors 0.01-1 ms-mins 104-105 10-20 10-20 ms 
SMES 0.1-1 ms-mins >105 15-20 < 100 ms 
PHS 100-1000 hours >104 50-60 mins 
CAES 10-1000 hours >104 20-40 secs-mins 
Flywheels  0.001-10 secs-mins 104-105 15-20 secs 
NaS 1-100 mins-hours 2500-4000  10-15 10-20 ms 
NaNiCl2  1-10 hours 2500-3000 15 10-20 ms 
Lead-acid 0.01-1 mins-hours 500-2000 5-15 10-20 ms 
Li-ion 0.01-100 mins-hours 1000-7000 5-15 10-20 ms 
Ni-Cd 0.01-10 mins-hours 2000-2500 10-20 10-20 ms 
Flow Battery 0.1-100 hours 104 10-20 10-20 ms 
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maintaining the outputs for up to few hours. 
 Customer-side peak shaving: to reduce the customer maximum (peak) energy demand 

level by exploiting EES at local level. Energy demand can be also shifted in order to 
assist the integration of local RES. This application is very similar to load levelling 
but at the customer level. The only difference is the typical size that can vary from 
kW to hundreds of kW.  

 Primary Control Reserve (frequency regulation): to support the balancing of 
continuously shifting supply and demand (frequency regulation). In this case the 
requirements are the ability to react in some seconds and to maintain the service for 
several minutes. Typical size of application goes from hundreds of kW to tens of MW. 

 Voltage support: to inject or adsorb reactive power to maintain voltage levels in the 
transmission and distribution systems under normal conditions. Discharge duration is 
very short (seconds) and the energy/power ratio of the installations can be very low.  

 Arbitrage/storage trade. This involves storing low-priced energy during period of low 
demand and subsequently selling it during high-priced periods within the same 
market. This application requires EESs that have high round-trip efficiency and can 
achieve long storage duration (hours to days). 

 Off-grid: storage is deployed in conjunction with local generation (mostly RES) to 
ensure reliability by filling the gaps between production and demand. The aim could 
be to electrify rural areas and/or to be independent from the main-grid. Installations 
might vary in terms of energy/power ratio according to the available resources (RES, 
genset, PV, wind or hydro turbines, etc.). Generally, they can range from tens of kW 
(small system) up to tens of MW (big islanded systems). Discharge phases can last up 
to days because they might have to sustain the loads even in the worst-case scenario 
of no energy production (e.g. RES+EES plants). 
Figure 2.7 resumes graphically the different mentioned applications in terms of the 

typical power/energy ratings. From overlapping with Figure 2.6 it is possible to state that: 
(i) SMES have a great opportunity especially for voltage support where capacity is not 
an issue; (ii) TES and MES (with the exception of flywheels) have a good match with 
high demanding applications (both for power and energy ratings) like renewable energy 
integration, load-levelling and energy arbitrage; (iii) BESS are well suited for almost all 

 
Figure 2.7 Typical Power/Energy ratings requested to EES technologies by various stationary 
applications [30], [94] 
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the mentioned applications but with particular predisposition for renewable integration, 
frequency regulation, off-grid systems, peak-shaving.  

Among BESS, lithium-ion appears to be the most suitable technology for stationary 
applications: its characteristic area overlaps almost the whole application area of Figure 
2.7. However, lithium-ion BESSs cover less than 30% of current stationary installations 
around the globe [85]. The main motivation is represented by the high cost of installation 
if compared with the other EES technologies. Table 2.7 shows that in 2016 the specific 
cost of lithium-ion BESS was the highest one (except for flywheels) with an average 
value (that include the 6 chemistries detailed in section 2.3) of 600€/kWh, 3 times higher 
than lead-acid BESS. Nevertheless, much attention from researchers, producers and 
system integrators is given to this technology since a huge cost decrease is forecasted in 
the next decades. Projections to 2030 show that lithium-ion BESS will be interested in 
the highest cost reduction of nearly 60% [96] that will drive its specific cost to be quite 
comparable with all the other EES technologies This fact, together with the best overall 
performances as detailed above, will put Li-ion in a probable monopolistic position for 
stationary applications. 

2.5 Summary 

This chapter has provided a comprehensive overview about Electrical Energy storage 
technologies. More attention has been dedicated to BESS with special focus on Li-ion 
chemistries. The different available cathode, anode and electrolyte materials have been 
presented by concentrating also on the expected performances, market share, producers 
and costs. Finally, the discussion has been contextualized towards stationary 
applications. The typical features of storage technologies have been matched with the 
requirements of possible final applications. This has highlighted the feasibility of BESS 
in addressing the needs of the today’s electric power system scenario, in terms of 
expected performances and reliability. Given the high performances and the expected 
huge decrease in the specific cost, Li-ion technology is forecasted to be the most 
prominent option for renewable integration, frequency regulation, off-grid systems and 
peak-shaving. 
 

Table 2.7 Investment cost of main EES technologies, author elaboration based on [96] 
Technology Current and estimated cost [€/kWh] Delta [%] 
 2016 2020 2025 2030  
PHS 18 18 18 18 +0 
CAES 45 41 39 37 -17 
Flywheels  2500 2200 1900 1600 -36 
NaS 450 370  270 200 -55 
NaNiCl2  340 270 200 145 -57 
Lead-acid (Flooded-AGM) 125/225 110/190 85/150 65/120 -48/-47 
Li-ion (various chemistries) 300/890 240/750 170/560 125/430 -58/-52 
Flow Battery (VRB, ZnBr) 295/760 230/590 155/405 105/275 -65/-64 
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3 Performance evaluation of 
lithium-ion cells 

 
 
 
Chapter 2 highlights that BESS are very suited for stationary applications among all 

EES technologies. Moreover, lithium-ion based chemistries appear to be the most 
prominent option for the near future. Manufacturers and analysts declare high energy 
density, power density, efficiency, lifetime that makes of Li-ion batteries the perfect 
candidate for several applications, including stationary ones. 

Nevertheless, there are several existing limiting factors that are impacting on the 
diffusion of Li-ion BESS in today’s markets: (i) the relatively high CAPEX for the 
integrated system despite a learning rate of lithium-ion battery cells of 21.6%, very 
similar to the one observed for PV cells [1]; (ii) the lack of a stimulating regulatory 
framework [7], [8], [10], [97] and (iii) the lack of technical information as regards to the 
real performances of BESSs in the field. The latter represents a strong barrier to the 
deployment of BESS independently from their CAPEX because the real storage 
performance, such as the efficiency and the expected lifetime, affects the overall system 
OPEX. Unless these parameters are correctly evaluated, the decisions on the installation 
of BESSs can be highly risky. 

Nowadays, performance characterization of lithium-ion cells is left on the 
manufacturers’ side, who provide information as regards to energy density, power 
density, efficiency, cycles to failure and others. However, no uniformity is found in 
manufacturer’s datasheets that helps in categorizing the different products according to 
the final application. This fact is justified by the lack of standardized testing procedures 
to compare different cells for a specific usage in spite of an abundant literature on the 
characterization of lithium-ion battery cells. In [98] the authors assessed the performance 
of three different lithium-ion cells for plug-in hybrid electric vehicles (PHEV) under the 
IEC 62660-1 standard [99]. This standard defines ad-hoc test conditions for lithium-ion 
cells in EVs application. There is therefore no guarantee that the test results are applicable 
in other applications. In [100] the authors tested various cells and modules and claim to 
have used “consistent sets of test procedures intended to determine their performance 
characteristics for automotive applications”. They develop their own testing procedures 
starting from the USAB/DOE programs [101] which developed an Evs battery test 
procedure manual. In [102] the authors developed specific testing procedures for both 
automotive and stationary applications. In [103], [104] different performance testing 
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protocols for lithium-ion cells are proposed. Another task defines the battery efficiency 
measurement under different test conditions, such as: fast charge test, aging test, actual 
operation test and battery vibration test [105]. In [106] the ISO/CD 12405-1/2 and IEC 
62660-1 (section 7.8.1.2 “Energy efficiency test - test by temperature”) standards are 
compared and the measurement of efficiency is defined for the pulse tests under different 
C-rates2 (ranging from 1/3 C to 10 C), current profiles, temperatures (from -20°C to 
45°C) and SoC levels3 (from 20% to 100%). 

Given the unconsolidated framework, in this chapter, a technological comparison 
among three different lithium-ion chemistries is presented by analysing their 
performance at cell level. This approach eliminates the influence of the module-level 
battery management system (BMS), which can restrict or change the operating conditions 
of the electrochemical cells. The technological comparison criteria are the energy 
density, power density, and efficiency. The IEC 62660-1 international standard has been 
used as a preliminary term of reference [99]. Then, two novel testing procedures, which 
are believed to be more suitable for stationary applications, are presented. In section 3.1 
and section 3.2 all testing procedures are detailed with the support of real experimental 
test examples. In section 3.3, the related results are presented and discussed. Finally, in 
section 3.4, measurements of lithium-ion BESS performances in real-application 
(frequency regulation) are analysed. 

3.1 Laboratory set-up 

The chapter is based on real lab measurements that have been obtained in the 
framework of the collaboration between the Politecnico di Milano (Electric Power 
Systems research group) and CSEM-PV Center (Swiss Center for Electronics and 
Microtechnology) using cutting edge machineries at the Energy Storage Research Center 
(ESReC) located in Nidau, Switzerland (Figure 3.1): 
 PEC- ACT 0550 battery tester equipped with 20 parallel, 5V-50A channels. PEC- 

ACT 0550 is a fully programmable machine and each channel can be programmed 
and used independently by the user. The machine has 100 µsec based internal 
sampling, control and capacity calculations and the FPGA hardware controls both 
current and voltage with a ± 0.005% FSD accuracy on the voltage readings and ± 
0.03% FSD accuracy on current readings. 

 ESPEC-ARU 1100 climatic chamber with a volume of 1100 L and a temperature 
range of -45°C/180°C. Temperature change rate is between 4K/minute and 18/K 
minute 
Table 3.1 collects all the characteristics about the different tested chemistries (full 

details from the datasheets are collected in Appendix E). Specifically, the tested Li-ion 
cells are the following ones: 

                                                      
2 C-rate is normally used to define the magnitude of current-based charge/discharge processes. 

It is the ratio between the current and the nominal cell’s capacity: 

𝐶𝐶 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐿𝐿𝑐𝑐ℎ/𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐ℎ [𝐴𝐴]
 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛[𝐴𝐴ℎ]

 

3 SoC is useful indicator that defines the ratio between the available capacity and the nominal 
capacity of the cell: 

𝑆𝑆𝑛𝑛𝐶𝐶 [%] =
𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  [𝐴𝐴ℎ]
 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛[𝐴𝐴ℎ]
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 Lithium Nickel oxide (LNCO): Boston Power SWING5300 [107]. It is an LNCO cell 
with complex layered Lithium Nickel oxide (LiNi0.8Co0.2O2) as the cathode, graphite 
as the anode, Lithium hexafluorophospate (LiPF6) as the electrolyte and 
Polyvinylidene fluoride (PVDF) as the separator [108]. 

 Lithium Iron Phosphate (LFP): A123 ANR26650 [109]. It is an LFP cell with 
Li0.1FePO4 structure as cathode, graphite as anode and carbonate-based Li-salt as 
electrolyte. Doped Nanophosphate™ is used to reach higher performances instead of 
conventional phosphates. 

 Lithium Titanate Oxide(LTO): GWL POWER LY-LTO-30Ah [110]. It is an LTO cell 
that uses nano particles of the mixture of lithium titanium oxide compounds (e.g. 
Li2TiO3, Li4O4Ti, Li4Ti5O12) as cathode, unknown cathode structure (not-declared by 
manufacturer) and dry powder electrolyte.  
 

 
Figure 3.1 Experimental setup at ESReC lab located in Nidau, Switzerland 

 

Table 3.1 Lithium-ion cells specifications from manufacturers’ datasheets (Appendix F) 

Cell 
Voltage 
Range 
[V] 

Capacity 
[mAh] 

Energy 
[mWh] 

Energy 
Density 
[Wh/kg] 

Power 
Density 
[W/kg] 

Operating 
Temp. 
[°C] 

Cycles 
(DoD) 

LNCO 2.75 – 4.2 5300 19345 207 1000 -20 / +60 
>1000 (100 %) 
>2000 (90%) 
>3000 (80%) 

LFP 2 – 3.6 2500 8250 108 2600 -30 / +55 >1000 (100%) 
LTO 1.85 – 2.75 30000 72000 45 900 -20 / 45 >10000 (80%) 
  

CELLS UNDER TEST
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3.2 IEC 62660-1 test procedure 

The IEC 62660-1 international standard is designed for the characterization of lithium 
ion cell in Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs). The 
standard distinguishes between three main categories of tests: 
 Specific performance tests: characterizing the device in terms of energy and power 

densities and efficiencies. These tests last at maximum a few days and they aim at 
characterizing the battery performance depending on temperature and current for a 
specific life time condition; 

 Storage tests: which last about one month and mainly aim at evaluating the retention 
capacity as well as the power density when the battery is subjected to high ambient 
temperature without cycling; 

 Cycle life tests: which last about six months and aim at evaluating the degradation of 
battery performance due to battery cycling. Measurements aim at evaluating capacity, 
dynamic capacity, and energy efficiency in both charge and discharge. 
In the following, the focus is on the performance tests, leaving to following chapters 

the analyses about the storage and cycling tests (Chapter 7). Specifically, the standard 
distinguishes between: capacity tests (section 7.2 of IEC 62660-1), power tests (section 
7.4 of IEC 62660-1) and efficiency tests (section 7.8 of IEC 62660-1).  

Capacity test 
The capacity test allows the gravimetric and volumetric energy densities computation. 

It involves the repetition of the same procedure at different ambient temperatures (-20°C, 
0°C, 25°C, 45°C) and for two different discharged currents (1/3 C, 1 C). The test 
procedure is made up of the following steps (Figure 3.2): 
1. Thermal stabilization4 at the chosen temperature. 
Full charge phase: 
 Discharge the cell down to its low voltage limit with a constant current of 1/3 C. 
 Charge the cell as indicated by the manufacturer. The charge phase is normally 

divided in two subsequent steps: 
− Constant Current (CC) phase in which the cell is charged by controlling the 

current flow until it reaches its maximum voltage limit. 
− Constant Voltage (CV) phase in which the cell is charged by controlling the 

voltage until the current decreases under a specific threshold (typically a 
percentage of the rated capacity). 

In the case of LNCO cell the cell is charged at 0.7C until it reaches 4.2V, then the 
cell is maintained at 4.2V until the drained current is below 50mA (∼1%). 

Discharge down to its low voltage limit with a CC of 1/3 C. 
Full charge phase as indicated by the manufacturer. 
Discharge down to its low voltage limit with a CC of 1 C or 1/3C 

The energy density (gravimetric) ρed is then computed as follows: 

 
𝜌𝜌𝑒𝑒𝑒𝑒 =

∫ 𝐿𝐿𝐶𝐶(𝑟𝑟)𝑑𝑑𝑟𝑟
𝑊𝑊

     (3.1) 

Where the numerator is computed for the two current rates prescribed in steps 3 and 

                                                      
4 Thermal stabilization is considered to be reached if after an interval of 1 h, the variation of 

the cell temperature is lower than 1 K. 
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5, while the denominator is the weight W of the cell. 

Power test 
The power test allows the gravimetric and volumetric power densities computation. It 

involves the repetition of the same procedure at four different ambient temperatures 
(-20°C, 0°C, 25°C, 45°C) and for three different states of charge (SoC; 80%, 50%, 20%). 
The test procedure is made up of the following steps (Figure 3.3): 
1. Thermal stabilization at the chosen temperature. 
2. Full charge phase (point 2 of the capacity test). 
3. Discharge at CC of 1/3 C until the selected SoC is reached. 
4. Pulsing periods phase: 
 Discharge at given C-rates for 10 s. 
 Pause for 10 s. 
 Charge at given C-rates for 10 s. 
 Pause for 10 s. 
 Repeat at the following C-rates: 1/3 C, 1 C, 2 C, 5 C, maximum current (Imax) 

 
Figure 3.2 Example of capacity test procedure IEC 62660-1 on LNCO cell 

 
Figure 3.3 Example of power test procedure IEC 62660-1 on LFP cell 
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declared by the manufacturer. 
5. Discharge at CC of 1/3 C until the minimum voltage. 
6. Repeat from point 2 for the next SoC condition. 

The gravimetric power density ρpd is computed as follows: 

 𝜌𝜌𝑝𝑝𝑒𝑒 =
𝐶𝐶𝑒𝑒𝑛𝑛𝑒𝑒 ∙ 𝐿𝐿𝑛𝑛𝑎𝑎𝑚𝑚

𝑊𝑊
     (3.2) 

Where Vend is the measured voltage at the end of the pulsed period. 

Efficiency test 
The efficiency test allows the evaluation of the coulomb and energy efficiencies. It 

involves the repetition of the same procedure at different ambient temperatures (-20°C, 
0°C, 25°C, 45°C). The test procedure is made up of the following steps (Figure 3.4): 
1. Full charge phase (point 2 of the capacity test). 
2. Thermal stabilization of 16 hours at the chosen temperature. 
3. Discharge at CC of 1/3 C until the minimum voltage. 
4. Resting time of 4 hours. 
5. Full charge phase as prescribed by the manufacturer. 
6. Resting time of 4 hours. 
7. Discharge at CC of 1/3 C until the minimum voltage. 

The Energy efficiency is computed as follows: 

 
η𝑒𝑒 =

(∫ 𝐿𝐿𝐶𝐶(𝑟𝑟)𝑑𝑑𝑟𝑟)𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷
(∫ 𝐿𝐿𝐶𝐶(𝑟𝑟)𝑑𝑑𝑟𝑟)𝑆𝑆𝐷𝐷

  (3.3) 

Where the numerator is the discharge energy of step 7 and the denominator is the 
charge energy of step 5. 

 

3.3 Additional test procedures for performance evaluation 

The IEC 62660-1 procedure do not accurately represent the cell performance outside 

 
Figure 3.4 Example of efficiency test procedure IEC 62660-1 on LTO cell 
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the operating conditions of automotive applications. The main limiting factors are: 
 The current rates used for the evaluation of capacity and efficiency are very low. 

Energy densities are computed at a maximum of 1 C while energy efficiencies are 
evaluated at 1/3 C.  

 The charging process is a full-charge process (CC+CV) that represents the typical use 
in EV applications: after driving periods the EV is normally left in charging stations 
where the BESS is charged as best as possible (i.e. as indicated by the manufacturer).  
Hereinafter, two alternative procedures are proposed that want to fully characterize 

electrochemical cells performances independently from the specific final application. 

Ragone test 
Ragone test involves the computation of the energy density as a function of the power 

density. It requires the repetition of the same procedure at four different ambient 
temperatures (-20°C, 0°C, 25°C, 45°C) and different power density values (see Table 
3.2). The test procedure is made up of the following steps (Figure 3.5): 
1. Thermal stabilization at the chosen temperature. 
2. Full charge phase (point 2 of the capacity test). 
3. Discharge at CC of 1/3 C until the minimum voltage. 
4. Charge at a specific power density until the maximum voltage  
5. Full charge phase as prescribed by the manufacturer 
6. Discharge at a specific power density (the same value of point 4). 
7. Discharge at CC of 1/3 C until the minimum voltage. 
8. Repeat from point 4 for the next power density value. 

The energy density is then computed as in equation (3.1) given the measurements of 
step 6 for each value of power density. By relating the different obtained values, it is 
possible to outline the Ragone plot. 

Table 3.2 Power density values adopted in Ragone tests for LNCO and LFP lithium-ion cells 
Cell Power density [W/kg] 
LNCO 50 – 100 – 400 – 800 – 1000 – 1200 – 1400 
LFP 50 – 100 – 400 – 800 – 1200 – 1600 – 2000 – 2800 - 3200 

 
Figure 3.5 Example of Ragone test procedure on LNCO cell 
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Efficiency curve test 
This test aims at providing energy efficiency values as a function of the C-rate. It 

involves the repetition of the same procedure at four different ambient temperatures 
(-20°C, 0°C, 25°C, 45°C) and different C-rates values (Table 3.3). The test procedure is 
made up of the following steps (Figure 3.6): 
1. Thermal stabilization at the chosen temperature. 
2. Full charge phase as prescribed by the manufacturer. 
3. Cycling between the voltage limits (CC mode only) until the regime condition is 

reached at the specific C-rate. 5 
4. Computing the energy efficiency as in equation (3.3). 
5. Repeat point 3 for the next C-rate 

3.4 Discussion on performances 

Energy/Power performances 
Energy density and power density are meaningful indicators used to compare the ability 
of different electrochemical devices in sustaining prolonged periods of charge/discharge 

                                                      
5 The regime condition is reached when the coulombic efficiency is in the range of 

100%±0.1%. Coulombic efficiency is defined as follows: 

 
( )
( )
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c
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η
∫
∫
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If the coulombic efficiency is far from the unit, it means either that strong parasitic reactions take 
place in the cell or the cell has not reached a steady state condition yet. The latter is typical after 
a slow charge process followed by a discharge at high C-rate: the strong asymmetry of the working 
cycle brings the coulombic efficiency to values consistently less than the other ones.  

 
Figure 3.6 Example of Efficiency curve test procedure on LFP cell 

Table 3.3 C-rates values adopted in efficiency curve tests for LNCO and LFP lithium-ion cells  
Cell C-rates 
LNCO 0.1C – 0.5C – 1C – 2C – 4C 
LFP 0.5C – 1C – 2C – 5C – 10C 
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conditions or in answering to high currents peaks. 
IEC 62660-1 results (Figure 3.7) shows that all the cells: 

 underperform at very low temperatures. At -20°C there is a significant decrease of the 
energy content: the energy density is reduced in all cases: LNCO (-52%), LFP(-48%), 
LTO (-59%); 

 perform better at higher temperature but may degrade faster [73], [111]; 
 perform better at lower C-rate. LNCO shows a decrease of 10% in the energy density 

when moving from 1/3 C to 1 C discharge rate, while LFP, LTO tolerate higher 
currents and show less reduction in energy density. 
In standard conditions, one cell (the LNCO: 180 Wh/kg at 25°C) obtains better 

performance if compared to the others (LFP stands at values 1/3 lower while LTO 
technologies fall drastically in the energy performance). This can be explained by the 
peculiarities of each technology (see section 2.3). 

The Ragone plot confirms the statement by fully characterizing the performance in 
terms of both energy and power density (Figure 3.8-A). The plateau before the “knee” 
represents the amount of energy storable in the battery, while the “knee” clearly indicates 
the limiting power at which to use the stored energy. At power greater than the “knee”, 
only a portion of the stored energy can be used. The higher horizontal plateau confirms 
the better energy density of the LNCO cell if compared to the LFP, but a lower power 
density at which the full energy can be used (1000 W/kg vs 2000 W/kg).  

Figure 3.8-B shows the Ragone plot for the same cell (LNCO) at different ambient 
temperatures. Again, the Ragone plot proves to be a comprehensive way to describe the 
cell performance. The decrease of the horizontal plateau provides the same information 
as the capacity test IEC 62660-1 (Figure 3.7), while the variation in the “knee” position 
highlights a decrease in the power performance with decreasing temperature. Overall, the 
cell is increasing its ability to release energy with temperature, ensuring more and more 
deliverable power. 

Overall, BESS designers should not underestimate the differences in energy and power 
performances of the different available chemistries. Each technology responds differently 
to changes in external conditions. The specific application that decides the severity of 
operations, together with the environmental conditions have to be taken into account in 
the design phase. For instance, thinking about stationary applications, LFP technology 
fits better power-driven applications (e.g., frequency regulation), while LNCO is more 

 
Figure 3.7 IEC 62660-1: capacity test results on 4 lithium-ion cell at 1/3C and 1C 
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suitable for energy-driven ones (e.g., load levelling). 

Energy efficiency 
If product datasheets published by cell manufacturers provide information on energy 

density and power density, the same cannot be said about the efficiency that is rarely 
present in the official documentation. Energy efficiency relates to the amount of extracted 
and injected energy between two SoC limits. IEC 62660-1 results (Figure 3.9) show that 
severe temperatures affect performance. At ambient temperature, the efficiency stands in 
the range of 92% to 97%. Low and high temperatures could impact up to 20 points of 
efficiency. Moreover, Figure 3.10-A and Figure 3.10-B show how efficiency is affected 
also by the specific operating conditions.  

Specifically, Figure 3.10-A shows a clear dependence on the current rate. Lithium-
ion cells can exhibit very low efficiencies compared to values reported in literature [112], 
[113]. The LNCO cell loses more than 20% of efficiency when the C-rate increases from 

 
Figure 3.8 (A) Ragone plot for LNCO and LFP cells @ 25°C, (B) Ragone plot for LNCO at 
different ambient temperatures 

 
Figure 3.9 IEC 62660-1: efficiency test results (1/3C – DoD 100%) on 3 different Li-ion cell 
chemistries. 
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0.1C to 3C. LFP and LTO cells are less prone to this decrease due to a lower internal 
resistance, which results in a higher power density.  

Additionally, Figure 3.10-B shows that also the SoC could affect energy efficiency. 
While, the variations in the efficiency are negligible for SoC levels in the range of 20% 
to 80%, a significant difference is observed at very low SoC (5% ± 5% SoC) where the 
measured efficiency for current rates between 0.5 C and 3 C is about 10% lower than the 
other SoCs. The same thing, but with minor extent, can be said for high SoC (95% ± 5% 
SoC) where the measured efficiency starts to deviate for c-rates above 1C. 

This remarkable dependency from the operating conditions could have clearly a 
strong impact in the investment evaluation. Much attention is being paid to the capital 
costs (CAPEX) of BESS, that is the initial investment. However, the total cost of 
ownership of BESS includes other factors such as, in some cases, air conditioning to 
maintain the system in its operating temperature range, and in all cases by the cost of 
electricity loss over a charge/discharge cycles. Both are determined by the efficiency of 
the battery. BESS designers should then pay attention to the specific application for 
which the battery will be asked to work.  

3.5 Performances in real-life application 

Generally, in real applications, the currents fluctuate drastically and they cannot be 
fixed to desired values in the charging phase. For instance, in stationary applications, the 
primary control reserve (PCR) service is based on power injections that must follow 
variations in frequency. Since frequency deviations are stochastic, the current profile 
applied to a hypothetic BESS providing PCR can be extremely variable. This requires 
the BESS to operate continuously at variable C-rates in both charge and discharge 
conditions. In these cases, the efficiency will also fluctuate and it cannot be assumed 
constant. 

Consequently, we tested the LNCO cells for PCR to better understand the 
performance in non-conventional applications6. We adopted a specific droop control law 
which takes into account the peculiarities of BESS when compared with traditional power 

                                                      
6 The power injection from the BESS has been considered having negligible influence on the 

frequency, given the much smaller BESS power than grid power. 

 
Figure 3.10 Energy efficiency measured at ambient temperature as function of the C-rate for 
(A) different Li-ion cell chemistries (DoD 100%), (B) different SoC (LNCO cell) 
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plants (more details about the theoretical assumptions can be found in Chapter 8). A 
BESS can in fact provide their full capacity for PCR. Once the maximum allowed C-rate 
is fixed, a BESS can operate from 0% to 100% of the current limit. Moreover, a BESS 
will normally operate at modest C-rates but, if required, can provide higher C-rates. In 
our tests, it is assumed that: 
 The regulation band is linked to the maximum C-rate (i.e., maximum current Imax) 

the cell has to provide. A regulation band of 100% means that the cell can deliver a 
maximum current of 1C (the average C-rates during the PCR provision will be 
lower). Different configurations have been tested: from 50% to 300%. 

 The dead band half-width ∆fdb is 20 mHz. The droop σ is assumed constant at 0.21%. 
Therefore, the maximum allowed frequency deviations ∆fmax (at which the cell will 
provide Imax) is of 100 mHz. The specific power profile (in p.u. of Pmax) for PCR can 
be derived as follows: 

∆𝑃𝑃
𝑃𝑃𝑛𝑛𝑎𝑎𝑚𝑚

=

⎩
⎨

⎧
0, |f| < ∆𝑓𝑓𝑒𝑒𝑑𝑑

−
∆𝑓𝑓 50⁄
𝜎𝜎

, |f| > ∆𝑓𝑓𝑒𝑒𝑑𝑑 ⋀ |f| < ∆𝑓𝑓𝑛𝑛𝑎𝑎𝑚𝑚
1, |f| > ∆𝑓𝑓𝑛𝑛𝑎𝑎𝑚𝑚

 (3.4) 

 Given the selected maximum C-rate the power profile can be adapted to the particular 
battery/cell under test assuming that: 

      𝑃𝑃𝑛𝑛𝑎𝑎𝑚𝑚 = 𝐶𝐶𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝐿𝐿𝑛𝑛𝑎𝑎𝑚𝑚 (3.5) 

 The initial SoC corresponds to the open-circuit voltage of the cell being equal to the 
rated voltage.  

 SoC limits are variable. Two different ranges have been tested: 0-100% and 20-80%. 
The frequency profile is derived from measurements taken at the Politecnico di 

Milano within the framework of the IoT-StorageLab (Appendix B), representative of the 
behaviour of the Italian power system. In Figure 3.11 an example of one hour of PCR is 

 
Figure 3.11 Input frequency deviation profile, power set point determined by the droop 
regulator, and measured power, C-rate and voltage on an LNCO cell used for primary control 
with a 200% regulation band 
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presented. It refers to a regulation band of 200%, meaning that a maximum C-rate of 2C 
is assumed. Given the rated voltage of the cell, the maximum power Pmax is around 39W 
as per equation (3.5). We applied the droop law starting from the measured frequency 
deviation Df (Figure 3.11-A) to obtain the power (Pdroop in Figure 3.11-B) that the cell 
must provide as per equation (6). However, the cell must respect the imposed SoC limits. 
Pcell is the real power provided for PCR (Figure 3.11-B). The difference with Pdroop results 
in a service unavailability. The C-rate and voltage trends (Figure 3.11-C/D) reflect the 
operating state of the cell. In particular, the cell stays at the minimum SoC around the 
minute 50, which corresponds to the service unavailability visible on Figure 3.11-B. 

Table 3.4 shows the measured efficiency on LNCO cell. The measured efficiency 
decreases with the increase in the C-rate, as expected as from Figure 3.10-A, and it 
increases if a narrow SoC range is used, according to Figure 3.10-B. Lower efficiency 
means more SoC fluctuations and more probability that the battery will reach its SoC 
limits being unavailable to provide the service, perhaps incurring in penalties. Therefore, 
the correct estimation of efficiency is of straightforward importance in order to estimate 
the correct operating costs of the BESS installation. 

3.6 Summary 

In this chapter BESS performances have been deeply discussed. Experimental 
measurements have been presented about a technological comparison among three 
different Li-ion chemistries. Energy density, power density and efficiency have been 
computed in different testing conditions (temperature, SoC, operating rate). The analyses 
have been carried out at cell level by following the IEC 62660-1 international standard 
in parallel with novel testing procedures. Lab measurements have been obtained in the 
framework of the collaboration between the Politecnico di Milano (Electric Power 
Systems research group) and CSEM-PV Center (Swiss Center for Electronics and 
Microtechnology). The results highlight the strong differences among chemistries. The 
careful analysis of the IEC 62660-1 testing protocols and the evaluation of the different 
operating conditions between automotive and stationary applications, suggest the need 
for additional testing procedures tailored for the latter. Consequently, two novel 
procedures to overcome the limitations of IEC 62660-1 have been proposed. The Ragone 
test that links energy density and power density to show the characteristics (energy vs. 
power) of each tested chemistry. The efficiency test as a function of the C-rate allows the 
correct evaluation of its average value for stationary applications, whereas the 
charge/discharge currents are highly variable. These testing procedures are demonstrated 
to be useful to system designers for a correct sizing as well as for the evaluation of the 
total cost of ownership of a BESS in specific final applications. 

Table 3.4: Measured and calculated efficiency of an LNCO cell used for PCR provision under a 
measured, 24-hour frequency deviation profiles and seven different sets of control conditions 

Test 
N° 

Regulation 
band 

C-rate 
(average) 

SoC 
min 

SoC 
max 

Efficiency 
at 25°C 

Availability 
for PCR 

1 50% 0.13 0% 100% 97.92% 100.00% 
2 100% 0.26 0% 100% 96.15% 100.00% 
3 100% 0.23 20% 80% 96.16% 92.14% 
4 200% 0.47 0% 100% 91.24% 92.01% 
5 200% 0.36 20% 80% 94.86% 80.10% 
6 300% 0.62 0% 100% 88.00% 86.29% 
7 300% 0.46 20% 80% 93.38% 76.84% 
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In general, all the lab tests performed and presented above represented the reference 
of comparison for the analysis and development of a critical bibliographic review that 
aim at identifying the appropriate mathematical models capable of reproducing the 
dynamic behaviour and final performances measured in the laboratory. 
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CHAPTER  4 

 
 
 
 

4 Review of approaches to battery 
modelling 

 
 
 
Experimental measurements of Chapter 3 have demonstrated that BESS can show 

high variabilities in their performances, especially if used for unconventional 
applications (i.e. stationary, EVs etc.). Nominal data provided by manufacturers’ 
datasheets are insufficient and far from being representative of the real battery behaviour. 
Performances as power density, energy density, efficiency and lifetime depend on many 
factors including temperature, current profile, SoC and Depth of Discharge (DoD). 
However, it is not plausible to map out the performances in all possible conditions 
through experimental approaches both for cost and time reasons. 

Given this perspective, accurate battery modelling can help in different tasks: (i) 
predicting and analysing the battery behaviour in many different operational conditions 
by using specific sets of simulations; (ii) shortening development time of systems or 
components, (iii). finding optimal operation strategies (i.e. BMS development); (iv) 
identifying operating limits that allow to achieve best lifetime; (v) evaluating the techno-
economic viability of battery systems in a specific application. 

There are existing different technological levels of battery modelling: (i) the materials 
level in which the single electrodes/electrolytes structures and materials are investigated; 
(ii) the cell level in which the founding element of any BESS is described as seen at its 
terminals (e.g. performance test of Chapter 3 are at cell level); (iii) the module level in 
which the assembly of several cells together with the BMS is modelled as the main block 
within the BESS; (iv) the system level in which the BESS is modelled as a complete stack 
of modules including the battery inverter.  

Battery modelling approaches can focus on one or more of the above technological 
levels while tackling different tasks. In this chapter, a literature review on battery 
modelling (mainly at cell level) is presented. The models have been grouped into four 
general different approaches: electrochemical models, empirical (analytical) models, 
electrical models and stochastic models. Moreover, two main tasks are identified for 
battery models: the estimation of the operating conditions (i.e. SoC estimation), the 
estimation of the lifetime (i.e. SoH estimation). These two main aspects create the 
frameworks of discussion through which the modelling approaches are deepened and 
compared. 
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4.1 Battery models: accuracy and computational effort 

Battery modelling differs in regards to the degree of details they use to reproduce the 
battery behaviour. Some of them look at the battery like a “black-box” characterized by 
an energetic content that fluctuate during charge/discharge cycles, others reproduce the 
electric quantities seen at the battery terminals (i.e. voltage and current), some others go 
deeply into the chemical representation dealing with reactant concentration and 
electrodes materials. However, higher degree of precision means generally higher 
elaboration/simulation time that can influence the usability of the proposed model in the 
final applications. 

Over the years, various models were developed for different areas of application. They 
aim at studying, estimating and predicting the operating conditions and aging of a battery. 
We can group them in four main families/categories [114]–[116]: 
 Electrochemical models: which are known as the most accurate but difficult to 

develop. They consider the chemical reactions by accounting for mass, energy and 
momentum balances for each species, phase and component of the cell. Therefore, 
electrochemical modelling typically involves a system of coupled partial differential 
equations that must be solved in time and spatial dimensions. They are able to predict 
local distribution of concentration, electrical potential, current and temperature inside 
the cell, besides current and voltage at the external terminals. Therefore, they tend to 
be relatively complex and they typically have various parameters to determine. 
Despite the chance of gathering reasonable values from literature, the parameters must 
be evaluated through several experiments in order to develop the full model [117]. 
Given the inherent complexity, they are mostly used in the structural design of 
batteries. For instance, they can be used to evaluate the sensitivity of the reaction rate 
to different electrode structures. 

 Analytical models: which are based on an abstract vision of the electrochemical cell 
behaviour. The battery is described by few analytical equations which do not consider 
electrochemical processes, but they are empirically fitted. These models usually focus 
on the evaluation of the SoC of the battery based on energy balances. Voltage or 
current characteristics of the battery are normally neglected. Nevertheless, in some in-
depth cases, they can account for the nonlinearities inherent to the battery operations. 
Due to the simplicity of these models, they are well suited for energy planning studies 
and first choice for sizing tools [118]. However, the simpler models adopted could 
result inaccurate: the errors in predicting battery performance could be relatively high. 

 Stochastic models: which aim at representing charging and discharging phenomena 
as stochastic Markovian processes. The complex electrochemical reactions are 
assumed to be significantly affected by random variables as ambient temperature and 
usage profiles [119]. The operation of the battery is modelled by describing the 
various states the device can be in, together with the consumption rates in those states 
and the transition probabilities between the states. In practice, the battery is usually 
represented by a Markov chain with N+1 states of charge, enumerated from 0 to N. 
The number of the battery state is linked to the number of units of charge available in 
the battery [120]. This approach can be particularly accurate in predicting end-of-
discharge (EoD) and end-of-life (EoL) parameters. However, these models do not take 
into account the physical aspects of battery operations, their usage must be carefully 
evaluated. 

 Electrical circuit models (also electrical models): which focus on the electrical 
properties of a battery. In these models, an equivalent electric circuit is used to 
represent the battery dynamics by reproducing voltage and current characteristics at 
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the external terminals. These models could be very simple, with few circuital elements 
(e.g. voltage source to model SoC and a resistance in series for losses), or more 
complex, with each circuital element related to a precise physical phenomenon 
occurring in the cell (e.g. Warburg impedance). These models are computationally 
less expensive than electrochemical models. However, if their development, (i.e. the 
elements’ parameters identification process that can take quite some effort) is well 
done, they can reach a good degree of accuracy. The main drawback lies in the need 
of a great amount of data, especially if the objective is to assess the on-line update of 
the model during its lifetime. However, due to the wide spectra of possible equivalent 
circuits, these models find application in a broad range of sectors, comprising battery 
monitoring and design. [114] 
Figure 4.1 resumes the above-mentioned approaches comparing them in terms of 

accuracy vs. simulation-time. Electrochemical models are the most advanced ones but 
out of the scope of this thesis given their very high time to obtain any usable information. 
Empirical models seem instead to be good candidates especially for their fast simulation 
time. However, their results should be validated comparing them with more accurate 
models. Given the similar simulation times between stochastics and electrical model, 
electrical models will be chosen as the main candidate for BESS modelling in the part II 
of the thesis. 

4.2 Modelling of operating conditions (SoC estimation) 

BESS models should be able to capture those quantities which characterize battery 
operations. The two most important are the voltage and the capacity, the product of which 
can be related to the energetic content. These quantities change during battery operations: 

 
Figure 4.1 Accuracy vs. simulation-time for different battery modelling approaches 

Simulation
Time

Accuracy

R

I

V. . . State
1

State
N-1

State
N

hold hold

hold

charge

charge

y = f (x)

ELECTRICAL MODELS

ELECTROCHEMICAL MODELS

STOCHASTIC MODELS

ANALYTICAL MODELS

VOC

Negative 
Electrode

Positive
ElectrodeElectrolyte



 Review of approaches to battery modelling 

 

66 

charge or discharge processes increase or decrease the available capacity; operating 
currents affect the voltage shown at the battery terminals; operating temperature affect 
the overall performances. This means that estimating the operating conditions of a battery 
is not straightforward.  

The main challenge of any model is the estimation of the actual condition of the 
battery, which is normally represented by the SoC indicator. SoC estimators are usually 
the core of BMS systems. Apart from fulfilling the task of limiting the operating range 
of the cells (i.e. Voltage limits), BMS must detect the actual status of any cell that belongs 
to the monitored module/pack. This serves to activate proper strategies for equalizing and 
balancing the charge levels among the cells and increase the available capacity at module 
level. The more accurate the SoC estimation, the more capacity can be fluxed and the 
less safety margins have to be used to avoid unwanted damage to the system. This fact 
directly impacts on the reliability, availability and ultimately on the total cost of the 
BESS. 

SoC estimation deals with the capacity of a battery. However, capacity is a relative 
quantity since it is defined for a specific rating of use: usually the nominal capacity on a 
datasheet is defined for a specified value of current. The lower the current, the higher the 
available capacity shown by the battery. As the intensity of the current is increased, the 
deviation from the nominal condition can became significant, affecting severely the SoC 
estimation. This is known as rate capacity effect and is shown in Figure 4.2-A. The 
capacity lost can be recovered by following alternative discharge procedures. If the cell 
is allowed to relax by following the so-called pulsed discharge rate, the rate capacity 
effect can be compensated to a certain extent. This other non-linear effect is called 
recovery effect and is shown in Figure 4.2-B. 

In the next sections, it is detailed how the proposed modelling approaches describe 
the battery operations and deal with SoC computation. It is also shown how they take 
into account the described non-linearities.  

Electrochemical models 
Using electrochemical modelling means to describe a battery through its 

electrochemical governing equations. This allows to set up a problem consisting of a 
system of partial differential equation, to be solved in time and space domain. In general, 
some founding equations must be highlighted from which to start the electrochemical 
modelling process.  

First, the thermodynamic principles are investigated. The two half- cell reactions that 
take place at the electrodes are studied at equilibrium. The Nernst law gives the 

 
Figure 4.2 nonlinear battery behaviours: (a) rate capacity effect; (b) recovery effect 
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equilibrium potential difference for the specific cells: 

 
𝐸𝐸𝑒𝑒𝑒𝑒 = 𝐸𝐸+° − 𝐸𝐸−° −

𝑅𝑅𝑅𝑅
𝑛𝑛𝑒𝑒𝐹𝐹

𝑙𝑙𝑛𝑛�𝑟𝑟𝑖𝑖
𝜈𝜈𝑖𝑖

𝑆𝑆

𝑖𝑖=1

 (4.1) 

Where F is the Faraday constant, ne is the number of electrons involved in the overall 
red-ox reaction and ai represents the activity coefficient of the species i, raised at its 
stoichiometric coefficient. 𝐸𝐸+°   and 𝐸𝐸−°  are the equilibrium electrode potential measured 
with respect to a reference electrode that by convention is the hydrogen one, that has 
“zero” potential. 

If Nernst’s law describe reactions at equilibrium and the maximum energy release for 
a given reaction [121], kinetics governs the non-equilibrium conditions at electrodes and 
in electrolyte. Once a current is drawn from (or injected into) a battery, the equilibrium 
electrode potential is affected by a term called “overpotential” η, negative for reduction 
and positive for oxidation. For example, when a battery is discharging, the terminals 
voltage is lower than the Open Circuit Voltage (OCV). The current density can be directly 
related to the forward and backward reaction rate constants, to the activities of reactants 
and products, and to the potential gradient as per Butler-Volmer equation [122]: 

 
𝑑𝑑 = 𝑑𝑑𝑓𝑓 −  𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑒𝑒𝐹𝐹𝑆𝑆𝐶𝐶0𝑘𝑘𝑓𝑓0𝑟𝑟

−𝛼𝛼𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅 �𝑆𝑆
0+𝜂𝜂 �

− 𝑛𝑛𝑒𝑒𝐹𝐹𝑆𝑆𝐶𝐶𝑅𝑅𝑘𝑘𝑑𝑑0𝑟𝑟
(1−𝛼𝛼)𝛼𝛼𝛼𝛼

𝑅𝑅𝑅𝑅 �𝑆𝑆0+𝜂𝜂 �
 (4.2) 

where if and ib are the forward and backward currents related to the two half reactions 
which can be expressed by the concentration of the oxidizing and reducing species (CO 

and CR) and the reaction rates as a function of the temperatures as per Arrhenius law. 
When the exchange current is high (i = if) and very far from the equilibrium, the 

Butler-Volmer equation can be approximated with the Tafel equation: 

 𝜂𝜂 =
𝑅𝑅𝑅𝑅
𝛼𝛼𝛼𝛼𝐹𝐹

𝑙𝑙𝑛𝑛(𝑑𝑑0) −
𝑅𝑅𝑅𝑅
𝛼𝛼𝛼𝛼𝐹𝐹

𝑙𝑙𝑛𝑛(𝑑𝑑) (4.3) 

In many studies, the loss of overpotential associated to kinetics of reactions at the 
interface electrode/electrolyte is called “activation polarization”. 

The last important phenomenon for evaluating losses in a cell is the mass transport 
process to and from electrode surfaces. Mass transport of charged species and reactants 
follows the Nernst-Planck equation: 

 𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝑟𝑟

= 𝛼𝛼𝑖𝑖𝐹𝐹∇(𝑢𝑢𝑖𝑖𝑐𝑐𝑖𝑖∇∅) + ∇(𝐷𝐷𝑖𝑖∇𝑐𝑐𝑖𝑖) + 𝑅𝑅𝑖𝑖 (4.4) 

Where: ci is the concentration of species i; Di is the diffusion coefficient of ion i 
[cm2/s]. In conditions of electro neutrality (∇∅ = 0), no species generated or depleted 
𝑅𝑅𝑖𝑖=0, one dimensional hypothesis, and constant diffusion coefficient Di, can be 
simplified to the Fick’s second law [122]: 

 𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝑟𝑟

= 𝐷𝐷𝑖𝑖
𝜕𝜕2𝑐𝑐𝑖𝑖
𝜕𝜕𝑥𝑥2

 (4.5) 

The difference in concentration existing between the electrode surface and the bulk 
of the electrolyte results in a concentration polarization which impacts on the 
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overpotential (E = Eeq + η). The SoC indicator is strictly related to concentration of 
reactants. Consequently, its evolution in time has to be determined if one wants to assess 
the SoC trend. 

In practical uses, the structure of the cell is usually simplified and given load profile 
(i.e. application) must be assumed to make the problem numerically solvable. The most 
common approaches (mainly used for Li-ion cells) are the following: 
 Pseudo two-dimensional model (P2D). Electrodes are assumed to be composed of 

identical spherical particles. Ions can move through two spatial coordinates: a radial 
coordinate r (across the spherical particles of active materials in the electrodes) and a 
linear coordinate x (across the cell from the negative to the positive electrode). It is 
called pseudo 2D model since the radial coordinate does not represent a new 
dimension. Authors in [123] where among the first authors to conceive a model based 
on these assumptions. They developed “dualfoil”: a Fortran program based on their 
electrochemical model. It is widely used to simulate battery response to a certain load 
profile (power or current) and check the accuracy of other simplified models. 

 Single particle model (SP): electrodes are assumed to be composed of one single 
spherical particle whose area is equivalent to the surface area of the solid active 
material in porous electrode. Porosity is neglected and ions surface concentration is 
assumed constant along the x-axis of the electrode. The solving process is much faster 
than the P2D model but this model is less accurate especially at high discharge or 
charge currents [124]. 
In general, electrochemical models require a large set of input parameters and have a 

great computational complexity when compared to the other modelling approaches. 
Finite element, partial differential equation solvers are needed in order to simulate battery 
operations. Some examples found in literature are [125]: (i) the finite-difference method 
dualfoil [126], developed in Fortran and based on the Newman’s BAND subroutine in 
which the model is discretized with a determined number of nodes in the spatial direction 
for each variable; (ii) finite volume method (FVM) that discretizes time with various 
schemes; (iii) COMSOL Inc. Multiphysic [127] which employ a finite element method 
(FEM) and offer an implementation for the P2D models [128]; (iv) Finite difference 
method (FDM) or reformulation schemes in spatial coordinates using adaptive solver 
such as FlexPDE [129] and DASSL [130]. The inherent complexity makes 
electrochemical models unsuitable for real time monitoring and/or sizing tools, in which 
a balanced compromise between accuracy and simulation-time is crucial. They are 
usually employed for cell design purposes to enhance cell geometry and material 
developments. Moreover, they can be used as a reference term to validate the accuracy 
of other modelling approaches. 

Analytical models 
Few equations (with different possible degree of details) are used in order to describe 

battery behaviour. Values of parameters are empirically found by experimental data. The 
SoC is computed through charge or energy balances. Due to the simplicity of these 
models, they are the ones more often employed in dimensioning tools. Their simplicity 
comes however at the expenses of accuracy and errors in predicting battery performance 
could be high. In the following, four different approaches of growing complexity are 
presented. 

Empirical models 

Empirical models consider a steady-state operation of the battery since they compute 
the amount of energy that flows through the battery and updates the change in the battery 
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SoC over a given time step [131]–[133]. There is no direct reference to electrical 
quantities like voltage and current, but the battery is described as a system that, due to 
non-ideal behaviour, dissipates some energy. In most of the cases, SoC is assumed 
coincident with the State of Energy (SoE) and updated as follows: 

 
𝑆𝑆𝑛𝑛𝐸𝐸(𝑟𝑟) = 𝑆𝑆𝑛𝑛𝐸𝐸(𝑟𝑟 − 1) +

∆𝐸𝐸(𝜂𝜂)
𝐸𝐸𝑛𝑛

 (4.6) 

Where En is the BESS nominal energy and ΔE is the variation of energy in the given 
time-step that is assumed efficiency dependent. It has to be multiplied by the efficiency 
when power is provided to the battery and divided by the efficiency when released. 

A round trip efficiency ηRT can be experimentally defined as the ratio of energy 
provided during discharge over energy absorbed during charge, at a given operating rate7 
and/or DoD. Round-trip efficiency can be considered as constant [134], or a decreasing 
function of charge/discharge current or power [135]. Quadratic functions of c-rate have 
been demonstrated to be suitable to fit experimental data in Chapter 3 (Figure 3.10): 

 𝜂𝜂𝑅𝑅𝑅𝑅 = 1 −  𝛾𝛾 ∙ (𝐶𝐶 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2 (4.7) 

Describing battery behaviour by its efficiency allows to roughly estimate the SoC 
starting from the manufacturer’s datasheet or simplified experimental tests (no complex 
parameters evaluation is required). However, battery dynamic response, as well as 
voltage characteristics are totally ignored. 

Peukert’s model 

Peukert’s law was developed in order to model the rate capacity effect (i.e. non-linear 
effect that account for the change in capacity at different discharge rates). The actual 
capacity of a battery is given by: 

 𝐶𝐶𝑟𝑟𝑒𝑒𝑓𝑓 = 𝐿𝐿𝑘𝑘∆𝑟𝑟 (4.8) 

Where k is the Peukert coefficient: k = 1 in case of an ideal battery, whose capacity is 
independent on the current; k >1 for real batteries. k varies with temperature and also 
with aging (k increases with the lifetime of the battery). In general, the higher the current 
and the higher k, the shortest the time Δt to arrive at complete battery charge/discharge 
and the smaller the actual discharged capacity.  

SoC could be computed with the so-called coulomb counting method: 

 𝑆𝑆𝑛𝑛𝐶𝐶(𝑟𝑟) = 𝑆𝑆𝑛𝑛𝐶𝐶(𝑟𝑟 − 1) +
𝐿𝐿∆𝑟𝑟
𝐶𝐶𝑟𝑟𝑒𝑒𝑓𝑓

 (4.9) 

Where an average value of I during the time-step can be computed in the case of 
variable current. 

The overall output of Peukert’s law is similar to the variable efficiency described in 
the previous subsection. The difference is that the emphasis is on accumulated charge 
instead of stored energy.  

                                                      
7 E-rate is assumed equal to the C-rate by using a constant nominal voltage: 

𝐸𝐸 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝐿𝐿(𝑘𝑘)
𝐶𝐶𝑛𝑛

𝐶𝐶𝑛𝑛
𝐶𝐶𝑛𝑛

=
𝑃𝑃(𝑘𝑘)
𝐸𝐸𝑛𝑛
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Sheperd model 

Sheperd’s model describes battery behaviour by using electrical quantities [136]. 
However, it does not belong to electrical models because it reproduces the voltage 
characteristic through analytical equations rather than electrical circuits. It follows: 

 𝐶𝐶(𝑟𝑟) = 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑅𝑅𝐿𝐿(𝑟𝑟) −
𝜇𝜇

𝑆𝑆𝑛𝑛𝐶𝐶(𝑟𝑟)
 (4.10) 

Where V(t) is the battery voltage at time t, Vnom is the rated voltage, R represents the 
internal resistance of the cell, I(t) is the cell current and µ is a parameter to fit and adapt 
the model to real measurements. This equation is assumed valid both during charge and 
discharge.  

In [137] authors tested the Sheperd’s model obtaining good results during discharge 
while significant errors during charge. The same authors proposed an improvement based 
on correction factors that account for temperature, currents and SoC. In [138] another 
modification is proposed based on a parametric representation of the charge/discharge 
curve shape: a first exponential trend followed by a linear one (Figure 4.2-a). the voltage 
is described in the following form: 

 𝐶𝐶(𝑄𝑄𝑖𝑖) = 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑅𝑅𝐿𝐿(𝑟𝑟) − 𝐾𝐾
𝑄𝑄

𝑄𝑄 − 𝑄𝑄𝑖𝑖
+ 𝐴𝐴𝑟𝑟−𝐵𝐵𝑄𝑄𝑖𝑖 (4.11) 

where Q is the battery capacity and Qi is the actual battery charge (by coulomb 
counting method), A is the amplitude of the exponential zone and B [Ah-1] is the time 
constant inverse of the exponential zone.  

KiBaM model 

In this model the authors describe the battery with an hydraulic equivalent circuit 
[139]. The battery is treated as a two-tank system: one with the available charge (q1), 
immediately usable by the load, and the other one with the chemically bound charge (q2). 
The tanks are divided by valve with a fixed conductance k’ (which corresponds to the 
rate constant of the chemical reactions). The rate at which bound charge becomes 
available is proportional to the difference in “head” of the two tanks (h2-h1). The battery 
is considered totally discharged when q1=0. SoC can be evaluated as: 

 𝑆𝑆𝑛𝑛𝐶𝐶 =
𝑞𝑞1

𝑞𝑞1,𝑛𝑛𝑎𝑎𝑚𝑚
 (4.12) 

Given a constant charge/discharge current, the equations describing the battery 
behaviour are the followings: 

 𝑑𝑑𝑞𝑞1
𝑑𝑑𝑟𝑟

= −𝐿𝐿 − 𝑘𝑘′(ℎ1− ℎ2) (4.13) 

 𝑑𝑑𝑞𝑞2
𝑑𝑑𝑟𝑟

= 𝑘𝑘′(ℎ1− ℎ2) (4.14) 

The parameters which need to be found are qmax which is the maximum capacity of 
the battery, c which is the capacity ratio (i.e. the fraction of total charge in the battery 
which is readily available) and the rate constant k’. 
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KiBaM model accounts for the Rate capacity effect: at high discharge rates, the 
available tank empties quickly and very little of the bound energy can be converted to 
available energy before the available tank is empty; at slower discharge rates, more bound 
energy can be converted to available energy before the available tank empties, so the 
apparent capacity increases. KiBaM model accounts also for the recovery effect: when a 
load is applied to the battery, the available charge reduces, and the height difference 
between the two tanks grows. When the load is removed, charge flows from the bound-
charge well to the available-charge well until h1 and h2 are equal again. So, during an 
idle period, more charge becomes available and the battery lasts longer than when the 
load is applied continuously. 

Voltage variation over time is also computed within KiBaM model as a linear 
function: 

 𝐸𝐸 = 𝐸𝐸𝑛𝑛𝑖𝑖𝑛𝑛 + (𝐸𝐸𝑛𝑛𝑎𝑎𝑚𝑚 − 𝐸𝐸𝑛𝑛𝑖𝑖𝑛𝑛)𝑆𝑆𝑛𝑛𝐶𝐶 − 𝐿𝐿𝑅𝑅𝑛𝑛 (4.15) 

Where R0 is the internal resistance. This model was proposed by the authors as a valid 
substitute of electrical models given the small number of parameters required, often 
derived simply by manufacturer’s data. For this reason, KiBaM is the reference model 
also for some of the well-known sizing tools [118]. One of the main drawbacks is that it 
is mostly applicable to lead acid batteries and not easily extendible to other technologies 
(e.g. Li-ion).  

Diffusion Model 

This model is based on the diffusion of the ions in the electrolyte [140]. It was 
validated with data of Li-ion batteries [141]. The authors describe the evolution of the 
concentration of active species in the electrolyte during battery discharge. Processes 
occurring at the electrodes are assumed to be identical and the symmetry of the battery 
allows to consider only one electrode. 

Figure 4.4 shows the steps occurring in the semi-cell during discharge. At first the 
battery is full charged and the concentration of electroactive species is constant. When a 
load is applied, the chemical reaction occurring at the electrode starts consuming species 
near to its surface. A gradient is created across the electrolyte and this allows ions to 
move by diffusion. When the load is removed, the battery has time to recover part of the 
charge by redistribution of electroactive species in the electrolyte (i.e. recovery effect).  

The concentration of the electro-active species at time t and distance x is denoted by 
C(x,t). The maximum length is w. When the battery is completely charged, concentration 
is constant over the length of the electrolyte: C(x,0)=C*. The battery is considered empty 
when C(0,t) drops below Ccut-off and the reaction can no longer be sustained. 

After solving the diffusion equations described by Fick’s law (equation (4.5)), an 

 
Figure 4.3 Physical picture of the KiBaM model as proposed in [139] 
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expression for σ, the apparent charge lost until time t, can be found of the form: 

 𝜎𝜎(𝑟𝑟) = 𝑙𝑙(𝑟𝑟) + 𝑢𝑢(𝑟𝑟) = �𝐿𝐿(𝑟𝑟)𝑑𝑑𝑟𝑟 + �𝐿𝐿(𝑟𝑟)𝑟𝑟(𝑟𝑟)𝑑𝑑𝑟𝑟 (4.16) 

The apparent charge lost can be separated into two parts: the charge lost to the load 
l(t), which is simply the integral of the current over time, and the unavailable charge u(t). 
The first is the charge used by the device, effectively gone out from the battery, the 
second is the charge which stays unused in the battery (i.e. rate capacity effect). These 
concepts of available and bound charge are the ones already discussed in the KiBaM 
model, which can be thought of a discretization of the diffusion model.  

This model has the advantage of being physically justified since it is developed 
starting from physical laws that describe processes occurring in the cell. However, it is 
simplified if compared to electrochemical models, entailing less equations and a much 
shorter computational time. The drawback of the model is the absence of voltages in the 
model outputs. It can instead be used to compute battery discharge time, as a substitute 
of Peukert’s law, to optimize battery management systems. 

In [114], the authors compared Peukert’s model, KiBaM model, Diffusion model and 
Dualfoil electrochemical model in order to predict battery lifetime. As expected, 
Peukert’s law resulted the less accurate model, having the bigger error with respect to 
Dualfoil. Kibam and diffusion model appeared instead to have very similar results, that 
matched well to the Dualfoil electrochemical model. 

Stochastic models 
Stochastic models describe battery system as a whole, modelling not only battery 

behaviour but also the stochastic nature of random usage profile. They describe the 
battery in mathematical terms, employing a high degree of abstraction. Authors in [120] 
were among the first to develop and improve a stochastic model for non-rechargeable 
batteries. Other authors adapted their model in order to apply it to rechargeable ones 
[119]. In general, SoC is predicted by exploiting the theory of Markov chains.  

Specifically, the amount of charge available in a battery is divided into N states of a 
Markov chain (Figure 4.5-a). When the battery is in state 0, it means that SoC = 0 and 
that the battery is completely discharged. State j represents an arbitrary SoC. When, 
instead the state of the battery is N, the battery is completely charged (SoC is considered 
in relative terms, related to the actual maximum capacity). 

The basic of this model is the charge unit, that is the amount of charge necessary to 
transmit a data packet (typical in the TELCO sector). During each time step, the charge 

 
Figure 4.4 Physical picture of the diffusion model as proposed in [140] 
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unit has a probability a1=q to be consumed, leading the battery to a lower state of charge 
and a0=1-q to be recovered. EoD is reached when the battery arrives to state 0 or when 
the maximum of T charge units has been consumed, T equals the theoretical 
capacity(T>N). N is in fact the amount of charge recoverable with continuous discharge, 
and it can differ from the charge obtained via pulsed discharge, due to the advantages of 
the recovery effect. The major findings of the work are two parameters [114]: 
 mp that is the predicted amount of transmitted charge units.  
 G that is the gain obtained from a pulsed discharge if compared to a constant 

discharge. Defined as mp/N. G =1 for continuous discharge and greater than one for 
pulsed discharge, reaching a maximum value of T/N. 
The same authors, proposed more advanced models, able to predict battery behaviour 

also in more complex situations: 
 The first change (Figure 4.5-b), applied in [120] consists in considering each time step 

the possibility that more than one packet can be trasmitted arriving to a maximum 
number of packets of M≤N. This allows taking into account the discharge at high 
currents (i.e. rate capacity effect) 

 A second change (Figure 4.5-c) applied in [142] considers that the probability to 
recover is not constant but a decreasing exponential function of SoC, depends also on 
the total discharged capacity. If the SoC is represented by the state j of the system, the 
discharged capacity is taken into account via the number of phases f. The higher f, the 
higher the amount of consumed charge units and the lower the recovery effect. 
In general, stochastic models are suitable to be used in real time BMS, due to low time 

consumption if compared with electrochemical models [142]. However, they do not 
represent the physical phenomena behind BESS operations. For this reason, stochastic 
models could be integrated with electrical or analytical models in order to describe the 
necessary battery characteristics. 

 
Figure 4.5 Representation of stochastic battery models: (a) Basic Markov chain; (b) Extended 
Markov chain presented in [120]; (c) extended Markov chain presented in [142] 
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For instance, in [116] a KiBaM-based stochastic model is developed. The authors 
coupled a stochastic model with the previously described KiBaM model. Battery 
behaviour is described by a Markov process. It is assumed that the bound charge and 
available charge (i.e. SoC) change their states according to probabilistic laws. Moreover, 
during idle periods, the battery has a certain recovery probability, dependent on the SoC. 
Three are the possible transitions that the battery can experience: (i) the idle period in 
which the battery recovers charge (with probability of recovery pr ): an amount Q of 
charge is transferred from bound to available charge and no current is extracted; (ii) the 
idle period during which the battery does not recover charge (with probability of non-
recovery pnr); (iii) the period in which a load is applied (with probability that charge units 
are required in the time step qI): the charge transferred from the two tanks in agreement 
with kiBaM model funding equations. Overall, the hybrid model is claimed to be able to 
represent the statistical nature of the load (thanks to its half-stochastic nature) and the 
real-operations of the battery (thanks to its half-analytical nature) in a more accurate way 
than with a simple stochastic model. 

In [143] the authors proposed an electrical circuit model integrated with a stochastic 
model. The scope of the work is to provide a real-time estimation of SoC in EVs. The 
authors model the battery with the simplest equivalent circuit model: a voltage source in 
series with a resistance (see electrical models in next section). SoC is given by a 
discretization of the coulomb counting equation (4.9), while the dynamic behaviour is 
represented by a Markov chain that changes during time according to external and 
internal factors. The model has been validated and it is claimed to predict accurately the 
SoC of the battery. It allows avoiding error measurements that appear when calculating 
SoC using only the coulomb counting method. 

Electrical models 
Electric circuit modelling is one of the most common approaches investigated 

nowadays. Batteries can be represented by equivalent electric circuits composed of 
circuital elements which, if opportunely tuned, can reproduce the same characteristics of 
voltage and current as seen from external terminals. Thanks to their flexibility, relative 
simplicity (when compared to electrochemical models) and high accuracy, electrical 
models can cover a wide range of applications. They are particularly used in real-time 
applications, such as in EVs to predict the current condition of the battery pack [144]–
[146]. 

There is a wide range of circuital models, with a different degree of complexity. The 
simplest ones, with few constant circuital elements, are far from describing the real 
physics of the battery, and they could be compared with empirical models. The most 
advanced models are composed of circuital elements that directly reflect electrochemical 
characteristics of the cell. They can have a grade of accuracy almost similar to 
electrochemical models, but they require the determination of many parameters resulting 
in time-consuming simulations. Parameters need to be experimentally estimated taking 
into account the various operating conditions (SoC, SoH, temperature). The simplest but 
time-consuming strategy is the offline estimation, with the creation of lookup tables or 
polynomial function. It is also possible to estimate parameters online in case of adaptive 
models [147]. 

Electric circuits are composed of two main parts to proper reproduce battery steady-
state and dynamic behaviours respectively: (i) the circuital element that represent the 
equilibrium voltage of the cell (i.e. OCV), directly related to the energy content of the 
cell (i.e. the SoC); (ii) other circuital elements that represent the overpotential with 
respect to equilibrium condition. 
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In literature, two main families of battery electrical models are used to differentiate 
the way in which the OCV is represented [148], [149]: 
 Active models: OCV is modelled by an ideal source that is typically a voltage 

generator, with voltage varying according to SoC. In this case the battery is seen as 
DC electric generators driven by chemical reactions.  

 Passive models: OCV is modelled as the voltage drop across a capacitor of big-
variable capacitance (called incremental, differential or intercalation capacitance 
[150], [151]). Such passive element represents the charge stored in the cell in a 
chemical way rather than an electric way. Capacitance and voltage drop across the 
capacitor vary with the SoC.  
Regardless of the specific category, the techniques used to estimate the other circuital 

elements are the same and can be divided into: time domain and frequency domain 
techniques [115], [145]: 
 Time domain: circuits are built using serial and parallel networks of resistances and 

capacitors. The values of circuital elements are usually found by fitting discharge 
curves in different conditions [152]. 

 Frequency domain: circuits are built with complex impedance expressions which can 
be approximated, but not in an exact way, with resistances and capacitors. Sometimes 
circuital elements remain expressed in the frequency domain. Constant Phase Element 
(CPE) and the Warburg Impedance (WI) are typical options used in this category. 
Electrochemical Impedance Spectroscopy (EIS) is the most used technique in order 
to give each element a precise physical meaning and to estimate the value of 
parameters (basics of EIS are detailed in Annex C) [153]. 
As regards to SoC indicator, electrical models estimate the SoC as function of the 

electrical quantities (i.e. OCV): SoC is derived and not computed. For this reason, they 
are often coupled to other approaches that use the coulomb counting method (equation 
(4.9)) [154]. Coulomb counting is actually fast and easy to implement but it is often 
subject to mistakes due to systematic errors in current measurements that affect the 
integral computation. An electrical model is then used to check the accuracy of SoC 
estimation in specific conditions and to recalibrate the integral if needed. 

Active models 

Active models are characterized by the presence of an ideal source to represent the 
charge stored in the battery, typically a voltage generator. This could ideally provide an 
infinite amount of energy and it is not representative of the real battery physics. They are 
mostly developed in the time-domain and they are composed of resistors and capacitors 
to reproduce the dynamic phenomena. R and C parameters are found by fitting 
experimental tests in different conditions. However, there also exist examples also of 
models that make use of complex impedances (i.e. expression in the frequency domain) 
that are found with sophisticated experimental techniques like EIS. 

The first and simplest electric model is shown in Figure 4.6-a: the Rint model 
constituted by a voltage source (Voc) and an internal resistance (Rint) [147]. Because of its 
few constituent circuital elements, this model cannot consider the dynamic response of 
the battery. However, the accuracy of the model can be increased when parameters 
depend on temperature, SoC and SoH [147]. The crucial aspect is the element Rint that 
can be determined with different methods: pulse characterization, thermal methods (i.e. 
Joule losses method) and EIS [155]. In the last case, different values of resistances which 
correspond to different excitation frequencies are determined. Then, the value of Rint is 
chosen among them which is in agreement with the typical solicitation in the final 
application (i.e. typical periods of the discharge charge cycles). Generally, the Rint model 
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can be adapted to several technologies: in [145], it has been used to model lead acid 
batteries applied in UPS application or traction vehicles. While in [156], it has been used 
for simulating high power Li-ion batteries in HEV application. 

Another type of active model is the so-called Thevenin model which is mainly 
composed of three parts (Figure 4.6-b) [157]: (i) a voltage source for open-circuit voltage 
Voc; (ii) the internal resistances that include the ohmic resistance Ro for losses in 
electrolyte and conductors, and the polarization resistance Rp associated to the 
electrochemical reaction; (iii) the equivalent capacitance Cp  that is used to describe the 
transient response during charging and discharging. Different from Rint model, Thevenin 
model accounts for transient response with a single RC branch, with a single time 
constant: 

 �̇�𝐶𝑝𝑝 = −
𝐶𝐶𝑝𝑝

𝑅𝑅𝑝𝑝𝐶𝐶𝑝𝑝
+

𝐿𝐿
𝐶𝐶𝑝𝑝

 

𝐶𝐶 = 𝐶𝐶𝑛𝑛𝑎𝑎 − 𝐶𝐶𝑝𝑝 − 𝐿𝐿𝑅𝑅𝑛𝑛 

(4.17) 

The parameters (Ro, Rp, Cp) can be assumed to be constant or dependent from SoC, 
temperature, charge/discharge rates, SoH. These dependences can be experimentally 
determined and then taken into account via lookup tables [157]. Applications of this 
model in PV-BESS systems, portable BESS-powered systems and real-time simulation 
of HEVs and EVs are found in literature [145]. 

Further evolution of the previous models is the DP model (double-polarization) which 
is similar to Thevenin model, with an additional RC group (Figure 4.6-c) [158]. This last 
element is added in order to make a distinction among the polarization phenomena 
occurring in the battery and being faithful in representing the transient phenomena 
especially for Li-ion cells. The first RC group, with a smaller time constant, is related to 
electrochemical polarization, while the second RC group has a bigger time constant and 
it characterizes the diffusion processes occurring inside the cell. This kind of polarization 
is called concentration polarization. 

In general, the higher the number of RC groups in series, the more accurately the 
model reflects the transient behaviour of the battery. In [159], the authors propose a 
model with 5 RC groups: Three of them model the diffusion processes while the other 
two the electrochemical reactions. The more sophisticated the model, the higher the 
number of parameters to be determined and the more difficult the use of the model in 
order to simulate and estimate the battery operation. For this reason, the Thevenin model 
or the DP model are often preferred. 

 
Figure 4.6 Examples of electrical active model developed in the time-domain: (a) R-int model, 
(b) Thevenin model, (c) DP model 
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If the above models are derived in the time-domain, a typical active model in the 
frequency domain is proposed in [160], as a possible improvement for real-time BMS 
systems. The model structure is shown in Figure 4.7. The parameters are empirically 
found by fitting of EIS experiments and expressed as function of SoC and temperature. 
Element ZW is the so-called Warburg impedance that is used to account for diffusion 
phenomena (more details about Warburg impedances will follow in Chapter 5). While 
the two R-ZCPE couples account for the electrochemical reactions in the two electrodes. 
CPE (Constant Phase Element) impedance models an imperfect capacitor. It is used when 
the shape of the R-C semi-circle in EIS (see Appendix C) is not perfect but slightly 
“depressed”. Its expression is given by: 

 𝑍𝑍𝑆𝑆𝐶𝐶𝑆𝑆 = −
1

(𝑗𝑗𝑗𝑗)𝛼𝛼𝐶𝐶
 (4.18) 

Where α is less than one in the CPE but equal to one for a perfect capacitor. 
Authors propose also the equivalent circuit in the time-domain for simulation 

purposes: CPEs, given the non-intuitive electrical representation, are adapted with perfect 
capacitors, while Warburg impedance is represented with two parallel RC elements. 
Therefore, the main difference with previous models lie in the parameters identification 
procedure (frequency-domain nature) rather than the final model configuration which 
resembles the one of Figure 4.7. Finally, SoC is computed by the coulomb counting 
method and authors claimed that the model is able to accurately predict the output voltage 
of LMO and NMC chemistries in EV applications. 

Passive models 

Passive electrical models use only passive circuital elements to represent the battery 
functioning, including the energetic content. This is done by using a big capacitor of 
variable capacitance: the charge stored in this capacitor is assumed equivalent to the 
charge stored in the battery via electrochemical reactions. The capacitor is used to 
describe the SoC instead of the voltage generator in active models. The value of the 
capacitance is variable with the OCV and can be derived from discharge curves. It is 
often called intercalation capacitance because it describes the accumulation and depletion 
of Li-ions within the electrode [150], [161]. 

Passive models developed in the time-domain are very similar to active models 
developed in the same domain. They are made of RC groups in series according to the 
level of accuracy required. As stated in [145], the model can be simplified to a single 
capacitance in series with a resistance when a low degree of accuracy is tolerated (Figure 
4.8-a). C0 is the bulk capacitance of the cell and R0 is the internal resistance. As for an 
active model, the value of resistance can be found via different techniques, among which 

 
Figure 4.7  Example of electrical active model developed the frequency-domain (left) and its 
equivalent circuit in the time-domain (right) 
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it is relevant to mention EIS. 
Models that resemble the Thevenin models can be found in the passive form (Figure 

4.8-b). The only difference is that OCV is represented by a capacitor rather than a voltage 
source. The others circuital elements are basically the same: a resistance to account for 
ohmic losses, a RC group to represent the transient behaviour. All the parameters, 
including the big capacitance of the main capacitor, are derived from discharge curves 
obtained in different testing conditions. Also in the case of passive models, the accuracy 
can be enhanced by increasing the number of RC groups (Figure 4.8-c) [162]. 

Passive models developed in the frequency-domain distinguishes from the other three 
families (i.e. active-models/time-domain, active-models/frequency-domain, passive-
models/time-domain) because they aim at describing the battery operations by modelling 
its physical phenomena. Thus, the electrical models use elements that singularly 
represent one or more electrochemical phenomena avoiding ambiguous elements which 
are far from being representative of a battery. They usually use OCV characteristics to 
find OCV related to SoC, then OCV is summed to overpotential to compute battery 
terminal voltage. 

The reference model was developed in 1947 by John Edward Brough Randles, but it 
is still referred to today works. The so-called Randles model well represents the 
interfacial electrochemical reactions in presence of semi-infinite linear diffusion of 
electroactive particles to flat electrodes (Figure 4.9-a) [163]. This circuit is developed to 
reproduce the behaviour of a half battery cell and it is composed of four main elements: 
(i) Zw is the Warburg impedance element that models diffusion processes occurring at 
electrodes; (ii) Rct is the charge transfer resistance at the electrodes that models the 
electrochemical reactions; (ii) Cdl is the double layer capacitance that models the 
capacitive effect between the electrode-electrolyte interface; (iv) Ro represents ohmic 
losses in wires, electrodes and electrolyte. 

Ideally the full cell is composed of two identical half cells, with the same Randles 
structure but different parameters’ values. In Figure 4.9-b, the impedance of the whole 
battery is represented. Inductances show their effect only at high frequencies and are due 
to battery current collectors and cables. However, it is difficult to separate the impedance 
measurement of the negative and the positive electrode for sealed cells (i.e. Li-ion 
batteries, AGM lead-acid batteries, etc.). Therefore, the Randles model of the first order 
is widely used as a representative lumped model for an electrochemical cell. 

In practice, modified Randles models are used and applied to specific technologies. In 
[164] a model for Li-Ion cells is presented. The authors describe each process occurring 
in the cell via the physical governing equations in order to define the impedances that 
form their proposed model. It has a strong physical basis. The model presents an anode 
impedance and a cathode impedance connected in series, the ohmic resistance and 

 
Figure 4.8 Examples of electrical passive model developed in the time-domain with different 
degree of complexity 
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inductance (Figure 4.9-c). Specifically the electrodes impedances include: (i) ZFD  that is 
the faradaic impedance present at both anode and cathode, it can be derived from 
electrochemistry using Butler-Volmers and Fick’s law (equations (4.2)(4.5)); (ii) the 
double-layer impedances: CPE is used to describe this dispersed capacitance on the 
assumed rough electrode surface; (iii) the effect of SEI (solid electrolyte interface) film 
at anode. SEI is a protective layer that is formed by reduction reactions of electrolyte 
components at the electrolyte/electrode interface [165]. 

In [166] another modification to Randles model for Li-ion cells is presented (Figure 
4.9-d). The anode part of the circuit slightly differs from the original model. The anodic 
electrochemical reaction and SEI formation reactions happen in parallel. The first one is 
composed by the couple composed of a charge transfer resistance and a diffusion 
impedance in the Warburg form (Rct,n, ZW,n), while the second one is composed of a 
resistance in parallel with a capacitor (RSEI, CSEI). 

In [167] the authors develop an innovative electrical model for Li-ion batteries based 
on EIS measurements (Figure 4.9-e). As in Randles circuit, inductance and ohmic 
resistance are present. The other part of the circuit slightly differs from Randles model: 
Zzarc stands for the “depressed” arc in the Nyquist plot at high frequencies (Zzarc can be 
represented by a resistor in parallel with a CPE element), but the authors give no physical 
meaning to this impedance. The RC group comprises the double layer capacitance and 
charge transfer resistance. Finally, the Warburg impedance represents diffusion at low 
frequency. Differently from Randles model, Warburg impedance is in series with the 
other circuital elements and it represents the diffusion phenomena happening across the 
cell. By using the depicted model, the authors claimed to have reached sufficient 
precision in reproducing all the relevant processes happening inside a Li-ion cell. 

In all the above Randles-like models it is not clear how the SoC is estimated. In some 

 
Figure 4.9 Examples of electrical passive model developed in the frequency-domain: (a) 
Randles model (half-cell), (b) Randles model (full-cell); (c-d-e) modified Randles-like models 
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works, the SoC is found by an integration of the current [168]; then, by using lookup 
table, the OCV is inked to SoC; the output voltage is determined by taking into account 
the voltage drops over all the circuital elements. In some others, the key lies in the 
Warburg impedance that physically represents the phenomena of intercalation and thus 
the capacity (i.e. intercalation capacitance). In the time domain, it is demonstrated that 
the Warburg impedance can be represented by a series of RC groups (more details will 
follow in Chapter 5): a big capacitance (also called intercalation capacitance) is then used 
to represent OCV and thus the storage capacity. SoC is derived with look-up tables or a 
fitting function. The output voltage is given by the sum of the potential drop over each 
element. 

The latter case can be found in some works in which the big capacitance is explicitly 
shown in the model. A first notable example is the SAFT RC model (Figure 4.10-a) [158] 
that is based on a two-capacitance model which reproduces well the behaviour of the 
high power cells developed by Saft Groupe S.A. Figure 4.10-a. Cb is the bulk capacitance 
that represents the charge chemically stored in the battery, being so responsible to 
describe the OCV as a function of temperature; Cc is a smaller capacitance that accounts 
for the surface effects of the cell (i.e. double-layer), diffusion and chemical reactions; 
while the resistors represent losses associated to various parts of the cell. SoC is related 
to OCV by using OCV tests [156]. 

In [169], the authors derive the energetical model: an electrical model whose 
development starts directly from Fick’s law (equation (4.5)). The strong physical basis 
of this model makes it accurate and comparable with electrochemical models. The 
model’s configuration is different from the classical Randles scheme. However, similar 
elements can be found (Figure 4.10-b): Ro is the resistance representing ohmic losses in 
electrolyte and electrodes; Cdl is the double layer capacitance; Cint is the intercalation 

 
Figure 4.10 Examples of electrical passive model developed in the frequency-domain: (a) 
SAFT RC model; (b) energetical model; (c) model presented in [151] 
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capacitance: the term that accounts for charge availability (i.e. the SoC); ZFD is the 
Faradaic impedance; ZDIFF is the impedance representing diffusion in porous electrodes; 
finally, Rr and Cr represent the relaxation branch, taking into account the phenomenon of 
relaxation. 

In [151], the authors developed an equivalent circuit model with the aim of improving 
BMS. The parameters were evaluated with EIS, at various SoC and temperatures. 
Authors give to EIS graph a physical meaning: the low frequency portion represents the 
diffusion of lithium ions into the porous electrode matrix; extremely low frequencies 
signify the intercalation capacitance of the electrode, which describes the accumulation 
of lithium ions within the host material. Specifically, the model is composed of the 
following elements (Figure 4.10-c): L incorporates the inductive behaviour due to 
geometry of the electrodes; Ro is the solution resistance in representing the ohmic losses; 
R-C circuits (Rn and Cn) in parallel denote the slow migration of Li-ions through surface 
films of the electrodes; charge transfer resistance (Rct) and a double layer capacitance 
(Cdl) of electrodes; Warburg impedance (ZW) for diffusion processes of the anode and 
cathode; and finally intercalation capacitance (Cint) which describes the accumulation and 
depletion of Li ions within the electrodes. The intercalation capacitance is included in 
this model to show the variation of open circuit potential with SoC. 

4.3 Modelling of aging (SoH estimation) 

Apart from dynamic modelling, BESS models should also be able to represent 
degradation during cycling. Modelling of aging is becoming important especially in EVs 
application. Monitoring and estimating change of performance during operation can 
improve BMS and safety [170]. For this reason, it is easier to find literature that refers to 
automotive sector rather than stationary applications. 

In general, two are the main mechanisms that influence battery aging: 
 Cycle aging that describes the impact of BESS utilization periods and is influenced 

by the operating conditions (currents, SoC, temperatures). 
 Calendar aging that describes the impact of BESS storage periods. In this case, the 

impacting factors are the storage conditions (ambient temperature and SoC level). 
From a final application perspective, two are the main issues brought by aging of 

BESS: 
 Capacity fade that limits the energy performances. It involves the reduction of the 

available capacity over time. BESS end of life (EoL) is defined when the capacity 
fade has reached a specific threshold (usually 80%). The most used indicator to update 
aging status is the SoH that is the ratio between the current capacity and the rated 
capacity. 

 Power fade that limits the power performances. It involves the increase of impedance 
over time and consequently a worsening of the overall efficiency of the device. The 
most used indicator is the SoHR (or SoR) that is the ratio between the current cell 
resistance and the initial one.  

In general, aging phenomena occur mainly at the electrodes, differently between anode 
and cathode and among the different technologies. Focusing of Li-ion we can distinguish 
[165]: 
 Formation of surface layers both at anode and cathode. At anode, it is typical due to 

SEI formation that takes place mainly in the first few charge/discharge cycles, leading 
to a rapid decrease in battery capacity at the beginning of its life. The layer partly 
protects the anode from further oxidation, but it continues to grow during the whole 
life of the battery, playing a major role on the impedance increase. In particular, cracks 
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can propagate through the SEI layer when the battery is subject to high stresses (e.g. 
high currents). At cathode, it is typically seen happening for LNCO chemistries and 
is due to electrolyte oxidation reactions. It is enhanced by high temperatures and high 
SoC. 

 Graphitic anode exfoliation and cracking: caused by electrolyte reduction inside 
graphite and gas evolution. The consequent loss of active material leads to capacity 
fade. It is enhanced by high SoC. 

 Dendrite growth: Lithium deposits on the surface of graphite layer instead of 
intercalating into the lattice of the carbon. Li metal will subsequently react with 
electrolyte. It might occur at a low temperature and high discharging rate accelerating 
capacity fade. 

 Cathode disordering, typical of Lithium metal oxide structures. 
 Metal dissolution: typical of LMO chemistry. At elevated temperature metal dissolves 

in the electrolyte, leading to capacity fade.  
 Change in porosity: volume changes of active material during charge and discharge 

cycles affect the structure of the electrodes. High current rate associated with high 
cycle depth and high SoC enhance the phenomenon leading to impedance rise. 

 Current collector corrosion: there might be reactions between a current collector and 
electrolyte that lead to loss of contact between current collector and electrodes. This 
phenomenon is enhanced at low SoC and leads to an increase of the impedance. 
In literature, many different approaches have been used to model aging mechanisms 

and estimate battery SoH [170] [171]. Parameters of the adopted battery model (see 
previous sub-section) must be changed with time or with cycles. A full charge-discharge 
cycle is defined when the throughput Ah are equal to two times its nominal capacity (Cn). 
Therefore, the number of cycles n that a BESS has cycled until time t is given by: 

 
𝑛𝑛 = �

|𝐿𝐿(𝑟𝑟)|𝑑𝑑𝑟𝑟
2𝐶𝐶𝑛𝑛

𝑎𝑎

𝑛𝑛
 (4.19) 

In the following, aging modelling for Li-ion cells is described in agreement with the 
four approaches adopted in the previous sub-section. 

Electrochemical models 

Electrochemical modelling aims at describing degradation phenomena through 
equations based on electrochemical principles. This set of equations are usually 
connected as subsystem to the governing equations of the electrochemical model of 
earlier subsection. Ex situ techniques (X-ray diffraction, scanning electron microscopy, 
transmission electron microscopy, x-ray photoelectron spectroscopy, etc.) can reveal the 
operation and degradation process. From this analysis, it is possible to obtain information 
about the structural change and parameters variation of materials [172]. However, this 
kind of technique must be performed on samples that have been disassembled and cannot 
operate anymore. Developing degradation model using these detailed data could be 
particularly laborious. Another option could be to exploit EIS technique to evaluate the 
changes in the electrochemical model parameters due to degradation [173]. 

In [174], authors attempt to describe the cell calendar aging for the LCO chemistry. 
They refer only to the Lithium corrosion phenomenon at negative electrode which is 
related to side reactions occurring between electrolyte and lithium, causing capacity loss. 
They claim to have found a general equation to calculate Lithium corrosion curves as a 
function of time and temperature. This finding is used to forecast capacity fade, but it is 
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not added to a general electrochemical battery model. If a new chemistry is adopted, then 
the experiments have to be performed again to deduce the new equation coefficients. 

Authors in [175] considers degradation phenomenon at cathode as the most crucial 
one, whereas the aging effect for the anode is neglected for simplicity. In the 
electrochemical model, Kalman filter is used to estimate two crucial parameters: the 
cathode porosity and electrolyte conductivity. During operation, some particles will be 
isolated from the conductive area or will crack, reducing cathode effective porosity. Thus, 
the capacity fade is modelled as reduced cathodic porosity and loss of active insertion 
material. Moreover, cycle aging causes the overpotential to rise. Thus, the power fade is 
modelled by a decrease in electrolyte conductivity. 

In [176] degradation modelling is included in a P2D model in order to assess the 
change of battery operating performance. Butler Volmers’ kinetics is defined separately 
for Li-ion intercalation reaction and parasitic reactions. Moreover, SEI formation is 
modelled as an additional resistance (proportional to the film thickness) that leads to an 
overpotential rise. Capacity loss is then given by the integral of the parasitic reaction’s 
current over time. The model, comprising a total of eight variables was simulated with 
COMSOL Inc. Multiphysic [127]. The model is claimed to be quite accurate but it 
considers only one degradation mechanism; a proposed improvement considers a 
comprehensive analysis of the whole battery aging process.  

Analytical models 
These models correlate capacity and power fade rates with a combination of stress 

factors (i.e. temperature, SoC, number of cycles) which have a great influence on battery 
lifetime. They can deal separately with calendar and cycle aging (distinction typically 
found for lithium-ion batteries) or they take into account the life of the battery as a whole. 
They rely on experimental data in which the chosen BESS technology has been cycled 
in several external conditions. Some of them, propose equations based on the purely best 
data fitting method, some others seek to relate observed trend with a physical meaning. 
Moreover, two different sub-categories can be highlighted:  
 Analytical models which evaluate capacity fade and power fade indicators by 

updating parameters on-line during the simulation (e.g. updating the remaining 
capacity due to the capacity loss). 

 Analytical models which evaluate battery residual lifetime by assessing the maximum 
number of cycle and calendar lifetime but do not update battery characteristics. 

Equivalent full cycles to failure 

This method is the simplest approach to predict battery lifetime [132]. It estimates the 
number of full charge-discharge cycles N until the battery reaches a defined maximum 
number of cycles (i.e. EoL). The maximum number of cycles can be set from a datasheet 
or from international standard rules. SoH is written as a linear function of the number of 
cycles. At cycles n, SoH can be determined as follows: 

 𝑆𝑆𝑛𝑛𝑆𝑆(𝑛𝑛) = 𝑆𝑆𝑛𝑛𝑆𝑆0 −
𝑆𝑆𝑛𝑛𝑆𝑆0 − 𝑆𝑆𝑛𝑛𝑆𝑆𝑛𝑛𝑖𝑖𝑛𝑛

𝑁𝑁𝑛𝑛𝑎𝑎𝑚𝑚
𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑒𝑒𝑐𝑐 ∙ 𝑛𝑛 (4.20) 

Actually, this model does not consider the decrease of capacity and power in time and 
the consequent changes in battery operation. 

Empirical models 

Empirical models derive mathematical expressions for capacity and power fade by 
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fitting experimental measurements. These equations are easy to use but they are strongly 
dependent on the specific battery technology. Moreover, they typically entail long testing 
periods for parametrization. 

In [177] the authors describe cycle aging for LFP chemistry as dependent on various 
parameters, such as temperature, DOD and current. The model evaluates the number of 
cycles to failure for each condition; however, this evaluation is not used to predict the 
power and capacity fade but to update the Peukert coefficient (see Peukert model in 
section 4.2) 

In [178] power fades due to calendar aging is estimated for NCA chemistry through 
the following equation:  

 
𝑃𝑃𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟(𝑟𝑟,𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) =

𝑟𝑟�𝑑𝑑0+𝑑𝑑1
1
𝑅𝑅�

1 + 𝑟𝑟�𝑑𝑑2+𝑑𝑑3
1
𝑅𝑅�
− 𝑟𝑟�𝑑𝑑4+𝑑𝑑5

1
𝑅𝑅+𝑑𝑑6𝑆𝑆𝑛𝑛𝑆𝑆�𝑟𝑟1.5 (4.21) 

Where bx are the sets of parameters needed to fully characterize the specific 
technology. Two degradation processes contribute to the power fade: the first term of the 
equation represents the fast degradation mechanisms and is strongly enhanced by high 
temperature. The second term represents the slower degradation processes and it depends 
on time. 

Authors in [179] derive equations for LFP chemistry for both capacity and power fade 
during calendar and cycle aging to analyse different driving profiles for HEVs 
applications. As regards to calendar aging they found link with storage temperature, SoC 
and time: 

 𝐶𝐶𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟(𝑟𝑟,𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) = (𝑟𝑟1𝑆𝑆𝑛𝑛𝐶𝐶𝑎𝑎2 + 𝑟𝑟𝑛𝑛)(𝑟𝑟3𝑅𝑅𝑎𝑎4 + 𝑟𝑟5)𝑟𝑟0.8 (4.22) 

 
𝑃𝑃𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟(𝑟𝑟,𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) = �

𝑏𝑏1𝑆𝑆𝑛𝑛𝐶𝐶𝑑𝑑2 + 𝑏𝑏3
𝑏𝑏4

𝑏𝑏5� �𝑟𝑟𝑑𝑑6𝑅𝑅�𝑟𝑟 (4.23) 

Where ax and by are the sets of parameters needed to fully characterize the specific 
technology. Power fade is found to be linearly dependant with the storage time while 
capacity fade depends on t0.8. On the contrary, cycling aging is found to be dependent on 
temperature, DoD and cycle number (cycling rate was not taken into consideration 
because the test were all made at the same current). 

 𝐶𝐶𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒
𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑐𝑐(𝑛𝑛,𝑅𝑅,𝐷𝐷𝑛𝑛𝐷𝐷) = (𝑐𝑐1𝑟𝑟𝑎𝑎2𝑅𝑅)(𝑐𝑐3𝐷𝐷𝑛𝑛𝐷𝐷𝑎𝑎4)𝑛𝑛0.5 (4.24) 

 𝑃𝑃𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒
𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑐𝑐(𝑛𝑛,𝑅𝑅,𝐷𝐷𝑛𝑛𝐷𝐷) = 𝑑𝑑1�𝑑𝑑2𝑟𝑟𝑒𝑒3 + 𝑑𝑑0�𝑑𝑑4�𝑟𝑟𝑒𝑒5𝐷𝐷𝑛𝑛𝐷𝐷��𝑛𝑛𝑒𝑒6𝑅𝑅−𝑒𝑒7𝐷𝐷𝑛𝑛𝐷𝐷−𝑒𝑒8� (4.25) 

Where cx and dy are the sets of parameters needed to fully characterize the specific 
technology. Both calendar and cycling aging are found to be dependent on the number of 
cycles n. In particular, capacity fade with the square of n. A comprehensive lifetime 
model is then developed by combining the two aging mechanisms: equation (4.22) and 
equation (4.23) are used when the battery is working, while equation (4.24) and equation 
(4.25) are employed during battery rest periods. The main limitation of this model is the 
remarkable amounts of parameters that need to be mapped in all the different conditions 
of SoCs, DoDs, time, cycles, etc. 



4.3  Modelling of aging (SoH estimation)  

 

85 
 

Semi-empirical models 

Different from purely empirical models, semi-empirical models are based on a 
physical description of battery degradation. The modelling approach consists on the 
establishment of analytical equations and parameter estimation through data fitting. The 
majority of the works consider that the reaction rate of parasitic/unwanted processes (e.g. 
electrolyte decomposition and SEI formation) exponentially increase with temperature 
according to Arrhenius law. Moreover, many studies use a correlation between capacity 
fading and the square root of time: the corrosion rate at the anode is found to be dependent 
on t0.5.[174]. 

In [82], the authors developed a semi-empirical models based on LFP chemistry. They 
discovered that DoD influence on capacity fading was negligible. Starting from 
Arrhenius law they proposed a power law equation for the capacity loss, depending on 
T, C-rate and Ah throughput: 

 𝐶𝐶𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒(𝐴𝐴ℎ,𝑅𝑅,𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = �𝑟𝑟1𝑟𝑟
𝑎𝑎2+𝑎𝑎3𝑆𝑆𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒

𝑅𝑅𝑅𝑅 �𝐴𝐴ℎ0.55 (4.26) 

The authors found an empirical relation between activation energy and C-rate that 
suggests that higher currents induce higher stresses accelerating chemical processes 
involving lithium consumption. In the subsequent work [180], the same authors made a 
step further. They considered calendar and cycle aging separately, as follows: 

 𝐶𝐶𝑓𝑓𝑎𝑎𝑒𝑒𝑒𝑒(𝑟𝑟,𝐴𝐴ℎ,𝑅𝑅,𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = �(𝑟𝑟2𝑅𝑅2 + 𝑟𝑟1𝑅𝑅 + 𝑟𝑟0)𝑟𝑟(𝑑𝑑1𝑅𝑅+𝑑𝑑0)𝑆𝑆𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒�𝐴𝐴ℎ + 𝑓𝑓𝑟𝑟−
𝑆𝑆𝑎𝑎
𝑅𝑅𝑅𝑅𝑟𝑟0.5 (4.27) 

In [181] a semi-empirical model is developed which is based on an energetical model. 
They assumed that calendar aging is mainly driven by SEI growth and the consequent 
lithium ions loss. Therefore, lithium ions loss is presumed to depend on the square root 
of time, as previously stated. Moreover, they assume an exponential dependency of the 
aging on the SoE (i.e SoC) and on the temperature (i.e. Arrenhius law). The expression 
for calendar aging is: 

 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑛𝑛𝑒𝑒𝑎𝑎𝑟𝑟(𝑟𝑟,𝑅𝑅, 𝑆𝑆𝑛𝑛𝐸𝐸) = 𝐴𝐴0 �𝑟𝑟
𝑆𝑆𝑛𝑛𝑆𝑆+𝑆𝑆𝑛𝑛𝑆𝑆0

𝑑𝑑 � �𝑟𝑟
𝑅𝑅𝐵𝐵+𝑅𝑅0
𝑎𝑎 � 𝑟𝑟0.5 (4.28) 

Where A0 coefficient corresponds to initial battery lifetime, SOE0 and T0 are the initial 
SoE and temperature. The aging per cycle is a cubic function of cycle depth and cycle 
current. Therefore, cycle aging can be expressed as: 

 
𝐴𝐴𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑐𝑐(𝑛𝑛,𝐷𝐷𝑛𝑛𝐷𝐷, 𝐿𝐿) = �𝑟𝑟𝑛𝑛(𝐷𝐷𝑛𝑛𝐷𝐷𝑛𝑛, 𝐿𝐿𝑛𝑛)

𝑁𝑁

𝑛𝑛=1

 (4.29) 

Then, authors superimpose the effect of calendar and cycle aging in single factor Aaging. 
The SoH indicator is computed as follows: 

 𝑆𝑆𝑛𝑛𝑆𝑆 = 1 − 𝐴𝐴𝑎𝑎𝑐𝑐𝑖𝑖𝑛𝑛𝑐𝑐 (4.30) 

The maximum storable energy is then reduced by aging through SoH (i.e. capacity 
fade).  

In [182], authors propose a semi empirical model adaptable to different Li-ion 
chemistries, useful to predict battery EoL in a wide operating range. They define a 
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degradation function fd which is the sum of calendar and cycle aging: 

 
𝑓𝑓𝑒𝑒(𝑟𝑟, 𝑆𝑆𝑛𝑛𝐶𝐶,𝑅𝑅) = 𝑓𝑓𝑎𝑎(𝑟𝑟, 𝑆𝑆𝑛𝑛𝐶𝐶,𝑅𝑅) −�𝑛𝑛𝑖𝑖𝑓𝑓𝑎𝑎(𝐷𝐷𝑛𝑛𝐷𝐷, 𝑆𝑆𝑛𝑛𝐶𝐶�����,𝑅𝑅)

𝑁𝑁

𝑖𝑖

 (4.31) 

Cycle aging function fc depends on stress factors which are DoD, average SoC and 
temperature, while calendar aging function ft depends on time, SoC and T. As usual, a 
great number of parameters must be determined, making the model quite accurate in 
predicting the lifetime of lithium-ion batteries. The model has been proposed to evaluate 
battery capacity fading in the context of grid services such as frequency control in a 
regulation market. 

Finally, one of the most accurate analytical model present in literature is the Weighted 
Ah aging model presented in [183]. Authors proposed a heuristic model to predict 
lifetime in applications with irregular operating conditions. Each Ah throughput of a 
battery is multiplied by a factor that represents the conditions to which the battery is 
subjected during cycling. The more severe operating conditions are, the higher the 
weighting factor is. Aging is found to depend mainly on DoD and current rate. Different 
from other empirical models, aging effects are taken into account starting from a physical 
analysis of the battery behaviour. The strong electrochemical background makes it quite 
accurate even though it remains easy to use. For this reason, the model is particularly 
suitable for sizing tools and system simulations. 

Stochastic models 
In Stochastic model, the aging process is written as a general expression by the 

combination of charge/discharge processes, SoC and SoH at the previous time-step with 
their transition probability. Markov chains are used to express the evolution of the 
batteries’ health indicator SoH, similarly to SoC estimation described in the previous 
section. 

In [184], a stochastic model is proposed for the optimal management of harvesting-
based wireless sensors devices, accounting for battery lifetime while guaranteeing a 
minimum quality of service. The authors described the degradation process as a Markov 
chain. They define the battery health state H(k) at time k, taking values from 0 to Hmax. 
The maximum battery capacity at time k is: 

 𝐶𝐶𝑛𝑛𝑎𝑎𝑚𝑚(𝑘𝑘) = −
𝑆𝑆(𝑘𝑘)
𝑆𝑆𝑛𝑛𝑎𝑎𝑚𝑚

𝐶𝐶𝑛𝑛𝑎𝑎𝑚𝑚 (4.32) 

The health states are part of a Markov chain, where the transition probability from 
one state to another is independent on the history of the battery but depends on the current 
cycling condition (e.g the DoD or temperature). The authors extract the transition 
probabilities from the manufacturer’s data. [184]. 

Electrical models 
In this approach, aging modelling means to update the circuital parameters of a 

predefined electrical model (see section 4.2). Cells are typically subject to accelerated 
aging conditions (high temperature and cycling rate) and subjected to reference 
performance tests after determined time periods [178]. EIS studies are also used to detect 
the aging phenomena happening in the cell. Changes in the Nyquist diagram are used to 
understand which phenomenon can be linked to which section of the electrical model 
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[185], [186]. In general, circuital elements vary in agreement with the same stress factors 
described for analytical models. For this reason, aging trends of the model’s parameters 
could be totally empirical or based on some physical considerations. Specifically:  
 Capacity fade is usually referred to the changes in the discharge curves in active 

models, while at the variation of the intercalation capacitance over cycling in passive 
models [187], [188], [161]. 

 Power fade is related to an increase of the impedance of the cell. EIS evolutions in 
time is usually assessed. Depending on the reference electrical model, the equations 
are referred to single or several circuital elements.  
In literature, different studies ([185], [189] [190]) evaluate the increase of the cell’s 

internal resistance during lifetime. The underlying electrical models is the Rint model 
(Figure 4.6-a). Resistance measurements are done by EIS or by applying pulsed current 
of predefined length computing the ratio ∆V/∆I. Impedance increase due to cycle aging 
and calendar aging can be studied separately or together. For instance, typical expressions 
for calendar aging are of the form [185]: 

 𝑅𝑅(𝑟𝑟,𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) = (𝑟𝑟0𝑟𝑟𝑎𝑎1𝑅𝑅)�𝑏𝑏0𝑟𝑟𝑑𝑑1𝑆𝑆𝑛𝑛𝑆𝑆�𝑟𝑟0.8 (4.33) 

In other works [191], [192], authors uses the Thevenin model (Figure 4.6-b) as 
reference to model degradation for NCA and NMC. In the first study [191], they focus 
on thermal aspects. Only Rp is assumed to change with time, while Ro and Voc curve are 
assumed constant because claimed to be an intrinsic parameter of the cell which do not 
vary with temperature. In the second work instead [192], which is proposed to be used 
for dynamic simulation of EVs, they go more into detail by adding relation for capacity 
fading and Ro: 

 𝐶𝐶(𝑛𝑛) = 𝐶𝐶0 + 𝐾𝐾𝑆𝑆,𝑁𝑁𝑛𝑛 (4.34) 

 𝑅𝑅𝑛𝑛(𝑛𝑛, 𝑆𝑆𝑛𝑛𝐶𝐶) = 𝑅𝑅𝑛𝑛,0 + 𝑘𝑘𝑅𝑅,𝑛𝑛𝑛𝑛 + 𝑘𝑘𝑅𝑅,𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑛𝑛𝐶𝐶 (4.35) 

Where kx,y are coefficients that can be extracted from the manufacturer’s datasheet or 
experimentally determined. Nominal capacity is used to estimate SoC and thus OCV 
through the Coulomb Counting method. Its value, together with resistance value, is 
updated during battery lifetime.  

In [193], the authors studied degradation of NMC cells. With the help of EIS studies, 
they focus on the increase of impedance at a low frequency value f* (0.1Hz), because they 
claimed it is the one mostly contributing to degradation. The real part of the impedance 
is described by empirical equation: 

 𝑅𝑅𝑟𝑟𝑓𝑓∗𝑍𝑍(𝑟𝑟,𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) = 𝐴𝐴(𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶)𝑟𝑟0.5 + 𝐵𝐵(𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) 

𝐴𝐴(𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) = 𝑟𝑟1 ∙ 𝑆𝑆𝑛𝑛𝐶𝐶 + 𝑟𝑟2 ∙ 𝑅𝑅 + 𝑟𝑟3 ∙ 𝑅𝑅 ∙ 𝑆𝑆𝑛𝑛𝐶𝐶 

𝐵𝐵(𝑅𝑅, 𝑆𝑆𝑛𝑛𝐶𝐶) = 𝑏𝑏1 ∙ 𝑆𝑆𝑛𝑛𝐶𝐶 + 𝑏𝑏2 ∙ 𝑅𝑅 + 𝑏𝑏3 ∙ 𝑅𝑅 ∙ 𝑆𝑆𝑛𝑛𝐶𝐶 

(4.36) 

In[194],the process of calendar aging is described to predict remaining life in EVs 
applications for Li/SOCl2 batteries. The variation of all circuit elements depends on 
storage temperature, time and SoC (i.e. voltage). Aging assessment is done through EIS 
technique. It is assumed that all the parameters, Resistances, L and capacity, follow the 
same aging trends: 
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 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟,𝑅𝑅,𝐶𝐶) = 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟0,𝑅𝑅,𝐶𝐶)[1 + 𝐵𝐵(𝑅𝑅,𝐶𝐶)𝐹𝐹(𝑟𝑟)] (4.37) 

Where fcal is used to update all the model’s parameters on-line during simulation; B is 
the key factor used to find the best fitting trend for all circuital elements; F(t) describes 
time dependence and it can have different shapes according to dominant aging process. 

4.4 Summary 

In this chapter, a comprehensive literature review on battery modelling (mainly at cell 
level) has been presented to create a framework of reference on which to base the 
modelling steps of part II of the thesis. The models have been grouped into four general 
approaches: electrochemical models, analytical (empirical) models, electrical models and 
stochastic models. Two main tasks have been identified for battery models: the 
estimation of the operating conditions (i.e. SoC estimation) and the estimation of the 
lifetime (i.e. SoH estimation). Each modelling family/category has been discussed in all 
its features by detailing literature examples, typical equations, methodologies, available 
software/tool. Electrochemical models have been found to be the most accurate since 
they account for the electrochemical processes behind battery operations; however, they 
are difficult to develop and they bring to a very high simulation time which make them 
unsuitable for techno/economic analyses but more suitable for material development 
purposes. Stochastic models describe battery operations by using transition probabilities 
between possible states. This approach can be particularly accurate in predicting end-of-
discharge and end-of-life parameters in real-time applications; however, their usages 
must be carefully evaluated since they do not take into account the physical aspects 
behind battery operations. Analytical models have been described to be based on few 
equations which do not take into account electrochemical processes, but they are 
empirically fitted from experimental measurements. Due to their simplicity, they are well 
suited for techno/economic analyses and energy planning studies; several available tools 
have been found to rely on analytic models. Their simplicity comes however at the 
expenses of accuracy: the errors in predicting battery performance can be relatively high. 
Finally, electrical models have been presented as a last alternative to model 
electrochemical cells/batteries. They are based on equivalent electric circuits that aim at 
reproducing the responses at the external terminals. Electrical models have been detailed 
in all the possible configurations: active or passive, time-domain based or frequency-
domain based. A different level of complexity can be found in literature that is generally 
proportional to the number of circuital elements used to build the model. They are found 
to be computational less expensive than electrochemical models but more accurate than 
analytical models. For this reason, they are well suited for a wide range of possible 
applications: from design/energy analyses to real-time monitoring.  

Overall, this chapter has highlighted the necessity to implement and compare different 
BESS models in order to understand the accuracy in reproducing the expected behaviour 
and performances (by referring to the experimental data of Chapter 3) with respect to the 
required computational time. The objectives of the remaining parts of the thesis are: (part 
II) to develop a proper model for Li-ion BESS, (part II) to develop proper methodologies 
to evaluate the proper design of BESS in real applications). The first objective requires 
the identification of the best modelling approach that is worth investigating. Given the 
high flexibility (i.e. different level of details achievable) and the good compromise 
between simulation time and accuracy, an electrical model will emerge as the best choice 
both for dynamic modelling (investigated in Chapter 5 and Chapter 6) and lifetime 
(investigated in Chapter 7). The second objective will require complex techno-economic 
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analyses entailing long simulations. For this reason, electrical models will be compared 
with analytical models to assess the accuracy in evaluating BESS performances for two 
different real applications (Chapter 8 and Chapter 9) within a reasonable time.  
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Part II: A Novel Electrical Model 
for Lithium-Ion Cells   
 
 
Part II offers the modelling framework about BESS and represents the main element of 
originality of the thesis. Starting from theoretical fundamentals that aim at bridging the 
gap between electricals and electrochemical models, a novel electrical model for lithium-
ion cells based on experimental measurements is presented, discussed and validated. 
Lifetime modelling elements are also proposed to create a wider background useful for 
application-oriented analyses, techno-economic analyses and investment evaluations.  

In Chapter 5, the main theoretical pillars which are necessary for a proper electrical 
modelling process are investigated. There must be a clear link in between the equations 
describing the electrochemical phenomena and the derived elements in the electrical 
model. 

In Chapter 6, theoretical analyses of Chapter 5 are coupled with experimental 
measurements and applied to build a novel electrical model for Li-ion technology. In this 
way, all the electrical parameters depend on physical quantities, avoiding misleading 
interpretations of electrochemical phenomena. The model is composed of impedance 
blocks connected in series and accounts for the dynamic response of battery cells as a 
nonlinear function of state of charge (SoC). The model’s parameters are determined by a 
specific procedure based on EIS and OCV measurements which is presented and applied 
to a commercial lithium-ion cell (lithium nickel oxide). The model is developed in the 
frequency domain and validated in the time domain to show the capability in estimating 
the voltage at the device terminals, efficiency, power and energy density under different 
operating rates and SoC. 

In Chapter 7, lifetime modelling of Li-ion technology is investigated through 
experimental measurements. Testing results on Li-ion technology, which come from an 
innovative aging procedure, are presented and used to discuss about the main aging 
effects. Three lifetime modelling approaches are proposed which are linked to 
experimental measurements and characterized by a different degree of complexity in 
order to create a comprehensive electrical modelling approach. 
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CHAPTER  5 

 
 
 
 

5 Physics of battery for impedance 
based modelling 

 
 
 
Chapter 4 offered a comprehensive review of battery modelling approaches. They 

differ for the degree of details used to reproduce the battery behaviour and for the 
elaboration/simulation time required to obtain the results. Electrochemical models and 
analytical models represent the extremes: the first is by far the most accurate since it 
includes the chemical equations that govern the battery functioning, while the second is 
the fastest and the most used in simulation programs. 

Electrical models aim at providing a good compromise between electrochemical and 
analytical models. They aim at faithfully reproducing the dynamic behaviour while 
allowing reasonable simulation times. However, electrical modelling can be misleading 
unless interpreted with due caution. On one hand, substantial limitations may arise when 
electrical models are developed without considering the fundamental electrochemical 
processes. In this case, the accuracy might result limited to the condition for which the 
model was developed and the overall performance might not be so far from the ones 
achievable with analytical models. On the other hand, if a strong physical background is 
linked to the model elements (detailed experimental analyses are required) final 
performances might be very close to the ones achievable with electrochemical models. 

Chapter 5 aims at bridging the gap between electricals and electrochemical models. 
The following sub-sections will present those theoretical fundamentals that are needed 
for a proper electrical modelling process. The description of these phenomena is used to 
derive the associated electrical representations in form of equivalent impedance circuits. 

5.1 Underlying nexus for electrical modelling 

As already introduced in Chapter 3 and Chapter 4, a battery is a complex non-linear 
dynamic system. The voltage at the battery terminals is non-linear with the current 
absorbed or delivered and it is mainly dependent on the current amplitude, temperature, 
SoC and SoH.  

The physics of a battery system involves two main phenomena: charge transfer and 
transport of mass. Second-order effects are the double-layer effect and electric/magnetic 
effects. Different time constants characterize all these effects so that different dynamics 
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describe the battery system during its operations. 
Charge transfer considers the redox reactions occurring at the electrode/electrolyte 

interface. The oxidation number of the active materials involved in the reaction changes: 
electrons are released or consumed at both electrodes. The electrons are collected through 
the current collectors and the current flows externally to the battery. In parallel to the 
charge transfer effect is the double layer effect that takes into account the separation of 
charge carriers at the electrode/electrolyte interface [195]. When an electrode is 
immersed in the electrolyte, ions in the solution face the electrode surface at a distance 
of few nanometres. The result is a significant capacitive effect that takes place due to the 
large surface area of porous electrodes. The effect occurs at both electrodes, namely the 
double layer effect. 

Reagents and products have to be continuously taken to and from the 
electrode/electrolyte interface in order to sustain the reaction (Figure 5.1). Different 
mechanisms of mass transport at distinct locations of the battery are involved, mainly 
inside the electrodes and in the electrolyte. 

In the electrodes, the solid-state transport of charge carriers takes place [196]. The 
two main mechanisms of diffusion in a solid state material are the vacancy/defect-
mediated mechanisms, and non-vacancy/non-defect-mediated mechanisms [197]. 
During the charge process of a lithium ion battery, for example, lithium ions at the 
cathode electrode have to cross through the crystalline structure before reaching the 
electrode/electrolyte interface where the redox reaction takes place. Diffusion of a Li-ion 
is strongly dependent upon the interaction potential between the Li-ion and the host 
material structure. Diffusion in solid state materials is strongly affected by temperature 
and follows an Arrhenius like relations. 

In the electrolyte, ions have to cross all the electrolyte volume moving from cathode 
to anode during the charge process and vice versa during discharge. Diffusion in liquids 
is often hindered by solvated molecules and, compared to diffusion in solids, it is much 
less dependent on temperature [198]. Two are the forms of mass transport for charge 
carries in the electrolyte of electrochemical batteries: diffusion and migration. Diffusion 
occurs when charge carriers are subjected to a concentration gradient, while migration 
occurs per effect of an applied external field.  

In absence of mass transport phenomena, the pure electric/magnetic effect is 
predominant. It takes into account the internal device resistance and inductance.  

In order to quantify the rate of the different transport phenomena, the relationship 

 
Figure 5.1 Schematic representation of the structure of an electrochemical cell. 
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between the ionic conductivity and the diffusion coefficient has to be considered. This is 
done by the Nerst-Einstein equation: 

 
Λ = 𝑐𝑐𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖2 ∙ 𝐷𝐷𝑖𝑖 ∙

𝐹𝐹2

𝑅𝑅 ∙ 𝑅𝑅
 (5.1) 

Where: Λ is ionic conductivity [S/cm]; ci is the concentration of species i [mol/cm3]; 
ni charge number of ion I; Di is the diffusion coefficient of ion i [cm2/s]; F is the Faraday’s 
constant [C/mol]; R is the gas constant [J/(K mol)]; T is the temperature [K]. 

Table 5.1 presents the ionic conductivity of different materials [199]. Cathode 
materials have the slowest diffusion coefficient that is at least one order of magnitude 
slower than liquid electrolyte materials. Electronic diffusion is much faster: three orders 
of magnitude greater in the worst case. In between anode and cathode, usually the cathode 
material is the one limiting the dynamics of the entire system8. From these data, it is 
possible to deduce the speed of the different dynamics involved in the battery operations. 
This creates a nexus between the electrochemical process and the electrical model 
building process. 

During the cell operation, each phenomenon of above is reflected in an over voltage 
potential that can be measured at the battery terminals. A general formulation is: 

 E = 𝐸𝐸0 − [(𝜂𝜂𝑎𝑎𝑎𝑎)𝑎𝑎 + (𝜂𝜂𝑎𝑎𝑎𝑎)𝑎𝑎]− [(𝜂𝜂𝑎𝑎)𝑎𝑎 + (𝜂𝜂𝑎𝑎)𝑎𝑎] − 𝑅𝑅𝑖𝑖𝑑𝑑 (5.2) 

Where: E0 is the standard potential of the cell at a specific temperature; (ηct)a ,(ηct)c 
are the over voltage at the anode and cathode respectively due to the charge transfer 
process and double layer effects; (ηc)a ,(ηc)c are the concentration polarization at the 
anode and cathode respectively due to mass transport mechanisms; Ri is the internal 
resistance of the cell equal to the sum of the collector, electrolyte and active mass 
resistance. 

5.2 Electric and magnetic phenomena 

Electric and magnetic phenomena consider the ohmic-inductive behaviour of a cell. 
The inductive behaviour is due to the motion in space of electrons in a three-dimensional 
space so that an equivalent internal inductance can be modelled. The total inductance of 
a cell is in the range of 10 to 100 nH/cell and it is negligible in the typical ranges of use 
of battery systems [198]. The resistance, in series to the inductance, is the total ohmic 
resistance of the collector, electrolyte and active mass. 

The equivalent model is depicted in Figure 5.2. 

                                                      
8 In term of correct BESS manufacturing, similar diffusion coefficients for the two electrodes 

are required in order to guarantee a symmetric operation of both electrodes. 

Table 5.1 Typical conductivity values for material used in electrochemical cells [199]. 
Material Conductivity [S/cm]  
Cathode material 10-10 – 10-1 

Ionic conductivity Anode material 10-9 – 102 
Solid electrolyte 10-7 – 10-3 

Liquid electrolyte 100 - 101 
Metal collector ∼ 105 Electronic conductivity 
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5.3 Electrode kinetics phenomena 

The redox reaction, which involves the charge transfer between electrode and species 
in the electrolyte, can be written as: 

 𝑂𝑂𝑥𝑥 + 𝑛𝑛𝑟𝑟− ↔ 𝑅𝑅𝑟𝑟𝑑𝑑 (5.3) 

with O and R the oxidized and reduced species respectively and n the number of 
electrons e- involved in the reaction. Oxidation and reduction, which take place at the 
electrode/electrolyte interfaces, generate the specific forward (if) and backforward (ib) 
currents [A/m]. They can be defined as follows: 

 𝑑𝑑𝑓𝑓 = 𝑛𝑛𝐹𝐹𝑆𝑆𝑘𝑘𝑓𝑓𝑐𝑐𝑂𝑂 (5.4) 

 𝑑𝑑𝑑𝑑 = 𝑛𝑛𝐹𝐹𝑆𝑆𝑘𝑘𝑑𝑑𝑐𝑐𝑅𝑅 (5.5) 

Where S is the equivalent reaction surface [m2], cO and cR are the concentrations of 
the oxidising and reducing species [mol/m3] and F is the Faraday constant. kf and kb are 
the forward and backforward rate constants [1/s], as per the Arrhenius law: 

 
𝑘𝑘𝑓𝑓 = 𝑘𝑘𝑓𝑓0𝑟𝑟

−𝛼𝛼𝑛𝑛 𝛼𝛼
𝑅𝑅𝑅𝑅�𝑆𝑆−𝑆𝑆

0�
 (5.6) 

 
𝑘𝑘𝑑𝑑 = 𝑘𝑘𝑑𝑑0𝑟𝑟

(1−𝛼𝛼)𝑛𝑛 𝛼𝛼
𝑅𝑅𝑅𝑅�𝑆𝑆−𝑆𝑆

0�
 (5.7) 

Where, E0 is the standard potential [V] of the redox process, ki
0 are the rate constants 

at potential E0, α the transfer coefficient, R the universal gas constant and T is the absolute 
temperature [K]. The transfer coefficient α determines what fraction of the electric 
energy, which results from the displacement of the potential from the equilibrium value, 

 
Figure 5.2 Equivalent impedance model for electric and magnetic phenomena 
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affects the rate of electrochemical transformation.  
At the equilibrium, the forward (if) and backward (ib) are equal. At non-equilibrium, 

the faradaic current i (i.e. total current as per the redox reactions at the electrode surface) 
can be derived as follows [122]: 

 𝑑𝑑 = 𝑑𝑑𝑑𝑑 −  𝑑𝑑𝑓𝑓 = 𝑛𝑛𝐹𝐹𝑆𝑆�𝑘𝑘𝑑𝑑𝑐𝑐𝑅𝑅 −  𝑘𝑘𝑓𝑓𝑐𝑐𝑂𝑂� (5.8) 

In general, it is possible to express the current variation ∆i as a function of the 
concentrations i of the species involved and of the variation of the electrode potential ∆E 
[122]: 

 ∆𝑑𝑑 = ��
𝜕𝜕𝑑𝑑
𝜕𝜕𝑐𝑐𝑖𝑖

� ∆𝑐𝑐𝑖𝑖 + �
𝜕𝜕𝑑𝑑
𝜕𝜕𝐸𝐸
�∆𝐸𝐸 + (ℎ𝑑𝑑𝑖𝑖ℎ𝑟𝑟𝑟𝑟 𝑛𝑛𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑) (5.9) 

And, by neglecting the higher order terms, the impedance Z is derived as: 

 
𝑍𝑍 = 1

𝜕𝜕𝑑𝑑
𝜕𝜕𝐸𝐸
� �1 −��

𝜕𝜕𝑑𝑑
𝜕𝜕𝑐𝑐𝑖𝑖

�
{∆𝑐𝑐𝑖𝑖}
{∆𝑑𝑑}

� (5.10) 

This equation is made of two terms: the first one represents the charge transfer 
resistance; while the second one in square brackets contains the influence of diffusion 
effects in the electrolyte and electrodes. The time constant of diffusion effect is far greater 
than the one of electrode kinetics, thus the two effects can be studied separately. The 
value of the resistance Rct can be obtained by deriving equation (5.10): 

 1
𝑅𝑅𝑆𝑆𝑅𝑅

=
𝜕𝜕𝑑𝑑
𝜕𝜕𝐸𝐸

=
𝑛𝑛2𝐹𝐹2𝑆𝑆
𝑅𝑅𝑅𝑅 �𝛼𝛼𝑘𝑘𝑓𝑓𝑐𝑐𝑂𝑂 + (1 − 𝛼𝛼)𝑘𝑘𝑑𝑑𝑐𝑐𝑅𝑅� (5.11) 

As mentioned before, in addition to the faradaic current i, there exists the non-faradaic 
current due to the double layer effect. Assuming that the faradaic current is decoupled 
from the non-faradaic one, the double layer effect can be taken into account with a 
capacitor element CDL in parallel to the charge transfer resistance RCT. Therefore, the 
whole kinetics effects at the single electrode can be represented by a parallel RCT - CDL 
circuit with time constant 𝜏𝜏, as depicted in Figure 5.3 

At very high dynamics the impedance associated to the capacitor tends to be a short 
circuit so that the total current of the battery is equal to the non-faradaic current. In other 
words, the current of the battery comes from the electrostatic charge stored in the double 
layer capacitor and not from the redox reaction. When the battery is subjected to a current 
step, the total current is equal to the faradaic current after a time greater than five times 
the time constant 𝜏𝜏. 

In the complex plane the impedance is represented by a semicircle of radius RCT. At 
very high frequencies the impedance approaches the origin while at very low frequency 
it approaches the resistance value RCT. The maximum amplitude of the imaginary parts is 
RCT/2 and it happens for the frequency f0 ∼ 1/(𝜏𝜏). 

5.4 Diffusion phenomena 

Diffusion processes can be found at different locations in an electrochemical cell 
[200]: 
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 In the free electrolyte between the two electrodes. The ions must migrate from the 
cathode to the anode and vice versa. 

 In the electrolyte inside porous electrode. Since the geometry influences the boundary 
conditions, the diffusion process is influenced as well. 

 In the active material inside the electrodes. Charge carriers fill and empty the 
crystalline structure at both electrodes during the charge and discharge processes.  

 In the SEI (Solid Electrolyte Interface [201]) in case of lithium-ion batteries; 
The Nerst-Planck equation describes in one dimension (x) three factors: the rate of 

accumulation of a species i in a given volume per effect of an electrostatic field E which 
is applied between electrodes, the change in the concentration gradient, and any other 
terms Ri that lead to the production or deletion of the species i, such as chemical reactions. 

 𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝑟𝑟

= 𝑛𝑛𝑖𝑖𝐹𝐹𝑢𝑢𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝑥𝑥

𝐸𝐸 + 𝐷𝐷𝑖𝑖
𝜕𝜕2𝑐𝑐𝑖𝑖
𝜕𝜕𝑥𝑥2

+ 𝑅𝑅𝑖𝑖 (5.12) 

where 𝑢𝑢𝑖𝑖 is the mobility of the species i. In absence of an electric field E and terms in 
Ri equations (5.12) reduces to Fick’s second law [122]: 

 𝜕𝜕𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑟𝑟)
𝜕𝜕𝑟𝑟

= 𝐷𝐷
𝜕𝜕2𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑟𝑟)
𝜕𝜕𝑥𝑥2

 (5.13) 

The temporal evolution of the concentration of the species i is the product of the 
diffusion coefficient D by the change in the concentration gradient over the x dimension, 
which is the distance of the electrolyte from the surface where the reaction takes place 
(x=0).  

Solutions of the diffusion equation are required in the frequency domain. The Laplace 
transform of equation (5.13) is an ordinary differential equation: 

 
𝑑𝑑{𝑐𝑐𝑖𝑖} − 𝑐𝑐𝑖𝑖(𝑟𝑟 = 0) = 𝐷𝐷

𝑑𝑑2{𝑐𝑐𝑖𝑖}
𝑑𝑑𝑥𝑥2

              𝑑𝑑 = 𝑗𝑗𝑗𝑗 (5.14) 

Where {𝑐𝑐𝑖𝑖} is the Laplace transform of 𝑐𝑐𝑖𝑖. General solutions of equation (5.14) are of 

 
Figure 5.3 Equivalent impedance model for electrode kinetics phenomena 
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the form: 

 
{∆𝑐𝑐} = 𝐴𝐴𝑟𝑟−

�𝑗𝑗𝑗𝑗𝐷𝐷 𝑚𝑚 + 𝐵𝐵𝑟𝑟
�𝑗𝑗𝑗𝑗𝐷𝐷 𝑚𝑚 (5.15) 

With {∆c} the Laplace transform of the excess concentration, ∆c = c(x,t) – c(x,0). 
From an impedance-perspective study, the interest is on the excess of concentration. 
Specifically, to identify the variation of the system response to external stimuli, that is 
the voltage variation Δv at the battery terminals due to the variation of the current 
variation Δi. In this way, it is possible to calculate the equivalent impedance.  

The A and B coefficients are constants determined by the three following boundary 
conditions, with the hypothesis of one dimensional geometry [153] (Figure 5.4): 
 Semi-infinite boundary condition which is the case for infinitely extended electrolyte 

(x → ∞). 
 Finite-length boundary conditions which can be divided in [202], [203]: 

− Reflective boundary conditions: electrolyte with finite extension x=l and limited 
by a non-permeable wall at x = l (i.e. the impermeability of ions at the current 
collector of electrodes). 

− Transmissive boundary conditions: electrolyte with finite extension x=l and 
constant activity or concentration at x = 0. It is typical for the diffusion of charge 
carriers through a permeable membrane, (i.e. the ions that cross the separator 
moving from one electrode surface to the other). 

Semi-infinite boundary condition 
This is the case for Δc → 0 as x → ∞. From equation (5.15) it results B=0 and the 

solution is: 

 
{∆𝑐𝑐} = −

1

�𝑗𝑗𝑗𝑗𝐷𝐷

𝑑𝑑{∆𝑐𝑐}
𝑑𝑑𝑥𝑥

 (5.16) 

But the current variation {∆𝑑𝑑} is proportional to the concentration variation {∆𝑐𝑐}: 

 
{∆𝑑𝑑} = −𝑛𝑛𝐹𝐹𝐷𝐷

𝑑𝑑{∆𝑐𝑐}
𝑑𝑑𝑥𝑥

 (5.17) 

 
Figure 5.4 Nyquist plot of the impedance describing the diffusion phenomena for three 
boundary conditions: a) Semi-infinite, b) Finite-length transmissive boundary, c) Finite-length 
reflective boundary 
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By assuming small perturbations around equilibrium, it is possible to write: 

 {∆𝑣𝑣}
{∆𝑐𝑐} =

𝑑𝑑𝐸𝐸
𝑑𝑑𝑐𝑐

 (5.18) 

and to derive the equivalent impedance in the Laplace domain as [122]: 

 
𝑍𝑍′(𝑗𝑗𝑗𝑗) =

{∆𝑣𝑣}
{∆𝑑𝑑}

=
𝑑𝑑𝐸𝐸
𝑑𝑑𝑐𝑐

1
𝑛𝑛𝐹𝐹�𝑗𝑗𝑗𝑗𝐷𝐷

 (5.19) 

dE/dc represents the change in electrode potential with concentration in [V/mol/m3]. 
The electrode surface S has to be introduced in the expression to derive the total 
impedance in [Ω]. For an ideal solution:  

 𝑑𝑑𝐸𝐸
𝑑𝑑𝑐𝑐

=
𝑅𝑅𝑅𝑅
𝑛𝑛𝐹𝐹𝑐𝑐

 (5.20) 

The total impedance is:  

 𝑍𝑍(𝑗𝑗𝑗𝑗) =
𝜎𝜎

�𝑗𝑗𝑗𝑗𝐷𝐷
       𝑤𝑤𝑑𝑑𝑟𝑟ℎ      𝜎𝜎 =

𝑅𝑅𝑅𝑅
𝑐𝑐𝑛𝑛2𝐹𝐹2𝑆𝑆

 (5.21) 

The complex impedance is therefore inversely proportional to the square root of 
frequency. In the complex plane, it is a straight line inclined at π/4 to the real axis (Figure 
4.3-a). From an electrical point of view. 

Transmissive boundary condition 
This represents a finite-length condition. It is assumed a constant activity or 

concentration at x = 0. In this case the impedance is [122]: 

 

𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗) = 𝜎𝜎
tanh�𝑙𝑙�𝑗𝑗𝑗𝑗𝐷𝐷 �

�𝑗𝑗𝑗𝑗𝐷𝐷
 (5.22) 

The Nyquist plot of the impedance ZD,T  is depicted on Figure 4.3-b. It approaches the 
one of infinite boundary conditions for high frequencies. It is possible to derive the 
following limiting factors RD,T and CD,T by studying the following limits9: 

 lim
𝑗𝑗→0

𝑅𝑅𝑟𝑟�𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗)� = 𝑅𝑅𝐷𝐷,𝑅𝑅 = 𝜎𝜎
𝑙𝑙
𝐷𝐷

 (5.23) 

                                                      
9 The solution has been derived by using the following limits: 

 𝑙𝑙𝑑𝑑𝑛𝑛
𝑗𝑗→0

𝑅𝑅𝑟𝑟 �tanh (�𝑗𝑗𝑗𝑗𝑗𝑗)
�𝑗𝑗𝑗𝑗𝑗𝑗

� = 1 

 𝑙𝑙𝑑𝑑𝑛𝑛
𝑗𝑗→0

− 1
𝑗𝑗
𝐿𝐿𝑛𝑛 �tanh (�𝑗𝑗𝑗𝑗𝑗𝑗)

�𝑗𝑗𝑗𝑗𝑗𝑗
� = 𝑗𝑗

3
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lim
𝑗𝑗→0

−
𝐿𝐿𝑛𝑛�𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗)�

𝑗𝑗 ∙ �𝑅𝑅𝑟𝑟�𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗)��2
= 𝐶𝐶𝐷𝐷,𝑅𝑅 =

𝑙𝑙
3 ∙ 𝜎𝜎

 (5.24) 

By defining the time constant 𝜏𝜏D,T, it is possible to write the reflective boundary 
impedance ZD,T (jω) as a function of its limiting factors: 

 
𝜏𝜏𝐷𝐷,𝑅𝑅 = 𝑅𝑅𝐷𝐷,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅 =

𝑙𝑙2

3𝐷𝐷
 (5.25) 

 
𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗) =

𝜏𝜏𝐷𝐷,𝑅𝑅 tanh�3 ∙ 𝑗𝑗𝑗𝑗𝜏𝜏𝐷𝐷,𝑅𝑅

𝐶𝐶𝐷𝐷,𝑅𝑅�3 ∙ 𝑗𝑗𝑗𝑗𝜏𝜏𝐷𝐷,𝑅𝑅
 (5.26) 

Note that the electric impedance measurable at the electric terminals is a function of 
the electrochemical parameters as well as the geometry of the diffusion process. By anti-
transforming equation (5.26), it is possible to derive the expression of the reflective 
boundary impedance in the time domain [204]. 

 
𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗) =

𝑘𝑘2
√𝑑𝑑𝑗𝑗

tanh �
𝑘𝑘1
𝑘𝑘2
√𝑑𝑑𝑗𝑗�  → 𝑍𝑍𝐷𝐷,𝑅𝑅(𝑟𝑟) =

2𝑘𝑘22

𝑘𝑘1
 �𝑟𝑟

−(2𝑛𝑛−1)2𝜋𝜋2𝑘𝑘22

4𝑘𝑘12
𝑎𝑎

∞

𝑛𝑛=1

 (5.27) 

By comparing equation (5.27) with equation (5.26) the coefficients k1 and k2 can be 
computed as follows: 

 
𝑘𝑘1 = 𝑅𝑅𝐷𝐷,𝑅𝑅     𝑟𝑟𝑛𝑛𝑑𝑑     𝑘𝑘2 = �

𝑅𝑅𝐷𝐷,𝑅𝑅

3 ∙ 𝐶𝐶𝐷𝐷,𝑅𝑅
  (5.28) 

The impedance 𝑍𝑍𝑒𝑒,𝑎𝑎(𝑟𝑟) can then be written as: 

 
𝑍𝑍𝐷𝐷,𝑅𝑅(𝑟𝑟) =

2
3 ∙ 𝐶𝐶𝐷𝐷,𝑅𝑅

 �𝑟𝑟
−(2𝑛𝑛−1)2𝜋𝜋2
12𝑅𝑅𝐷𝐷,𝑇𝑇𝑆𝑆𝐷𝐷,𝑇𝑇

𝑎𝑎
∞

𝑛𝑛=1

 (5.29) 

The impedance ZD,T (t) can be represented with an electric circuit made by a serial 
connection of infinite parallel Rn, Cn elements, described by: 

 
ℎ(𝑟𝑟) =

1
𝐶𝐶𝑛𝑛

 �𝑟𝑟−
1

𝑅𝑅𝑛𝑛𝑆𝑆𝑛𝑛
𝑎𝑎

∞

𝑛𝑛=1

 (5.30) 

By comparing equation (5.30) with equation (5.29), it is possible to derive the values 
of each single resistor and capacitance of the series: 

 𝐶𝐶𝑛𝑛 =
3 ∙ 𝐶𝐶𝐷𝐷,𝑅𝑅

2
     𝑟𝑟𝑛𝑛𝑑𝑑     𝑅𝑅𝑛𝑛 =

8𝑅𝑅D,T
(2𝑛𝑛 − 1)2𝜋𝜋2

  (5.31) 

The electric model representing the case of a diffusion with a finite length 
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transmissive boundary condition is depicted in Figure 5.5. 

Reflective boundary condition 
This is a second finite-length condition for which it is valid that dc/dx = 0. Ho et al. 

[205] derived the impedance as follows: 

 

𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗) = 𝜎𝜎
coth�𝑙𝑙�𝑗𝑗𝑗𝑗𝐷𝐷 �

�𝑗𝑗𝑗𝑗𝐷𝐷
 (5.32) 

The Nyquist plot of the impedance ZD,R  is depicted on Figure 4.3-b. It approaches the 
one of an infinite boundary conditions for frequencies tending to infinite. By studying 
the limits 10, it is possible to derive the limiting factors RD,R and CD,R:  

 𝑙𝑙𝑑𝑑𝑛𝑛
𝑗𝑗→0

𝑅𝑅𝑟𝑟�𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗)� = 𝑅𝑅𝐷𝐷,𝑅𝑅 = 𝜎𝜎
𝑙𝑙

3𝐷𝐷
 (5.33) 

 𝑙𝑙𝑑𝑑𝑛𝑛
𝑗𝑗→0

−
1

𝑗𝑗 ∙ 𝐿𝐿𝑛𝑛�𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗)�
= 𝐶𝐶𝑒𝑒,𝑟𝑟 =

𝑙𝑙
𝜎𝜎

 (5.34) 

By defining the time constant 𝜏𝜏D,R, it is possible to write the reflective boundary 
impedance ZD,R (jω) as a function of its limiting factors: 

                                                      
10 The solution has been derived by using the following limits: 

 𝑙𝑙𝑑𝑑𝑛𝑛
𝑗𝑗→0

𝑅𝑅𝑟𝑟 �coth (�𝑗𝑗𝑗𝑗𝑗𝑗)
�𝑗𝑗𝑗𝑗𝑗𝑗

� = 1
3
 

 𝑙𝑙𝑑𝑑𝑛𝑛
𝑗𝑗→0

− 1

𝑗𝑗∙𝐷𝐷𝑛𝑛�coth (�𝑗𝑗𝑗𝑗𝑗𝑗)
�𝑗𝑗𝑗𝑗𝑗𝑗

�
= 𝜃𝜃 

 
Figure 5.5 Equivalent electric circuit representing the diffusion process with a finite length 
transmissive boundary condition 
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𝜏𝜏𝐷𝐷,𝑅𝑅 =

𝑙𝑙2

𝐷𝐷
= 3𝑅𝑅𝐷𝐷,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅 (5.35) 

 
𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗) =

𝜏𝜏𝐷𝐷,𝑅𝑅 coth�𝑗𝑗𝑗𝑗𝜏𝜏𝐷𝐷,𝑅𝑅

𝐶𝐶𝐷𝐷,𝑅𝑅�𝑗𝑗𝑗𝑗𝜏𝜏𝐷𝐷,𝑅𝑅
 (5.36) 

By anti-transforming equation (5.36), it is possible to derive the expression of the 
reflective boundary impedance in the time domain [204].   

 
𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗𝑗𝑗) =

𝑘𝑘2
√𝑑𝑑𝑗𝑗

coth �
𝑘𝑘1
𝑘𝑘2
√𝑑𝑑𝑗𝑗�  → 𝑍𝑍𝐷𝐷,𝑅𝑅(𝑟𝑟) =

𝑘𝑘22

𝑘𝑘1
+

2𝑘𝑘22

𝑘𝑘1
 �𝑟𝑟

−𝑛𝑛
2𝜋𝜋2𝑘𝑘22

𝑘𝑘12
𝑎𝑎

∞

𝑛𝑛=1

 (5.37) 

By comparing equation (5.37) with equation (5.36) the coefficient k1 and k2 can be 
found as follows: 

 
𝑘𝑘1 = 3𝑅𝑅𝐷𝐷,𝑅𝑅     𝑟𝑟𝑛𝑛𝑑𝑑     𝑘𝑘2 = �

3𝑅𝑅𝐷𝐷,𝑅𝑅

𝐶𝐶𝐷𝐷,𝑅𝑅
  (5.38) 

The impedance 𝑍𝑍𝑒𝑒,𝑟𝑟(𝑟𝑟) can then be written as: 

 
𝑍𝑍𝐷𝐷,𝑅𝑅(𝑟𝑟) =

1
𝐶𝐶𝐷𝐷,𝑅𝑅

+
2
𝐶𝐶𝐷𝐷,𝑅𝑅

 �𝑟𝑟
− 𝑛𝑛2𝜋𝜋2
3𝑅𝑅𝐷𝐷,𝑅𝑅𝑆𝑆𝐷𝐷,𝑅𝑅

𝑎𝑎
∞

𝑛𝑛=1

 
 

(5.39) 

The second term in equation (5.38) can be represented with an electric circuit made 
by a serial connection of infinite parallel Rn, Cn elements, described by: 

 
Figure 5.6 Equivalent electric circuit representing the diffusion process with a finite length 
reflective boundary condition 

n° of RC
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CD,R
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ℎ(𝑟𝑟) =

1
𝐶𝐶𝑛𝑛

 �𝑟𝑟−
1

𝑅𝑅𝑛𝑛𝑆𝑆𝑛𝑛
𝑎𝑎

∞

𝑛𝑛=1

 (5.40) 

Then, by comparing equation (5.39) with equation (5.39), it is possible to derive the 
values of each single resistor and capacitance of the series: 

 𝐶𝐶𝑛𝑛 =
𝐶𝐶𝐷𝐷,𝑅𝑅

2
     𝑟𝑟𝑛𝑛𝑑𝑑     𝑅𝑅𝑛𝑛 =

6𝑅𝑅D,R

𝑛𝑛2𝜋𝜋2
  (5.41) 

The electric model representing the case of a diffusion with a finite length reflective 
boundary condition is depicted in Figure 5.6. 

The capacitance element CD,R is the limit of the equivalent impedance for frequency 
tending to 0 as per equation (5.34). Equivalent circuit in Figure 5.6 shows that CD,R is a 
series element; thus, it does not change its voltage when no current is flowing. In other 
words, the amount of charge remains unchanged. From an electrochemical perspective, 
the capacitance CD,R is the parameter able to take into account the amount of charge stored 
in the active material, thus in the battery electrodes. 

The time constant 𝜏𝜏D,R define the rate of the diffusion process with a reflective 
boundary condition. By considering the equivalent capacitance: 

 𝐶𝐶𝐷𝐷,𝑒𝑒𝑒𝑒 = −
1

𝑗𝑗 ∙ 𝐿𝐿𝑛𝑛�𝑍𝑍𝐷𝐷,𝑅𝑅(𝑗𝑗)�
 (5.42) 

CD,eq (jω) approaches the limiting capacitance CD,R for frequencies lower than the 
characteristic one of 1/𝜏𝜏D,R (Table 5.2). For instance, the equivalent capacitance reduces 
at 35% for frequencies one decade greater than the characteristic one. With reference to 
Figure 5.6, it means that the full charge stored in CD,R  is fully accessible only for a 
frequency lower than 1/𝜏𝜏D,R, while only a fraction is accessible at greater frequencies. 

5.5 Summary 

In this chapter, the main theoretical pillars which are necessary for a proper 
electrical modelling process have been provided. The underlying physics about 
electrochemical cells functioning have been covered in depth. The main phenomena 
have been identified (electric and magnetic phenomena, electrodes kinetics phenomena 
and diffusion phenomena) are discussed. Diffusion phenomena are discussed for three 
different boundary conditions: semi-infinite, transmissive and reflective. The main 
novelty is represented by the approach used to link electrochemical phenomena to the 
electrical modelling approach. The equivalent impedance representation is proposed for 
each phenomenon, which must be characterized by clear links in between the 
characterizing equations and the derived circuital elements in the electrical model.  

 

Table 5.2 Equivalent capacitance CD,eq as function of frequency.  
Frequency CD,eq /  CD,R   

1 / 𝜏𝜏D,R  0.95 
10 / 𝜏𝜏D,R  0.35 

100 / 𝜏𝜏D,R  0.11 
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CHAPTER  6 

 
 
 
 

6 Novel electrical model for 
Lithium-ion cell 

 
 
 
Chapter 5 provided the fundamentals which are necessary for a proper electrical 

modelling process. In this chapter, a novel lithium-ion cell model derived from such a 
theoretical framework is proposed. The novelty lies in the fact that each single block of 
the electrical model has a close link with a specific electrochemical phenomenon. The 
focus is on cell level rather than module for several reasons: (i) device response is only a 
function of electrochemistry, no influence from BMS; (ii) ease of access: electrochemical 
cells are small and easy to test; (iii) lower current and voltage that allow to test more 
devices in parallel, (iv) costs. 

The modelling approach, which is based on the Electrochemical Impedance 
Spectroscopy (EIS) measurements (basics of EIS is detailed in Appendix C), is composed 
of the following steps (Figure 6.1): 
 As a first step, it is necessary to define the specific electrochemical technology to be 

tested and modelled. Each chemistry has its own peculiarities: a model developed for 
the Li-ion chemistry could be inaccurate for the lead-acid chemistry and vice versa.  

 The second step is represented by the interpretation of electrochemical phenomena as 
shown in Chapter 5. 

 The third step is the definition of a suitable electric model which is able to describe 
typical EIS of the chosen technology. This step represents the core of the whole 
procedure. By linking any interpretation to the underneath theoretical framework, 
ambiguous circuits are avoided by default. For instance, the model cannot contain 
resistors, capacitances or inductance with negative values, which clearly have no 
meaning from the physical point of view.  

 The fourth step is represented by measurement sets. In this case, the modelling is 
based on EIS measurements which investigate the impedance response for different 
battery SoC, SoH and temperatures in the frequency domain.  

 The fifth step is the fitting process between the measurements and the proposed model 
in order to identify the model parameters, which must have a clear physical meaning.  

 The sixth and last step is the model validation in the time domain. This is done by 
comparing the simulated and measured response (i.e. voltage at terminals) to injected 
or adsorbed current profiles. 
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As anticipated, in the following sub-sections the modelling approach of Figure 6.1 is 
detailed and applied to build a novel model for Li-ion cells.  

6.1 Electrical model formulation 

In this section, we present and motivate the novel model that is applied for Li-ion 
technology. The Reference framework for the analyses is the one proposed in Chapter 5, 
while the physical interpretation is based on EIS measurements. By looking at the 
characteristic frequency ranges, it is in fact possible to discern between the different 
electrochemical phenomena. As presented in Table 5.1, different conductivities belong 
to the different cell materials and this fact has a close link with the impedance spectrum 
shape. For instance, diffusion phenomena inside the electrolyte have a diffusion rate one 
order of magnitude slower than those ones in the electrodes. Therefore, we expect to find 
characteristic regions in the impedance plot which reflect these differences. 

Figure 6.2 shows a typical EIS for Li-ion cell. We can distinguish 4 different 
phenomena, that are interpreted as follows: 
 Electromagnetic phenomena: they reflect the inductive and resistive behaviours of the 

battery at very high frequencies. The resistance RΩ is the sum of the electrolyte, active 
mass of the electrodes, separator and current collector resistances. These phenomena 
occur for frequencies higher than kHz. 

 Charge transfer and double layer phenomena: they take into account the kinetics of 
the redox reactions at the anode and cathode electrodes. These phenomena occur in 
the frequency range of tens of kHz down to hundreds of Hz. 

 Diffusion in the electrolyte phenomena: they take into account the diffusion of ions 
in the electrolyte from the electrode/electrolyte interface towards the bulk of the 
electrolyte. These phenomena occur in the frequency range of tens of Hz down to 
hundreds of mHz. 

 Diffusion in the electrodes phenomena: they describe the diffusion of charge carriers 
in the electrode structure. These phenomena take place at a very low frequency (from 
some hundreds of mHz to DC regime) where the impedance approaches a purely 
capacitive behaviour.  

 
Figure 6.1 Modelling approach and validation 
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The proposed electric model faithfully represents the electrochemical physics of 
Chapter 5 and Figure 6.2. It is valid in the frequency range from kHz to DC at a specific 
temperature, SoC and SoH. Since the time-constants of the characteristics phenomena 
are well separated, the model is based on series blocks, each one reproducing one specific 
dynamic. Figure 6.3 show the proposed electric model in its five blocks: 
 The first block consists of a pure resistor that models the electromagnetic effects. The 

inductance is neglected because a battery is rarely used at very high frequencies in 
real applications (the battery will behave like a resistance with no capacity). 
Moreover, it is worth noting that the equivalent inductance of any external circuit, 
which normally surrounds a cell, is much higher than the equivalent internal one. 

 The second and third blocks are two parallel RC branches that model the charge 
transfer and double layer capacitance at the two-electrode surface. The model requires 
two blocks because typically the equivalent impedance in this frequency range is not 
a perfect RC-type shape but resembles a depressed arc. This means that the rate of 
charge transfer processes is not the same at the two-electrode surface. This fact results 
in a superposition between the correspondent semi-circles [200]. 

 The fourth block models the diffusion of charge carriers from the electrode surface 
towards the bulk of the electrolyte and vice-versa. The equivalent circuit is the anti-
transform of the ZD,T(jω) impedance. Simulation results show the series of infinite RC 
branches can be limited to five without affecting the accuracy of the model in the time 
domain. 

 The fifth block models the diffusion of the charge carriers in the crystalline structure 
of active material. In this case the diffusion is of a reflective type due to 
impermeability of current collectors to the ions. It is represented by the anti-transform 
of the ZD,R(jω) impedance, and also in this case the number of parallel RC branches 
can be limited to five. 
Overall, the model consists of nine independent parameters. Since EIS changes with 

respect to temperature and SoC, the nine parameters cannot be assumed constant. A set 
of EIS measurements is needed to map the impedance response at different operating 
conditions (e.g. at different battery temperature and SoC). 

 
Figure 6.2 Typical impedance trend for a lithium ion battery at a specific temperature and SoC 
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The model impedance in the frequency domain can be written as: 

 
𝑍𝑍𝑐𝑐𝑟𝑟𝑙𝑙𝑙𝑙(𝑗𝑗𝑗𝑗) = 𝑅𝑅𝛺𝛺 +

1
1

𝑅𝑅𝐶𝐶𝑅𝑅,1
+ 𝑗𝑗𝑗𝑗𝐶𝐶𝐷𝐷𝐿𝐿,1

+
1

1
𝑅𝑅𝐶𝐶𝑅𝑅,2

+ 𝑗𝑗𝑗𝑗𝐶𝐶𝐷𝐷𝐿𝐿,2

+
𝑅𝑅𝐷𝐷,𝑅𝑅 tanh�𝑗𝑗𝑗𝑗𝑅𝑅𝐷𝐷,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅

�𝑗𝑗𝑗𝑗𝑅𝑅𝐷𝐷,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅

+
3𝑅𝑅𝐷𝐷,𝑅𝑅 coth�𝑗𝑗𝑗𝑗3𝑅𝑅𝐷𝐷,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅

�𝑗𝑗𝑗𝑗3𝑅𝑅𝐷𝐷,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅
 

(6.1) 

The model does not contain any voltage generator to represent the open circuit voltage 
(OCV). Therefore, it belongs to the family of passive electric models (see section 4.2). 
The OCV of the device is taken into account by the parameter CD,R. This parameter 
represents the equivalent capacitance per effect of the diffusion of charge carriers in the 
active material (reflective boundary type). This effect takes place at very low frequencies 
when ions intercalating in the electrodes face the impermeable current collector. The 
amount of energy stored in a battery cell is strictly related with the amount of available 
charge carriers in the electrodes. The equivalent capacitance measured at very low 
frequency takes into account this effect, thus the parameters CD,R represents the capacity 
in [F] of the battery and ultimately the parameter is used to update the SoC. 

6.2 Measurements on Lithium-ion cells 

In the following sections, we present the measurements performed on Li-ion 
technology. These sets of measurements are at the basis of the subsequent modelling 
phase. Specifically, they are of two types: 
 GEIS measurements: that aim at fully dynamically representing cell behaviour (see 

Appendix C). This is done by performing: (i) time-consuming tests (namely LONG 
GEIS) that aim at fully characterizing the cell dynamics up to a very low frequency; 

 
Figure 6.3 Proposed electric model for lithium-ion cells in the frequency-domain (top) and 
time-domain (bottom) 
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𝑍𝑍𝐷𝐷 ,𝑅𝑅 𝑗𝑗𝑗𝑗 =
𝜏𝜏𝑅𝑅𝑐𝑐𝑛𝑛𝑟𝑟ℎ 𝑑𝑑𝑗𝑗𝜏𝜏𝑅𝑅
𝐶𝐶𝐷𝐷,𝑅𝑅 𝑑𝑑𝑗𝑗𝜏𝜏𝑅𝑅

𝜏𝜏𝑅𝑅 = 3𝑅𝑅𝐷𝐷 ,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅

𝑍𝑍𝐷𝐷 ,𝑅𝑅 𝑗𝑗𝑗𝑗 =
𝜏𝜏𝑅𝑅𝑟𝑟𝑟𝑟𝑛𝑛ℎ 𝑑𝑑𝑗𝑗𝜏𝜏𝑅𝑅
𝐶𝐶𝐷𝐷,𝑅𝑅 𝑑𝑑𝑗𝑗𝜏𝜏𝑅𝑅

𝜏𝜏𝑅𝑅 = 𝑅𝑅𝐷𝐷 ,𝑅𝑅𝐶𝐶𝐷𝐷,𝑅𝑅

𝑍𝑍 𝑗𝑗𝑗𝑗 = 𝑅𝑅Ω 𝑍𝑍𝑖𝑖 𝑗𝑗𝑗𝑗 =
𝑅𝑅𝑖𝑖

1 + 𝑗𝑗𝑗𝑗𝜏𝜏𝑖𝑖
𝜏𝜏𝑖𝑖 = 𝑅𝑅𝑆𝑆𝑅𝑅,𝑖𝑖𝐶𝐶𝐷𝐷𝐿𝐿,𝑖𝑖
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(ii) shorter tests (namely SHORT GEIS) that aim at differentiating the dynamic 
response at different SoCs and temperature conditions. 

 OCV measurements: aim at identifying the OCV as function of the removed charge. 
OCV and SoC are closely related to each other: a value of SoC is given for a specific 
value of OCV and vice versa. 
All the measurements have been run on a specific Li-ion cell: the BOSTON POWER 

SWING5300™ [107] (details about the cells in appendix E).  

EIS measurements 
EIS measurements have been performed with the Gamry Instruments© Reference 

3000™ Potentiostat/Galvanostat/ZRA. LONG and SHORT GEIS tests measure the 
frequency response of the device respectively in the frequency range of 105 - 10-5 Hz and 
105 - 10-2 Hz. While each LONG GEIS test is time consuming and lasts about 12 days, 
SHORT GEIS are faster (roughly 20 minutes) and therefore are repeated also at different 
ambient temperatures. The rms value of AC current has been chosen small enough to 
limit the cell SoC variation at a maximum 1% of the nominal capacity even in the worst-
case scenario of the smallest frequency (10µHz). 

The GEIS measurements have been performed at different levels of SoC. The SoC 
regulations have been done by first charging the cell as indicated by the manufacturer11 
so that the cell can be assumed to be at SoC 100%, then by discharging (CC mode) at 
specific C-rate (1/3C) for the time tSoC as follows: 

 𝑟𝑟𝑆𝑆𝑛𝑛𝑆𝑆 =
100 − 𝑆𝑆𝑛𝑛𝐶𝐶i

100
1

𝐶𝐶𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒
 (6.2) 

Where SoCi is the desired level of SoC at which to perform the GEIS measurements. 

Long GEIS measurements 

The experiments have been performed at standard ambient temperature of 25°C for 
three different levels of SoC. As mentioned in Table 6.1, a very low frequency range has 
been adopted aiming at fully characterizing the dynamic of the Li-ion cell under analysis. 

                                                      
11 The charge phase is normally divided in two subsequent steps: 

a) Constant Current (CC) phase in which the cell is charged by controlling the current flow until 
it reaches its maximum voltage limit. 

b) Constant Voltage (CV) phase in which the cell is charged by controlling the voltage until the 
current decreases under a specific threshold (typically a percentage of the rated capacity). 

In the case of the BOSTON POWER SWING5300™ cell, the manufacturer indicates to charge 
at 0.7C until the cell reaches 4.2V, then to keep the cell at 4.2V until the drained current is below 
50mA [107]. 

Table 6.1 Gamry Instruments© Reference 3000™ settings for long GEIS tests and fast GEIS tests 
Reference 3000™ settings  LONG GEIS SHORT GEIS 
Number of samples 3 1 
AC current (rms) 10 mA 10 mA 
DC current 0 mA 0 A 
Points per decade 5 5 
Frequency range 10kHz – 10µHz 10kHz – 10mHz 
SoC [%] 0 / 50 / 100  0 / 20 / 50 / 80 / 100  
Ambient temperature [°C] 25 -20 / 0 / +25 / +45 
Estimated test time 300 hours 0.3 hours 
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The GEIS frequencies span from 105 to 10-5 Hz, theoretically embracing the whole 
dynamic response, from purely ohmic phenomena until the intercalation effects of charge 
carriers in the electrodes.  

Given the very long time required to perform a single GEIS measurement (almost 12 
days), three BOSTON POWER SWING5300™ cells have been tested in parallel at the 
different SoC levels12. It cannot be guaranteed the three cells are identical due to the 
dispersion in the cells manufacturing process: Therefore, some biases are surely 
introduced in the measurements. However, given our data, the cell capacity dispersion is 
negligible since the standard deviation is of about 0.2% of the nominal capacity. 

The Nyquist plot of the selected cells is depicted on Figure 6.4. The shape of the GEIS 
measurements is preserved in the three experimental tests. We can distinguish the 
presence of three characteristic trends: (i) a first semi-circle at high frequency that appear 

                                                      
12 The measurements have been carried out exploiting the stack mode cell connection of the 

Gamry Instruments© Reference 3000™.that allows to measure the impedance of different cells 
series connected up to 30V. 

 
Figure 6.4 Nyquist plot of 3 BOSTON POWER SWING5300™ cells for three levels of SoC 
(0%, 50%, 100%) at 25°C 

 
Figure 6.5 Equivalent resistance (on the left) and capacitance (on the right) of 3 BOSTON 
POWER SWING5300™ cells for three levels of SoC (0%, 50%, 100%) at 25°C 
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to be slightly depressed; (ii) a second semi-circle at medium frequency; (iii) a vertical 
slope for a very low frequency. Semicircles are more depressed at the SoC of 50%. 

The Bode plot of Figure 6.5 unveils more information. Figure 6.5-A and Figure 6.5-
B show that both resistance and capacitance follow a ladder-like shape with a decrease 
of frequency. This confirms that the dynamic response turns at some characteristic 
frequencies, allowing to infer that different electrochemical phenomena are behind these 
sudden changes. Moreover, we can highlight that: 
 The relationships between both resistance and capacitance with frequency 

depend on the specific SoC at which the EIS is taken.  
 The ohmic resistance increases with the decrease of the SoC.  
 The final plateau in the equivalent capacitance suggests that the full capacity of 

the cell can be derived from measurements at a very low frequency, where the 
cell can be modelled as a capacitor (SoC dependent).  

SHORT EIS measurements 

The second set of EIS experiments have been performed at four different ambient 
temperatures for five different levels of SoC (Table 6.1). A narrower frequency range 
(from 105 to 10-2 Hz) has been adopted in order to appreciate (in a reasonable amount of 

 
Figure 6.6 Nyquist plot of BOSTON POWER SWING5300™ cell at different ambient 
temperatures for five levels of SoC 
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time) the variation in the cell behaviour with respect to different external conditions. In 
this case, the measurements have been repeated on the same cell to avoid any biases. 

The Nyquist plots of Figure 6.6 show that the typical shape of the diagram is preserved 
even at a different ambient temperature: the semicircle-like shapes in the middle-high 
frequency range are always present. Deviations emerge with respect to the magnitude of 
the impedance that heavily decreases with the temperature. At the lowest frequency (10 
mHz), the resistance and capacitance respectively increases and decreases at about the 
same ratio (15-35 times) when the temperature moves from 45°C to -20°C. 

By lowering the temperature, the same electrochemical process takes place at a lower 
frequency. At 45°C and 25°C, the investigated frequency range is sufficient to depict the 
entire first two semicircles followed by the beginning of the vertical slope (as already 
discussed in Figure 6.4). When lowering the temperature, only a part of the dynamic cell 
response is represented in the same frequency range. For instance, the second semi-circle 
bagan at just -20°C for frequencies around 10 mHz, while the same semicircles were 
more than over at 25°C. This fact can be easily explained considering the influence of 
temperature on the diffusive processes of charge carriers: lowering the temperature 
means to decrease the ions mobility in accordance with the Arrhenius law. The resulting 
dynamic response of the cell is reduced as a consequence. 

Open Circuit Voltage (OCV) measurements 
The OCV voltage measurements aim at identifying the OCV as a function of the 

removed charge. OCV tests have been performed by discharging the cell at a very low 
current rate of C/100 (53 mA). The results of Figure 6.7 show the high non-linearity trend 
of the OCV curve for the tested cell. 

When performing an OCV test, a very long time (one hundred hours) is required to 
fully discharge or charge the cell. This means that a powerful analogy exists between the 
LONG EIS measurements and the OCV test. The explanation of this correspondence lies 
in the analysis of the dynamic of the OCV measurement: 
 LONG EIS measurements are performed with very small AC current to avoid change 

in the SoC. Measurements are done at a constant OCV that is preserved at all 
frequencies. 

 During the OCV test the current is small enough to impact negligibly on the voltage. 

 
Figure 6.7 Voltage of the BOSTON POWER SWING5300™ cell when discharged at a current 
rate of C/100 at 25°C 
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The measured terminal voltage can be assumed equal to the OCV. Considering the 
typical values for the cell resistance, the voltage drop is less than 0.1% of the nominal 
cell voltage.  

 The OCV test imposes a square current profile that has a fundamental at 1.38 µHz. 
The fundamental as well as the meaningful harmonics are all in the region of very low 
frequencies where the phenomena of diffusion in electrodes take place. Such a value 
of frequency belongs to the region of very low frequencies explored also by the LONG 
EIS measurements. 
Given these findings, we expect that the capacitance CD,R, which is identified at very 

low frequencies by using LONG EIS measurement, can be assumed equal to the 
capacitance CD,R (OCV) computed from an OCV measurements. This fact can be 
explained by the equivalent circuit of Figure 6.3. At very low frequencies, the 
capacitances of all the parallel RC branches are open circuits and all the current moves 
through the resistances. At low dynamic, the OCV measurement is then equal to the 
voltage across the capacitance CD,R. 

6.3 Parameters identification procedure 

The model parameters are identified thanks to the EIS and OCV measurements. 
SHORT EIS have been used to identify all the model parameters with the exception of 
the diffusive capacitance CD,R which has been identified by means of the OCV 
measurements. 

EISs have been fitted with the model in equation (6.1). We exploited the fminsearch 
algorithm in MATLAB® to minimize the difference between the model impedance Z and 
the measured one. At each iteration, the algorithm searches for the best set of parameters 
which minimize the errors defined as follows: 

 
𝑟𝑟𝑟𝑟𝑟𝑟 = � �𝑅𝑅𝑟𝑟�𝑍𝑍𝑛𝑛𝑒𝑒𝑎𝑎𝑐𝑐,𝑖𝑖 − 𝑍𝑍𝑛𝑛𝑛𝑛𝑒𝑒,𝑖𝑖�

2 + 𝐿𝐿𝑛𝑛�𝑍𝑍𝑛𝑛𝑒𝑒𝑎𝑎𝑐𝑐,𝑖𝑖 − 𝑍𝑍𝑛𝑛𝑛𝑛𝑒𝑒,𝑖𝑖�
2

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛

𝑖𝑖=𝑓𝑓𝑚𝑚𝑎𝑎𝑚𝑚

 (6.3) 

The procedure has been applied on the 5 SHORT EIS of BOSTON POWER 
SWING5300™ cell at 5 different levels of SoC (at the ambient temperature of 25°C). 
Figure 6.8 and Figure 6.9 show the results of the fitting process. The model is able to 
faithfully represent the measurements in all the tested conditions with minimum 
deviation (R2 always above 99%). Some deviations are registered only at a very low level 
of SoC, especially in the resistance estimation. 

The fitting process returns the model parameters which have validity in the domain 
expressed by the EIS measurements. Table 6.2 shows the parameters values for the 5 
different SoCs which correspond to a specific OCV value. The resistance parameters 
increase with the decrease of the SoC, this highlights that low levels of SoC have a bad 
influence on the cell performance. Conversely, no common trend can be inferred about 
the capacitance: double layer capacitances decrease with the SoC, while diffusive 
capacitance CD,T presents a minimum for average levels of SoC. 

In Figure 6.10 the trends of parameters within the entire OCV range (i.e. SoC range) 
are presented. By performing a second fitting process, namely “over-fitting”, it is possible 
to define the correspondent interpolating functions which are in the form: 

 y = 𝑟𝑟0 + 𝑟𝑟1𝑥𝑥 + 𝑟𝑟2𝑥𝑥2 (6.4) 
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Table 6.2 Model parameters identified by fitting the SHORT EIS measurements of BOSTON 
POWER SWING5300™ cell at different SoCs 
Parameter  SoC = 100% SoC = 80% SoC = 50% SoC = 20% SoC = 0% 
OCV [V] 4.1744 3.9595 3.6675 3.5226 3.0934 
RΩ [Ω] 0.0207 0.0209 0.0213 0.0215 0.0221 
RCT,1 [Ω] 0.0034 0.0049 0.0065 0.0077 0.0097 
CDL,1 [F] 0.0264 0.0168 0.0121 0.0098 0.0075 
RCT,2 [Ω] 0.0020 0.0026 0.0034 0.0040 0.0052 
CDL,2 [F] 0.3766 0.4631 0.3437 0.2814 0.2118 
RD,T [Ω] 0.0173 0.0074 0.0052 0.0062 0.0186 
CD,T [F] 25.1545 17.1120 15.3869 16.1848 33.5702 
RD,R [Ω] 0.0079 0.0076 0.0161 0.0245 0.0641 

 
Figure 6.8 Nyquist plot comparing the EIS measures with the model fitted data for the 
BOSTON POWER SWING5300™ cell at different SoCs 

 
 

 
Figure 6.9 Bode plot comparing the EIS measures with the model fitted data for the BOSTON 
POWER SWING5300™ cell at different SoCs 
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Where a0, a1 and a2 are defined in Table 6.3 for each specific parameter. The derived 
functions are then used in the model to describe the parameters in all the possible SoC 
conditions.  

As mentioned before, the only parameter that is defined separately is the CD,R. This 
capacitance is derived by differentiating the entire OCV curve obtaining the so-called 
intercalation capacitance (IC) [150], [151]: 

 𝐶𝐶𝐷𝐷,𝑅𝑅(𝑂𝑂𝐶𝐶𝐶𝐶) =
𝑑𝑑𝑄𝑄
𝑑𝑑𝐶𝐶

 (6.5) 

Figure 6.11-a shows the trend of the IC. Each peak corresponds to a quasi-horizontal 
region of the OCV curve of Figure 6.7. In these regions, for the same imposed charge 
Q=I∙dt, the cell shows smaller changes in the OCV (i.e. SoC) that is a greater IC [F].  

Given the high non-linearity of the parameter CD,R, an interpolating function (like for 
the other parameters) might not be representative of the real OCV behaviour. For this 
reason, the full mapping of the IC curve is required in the model. This is the reason why 
IC curve is done through the OCV measurement of section 6.2 rather than the LONG EIS 
measurements. Unlike LONG EIS measurements, which last about 12 days to measure 
the impedance of a single OCV (SoC) value, the OCV measurements take about 8 days 

 
Figure 6.10 Model parameters as a function of the OCV for the BOSTON POWER 
SWING5300™ cell. The dotted pattern is the trend line as per linear or quadratic approximation 

Table 6.3  Model parameters identified by fitting the SHORT EIS measures of the BOSTON 
POWER SWING5300™ cell at different SoCs 

Parameter fitting a0 a1 a2 
RΩ Linear 0.0260 -0.0013 0 
RCT,1 Linear 0.0279 -0.0058 0 
CDL,1 Linear -0.0461 0.0165 0 
RCT,1 Linear 0.0145 -0.0030 0 
CDL,1 Linear -0.3939 0.1980 0 
RD,T Quadratic 0.5915 -0.3207 0.0438 
CD,T Quadratic 688.7170 -362.8400 48.8301 
RD,R Quadratic 1.0254 -0.5025 0.0620 
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to measure the full response at a very low frequency but spanning all the ranges of SoC 
between 100% and 0%, thus with relevant benefits in terms of time. 

The correspondence in between the parameters CD,R (OCV) and CD,R obtained 
respectively through the LONG EIS and OCV measurements have been experimentally 
verified. Table 6.4 shows a good match: the capacitance is lower at the cell limits while 
higher at medium levels of SoC. The differences can be explained by two main reasons: 
(i) non-uniformity in the tested cells: LONG EIS measurements are based in three 
different cells, while for the OCV measurements a fourth cell was used; (ii) non-
uniformity in test conditions: in the LONG EIS test the minimum frequency was around 
10 µHz while the fundamental frequency of the OCV test is 1.38 µHz. Figure 6.5 shows 
that the equivalent capacitance is going to rise up by lowering the frequency beyond the 
µHz region. This explains the higher values of the capacitance CD,R estimated by the OCV 
measurements for SoC levels of 0% and 50%. 

SoC evaluation  

Given the passive nature of the proposed electric model, the SoC is not represented 
by an external voltage source but by the parameters inside the model itself. Since OCV 
is the electrical quantity that represents the SoC, the model should be able to account for 
the OCV. During the OCV measurements, that is for very low frequencies and current, 
the capacitances of all the parallel RC branches of the electrical model (Figure 6.3) are 
open circuits and all the current flows through the series resistances. Therefore, the OCV 
is equal to the voltage across the capacitance CD,R .It is then possible to find the 
relationship between OCV-SoC directly from the OCV curve (Figure 6.7) as presented 
in Figure 6.11-b. This relationship is used in the model (i.e. simulations) to directly derive 
the SoC from the OCV estimation. 

 
Figure 6.11 (a) Intercalation capacitance CD,R (OCV), (b) OCV-SoC relationship for BOSTON 
POWER SWING5300™ cell 

Table 6.4  Model parameters identified by fitting the SHORT EIS measures of the BOSTON 
POWER SWING5300™ cell at different levels of SoC 

Parameter  SoC = 100% 
(OCV = 4.151 V) 

SoC = 50% 
(OCV = 3.655 V) 

SoC = 0% 
(OCV = 3.036 V) 

CD,R (long GEIS) 13.08 kF 23.13 kF 0.95 kF 
CD,R (OCV) 12.03 kF 35.15 kF 1.46 kF 
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6.4 Validation 

The model has been built in the frequency domain. However, its accuracy has to be 
verified in the time domain. Two are the peculiarities of the model: 
 the ability in reproducing the full impedance in the frequency range from tens of µHz 

up to 10kHz. In the time domain, we expect the ability in simulating the battery 
terminal voltage for all possible solicitations: from very slow constant 
charge/discharge profiles up to highly pulsing profiles.  

 the ability in estimating the OCV and in reproducing the SoC of the cell. The 𝐶𝐶𝐷𝐷,𝑅𝑅 is 
the element devoted to account for the SoC (no voltage generator is present in the 
model). In the time domain, we need to exclude the presence of any drifting effect in 
the SoC estimation. Voltage drift is a common problem of battery models when 
subjected to consecutive charge/discharge cycles. 
The validation has been done on two levels: (i) validation in the time-domain in which 

we compare measured voltage responses per effect of different current/power profiles 
with the simulated ones; (ii) validation of the performances in which we verified the 
ability of the model in estimating the performance of the cell in terms of energy density, 
power density and efficiency. 

Validation in the time-domain 
Four different tests have been performed to validate the model in the time domain and 

its ability in simulating the voltage at the cell terminals: 
1. Square current profile tests: to verify model accuracy in reproducing the 

solicitations deriving from fast square current profile (30 secs steps) and slow 
square current profile (5 mins steps) at different C-rates. 

2. Constant current tests: to verify the model accuracy at constant current for full 
charge-discharge cycles at different C-rates. 

3. Arbitrary profile test: to test the model accuracy with an arbitrary current profile, 
that is for test conditions closer to final application. 

The accuracy of the model is evaluated by means of the RMSE indicator: 

 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �∫ �𝑋𝑋𝑛𝑛𝑒𝑒𝑎𝑎𝑐𝑐𝑎𝑎𝑟𝑟𝑒𝑒𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑐𝑐(𝑟𝑟) − 𝑋𝑋𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎(𝑟𝑟)�
2𝑅𝑅

0
𝑅𝑅

 (6.6) 

Where X is the terminal voltage. 

Square current profile tests 

In this section, we validate the model for two different square current profiles: fast 
and slow. The main cycle foresees charge and discharge steps (separated by a resting 
period) at different current rates (0.1C, 0.5C, 1C, 2C, 3C and 4C). Charge/discharge steps 
last 30s in the fast case, 5 minutes in the slow case. 

The current profile has an average value which equals to zero so that the average cell 
SoC does not change (by neglecting losses). The tests are performed at a different level 
of initial SoC. The accuracy of the model is then evaluated by spanning different current 
rates. 

The results of the fast square current profile tests are shown on Figure 6.12 at five 
levels of SoC (100%, 80%, 50%, 20% and 0%). Accuracy is greater when SoC is in 
between 20% and 100% with RMSE value always below 10mV (less than 0.3% of the 
nominal voltage). Errors are notable especially during the charging phases at high 
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currents (note that manufacturer instructs to charge at 0.7C [108]). At very low SoC (i.e. 
0%) the RMSE value increases up to 75 mV (2%). This is due to additional non-linearities 
that are currently not taken into account by the model. 

The results of the slow square current profile tests are shown on Figure 6.13 at three 
levels of SoC (80%, 50% and 20%). The average error in the three tests is 26mV (0.7%). 
Higher errors are confirmed when the cell attains the SoC limits of 100% and 0%. 

Constant current tests 

In this case we perform multiple full charge/discharge cycles at difference C-rates 
(0.1C, 0.5C, 1C and 2C), in between the operating limits of the cell. Again, Figure 6.14 
shows that the model presents remarkable deviations for low levels of SoC (SoC < 5%). 
Globally, the RMSE value is lower than 50mV (less than 1.4%) over a period of 24hrs 

 
 
 

 
 
Figure 6.12 Simulated and measured voltage of the BOSTON POWER SWING5300™ cell 
when cycled with the fast square current profile. Four current steps (0.1C, 0.5C, 1C and 2C) of 
30s charge and discharge spaced with a 30 s rest period for different SoC (100%, 80%, 50%, 
20% and 0%) 
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test. Moreover, no drifts of the simulated voltage are registered: the model is able to 
follow the SoC trend without accumulating errors. 

Arbitrary profile test  

Finally, we validate the model considering an arbitrary current profile from real 
application. Specifically, the test emulates the typical stochastic current profile derived 
from the grid application of PCR already presented in Section 3.5. The battery is 
charged/discharged according to a specific control law proportional to the deviation of 
the grid frequency from the nominal value. Since frequency deviations are stochastic, the 
current profile applied to the BESS in operations can be extremely variable. 

 
Figure 6.13 Simulated and measured voltage of the BOSTON POWER SWING5300™ cell 
when cycled with the slow square current profile. Four current steps (0.1C, 0.5C, 1C and 2C) 
of 5min charge and discharge spaced with a 5 min rest period for different SoC (100%, 80%, 
50%, 20% and 0%) 

 
Figure 6.14 Simulated and measured voltage of the BOSTON POWER SWING5300™ cell 
when cycled with the constant current test. Four discharge C-rates (0.1 C, 0.5 C, 1 C and 2 C) 
and only one charging rate of 0.5 C between the voltage limits of 2.75 V and 4.2 V 
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The C-rate and voltage trends are depicted on Figure 6.15. The RMS error is 20.64 
mV (0.6%) over 24 hours confirming a very good accuracy of the model. We report also 
the computed SoC, which is estimated from the OCV as per Figure 6.11-b. The model is 
able to provide reliable information about the SoC that can be used to assess the 
effectiveness of the battery in the final application. For instance, in the PCR application, 
the model can be used to detect the periods of unavailability that would lead to penalties 
or extra-costs (as investigated in Chapter 8). 

Performance estimation  
The model has also been tested to estimate the expected cell performances: energy 

density, power density and efficiency.  
Figure 6.16 shows a comparison between the Ragone diagram derived from 

 
Figure 6.15 Simulated and measured voltage and SoC of the BOSTON POWER SWING5300™ 
cell per effect of an arbitrary current profile derived from the frequency regulation application  

 
Figure 6.16 Simulated and measured energy density and power density of BOSTON POWER 
SWING5300™ cell 
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measurements and simulations. Given the accordance between the curves, we can state 
that the model is able to estimate energy density and power density with minor errors. 
Overall, the RMSE error on the energy density is around the 2.4% of the nominal value 
(210 Wh/kg as declared by the manufacturer [107]). Deviations are found only for high 
levels of power (i.e. higher levels of average C-rate) as emerged also in the square current 
profile tests. 

Efficiency estimation has been evaluated for two different testing conditions: (i) full 
charge/discharge cycles at different C-rates and (ii) arbitrary profile. Table 6.5 shows that 
the model is able to estimate the efficiency especially for lower current rates. The small 
errors (less than 1%) are probably due to inaccuracy at very low SoC (as already 
explained in the previous sections). The error increases considerably with the C-rate as 
per effects of the nonlinearities with the current which are currently not considered in the 
model.  

Table 6.6 shows the efficiency estimation in the case of the previous mentioned 
arbitrary profile of PCR service. Tests have been repeated at maximum C-rate in between 
0.5 and 2C and for two different limits of SoC (0-100% and 20-80%). Results indicate a 
better accuracy of the model when the battery is cycled in between 80% and 20% SoC 
(error is less than 0.5%). When approaching the limits of 0% and 100%, additional 
nonlinearities take place and the error can increase up to 2.2%. 

Overall, it is possible to state that the proposed novel model is able to reproduce the 
full dynamic response of the cell and to simulate the real performances under different 
external signals. The full dynamic response of lithium-ion batteries has been presented.  

Qualitative comparison with battery models from literature 
It is interesting to compare the novel Li-ion model with some of the existing battery 

models presented in Chapter 4. Several aspects are considered to evaluate the models 
capabilities: (i) the ability to estimate the SoC and the voltage response at the device 

Table 6.5 Measured and simulated efficiency of the BOSTON POWER SWING5300™ cell in 
the constant current tests 

C-
rate 

Measurements  Simulation 

Error Charge 
Energy 
[mWh] 

Discharged 
Energy 
[mWh] 

Efficiency 
 Charge 

Energy 
[mWh] 

Discharged 
Energy 
[mWh] 

Efficiency 

0.1 1.88E+04 1.84E+04 97.56%  1.85E+04 1.81E+04 98.25% 0.69% 
0.5 1.67E+04 1.53E+04 91.97%  1.71E+04 1.56E+04 91.62% 0.35% 
1 1.48E+04 1.28E+04 86.48%  1.47E+04 1.24E+04 83.97% 2.52% 
2 1.12E+04 8.85E+03 78.82%  1.10E+04 8.12E+03 73.61% 5.21% 

Table 6.6 Measured and simulated efficiency of the BOSTON POWER SWING5300™ cell in the 
arbitrary profile tests 

C-rate 
(max) 

C-rate 
(average) 

SoC 
min 

SoC 
max 

Efficiency Absolute 
Error Measured Estimated 

0.5 0.13 0% 100% 97.92% 97.74% 0.18% 
1 0.26 0% 100% 96.15% 95.20% 0.95% 
1 0.23 20% 80% 96.16% 96.35% 0.19% 
2 0.47 0% 100% 91.24% 89.98% 1.26% 
2 0.36 20% 80% 94.86% 94.45% 0.41% 
3 0.62 0% 100% 88.00% 85.85% 2.15% 
3 0.46 20% 80% 93.38% 92.87% 0.51% 
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terminals, (ii) the ability to reproduce the two most important nonlinearities: the rate 
capacity effect and the recovery effect, (iii) the ability to estimate the overall 
performances: energy density, power density and efficiency; (iv) the easiness in the 
model development (experimental tests, conception, validation); (v) the computational 
speed achievable during simulations. These features have been used to qualitatively 
compare (i.e. through a comparative evaluation scale) the novel Li-ion cell model with 
six different battery models discussed in section 4.2: an electrochemical model ( the P2D 
model), an empirical model (the Peukert’s model), the Sheperd model, the KiBaM model 
(see Figure 4.3), a simplified electrical model (the single R-C electrical model of Figure 
4.8-a) and a more complex electrical model (the SAFT RC model of Figure 4.10-a). 

Table 6.7 shows the comparison. Electrochemical models guarantee the maximum 
level in all the indicators except for the development easiness and usability. They are 
very complex to develop and this fact reflects in a very high computational effort that 
make them unsuitable for simulation purposes. Analytical models (i.e. Peukert’s model, 
the Sheperd model, the KiBaM model) are less accurate in reproducing the battery 
behaviour, but they are much faster and much easier to develop. Moreover, some of them 
can reach a moderate level of precision (e.g. the KiBaM model faithfully represent the 
rate capacity effect and the recovery effect) still being employable in simulations. Finally, 
as already showed in Figure 4.1, electrical models stand a compromise: they are not as 
accurate as electrochemical models nor as fast ad easy as analytical models. They are 
fairly good in all the indicators of Table 6.7 with an important distinction: simplified 
electrical model like the single R-C model are less accurate but faster than more complex 
electrical models like the SAFT RC model. In general, they can be used for simulation 
purposes by accepting longer simulation time in favour of more reliable results. 

Within this framework, the novel electrical model developed in this chapter is 
comparable with complex electrical models. In fact, if compared with simplified 
electrical models (i.e. the single R-C model), it presents higher accuracy and higher 
computational effort. Specifically: 
 The SoC estimation and the modelling of the voltage response are characterized by 

high precision, thanks to the electrochemically-driven modelling process used to 
develop the model (see section 6.1). For this reason and with regard to only these two 
features, the proposed model can be considered similar to electrochemical models. 

Table 6.7 Qualitative comparison of different battery models. Evaluation scale: 5-very good,  
4-good, 3-fair, 2-poor, 1-very poor, 0-absent (i.e. the feature is not modelled) 
Model SoC 

estimation 
Battery 
Voltage 
response 

Rate 
capacity 

effect 

Recovery 
effect 

Performances estimation Develop. 
easiness 

Comp. 
speed 

Efficiency Energy/Power 
densities 

Electrochemical 
(P2D model) 5 5 5 5 5 5 1 1 

Empirical 
(Peukert’s model) 1 0 1 0 0 0 5 5 

Sheperd model 1 1 1 0 1 0 4 4 

KiBaM model 2 0 3 3 2 2 3 4 

Electrical 1 
(single R-C model) 3 2 2 0 3 3 3 3 

Electrical 2 
(SAFT RC model) 5 4 3 3 3 3 2 2 

Electrical 3 
(Novel model) 5 5 4 2 4 4 2 2 



6.5  Summary  

 

123 
 

 The nonlinearities are modelled with acceptable level of details: the rate-capacity 
effect is well accounted as shown in Figure 6.14, while the recovery effect modelling 
needs improvements since no specific circuital section is dedicated to model this 
issue. As regard to nonlinearities, the model offers better capabilities if compared to 
analytical models but still far from the ones achievable with electrochemical models. 

 The final performances (i.e. energy density, power density and efficiency) are 
accurately estimated. The Ragone diagram of Figure 6.16 and Table 6.6 proved the 
ability of the model in reproducing the expected performances for industrial 
applications. This fact emphasizes the capability of the proposed model, especially if 
compared with empirical models where energy, power and efficiency characteristics 
must be assigned as input to the model rather than obtained from the model as output. 

 The development effort is remarkable. Intensive experimental tests and long 
conceptual analyses are required to end up with a proper model. As regard of this 
aspect, the electrical model proposed is more similar to electrochemical models than 
analytical models. This can represent a limitation but also an opportunity to 
investigate faster testing procedures. 

 Computational effort is high. The complexity of the model makes it slower than 
simplified electrical models or analytical models, but still much faster than 
electrochemical models. This fact, makes of the proposed model a good instrument 
for short/medium term simulations and a proper term of reference to validate 
simplified electrical models for long term simulations. 

6.5 Summary 

In this chapter, a novel electrical model representative of the entire Li-ion technology 
has been presented. The model has been developed in the frequency domain by means of 
EIS measurements and it has been based on the theoretical framework presented in 
Chapter 5. The proposed model belongs to the family of passive electrical models and is 
capable of simulating the full dynamic response of lithium-ion batteries. It is composed 
of 5 impedance blocks connected in series. Each block is derived from electrochemical 
equations which describe the dynamic processes of charge transfer and transport of mass. 
The SoC is estimated by the voltage of a nonlinear capacitance, thereby addressing the 
intercalation of ions into the electrode structure. Totally, the model consists of an 
incremental capacitance parametrization table and eight RC parameters. A procedure to 
estimate the parameters of the model have been presented and applied on a commercial 
lithium-ion cell (lithium nickel oxide). Finally, validation of the model has been carried 
out in the time domain showing high accuracy in estimating the voltage at the device 
terminals, efficiency, power and energy density under different operating rates and SoCs. 
Specifically, different tests at 25 °C were carried out. The error in predicting the output 
voltage and the overall battery efficiency is less than 0.6% when the battery is cycled 
through SoCs between 20% and 80% and less than 2.2% when the SoC limits of 0% and 
100% are used. The very high accuracy demonstrated by the proposed model is essential 
in assessing the technical and economic viability of battery systems. 
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CHAPTER  7 

 
 
 
 

7 Elements on lifetime modelling 
 
 
 
While previous Chapter 5 and Chapter 6 were dedicated to dynamic modelling of Li-

ion technology, this Chapter focuses on lifetime modelling of the same. The analyses are 
directly linked to experimental measurements. At the moment of the thesis writing, 
several tests are still running (since February 2017 - 8 months). Depending on the cycling 
conditions they have completed hundreds of cycles, in the range 400-800. The first 
obtained results have been used to propose lifetime modelling approaches to be used for 
simulation purposes. Thus, the general objective of this chapter is to extend the dynamic 
modelling analyses of the previous chapter by including elements of lifetime modelling. 
This serves to create a wider background useful for application-oriented analyses, techno-
economic analyses and investment evaluations. 

The chapter is structured in three main parts: (i) the aging testing procedure 
specifically developed to test Li-ion cells with different cycling conditions; (ii) the early 
results which are used to discuss about the main aging effects; (iii) the proposal of three 
lifetime modelling approaches with different degrees of complexity. 

7.1 Aging test procedure 

Chapter 3 exhaustively proved that energy density; power density and efficiency are 
strongly linked to operating conditions. The same can also be said for lifetime of 
electrochemical devices. Severe charge/discharge cycles can lead to accelerated 
degradation [111], [206]. In some conditions, the cell can last thousands of cycles while 
in other only hundreds. This fact affects strongly the operational costs (OPEX) since it is 
based on the right evaluation of the expected lifetime to account for replacement costs. 
Estimation of lifetime is even more difficult if we contextualize the problem towards real 
applications. Applications that requires fluctuating power requests (e.g. ancillary service) 
will create a non-standard cycling condition that makes the expected lifetime estimation 
not straightforward at all. 

Chapter 4 detailed the main mechanism of battery aging and how they can be 
modelled. In the following, the analyses are focused on cycling aging while calendar 
aging is left for further insights. Experimental tests have been thought to give numerical 
extents to the two main degradation effects: capacity fade and power fade.  

In order to ensure consistency with the previous modelling phase of Chapter 6, we 
tested the same Li-ion technology, LNCO chemistry, BOSTON POWER SWING5300™ 
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(appendix E). The measurements have been obtained in the framework of the 
collaboration between the Politecnico di Milano (Electric Power Systems research group) 
and CSEM-PV Center (Swiss Center for Electronics and Microtechnology) at the Energy 
Storage Research Center (ESReC) located in Nidau (CH). All the tested cells have been 
cycled with a PEC- ACT 0550 battery tester starting from a brand new condition at fixed 
ambient temperature of 25°C, set by the ESPEC-ARU 1100 climatic chamber. Figure 7.1 
shows a picture of the lithium-ion cells under aging test. Table 7.1 resumes the different 
test conditions: four different C-rate and three different DoD. However, not all the 
possible combinations have been tested, but only six can be separated in two main cycling 
conditions: 
 Variable C-rate / Fixed DoD: 4 different cells cycle at different C-rate (0.25C, 0.5C, 

1C, 2C) with DoD = 100% that means cycling between SoC = 0% and SoC = 100%. 
 Fixed C-rate / variable DoD: 3 different cells cycle at fixed C-rate of 1C and variable 

DoD: 100%, 60%, 20%. This means that the cells are cycling in between different 
SoC limits: respectively 0-100%, 20-80%, 40-60%. 
A specific aging test procedure has been developed not only to cycle the cells with 

the two above cycling conditions, but also to compute the expected aging phenomena. 
The procedure is repeated each 100 cycles (cycles are computed as per equation (4.19)), 
meaning that the aging parameters are updated each 100 cycles. The aging protocol is 
divided in five sub-procedures, each one responsible of providing information as regards 
to one specific aging aspect (Figure 7.2): 
 Sub-procedure A is responsible for the capacity measurements. Available capacity is 

updated at the beginning of each set of a hundred cycles. Capacity is obtained by 
charging the cell as instructed by the manufacturer (CC-CV, 0.7C-4.2V 50mA cut off) 
and by discharging at 0.5C till the voltage limit (2.75V). 

 
Figure 7.1 Brand new BOSTON POWER SWING5300™ cells before starting aging tests 
procedure at 25°C 

Table 7.1 testing condition matrix for the 6 BOSTON POWER SWING5300™ cells under aging 
tests at 25°C 
DOD C-rate 
 0.25C 0.5C 1C 2C 
100% Cell 1 Cell 2 Cell 3 Cell 6 
60% - - Cell 4 - 
20% - - Cell 5 - 
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 Sub-procedure B is responsible for resistance and EIS measurements. Measurements 
are taken in specific conditions: 
− Resistance at SoC=50%. The resistance is derived by measuring the voltage drop 

consequent to a step current profile of 100ms. The measurement is taken directly 
from the PEC- ACT 0550 battery tester. 

− GEIS at SoC=50% in the range 10kHz-10mHz through the Gamry Instruments© 
Reference 3000™. GEIS are done by pausing the PEC- ACT 0550 battery tester. 

 Sub-procedure C is responsible for efficiency estimation that serves to evaluate the 
degradation in the efficiencies of the cells. The sub-procedure structure is like the one 
presented in section 3.2 (4 different C-rates: 0.25C, 0.5C, 1C, 2C) but repeated for 
three different levels of DoD: 100%, 60%, 20%.  

 Sub-procedure D is responsible for OCV computation. OCV tests have been 
performed by discharging and charging the cell at a very low current rate of C/50. 

 Sub-procedure E is responsible for the proper cycling phase. Whereas sub-procedures 
from A to D are identical for all cells, sub-procedure E is different for each cell in 
accordance with Table 7.1. Overall, the cycling phase weight for less than 50% of the 
whole aging test time (Figure 7.2), but almost 75% of the total cycled capacity. This 
difference is due to the long time required for some of the sub-procedures: the OCV 
procedure (sub-procedure D) involves only 2 cycles out of 100 but it lasts 4 days 
(almost 20% of the total time). 

7.2 Discussion on aging effects 

Given the aging procedure, the early results (up to 700 cycles) are presented which 
are used to discuss about the main aging effects as measured at external terminals of the 
cells. 

Capacity fade 

Decrease in cell capacity is of substantial importance in BESS applications. Less 
storage ability means less capability to accept or provide power for the time required by 
the specific application. This means a higher probability of service interruption or general 
unavailability due to reached SoC limits. The capacity fade is strictly related to the 

 
Figure 7.2 Example of aging test procedure on LNCO cell #3 with the five sub-procedures 
(from A to E) highlighted in red 
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specific cycling conditions. According to sub-procedure A of the aging test, the capacity 
has been computed each 100 cycles for all the tested cells. Therefore, the number of 
points depends  
on the time required to finish each set of 100 cycles (roughly 30 days for 0.5C cycling 
regime, 20 days for 1C, 15 days for 2C). The main highlights are: 

The trend of the capacity fade can be assumed linear (Figure 7.3). The manufacturer’s 
data confirm the statement as shown by the black dotted line [107]13.  
 It emerges a clear influence on the C-rate. The capacity fade index (i.e. the angular 

coefficient of the curve) increased by the cycling rate (Table 7.2). Moving from 0.25C 
to 2C the fade increase of almost 20 times, while only 3 times moving from 0.25C to 
1C. This confirms that high currents are not well tolerated by the LNCO cell, 
especially if repeated constantly as in the proposed aging test procedure. 

 Projections say that the cycle life of the tested cells range from 200 to 3500 cycles 
according to the specific C-rate condition (Table 7.2). The cycle life is computed by 
dividing the capacity fade index [%/cycle] by the conventional maximum capacity 
fade of 20% at which cells are considered dead (i.e. 80% of remaining capacity). 

 No clear influence is found that relates the degradation with the DoD. The three tested 
conditions show deviations that would bring in a maximum difference of about 400 
cycles. More cycles are needed to understand if a lower DoD impacts the degradation 
mechanism along the aging. 

                                                      
13 The cycling conditions provided by the manufacturer are the following:  
Charge: CC-CV, 0.7C-4.2V 50mA cut off 
Discharge: 0.5C to 2.75V 
Temperature: 23±2 °C 

 
Figure 7.3 Capacity fade trends for the BOSTON POWER SWING5300™ cells under testing 
condition of Table 7.1 

Table 7.2 Capacity fade index per cycle and cycle life for the BOSTON POWER 
SWING5300™ cells under testing conditions of Table 7.1  

 0.25C 
DoD100 

0.5C 
DoD100 

1C 
DoD100 

1C 
DoD60 

1C 
DoD20 

2C 
DoD100 

Capacity fade 
Index [%/cycle] -5.7E-03 -8.7E-03 -1.5E-02 -1.8E-02 -1.3E-02 -9.3E-02 

Cycle life 
(80% capacity) 3520 2280 1310 1110 1550 210 
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Power fade 

As detailed in section 4.3, power fade is related to an increase of the impedance of the 
cell. According to sub-procedure B of the aging test, GEIS measurements have been 
repeated each 100 cycles for all the tested cells.  

In brand new condition, the Ohmic resistance RΩ for the six tested cells resulted to be 
about 14.83±0.8 mΩ while the manufacturer declares a “Nominal cell impedance” of 
15.5 mΩ [107]. Deviations can be traced back to the manufacturing process. Figure 7.4 
shows the impact of different cycling conditions on the shape of the EIS measurements. 
On the one hand, Figure 7.4-a shows the evolution of Nyquist plot of cell #6 from a fresh 
to a “conventionally-dead” condition (2C-DOD100 cycling rate brought the cell under 
80% capacity in less than 300 cycles as per Figure 7.4-a). On the other hand, Figure 7.4-
b shows the same evolution on cell #2 which is cycling at ¼ of the cycling rate of the 
previous case. In this case the cell is not dead yet, but after 400 cycles it is at 97% of its 
initial capacity. In both cases two main trends can be identified: 
 The increase of the resistance that shifts the Nyquist plot towards the right side of the 

graph. This is the main expected phenomenon that impacts on the power capability of 
the device (i.e. power fade). 

 The swelling of the diffusive section (transmissive type of section 6.1) that emerges 
with cycling and it is almost not present in fresh conditions. At the moment of the 
thesis writing, no further investigations have been carried out regarding the physical 
meaning behind any shape change of EIS. By rapidly searching in literature, it might 
be explained by SEI growth with cycling [207]. 

Efficiency reduction 

In some cases, aggregated indicators are needed to describe cell degradation over 
time. Efficiency is often an option. Given the increase in the overall cell impedance as 
shown in Figure 7.4, cell’s efficiency is expected to decrease with cycles. With respect 
to sub-procedure C of the aging test, efficiency curves evolutions can be traced for the 
tested cells (Figure 7.5). As depict in the two graphs, the fresh cells started all from the 
same conditions. Some differences have been only found at higher currents. This can be 
due to deviations in manufacturing process. In details: 
 Figure 7.5-a highlights that severe cycling condition impact more on the efficiency. 

 
Figure 7.4 Nyquist plots at different cycle numbers for two different cycling conditions: 2C-
DoD100 (a) and 0.5-DoD100 (b) 
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Cell #6 (2C-DoD100, assumed dead after 300 cycles) lost 5 points of efficiency along 
its lifetime. Cell #3 (1C-DoD100) lost 1 point of efficiency in 300 cycles. By 
linearizing the loss and by considering the projected EoL of the cell, we can infer a 
total loose of 4 points of efficiency through its lifetime.  

 Figure 7.5-b confirms that no clear tendency can be inferred from the influence of the 
DoD on the cell performances. It might be stated that cycling conditions at very low 
DoD are positively affecting the efficiency degradation. Also in this case, more cycles 
are needed to better evaluate the trends. 

OCV curves shape 

Aging effects emerge also from OCV curves: change in the shape corresponds to 
change in the IC curve peaks that have been widely studied by several recent works [150], 
[161], [188], [208]. According to the sub-procedure D of the aging test, OCV curves have 
been repeated every 100 cycles for all the cells tested. Figure 7.6 shows the impact of 

 
Figure 7.5 Efficiency curves trend at 25°C for different C-rate (a) and different DoD (b) for the 
BOSTON POWER SWING5300™ cells under testing condition of Table 7.1 

 
Figure 7.6 IC curves at different cycle number for two different cycling conditions: 2C-
DoD100 (a) and 0.5-DoD100 (b) 

(a) (b)
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different cycling conditions on IC curves. The reduction of available capacity as per 
Figure 7.6-a has an impact on the slope of the OCV curve. Consequently, IC curves show 
lower peaks as the aging increases. The reduction of peaks is greater if the cycling 
condition is stronger (Figure 7.6-a) and smaller if the cycling rate is lower (Figure 7.6-
b). It is worthwhile to highlight the different reduction trends among the three main peaks 
of the IC curve. This can be explained by different degradation mechanisms that occur 
inside the cell. 

7.3 Proposed approaches to lifetime modelling 

In the following sections, lifetime modelling approaches will be proposed based on 
the measurements and findings of the previous sections. The purpose is to extend the 
dynamic modelling analyses of earlier chapters by including elements of aging 
modelling. This serves to create a wider background useful for the application-oriented 
analyses of Part II of this thesis (Chapter 8 and Chapter 9). In the next sub-sections, three 
approaches will be proposed and compared. They differ for the level of complexity they 
use to compute capacity fade and power fade:  
 Empirical approaches (Figure 7.7-A) consider a steady-state operation of the battery. 

There is no direct reference to electrical quantities such as voltage and current, but the 
battery is described as a system that, due to non-ideal behaviour, dissipates some 
energy. Given the lower computational burden due to easier models (if compared to 
electrical model), these approaches are often preferred for simulation purposes (see 
Chapter 4). 

 Electrical approaches (Figure 7.7-B) consider the full BESS dynamic response over 
the entire lifetime of the BESS. Aging phenomena are taken into account by updating 
the parameters of the electrical model. In this way, capacity fade and power fade 
phenomena are intrinsically modelled. This modelling approach is by far the most 
accurate (see Figure 4.1). However, given the huge amount of data/measurements 
necessary to correctly update the parameters, it is computational intensive and often 
preferred for on-line diagnostics (e.g. EVs application) rather than simulation 
analyses. 

 “Hybrid” approaches (Figure 7.7-C) combine simplified electrical models with 
empirical functions to account for aging phenomena. Capacity fade and power fade 
are directly linked to update of the model parameters. Given the lower computational 
burden if compared to (full) electrical approaches, they can be suitable in some types 
of studies like planning analyses (preliminary to the final deployment of the systems). 

 
Figure 7.7 Proposed approaches for lifetime modelling of Li-ion BESS: empirical approach 
(A), electrical approach (B), “hybrid” approach (C). 
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In this case, the engineer/analyst is probably not interested in the full dynamic 
response of the battery, but in having accurate information as regards of the expected 
energy/power performances and thus reliability of the BESS in the final application. 

Lifetime modelling with empirical approach 

As detailed in Chapter 4, empirical models correlate aging phenomena with a 
combination of stress factors which have a great influence on the battery. Mathematical 
expressions are derived to describe capacity and power fade directly from the 
measurements. 

Given the aging results of the previous section, Figure 7.3 and Table 7.2 suggest a 
possible empirical modelling of the capacity fade based on the influence of the current 
rates. A fitting function is derived which is able to identify the capacity fade index given 
the operating conditions (Figure 7.8). In simulations, this means that the SoH indicator 
at time-step k can be updated from time-step (k-1) in the different cycling conditions as: 

 𝑆𝑆𝑛𝑛𝑆𝑆(𝑘𝑘) = 𝑆𝑆𝑛𝑛𝑆𝑆(𝑘𝑘 − 1) −  𝑟𝑟1𝑟𝑟𝑎𝑎2𝑆𝑆𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒(𝑘𝑘)𝑛𝑛(𝑘𝑘) (7.1) 

Where n are the equivalent cycles during time step k as per equation (4.19) and a1,a2 
are experimental coefficients (as showed in Figure 7.8). 

However, some cautions have to be used at very low currents: a capacity fade index 
at null current has absolutely no physical meaning (the fitting function identifies around 
400k cycles for the current approximating zero). Conceptually, the capacity fade at zero 
current is due to the calendar aging effect. This effect should be evaluated in time and 
not cycles (see chapter 4): BESS will last for a limited amount of years if not used. In our 
case, roughly 5000 cycles are estimated in cycling condition of 0.01C. Assuming a 
corresponding cycling time of 200 hours, it would mean an expected life of almost 110 
years, clearly does not make sense. A good compromise, which matches with real 
installations, could be to assume a maximum number of deployment years EoLmax. At 
low currents, no matter the cycling conditions, the BESS is replaced every EoLmax. 

Besides capacity fade, empirical approaches usually account also for efficiency 
decrease in cycles. Figure 7.5 suggests that efficiency is decreasing differently with the 
cycling conditions. This is because the phenomenon is nothing but the consequence of 
the increase of the cell impedance. As already mentioned, when dealing with empirical 

 
Figure 7.8 Capacity fade index trends for the BOSTON POWER SWING5300™ cells under 
testing condition of Table 7.1 
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models, aggregated parameters, which handle complex degradation phenomena with 
simple equations, are much appreciated. In this case efficiency decrease represents power 
fade: the more the efficiency decreases the less the battery is able to sustain power for a 
given time without reaching its SoC limits. Therefore, empirically modelling the 
efficiency means to map the curve of Figure 7.5. In real application, the efficiency curve 
will evolve differently according to the specific operating conditions.  

Lifetime modelling with electrical approach 

This modelling approach requires an electrical model as a starting point. For the sake 
of simplicity, the electrical model developed in Chapter 6 is taken as a reference. 
Degradation mechanisms are accounted for by updating the parameters of the model 
during cycling. Parameters are found by running the fitting procedure of section 6.3 on 
each EIS and OCV measurements. Post elaboration of the obtained results should then 
provide the trend of parameters as a function of the cycling rate. Table 7.3 shows the 
results of the cell #6 (strong cycling rate 2C-DOD100)14. The model is able to fit the cell 
dynamic response through its lifetime. Data highlight the expected increase of the ohmic 
resistance together with the increase of all the capacitance and corresponding resistances. 
Further investigations that explain the physical meaning behind the variations of the 
parameters are left for future works.  

In this modelling approach, capacity fade and power fade phenomena are intrinsically 
modelled by updating the model parameters. Power performances are taken into account 
by updating the real part of the impedance, while capacity variation by the reduction of 
the capacitance of the cell CD,R as determined in OCV tests of Figure 7.6. 

The drawback of this approach is the huge amount of measurements needed to map 
the aging effects. OCV and EIS measurements are usually not available in literature. 
Moreover, measurements are used to create a map of possible aging conditions of the 
cell. Then, according to the specific cycling conditions (i.e. application), one should 
update the model by extrapolating the right set of parameters. This process needs 
complex functions which increase considerably the simulation time if compared to 
empirical approaches. 

Lifetime modelling with “hybrid” approach 

Electrical-based approaches are very precise but complex and time-consuming. 

                                                      
14 Differences are present in the values of the parameters between Table 7.3 and Table 6.2, 

even if the tested cells are of the same brand: the BOSTON POWER SWING5300™. One year 
has passed between the lab tests for cell modelling (chapter 6) and lab tests for aging 
characterization (chapter 7). Meanwhile, the factory has changed the production site. Differences 
can be explained by some changes in the manufacturing process. 

Table 7.3 Model parameters identified at SoC=50% by fitting the GEIS measurements of the 
BOSTON POWER SWING5300™ cell #6 at different aging conditions  
Parameter  Fresh Cycle 100 Cycle 200 Cycle 300 Cycle 400 
OCV [V] 3.6815 3.6928 3.7392 3.7717 3.6675 
RΩ [Ω] 0.0152 0.0173 0.0194 0.0205 0.0213 
RCT,1 [Ω] 0.0029 0.0016 0.0016 0.0012 0.0065 
CDL,1 [F] 0.0936 0.1011 0.3964 0.5686 0.0121 
RCT,2 [Ω] 0.0023 0.0018 0.0014 0.0010 0.0034 
CDL,2 [F] 1.1853 2.8184 4.3238 4.3588 0.3437 
RD,T [Ω] 0.0024 0.0032 0.0036 0.0059 0.0052 
CD,T [F] 14.0376 15.4427 15.7484 16.1156 15.3869 
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Empirical-based approaches are faster but they entail simplified models which do not 
take into account any dynamic behaviour. In this sub-section a hybrid-based approach is 
presented which wants to find a suitable compromise. This approach is based on two 
main assumptions: (i) it requires a simplified electrical model like the R-int model or the 
Thevenin model (see section 4.2); (ii) it uses empirical functions, which are derived from 
simplified aging tests, in order to update the model’s parameters. Here below the 
approach is exemplified by using a simple R-C circuit (Figure 4.8-a). 

Power fade is modelled through empirical functions which describe the impedance 
increase through simplified resistance measurements. While electrical-based approaches 
need intensive EIS measurements campaign, in the hybrid approach no EIS mapping is 
required. However, a characteristic solicitation, which depends on specific applications, 
must be defined to measure the proper value of the resistance R. The characteristic 
dynamic behaviour of the typical current/power profiles15 can be found through proper 
analyses (e.g through FFT analyses). Overall, the approach is based on:  
 One single EIS measurement in fresh conditions in order to characterize the dynamic 

response of the device at different SoCs. If available, one can also exploit literature 
data that refer to the same battery or similar chemistries. 

 The mapping of the resistance at the characteristic frequency in different cycling 
conditions. 

 The update of the initial EIS measurement (limited to the characteristic frequency) 
according to the cycling results of the previous step. 
Figure 7.9-a shows the resistance rise in different cycling conditions at the 

characteristic frequency of 10 Hz (in accordance with sub-procedure B of the aging test). 
If a linear trend is assumed, a resistance increase index can be derived as shown in Figure 
7.9-b. The relative interpolation function can then be used to update the SoR indicator of 
the model. In simulations, this means that SoR indicator at time-step k can be updated 
from time-step k-1 in different cycling conditions as shown in: 

                                                      
15 If we assume energy planning analyses, minute/hour based profiles are usually used for 

simulations. This means that the characteristic frequency to assess the resistance of the model will 
be in the order of mHz. 

 
Figure 7.9 Resistance increment (a) and resistance increase index trends (b) for three BOSTON 
POWER SWING5300™ cells under testing conditions of Table 7.1 
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 𝑆𝑆𝑛𝑛𝑅𝑅(𝑘𝑘) = 𝑆𝑆𝑛𝑛𝑅𝑅(𝑘𝑘 − 1) +  𝑏𝑏1𝑟𝑟𝑑𝑑2𝑆𝑆𝑟𝑟𝑎𝑎𝑎𝑎𝑒𝑒(𝑘𝑘)𝑛𝑛(𝑘𝑘) (7.2) 

Where n are the equivalent cycles during time step k as per equation (4.19) and b1,b2 
are experimental coefficients (as shown in Figure 7.9-b). The SoR indicator is then used 
to update the resistance at the different SoC. 

Capacity fade is modelled through capacity-based measurements (sub-procedure A of 
aging test) as in empirical models but the derived equation (7.1) is used to update the IC 
curve. The modelling approach is based on the following steps: 
 A first OCV measurement that serves to characterize the OCV-SoC relationship in 

fresh conditions and to compute the IC curve. If available, one can use literature data 
about similar chemistries. 

 The mapping of the capacity fade at different cycling conditions as already presented 
in Figure 7.3. 

 The update of the IC curve according to the cycling results of the previous step (Figure 
7.10). The IC curve is reshaped by exploiting the interpolation function of Figure 7.8. 
However, Figure 7.10 shows the limitations of the proposed hybrid approach. If the 

cycling regime is not severe (0.5C-DOD100), the IC curve trend is almost preserved, 
even after several cycles (Figure 7.10-a). On the contrary, in case of severe cycling 
condition (2C-DOD100), the estimation deviates considerably (Figure 7.10-b). 
According to measurements (the yellow line is the IC curve measured after 300 cycles, 
while the red dotted line shows the estimation based on the capacity fade index), the 
shape of IC during cycling is affected by a remodulation rather than a simple translation. 
For this reason, an intrinsic error affects the model: the hybrid approach cannot fully 
represent the phenomena behind the battery degradation.  

Nevertheless, Table 7.4 shows that the remaining capacity (the area under the IC 
curve) is well estimated even in the case of severe cycling conditions (Figure 7.10-b). 
The measured capacity from IC curve (i.e. OCV measurements) was 70.5% of the initial 
one, against 70.3% of the estimated one. This confirms the ability of the hybrid approach 
in representing the capacity fade during aging. 

In general, the proposed hybrid modelling approach can have several advantages: 

 
Figure 7.10 Measured and estimated IC curves at different cycle number of two different 
cycling conditions: 2C-DoD100 (a) and 0.5-DoD100 (b) 
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 It does not require to run EIS measurements along the lifespan of the device as in 
impedance-based approaches (it requires only one EIS measurement in brand new 
condition). Resistance measurements to update for the cycling effect can be performed 
by conventional cycling machineries (e.g. PEC- ACT 0550 battery tester). 

 Being based on an electrical model, even though simplified, it takes into account the 
power capability of the battery. Empirical models account only for efficiency 
decrease, but they do not relate it with physical limits (i.e. voltage limits). 

 The approach can be implemented starting from manufacturer and the available 
literature data. 

7.4 Summary 

In this chapter, lifetime modelling of BESS has been investigated. The discussion has 
been grounded on experimental measurements carried out within the framework of the 
collaboration between the Politecnico di Milano (Electric Power Systems research group) 
and CSEM-PV Center (Swiss Center for Electronics and Microtechnology). The aging 
testing procedure, developed expressly to test Li-ion cells (LNCO chemistry) with 
different cycling conditions at ambient temperature, has been presented. Testing results 
gave evidences regarding the main aging effects: capacity fade, power fade and efficiency 
decrease. They are found to be highly dependent on the cycling rate. Projections stated 
that the cycle life range from 200-4500 cycles according to the specific operating 
conditions. No clear influence has been found instead relating to the degradation with the 
DoD. Aging tests allowed also to map the OCV/EIS curves evolution during aging; 
however, no further investigations have been carried out about the physical meaning 
behind it, leaving it to further developments. Nevertheless, the first obtained findings (at 
the moment of writing of the thesis the aging tests are still ongoing) have been used to 
propose three lifetime modelling approaches which attain different degrees of details. 
They are: the empirical approach, the electrical approach and the “hybrid” approach. 
Each of them have been discussed as regards of experimental efforts required to develop 
the model, accuracy and expected computational time. The “Hybrid” approach is 
demonstrated to be a suitable compromise between empirical and electrical models. It 
can reach higher levels of accuracy if compared to empirical models, but with lower 
computational burden if compared with electrical models. In general, this chapter 
contributed in creating a wider modelling background useful for application-oriented 
analyses, techno-economic analyses and investment evaluations. The modelling 
approaches of Figure 7.7 will be exploited in Part III of this thesis to handle complex 
simulations. Empirical and electrical approaches will be compared in the assessment of 
the BESS performances in two different real applications: (i) a grid-tied application: 
BESS for the provision of the PCR service (Chapter 8), (ii) an off-grid applications: 
BESS coupled with PV in microgrid systems (Chapter 9). 

Table 7.4 Measured and estimated capacities at different cycle number for two different cycling 
conditions: 2C-DoD100 (a) and 0.5-DoD100 (b) 

Cycle Measurements from IC curve [mAh]  Estimation from fade indicator [mAh] 
0.5-DoD100 2C-DoD100  0.5-DoD100 2C-DoD100 

0 5212 5238  5212 5238 
100 5129 4709  5189 4848 
200 5037 4131  5123 4112 
300 5024 3696  5054 3683 
400 4939 -  5043 - 
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Part III: From Modelling to 
Applications: Approaches to 
BESS Proper Design  
 
 
Part III offers the design framework of the thesis by bridging the modelling phase with 
the final applications and emphasizing BESS design criteria. Two different stationary 
applications are discussed that show how proper BESS model can influence the design 
conclusions. In both cases, the proposed novel model is compared with traditional or 
well-established literature approaches to compute techno-economic results. Therefore, 
each chapter of this part is structured according to: context analysis of the specific 
application, the description of the BESS model, case study presentation, discussion. 
Overall, the analyses of part III are centred on electrochemical batteries, considering 
power electronics well-established with respect to both industrial applications and 
mathematical modelling (i.e. simplified model of the power electronics has been 
adopted). Nevertheless, power electronics could impact on electrochemical cells 
performances: this  is one of the possible future development of the PhD work. 

The two selected stationary applications (i.e. cases studies) are:  
 Grid-tied application: BESS providing Primary Control Reserve (PCR) service. PCR 

is chosen as one of the most investigated applications of BESS today. Business cases 
are already present in several regulatory frameworks that motivate the techno-
economic analyses developed in Chapter 8 of the thesis. 

 Off-grid application: PV-BESS power plants providing energy supply for rural 
electrification purposes. Off-grid power systems represent another important 
industrial sector for BESS. The right design is crucial to come up with a reliable 
system. This fact motivates the analyses of Chapter 9 of the thesis. 

Chapter 8 deals with the PCR application. A proper methodology is proposed which 
includes: a specific control mechanism; an unconventional droop-control law that takes 
into account the specific features of BESS; proper BESS models developed on the basis 
of the previous chapters findings. The procedure has been applied to the Italian context. 
Simulations have been run to discuss about: the influence of different BESS models in 
the evaluation of the reliability for PCR service; the correct BESS design from a techno-
economic point of view; the proper control mechanisms to increase BESS availability. 
The analyses are based on real measurements taken at the Politecnico di Milano within 
the framework of the IoT-StorageLab. The methodology is proposed in form of a 
computational tool in MATLAB®Simulink® named BESS4PCR.  

Chapter 9 deals with off-grid power systems for rural electrification in Developing 
Countries (DCs). The aim is to address the robust design of off-grid systems by including 
the majority of available inputs of these contexts. A novel sizing methodology is 
proposed composed of four blocks which separately face the different design phases. The 
procedure has been applied to size a PV+BESS microgrid system to supply power to a 
rural village of Tanzania. Simulations are run to discuss: the impact of different BESS 
models on the system energy design; the evaluation of the correct system design by 
accounting for different scenarios of load evolution. The analyses are based on real data 
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gathered within the framework of the Energy4growing project. The methodology is 
proposed in form of a computational tool in MATLAB® named Poli.NRG (POLItecnico 
di Milano –Network Robust design). 
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CHAPTER  8 

 
 
 
 

8 BESS for grid-tied applications: 
PCR service 

 
 
 
In this Chapter, BESS in grid-tied applications for Primary Control Reserve (PCR) 

service is discussed. The general objective is to identify the presence of business cases 
for the application, specific objectives are: (i) to evaluate the influence of different battery 
modelling in the evaluation of the service provision; (ii) to identify control strategies able 
to maximize the availability and profitability, (iii) to evaluate the correct BESS design 
from a techno-economic point of view. The analyses are based on real measurements 
taken at the Politecnico di Milano within the framework of the IoT-StorageLab 
(Appendix B). The study approach is proposed in the form of a computational tool in 
MATLAB®Simulink® named BESS4PCR developed by the author within his PhD 
research project. 

The chapter is organized in five sections: Section 8.1 provides a contextualization of 
the proposed BESS application, a focus on the PCR service and on the regulation 
mechanism in place in Europe, a short review on the available study of BESS for PCR 
with specific attention on the possible control strategies. Section 8.2 describes the 
methodology used to model the PCR service in case of provision from BESS, which 
includes (i) controllers that use internal and external signals to detect the best working 
conditions, (ii) droop-control laws with fix or variable droop modes of operations, (iii) 
battery model able to compute and update the SoC. Section 8.3 presents the battery 
models adopted for simulations: the novel model of Chapter 6 is compared with empirical 
models. Section 8.4 introduces the tool based on the proposed methodology which is 
applied on a case study that refers to the Italian context. Finally, Section 8.5 presents the 
main results of simulations: (i) a detailed comparison of the different battery models in 
the evaluation of reliability indicator for PCR service; (ii) an evaluation of the correct 
BESS design from a techno-economic point of view; (iii) The analysis of the variable-
droop control mechanism to increase BESS availability. 

8.1 Context analysis 

The general framework of battery energy storage systems for ancillary services 

Power systems currently undergo considerable changes in operating requirements 
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because of an increasing amount of discontinuous distributed generation (DG), mainly 
renewable energy sources for electricity (RES-E). The integration of RES-E into power 
system grids affects optimum power flow, power quality, voltage/frequency control and 
system economics. RES-E traditionally have priority in load dispatching because their 
production must be exploited when available. This brings about a reduction of available 
resources necessary for the safe and reliable operation of an interconnected power 
system. Moreover, RES-E plants usually connect to the grid via a static converter. Thus, 
the inertia level of the whole power system reduces, causing the frequency to drop faster 
after an outage. For this reason, the Transmission System Operators for Electricity 
(ENTSO-E), with key legal mandates from the European Agency for the Cooperation of 
Energy Regulators (ACER), are increasingly considering extending the participation in 
ancillary services provision to DGs [7], [8], [97]. 

After the European energy sector unbundling process, ancillary services include both 
mandatory services and others subjected to market-based competition. They allow the 
local Transmission System Operator (TSO) to control frequency and stability of the 
system, voltage along the transmission network, loading of the power lines and to restart 
the system in certain circumstances. The primary control reserve (PCR) is one of these 
services. In Italy, the PCR is a mandatory service every traditional power plant (not RES-
E), with rated active power greater than 10 MW, has to guarantee [10]. 

Technical issues arise when considering the suitability of DGs equipment to function 
effectively as part of the electricity system and to provide ancillary services [16], [209]. 
This topic is part of the theme about the evolution of existing electrical systems towards 
the smart-grid paradigm [210]. Taking Italy as an example, regulations have been 
introduced in order to set the duties of the DGs in order to ensure the security and stability 
of the network [9], [211], [212]. Today, RES-E plants have to deal with the unpredictable 
nature of the primary resources; therefore, stringent regulations can strongly affect their 
operations and profits. For instance, asking RES-E plants to contribute to PCR or to 
sustain voltage dips means forcing them to limit their active power injection which is an 
incentive for them (e.g. Green certificates, feed-in premium). If the service remuneration 
from the ancillary service market is insufficient to cover the losses, the profitability of 
these systems will decrease.  

Battery energy storage systems (BESSs) are the most promising technology to enable 
RES-E to meet this challenge. As seen in section 2.4, BESSs can provide high power 
capability in relation to energy capacity. They are therefore suited to a variety of grid 
uses, such as PCR and secondary control reserve, voltage regulation, peak shaving, load 
shifting and energy trading [213]. Generally, they can operate both as individual units or 
associated with RES-E plants. In the second option, the presence of BESS can make the 
ancillary services market more attractive for the RES-E owner. BESSs allow a more 
flexible use of the RES-E plant without limiting the exploitation of the primary source. 
Moreover, in a future scenario with a higher share of RES, it may be necessary to increase 
the ramp rates of units providing PCR. Such fast ramp rates could be provided by many 
EES technology, but especially BESSs. 

This perspective is supported by recent evolutions in the EU and Italian regulatory 
framework, foreseeing new roles and opportunities for all the electric power systems 
players involved. A clear example in this direction is the Winter Package presented by 
the EU Commission [214], which envisages an update of current EU rules to allow 
renewable producers (RES-E based power plants) to fully participate in all market 
segments, with a progressive shift from centralized conventional generation to 
decentralized. In Italy, a first important step in this direction has been made recently by 
the Energy Authority (AEEGSI) through the consultation document (DCO) 298/16/R/eel 
[215]. AEEGSI proposed a reform of the regulatory framework for the dispatching 
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service currently in force, with the purpose to enable the active participation of final 
users, RES power plants and ESS (BESS included) to the management of the power 
system. These new players will be allowed to sell services designed to balance generation 
and consumption on the Ancillary Services Market. 

PCR service: a viable opportunity for BESS 

The PCR service is identified as one of the most promising, and economically 
interesting, regulation services for BESSs [216]. Nowadays, large scale BESSs for PCR 
are representing a growing business model [217]: PCR is identified to have the highest 
financial benefit for the BESS owner over a period of 3-5 years [218]. The purpose of 
PCR is to maintain the power balance on the electric network, ensuring that the amount 
of the electric power injected by all the power generators is equal to the electric power 
required by the loads. Power generators must follow their specific droop-control law. 
Traditionally, the droop-control differentiates among droop, regulation-band and dead-
band (Figure 8.1): 
 The regulation-band (∆�̇�𝑃𝑛𝑛𝑎𝑎𝑚𝑚): which is the maximum upward or downward power 

(∆Pmax) that the generator must make available when the frequency deviation exceeds 
a defined threshold. It is normally expressed per unit of the nominal power of the 
generator Pn. 

 The dead-band: this is a small band around the nominal frequency (in Italy at ± 20 
mHz), in which no power needs to be provided in order to preserve the power plant 
apparatus. 

 The droop: this is the slope of the curve. It describes the capacity of the power 
generator to act slowly rather than faster to a change of frequency. The definition is 
given by: 

 
𝜎𝜎 = −

∆�̇�𝑓
∆�̇�𝑃

 (8.1) 

Where the frequency variation Δf, per unit of the nominal value of 50Hz, is divided 
by the variation of the electrical power ΔP, measured in stable working conditions 
and per unit of the nominal power of the generator Pn.  
In several countries BESSs already have the opportunity of offering PCR. In some 

cases, BESSs are equated to traditional power plants and they compete economically 
within a common ancillary service markets; in other cases, “ad-hoc” regulating 
mechanisms have been developed that are tailored on BESS characteristics. 

 
Figure 8.1 droop control law 
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In Italy, the requested performances are coded by the TSO Terna S.p.A. in Section A-
15 of the Italian Grid-Code [10]. The dead-band is fixed in the range of ± 20 mHz. The 
regulation-band is about ±1.5% of the nominal power for traditional power plants. 
Moreover, the generators are requested to maintain the level of power for at least 15 
minutes consecutively. The droop angles is not fixed to single values, but a traditional 
power generator must theoretically provide the capability of operating with any degree 
of droop between 2% and 8%. In practice, the PCR service is shared among all the power 
plants according to their predefined droop values. Remuneration of PCR has been defined 
by the Italian Energy Authority (AEEGSI) in a specific resolution [219]. Such a 
resolution is not devoted to creating a PCR market mechanism, vice versa the goal is to 
identify adequate reimbursement mechanisms for PCR regulation from traditional power 
plants (in particular, an advanced meter is required in order to measure properly the 
contribution of each generation unit to the PCR service [220]). 

In Germany, the TSOs published a specific regulation for BESS providing PCR [217], 
[221]. Every participant had to follow a particular droop control law. Outside the dead 
band the power provided must increase up to 100% of the offered capacity. The BESS 
must be able to provide the power in 30 seconds or less and to maintain the set-point for 
at least 30 minutes in both positive and negative directions. Power provision in the range 
of dead-band and variations up to 20% in the droop control law are accepted in order to 
regulate the SoC. 

In UK, the TSO National Grid and regulator OFGEM established a new method of 
providing the PCR service: the Enhanced Frequency Response (EFR) [222], [223]. The 
service is available in two variants and service providers can use them in order to 
maintain an optimal level of SoC. Regulation must be provided in reaction to frequency 
deviations from 50 Hz greater than ±0.05 Hz (service 1) or ±0.015 Hz (service 2). BESSs 
must be capable of detecting a change in system frequency within 500ms and capable of 
providing the contracted regulating power within 1 second. Specific droop control law 
fixes the working points as percentages of the BESS capacity. 

More recently, as a pilot project of ENSTO-E, TSOs of Germany, Austria, the 
Netherlands and Switzerland have started a joint ancillary service market for PCR in 
April 2015 which in 2017 includes also Belgium and France [224], namely the Central 
Europe mechanism. This creates the largest market for PCR in Europe with a common 
demand of 1400 MW which is procured via a common internet platform through an 
anonymous tendering process [225]. The PCR cooperation is based on weekly auctions. 
The contracted PCR volume is the sum of each TSO PCR demand. The offers are selected 
with an algorithm which minimizes the total procurement cost, while respecting the PCR 
import/exports limits per Country. Suppliers are paid a fixed price per MW of “standby” 
reserve for the whole tendering period. Updated data say that the prices have ranged from 
3000 to 5000 €/MW per week in the period May 2015 - July 2017 [226]. Since BESSs 
can provide high power capabilities in relation to energy capacity, services generating 
profits based on power is a real opportunity for the BESS owner. Additionally, capacity 
constraints are normally not stringent thereby allowing an economic operation of BESS 
(investment costs are proportional to capacity) [227]. 

Apart from the specific regulating mechanism in place, the PCR provision will be 
allowed as long as BESSs fulfil technical and commercial requirements set by the TSO. 
The most challenging requirement for BESS is service continuity. In fact, even if a zero-
mean ancillary service signal is presumed, the battery will constantly decrease in the SoC 
level due to the internal efficiency that affects charge and discharge processes. In the end, 
the battery will reach its capacity limits cutting the service provision and incurring 
penalties that reduce the profits. For this reason, the investigation of the technical and 
economic performances of BESS in the provision of PCR is assuming higher relevance 
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as a research topic.  

Regulating strategies to enhance BESS competitiveness 

The effective exploitation of the regulation resources can be enhanced through the 
development of proper SoC control strategies that assure service continuity and 
competitiveness. Literature separates between [216], [228]–[235]: 
 Scheduled strategies: which define a pre-defined number of charging periods (e.g. 

[236]). 
 Dead-band strategies: which propose charging or discharging the battery by changing 

the BESS set point only when the grid frequency is within the dead-band. In [230] the 
authors use fixed SoC limits in order to (i) prevent overcharge conditions and the 
consequent use of dissipation resistors, (ii) anticipate the charge phase. Additionally, 
they allow selling relatively small amounts of energy on the electric market to stay 
within SoC limits. In [216] an adjustable SoC limit is proposed by following the 
expected frequency profile based on load forecasting and power production planning.  

 Dynamic strategies: these strategies force the frequency input signal to be zero-mean 
by introducing set-point adjustments. The assumption is that TSOs generally allow 
power plants to make some changes in their schedule. It is then proposed to enable 
storage systems to add a time-dependent offset to the frequency control signal in order 
to promote charging and discharging processes that keep the SoC within acceptable 
levels. The adjustment of the working point has to be considerably slower than the 
associated service. BESS would help compensate fast components of supply-demand 
mismatch, while passing slow components to slower units. In [231] the authors 
propose adjustments when the BESS reaches specific SoC levels. The offset variation 
is slow enough for slower plants to follow and it has to stay flat for a certain period 
between two ramps of different signs. In [232] they propose a similar approach but 
the power set-point is based on a moving average of the previous period. They can 
control the ramp rate of the offset by increasing or decreasing the averaging period. 
The calculation takes into account also losses during charging and discharging 
processes; 

 Model Predictive Control (MPC) based strategies: used since the 1980s, in recent 
years they have entered the power system balancing models [233]. By relying on 
dynamic models of the processes, they allow the current time-step to be optimized, 
while considering future time-steps. MPC has the ability of anticipating future events 
and can take control actions accordingly. In [234] an MPC algorithm is able to manage 
and allocate control reserve power efficiently, taking into account BESS constraints 
such as SoC limits, ramp capabilities and power/capacity limits. In [235] a model that 
consists of a control system model, an MPC-based controller, and a frequency 
predictor are presented. The authors claimed an optimal operation of BESS that 
prolong the lifetime and optimize the total costs. 
Some of these strategies have already been analysed in real case studies. In [237] the 

authors present 1MW/0.58MWh BESS application able to work in 3 different 
configurations: MV direct coupling, LV coupling with load support, and island mode 
operation. They claim to use a dynamic recharge strategy that uses frequency 
measurements and droop-control directly implemented in the power conversion system. 
The charge of the battery is activated when SoC in not between the interval 45% - 65%. 
The presented BESS passed all prequalification requirements posed by the TSO for the 
provision of PCR (including minimum ramp rate and reaction time requirement). In [238] 
findings of different BESSs for PCR are presented. The authors simulate BESS operation 
using dead-band strategies with unlimited capacity, limited capacity and with or without 
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SoC control. Then they carry out a cost-benefit analysis comparing the economic returns 
in the Italian context. In [239] LFP batteries providing EFR in the UK system are 
investigated. The simulations outcome resulted in a optimal EPR of BESS around 0.43. 
The SoC-set point is set between the interval 50-60% to guarantee the service continuity. 
Moreover, two time intervals are defined to provide the service continuously and to bring 
the battery back to initial SoC when needed. In [240] the authors describe the case of 
1.6MW/0.4 MWh BESS participating to the market. The main components are the over-
frequency droop and the SoC controller. The first one uses over-frequency periods to 
charge the battery (reference SoC is 90%) while the second one starts SoC restoration 
after 15 minutes of delivering power even if the under-frequency period has not ended. 
In [241] the authors analyse a 1MW/0.25 MWh BESS (LTO technology) installed on the 
island of Hawaii. It is designed to provide multiservice: PCR and peak-shaving. The 
battery stored 1.5 GWh of energy in three years, which correspond to an intensive use 
(around 5 cycles per day) but the capacity decreases to 95% of the initial capacity. Finally 
in [242] the authors present an economic assessment of BESS within the Central Europe 
capacity market for PCR. Simulations evaluate the NPV in case of minimum bid size of 
1MW (contracted period of 1 week) for two different BESS configurations: 1MW/2MWh 
and 2MW/2MWh. Their conclusions show no business cases under the current market 
conditions. However, the authors state that the actual BESS model is unable to reveal the 
differences behind the two tested configurations. A more detailed BESS model is 
necessary to improve the results to account for cycling rate, temperature and DoD in SoC 
and SoH estimations. They claim that “this will be essential for more accurate statements 
regarding system dimensioning and cost-effectiveness”. 

8.2 The proposed methodology 

Given the above framework, this section presents a methodology of studying BESS 
capabilities in providing PCR service both from technical and economic points of view. 
The focus is on BESS in individual configurations, but it can be extended in the case of 
BESS supporting RES-E power production. Real metered profiles will be used to test 
different control logics through the definition of controllers, regulation and battery 
models. The whole methodology is represented in Figure 8.2 and it has been implemented 
in a tool, namely the BESS4PCR tool. 

The methodology is based on several techno-economic assumptions that are 
compliant with the Italian regulating framework. 

Technical assumption 

BESS differs considerably from traditional power plants in the provision of PCR. 
Specifically: 

 
Figure 8.2  Structure of the methodology of studying BESS in providing PCR service 
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1. The concept of rated power of BESS is not straightforward. A battery is normally 
defined in terms of nominal capacity. The nominal power is usually derived from the 
Energy to Power ratio (EPR). The EPR can vary considerably according to the 
specific technology: lithium-ion technology can sustain much lower EPR if 
compared to lead-acid technology [237]. Thus, it is necessary to distinguish between 
the regulating power which is the power BESS will make available for PCR (∆Pmax 

in Figure 8.1) and the nominal power that is related to the regulation-band.  
2. Given a predefined regulating power (e.g. 1MW), the regulation-band can be 

optimized in relation to the specific application BESS is installed for. If in an 
individual configuration, BESS can use up to all the rated power for the PCR (e.g. a 
regulation band of 100%. that corresponds to a nominal power of 1MW); if in BESS 
+ RES-E configuration, only a fraction of rated power will be used for PCR and the 
remaining part for other purposes (e.g. a regulation band of 25% that corresponds to 
a nominal power of 4MW). Analyses/simulations are needed to understand the right 
regulation-band that minimizes the investment. 

3. Since BESSs connect to the grid through interface converters, it is possible to exploit 
the resulting benefits of their fast response time. Modifications to the traditional 
droop-control law can be introduced, specifically in the droop that can vary according 
to specific logics (i.e. variable-droop).  

Given the findings, the proposed methodology is based on three pillars: the regulating 
power (PReg) the regulation-band (∆�̇�𝑃𝑛𝑛𝑎𝑎𝑚𝑚) and the EPR. Once the three parameters are set, 
it is possible to determine the corresponding BESS Pn-En configuration to be analysed in 
the PCR provision. The nominal power (Pn) and energy (En) can be in fact derived from 
the regulation band and EPR factor: 

 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑅𝑅𝑒𝑒𝑐𝑐
∆�̇�𝑃𝑛𝑛𝑎𝑎𝑚𝑚
�  (8.2) 

 𝐸𝐸𝑛𝑛 = 𝑃𝑃𝑛𝑛 ∙ 𝐸𝐸𝑃𝑃𝑅𝑅 (8.3) 

For instance, if a BESS with EPR=1 is deployed with a regulation-band of 50% to 
provide PReg of 1MW, it means that the installed BESS is of 2MW/2MWh.  

As regards to droop angles, the Italian Grid-Code has been taken as a term of reference 
which states that DGs droop must be set to a fixed value between 2% and 5% [9]. The 
same limits are respected also in the case of PCR provision from BESS. By keeping the 
frequency saturation limits constant (∆fmax in Figure 8.1), it is in fact possible to derive 
the droop-range once a specific regulation-band is assumed. For instance, a droop-range 
[0.12% - 0.3%] is computed for a regulation-band of 0.25 p.u. as per equation (8.1). 

Finally, two different regulation strategies can be used to define the specific droop to 
be adopted: fix-droop strategy or variable-droop strategy. In the first case, the droop is 
fixed to a single value within the droop range. In the second case, a specific controller 
defines a droop-factor (DF) which takes into account the actual SoC (estimated by the 
battery model) and the grid frequency. At a decrease of SoC the DF should (Figure 8.3): 
 gradually decrease when the delta-frequency is positive (thus absorbing more and 

more energy from the network) in order to restore the SoC; 
 progressively increase when the delta-frequency is negative (thus delivering less and 

less power to the network) in order to save the SoC.  
Once the controller has chosen the most suitable DF value, the droop is computed as 

follows:  
 𝜎𝜎(𝑟𝑟) = 𝜎𝜎𝑛𝑛𝑖𝑖𝑛𝑛 + 𝐷𝐷𝐹𝐹(𝑟𝑟) ∙ (𝜎𝜎𝑛𝑛𝑎𝑎𝑚𝑚 − 𝜎𝜎𝑛𝑛𝑖𝑖𝑛𝑛) (8.4) 
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Economic assumptions 

Economic analyses are based on different hypotheses which want to remain at a 
general level. The idea is to avoid limiting the analyses to a specific market mechanism 
already in place because market structures are going to quickly change driven by a 
relevant electric grid evolution caused by RES-E growth. 

An economic gain for the PCR service has been introduced as “Revenue of PCR” 
(RoPCR), presuming it to be proportional to the regulating power provided by the BESS 
(PReg). Such a model is similar to the Central Europe mechanism [226]. Moreover, a 
market structure based on the regulation-band provided by the player is considered to be 
a simple, effective and transparent option for the PCR service. Since the tool assumes a 
constant regulating power for each BESS configuration (cfr. technical assumption), 
design criteria are based on the minimization of the total costs.  

Analytically, the Net Present Values (NPV) can be computed as follows: 

 
𝑁𝑁𝑃𝑃𝐶𝐶 = 𝐿𝐿𝑛𝑛𝑣𝑣 + �

𝐶𝐶𝐹𝐹(𝑦𝑦)
(1 + 𝑟𝑟)𝑐𝑐 + 𝑅𝑅𝐶𝐶(𝑅𝑅)   [€]

𝑅𝑅

𝑐𝑐=1

 (8.5) 

 𝐿𝐿𝑛𝑛𝑣𝑣 = 𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦𝐶𝐶) ∗ 𝐸𝐸𝑛𝑛 (8.6) 

Where Inv is the initial investment cost that is proportional to the installed capacity 
En given the specific cost of BESS (see Appendix D). CF(y) is the net cash flow during 
the year y and r the discount rate. RV(T) represents the residual value of the assets (i.e. 
BESS) at the end of the investment term T, as per Appendix D. Cash flows can be 
computed by accounting for penalties and replacement costs: 

 𝐶𝐶𝐹𝐹(𝑦𝑦) = 𝑅𝑅𝑛𝑛𝑃𝑃𝐶𝐶𝑅𝑅(𝑦𝑦) − 𝐶𝐶𝐶𝐶(𝑦𝑦) − 𝐶𝐶𝑅𝑅(𝑦𝑦) (8.7) 

Where CP(y) considers the penalties associated to outages of BESS in providing PCR 
service (i.e. when the BESS has reached its technical limits), while CR (y) accounts for 
replacement costs of BESS by taking into account the projected BESS cost at the specific 
year y (see Appendix D).  

Penalties are based on the Loss of Regulation (LoR) that computes the PCR not 
provided (due to exceeded BESS limits) as a percentage of the expected PCR energy.  

 
Figure 8.3 Variable-droop regulation strategy. Droop is function of ∆f and SoC. 
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 𝐿𝐿𝑛𝑛𝑅𝑅 [%] =
𝐸𝐸𝐶𝐶 
𝐸𝐸𝐶𝐶𝑆𝑆𝑅𝑅

 (8.8) 

Where EPCR is computed as follows: 

 𝐸𝐸𝐶𝐶𝑆𝑆𝑅𝑅 = ∫ 𝛥𝛥�̇�𝑃 𝑃𝑃𝑛𝑛 𝑑𝑑𝑟𝑟𝑎𝑎=𝑒𝑒𝑛𝑛𝑒𝑒
𝑎𝑎=𝑐𝑐𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎   (8.9) 

and EP is the EPCR not provided because of attained BESS limitations. Thus, the 
calculation/expression depends on the specific BESS model adopted (details about BESS 
models will follow in section 8.3). 

The energy not provided is assumed to be valorised at the price pLoR set by the 
regulator. The penalties can be computed as: 

 𝐶𝐶𝑝𝑝 = 𝐿𝐿𝑛𝑛𝑅𝑅 ∙ 𝐸𝐸𝐶𝐶𝑆𝑆𝑅𝑅  ∙ 𝑝𝑝𝐿𝐿𝑛𝑛𝑅𝑅  (8.10) 

Analyses and comparisons between the different regulating strategies will be based 
on the NPV values and break-even points. However, LoR and CR values depend highly 
on the BESS modelling. Different SoC trends result actually in different LoR estimations, 
while aging evaluations impact on the number of replacements within the investment 
period. Correct BESS models are needed for a proper design that aims at maximizing the 
investment values for the BESS owner. 

8.3 BESS models adopted 

While the techno-economic assumptions of previous sections are essential to build a 
framework of analysis that follow the PCR service regulations, BESS models are of 
fundamental relevance for deriving reliable techno-economic analyses which would lead 
to investment decisions. SoC and SoH indicators from the model are in fact used to 
estimate LoR and replacement costs CR.  

Two different BESS modelling approaches will be analysed and compared in the 
following sections: empirical and electrical. In both cases, the BESS model receives the 
power set point ΔP (per unit of the nominal power) from the regulation model and must 
give the updated battery SoC as output. What changes is the way in which the SoC is 
estimated (i.e. the modelling approach). Eventually, these differences will result in 
marked deviations in LoR estimation. One of the main tasks of this chapter is in fact to 
verify the sensitivity of different modelling approaches on the optimum design 
evaluation. Specifically, two different empirical models (model 1 and model 2) are 
developed and compared with one electrical model (model 3). 

In both cases, the Li-ion technology has been chosen as reference for the modelling 
phase. Specifically on the Li-ion LNCO chemistry from Boston Power SWING5300 
[107] which has also been used for the modelling phase of Chapter 6 and the aging 
modelling of Chapter 7. As emerged in section 2.4, it is plausible to expect that Li-ion 
BESS will be the first choice for PCR provision. 

The electrical model  

The electrical model (model 3) is essentially the one proposed in Chapter 6. The Li-
ion cell model is used as the elementary block of the BESS. This is a realistic assumption 
since BESS are constituted by thousands of cells (in the range of 15,000-150,000 
cells/MWh in case of Li-ion BESS). For instance, two very different BESSs of 10MWh 
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and 500kWh are constituted of the same cells of fixed capacity, but in different numbers. 
If the service to provide remain the same (i.e. 1 MW), this means that the cells will have 
to provide different levels of power (higher for the smaller BESS). In this way, the 
macroscopic effect at BESS level are preserved to the cell level. Specifically, the real 
power Pcell required from or injected to cell (generators convention) is computed as 
follows: 

 
𝑃𝑃𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎 =

𝐸𝐸𝑛𝑛,𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎 ∙ 𝛥𝛥�̇�𝑃
𝐸𝐸𝑃𝑃𝑅𝑅

=
𝐶𝐶𝑛𝑛,𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎 ∙ 𝐶𝐶𝑛𝑛,𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎 ∙ 𝛥𝛥�̇�𝑃

𝐸𝐸𝑃𝑃𝑅𝑅
 (8.11) 

Where En,cell Cn,cell and Vn,cell are respectively the nominal energy [Wh], capacity [Ah] 
and voltage of the cell. Once Pcell is computed and the current set-point IB can be 
computed by dividing by terminal voltage. 

Note that the BESS configuration Pn-En is scaled down to cell level by neglecting all 
those modelling steps that are proper of the battery pack level like the balancing and 
equalization of the cells. No proper BMS is implemented but a simplified PI regulator is 
introduced to prevent any current supply or adsorption when the cell voltage reaches its 
limits (the one provided by the manufacturer). As in real-operations, the BESS limitations 
are then linked to the cell voltage limits rather than SoC limits. The LoR is updated when 
the voltage reaches the limits, even if the SoC has not reached saturation. Therefore, the 
EP (i.e. LoR) is estimated as follows: 

 
𝐸𝐸𝐶𝐶 = � 𝛥𝛥�̇�𝑃 𝑃𝑃𝑛𝑛 𝑑𝑑𝑟𝑟 

𝑎𝑎=𝑒𝑒𝑛𝑛𝑒𝑒

𝑎𝑎=𝑐𝑐𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎
�

(𝑉𝑉 < 𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛) 𝑉𝑉  (𝑉𝑉> 𝑉𝑉𝑚𝑚𝑎𝑎𝑚𝑚) 
 (8.12) 

SoC estimation is derived from the OCV cell as detailed in Chapter 6.  

The empirical model  

The empirical model is based on the steady-state operation of the battery since it 
computes the amount of energy that flows through the battery and updates the change in 
the battery state of charge over a given time step. The real power ΔPB (in p.u. of the 
nominal power) required from or injected to the battery (generators convention) is 
computed as follows: 

 
𝛥𝛥𝑃𝑃𝐵𝐵̇ = �  Δ𝑃𝑃 ̇ 𝜂𝜂𝑆𝑆𝐷𝐷 , Δ�̇�𝑃 < 0

Δ�̇�𝑃 / 𝜂𝜂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷 , Δ�̇�𝑃 ≥ 0
 (8.13) 

where ηCH and ηDISCH are respectively the BESS charge and discharge efficiencies. 
On this point, the two proposed empirical models are differentiated as regards to the 
efficiency values: 
 Model 1 assumes a fixed value of round-trip efficiency ηRT= 95% that is claimed to 

be typical for Li-ion BESS for PCR provision [242]. The hypothesis of full symmetry 
between charging and discharging processes is used to derive the single efficiencies 
for equation (8.13): 

 𝜂𝜂𝑆𝑆𝐷𝐷 = 𝜂𝜂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷 =  �𝜂𝜂𝑅𝑅𝑅𝑅 (8.14) 

 Model 2 assumes a variable efficiency linked to the operating conditions during the 
specific time-step. The reference trend is derived from performance tests of Figure 
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7.5 where the efficiency is a function of the registered C-rate. Since electrical 
quantities are not considered in empirical models, the C-rate is approximated by 𝛥𝛥𝑃𝑃𝐵𝐵̇ . 
The efficiency expression16 can be written as: 

 
𝜂𝜂𝑆𝑆𝐷𝐷 = 𝜂𝜂𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷 = �−𝑏𝑏3𝛥𝛥𝑃𝑃𝐵𝐵̇

3  + 𝑏𝑏2𝛥𝛥𝑃𝑃𝐵𝐵̇
2  − 𝑏𝑏1𝛥𝛥𝑃𝑃𝐵𝐵̇  + 𝑏𝑏0 (8.15) 

Then, the SoC variation at each time-step can be computed as follows: 

 
∆𝑆𝑆𝑛𝑛𝐶𝐶 =  

∫ 𝛥𝛥𝑃𝑃𝐵𝐵̇  𝑃𝑃𝑛𝑛 𝑑𝑑𝑟𝑟𝑎𝑎+1
𝑎𝑎

𝐸𝐸𝑛𝑛
 (8.16) 

In this case, BESS limitations are linked to SoC limits. Therefore, the EP (i.e. LoR) is 
estimated as follows: 

 
𝐸𝐸𝐶𝐶 = � 𝛥𝛥�̇�𝑃 𝑃𝑃𝑛𝑛 𝑑𝑑𝑟𝑟 

𝑎𝑎=𝑒𝑒𝑛𝑛𝑒𝑒

𝑎𝑎=𝑐𝑐𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎
�

(𝑆𝑆𝑛𝑛𝑆𝑆 < 𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛) 𝑉𝑉  (𝑆𝑆𝑛𝑛𝑆𝑆> 𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚)
 (8.17) 

Lifetime modelling 

Given the very high details required to simulate PCR application (i.e. to verify the 
BESS response each second), the computational effort is very high. For this reason, 
simulations are run for a reference period that is assumed representative during the whole 
plant lifetime. Consequently, the three models do not take into account neither the 
capacity fade effect nor the power fade effect. For instance, in the case of model 3, the 
full electrical modelling approach proposed in Figure 7.7 cannot be applied because the 
impacts of the variations on the resistors and capacitors parameters is not extensible over 
the entire lifetime. Nevertheless, the cycling counting during the reference period has 
been performed as follows: 

 
 𝑐𝑐𝑦𝑦𝑐𝑐𝑖𝑖𝑛𝑛 =  

𝐸𝐸𝐶𝐶𝑆𝑆𝑅𝑅(1 − 𝐿𝐿𝑛𝑛𝑅𝑅)
𝐸𝐸𝑛𝑛

 (8.18) 

cysim is then used to assess the expected BESS lifetime as follows: 

 𝐿𝐿𝑅𝑅𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑐𝑐𝑦𝑦𝑛𝑛𝑎𝑎𝑚𝑚

𝑐𝑐𝑦𝑦𝑐𝑐𝑖𝑖𝑛𝑛
 (8.19) 

Where cymax is the maximum number of cycles that is differentiated between the 
different models: 
 Model 1 assumes constant cymax which is based on the maximum number of cycles as 

claimed in literature and/or by the manufacturer’s data for similar studies. 
 Model 2 and Model 3: assume a variable value of cymax. The value comes from aging 

test results of Table 7.2 and is linked to the specific working conditions registered 
during the simulation (i.e. the average 𝛥𝛥𝑃𝑃𝐵𝐵̇  for empirical models or average C-rate for 
electrical model). 

                                                      
16 With [b3; b2,; b1; b0] = [-4.0E-3, +3.1E-2, -1.4E-1, +1E0 ]; 
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For instance, if the simulation provides 20 cycles/month and the maximum number of 
cycles is estimated in 2000, the lifetime of BESS is estimated in 100 months. This means 
that the BESS will be replaced every 8,3 years and CR (i.e. NPV) can be updated 
accordingly. 

Table 8.1 resumes the main assumptions of the three models adopted in the 
simulations. 

8.4 Case study 

The methodology of section 8.2 and the different BESS models of section 8.3 have 
been merged in the BESS4PCR tool and implemented in MATLAB®Simulink® (Figure 
8.4). The BESS4PCR has been used to run different sets of simulations which are detailed 
as follow. 

In addition to the models already explained (i.e. controller model, regulation model 
and battery model), the battery inverter has also been modelled in its efficiency and its 
response time. It is a simplified model since it is not the scope of this thesis to investigate 
more appropriate inverter models, which, however, might be matter of future 
improvements in the methodology herein presented. The response time is modelled by a 
transfer function that imposes the signal from the regulation model on the battery model, 
with a setting time of 200 ms (time constant of 40 ms). The efficiency is expressed as a 
function of the nominal power of the inverter that is assumed equal to the regulating 
power (Figure 8.5). In fact, it is not the scope of this thesis to investigate more appropriate 
inverter models, which, however, might be matter of future improvements in the 
methodology herein presented. 

In the analyses, I/O models and their mutual effects (i.e. the effect of the BESS power 
injections on the system frequency) are neglected. In other words, the simulations are in 
"open-loop", meaning that the battery power output does not affect the input frequency 
to the controllers (i.e. no I/O model). This is because the goal is to investigate the effect 

Table 8.1 Main characteristics of the BESS models adopted in the proposed methodology 
Model # Model name SoC estimation SoH estimation 
M1 Empirical(FIX) – Energy balance 

– SoC limits 
– ηRT = 95% 

– Cycles counting 
– cymax = fix 

M2 Empirical(VAR) – Energy balance 
– SoC limits 
– ηRT = f(c-rate) 

– Cycles counting 
– cymax = f(c-rate) 

M3 Electrical – Voltage limits 
– SoC = f(OCV) 

– Cycles counting 
– cymax = f(c-rate) 

 
Figure 8.4 The BESS4PCR MATLAB®Simulink® tool 
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of the regulation on the BESS itself.  

Frequency trend analyses in Italy 

As already mentioned, it is quite complex to evaluate properly the BESS 
performances due to the stochastic nature of the frequency signal. Therefore, simulations 
must rely on real data which are able to embrace the real working conditions of a BESS 
in providing the PCR service. 

For this reason, lab activity within the framework of the IoT-Storage Lab (Appendix 
B) was devoted to measure the electrical frequency on the Italian power system. Data 
have been acquired with a 1 Hz sampling time without interruptions for 1 month, during 
the period between February and March 2017, as reported in Figure 8.6-a.  

The acquired data have been subdivided into 30 single daily profiles in order to 
compare them and to find a common behaviour in the daily trend. The mean value and 
the standard deviation for each frequency sample have been computed considering the 
30 days monitored, obtaining the daily profile shown in Figure 8.6-b, which can be 
considered representative of the mean power system behaviour. Results clearly show that 
there are several periodic trends. Periodic fluctuations can be observed at the beginning 
of each hour: the frequency rises or decreases sharply, and, after a transient behaviour, it 
returns close to the initial value. Periodic oscillation of 30 min and a 15 min are also 

 
Figure 8.5 Inverter efficiency curve as a function of inverter nominal power adopted in 
BESS4PCR tool 

 
Figure 8.6 Frequency profile measured on 30 days in February/March 2017. Daily mean 
frequency profile (a) and its standard deviation (b) 
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observed. Currently, all these trends are correlated with the market structure in place in 
Italy: the Day Ahead Market is arranged in hourly sessions, while the Ancillary Services 
Market are based both on hourly sessions and on quarter-hour sessions. 

Moreover, during the night and central hours of the day the frequency is commonly 
higher than 50 Hz and it decreases sharply at the beginning of the hour; on the contrary, 
the frequency has a typical value lower than 50 Hz in the early morning and in the late 
afternoon, but it increases suddenly when a new hour begins. Furthermore, the observed 
variations are higher during the night due to a lower system inertia. 

All these findings clearly impact on the provision of PCR service especially if 
provided by unconventional apparatus like BESS. The deeper and longer the periods of 
frequency outside the dead-band are, the faster the SoC will reach its limits incurring in 
economic penalties. Simulations of the next sections will be therefore based on these real 
measurements (i.e. 30 days, Δt = 1s) embracing the Italian framework. The results 
obtained on the simulated month will then be assumed representative during the whole 
plant lifetime.  

Set-up of the simulations 

The parameters adopted in the simulations (Table 8.2) are compliant with the current 
regulation rules in Italy and plausible if related to the discussed applications. Some of 
them (SoC range, lifetime, etc.) are a direct consequence of the assumed technology type 
that is lithium-ion (note that the model used for the simulation is the one determined in 
Chapter 6 for the LNCO chemistry from the Boston Power SWING5300 [107]). As 
mentioned in the economic assumptions of section 8.2, the analyses are based on the 
same regulating power of 1MW and EPR=1. In all the simulations, BESS starts with half 
of its usable capacity exploiting the whole SoC range: from 0% to 100%. Economics are 
based on an investment period of 10 years which is equal to the maximum BESS lifetime. 
Revenue for PCR is set to 3,5 k€/MW per week (around 20€/MW per hour) as an average 
value of data published in [226]. The analyses are based on the variation of three 
variables: the regulation-band, pLoR and the droop. 

The regulation-band adopted in the simulations ranges from 10% to 200% (Table 8.3). 
From equations (8.2) and (8.3), this means that different BESS Pn-En configurations are 

Table 8.2 Parameters adopted in the simulations with the BESS4PCR tool 
Description Parameter name Value 
Regulating Power PReg 1 MW 
Energy-Power ratio EPR 1 h 
Initial State of Charge SoC_start 50 % 
Maximum SoC SoC_max 100 % 
Minimum SoC SoC_min 0 % 
Dead-band db ±0.02 Hz 
Regulation-band ∆Pmax Variable (See Table 8.2) 
Droop (FIX strategy) σ Fix or variable (See Table 8.2) 
Maximum lifetime LTBESS,max 10 ys 
Round-trip efficiency (M1) ηRT 95 % 
Maximum number of cycles (M1) cymax 5000 [107] 
Internal rate of return r 6 % 
Valorisation of LoR pLoR Variable (scenario analysis) 
Revenue of PCR RoPCR 3500 €/MW per week 
Investments term T 10 y 
Simulation span ΔT 30 d 
Time-step Δt 1 s 
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analysed: from 10MW-10MWh to 500kW-500KWh. If the biggest configuration is a 
pure arbitrary choice, the smallest should respect the specific regulation in place. In Italy 
BESS should provide PCR for 15 minutes consecutively. Therefore, the maximum 
allowable constant discharge power must be 2En: in these conditions, the battery will 
completely charge or discharge in 15 minutes starting from an average SoC=50%. Given 
a regulating power of 1MW the smaller BESS can be of 500KWh, exactly as in the worst 
scenario that assumes a regulation-band of 200%. Once the regulation-band is determined 
for the specific simulation, the droop angles change as per equation (8.1). In case of fix-
droop strategy, the droop has been fixed at the mean value of the specific droop range; 
while, in the case of the variable-droop strategy, the droop moves between the maximum 
(σmax) and minimum (σmin) following equation (8.4). 

Finally, in case of simulations based on the cell model of Chapter 6, the BESS 
configurations are scaled down to cell level as explained in section 8.3.  

8.5 Simulations, results and discussion 

The results obtained by running different simulations through the BESS4PCR tool are 
presented. Specifically, the discussions will be focused on three different layers of 
analysis: 
1. The LoR estimation with different BESS models. The six BESS configurations of 

Table 8.3 are simulated. The focus is on the LoR estimation achievable with the three 
different BESS models presented in section 8.3 and section 8.4. The simulations are 
carried out with a fixed-droop strategy. Results will demonstrate the high impact of 
the BESS modelling on the LoR computation. 

2. Optimal BESS design. Given the LoR estimated by the different BESS models, the 
discussion moves on to economic analyses. The NPV as a function of the regulation-
band is derived. Results will show that the optimal regulation-band (i.e. optimal 
BESS design) changes with the BESS modelling approach. Moreover, sensitivity 
analysis highlight that the same differences are even more remarkable with a higher 
level of pLoR set by the regulator. 

3. Variable-droop control strategy analysis. Given the optimal regulation-band, fix-
droop strategy and variable-droop strategy are compared. Results show that variable-
droop helps to improve SoC control enhancing the profitability of BESS.  

LoR estimation with different BESS models 

In this first sub-section, a detailed comparison of different battery models in the 
evaluation of BESS reliability for PCR service is presented. The results demonstrate the 
different impact of electrical and empirical models. Simulations have been run for all the 

Table 8.3 regulation-bands, droop-ranges, BESS and cell configurations (for electrical model 
based simulations) adopted in the simulations with the BESS4PCR tool. 
Regulation  
Band 

Droop angles  BESS level config.  Cell config. 
σmin [%] σmax [%]  PReg [MW] Pn [MW] En [MWh]  Preg [W] En [Wh] 

10% 0.300 0.750  1 10 10  1.934 19.345 
25% 0.120 0.300  1 4 4  4.836 19.345 
50% 0.006 0.150  1 2 2  9.673 19.345 
100% 0.030 0.075  1 1 1  19.345 19.345 
150% 0.020 0.050  1 0.67 0.67  12.897 19.345 
200% 0.015 0.038  1 0.5 0.5  38.690 19.345 
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six configurations of Table 8.3.  
Figure 8.7 shows the case of a 100% regulation-band as reference for discussion. ∆P 

trend is the same for all the three models since it is derived from the frequency deviation 
∆f by equation (8.1), while SoC is determined differently in agreement with the different 
modelling approaches (see section 8.3): empirical models simply update SoC 
analytically, while the electrical model base the account on voltage limits. This turns in 
similar SoC shapes that depend on the particular frequency profile, but different trends: 
saturation periods are different among the models. For instance, day 25 shows a great 
variability in the SoC estimations: empirical model with variable efficiency (M2) is 
almost at its maximum SoC while electrical (M3) and empirical with a fixed efficiency 
(M1) are far behind. These differences are mirrored in the LoR estimations. Table 8.4 
groups the main results of the simulation. The highest value of LoR is reached by the 
electrical model (21%), while empirical models M1 and M2 attain lower levels: M1 has 
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Table 8.4 simulation results at 100% regulation band: comparison between different modelling 
approaches 
Results Model 
 M1-Empirical(FIX) M2-Empirical(VAR) M3-Electrical 
Regulation band  100 % 100 % 100 % 
Sigma (σ) 0.05 % 0.05 % 0.05 % 
EPCR [MWh/d] 3.23 3.23 3.23 
EP [MWh/d] 0.51 0.53 0.68 
LoR  15.8 % 16.4 % 21.0 % 
C-rate (average) 0.39 0.39 0.33 
Efficiency 95.0 % - 90.4 % 
Cycles (Cysim) [#/d] 1.36 1.35 1.27 
Maximum cycles (cymax) 5000 3539 3886 
BESS lifetime (LT) [y] 10 7.3 8.5 
Simulation time [s/d]17 16.7 21.8 1142 

 
Figure 8.7 30-days simulation at 100% regulation-band: DF and DP input profiles and 
computed SoC and LoR with different BESS modelling approaches 

BESS MODEL:  — Empirical (FIX) — Empirical (VAR) — Electrical
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the lowest value but very close to M2, respectively 15,8% and 16,4%. This means that 
the assumption of ηRT= 95% for M1 is realistic for the PCR application. 

Lower LoR means higher regulating energy to the grid, more cycles per day and 
higher average C-rate. This fact affects directly the lifetime computation (and economic 
analyses) since the number of maximum cycles cymax depends on the cycling rate (in case 
of M2 and M3). Empirical model M1 (characterized by a fix value for cymax) results in a 
BESS lifetime of 10 years that correspond to the investment term. Empirical model M2 
and electrical model M3 are based on values of Table 7.2 and thus related to the average 
C-rate registered during the simulation (i.e. the cycling severity). In these cases, BESS 
lasts 7,3 or 8,5 years respectively. The lifetime is very different between the modelling 
approaches impacting on the replacement costs: replacements are more or less frequent 
depending on this estimation. 

Overall, it is possible to state that electrical model can enhance the accuracy in the 
final results by better simulating the real behaviour of BESS. However, as shown in Table 
8.4, this result can be obtained at the expense of a considerably higher simulation time. 
Simulation with electrical model are 50-70 times longer than simulation with empirical 
models. 

Simulation over 30 days of analysis with the 18 possible configurations (6 regulations 
band, 3 modelling approaches) have been performed with electrical and empirical 
models. Figure 8.8 shows the results obtained with electrical model. As detailed in 
section 8.3, the analyses are scaled down at cell level. The input of the model is the 
current (C-rate) that is determined by dividing ∆P (in per unit of the cell nominal power 
Pn,cell) to the cell voltage. The model outputs are the terminals voltage, The SoC and the 
LoR. As expected, the higher the regulation-band, the higher the C-rates, the larger the 
variations of SoC, the greater the LoR. Table 8.5 groups the main results of the 
simulations of Figure 8.8. The LoR reaches up to 36% in the worst scenario that is for 
the highest regulation band of 200% (i.e. 0.5MW/0.5MWh BESS), while it considerably 
reduces up to 0% for lower regulation bands (e.g. the 10% case, 10MW/10MWh). 
Different regulation bands, which corresponds to different BESS configurations, result 
in different cycling estimations: fractions of cycles per day are consumed when the 
regulation band is set to a very low value, while up to 2 cycles per day are cycled when 

 
Figure 8.8 30-days simulation, electrical BESS model performances at different regulation-
bands: input ∆P, C-rate and Voltage at cell level; estimated SoC and LoR 

Regulation Band: — 200% — 150% — 100% — 50% — 25% — 0%
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the regulation band is progressively increased. This fact, coupled with the decrease of the 
maximum cycles (cymax), affect the lifetime estimations. Life expectancy varies from 10 
years for the lower regulation bands to 3 years in the worst case.  

By coupling the above results with the ones obtained with the other models, it is 
possible to map the LoR as a function of the regulation band. Figure 8.9 highlights the 
different trends between the two modelling approaches: logarithmic for empirical models 
and linear for the electrical model. The lower LoR values computed by the empirical 
models are due to the LoR estimation based only on SoC limits. Empirical models do not 
account for the influence of higher current on the BESS, while electrical models account 
for the greater voltage excursions to evaluate if the voltage limits are reached and to 
account for LoR. 

Given the technical analyses that arise from the different modelling approaches, one 
might want to understand if any business cases exist in using BESS for PCR. An 
economic analysis should then be coupled with the technical one. 

Optimal BESS design for PCR provision 

From a techno-economic point of view, the evaluation of the correct BESS design (i.e. 
the optimal regulation band) means to compute NPVs as detailed in equation (8.5) for 
different scenariosof analysis. Figure 8.10 shows the estimated NPVs as a function of the 
regulation-band for the three different modelling approaches. Two scenarios are analysed 
as regards to CP computation (equation (8.10)): (a) refers to a valorisation of LoR which 

Table 8.5 simulation results with electrical model at different values of regulation band 
Results for M3 Regulation band 
 10% 25% 50% 100% 150% 200% 
Sigma (σ) [%] 0.52 0.21 0.11 0.05 0.04 0.03 
EPCR [MWh/d] 3.23 3.23 3.23 3.23 3.23 3.23 
EP [MWh/d] 0 0.12 0.43 0.68 0.92 1.18 
LoR [%] 0.0 3.7 13.3 21.0 28.5 36.5 
C-rate (average) 0.04 0.10 0.18 0.33 0.47 0.61 
Efficiency [%] 99.0 97.6 95.2 90.4 85.7 81.6 
Cycles (Cysim) [#/d] 0.16 0.39 0.70 1.27 1.73 2.05 
Maximum cycles (cymax) 6230 5693 5001 3886 3086 2486 
BESS lifetime (LT) [y] 10 10 10 8.5 4.9 3.4 

 
Figure 8.9 Estimated LoR Curves as function of the regulation-band with different BESS 
modelling approaches 
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is derived directly from the Italian regulating framework (pLoR = 140 €/MWh) [220], 
while (b) represents a prospective scenario in which the penalization has a strong impact 
(pLoR = 500 €/MWh). In both cases, the influence of CP on NPV becomes visible for 
regulation bands greater than 50% because LoR does not support not-negligible values. 
At lower regulation bands the curves are overlapped because the NPV depends only on 
the investment cost: LoR penalizations are practically absent and replacements costs are 
null since the BESS lifetime is equal to investment terms (a low regulation band in fact 
means a shallow cycling rate). 

Figure 8.10-a shows that at the current value of penalization, BESS installations are 
convenient on a 10-year investment perspective in 4 out of 6 possible configurations: a 
regulation band in the range 50%-200% ensure NPV around 0.5-1 M€. Small differences 
are present within the models. M2 and M3 are practically overlapped: the weight of CP 
is so small that the differences in the LoR estimations do not emerge on the NPV curves. 
M1 differentiates from M2 and M3 because of the assumed fixed cymax. In M1, higher 
severity on cycling rate do not bring to a shorter BESS lifetime. This affects CR estimation 
which increase linearly with the regulation-band. Therefore, the empirical models totally 
based on manufacturer’s data would lead to choosing the smallest BESS configuration 
possible (i.e. 0.5MW/0.5MWh), which corresponds to a regulation-band of 200%. On 
the contrary, the other models show an optimal configuration around 110% (i.e. 
0.9MW/0.9MWh). 

Figure 8.10-b shows different results. In this case, all models show their own curve 
with clear and separated optimum points. By assuming a higher penalization for the 
service not provided, CP becomes comparable with RoPCR and CR. In this case, also NPV 
of M1 decreases at a high regulation band. However, with this scenario, the profitability 
is reduced to values slightly above zero. Moreover, the range of allowable regulation-
bands (i.e. BESS configurations that would bring to positive NPV) is narrowed in M2 
and M3. Optimum points stand at 70% (i.e. 1.4MW/1.4MWh) for M3, 75% (i.e. 
1.3MW/1.3MWh) for M2 and 120% (i.e. 0.8MW/0.8MWh) for M1. This highlights the 
importance of proper estimation of LoR (i.e. proper modelling) in case the regulating 
framework changes towards some stricter rules. The risk in fact is to end up with an 
undersized BESS solution that will negatively affect the final performances once 
deployed. In the following section, the electrical model M3 is chosen as a reference for 
further improvement in the regulating strategy. 

Variable-droop strategy analysis 

The results of the previous sub-section show the presence of business cases for two 

 
Figure 8.10 Estimated NPV curves as function of the regulation-band with different BESS 
models; two valorisations of LoR are assumed: (a) pLoR = 140 €/MWh, (b) pLoR = 500 €/MWh 
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different regulating scenarios. Proper control strategies can be then put in place to 
increase profitability. One possible choice could be to adopt a variable-droop mechanism 
to limit the LoR as presented in section 8.2. The general idea is to let the BESS exploit 
all the possible droops as a function of the actual SoC and frequency deviation ∆f (Figure 
8.3). For instance, if the battery is about to reach the minimum allowable SoC and the 
grid frequency is under 50 Hz, it should provide as little power as possible (saving SoC 
and incurring in lower LoR) by keeping the droop to the maximum value. In the same 
way, if the grid frequency is above 50 Hz, it is advisable to change the droop to the 
minimum value in order to charge the battery as much as possible, while providing PCR. 
In this way, the variable-droop helps to improve SoC control.  

In this framework, BESS with the optimal configuration as emerged from scenario (a) 
of Figure 8.10 (i.e. 0.9MW/0.9MWh) has been simulated with or without variable-droop 
controls strategies. Simulations rely on the electrical model of section 8.3 given its higher 
reliability in the LoR estimation. Figure 8.11 shows the difference between fix-droop 
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Table 8.6 simulation results with different regulation strategies for a 1MW/1MWh BESS 
Results Regulating strategy 
 Variable droop Fixed droop 
Regulation band [%] 110 110 
Sigma (σ) [%] 0.027- 0.068 0.065 
EPCR [MWh/d] 3.15 3.23 
EP [MWh/d] 0.38 0.72 
LoR [%] 12.0 22.3 
Efficiency [%] 89.4 89.3 
C-rate (average) 0.38 0.36 
Cycles (Cysim) [#/d] 1.59 1.49 
Maximum cycles (cymax) 3561 3717 
BESS lifetime (LT) [y] 6.2 6.9 
Simulation time [s/d]18 1308 1142 

 
Figure 8.11 30-days simulation at 110% regulation-band with different regulation strategies: 
Droop, ∆P, SoC and LoR computed for the same frequency profile. 
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strategy and variable-droop strategy. As highlighted by red lines, in both high and low 
SoC conditions the electrical model works close to the extreme values of the droop range 
(0.027%- 0.068% from equation (8.4)) in order to avoid SoC limits. Days 16 and 20 are 
illustrative of this behaviour: SoC is at its limit; however, variable droop-strategy allow 
BESS to exploit favourable values of ∆f to charge or discharge quickly, avoiding 
unwanted LoR. Variable-droop strategy almost halves the loss of regulation during the 
simulation. However, for the controller to be effective, even the frequency trend needs to 
be favourable at the same time. Actually, if low-frequencies are much more frequent than 
high-frequencies, the variable-droop operation can only help to retard reaching the 
minimum allowable SoC. 

Table 8.6 includes the main results of the simulations. The whole energy that must be 
provided for PCR service is different between the two strategies because it depends on 
the value of the droop that will affect the ∆P. EPCR for variable-droop strategy is in fact 
2% lower than the fix-droop strategy. However, cycles and average C-rate per day are 
respectively 6% and 5% higher due to the lower LoR that means lower unavailability 
time. This will affect the BESS lifetime which is 6.2 years compared to 6.9 years. 

All these findings should be taken into account to evaluate the correspondent business 
cases. The same scenarios of Figure 8.10 are analysed. Figure 8.12-a shows that there is 
very little difference present in the pay-back-time (PBT) at current regulatory framework 
(scenario a): independently from the adopted regulation strategy, the investment will pay 
back in less than 3 years. Simulations show again a great profitability of BESS for PCR 
at the assumed market mechanisms (i.e. constant RoPCR and decreasing cost of BESS 
during the plant lifetime). Profitability is increased in the case of a variable-droop 
strategy that shows a value of the investment 15% higher if compared to a fixed-droop 
strategy. 

In the case of a more stringent regulating framework (scenario b), simulations show 
that a variable-droop is a necessary strategy to preserve the profitability of the installation 
(Figure 8.12-b). By reducing the LoR, it guarantees a low level of CP allowing a PBT 
very similar to the previous scenario: 4 years instead of 3 years. On the contrary, a fix-
droop will be affected by the high weight of penalties that will put at risk the investment: 
NPV is estimated lower than zero over the 10 years of investment. 

In conclusion, simulations demonstrate that business cases are present when BESS is 
analysed for PCR provision. However, the profitability is very much linked to the BESS 
model and the regulation strategy adopted. Empirical models that are usually adopted in 
literature tend to overestimate the optimal BESS design while underestimating the BESS 
unavailability periods. Electrical models can represent a viable option for this kind of 

 
Figure 8.12 Estimated NPV trends and pay back time with variable-droop or fix-droop 
strategies; Two valorisations of LoR are assumed: (a) pLoR = 140 €/MWh, (b) pLoR = 500 €/MWh 

(a) (b)
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analyses since they reproduce the real behaviour in the real-life application. The 
opportunity of proper models is even more motivated when regulating frameworks 
become stringent and penalties become non-negligible in the investment evaluation. 

By referring to the Italian context, coupled with hypotheses and data that belongs to 
the Central Europe mechanism, the simulations highlight that the right BESS design is 
for a regulation band of 110% that correspond to a BESS of 0.9MW/0.9MWh. This 
optimal BESS design is estimated to be worth around 0.6-0.9 M€ on a 10 year investment 
term, depending on the adopted regulation strategy. The variable-droop mode of 
operation in fact improves the BESS performance avoiding part of the penalties related 
to full charge or discharge conditions. Moreover, it allows the BESS owner to maintain 
profitability also in the case of a changed regulating framework. 

8.6 Summary 

In this chapter, the final application of Grid-connected BESS for Primary Control 
Reserve (PCR) has been discussed. 

After a brief contextualization about today’s regulatory framework related to BESS 
for ancillary services, followed by a short review on the available studies in literature, a 
proper methodology to study BESS for the provision of PCR has been proposed, which 
includes: (i) controller which uses internal and external signals to detect the best BESS 
working conditions, (ii) unconventional droop-control law with fixed or variable droop 
modes of operations, (iii) different battery models (empirical and electrical) able to 
compute and update the SoC. The proposed methodology is part of the approaches for 
the optimum control of BESS operations. When compared with the related literature, this 
methodology aims at understanding how BESS features could be used to the advantage 
of the BESS owner. Thus, attention has been focused not only on the SoC control but 
also on the expected economic benefits for the BESS owner. The analyses have been 
based on real measurements taken at the Politecnico di Milano within the framework of 
the IoT-StorageLab (Annex B). The methodology has been proposed in the form of a 
computational tool in MATLAB®Simulink® named BESS4PCR and applied to the Italian 
context. 

Several simulations on a 30-day basis (sampled at 10 Hz) have been presented to 
discuss about: (i) the influence of different BESS modelling approaches on the evaluation 
of reliability for the PCR service; (ii) the correct BESS design from a techno-economic 
point of view; (iii) proper control mechanisms to increase BESS availability (i.e. Loss of 
Regulation (LoR)). Results showed that different BESS models highly affect the LoR 
estimation. Differences can reach up to 20%. It is shown how empirical models do not 
account for the influence of higher operating rates on BESS performances, while 
electrical models evaluate if the correspondent greater voltage excursions have caused an 
unavailability state due to voltage limits. BESS optimal design evaluations have been 
carried out through investment evaluations that take into consideration revenue for PCR, 
investment costs (i.e. BESS cost), penalties due to LoR, replacement costs and residual 
value of BESS. Results showed that the adopted BESS modelling approach highly 
influences NPV calculations. This is true especially when the penalization for LoR 
assumes modest values (e.g. 500 €/MWh). In this scenario, business cases (i.e. NPV > 0) 
are shown for a limited set of BESS configurations, again highly dependent on the BESS 
modelling approach adopted. If an electrical model is chosen as reference, simulations 
showed that an optimal configuration is 1.4MW/1.4MWh with NPV slightly above 0 
over a 10 year investment term. Finally, a detailed analysis of BESS operations using a 
variable-droop control has been proposed. This control strategy has been shown to 
improve the BESS performances and profitability avoiding part of the penalties. LoR is 



8.6  Summary  

 

161 
 

shown to be reduced by 10 points, NPV to be more than doubled and Pay-back-time to 
be almost halved. 

Overall, grid-connected BESS have been shown as a promising technology to provide 
ancillary services as PCR to electric power systems, especially if proper control strategies 
are adopted to enhance BESS performances. However, analysts or engineers must pay 
attention to the BESS model which is used to derive investment evaluations. Electrical 
models are found to be a valid option in simulating the operation of a real BESS when 
the regulating framework (i.e. remuneration and penalty) is clearly defined. Empirical 
models represent a faster option in understanding the behaviour of the system but they 
can lead to undersize BESS solutions that will negatively affect the final performances.  
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CHAPTER  9 

 
 
 
 

9 BESS for off-grid applications: 
PV-BESS systems for rural 
electrification 

 
 
 
In this Chapter, the application of BESS within off-grid power systems in Developing 

Countries (DCs) is discussed. The goals are: (i) to propose a novel procedure for the 
robust design of off-grid electric power systems that want to be as general as possible 
providing reliable design outputs by including the majority of available inputs of DCs 
rural contexts; (ii) to evaluate the influence of different battery modelling in the sizing 
process. The analyses are based on real data gathered within the framework of the 
Energy4growing project (Appendix A). The study approach is proposed in the form of a 
computational tool in MATLAB® named Poli.NRG (POLItecnico di Milano –Network 
Robust desiGn), the development of which the author cooperated within his PhD research 
project. 

The chapter is organized in five sections. Section 9.1 contextualizes the application in 
the framework of rural electrification. Then a brief literature review on the methodologies 
and software that already address this issue is presented and several issues are found that 
motivate an alternative design procedure. Section 9.2 describes the features of the 
proposed novel methodology for the robust design of off-grid electric power systems that 
are composed of four building blocks, which separately face the different design phases 
by taking into account the distinctive features of DCs rural contexts. Section 9.3 focuses 
on BESS modes and their appropriateness in Poli.NRG. In this kind of analyses, the 
detailed dynamic response of the battery is not an issue; however, reliable simulations 
able to forecast accurately the performances of the system: result quite useful for a proper 
investment evaluation. For this reason, a simplified electrical model derived from the one 
proposed in Chapter 6 is compared to empirical models which represent the first choice 
for a sizing tool in literature. Section 9.4 introduces the developed tool that applies the 
proposed methodology in performing a sizing of a PV+BESS microgrid system to supply 
electric power to a rural village of Tanzania. Finally, Section 9.5 presents the main results 
of simulations: (i) a detailed comparison of the different battery models aiming at 
understanding the impact on the system energy design; (ii); an evaluation of the correct 
system design by accounting for different scenarios of the load evolution. 
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9.1 Context analysis 

BESS in the bottom-up electrification paradigm 

Rural electrification represents one of the issues to be faced in order to provide 
modern energy services to 1.2 billion of people living in developing countries (DCs) that 
do not have access to electricity (data refer to 2013, [22]).  

Two electrification approaches face this challenge, i.e. top-down and bottom-up. 
Specifically: 
 The top-down (or centralized) approach to electrification is the one followed 

historically in developed countries. It stays at a high level (i.e. top) dealing with a 
large population of users (e.g. cities, agglomerations of villages, etc.) and using 
statistical estimations based on macroscopic data to forecast consumption. The 
building of huge power plants is then planned according to the country resources and 
fossil fuel supplies, while the service is brought to the single users (i.e. down) through 
a power system infrastructure. 

 The bottom-up (or decentralized) approach to electrification looks at the specific 
features (i.e. resources and loads) of the targeted context to satisfy the electrical needs 
of single users or small communities. It starts from microscopic data (i.e. single 
electric appliances) to effectively catch the customer needs (i.e. bottom) and to match 
them with the available energy sources in the area of consumption. Normally, the 
potential applications are narrowed to small size off-grid power systems, tailored on 
the specificities of the customer(s). This approach aims at conceiving, sizing and 
designing these units as small cells of a wider architecture (i.e. up) [243]. In a long-
term perspective, these units may have to be ready for mutual interconnections aiming 
at creating self-sufficient microgrids able to receive and perhaps sustain the national 
grid, once available. Nevertheless, today in place microgrids are designed and 
deployed without considering future connection capabilities to the main grid, 
critically bounding the effectiveness of the electrification process [244], [245]. 
Effort has been spent to evaluate which is the best planning/design procedure to 

proper address the rural electrification process [246]–[248]. It is now accepted that off-
grid power systems based on Renewable Energy Technologies (RETs) represent the most 
viable solution in the medium-short term [23], [249]–[251]. Despite top-down approach 
could be more energy efficient and cost-effective in the long term, governmental 
weaknesses in facing the huge capital investments for power plants and power systems 
construction, have in the last decades speeded up the diffusion of decentralized off-grid 
systems (i.e. the bottom-up approach) [252]. According to the New Policy Scenarios of 
IEA World Energy Outlook 2014, stand-alone systems and microgrids (with a ratio of 2 
to 1) are expected in fact to provide electricity to 70% of rural dwellers by 2040 [22]. 

Within off-grid systems, BESS may allow a cost-effective exploitation of RES-E 
since they help in mitigating both short-term fluctuations (to ensure the instantaneous 
power balance) and intermediate-term energy deficiency which are typical consequences 
of unpredictability of RES. Specifically, off-grid systems based on PV and BESS are 
becoming a solution of great interest for rural electrification. In this regard, three typical 
applications can be distinguished (Table 9.1): 
1. The first application type is solar home systems (SHS). SHS are systems typically 

employed to provide basic power service to a single household, which are composed 
of PV modules, electro-chemical batteries, charger and end-use appliances. The 
smallest SHS are solar lanterns, which is a portable device comprising of a PV 
module up to about 10W, a single battery with a capacity ranging from few to ten 
Wh and a charge controller. These are dc systems with a voltage ranging from 2.4 to 
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12V often integrating battery, charger and a LED lamp in a single case [253]. The 
largest SHS reach up to hundreds of W for PV module(s) and several (tens) kWh 
battery capacity. When these sizes are employed, systems can be either dc or ac. In 
the first case, 12-24V systems can be adopted, while in the second one an inverter is 
required. Off-grid systems ranging in sizes of SHS are also employed for telecom 
systems, small schools, clinics, and small commercial activities. Moreover, SHS 
systems also find applications as a back-up system of the grid for urban area users. 

2. The second application type is mid-size off-grid PV systems. They are isolated plants 
based on PV power sources that supply power to an ac system. In this case, PV 
installations range from a few to hundreds of kW with some larger cases reaching up 
to 1MW, while BESS capacity ranges from ten to hundreds of kWh. The demand for 
these systems comes from large households, but mainly from public institutions, 
schools, health centres, hospitals, small productive initiatives and site-specific 
activities such as mines, touristic resorts, and telecommunication. PV modules and 
batteries strings that are connected on a dc bus via solar controller / battery charger 
compose the basic scheme of these systems. Then ac power is supplied to the loads 
by means of an off-grid inverter. The voltage of the dc bus is defined by the inverter 
and typically increases with the rated power. 

3. The third application type is represented by the RES application in ac micro-grids 
which address the power supply for remote villages, large school campuses, and 
hospitals. Traditionally hydropower systems (from a few to hundreds of kW) have 
been the main renewable source for micro-grids pending availability of suitable water 
streams [254]–[256]. These systems are typically designed as run-off-river (i.e. no 
upstream water basin is available) and they often employ electronic load controllers 
based on dump resistors to provide frequency regulation. Despite this solution goes 
to the detriment of efficiency (i.e. dump resistors dissipate energy in air or water), it 
allows having free-maintenance, low-cost and reliable system control. Besides 
hydropower systems, other RET are appearing in rural areas of SSA thanks to the 
decrease of costs, the development of technological solutions (mainly for the system 
control aspects) and the increased policy efforts and availability of suppliers. In fact, 
micro-grids integrating different energy sources (PV, small wind, petrol/diesel 
generators) are still rare, but are feasible as for the technological state of the art [247], 
[257]–[259]. The power size of these systems for rural electrification can range from 
ten to hundreds of kW while the storage ranges from ten to hundreds of kWh. 

Besides the different applications, the study of the optimum sizing of BESS is the one 
concerning the technical issues regarding off-grid systems [260]. The design process of 
off-grid systems is not straightforward since it means matching unpredictable energy 

Table 9.1 Typical off-grid applications for electrochemical-batteries and key features 

 Application type Storage capacity 
range 

Power source 
size range 

Typical power source 
Typical architecture 

(1) Solar Home 
Systems 

from few Wh up 
to about 10kWh 

from few to 
hundreds of W 

PV 
Stand-alone, dc 

(2) Mid-size off-grid 
PV systems 

from tens to 
hundreds of kWh 

from few to 
hundreds of kW 

PV 
Stand-alone, ac 

(3) Micro-grids from tens to 
hundreds of kWh 

from tens to 
hundreds of kW 

Micro hydropower – 
Integrated PV, small wind, 
diesel/petrol generators 
Isolated grid, ac 
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sources with unknown or uncertain load demands and, at the end, providing the most 
favourable conditions in terms of reliability and costs [248], [249].  

Off-grid systems design methodologies 

Within the scientific literature, there are three main methods to design off-grid power 
systems [261]. Each of them require data about the user’s load and energy resources. 
These input data may vary in terms of temporal detail and accuracy in measurement or 
estimation. They are: 
 Intuitive sizing methods, based on simple algebraic relationships between load 

requirements and energy sources availability over a typical day. These methods have 
been applied for the sizing of stand-alone photovoltaic power systems for residential 
usage [262].  

 Energy planning methods, based on steady-state simulations (typical hourly time-
step), heuristic or analytical optimization, and simple modelling of the components. 
Modelling of the components can be performed with different degree of details [263]. 
Production and load profiles are usually considered in their stochastic nature to 
evaluate the influence of different load profiles [264] or different resource profiles 
[265] on the design process. The most common objective functions are based on the 
loss of load probability [266] or on the levelized cost of energy [267].  

 Real-time power methods, based on short-term simulations (typical time-steps on 
second or fraction of seconds) that rely on circuital models of detailed components. 
With this approach, the knowledge of the electrical power control and energy 
management strategy need to be well considered. The real-time approach allows to 
model the electrical and electronic devices as a synchronous generator [268] and 
converters for a maximum power point tracker [269]. 
Currently, commercial software based on the above presented methodologies are 

already available. Sinha and Chandel [270], and Khatib et al [261] reviewed software 
tools to size up off-grid power systems. HOMER by NREL [118] is the most used 
software for the simulation and optimization of off-grid hybrid power systems. The 
design optimization model determines the configuration that minimises life-cycle costs 
for a particular site application. RETScreen by CANMET [271] is a renewable energy 
decision support and capacity building tool. Each RET model is developed in Visual 
Basic within and individual Microsoft Excel spreadsheet. TRNSYS by Solar Energy Lab 
[272] was originally created to study passive solar heating systems, nowadays the 
software is also used to model solar energy applications with a very precise unit size. 
iHOGA by the University of Zaragoza [273] is a C++ based software tool that exploits 
genetic algorithm for the multi or mono-objective optimization of hybrid power systems. 
HYBRID2 by WEC-MIT [274] is a probabilistic/time series computer model that uses 
statistical methods to perform long-term performance, and economic analyses on various 
off-grid power system architectures. SAM by NREL [275] estimates performance and cost 
of grid-connected power systems. It runs system simulations over a one-year period, in 
time steps of one hour, in order to emulate the performance of the system. PVsyst by PV 
syst SA [276] is a software for the study of stand-alone and grid-connected solar systems. 
It performs hourly simulations of the plant importing weather data from different sources 
as well as the user-defined data. 

However, the above methodologies and software do not consider some of the most 
important features of the rural electrification process:  
 Load consumption uncertainties: when dealing with rural electrification analyses, 

information about users’ loads is typically unavailable because electric consumptions 
do not exist or are limited to small sources. Therefore, consumption has to be properly 
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estimated being one of the main input data for the sizing process. Clearly, such 
estimates are prone to a significant degree of uncertainty, consequently a stochastic 
approach is necessary to properly evaluate the distribution of different load patterns 
the final users may require. 

 Load evolution scenarios: Even if correctly estimated for an actual condition, an off-
grid power system operates for several years (at least 10), and consequently it is not 
correct to consider a static picture of the user demand. As it is typically done for 
national energy planning, where different load evolution scenarios are considered, a 
fortiori analyses of several load demand evolution scenarios would positively affect 
the design phase even in rural contexts. Not considering this factor may have an 
impact on the power system reliability and cost-effectiveness over its entire lifetime. 
The load evolution scenarios can be traced in different ways: (i) by assuming possible 
socio-economic development trends, (ii) by using local surveys, (iii) by exploiting 
experts’ opinions, (iv) by exploiting countries’ energy planning studies [277]. 

 Unpredictable energy sources: off-grid power systems usually rely on RETs, this 
requires dealing with the energy resource data availability (i.e. mainly solar and 
wind). Typically, in rural areas of DCs, they have to be estimated by retrieving data 
from weather stations located in the main cities. Also, several databases, as well as a 
number of models, are available to facilitate the designer’s computation [278]–[280]. 

 BESS modelling: The storage systems are the crucial element of any off-grid systems. 
System reliability and costs depend mainly on BESS performances and lifetime. Off-
grid systems design procedures should implement accurate BESS models in order to 
embrace the unconventional working conditions in DCs scenarios and provide 
accurate results. Today the above mentioned commercial software use analytical 
models since they can provide acceptable results in a short time (see Chapter 4): 
TRNSYS adopts the Sheperd model for lead-acid batteries; Sheperd model is the 
reference choice also by SAM but with the modification proposed by Tramblay [138]; 
HOMER and HYBRID2 adopt the KiBaM model both for lead-acid and Li-ion 
batteries; finally, iHOGA proposes different options to users for lead-acid batteries: 
KiBaM, Sheperd model with modifications proposed by Copetti [137] and Schiffer 
model [183], moreover it includes also three models for Li-ion batteries, with 
particular attention to LFP and LCO chemistries. No commercial software attempts 
to implement and compare different BESS modelling approaches for the sizing 
process of off-grid systems (i.e. stochastic, electric and electrochemical models are 
not investigated) 
Therefore, comprehensive procedures that couple the atypical features of rural 

contexts (i.e. resources and loads) by including estimation errors into the design phase 
with proper component models are strongly required. For this reason, the next sections 
are focused on the proposition of a novel methodology for the robust design of off-grid 
electric power systems. The procedure wants to be as general as possible providing 
reliable design outputs by including the majority of available inputs of DCs rural 
contexts. It starts from microscopic data (i.e. single electric appliances) to effectively 
capture the targeted customer needs and matches them with the available energy sources 
of the targeted area. Simulations are carried out for different possible plant configurations 
and by assuming different BESS modelling approaches (i.e. empirical and electrical) to 
effectively capture the right final design. 

9.2 The proposed methodology 

This section introduces the whole procedure that addresses the design of off-grid 
power systems. It consists of four blocks, each one made of different sub-blocks that 
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singularly address one particular design phase. The whole methodology is represented in 
Figure 9.1 and it has been implemented in a tool, namely Poli.NRG tool. 
 In the data inputs gathering block, all the necessary information regarding users’ 

electric needs, fixed and variable equipment costs and weather data are collected. As 
regards to load consumption, the block can elaborate data collected through on-field 
surveys or taken from measurements in similar contexts.  

 In the inputs processing block, users’ electric needs and weather data are processed 
to obtain load and sources profiles. Specifically: 
− Daily load profiles are obtained by means of LoadProGen tool [281] which is 

able to formulate different realistic daily load profiles starting from field data. 
LoadProGen is based on a stochastic approach, it has been developed in 2015 at 
the Politecnico di Milano and has been integrated in the Poli.NRG tool. 

− Yearly load profiles are generated by considering intra-week variability and 
seasonal incidence on the user consumptions. This is done by exploiting 
LoadProGen to generate different “pools of daily load profiles” (e.g. week/winter 
pool, week/summer pool, weekend/winter pool, etc.) and then by randomly 
combining them until a yearly profile is obtained. 

− Lifetime load profiles are generated assuming load evolution scenarios over the 
plant lifetime. 

− Renewable source profiles are formulated according to specific models obtained 
from wheater stations or from databases. 

 In the system modelling and simulation block, the operations of the specific off-grid 
power system are simulated according to specific models of components and dispatch 
strategies. The simulation engine investigates all the viable plant configurations 
taking into account the set of possible lifetime load profiles and the Renewable source 
profiles. This simulator has been implemented by the authors in an algorithm named 
OpSim (Operations Simulator), based on MATLAB. 

 In the output formulation block, heuristic or mathematical optimization methods are 
used to find the most robust design for the context of analysis. Finally, a post-
processing methodology is required to render the obtained results in easier indications 
or suggestions for decision makers. 
In the next sections, each single block of Figure 9.1 is described (dashed blocks are 

not detailed since under development at the moment of the thesis writing). It is 
worthwhile to mention that Poli.NRG can be applied to any particular plant architecture 

 
Figure 9.1 Structure of the novel procedure to address the design of off-grid power systems, 
the Poli.NRG tool 
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(stand-alone systems, microgrids, hybrid microgrids, off-grid systems with possible main 
grid interconnections, etc.). In the following, the example of a PV+BESS microgrid is 
used to detail the main aspects of the procedure. 

Field survey 

This block defines a set of parameters that allow modelling the users’ electric needs 
(Table 9.2). These are the minimum requirement to compute the load profile(s) of a given 
group of consumers in rural areas and they can be assumed based on practical experience 
on similar context conditions or by surveys. 

Targeted users are grouped into different user classes. Such classes are defined 
according to the fact that consumers within a class show a broadly similar demand 
behaviour. Then basic data regarding any single appliance i within each user class j of N 
users need to be collected or defined: 
 The daily overall time each appliance is on, i.e. the functioning time (hij). 
 The period(s) during the day when each appliance can be in use, i.e. the functioning 

window(s) (wF,ij). 
 Each appliance is modelled with its nominal power (Pij). Furthermore, its functioning 

is considered as on-off mode allowing a minimum continuous functioning cycle (dij). 

Measurement campaign 

Alternatively to the field survey, a measurement campaign can directly provide the 
required information in the form of daily load profiles. However, those campaigns are 
not easy to carry out in rural areas either because there is no power supply at all, or 
because no measurement instruments are available on the field. Moreover, a significant 
amount of data (load curves) are necessary in order to properly evaluate the user’s energy 
pattern, consequently, even if available, measures are typically inadequate for a reliable 
microgrid design. 

Cost data 

Specific costs of each system components, as well as replacement and maintenance 
costs, should be included as main inputs of the design procedure. For instance, in the case 
of an off-grid solar system, data related to PV, battery and inverter costs as well as 
maintenance costs are required. 

Weather data 

Weather data are required to allow the computation of RETs energy production. For 
instance, the mean daily irradiations [kWh/m2/day] and numbers of cloudy days over the 
different months have to be provided in the case of a PV+BESS system.  

Table 9.2 Parameters for modelling users’ electric needs 
Parameter Note 
I type of electrical appliances (e.g. light, mobile charger, radio, TV) 
J specific user class (e.g. household, school, stand shop, clinics) 
Nj amount of users within each class 
nij amount of appliances within each class 
hij overall time each appliance is on during a day: functioning time 
wF,ij period(s) during the day when each appliance can be on: functioning windows 
Pij nominal power rate of each appliance 

dij 
functioning cycle, i.e. minimum continuous functioning time of the appliance once 
it is on 
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LoadProGen tool 

Daily load profiles formulation is based on LoadProGen which has been presented 
and validated in [281]. It allows considering the uncertainty of the users’ energy 
consumptions. It is based on the users’ electric needs defined in the field-survey, which 
are then elaborated in order to introduce uncertainty on the values of functioning times 
(hij) and functioning windows (wF,ij) respectively. Then, it builds up the coincidence 
behaviour of the appliances and the power peak value with regards to the correlation 
between number of users, load factor and coincidence factor. 
The load profile of each single user class is formulated as follows: 
 The total daily electric need of the user class, the possible theoretical maximum power 

peak and the peak time are computed. Then, the class coincidence factor is calculated 
according to the empirical correlation existing between the amount of users (Nj), the 
load factor (fL,j) and the coincidence factor (fC,j). The obtained value of the coincidence 
factor is employed to compute a reference value of the class power peak. 

 The functioning of each appliance is defined by sampling randomly the switching on 
times within the relative functioning windows. Once the random sampling is carried 
out for all the appliances of the user class, the functioning of the single appliances are 
aggregated and the class daily load profile is computed. Then an iterative process is 
applied so that the resulting power peak matches, assuming a design error, the 
reference power peak. 

 Repeating the previous computational steps for each user class and aggregating the 
different class profiles leads to compute the total daily load profile. The profile is 
based on a minute time step, i.e. it is constituted by a series of 1440 values 
representing the average load (W) over a minute. The minute time-step will increase 
the simulation time, but it will serve to enhance the accuracy of the results, especially 
for the correct estimation of the BESS performances. Then according to the needs, 
profiles can be averaged over different time step; typical load profiles for techno-
economic sizing of off-grid power systems are based on hourly samples [282], [283]. 
The adopted stochastic approach formulates different possible load profiles all 

complying with the given input data. At the moment, the algorithm computes a different 
load profile each time it is run by acting on: 
 The stochastic definition of the peak time and the switching on times of each 

appliance. 
 The degree of uncertainty in the elaboration of the functioning times and functioning 

windows, which are key parameters for the electric needs modelling. 

Lifetime scenario generator 

The scenario formulation is made up of three main steps: 
1. The intra-week daily consumption variability has to be addressed. By means of 

LoadProGen, two different daily load profile pools can be generated with respect to 
two different settings of the electric needs modelling for weekdays and weekends. For 
each pool, i daily profiles are formulated until they represent all the range of profile 
variations for the given input setting. I is the number of profiles i such that the relating 
average profile satisfies a convergence criterion. Specifically, the following 
conditions to identify the number I have been defined 

 𝑦𝑦�(𝑘𝑘)𝑛𝑛 − 𝑦𝑦�(𝑘𝑘)𝑖𝑖+1
𝑦𝑦�(𝑘𝑘)𝑖𝑖

≤ 0.25%  𝑓𝑓𝑛𝑛𝑟𝑟 𝑘𝑘 ≥ 95% (9.1) 



9.2  The proposed methodology  

 

171 
 

 𝑑𝑑𝑟𝑟𝑑𝑑�����[𝑦𝑦(𝑘𝑘)𝑛𝑛] − 𝑑𝑑𝑟𝑟𝑑𝑑�����[𝑦𝑦(𝑘𝑘)𝑖𝑖+1]
𝑑𝑑𝑟𝑟𝑑𝑑�����[𝑦𝑦(𝑘𝑘)𝑖𝑖]

≤ 0.25%  𝑓𝑓𝑛𝑛𝑟𝑟 𝑘𝑘 ≥ 95% (9.2) 

Where k refers to the profile time steps, 𝑦𝑦�(𝑘𝑘)𝑛𝑛 refers to the average load value of i 
generated daily profiles at the time step k, and 𝑑𝑑𝑟𝑟𝑑𝑑����[𝑦𝑦(𝑘𝑘)𝑑𝑑] refers to the average standard 
deviation of the load value of i generated profiles at the time step k. I is the number of 
i profiles that fulfil the two conditions for at least 95% of the time steps. 

2. The yearly load profiles are obtained by randomly drawing 365 daily load profiles 
from the two pools (weekdays and weekends). In this way, it is possible to define a 
finite number of equiprobable yearly load profiles. Optionally, the seasonal variation 
can be taken into account by creating more pools for the different seasons.  

3. The lifetime load profile has to be created. Each yearly load profile has to be projected 
over the entire lifetime of the plant according to specific load evolution scenarios. By 
exploiting specific customers’ questionnaire or some experts’ opinions, different 
possible trends can be traced. For instance: 
− linear function: presuming that the consumption changes linearly during the years; 
− logarithmic function: assuming that the users will start to learn how to exploit the 

new electricity service after the installation, stabilising their consumptions after a 
while;  

− step function: presuming that the consumption will face a sudden change at a 
specific time due to new future connections; 

− custom function: suited to the specific context under analysis. 
− estimated function: derived from specific energy planning studies [284], [285]. 

At the end of the inputs processing block, the output can be represented by a 3d matrix 
(Figure 9.2). Each yearly load profile n, synthesized using the above step 1 and step 2, is 
projected over the lifetime following the s possible scenarios depicted in step 3. The result 
is an n×s lifetime load curves (LCns) matrix.  

Renewable sources stochastic profile generator 

By exploiting specific algorithms that generate synthetic hourly solar irradiation or 
real measured data from weather stations, this block reproduces the incident radiation on 
the surface of the PV array throughout the year for the specific location. 

Components modelling 

This block collects mathematical models of the components. In the case of a 

 
Figure 9.2 3d LCns input matrix as results of the input processing block 
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PV+BESS based microgrid, the main equations that define a PV generator, a BESS and 
an inverter [286], [287] are reported. 

The estimation of the PV energy output for each time step k is computed as: 

 
𝐸𝐸𝐶𝐶𝑉𝑉(𝑘𝑘) =  𝑃𝑃𝐶𝐶𝑐𝑐𝑖𝑖𝛼𝛼𝑒𝑒 ∗ �1 − ρ𝑅𝑅 ∗ �𝑅𝑅𝑆𝑆𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘) − 𝑅𝑅𝑅𝑅𝑖𝑖𝑓𝑓�� ∗

H𝛽𝛽(𝑘𝑘)
ℎ

∗  𝜂𝜂𝐵𝐵𝑂𝑂𝑆𝑆 (9.3) 

Where Hβ(k) is the specific solar irradiation on a tilted surface for the chosen time-
step k; PVsize is the rated power of the panels at an irradiance h of 1 kW/m2, an ambient 
temperature of 25°C and an air mass value of 1,5; ρT is the temperature coefficient of 
power in respect to the solar cell temperature provided by the manufacturer (normally 
0.35÷0.45 %/°C); ηBOS is the balance of system efficiency which embraces all the losses 
indirectly related to the sun energy conversion process. 

The inverter size is defined according to the power peak occurring within the load 
profile and by considering the inverter efficiency (ηInv). In fact, it is not the scope of this 
thesis to investigate more appropriate inverter models, which, however, might be matter 
of future improvements in the methodology herein presented. 

BESS can be modelled with different degrees of details. Storage system modelling is 
in fact considered crucial for the off-grid system design. Empirical and simplified electric 
models of BESS are included as options in the Poli.NRG tool. The following section 9.3 
is dedicated to detailing the modelling approaches used for BESS. 

Dispatching strategies 

This block refers to the operation modes which define the interactions of the different 
power sources in the energy system. In a PV+BESS system this is trivial because all the 
energy produced by the PV array is exploited by the load, otherwise stored. On the 
contrary, there are different options if a diesel generator is considered 
(PV+BESS+Diesel). One option is to switch it on when the BESS is discharged (load-
following mode). A second option is to operate it in order to maintain a fixed level of 
available charge into the BESS (cycle charging mode). A third option is to use the 
generator to feed some priority loads (dedicated mode). 

The simulation of plant operations 

This block, which has been implemented in a tool (namely OpSim), simulates the off-
grid power system lifetime operations. For a given load profile LCis (Figure 9.2) and for 
given combinations of PV and BESS sizes: PVsize and BESSsize, OpSim provides techno-
economic performance parameters (i.e. Loss of Load Probability, Net Present Cost and 
Levelized Cost of Energy) as output. 

For each time step k (i.e. minute, Δt = 60s) of the load and solar resource profiles, the 
balance between generators energy production (i.e. PV, EPV(k)) and loads consumption 
LCns(k) is computed. The difference represents the amount of energy that flows through 
the BESS (charging or discharging): 

 
∆𝐸𝐸(𝑘𝑘) = 𝐸𝐸𝐶𝐶𝑉𝑉(𝑘𝑘) −

𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐(𝑘𝑘)
 𝜂𝜂𝐷𝐷𝑛𝑛𝐼𝐼

 (9.4) 

Then the BESS SoC can be updated by the specific BESS model adopted (see section 
9.3) in the simulation. In all cases, the SoC is subjected to the following constraints: 
 To respect the BESS technological limits (SoC levels and/or voltages depending on 

the BESS modelling approach adopted). 
 To respect EPRmax (maximum EPR) of the BESS. For instance, if the EPRmax is 0.5 
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and the BESSsize is 1 kWh, the battery can provide or accept maximum 2 kW during 
the k time step. 
With such constraints, the Loss of Load (LL) indicator, which represents the amount 

of energy required by the load that remains unsatisfied because the system is unable to 
supply it, is computed as follows: 

 𝐿𝐿𝐿𝐿(𝑘𝑘) = 𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐(𝑘𝑘)|
(𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖𝑎𝑎𝑐𝑐) 𝑉𝑉  �∆𝑆𝑆∆𝑎𝑎  ≥ 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑆𝑆𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚

�
 (9.5) 

For each simulation (one configuration of PVsize -- BESSsize within a particular LCns) 
the system reliability is considered by computing the Loss of Load Probability, which is 
the share of the electricity demand not fulfilled by the power system over its lifetime (LT) 
[288], [289]: 

 
𝐿𝐿𝐿𝐿𝑃𝑃 =

∑ 𝐿𝐿𝐿𝐿(𝑘𝑘)𝐿𝐿𝑅𝑅
𝑘𝑘=1

∑ 𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐(𝑘𝑘)𝐿𝐿𝑅𝑅
𝑘𝑘=1

 (9.6) 

Then the Net Present Cost (NPC), which is defined as the present value of the sum of 
discounted costs that a system incurs over its lifetime, is calculated [290]: 

 
𝑁𝑁𝑃𝑃𝐶𝐶 = 𝐿𝐿𝑛𝑛𝑣𝑣 + �

𝐶𝐶𝐹𝐹(𝑦𝑦)
(1 + 𝑟𝑟)𝑐𝑐 − 𝑅𝑅𝐶𝐶(𝑅𝑅)   [€]

𝑅𝑅

𝑐𝑐=1

 (9.7) 

 𝐿𝐿𝑛𝑛𝑣𝑣 = 𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦𝐶𝐶) ∗ 𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝛼𝛼𝑒𝑒 (9.8) 

Where I is the initial investment cost that is proportional to the installed capacity En 
given the specific cost of BESS (see Appendix D). CF(y) is the net cash flow during the 
year y and (1+r)y is the discount factor. RV(T) represents the residual value of the assets 
(i.e. BESS) at the end of the investment term T as per Appendix D. Cash flows can be 
computed by accounting for penalties and replacement costs: 

 𝐶𝐶𝐹𝐹(𝑦𝑦) = 𝑂𝑂&𝑅𝑅(𝑦𝑦) + 𝐶𝐶𝑅𝑅(𝑦𝑦) (9.9) 

Where O&M(y) are the operation and maintenance costs, while CR (y) accounts for 
replacement costs of BESS by taking into account the projected BESS cost at a specific 
year y (see Appendix D).  

Moreover, the Levelized Cost of Energy (LCoE) is also computed since it is a 
convenient indicator for comparing the unit costs of different technologies over their life, 
and it is a reference value for the electricity cost that rural consumers would face [291], 
[292]. Moreover, it has also been employed as an objective function in a number of 
analyses that deal with renewable-based off-grid power systems (e.g. [293]–[295]): 

 
𝐿𝐿𝐶𝐶𝑛𝑛𝐸𝐸 =  

𝑟𝑟 ∗ (1 + 𝑟𝑟)𝑅𝑅

(1 + 𝑟𝑟)𝑅𝑅 − 1
∗

𝑁𝑁𝑃𝑃𝐶𝐶
(1 − 𝐿𝐿𝐿𝐿𝑃𝑃) ∗ ∑ 𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐(𝑘𝑘)𝐿𝐿𝑅𝑅

𝑘𝑘=1
    [€ 𝑘𝑘𝑊𝑊ℎ⁄ ] (9.10) 

Techno-economic optimization method 

In order to manage the microgrid robust design, a heuristic optimization method has 
been developed (Figure 9.3). This method is able to find the optimal solution according 
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to the techno-economic criterion by running the OpSim tool in an iterative way, by testing 
different combinations of the sizes of components (PV and BESS). The optimal solution 
is the specific combination of the sizes of components (PVopt ; BESSopt) which have the 
minimum NPC value while fulfilling the desired level of LLP [286]. 

The heuristic optimization method is based on a two step algorithm:  
1. Definition of the searching space, i.e. the ranges of PV and BESS to be investigated. 

 
Figure 9.3 Poli.NRG procedure flow-chart for the robust design of PV+BESS based microgrid 
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2. Searching of the optimal combination within this searching space through an iterative 
process. 
As regards to the first point, the minimum size of the PV plant has to be sufficient to 

produce the load consumption (including the acceptable loss of load): 

 
𝑃𝑃𝐶𝐶𝑛𝑛𝑖𝑖𝑛𝑛 =

(1 − 𝐿𝐿𝐿𝐿𝑃𝑃) ∗ min�∑ 𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐(𝑘𝑘)𝐿𝐿𝑅𝑅
𝑘𝑘=1 �

∑ 𝐸𝐸𝐶𝐶𝑉𝑉(𝑘𝑘)𝐿𝐿𝑅𝑅
𝑘𝑘=1

 (9.11) 

where the denominator is the total amount of energy produced during the system 
lifetime and the numerator includes the minimum amount of energy required by the load 
(considering all the scenarios under evaluation). The maximum size of the PV can be set 
as a multiple of the maximum power required by the load: 

 𝑃𝑃𝐶𝐶𝑛𝑛𝑎𝑎𝑚𝑚 = 𝑤𝑤𝐶𝐶𝑉𝑉 ∗ max(𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐) (9.12) 

where wPV is a scaling factor that overestimates the size of the PV (with the purpose 
of adapting the searching space to the magnitude of the problem). 

With respect to BESS, the minimum size is considered equal to zero, while the 
maximum size is considered as a multiple of the mean daily energy consumption (in order 
to consider the presence of a number of consecutive cloudy days).  

 𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑛𝑛𝑖𝑖𝑛𝑛 = 0 (9.13) 

 𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑛𝑛𝑎𝑎𝑚𝑚 = 𝑤𝑤𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝐸𝐸𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒
𝑒𝑒𝑎𝑎𝑐𝑐  (9.14) 

Where wBESS is a scaling factor to overestimate the size of the storage system. 
As regards to the second step, a heuristic procedure is used to look for the optimal 

combination (PVopt ; BESSopt) in agreement with the techno-economic criterion. The 
adopted algorithm is based on the imperialistic competitive algorithm [296]. 

The method employs an iterative process that progressively explores the searching 
space as shown in Figure 9.4. Two parameters characterize the algorithm: the number of 

 
Figure 9.4 Heuristic optimization method based on LLP and NPC curve estimation. 

-- NPC     — LLP     + 1° iteration     □ 2° iteration     ◊ Optimum
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combinations of PV-BESS that have to be evaluated in each iteration, and the number of 
combinations that after each simulation of the lifetime operations are considered as the 
best ones. When considering the first load profile, a number of combinations of PV-BESS 
(Zcombs) are selected randomly within the searching space (combinations with symbol + 
in Figure 9.4) and, for each of these configuration, OpSim computes the couple LLP and 
NPC. This allows to create a first scattered (i.e. first iteration) matrix of LLP (solid black 
line) and NPC (dotted black line) values: an estimation of the probable optimal solution 
can be carried out. The purpose of the following iterations (i.e. second iteration) is to 
explore the surrounding PV-BESS combinations to check if the solution can be 
confirmed or improved. For instance, in the second run of OpSim tool, the PV-BESS 
combinations that have to be simulated are the ones identified previously plus a number 
of combinations selected randomly around them (combinations with symbol □ in Figure 
9.4). In this way, a better estimation of the LLP and NPC is available and the vector of 
best options can be updated. The optimal solution (PVopt ; BESSopt) is found where the 
line of maximum LLP is tangent with the minimum possible NPC (symbol ◊ of Figure 
9.4) 

Finally, the same heuristic procedure is repeated for the next n lifetime load profile 
LCns (see Figure 9.2) by fixing the evolution scenario s. The new optimum points are 
likely to be different because of the different load profile. Consequently, the optimum 
points create an area of solutions instead of a single deterministic solution. The most 
robust solution (PVrbt ; BESSrbt) within the area of solutions is computed as the most 
frequent solution among the obtained optimal solutions (PVopt ; BESSopt) for each 
simulated lifetime load profiles.  

New n lifetime load profiles LCns are tested until a specific convergence criterion is 
fulfilled. N is the number of profiles n such that the simulation of a new LCns would not 
increase the robustness of the solution. Specifically, the following convergence 
conditions to identify the number N are defined: 

 𝑑𝑑𝑟𝑟𝑑𝑑[ 𝑃𝑃𝐶𝐶𝑟𝑟𝑑𝑑𝑎𝑎(𝑛𝑛 − 1, 𝑑𝑑)] − 𝑑𝑑𝑟𝑟𝑑𝑑[ 𝑃𝑃𝐶𝐶𝑟𝑟𝑑𝑑𝑎𝑎(𝑛𝑛, 𝑑𝑑)]
𝑑𝑑𝑟𝑟𝑑𝑑[ 𝑃𝑃𝐶𝐶𝑟𝑟𝑑𝑑𝑎𝑎(𝑛𝑛 − 1, 𝑑𝑑)] ≤ 𝑗𝑗𝑎𝑎𝑛𝑛𝑛𝑛𝐼𝐼  ∀ 𝑑𝑑𝑐𝑐𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑑𝑑𝑛𝑛 (9.15) 

 𝑑𝑑𝑟𝑟𝑑𝑑[ 𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟𝑑𝑑𝑎𝑎(𝑛𝑛 − 1, 𝑑𝑑)]− 𝑑𝑑𝑟𝑟𝑑𝑑[ 𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟𝑑𝑑𝑎𝑎(𝑛𝑛, 𝑑𝑑)]
𝑑𝑑𝑟𝑟𝑑𝑑[ 𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑟𝑟𝑑𝑑𝑎𝑎(𝑛𝑛 − 1)] ≤ 𝑗𝑗𝑎𝑎𝑛𝑛𝑛𝑛𝐼𝐼  ∀ 𝑑𝑑𝑐𝑐𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟𝑑𝑑𝑛𝑛 (9.16) 

Where (std[PVrbt(n,s)] ; std[BESSrbt(n,s)]) indicates the standard deviations of the 
robust solution given the new n simulated profiles over the given scenarios s. N is the 
number of n profiles at which the robust design is defined.  

Finally, according to the different evolution scenarios s and following the same 
method, different area of solutions can be computed in parallel. This recursive process 
will create a map of solutions in the searching space that shows how the robust design 
changes due to future change in the electric consumptions (i.e. scenarios of load 
evolution). 

It is worthwhile to mention that the above recursive procedure is complex and time-
consuming. A non-negligible simulation time is required to complete a set of simulations 
for a given load profile n. Zcombs plants have to be simulated (with minute time-steps) over 
the entire lifetime of the plant (e.g. 20 years) for each load evolution scenario. This brings 
about issues related to the modelling of the components which have to be reliable and 
simple at the same time, in order to have a correct compromise between robustness of the 
solution (enhanced by a proper modelling phase) and simulation-time.  
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Post-processing for decision-making 

An analysis of the results for each scenario is carried out to support the decision 
maker's choice. In particular, the obtained robust solutions are compared with respect to: 
 The variation in the load consumption required by customers; 
 The variation on the sizing of the system components due to the different scenario 

hypotheses assumed; 
 The variation on the LCoE among the different scenarios given a fixed level of LLP. 
The purpose of this step is to provide the decision-makers with more detailed information 
in order to identify the design of the off-grid power system that best suits the targeted 
context. 

9.3 BESS models adopted 

For application of EES within electrification approaches in DCs, selecting the best 
technology in terms of performance and durability is not the top priority; but cost and 
availability on site play a relevant role in the final decision. Therefore, the battery 
technology choice is usually defined by the economic capacity of the donor or investor. 
Thus, lead-acid batteries (In particular VRLA), which have benefited from years of 
development with inevitably cost reduction and global spread, still represent the most 
appropriate choice for all the applications (SHS, mid-size PV systems, micro-grid, and 
grid-ties back-up systems) [24], [25].  

As regards to lithium batteries, they are rarely seen in DCs applications despite 
leveraged kWh costs of Li-ion BESS are comparable to lead-acid batteries (when 
considering the higher depth of discharge, lifetime and number of cycles) [17]. The initial 
investment cost is a barrier for both investors and donor agencies. However, due to the 
current experienced reduction in the overall cost of lithium-ion technology (Figure 1.2-
B), it is presumable to forecast that Li-ion BESS will have a relevant share in the sector 
of off-grid system in the near future. In this section, Li-ion is chosen as technology of 
reference for the BESS modelling phase within the methodology for the robust design of 
off-grid power systems. Specifically, the following models are based on the Li-ion LNCO 
chemistry from the Boston Power SWING5300 [107] which has been used for the 
modelling phase of Chapter 6 and aging modelling of Chapter 7. 

As already mentioned for grid-tied applications in section 8.3, BESS models are of 
fundamental relevance for obtaining reliable information which would support the 
decision makers and lead to investment decisions. SoC and SoH from the BESS model 
are in fact used to estimate LLP and NPC which are the indicators at the basis of the 
techno-economic analysis of section 9.2. 

Two different BESS modelling approaches will be compared: empirical and electrical. 
In both cases, BESS models will have to fulfil the energy balance ΔE(k) between 
production (PV) and demand (load) and update SoC and SoH indicators. The differences 
lie in the way in which the SoC and SoH are estimated (i.e. the modelling approach). 
Eventually, these differences will result in marked deviations in LLP and NPC 
estimations. Main task of this chapter is to verify the sensitivity of different modelling 
approaches on the robust design evaluation. Specifically, two different empirical models 
(model 1 and model 2) are developed and compared with one electrical model (model 3) 

Given the complexity of the simulations, both models are based on the steady-state 
operations of BESS. This fact will affect the electrical model which has to be simplified 
accordingly. High dynamic responses of the BESS are in fact neglected in favour of faster 
simulation time. 
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The empirical models 

In the empirical model, BESS is modelled as an ideal storage system (see Chapter 4). 
The main features are the SoC limits (SoCmin  and SoCmax), charge (ηC) and discharge (ηD) 
efficiencies, minimum SoH (SoHmin) and capacity fade index cf (i.e. the loss of SoH per 
cycle as introduced in section 7.1). Moreover, the energy stored in the battery needs to 
be updated based on the amount previously stored (EBESS(k-1)) as follows: 

 
𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘) = �

 𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘 − 1) + ∆𝐸𝐸(𝑘𝑘) ∗ 𝜂𝜂𝑆𝑆   , ∆𝐸𝐸(𝑘𝑘) > 0

    𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘 − 1) +
∆𝐸𝐸(𝑘𝑘)

 𝜂𝜂𝐷𝐷
       , ∆𝐸𝐸(𝑘𝑘) < 0

  (9.17) 

At this point, the two proposed empirical models are differentiated as regards to the 
efficiency values: 
 Model 1 assumes a fixed value of round-trip efficiency ηRT= 95% as claimed in 

literature and/or the manufacturers’ data for similar studies. Symmetry in 
charge/discharge processes is used to derive ηC and ηD as per equation (8.14). 

 Model 2 assumes a variable value of efficiency linked to the operating conditions 
during the specific time-step k. The reference trend is derived from the performance 
tests of Figure 7.5 where the efficiency is function of the registered C-rate19. 
Then, the new state of charge (SoC) is computed based on the previous value: 

 
𝑆𝑆𝑛𝑛𝐶𝐶(𝑘𝑘) = 𝑆𝑆𝑛𝑛𝐶𝐶(𝑘𝑘 − 1) ± 

𝐸𝐸𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑘𝑘)
𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝛼𝛼𝑒𝑒 ∗ 𝑆𝑆𝑛𝑛𝑆𝑆(𝑘𝑘 − 1) (9.18) 

Where SoH(k-1) represents the assumed aging state of the BESS during times step k 
(details about SoH computation are presented below). 

LL can be updated as per equation (9.5). In detail: 

 𝐿𝐿𝐿𝐿(𝑘𝑘) = 𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐(𝑘𝑘)|
(𝑆𝑆𝑛𝑛𝑆𝑆 < 𝑆𝑆𝑛𝑛𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛) 𝑉𝑉  �∆𝑆𝑆∆𝑎𝑎  ≥ 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑆𝑆𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚

�
 (9.19) 

The electrical model  

Given the high accuracy demonstrated with the electrical model of Chapter 6, it is 
worthwhile to analyse the opportunity of using this modelling approach in energy 
planning analyses, especially to understand the discrepancies (if any) with the empirical 
models. However, the electrical model should be “adapted” for the sake of the purposes 
of the herein proposed methodology. Very long simulations (minute time-steps along the 
whole plant lifetime for several different LCs and scenarios) in fact make the use of the 
full electrical model developed in Chapter 6 unsuitable. However, proper simplifications 
can bring to a sustainable compromise between an acceptable simulation time and a 
higher accuracy. 

Therefore, the electrical model (model C) proposed is based on two main assumptions 
1. The analysis are carried out at the cell level. Power input from PV/load energy balance 

are scaled down in a way that the macroscopic effect at BESS level are preserved to 

                                                      
19 C-rate is approximated by the E-rate. E-rate is defined as: 

𝐸𝐸 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
∆𝐸𝐸(𝑘𝑘)
∆𝑟𝑟

𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝛼𝛼𝑒𝑒
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the cell level.  
2. The cell model is a substantial simplification of the full dynamic model presented in 

Figure 6.3 which is reduced to a two-elements model: the R-C series circuit of Figure 
9.5. Specifically: 
− The resistance Rf* is used to describe the cell overpotential in regime conditions 

(i.e. power performances). It represents the equivalent resistance of the cell at a 
characteristic frequency f* that depends on the typical input profile. Given the 
minute time-step (Δt = 60s), the BESS will never be subjected to solicitations faster 
than 60s in the simulations. The resistance is measured at the correspondent 
characteristic frequency (i.e. around 16 mHz) and mapped at the different SoCs. 
Figure 9.6-B shows the measurements of Rf* and the assumed quadratic fitting 
function20 (see section 6.4) in fresh cell conditions: 

      𝑅𝑅𝑓𝑓∗ = 𝑟𝑟0∗ + 𝑟𝑟1∗𝐶𝐶𝑛𝑛𝑎𝑎 + 𝑟𝑟2∗𝐶𝐶𝑛𝑛𝑎𝑎2 (9.20) 

− The capacity CD,R represent the total capacity (i.e. energy performances) of the cell 
as detailed in section 6.2. The assumed IC curve is presented in Figure 9.6-A as 

                                                      
20 With [ a2*,; a1*; a0*] = [0.0201; -0.1543; 0.3217] 

 
Figure 9.5 simplified electrical model adopted in the proposed methodology 

 
Figure 9.6 simplified R-C circuit assumptions: parameters CD,R (a) and Rf* (b) as function of 
the OCV (i.e. SoC) 

Rf*

CD,R

PV - Load

I

V

(a) (b)
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the average of the measured IC curve during sub-procedure D of the aging test of 
Chapter 7 (cell in fresh conditions).  

Validation of the simplified model is presented in Figure 9.7 where it is compared 
with the full electrical model of Chapter 6 in reproducing cell response measured during 
the square current profile of section 6.4. As expected, a simplified model is unable to 
follow precisely the transitory subsequent to current variations. However, it can 
reproduce the steady-state behaviour of the terminal voltage and can accurately estimate 
OCV and therefore SoC. RMSE is 45% higher but acceptable in energy planning analyses 
like the one proposed in this chapter. 

During simulation, a constant power is assumed to compute the current I(k) that flows 
through the cell model:  

 
𝐿𝐿(𝑘𝑘) =  

∆𝐸𝐸(𝑘𝑘)
∆𝑟𝑟

𝐶𝐶(𝑘𝑘) ∙ 𝐵𝐵𝐸𝐸𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖𝛼𝛼𝑒𝑒𝐸𝐸𝑛𝑛,𝑎𝑎𝑒𝑒𝑎𝑎𝑎𝑎

 (9.21) 

Where the ratio at the denominator represent the number of equivalent cells inside the 
BESS and is used as the scaling factor to shift the calculation at cell level.  

The open circuit voltage Voc(k) and V(k) can be updated at instant k by accounting for 
the capacitance value CD,R and Rf* at the previous time-step.  

 
𝐶𝐶𝑛𝑛𝑎𝑎(𝑘𝑘) =  𝐶𝐶𝑛𝑛𝑎𝑎(𝑘𝑘 − 1) +

𝐿𝐿(𝑘𝑘)
𝐶𝐶𝐷𝐷,𝑅𝑅�𝑘𝑘 − 1,𝐶𝐶𝑛𝑛𝑎𝑎(𝑘𝑘 − 1)�

∆𝑟𝑟 (9.22) 

 𝐶𝐶(𝑘𝑘) =  𝐶𝐶𝑛𝑛𝑎𝑎(𝑘𝑘) + 𝑅𝑅𝑓𝑓∗�𝑘𝑘 − 1,𝐶𝐶𝑛𝑛𝑎𝑎(𝑘𝑘 − 1)�𝐿𝐿(𝑘𝑘) (9.23) 

 
Figure 9.7 Simulated and measured voltage of the BOSTON POWER SWING5300™ cell when 
cycled with the slow square current profile test of section 6.4 (Figure 6.13). Four current steps 
(0.1C, 0.5C, 1C and 2C) of 5 minutes charge and discharge with a 5 minutes resting period at 
SoC =50%. Comparison between the full dynamic model of Chapter 6 and the simplified model 
of chapter 9 
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SoC(k) indicator is directly derived from Voc(k) as detailed in Figure 6.11. Aging is 
accounted by CD,R and Rf* parameters: the SoH and SoR indicators are used to update 
both parameters during lifetime. 

LL can be updated as per equation (9.5). In this case, BESS limitations are linked to 
the cell voltage limits rather than SoC limits: 

 𝐿𝐿𝐿𝐿(𝑘𝑘) = 𝐿𝐿𝐶𝐶𝑛𝑛𝑐𝑐(𝑘𝑘)|
(𝑉𝑉 < 𝑉𝑉𝑚𝑚𝑖𝑖𝑛𝑛) 𝑉𝑉  �∆𝑆𝑆∆𝑎𝑎  ≥ 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑆𝑆𝐶𝐶𝑅𝑅𝑚𝑚𝑎𝑎𝑚𝑚

�
 (9.24) 

Lifetime modelling 

As emerged in equations (9.18), (9.22) and (9.23) there exist dependencies on the SoH 
indicator. Aging phenomena are in fact taken into account in empirical and electrical 
models. Firstly, the cycles number registered during the time-step is computed as follows: 

 
𝑐𝑐𝑦𝑦(𝑘𝑘) =

𝑆𝑆𝑛𝑛𝐶𝐶(𝑘𝑘) − 𝑆𝑆𝑛𝑛𝐶𝐶(𝑘𝑘 − 1)
2

 (9.25) 

where cy = 1 means that one full charge/discharge cycle has cycled through the BESS. 
SoH can be then updated: 

 𝑆𝑆𝑛𝑛𝑆𝑆(𝑘𝑘) = 𝑆𝑆𝑛𝑛𝑆𝑆(𝑘𝑘 − 1) ±  𝑐𝑐𝑦𝑦(𝑘𝑘) ∙ 𝑐𝑐𝑓𝑓(𝑘𝑘) ∙ (9.26) 

When SoH(K) = SOHmin the battery is assumed dead and replaced. CF(y) are updated 
as per equation (9.9) assuming replacement cost Cr (i.e. NPC estimation). 

As regards to the capacity factor (cf), the three models are differentiated: 
 Model 1 assumes constant cf which is based on the maximum number of cycles as 

claimed in literature (see equivalent full cycles to failure method in section 4.3) and/or 
the manufacturers’ data for similar studies [132]. 

     𝑐𝑐𝑓𝑓(𝑘𝑘) =
1 − 𝑆𝑆𝑛𝑛𝑆𝑆𝑛𝑛𝑖𝑖𝑛𝑛

𝑐𝑐𝑦𝑦𝑛𝑛𝑎𝑎𝑚𝑚
∙ (9.27) 

For instance, if cymax = 5000 and SoHmin = 80%. cf will result in 0.004%/cycle. 
 Model 2 and Model 3 assume a variable value of cf which is linked to the operating 

condition during the specific time-step k. cf is computed each time-step k by following 
the expression shown in Figure 7.8. 
Once updated, the SoH indicator is used differently among models: 

 Model 1 and Model 2: use SoH to update the BESS energetic content as shown in 
equation (9.18). 

 Model 3: is based on the “hybrid approach” detailed in section 7.3. R and C parameters 
are updated each time-step accounting for capacity fade and power fade (i.e. resistance 
increase) phenomena. The IC curve of Figure 9.6-A is scaled proportionally to the 
SoH indicator (accepting the limitations discussed in Figure 7.10): 

 𝐶𝐶𝐷𝐷,𝑅𝑅(𝑘𝑘) = 𝐶𝐶𝐷𝐷,𝑅𝑅 ∙ 𝑆𝑆𝑛𝑛𝑆𝑆(𝑘𝑘) (9.28) 

While the resistance function of Figure 9.6-B is multiplied by the SoR indicator that 
accounts for the resistance increase at the time-step k: 
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 𝑅𝑅𝑓𝑓∗(𝑘𝑘) = 𝑅𝑅𝑓𝑓∗ ∙ 𝑆𝑆𝑛𝑛𝑅𝑅(𝑘𝑘) (9.29) 

 𝑆𝑆𝑛𝑛𝑅𝑅(𝑘𝑘) = 𝑆𝑆𝑛𝑛𝑅𝑅(𝑘𝑘 − 1) ±  𝑐𝑐𝑦𝑦(𝑘𝑘) ∙ 𝑟𝑟𝑓𝑓(𝑘𝑘) ∙ (9.30) 

Where rf is the resistance increasing factor that depends on the operating conditions 
during the specific time-step k. rf is computed each time-step by following the 
expression shown in Figure 7.9-B 
Table 9.3 resumes the main assumptions of the three models adopted in the 

simulations. 

9.4 Case study 

The methodology of section 9.2 and the different BESS models of section 9.3 have 
been merged in the Poli.NRG tool and implemented in MATLAB®Simulink® (Figure 
9.8). The methodology has been used to run different sets of simulations which are 
detailed in the following. 

Table 9.3 Main characteristics of the BESS models adopted in the proposed methodology 
Model # Model name SoC estimation SoH estimation 
M1 Empirical(FIX) – SoC limits 

– ηRT = 95% 
 

– SoHmin = 80% 
– cf = fix 
– cymax = fix 

M2 Empirical(VAR) – SoC limits 
– ηRT = f(c-rate) 

– SoHmin = 80% 
– cf = f(c-rate) 

M3 Electrical – Voltage limits 
– Rf* = f(SoC, SoR) 
– CD,R = f(SoC, SoH) 

– cf = f(c-rate) 
– rf = f(c-rate) 
 

 
Figure 9.8 The Poli.NRG MATLAB® user interface -  storage section. Settings are shown for 
the three BESS models adopted: M1 (left), M2 (centre) and M3 (right) 
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In the following, such procedures have been applied to design a “theoretical” new 
micro-grid capable of “optimally” feeding the Ngarenanyuki Secondary School which 
was involved in the Energy4Growing project (Annex A). The micro-grid is assumed to 
be based on PV generators coupled with BESS of lithium-ion technology. 

Thanks to a specific survey, the electric needs of the Ngarenanyuki school have been 
collected. Data related to the number and the type of appliances in use, their nominal 
power, and some qualitative information about the users’ behaviour with respect to each 
appliance are presented in Annex F.  

On this basis, LoadProGen has been used to formulate different possible realistic load 
profiles LCis to be used in the simulations. Figure 9.9-a depicts in grey the aggregation 
of all the N synthetic profiles, whilst it reports in solid and dotted black lines the average 
profile and the standard deviation around the average value respectively. The high 
variability in the collected data is preserved in the synthetic load curves. Figure 9.9-b 
compares the mean measured profile with the mean synthetic profile. Profiles are similar. 

 
Figure 9.9 (a) Synthetic load profiles (grey), mean synthetic profile (solid-black) and standard 
deviation (dotted-black); (b) Comparison between the mean synthetic profile (black), measured 
monthly average profiles (light blue) and average measured profile (blue) 

 
Figure 9.10 Daily irradiation values for Ngarenayuki (Tanzania) GPS coordinates [297] 
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Moreover, The mean synthetic profile is almost in the centre of the family of real 
measured profiles, meaning that the load for the case study is represented in an effective 
way. 

Currently, the data collected in and on the field clearly depict how in a real-life 
scenario of DCs that there is not a single, clear, load profile, but loads change over time 
with respect to several factors. For these reasons, seasonal and intra-week variabilities 
have been neglected: no clear trends have been detected at this stage of the 

Table 9.4 Parameters adopted in the simulations with Poli.NRG tool 
Parameter Parameter name / note Value 

Economics   
Plant lifetime  LT 20 y 
LLP target value % of total load  5 % 
PV modules cost Monocrystalline 2500 €/kW 
Battery cost (replacement) Lithium-ion Appendix D 
Off-grid inverter cost - 900 €/kW 
Other investment costs % on the main component costs 20 % 
O&M cost - 100 €/kWy 
Discount rate  r 6 % 

Components   
Balance of system efficiency ηBOS 85 % 
Inverter efficiency ηInv 90 % 
BESS(M1-2-3) - Minimum SoH SoHmin 80 % 
BESS(M1-2-3) - Starting SoH SoHstart 100% 
BESS(M1-2-3) – Maximum lifetime LTBESS,max 10 y 
BESS(M1-2-3) - Max Energy to Power ratio  EPRmax 0.5 
BESS(M1-2)  - Minimum SoC SoCmin  0 % 
BESS(M1-2) - Maximum SoC SoCmax  100 % 
BESS(M1-2)  - starting SoC SoCstart  100 % 
BESS(M1) - Round-trip efficiency ηRT 95 % 
BESS(M1) - Maximum number of cycles cymax Variable 
BESS(M3)  - Minimum Voltage Vmin 2.75 V 
BESS(M3)  - Minimum Voltage Vmax 4.2 V 
BESS(M3)  - starting OCV OCVstart 4.2 V 
BESS(M3) – starting SoR SoRstart 100 % 

Simulation settings (OpSim tool)   
Time step Δt 60 s 
Maximum number of Load profile N 100 
PV-BESS combinations Zcombs 1000 
Number of scenarios S 6 
Convergence criterion jconv 0.5 % 
PV minimum size PVmin 2 kW 
PV maximum size PVmax 6 kW 
PV step size PVstep 0.05 kW 
PV scaling factor WPV 3 
BESS minimum size BESSmin 1 kWh 
BESS maximum size BESSmax 35 kWh 
BESS step size BESSstep 0.05 kWh 
BESS scaling factor wBESS 2 
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Energy4Growing project. Thus, in agreement with the proposed methodology, different 
yearly load profiles have been generated by sampling from the synthetic profiles. Then 
each of the yearly load profile has been extended over the entire plant lifetime (20 years) 
according to six evolution scenarios. A linear increase of the yearly load profile with 
different increasing factors (from 10% to 50%) has been assumed. For instance, having 
an increasing factor of +10% means that at the end of the plant lifetime the load demand 
is forecasted to be 10% higher if compared to the first year of deployment. 

As regards to the solar resource, approaches validated in [298] and available dataset 
published in [297] have been used to derive the profile for the simulations. Figure 9.9 
reports the resulting daily irradiation profile for the Ngarenanyuki coordinates. The 
method employed is capable of taking into account the variability of the solar resource 
throughout the year. For instance, lower values of irradiation are expected in February 
and November, in correspondence to the rainy seasons. 

Technical and economical parameters in the simulations are reported in Table 9.4. 
Cost information about PV modules, batteries, and off-grid inverters are the result of a 
survey among Tanzanian local suppliers, while O&M, other investment costs and 
modelling parameters (efficiencies mostly) have been estimated based on experience.  

For each single lifetime profile and scenario LCis, OpSim tool has been used to 
simulate all the possible configurations of PV-BESS. Specifically, the simulations were 
performed in MATLAB® by ranging the V array size from 0 to 6 kW (wPV = 3) with a 50 
W step and a BESS size from 0 to 35 kWh (wBESS = 2) with a 50 Wh step. Then, the PV-
BESS combination that results in having the minimum NPC while respecting a maximum 
LLP of 5% is identified as the optimum solution for the given LCns.  

9.5 Simulations, results and discussion 

Below, the results obtained by running different simulations through the Poli.NRG 
tool are presented. Specifically, the discussions will be focused on two different layers 
of analysis: 
1. Micro-grid simulation with different BESS models. A detailed comparison between 

the different BESS models proposed in Table 9.3 is presented. Two are the modelling 
approaches compared: empirical (M1 and M2) and electrical (M3). As regards to M1, 
two different values for the maximum number of cycles (cymax) are tested: (i) cymax = 
10,000 to reproduce the highest value claimed in literature for Li-ion technology (see 
Chapter 3) and (ii) cymax = 3,000 which represent more reliable data which belongs 
to the Li-ion LNCO chemistry [107]. Simulations will demonstrate the high impact 
of the BESS modelling approach on SoC and SoH estimations. 

2. Micro-grid robust design. The focus is on the micro-grid robust design as proposed 
in the novel procedure of section 9.2. Again, results will show how different BESS 
models will bring to different optimal plant configurations. 

3. Scenario-based design criteria for decision making. The attention is moved to 
increase robustness of design solutions by accounting for load evolutions during 
plant lifetime, a fundamental factor in DCs. Simulations are repeated for several 
scenarios to create the map of solutions: a map for investment evaluations in the 
hands of the decision makers. 

Micro-grid simulation with different BESS models 

The first level of analysis does not deal with optimal design (i.e. PV-BESS sizes able 
to fulfil the load with the desired LLP at the minimum NPC) but in understanding how 
the assumed BESS modelling approaches of section 9.3 behave in reproducing micro-
grid operations. Therefore, different configurations of the plant have been simulated in 
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order to compare the BESS models within the novel procedure for the robust design of 
off-grid systems. Table 9.5 shows the different hypotheses: (i) hypothesis small 
represents a small plant with a very small BESS and a very high probability to incur in 
high LoL; (ii) hypothesis medium represents a medium plant with a BESS of size 
comparable with the load and solar resources, very close to the optimal design; (iii) 
hypothesis big represents a big plant with an oversized BESS and a high probability of 
sustaining 100% of the load.  

Figure 9.11 exemplifies the impact of the hypotheses of Table 9.5 on the simulations. 
The month of February is chosen as reference since it is characterized by high variability 
in the solar resources (Figure 9.10). Given the same PV profile and load profile for all 
the simulations, BESS behaves differently according to the correspondent hypothesis (i.e. 
configuration of the plant). The power to be delivered by the BESS is the same for the 
three simulated plants; however, the operating rate (E-rate) is the highest for the smallest 
BESS of hypothesis small (blue line) and lower for the larger BESS of hypothesis medium 
(red line) and hypothesis big (yellow line). Higher E-rates will clearly impact on the LoL 
and on the replacement costs making the hypothesis not afffordable from a techno-
economic point of view. In the same way, a very big BESS (hypothesis big) will provide 
a very low LoL but at a very high cost (i.e. investment costs) that would make the 
configuration not convenient as well. This motivates the procedure proposed in section 
9.2 that looks at the best configuration of the plant that satisfy a predefined level of LoL 
at the minimum NPC. 

Hypotheses of Table 9.5 will have different impacts according to the BESS modelling 

Table 9.5 Hypotheses adopted to simulate different PV-BESS plant configurations with  
Poli.NRG tool 
Hypothesis BESSsize [kWh] PVsize [kW] 
Small plant  1 4 
Medium plant 10 4 
Big plant 100 4 

 
Figure 9.11 Simulation results for the month of February of year 1 with empirical model M1: 
assumed photovoltaic and load power profiles; simulated BESS power profile; and operating 
rate derived for the hypotheses of Table 9.5. 
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approach adopted. Figure 9.12 shows SoC trends for the four different models proposed 
(Table 9.3). The two empirical M1 (black and blue lines), which represent BESS with 
fixed efficiency and a fixed number of maximum cycles cymax, are overlapped: 
differentiation will emerge due to aging and therefore after years. The empirical M2 
(green line), which represents BESS with a variable efficiency and lifetime with the 
operating conditions, emerges in hypothesis medium and hypothesis big. It results that 
M1 overestimates the discharge profile: the assumed constant efficiency is probably too 
severe and it does not take into account the specific operating conditions. This is clearly 
a limitation of simplified models which use literature data and datasheet to set the 
parameters of the model. The differences between M1 and M2 do not emerge in 
hypothesis small. In this case, the simulated plant is undersized, consequently the BESS 
immediately saturates to its limits hiding the differences in SoC estimations. Even M2 
cannot consider the high operating rates of hypothesis small in the SoC estimation. In 
general, this is a limitation of all empirical models which do not account for real 
technological limitations (i.e. voltage limits). Conversely, the electrical model M3 (red 
line) differs significantly from the empirical models. Charging phases stops at a low level 
of SoC due to exceeding voltage limits. The same happens in discharge phases, affecting 
the LoL estimation. 

Figure 9.13 shows SoH trends along the plant lifetime. Sudden changes in the SoH 
indicator highlight replacements during the years. In this case, the two M1 models 
differentiate due to the different cymax. Higher cymax clearly means less replacements. 
However, empirical models, which relate to the SoH estimation only on the maximum 
number of cycles as per equation (9.27) without considering any cycling conditions, may 
end up in incorrect SoH estimations. This is clearly visible in case of hypothesis small 
(undersized BESS). The operating rate is so stressful (see E-rate in Figure 9.11) that it 
will certainly impact on BESS aging. It is almost impossible that BESS will last more 
than 10 years as suggested by M1 (black line), being replaced only because of reaching 
the maximum BESS lifetime LTBESS,max. Therefore, empirical models totally rely on 
assumptions about BESS aggregated parameters (i.e: efficiency and maximum cycle 
numbers), which should be appropriate with respect to the final application. This is the 
case of the second assumption on M1 where the assumption of cymax = 3000 brings about 

 
Figure 9.12 Simulation results for the month of February of year 1 with different BESS models: 
estimated SoC trends for the hypotheses of Table 9.5. 

― M1(cymax=10,000)   ― M1(cymax= 3,000) ― M2 ― M3
(Small)

(Medium)

(Big)
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more replacements as expected. The above problems are not present in the case of M2 
and M3 because they take into account the cycling rate in the aging estimation. Apart 
from hypothesis small, these two models provide the same SoH estimation (red and green 
lines are overlapped in hypotheses M and B) because the function for the capacity fade 
is derived from the same set of measurements as detailed in section 9.3. 

All the above findings, related to the SoC and SoH estimations, impact on the LoL 
estimations as shown in Table 9.6. In case of hypothesis small, lower differences are 
present between the models because, as already stated above, the operating conditions 
are so stressful that the BESS saturates very quickly in all the models. Different is the 
case of hypothesis medium and hypothesis big. M1 with cymax=10000 results in a lower 
LoL if compared to M1 with cymax=3000 and this is due to a higher capacity fade of the 
latter case: a lower capacity will in fact affect the LoL negatively. M3 results in the lowest 
values in all the three hypotheses. Given the higher accuracy provided by the electrical 
model, it results that empirical models tends to overestimate LoL. This fact can be 
explained by the totally different way used to model battery behaviours between 
empirical and electrical modelling approaches: the first one makes use of energy/power 
balances to compute SoC, while the second one uses electrical quantities (i.e. 
voltages/currents) to derive SoC. This clearly affects the charge/discharge paths that in 
the end result into different LoL indicators. 

Focusing on the electrical model M3, Figure 9.14 shows the simulation results during 
the month of February of year 1. Equation (9.21) is used to compute the current (i.e. C-
rate) and power profile at cell level. Given the nominal cell energy (appendix E), the 
power profile will never exceed the maximum energy to power ratio (EPRmax). The BESS 
behaviour is preserved also at cell level, as shown by the power profiles computed for 
the different hypotheses. 

 
Figure 9.13 Simulation results along the plant lifetime (20 years) with different BESS models: 
estimated SoH trends for the hypotheses of Table 9.5. 

Table 9.6 Simulation results about LoL estimation with different BESS models 
LoL [%] M1 (cymax=10000) M1 (cymax=3000) M2 M3 
Small plant 55.85 56.12 56.26 56.37 
Medium plant 12.76 15.08 13.37 12.77 
Big plant 1.51 1.52 0.44 0.28 
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In case of a very small plant the absorbed/delivered power is very high, while in 
hypothesis medium and hypothesis big they never approach the limit EPRmax. The cell 
voltage and OCV are then computed by equation (9.22) and equation (9.23). The latter is 
used to estimate the SoC. Figure 9.15 shows the trends of SoH (equation (9.26)), SoR 
(equation (9.30)) and LoL (equation (9.24)) along the plant lifetime. If SoH and LoL 
were already discussed in Figure 9.13 (red lines) and Table 9.6 (M3-column), SoR 
indicator belongs only to the electrical model. In both cases of undersized BESS and 
oversized BESS, a lower variation of SoR has been discovered if compared to hypothesis 
medium. This for two different reasons: small BESS means more frequent replacements 
due to a higher capacity fade (BESS is replaced before having the possibility of reaching 
a very high value of SoR), while big BESS means very low operating rates and a very 
small increase of internal resistance. In the case of hypothesis medium (BESS of size 

 
Figure 9.14 Simulation results for the month of February of year 1 with the electrical model 
M3: Power profile, C-rate profile, Voltage and estimated SoC for the hypotheses of Table 9.5 

 

 
Figure 9.15 Simulation results along the plant lifetime (20 years) with the electrical model M3: 
estimated SoR, SoH  and LoL trends for the hypotheses of Table 9.5 
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comparable with the load, very similar to the optimal final solution) simulations suggest 
that BESS is expected to almost double its resistance before being replaced for reaching 
the maximum BESS lifetime.  

Micro-grid robust design 

The above simulations have been used to discuss the differences between the BESS 
models in estimating the operations of the plant. The novel procedure of section 9.2 has 
then been used to compute the micro-grid robust design that is to find the optimal plant 
configuration that satisfies a specific level of LLP at the minimum NPC over the entire 
plant lifetime. This is done by simulating several possible load profiles until the specific 
convergence criteria of equation (9.15) and equation (9.16). Figure 9.16 and Table 9.7 
show the obtained results in terms of area of solutions. Each area of solution is related 
to a specific BESS modelling approach. In the case of M1, around 30 LCs are needed 
before reaching convergence, while M2 and M3 need more LCs: 96 and 60 respectively. 
The most frequent configuration within the simulated LCs indicates the most robust 
solution (PVrbt ; BESSrbt). frbt parameter indicates how many times the robust solution 
resulted in being the optimal solution for a specific LC. The PV optimal size is almost 
the same (4.10-4.15 kW) in all cases, being closely linked to the solar resources rather 
than the BESS models. The BESS optimal size is instead influenced by the modelling 
approach. Results say that BESS should range around 12.25-14.45 kWh with a maximum 

                                                      
21 Intel® Core™ i7-4790 CPU @ 3.6GHz, RAM 16 GB. 

 
Figure 9.16 area of solutions obtained by running the proposed novel procedure (Poli.NRG) 
on the Tanzanian study case with different BESS models  

Table 9.7 Robust design results obtained with different BESS models 
BESS 
model 

Simulation  
Time21 
[s/LC] 

Simulated  
LCs 
[#] 

Robust solution 
frbt PVrbt 

[kW] 
BESSrbt 
[kWh] 

NPC 
[K€] 

LCoE 
[€/kWh] 

LLP 
[%] 

M1 (10000) 640 32 6 4.15 12.25 29.9 0.453 5 
M1 (3000) 640 31 10 4.10 14.45 31.2 0.472 5 
M2 2180 96 22 4.10 12.50 29.8 0.452 5 
M3 8900 60 12 4.10 12.25 29.7 0.449 5 

mailto:CPU@3.6GHz
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variation of 18%. Empirical models of type M1 tend to oversize the plant, especially if 
wrong assumptions about cycling conditions (see M1 with cymax=3000) are made. On the 
contrary empirical model of type M2 and the simplified electrical model M3 provide very 
similar results (i.e. the same PV size and the 2% of difference in between the BESS sizes). 
Given the technical findings, also economics are influenced by the adopted BESS model. 
NPC and LCoE are computed as the average value among the frbt  simulated LCs that 
resulted in having the robust solution as the optimal one. Overall, NPC and LCoE for the 
robust plant configuration are around 30k€ and 0.45 €/kWh respectively.  

In general, LLP and NPV estimations of model M3 are surely preferable because 
capacity fade and power fade are the results of capacitance and internal resistance 
variations: BESS dynamic and aging behaviours are linked to physical phenomena. But 
this comes at the price of a considerably higher simulation time: M3 is 14 times slower 
that M1 and 4 times slower that M2. Therefore, in planning tools like Poli.NRG, modified 
empirical models which account for capacity fade by using simplified analytical curves 
can represent a suitable compromise to obtain reliable results in a reasonable time. 

Scenario-based design criteria for decision making 

Finally, a characteristic feature of Poli.NRG is the possibility of carrying out the 

 
Figure 9.17 area of solutions obtained by running Poli.NRG with electrical model M3 for BESS 
on the Tanzanian study case with different load evolution scenarios 

Table 9.8 Robust design results over the six load evolution scenarios 
Scenario Description Simulated  

LCs 
Robust solution 

frbt PVrbt 
[kW] 

BESSrbt 
[kWh] 

NPC 
[K€] 

LCoE 
[€/kWh] 

LLP [%] 

S1 Stable 60 12 4.10 12.25 29.7 0.449 5 
S2 Linear +10% 56 14 4.30 13.10 31.2 0.457 5 
S3 Linear +20% 62 8 4.55 13.90 33.5 0.466 5 
S4 Linear +30% 59 10 4.80 14.80 35.5 0.476 5 
S5 Linear +40% 57 12 5.10 15.55 37.7 0.487 5 
S6 Linear +50% 56 8 5.40 16.40 39.9 0.498 5 
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sensitivity of the robust design with different possible load evolution scenarios (a 
fundamental factor in DCs). Figure 9.17 shows the obtained results in terms of a map of 
solutions, composed of different area of solutions. In this case, each area of solution is 
related to a specific scenario of load evolution. It is recalled that having an increasing 
factor of +50% means that at the end of the plant lifetime the load demand is forecasted 
to be 50% higher if compared to the first year of deployment. Overall, the linear + 50% 
simulation will use a load profile 25% higher than the stable scenario. Table 9.8 shows 
the robust designs with respect to the six linear load evolution scenarios. As expected, 
the sizes of the components increase as the yearly load demand increasing factor rises. 
The NPC and LCoE rise as well because it is assumed to fulfill the same level of load 
during the plant lifetime (LLP fixed at 5%). 

Currently, by supposing to have no growth in the energy needs (constant load 
scenario) the optimal microgrid design in the study case proposed would be PV = 4.1 
kW, BESS = 12.25 kWh, while PV = 4.3 kW, BESS = 13.10 kWh in case of a 10% load 
increase during lifetime. Both the scenarios are robust, that is the dispersion of the 
optimal solutions around the solutions identified is very limited (Figure 9.17). 
Consequently, evaluating such results, the operator is properly driven in the decision-
making process. Cross checking the solutions provided by Poli.NRG with the 
commercial products (PV and BESS capacity available) the operator will identify the 
option that could better fit with the study case. 

Finally, in Table 9.9 a sensitivity analysis is carried out. The idea is to gather the 
information coming from Poli.NRG to give decision makers a comprehensive instrument 
to compare different action strategies. For instance, if the decision maker is not sure 
whether the load will increase by 30% (scenario S3) or 20% (scenario S2) along the plant 
lifetime, he/she can easily understand the different techno-economic impacts by 
comparing the two options in Table 6. He/she will conclude that passing through an S2 
to an S3 is equivalent to increase the NPC, the size of PV and the size of BESS of about 
6% while fulfilling 5% more load over the lifetime of the plant (with a fixed maximum 
LLP = 5%). 

9.6 Summary 

In this chapter, the final application of off-grid power systems for rural electrification 

Table 9.9 Support table for decision makers 

∆L [%] ∆NPC [%] ↑ 

∆PV [%] ∆BESS [%] S1 S2 S3 S4 S5 S6 

→ 

S1   -5.0 -5.1 -10.0 -13.5 -15.0 -20.8 -20.0 -26.9 -25.0 -33.9 
  -4.9 -6.9 -11.0 -13.5 -17.1 -20.8 -24.4 -26.9 -31.7 -33.9 

S2 +5.0 +5.1   -5.0 -7.4 -10.0 -13.0 -15.0 -18.7 -20.0 -25.2 
+4.9 +6.9   -5.8 -6.1 -11.6 -13.0 -18.6 -18.7 -25.6 -25.2 

S3 +10.0 +13.5 +5.0 +7.4   -5.0 -6.0 -10.0 -11.9 -15.0 -18.0 
+11.0 +13.5 +5.8 +6.1   -5.5 -6.5 -12.1 -11.9 -18.7 -18.0 

S4 +15.0 +20.8 +10.0 +13.0 +5.0 +6.0   -5.0 -6.2 -10.0 -10.8 
+17.1 +20.8 +11.6 +13.0 +5.5 +6.5   -6.3 -5.1 -12.5 -10.8 

S5 +20.0 +26.9 +15.0 +18.7 +10.0 +11.9 +5.0 +6.2   -5.0 -5.8 
+24.4 +26.9 +18.6 +18.7 +12.1 +11.9 +6.3 +5.1   -5.9 -5.8 

S6 +25.0 +33.9 +20.0 +25.2 +15.0 +18.0 +10.0 +10.8 +5.0 +5.8   
+31.7 +33.9 +25.6 +25.2 +18.7 +18.0 +12.5 +10.8 +5.9 +5.5   
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in Developing Countries (DCs) has been discussed. 
After a brief contextualization about the bottom-up electrification paradigm and a 

short review about the off-grid systems design methodologies with specific attention on 
already available commercial software, a proper methodology has been proposed which 
is made up of four blocks separately facing the different design phases: (i) the data inputs 
gathering block provides a methodology to collect field data as regards to the weather 
conditions and load demand; (ii) the inputs processing block elaborates the inputs to 
obtain load and sources profiles over the entire lifetime of the plant; (iii) the system 
modelling and simulation block models the main components (i.e. BESS), simulates 
different off-grid system configurations and evaluates the related techno-economic 
performances; (iv) the output formulation block finds the most robust design for the 
context of analysis through specific optimization method. The analyses have been based 
on real data gathered within the framework of the Energy4growing project (Annex A). 
The methodology is proposed in the form of a computational tool in MATLAB® named 
Poli.NRG (POLItecnico di Milano –Network Robust design) and applied to size a 
PV+BESS microgrid system to supply power to a rural village in Tanzania. 

When compared with the related literature, the hallmark of this methodology is the 
capability to incorporate the uncertainties inherent to rural electrification processes 
together with proper representation of BESS, which is recognized to be the crucial 
component of any off-grid systems. Load consumption uncertainties, load evolution 
scenarios, unpredictable energy sources and BESS modelling approaches have been 
determined as pivotal features to correctly evaluate final application performances and to 
address the robust design of off-grid systems. The LoadProGen tool allowed considering 
the uncertainties on a daily basis by creating a set of equi-probable daily load curves. The 
lifetime scenario generator allowed creating a set of lifetime load curves that include also 
the seasonal and year-by-year variations (i.e. different evolution scenarios). The 
operations of the systems (through the OpSim tool) have been simulated over the entire 
lifetime of the plant by using appropriate BESS models able to faithfully represent SoC 
and SoH indicators. The evaluation of the battery replacement costs, the Loss of Load 
Probability (LLP), the Net Present Cost (NPC) and the levelized cost of electricity are 
used as evaluation parameters to rank possible plant configurations. Several lifetime load 
profiles have been simulated by looking for the right plant configuration able to fulfill 
the desired LLP with the minimum NPC (i.e. heuristic optimization method). Each 
iteration highlights a point on a pre-defined searching space (i.e. PV and possible battery 
sizes) creating an area of solution instead of a single deterministic solution. The most 
robust solution has been computed as the most frequent of all the obtained optimum 
points inside a specific areas of solution. Finally, different load evolution scenarios are 
used to highlight different area of solution, which together create a map of solutions for 
energy planning purposes. 

Several simulations on a 20 year basis (minute time-step) have been presented to 
discuss about: (i) the impact of different BESS models on the system energy design; (ii) 
the evaluation of the correct system design by accounting for different scenarios of load 
evolution. Results showed that different BESS models can affect the SoC and SoH 
estimations and consequently the LLP and NPC computations. Simplified empirical 
models, based on literature/manufacturers data might lead to oversized plant, especially 
if wrong assumptions about cycling conditions have been made. On the contrary, 
performances estimation made with simplified electrical model have been shown to be 
preferable because capacity fade and power fade are the results of capacitance and 
internal resistance variations: BESS dynamic and aging behaviours are linked to physical 
phenomena. However, results have highlighted that simulation time with electrical model 
increase by more than ten times. Therefore, in planning tools like Poli.NRG, modified 



 BESS for off-grid applications: PV-BESS systems for rural electrification 

 

194 

empirical models which account for capacity fade by using simplified analytical curves 
have been shown to represent a suitable solution to obtain reliable results in a reasonable 
time.  
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CHAPTER  10 

 
 
 
 

10 Conclusions  
 
 
 
This doctoral thesis is part of the research topic related to battery energy storage 

systems (BESS). BESS are becoming pivotal in the development of several and 
heterogeneous industrial sectors like energy, automotive, electronics, telecom etc. Data 
highlight that BESS installations (i.e Li-ion BESS) are increasing exponentially, while 
their specific cost is decreasing exponentially. The transition towards a renewable based 
energy sector, the rural electrification of Developing Countries and the rise of electric 
mobility are just some of the challenges of our today’s society that are demanding more 
and more BESSs. 

However, BESS performances cannot be assumed expandable from one technology 
to another and from one application to another (i.e. stationary, automotive, etc,). 
Energy/power densities, efficiencies, lifetime are application dependent and their right 
estimation affect the design criteria. Therefore, specific methods and models have to be 
used to tackle these issues. Analyses should start from a technological overview of 
available chemistries, define suitable modelling approaches to end up with a proper 
design criteria. Suggested models should be able to estimate SoC (State of Charge) and 
SoH (State of Health) indicators accepting different degrees of precision according to the 
specific application the model is used for. 

In this context, this thesis has focused on proper models for BESS and appropriate 
design criteria for stationary applications. This theme has been specifically developed for 
lithium-ion battery technology and has been tested and validated in real life case studies.  

The general result of the thesis has been to contribute expanding the knowledge about 
BESSs with particular attention on appropriate methods and models which are necessary 
to link the technological studies with the necessary economic analyses required in real 
life applications. Specific results have been: the development of a reference framework 
about technologies, performances and modelling of BESS; the proposal of innovative 
BESS models to represent dynamic and aging phenomena; the development of proper 
methodologies to analyse the techno-economic performances of BESS when deployed in 
stationary applications. 

The work has been based on theoretical, numerical and experimental activities. A 
theoretical framework was needed to identify and formulate the correct BESS models 
according to the different available technologies. The experimental activities were 
fundamental to develop and tune the models. The numerical analyses, based on-field data 
were needed to test and validate the models on real applications. 
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The thesis has been organized into three parts which dealt, through different chapters, 
with three levels of analysis. Specifically: 
 The first part has offered the reference framework about BESS: from a comprehensive 

technology overview to an in-depth review of modelling approaches, through 
highlights about typical BESS performances in real applications. This is done by an 
intensive literature research coupled with experimental activities. 

 The second part has represented the main element of originality of the thesis. Starting 
from theoretical fundamentals, a novel electrical model for lithium-ion cells based on 
experimental measurements has been presented, discussed and validated with real 
measurements. Lifetime modelling elements have been also proposed to create a 
wider background useful for application-oriented analyses, techno-economic analyses 
and investment evaluations. 

 The third part has bridged the modelling phase with final applications. Specifically, 
the proposed model is compared with traditional or well-established literature 
approaches. Analyses have been carried out by analysing the specific application 
context, by proposing proper study approaches, by analysing the role of BESS 
modelling with respect to the applications, and by applying the methodology to 
specific case studies. 

Table 10.1 Selected areas of analysis about BESS within the PhD work 
1 Analysis of the different technology from an application perspective 
2 Analysis of the theoretical framework which is required to identify the main working 

characteristics 
3 Analysis of typical representative models both from electric and energetic perspectives 
4 Transfer of knowledge into suitable models 
5 Analysis of proper design strategies/tools that embraces a correct quantitative 

representation of BESS performances 
6 Analysis of the impact of proper modelling on the design phase and model selection 

 
Figure 10.1 Summary of the thesis’ contributions 
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All subjects have been elaborated by analysing some topics which were recognized 
as fundamental to tackle the main issues about BESS (Table 10.1). These topics have 
been identified by referring to the collaboration between the Politecnico di Milano and 
the CSEM-PV Center (Swiss Center for Electronics and Microtechnology) which allow 
intensive studies (theoretical and experimental) regarding dynamic behaviour and aging 
of Li-ion cells. 

Figure 10.1 has shown a schematic structuring of these topics and has highlighted the 
specific contributions of the thesis. Part I constituted the framework of reference of the 
thesis and it was based on the review and analysis of the scientific literature. Part II 
constituted the modelling framework of the thesis that is based on experimental 
measurements coupled with theoretical studies. Part III constituted the design framework 
of the thesis that is focused on the final application and proper sizing process of BESS 
from a techno-economic point of view. 

A brief summary of the thesis contributions is discussed below. 
 
Part I  Battery Energy Storage: a Comprehensive Review 
 
Overview on Energy storage: from technologies to stationary applications. Chapter 
2 has provided a comprehensive overview about Electrical Energy storage technologies. 
More attention has been dedicated to BESS with special focus on Li-ion chemistries. The 
different available cathode, anode and electrolyte materials have been presented by 
concentrating also on the expected performances, market share, producers and costs. 
Finally, the discussion has been contextualized in stationary applications. The typical 
features of storage technologies have been matched with the requirements of possible 
final applications. This has highlighted the feasibility of BESS in addressing the needs 
of today’s electric power system scenario, in terms of expected performances and 
reliability. Given the high performances and the expected huge decrease in the specific 
cost, Li-ion technology is forecasted to be the most prominent option for renewable 
integration, frequency regulation, off-grid systems and peak-shaving. 
 
Performance evaluation of lithium-ion cells. Chapter 3 has been dedicated to discuss 
about BESS performances. Experimental measurements have been presented about a 
technological comparison among three different Li-ion chemistries. Energy density, 
power density and efficiency are computed in different testing conditions (temperature, 
SoC, operating rate). The analyses have been carried out at cell level by following the 
IEC 62660-1 International standard coupled with novel testing procedures. The results 
highlighted the strong variabilities in the performances. Two novel procedures to 
overcome the discovered limitations of IEC 62660-1 have been also proposed: the 
Ragone test and the efficiency test. These testing procedures are demonstrated to be 
useful to system designers for a correct sizing as well as for the evaluation of the total 
cost of ownership of a BESS in the specific final applications. In general, this chapter has 
provided the reference of comparison for the development of a critical bibliographic 
review that aims at identifying the appropriate mathematical models capable of 
representing the dynamic behaviour and performances measured in the laboratory. 
 
Review of approaches to battery modelling. Chapter 4 proposed a comprehensive 
literature review on battery modelling (mainly at cell level). The obtain result has been 
the creation of a framework of reference on which to rely in the modelling steps of part 
II of the thesis. The models have been grouped into four general approaches: 
electrochemical models, analytical (empirical) models, electrical models and stochastic 
models. Two main tasks have been identified for battery models: the estimation of the 
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operating conditions (i.e. SoC estimation) and the estimation of the lifetime (i.e. SoH 
estimation). Each modelling family/category has been discussed in all its features by 
detailing literature examples, typical equations, methodologies, available software/tool. 
Electrochemical models have been found to be the most accurate but characterized by a 
very high simulation time which make them unsuitable for techno/economic analyses. 
Stochastic models are found unreliable because they do not take into account the physical 
aspects behind battery operations at all. Analytical models have been described to be very 
simple being based on few equations and thus very suited for techno/economic analyses 
and energy planning studies; however, accuracy can represent an issue: Finally, electrical 
models are based on an equivalent electric circuit reproducing the responses at the 
external terminals. They can have different levels of complexity, being well suited for a 
wide range of applications: from design/energy analyses to real-time monitoring.  

Overall, this chapter has highlighted the necessity to implement (part II of the thesis) 
and compare (part III of the thesis) different BESS models in order to understand the 
accuracy in reproducing the expected behaviour and performances (by referring to the 
experimental data of Chapter 3) with respect to the required computational time.  
 
Part II  A Novel Electrical Model for Lithium-Ion Cells 
 
Physics of battery for impedance based modelling. Chapter 5 has provided the main 
theoretical pillars which are necessary for a proper electrical modelling process. The 
underlying physics about electrochemical cells functioning have been covered in depth. 
The main phenomena have been identified and discussed: electric and magnetic 
phenomena, the kinetic phenomena of the electrodes and diffusion phenomena. The main 
novelty is represented by the approach used to link electrochemical phenomena to the 
electrical modelling approach. The equivalent impedance representation is proposed for 
each phenomenon, which must be characterized by clear links in between the 
characterizing equations and the derived elements in the electrical model.  
 
Novel electrical model for Lithium-ion cell. Chapter 6 presents a novel electrical model 
representative of the entire Li-ion technology. The model has been developed in the 
frequency domain by means of EIS measurements and it has been based on the theoretical 
framework presented in Chapter 5. The proposed model belongs to the family of passive 
electrical model and is capable of simulating the full dynamic response of lithium-ion 
batteries. The presented models is composed of 5 impedance blocks connected in series. 
Each block is derived from electrochemical equations which describe the dynamic 
processes of charge transfer and transport of mass. The SoC is estimated from the voltage 
of a nonlinear capacitance, thereby addressing the intercalation of ions into the electrode 
structure. In total, the model consists of an incremental capacitance look-up table and 
eight RC parameters. The complete model consists of an incremental capacitance look-
up table and eight RC parameters. A procedure to estimate the parameters of the model 
has been presented and applied on a commercial lithium-ion cell (LNCO chemistry). 
Finally, validation of the model has been carried out in the time domain showing high 
accuracy in estimating the voltage at the device terminals, efficiency, power and energy 
density under different operating rates and SoCs. Specifically, different tests at 25 °C 
were carried out. The error in predicting the output voltage and the overall battery 
efficiency is less than 0.6% when the battery is cycled through SoCs between 20% and 
80% and less than 2.2% when the SoC limits of 0% and 100% are used. The very high 
accuracy demonstrated by the proposed model is essential in assessing the technical and 
economic viability of the battery systems. 
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Elements on lifetime modelling. Chapter 7 investigated lifetime modelling of Li-ion 
cells. The topic of aging is discussed through experimental measurements. An innovative 
aging testing procedure, developed expressly to test Li-ion cells (LNCO chemistry) with 
different cycling conditions at ambient temperature, has been presented. Testing results 
gave evidence about the main aging effects: capacity fade, power fade and efficiency 
decrease. They are found to be highly dependent on the cycling rate. No clear influence 
has been found instead that relate the degradation with the DoD. The first obtained 
findings (at the moment of the thesis writing the aging tests were still ongoing) have been 
used to propose lifetime modelling approaches which have been discussed as regards to 
the experimental effort, the accuracy and the expected computational time. The proposed 
“Hybrid” approach is demonstrated to be a suitable compromise between empirical and 
electrical models. It can reach higher levels of accuracy if compared to empirical models, 
but with a lower computational burden if compared to electrical models. In general, this 
chapter contributed in creating a wider modelling background useful for application-
oriented analyses, techno-economic analyses and investment evaluations. The modelling 
approaches of Figure 7.7 have been exploited in Part III of this thesis to deal with 
complex simulations.  
 
Part III  From Modelling to Applications: Approaches to BESS Proper Design 
 
BESS for grid-tied applications: PCR service. Chapter 8 analysed the final application 
of grid-connected BESS for Primary Control Reserve (PCR). A proper methodology has 
been proposed which includes: specific control mechanism to change BESS working 
conditions with external signals; unconventional droop-control law that takes into 
account BESS characteristics; proper BESS models derived from the previous chapters. 
The proposed methodology is part of the approach for the optimum control of BESS 
operations. When compared with the related literature, this methodology aims at 
understanding how BESS features could be used to the advantage of the BESS owner. 
Thus, attention has been focused not only on the SoC control but also on the expected 
economic benefits for the BESS owner. The analyses have been based on real 
measurements taken at the Politecnico di Milano within the framework of the IoT-
StorageLab (Annex B). The methodology has been proposed in the form of a 
computational tool in MATLAB®Simulink® named BESS4PCR and applied to the Italian 
context. 

Simulation results showed that different BESS models highly affect the Loss of 
Regulation (LoR) estimation. Differences can reach up to 20%. It is shown how empirical 
models do not account for the influence of higher operating rates on BESS performances, 
while electrical models are more accurate. These differences are showed to also affect 
the BESS optimal design since they highly influence the NPV calculation. Investment 
evaluations have been carried out which consider revenue for PCR, investment costs (i.e. 
BESS cost), penalties due to LoR, replacement costs and residual value of BESS. If the 
electrical model is chosen as a reference, simulations showed that the optimal 
configuration is 1.4MW/1.4MWh with NPV slightly above 0 over a 10 years investment 
term. Finally, a detailed analysis of BESS operations using variable-droop control has 
been presented. This control strategy improves the BESS performances and profitability 
avoiding part of the penalties. LoR is shown to have reduced of 10 points, NPV to have 
more than double and Payback time to have almost halved.  

Overall, grid-connected BESS have been shown to be a promising technology in 
providing ancillary services such as PCR to electric power system, especially if proper 
control strategies are adopted to enhance BESS performances. However, analysts or 
engineers must pay attention to the BESS model which is used to derive investment 
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evaluations. Electrical models are found to be a valid option in simulating the operation 
of a real BESS when the regulating framework (i.e. remuneration and penalty) is clearly 
defined. Empirical models represent a faster option in understanding the behaviour of the 
system but they can lead to undersize BESS solutions that will negatively affect the final 
performances.  
 
BESS for off-grid applications: PV-BESS systems for rural electrification. Chapter 
9 analysed the final application of off-grid power systems for rural electrification in 
Developing Countries (DCs). A novel sizing methodology has been proposed which is 
made up of four blocks which separately face the different design phases: (i) the data 
inputs gathering block provides a methodology to collect field data as regards weather 
conditions and load demand; (ii) the inputs processing block elaborates the inputs to 
obtain load and sources profiles over the entire lifetime of the plant; (iii) the system 
modelling and simulation block models the main components (i.e. BESS), simulates 
different off-grid system configurations and evaluates the related techno-economic 
performances; (iv) the output formulation block finds the most robust design for the 
targeted context through a specific optimization method. The analyses have been based 
on real data collected within the framework of the Energy4growing project (Annex A). 
The methodology has been proposed in the form of a computational tool in MATLAB® 
named Poli.NRG (POLItecnico di Milano –Network Robust design) and applied to size 
a PV+BESS microgrid system to supply power to a rural village of Tanzania. 

The hallmark of this methodology is the capability of incorporating the uncertainties 
inherent to rural electrification processes together with a proper representation of BESS, 
which is recognized to be the crucial component of any off-grid system. The system 
operations have been simulated over the entire plant lifetime by using appropriate BESS 
models able to faithfully represent SoC and SoH indicators. The evaluation of the battery 
replacement costs, the Loss of Load Probability (LLP), the Net Present Cost (NPC) and 
the levelized cost of electricity are used as evaluation parameters to rank possible plant 
configurations. Several lifetime load profiles have been simulated by looking for the right 
plant configuration able to fulfill the desired LLP with the minimum NPC (i.e. heuristic 
optimization method). Each iteration highlights a point on a pre-defined searching space 
creating an area of solution instead of a single deterministic solution. The most robust 
solution has been computed as the most frequent of all the obtained optimum points 
inside a specific area of solution.  

Several results showed that different BESS models highly affect the SoC and SoH 
estimations and thus LLP and NPC computations. Simplified empirical models, based on 
literature/manufacturers data might lead to oversized plant, especially if wrong 
assumptions about cycling conditions have been made. On the contrary, performances 
estimation made with simplified electrical model have been shown to be preferable 
because capacity fade and power fade are the results of capacitance and internal 
resistance variations: BESS dynamic and aging behaviours are linked to physical 
phenomena. However, results have highlighted that simulation time with electrical model 
increase by more than ten times. Therefore, in planning tools like Poli.NRG, modified 
empirical models which account for capacity fade by using simplified analytical curves 
have been shown to represent a suitable solution to obtain reliable results in a reasonable 
time. 

Overall, this chapter has highlighted that attention is required when facing the design 
of off-grid power systems. Especially when dealing with the rural context of DCs, 
uncertainties on loads and resources need to be considered because a different set of 
inputs can lead to different optimum plant configurations. Moreover, analysts and 
decision makers must pay attention to the BESS model used to derive techno/economic 
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evaluations. Wrong modelling approaches can lead to a wrong performance estimation 
over the plant lifetime. For this reason, design software as Poli.NRG that provide robust 
design solutions embodying all the possible on-field set of inputs together with proper 
options for BESS, are strongly suggested. 

 
Future works 

There are several research directions on models and methodologies for the correct 
analysis and design of BESSs to explore extending the work presented in this thesis. In 
this section, some of them are discussed. 
 
Thermal model of electrochemical cells: this thesis has presented an innovative 
dynamic model in Chapter 6, which has been developed at constant ambient temperatures 
(25°C) for time and resources reasons. Nevertheless, the effect of different ambient 
temperatures on the dynamic response of the cell has been briefly introduced in section 
6.2 through experimental measurements (EIS). Further modeling efforts could be 
dedicated on this issue addressing the development of a thermal model of the 
electrochemical cells to be coupled with electrical models and aging models.  
 
Comprehensive lifetime modelling: this thesis has introduced a first step about lifetime 
modelling in Chapter 7. All the analyses have been based on ongoing aging tests (at the 
moment of the thesis writing, hundreds of cycles have been completed: 400-800 
depending on cycling conditions). Further improvements are needed as regards to: (i) the 
validation of the proposed results once all aging tests have been finished; (ii) the 
investigation of the DoD influence on aging since no clear relationship has been found 
so far. Moreover, the influence of the ambient temperature on the aging effects could be 
investigated with additional aging tests. Above all, intensive research activity is required 
to investigate the electrochemical phenomena behind aging effects and relate them with 
the modelling activity carried out in Chapter 6 (i.e. aging phenomena should be linked to 
changes in the impedance blocks of an electrical model). 
 
Techno-economic optimization of grid-tied BESS for multi-services provision: this 
thesis has discussed the economic viability of BESS in providing PCR service in Chapter 
8. The objective has been focused on loss of regulation minimization. The possible 
developments are oriented towards the study of multi-services mechanisms in which the 
battery is operated by exploiting several market opportunities at the same time. For 
instance, the BESS can keep providing PCR while doing arbitrage, or sustain off-grid 
systems while providing ancillary services to the same grid, etc.. 
 
Techno-economic optimization of complex off-grid systems: this thesis has discussed 
the proper design of PV-BESS based off-grid systems. However, off-grid systems can be 
more complex by aggregating several resources of different nature (e.g. mini-wind, 
micro-hydro, small diesel genset, etc.) to create bigger mini-grid. BESSs could be studied 
in providing balancing services to the grid to investigate the improvements in the 
reliability of self-sustained power systems. 
 
Power electronics modelling integration: Overall, the analyses of part III have been 
centred on electrochemical batteries, considering power electronics well-established with 
respect to both industrial applications and mathematical modelling. However, power 
electronics and related BMS could impact on electrochemical cells performances. 
Modelling of these components can enhance the accuracy of the final results. 
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Appendix A 
 
 
The project “Energy for Growing” 
The project Energy4Growing (E4G) is an ongoing initiative that started in 2013 

promoted by a research group at the Politecnico di Milano [299]. The main task of the 
project was the design and commissioning (the author has been actively involved in both 
activities) of an off-grid power system to supply electricity to the secondary school of 
Ngarenanyuki, a rural village in Northern Tanzania (Figure A-1). About 460 students 
attend the targeted school, 85% of them are resident in the institution facilities which 
include classrooms, offices, dormitories, library, kitchen, teachers’ houses, etc.  

At the time of starting the project, the local energy scenario was characterized by the 
following elements: 
 The main power source of the school was a run-off-river Micro hydropower plant 

(MHP) based on a 3.2 kW Banki turbine (Figure A-2) coupled with 1-phase brushless 
synchronous generator (230 V, 50 Hz). 

 The water flow to the turbine is diverted from a stream, which is managed by local 
farmers. Therefore, water availability is highly variable during the day and according 
to the season. For this reason several blackouts occur. 

 The frequency regulation is based on a 4 kW dump load, which dissipates the excess 
power in the air.  

 A 5 kW petrol generator was used when the MHP plant was off and only for important 
reasons (Figure A-2). 

 The power supply was managed in the control room by means of a toggle switch that 
permits selecting the power source, while a group of breakers permits specific loads 
to be connected/disconnected manually. 

 The number and type of the electric devices available in the school were determined 
by the limited generators and storage capacities. Moreover, the consumption patterns 
were deeply affected by the energy source availability (i.e. the water flow), which 
resulted in highly variable consumptions day-by-day and hour-by-hour (a typical 
feature of consumption patterns in rural areas). 
This observation together with preliminary analyses on school power consumption 

habits suggested carrying out a monitoring of the system functioning in order to plan a 

  
Figure A.1 NgareNanyuki Secondary School (TZ). 



 Appendix A 

 

204 

proper intervention. A meter was installed on site and energy consumption data as well 
as electric functioning parameters were monitored during the period from June to 
September 2014.  

As shown by Figure A-3 (the Tukey boxplot of the metered load values throughout 
the whole day), the daily energy consumptions ranged from a few kWh to about 25kWh: 
this suggests a high variability of the water source availability on a daily basis. Every 
hour of the day the power loads ranged from 0W to values above 1.5kW.  

In this framework, the E4G project has addressed the improvement of the power 
supply service of the school by increasing the generating capacity and by adopting an 
energy management system (EMS) capable of integrating different RES-E power sources 
together with BESS effectively and efficiently. Specifically, the author worked in the on-
field deployment of a hybrid micro-grid in April 2015 that combined the power systems 
already available on-site with new installations (3kW of PV panels and 72 kWh of lead-
acid batteries) by means of an interface converter (IC) with specific control units (Figure 
A-4).  

Figure A-5 shows the architecture of the micro-grid that comprises a dc energy 
sources aggregation (Q1 board) and an ac double bus-bar system (Q2 board). In 
particular, Q1 is a dc/ac control board connecting PV panels and the lead-acid battery 
pack to the IC. The loads, the hydro turbine and petrol generator are connected to the ac 
double bus-bar board (i.e. Q2). Finally, an industrial PLC measures and controls the 
micro-grid, acting on the switchers of each line while calculating proper power set points 

 
Figure A.3 Boxplot of the daily power consumption in NgareNanyuki (TZ) before E4G project 
intervention 

  
Figure A.2 Diesel generator and Banki turbine generator. 
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for the IC. 
Different operation modes have been implemented: manual mode, automatic mode, 

and grid-connected. 
In the manual mode, the operator can manage the loads connection/disconnection and 

can select the power source. During this mode, the PLC controls Q1 to implement a grid 
forming operation. 

In the automatic mode, the PLC measures voltage, current, frequency, and power and 
manages the system by means of four configurations: 
1. Q1 on-grid – following the hydropower system. In this operation mode, the hydro 

generator manages voltage and frequency of the grid, while Q1 is controlled in the 
following mode. The control board of Q1 implements the MPPT algorithm to 
maximize the PV power. The PLC detects the dump-loads operating status and 
diverts the power (otherwise dissipated) to charge the battery pack. 

2. Q1 off-grid – forming mode. In this operation mode, the PLC defines the IC voltage 
and frequency set-points, and it monitors battery SoC in order to properly manage its 

  
Figure A.4 The new installed Interface Converter and the 3kW monocrystalline PV modules 

 
Figure A.5 Hybrid Micro-grid configuration of the E4G project 
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discharge limits. 
3. Hydropower in stand-alone mode. This operation mode is activated when the 

batteries SoC is too low, then the PLC manages the loads connection according to 
hydro production and different load priorities. 

4. Double bus-bar mode. This configuration allows the hydropower and Q1 to work 
together, each one on a single bus-bar and occurs in case of large power fluctuations 
(detected measuring both voltage and frequency). In this case and when the micro-
grid is working in mode 1, the load lines are progressively switched to the second 
bus-bar which is managed by Q1 in forming mode. 

Some considerations can be made about the integration of BESS in the micro-grid. In 
the original system (hydropower based), the dump loads kept the balance between 
generation and consumption (assuring stability at 50 Hz) to the detriment of energy 
dissipated into the air by the dump load. The new architecture can limit the dissipated 
energy. The PLC leaves only a small part of the hydropower to the dump load in order to 
carry out a fast regulation (i.e. guarantee stability control), but it takes as much energy as 
possible from the hydropower system to charge the battery. In other words, the battery 
pack is operated in order to absorb part of the power that was dissipated on the dump 
load thus increasing the overall system efficiency.  

It is worth underlying how the micro-grid deployed by the E4G project requires 
several control actions (devoted to switching on/off the loads, the generators, to 
regulating the battery charge, etc.), consequently a synoptic control scheme has been 
developed (Figure A-4). This scheme is very different in comparison to other commercial 
solutions and it is not common for local technicians. Therefore, as part of the project 
activities, a 10 day on-site training programme was carried out in order to interact with 
local staff, to evaluate their needs and show how to manage the micro-grid via the control 
panel. Currently, local staff only has a primary education and no electric system skills, 
but after training they acquired all the capabilities required to properly manage the 
system, and they have been working quite independently so far. 

At the moment of the thesis writing, two years after the micro-grid deployment, the 
E4G project is still ongoing. Actually, the project was developed to exploit Ngarenanyuki 
School as a research laboratory: micro-grid functioning parameters (voltage, current, 
frequency, etc.) are sampled each second, logged, saved and shared with the Politecnico 
di Milano ICT facilities thanks to a satellite connection. Such data are crucial for 
monitoring purposes to ensure the quality of supply, reliability, etc. but also for research 
purposes. Key elements under investigation are the BESS lifetime estimation, the 
analysis of consumption growth and the update of the system control logics in order to 
adapt the micro-grid to the new evolving scenarios that the school is facing (e.g. in 2016 
the Tanzanian TSO extended the national grid to the areas of Ngarenanyuki). 

 
 



 

207 

 

Appendix B 
 
 
The IoT StorageLab at the Politecnico di Milano 
The IoT Lab of the Politecnico di Milano is devoted to the research on the Internet of 

Things concept. The Lab aims to create a suitable environment for the research, design, 
development and testing of IoT solutions, with specific reference to energy and power 
systems applications. 

The main applicative scenarios for the solutions conceived within the laboratory are 
the smart home and the smart building environments, and the relevant paradigms of smart 
grid and smart cities. Actually, these scenarios are strongly characterized by the need to 
manage complex heterogeneous systems, including distributed sensors and controllers, 
generation units (typically from RES), EES, smart appliances, e-mobility, etc. In this 
scenario, ICT is widely exploited to interconnect all the elements included in the system 
and advanced user interfaces are required to exchange information with the end-user in 
an effective manner. 

The IoT Lab focuses on the development of new strategies and logics to coordinate 
all the actors involved in such a novel scenario and on the design of the relevant 
hardware/software platforms. In more detail, the laboratory aims at providing a large-
scale IoT system to collect information from the field and to transfer it to a control centre. 
The data are then exploited to effectively manage critical aspects of the smart home and 
smart building environments. To this purpose, a main task of the laboratory concerns the 
development of algorithms and strategies to define the best control actions needed to fully 
benefit from the opportunities provided by the new paradigm.  

Four Departments of the Politecnico di Milano with specific expertise contribute to 
the laboratory: Dept. of Management, Economics and Industrial Engineering (DIG), 
Dept. of Electronics, Information and Bioengineering (DEIB), Dept. of Energy (DE) and 
Dept. of Design. The Lab is physically distributed in three different sites around Milan 
(Peschiera Borromeo, DEIB in Leonardo campus and DE in Bovisa campus), but all the 

 
Figure B.1 Iot Storage Lab architecture in Bovisa Campus (Politecnico di Milano) 
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components and systems are conceived to operate in a coordinated way by 
communicating through the Web. 

Focusing on the Bovisa site (Figure B.1), the IoT lab is particularly focused on the 
study of BESS. The IoT-Storage Lab is equipped with devices for the monitoring of 
energy consumption, sensors for the monitoring of environmental parameters 
(temperature, humidity and human presence), and the communication devices needed to 
share the data. More in detail, the core of the IoT-Storage Lab measurement system is an 
electric switchboard to which different electric loads, generators and ESS can be 
connected. The switchboard can operate islanded from the grid or supplied by different 
power sources (according to the specific scenario to be simulated): 
 The external grid (i.e. power supply with standard electric parameters). 
 A 100 kW back-to-back inverter, able to simulate the main grid with adjustable 

electrical parameters (voltage amplitude and frequency). 
All data are collected in a National Instruments CompactRIO unit, which is able to: 

(i) elaborate the measurements collected in order to obtain performance indexes related 
to the BESS operation; (ii) compute control actions to be performed on the devices under 
test (e.g. for close loops control logics); (iii) share data and commands through the Cloud 
with the other sites of the IoT Lab, with the objective to implement distributed control 
strategies (e.g. to provide feedback regulations to the BESS installed in the Bovisa site 
of IoT Lab on the basis of the load and generation measured in other sites of the 
laboratory). 

Apart from the research activities related to IoT concept, the IoT-Storage Lab will be 
focused on several aspects that involve battery systems such as: 
 The performance measurements concerning different BESS technologies. 
 The study of BESS performances during real-life operations. Different 

services/opportunities can be tested: the increase of self-consumption, the peak-
shaving for grid relief; the ancillary service provision, etc. 

 The testing of islanded or grid-connected modes of operation. 
 The development of innovative control actions. 

The author has been actively involved in the start-up of the IoT-Storage Lab with 
specific focus on the development of the LabVIEW platform which is currently used to 
acquire measurements and apply set-points to BESS devices. 
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Appendix C 
 
 
Electrochemical Impedance Spectroscopy: a theoretical overview 
Fundamentals of EIS began in the 1880s with the introduction of the concept of 

impedance in electrical engineering by Oliver Heaviside [197]. Warburg was the first 
extend the concept of impedance to electrochemical systems in the 19th century. Thanks 
to the work by Epelboin in the 1960s, EIS measurements become an analytical tool to 
investigate the corrosion mechanisms [300]. Thanks to the invention of the potentiostat 
and the first frequency analyser in the 1970s, it became possible to probe electrochemical 
systems at very low frequencies. Prior to that time, EIS measurements were limited to 
frequencies above 100Hz and mainly for the theoretical description of semiconductors 
and devices [301], [302]. 

EIS is a very powerful method mainly because it is a non-destructive technique to 
characterize the electrical properties of materials and their interfaces. EIS allows to 
measure impedance of a two terminal device (phase-shift and magnitude) without 
opening it but by measuring the voltage or current response at its terminals per effect of 
an applied current or voltage excitation. It may be used to investigate the mechanisms of 
diffusion of charge carriers in the bulk or at the interfaces of liquid and solid materials 
[122], [303]. The device is subjected to stimuli at different frequencies, each of them is 
able to excite a specific dynamic mechanism, so that the different phenomena are 
identified and evaluated. 

There are three main types of electrical stimuli which are used for impedance 
spectroscopy, which consist in: 
 Applying a voltage step through the device terminals and measuring the current 

response i(t). the time varying resistance is evaluated as Vstep/i(t).  
 Applying a voltage signal containing multiple frequencies (white noise) and 

measuring the resulting current. Then by using Fourier transform methods, it is 
possible to analyse the signals in the frequency domain and obtain the impedance over 
frequency. 

 Measuring the voltage or current response of the system per effect of a single applied 
current or voltage. This is the most used technique since commercial systems of today 
measure automatically the impedance in the range of µHz to MHz.  
In a linear system, the response to a sinusoidal input excitation at a given frequency 

is a sinusoidal output signal at the same frequency with different amplitude and phase. 
The impedance 𝑍𝑍(𝑟𝑟) at the given frequency is defined as follow: 

 
𝑍𝑍(𝑟𝑟) =

𝐸𝐸𝑎𝑎(𝑟𝑟)
𝐿𝐿𝑎𝑎(𝑟𝑟)

=  
𝐸𝐸0 ∙ sin(𝑗𝑗𝑟𝑟)

𝐿𝐿0 ∙ sin(𝑗𝑗𝑟𝑟 + 𝜑𝜑) (C.1) 

In nonlinear systems, as electrochemical cells, the impedance can be defined by 
linearizing the system response for small perturbations around the equilibrium point 
[304] (Figure C.1), which is a fixed SoC at a stable temperature. 
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The EIS spectrum is obtained by repeating measurements at different frequencies. 
While measuring the EIS spectrum, the device under test should remain in the same state. 
Impedance is in fact strongly affected by temperature and SoC variations. Consequently, 
EIS measurements cannot be performed while charging or discharging the battery, in this 
condition the quasi-linearity condition is not respected. 

For instance, the Galvanostatic EIS (GEIS) measures the voltage response at the 
battery terminals per effect of a small sinusoidal current injection. The current excitation 
has to be small enough in order keep the voltage response in a quasi-linear region and 
with an amplitude large enough to be measured by the instrument. Today’s EIS 
instruments are able to measure voltage signals of some tens of µV with high accuracy. 

The time required for measuring an EIS spectrum depends on the number of points 
measured and on the selected frequency. More than one complete sinusoid is required for 
each impedance measurement (the number of complete sinusoids depends on the specific 
instrument and it is in the range of 1-5). 

Results are studied by means of the so-called Nyquist diagrams (or Argand diagrams) 
and Bode diagram. Figure C.2-a shows a typical Nyquist plot of a lithium-ion cell in 
which the real and imaginary parts of the cell impedance are plotted for different 

 
Figure C.1 Current versus Voltage Curve Showing Pseudo-linearity 

 
Figure C.2 Example of Nyquist plot (A) and Bode plot (B) for EIS representation. 
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frequencies. The sign of imaginary parts is usually reverted since the behaviour of the 
battery is mainly capacitive. The points at the upper-right side of the diagram are 
measured at a very low frequency, while the highest frequencies are in the low-left side 
of the diagram. The plot crosses the axes Im{Z}=0 at the resonant frequency where the 
inductive reactance of the impedance equals the capacitive reactance. At higher 
frequencies, the device shows inductive behaviours, while capacitive ones at lower 
frequencies. The main limitation of a Nyquist plot is the impossibility to relate directly 
the impedance measured with the frequency. For this reason, the Bode plot of Figure C.2-
b is also used, because it directly quantifies the resistive and capacitive behaviours at the 
different frequencies.  

Modelling development is one of the most powerfull applications of EIS. The Nyquist 
plot is used to detect phenomena occurring in the battery and to estrapolate an equivalent 
electric circuit. Determination of the circuital paramenter can be found by fitting EIS 
curves at various SoC, temperature and aging conditions. Figure C.3 shows a typical 
interpretation and modelling of a Li-ion EIS [162], [305]. The frequency of each 
characteristic shapes can be related to a characteristic phenomenon happening inside the 
cell: (i) Inductive reactances of metallic elements in the cell and wires; (ii) ohmic 
resistance due to voltage drops at current collectors, electrolyte, active material and 
separators; (iii) impedance related to Solid Electrolyte Interface (SEI); (iv) charge 
transfer resistance of the electrodes in parallel with the double layer capacitance; (v) 
Diffusion processes inside and outside the electrodes 

 

 
Figure C.3 Example of EIS interpretation for electrical modelling approaches 
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Appendix D 
 
 
BESS cost assumptions 
NPC estimations in Chapter 8 and Chapter 9 are based on BESS cost estimations. 

Projections on the BESS specific costs in the near future are needed to better evaluate the 
investment.  

In this thesis, we assume a decreasing cost of BESS as per Figure D-1-A. The 
projection is based only on the future cost estimations derived from [1]. Specifically, the 
specific cost [€/kWh] in the specific year y is computed as follows: 

 𝑐𝑐𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦) �
€

𝑘𝑘𝑊𝑊ℎ�
= 8.7E53e−0.0586∗y D-1 

Where y is the current year of installation (i.e. 2017). cBESS is used to account for 
investment (I) and replacement costs (CR) actualized to the year of cash flow.  

Then, at the end of the investment, it is assumed that the BESS will still have some 
residual value (RV) computed as follows: 

 𝑅𝑅𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦) = 𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆�𝑦𝑦𝑝𝑝� ∗ DF D-2 

Where yp is the year of BESS purchase and DF is the devaluation factor that accounts 
for the years of operations that the BESS has already faced. If the last replaced BESS has 
worked for only one year before the end of the investment evaluations, it should be 
evaluated with a higher residual value if compared with a BESS that is close to its 
maximum allowable lifetime (LTBESS,max) 

 
𝐷𝐷𝐹𝐹 = e

�−y𝑑𝑑𝑟𝑟𝑝𝑝𝑙𝑙𝑛𝑛𝑦𝑦𝑛𝑛𝑟𝑟𝑛𝑛𝑟𝑟�
2  D-3 

Where ydeployment is the number of years the BESS is in operation. 

 
Figure D-1: (A) Projected Costs of Li-ion battery packs in automotive sector [1] and (B) 
devaluation factor for residual values computation. 
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Datasheets of the investigated Li-ion cells 
This annex details the datasheets of the electrochemical cells which have been 

experimentally tested (LNCO, LFP, LTO in Chapter 3) and exploited for electrical 
modelling purposes (LNCO in Chapter 6 and Chapter 7). 
 

Technology LNCO 
Brand Boston Power SWING5300 [107] 
Nominal capacity 5300 mAh 
Nominal energy 19.345 Wh 
Nominal voltage 3.65 V 
Shape prismatic 
Cell dimension (L-H-W) 64.8-37.3-19.2 mm 
Nominal cell weight 93.5 g 
Energy density (gravimetric) 207 Wh/kg 
Energy density (volumetric) 490 Wh/l 
Nominal impedance 15.5 mΩ 
Cycle life (DoD =100%, 0.5C) >1000 cyles 
Cycle life (DoD =90%, 0.5C) >2000 cyles 
Cycle life (DoD =80%, 0.5C) >3000 cyles 
Max continuous discharge rate (0-100% SoC) 13 A 
Allowable 10s pulse capability (0-50% DoD) 1000 W/kg 
Charging method – CC 3.7 A (0.7C) to 4.2 V 
Charging method – CV 4.2 V to 50 mA 
Max charge rate (continuous)  10.6 A 
Operating temperature (charge) -20°C - +60°C 
Operating temperature (discharge) -40°C - +70°C 
Storage temperature -40°C - +60°C 

 
Technology  LFP 
Brand A123 ANR26650 [109] 
Nominal capacity (nominal/minimum) 2.5 / 2.4 Ah 
Nominal voltage 3.3 V 
Shape Cylindrical 
Cell dimension ∅ 26 x 65 mm 
Nominal cell weight 76 g 
Power density (gravimetric) 10s pulse 2600 W/kg 
Power density (volumetric) 10s pulse 5800 W/l 
Cycle life @ 10C discharge (DoD = 100%) >1000 
HPCC 10 s discharge pulse power 50% SoC  200 W 
Internal impedance   6 mΩ 
Recommended standard charge method 1C to 3.6 V CCCV, 45 min 
Recommended fast charge method to 80% SoC 1C to 3.6 V CCCV, 12 min 
Maximum continuous discharge 70 A 
Maximum pulse discharge (10 s) 120 A 
Operating temperatures -30°C - +55°C 
Storage temperature -40°C - +60°C 
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Technology  LTO 
Brand GWL POWER LY-LTO-30Ah [110] 
Nominal capacity (nominal/minimum) 30 / 27 Ah 
Nominal voltage 2.4 V 
Shape Prismatic 
Cell dimension (L-H-W) 235-135-29 mm 
Nominal cell weight > 1590 g 
Max voltage per cell 2.80 V 
Balancing voltage per cell 2.75 V 
Discharge voltage per cell 2.75 V 
Discharge voltage  1.85 V 
Minimal voltage per cell 1.5 V 
Operating voltages 1.85 – 2.75 V 
Optimal discharge current  <30 A (1C) 
Maximal discharge current  <450 A (15C) 
Max peak discharge current <600 A (20C, <10 s) 
Optimal charge current <30 A (1C) 
Maximal charge current <180 A (6C) 
Internal resistance < 1 mΩ 
Cycle life (DoD =80%, 0.5C charge – 3C discharge) >10000 
Cycle life (DoD =80%, 0.5C charge – 1C discharge) >20000 
Cycle life (DoD =80%, 0.5C charge – 0.5C discharge) >500000 
Self-discharge rate  <3 % / month 
Operating temperature (charge) -15°C - +45°C 
Operating temperature (discharge) -25°C - +55°C 
Temperature / Capacity (25°C) 100% 
Temperature / Capacity (0°C) >80% 
Temperature / Capacity (-10°C) >70% 
Temperature / Capacity (-20°C) >60% 
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Load data assumptions for the Ngarenanyuki study case 
This annex details the data collected with interviews and audit in the Ngarenanyuki 

Secondary School (Arusha, Tanzania) in 2016 within the framework of the 
Energy4growing project (Appendix A). Most of the appliances hereinafter reported were 
either not working or resulted to being unavailable (i.e. desiderata) in the school. 

 
Location Appliance Unit Power [W] Functioning hours per day Usage  

Building 2 
Office 
Headmaster 

Laptop PC 1 40 from 08:00 to 19:00, sometimes 
19:00-22:00 

 

Office HM 
Secretary 

Desktop PC 1 400 from 08:00 to 16:00 continuously 

Office HM 
Secretary 

Laptop PC 1 40 from 08:00 to 16:00 continuously 

Office 
Headmaster 

Neon Light 1 40 5 days per week, from 08:00 to 
19:00, sometimes 19:00-22:00 

 

Office HM 
Secretary 

Neon Light  1 40 6 days per week, from 08:00 to 
16:00 

 

Office HM 
Entrance 

Neon Light 1 40 7 days per week, from 08:00 to 
16:00 

 

Laboratory 1 Fluorescent Light 5 9 not common, from 19:00 to 
23:00 before exams 

continuously 

Laboratory 2 Fluorescent Light 5 9 not common, from 19:00 to 
23:00 before exams 

continuously 

Laboratory 3 Fluorescent Light 5 9 not common, from 19:00 to 
23:00 before exams 

continuously 

Office HM 
Secretary 

Photocopy 
Machine 

1 1500 during examination period, from 
08:00 to 16:00 

 

Office HM 
Secretary 

Printer 1 150 from 08:00 to 16:00 continuously 

Security Light Neon Light 4 40 
  

Building 3 
Library 
Computer 
Room 

Laptop PC 3 40 once a week, closed at night 
 

Library Book 
Room 

Desktop PC 1 40 every two weeks, not at night 
 

Library Toilet Fluorescent Light 7 9   
Library Study 
Room 

Neon Light 9 40 19:00-23:00 continuously 

Library 
Computer 
Room 

Fluorescent Light 1 9 19:00-23:00 continuously 

Library Book 
Room 

Fluorescent Light 1 9 19:00-23:00 continuously 

Library Study 
Room 

Projector 1  once a week, closed at night  

Library Study 
Room 

TV set 1 300 once a month 2 hours 

Building 4 
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Location Appliance Unit Power [W] Functioning hours per day Usage  

Offices Bursar Laptop PC 1 80 from 06:00 to 21:00 continuously 
Offices Science 
Teacher 

Laptop PC 1 80 once a week, sometimes 19:00-
23:00 

2-3 hours 

Offices Staff Fluorescent Light 10 9 not common, sometimes 19:00-
23:00 

continuously 

Offices Staff Neon Security 
Light 

2 40   

New Computer 
Room 

TV set 1 250   

Building 5      
Classes Fluorescent Light 8 9 from 19:00 to 23:00 continuously 

Classes Neon Security 
Light 

1 40 from 19:00 to 05:00 continuously 

Building 6 
Classes Fluorescent Light 16 9 from 19:00 to 23:00 continuously 

Classes Neon Security 
Light 

4 40 from 19:00 to 05:00 continuously 

Building 7 
Office Second 
HM 

Laptop PC 1 80 
  

Classes Fluorescent Light 16 9 from 19:00 to 23:00 continuously 
Office Second 
HM 

Fluorescent Light 1 9 not common, sometimes 19:00-
23:00 

continuously 

Academic 
Room 

Fluorescent Light 1 9   

Common Room Fluorescent Light 1 9   

Classes Neon Security 
Light 

2 40 from 19:00 to 05:00 continuously 

Dormitory Girls 

Dormitory Fluorescent Light 31 9 from 05:00 to 06:00, from 23:00 
to 23:15 

continuously 

Common Room Neon Light 2 40 
  

Offices   2 
   

Laundry Fluorescent Light 2 9 
  

Showers Fluorescent Light 2 9 
  

Toilets Fluorescent Light 2 9 
  

Security Light Fluorescent Light 4 9   

Dormitory Boys 
Dormitory Fluorescent Light 12 9 from 05:00 to 06:00, from 23:00 

to 23:15 
continuously 

Toilets Fluorescent Light 3 9 
  

Security Light Fluorescent Light 4 40 from 19:00 to 05:00 continuously 

Kitchen 
 Fluorescent Light 6 9 from 04:00 to 06:00, from 19:00 

to 23:00 
 

 Security light 2 40   

Canteen 
 Light 8 9   
 Fluorescent Light 1 9   

Garden 
 Water pump 1 700 every day, 05:00-09:00 continuously 
 Egg incubator 1 40 all day continuously 

Shop 
 Fridge 1 500 all day  
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Location Appliance Unit Power [W] Functioning hours per day Usage  

 Fluorescent Light 2 9 19:00-21:00 continuously 
 Security light 3    

Residential 
 Fridge 1 80   
 Fluorescent Light 52 9   
 TV set  1 250   
 Security Light 17    

Rest house 
 Light 15    

 Neon Security 
Light 

2 40  
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