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Abstract

The main contribution of this thesis is related to the research field of SLAM

(Simultaneous Localization And Mapping), in which a mobile robot builds a

map of an environment while simultaneously localizing itself in it. This prob-

lem is well known within the field of mobile robotics and has already been

successfully addressed with several probabilistic algorithms that produce the

map of the environment that the robot has explored. SLAM algorithms do

not take into account the reliability of the produced map, i.e., how much the

map reconstructed by the robot is similar to the actual map of the environ-

ment, called ground truth. Knowing, without running a SLAM algorithm,

the quality of the map produced in a given environment would be of great

advantage for research and industrial applications. For example, you might

know in advance if the algorithm is expected to build a map that is accurate

enough to allow the robot to complete its task. In order to have such knowl-

edge, it would be necessary to know how an algorithm behaved in different

environments in order to correlate its performance with the characteristics

of the environment. With this thesis we want to move a step towards the

goal of having a method to predict the quality of the map produced by a

SLAM algorithm by presenting a system for the automatic evaluation of the

maps. The entire system has been implemented using the Robot Operating

System (ROS) framework.
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Sommario

Questo lavoro di tesi si colloca nell’ambito dello SLAM (Simultaneous Lo-

calization And Mapping), termine che indica l’operazione con cui un robot

mobile costruisce incrementalmente una mappa di un ambiente localizzan-

dosi allo stesso tempo al suo interno. Possibili soluzioni al problema di

SLAM sono state proposte con successo con diversi algoritmi probabilis-

tici che producono la mappa dell’ambiente che il robot ha esplorato. La

qualità di una mappa ottenuta mediante algoritmi di SLAM, ovvero quanto

sia aderente all’ambiente che rappresenta, non è nota a priori. Riuscire a

conoscere, senza eseguire l’algoritmo, la qualità della mappa prodotta in un

determinato ambiente sarebbe di grande vantaggio per applicazioni di ricerca

e industriali. Per esempio si potrebbe sapere in anticipo se l’algoritmo in

questione costruisce una mappa abbastanza accurata per permettere al robot

di portare a termine il suo compito. Per fare questo servirebbe conoscere

come si comporta un algoritmo in diversi ambienti per poter correlare le sue

prestazioni alle caratteristiche dell’ambiente. Con questa tesi si vuole com-

piere un passo verso l’obiettivo di avere un metodo per prevedere la qualità

della mappa prodotta da un algoritmo SLAM, presentando un sistema di

valutazione automatica delle mappe. Tutto il sistema è stato implementato

usando il framework Robot Operating System (ROS).
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Chapter 1

Introduction

Autonomous mobile robots, in order to complete a task, usually rely on

a map representing the environment. This map is not always provided a

priori. Sometimes, robots have to build a map of the environment while

simultaneously determining their location within this map. This problem is

called Simultaneous Localization and Mapping (SLAM) [11], or Concurrent

Mapping and Localization (CML), and is a fundamental challenge of mobile

robotics [42]. To address this issue a robot can rely on sensors, that can

be of different types. These sensors receive data from the world in which

the robot is located. For example, a laser range finder sends laser beams

and measures the time taken by these beams to be reflected off the objects

and returned to the range finder, in this way it can compute the distance

of the objects. Another example is represented by the sensors that measure

the movements, namely the odometry, of the robot. However, since the in-

formation collected by these sensors is not completely reliable, there is the

need of SLAM algorithms. These algorithms try to find a correct estimate

of the map while localizing the robot, within it. Different SLAM algorithms

[14, 17, 41], with good results, have been developed to solve SLAM prob-

lems. However, to the best of our knowledge, there is not any standard

way of assessing the quality of the map produced by these algorithms in an

automated way.

The objective of this thesis is to build a system that evaluates the quality

of a map built by a SLAM algorithm in an environment without the inter-

vention of a human. Being paired with simulations, the proposed system

allows to generate a large quantity of data on the performance of SLAM

algorithms. With these data it will be possible to correlate the quality of

the SLAM algorithm’s map to some features of the environments, and, given

a new environment, predict, based on its features, the quality of the map



potentially produced by the algorithm.

In order to evaluate map quality we have to define what is map quality,

so we study different approaches in the literature. Many of the approaches

rely on the visual similarity between the map built by the SLAM algorithm

and the ground truth map, and often a visual similarity check is performed

by a human in a qualitative way. The approach that we select as reference

is the one, developed by Kümmerle et al. [24], which assumes that if the

trajectory reconstructed by the SLAM algorithm is similar to the ground

truth trajectory, then the map is accurate. In particular, it computes the

displacement between pair of poses on the trajectory estimated by the SLAM

algorithm and those on the ground truth trajectory, that are the real poses

that the robot assumes. However, the original method proposed in [24] has

a human component in it: the ground truth trajectory file is built by a

human who knows the structure of the environment. We build a system

that generates in an automated way the ground truth trajectory file that

has to be compared with the estimated trajectory produced by the SLAM

algorithm. This method [24] have been proved to be reliable if a reliable

ground truth path is available [23]. Thus, we use simulations to have access

to the ground truth trajectory followed by the robot while navigating in

the environment. Simulations have also other useful properties: first, we

can repeat evaluations of different explorations, with the same conditions

of the environment. Second, we can test the system on many different

environments with little effort. Third, we can let the system run generating

evaluation data for hours or days without logistic problems.

SLAM algorithms are influenced by different factors, that include envi-

ronment, robot path, sensors, computing power, and the algorithm used.

The SLAM algorithm evaluated is GMapping [1], that is based on a particle

filter approach. The posterior probability is represented as a set of possible

robot locations and maps (the particles) and is updated using the sensor

input. The quality of the map depends on the number of particles used

to represent the posterior probability. As the number of particles goes to

infinity, nonparametric techniques tend to converge uniformly to the correct

posterior [42]. A weight is associated with each particle, indicating how well

the observations correspond to that particle. At the end of an iteration a

new set of particles is sampled using the calculated weights. GMapping is a

well known SLAM algorithm with generally good performance and reliabil-

ity [34]. We try to evaluate a SLAM algorithm performance related to the

characteristics of the explored environment.

A problem that we face is the autonomous exploration of the environ-

ments. Since we have to automatize the generation of data we must have
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a good navigation algorithm that explores the environment autonomously,

getting stuck less possible. We develop the system using the ROS (Robot

Operating System) framework [33], so we use the Navigation Stack provided.

However, the Navigation Stack shows limits in the exploration, and some

tuning of the parameters and code adjustments are necessary to improve

its performance. The simulator used is Stage [13]. The implemented sys-

tem launches all the processes needed for the exploration and mapping of

an environment, and a Python script checks if the exploration is completed

and, if so, it starts another exploration. In future, environments can be

classified according to features and can be related to the quality of the map

produced by the SLAM algorithms. This relation will result in a system

able to predict the capacity of a SLAM algorithm to build a correct map in

a new environment, only by knowing its relevant features.

The structure of this thesis is the following: in Chapter 2 we discuss a

number of works that are related to ours and that were of inspiration for this

study. In Chapter 3 we define the evaluation method and the problems we

are dealing with in more detail. In Chapter 4 we introduce the way in which

we generate the data for the evaluation of the map quality. In Chapter 5

we present the software architecture of the system. In particular, we first

give a short overview of the ROS framework and the Stage simulator, over

which we build and test our system, and then we give the details of the

implementation of the architecture. In Chapter 6 we show the experiments

we perform to test our system, along with the obtained results. In Chapter

7, we conclude by summarizing the purposes and the final evaluations of

this thesis. Some suggestions for future works are also proposed.

7



8



Chapter 2

State of the art

In robotics, when the robot does not have access to a map of the environ-

ment, nor it has not access to its own poses Simultaneous Localization and

Mapping (SLAM), problems might arise. SLAM, also known as Concurrent

Mapping and Localization (CML), is one of the fundamental challenges of

robotics, dealing with the necessity of building a map of the environment

while simultaneously determining the location of the robot within this map

[40]. To map an environment and localize itself, the robot relies on sensors,

which gather data from the world but, since they are often erroneous, we

cannot rely directly on them to get the robot position and the position of the

obstacles in the world. SLAM algorithms try to solve this problem, through

estimation of the map and the localization within it.

Many kinds of sensors can be used for mapping and localization. Range

sensors are one of these and suffer from four different types of noise: small

measurement noise, errors due to unexpected objects, errors due to failures

to detect objects, and random unexplained noise. The first type of noise

happens for the limited resolution of the sensors and atmospheric effects on

the measurement signal. Errors due to unexpected objects are caused be-

cause the environment where the robot moves is dynamic, this means that

objects detected can move, typical examples of moving objects are people

that share the operational space of the robot. The error occurs when a

object detected moves, then the obstacle map has to be updated, but this

can require time (i.e., the next scan). Sometimes, obstacles are missed al-

together. For example, this happens frequently with sonar sensors when

measuring a surface at a steep angle. Failures also occur with laser range

finders when sensing black, light-absorbing objects, or when measuring ob-

jects in bright light. Finally, range finders occasionally produce entirely

unexplained measurements. For example, sonars often generate phantom



readings when their signals bounce off walls, or when they are subject to

cross-talk between different sensors. Another kind of sensors are the motion

sensors that provide odometry. Odometry is commonly obtained by inte-

grating wheel encoders information (distance traveled, angle turned) and

most commercial robots make such integrated pose estimation available in

periodic time intervals (e.g., every second). Also these sensors suffer from

errors, for example drifting and slippage. These imperfect sensors make the

use of SLAM algorithms necessary to estimate the map and the localization

of the robot within this map.

Despite SLAM is by this time well known and well-defined (in planar

indoor environments could be considered as an almost solved problem [45])

to the best of our knowledge there is not a standard evaluation methodology

for SLAM algorithms, although many proposals have been discussed in the

robot community, as we will illustrate in this Chapter. A quantitative as-

sessment of the reliability of the map built and the localization estimated is

of high interest for many reasons. First of all, it allows individual researchers

to quantify the quality of their SLAM approach and to study the effects of

system specific choices made, like different parameter values, in an objective

way. Secondly, it allows researchers to rank the quality of their different ap-

proaches to determine scientific progress; similarly, it allows rankings within

competitions like RoboCup.

The purpose of this chapter is to give an overview of the current state of

the art of SLAM algorithms and to present the techniques used to evaluate

the quality of these algorithms. Assessing the quality of maps in a simple,

efficient and automated way is not trivial and represents an ongoing research

topic [35]. In this chapter we also try to define from the literature what is

usually intended as map quality.

2.1 SLAM algorithms

SLAM is concerned with the problem of building a map of an unknown

environment by a mobile robot, while at the same time navigating the en-

vironment using the map. The term SLAM is, as stated, an acronym for

Simultaneous Localization And Mapping. It was originally developed by

Hugh Durrant-Whyte and John J. Leonard [27] based on earlier work by

Smith, Self and Cheeseman [37]. Durrant-Whyte and Leonard originally

termed it SMAL but it was later changed to give a better impact.

For mapping and localization there is the need of a representation of

the environment, that is the map. Maps can be represented in many dif-
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ferent ways. In robotics, the most popular representations are grid maps

for two dimensions and point clouds or voxel maps for three dimensions.

2D maps were the earliest representation while 3D representations demand

much more computing power and memory, but are becoming increasingly

popular. Grid maps represent the area of the environment as a matrix.

Generally each cell represents whether the portion of space it represents is

occupied by an obstacle, free or unobserved. The size of the cells depends on

the resolution of the grid. In probabilistic grid maps every cell is represented

by a probability of being occupied or free, usually a value between 0 and

255 is used in order to occupy only one byte of memory. The map is initial-

ized with the unobserved value between the minimum and maximum (128).

Subsequent observations then update this value: the higher the probability

of being occupied the higher the value and vice versa.

Voxel maps a 3D grid, where each cell is a cubic volume of equal size,

to discretize the mapped area. The problem with this approach is the high

memory consumption. Point clouds use the distance of the obstacles re-

turned by range sensors, such as laser range finders or stereo cameras, to

model the occupied space in the environment. The drawback is that free

space and unknown areas are not modeled [18]. Also 2.5D maps can be used

as a model of the environment. Typically, a 2D grid is used to store the

measured height for each cell.

SLAM algorithms use the sensors to extract landmark points that are

distinct, stationary features of the environment that can be recognized re-

liably. These landmarks are the basis for localization and mapping. Since

the errors are not predictable, SLAM algorithms are based on probability:

given the recorded observations of the range sensors and control inputs to-

gether with the initial state of the robot, SLAM algorithms compute the new

landmark locations and the robot position. As stated in [11] the probability

distribution

P (xk,m|z0:k, u0:k, x0) (2.1)

has to be computed for all times k, where xk is the state vector describing

the location and orientation of the robot, m is the set of all landmarks, z0:k is

the set of all landmark observations, u0:k is the history of control inputs and

x0 is the initial state of the robot. This is a general probability distribution

for the SLAM problem, but it can be slightly different depending on the

implementation. The process of updating the distribution can be divided

in five steps: landmark extraction, data association, state estimation, state

update and landmark update. There are many ways to solve each of these

steps.
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Figure 2.1: The essential SLAM problem. A simultaneous estimate of both robot and

landmark locations is required. The true locations are never known or measured directly.

Observations are made between true robot and landmark locations. Image from [11]

Since there is not a single way to solve this problem many SLAM algorithms

have been proposed, the more relevant are based on:

• Extended Kalman filters;

• Expectation maximization;

• Particle filters;

• Graph-based approaches.

Historically, the earliest, and perhaps the most influential SLAM algo-

rithm is based on the extended Kalman filter, or EKF. In a nutshell, the

EKF SLAM algorithm applies the EKF to online SLAM using maximum

likelihood data association. Using an EKF the estimates of the position of

the landmarks and the robot are kept and updated if a loop is closed (a

landmark is re-visited) [16]. EKF SLAM has indeed been applied success-

fully to a wide range of practical mapping problems, but a key limitation of

it lies in the necessity to select appropriate landmarks. By doing so, most

of the sensor data is usually discarded. Further, the quadratic update time
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of the EKF limits this algorithm to relatively scarce maps depending on the

hardware computing capability.

Expectation Maximization is an optimization algorithm [41] based on

landmarks, in which the robot motion and the perception are statistically

processed. In this maximum likelihood estimation problem the location of

landmarks and the robot position are estimated using two steps. The expec-

tation step keeps the current map constant and calculates the probability

distribution of past and current robot locations. Then the most likely map

is computed in the maximization step. This is based on the estimation result

of the expectation step. Through the alternation of these two steps SLAM is

achieved, that results in a local maximum in the likelihood space. According

to [6], it is computationally very extensive and cannot incrementally build

maps.

Particle filters are nonparametric filters. These filters are recursive Bayesian

filters using Monte Carlo simulations to keep track of the robot location [17],

[15]. Nonparametric filters do not rely on a fixed functional form of the pos-

terior, such as Gaussians. Instead, they approximate posteriors by a finite

number of values, each roughly corresponding to a region in state space.

The quality of the approximation depends on the number of values used to

represent the posterior probability. As the number of values goes to infinity,

nonparametric techniques tend to converge uniformly to the correct poste-

rior [42]. The posterior probability is represented as a set of possible robot

locations and maps (the particles) and is updated using the sensor input. A

weight is associated with each particle, indicating how well the observations

correspond to each other. At the end of the iteration a new set of particles

is sampled using the calculated weights.

Particle filtering can be very inefficient in high-dimensional spaces. To make

it treatable the use of a technique called Rao-Blackwellization is needed. A

Rao-Backwellized Particle-Filter or RB-PF, estimates the joint posterior of

SLAM using the following factorization:

P (x1:t,m|z1:t, u1:t−1) = P (m|x1:t, z1:t) · P (x1:t|z1:t, u1:t−1) (2.2)

This factorization allows us to first estimate only the trajectory of the

robot, and then to compute the map given that trajectory. Since the map

strongly depends on the estimated pose of the robot, this approach offers

an efficient computation.
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Figure 2.2: The ground truth image used by a simulator and the corresponding grid

map built by GMapping

The most popular implementation of this kind of filters is GMapping [1].

It is available online at OpenSLAM.org1, the C++ code is open source and

there is also a Robot Operating System (ROS) implementation. It has sev-

eral improvements to reduce the number of particles needed. The approach

computes the proposal distribution taking into account also the most recent

observations, first a scan-matcher (i.e., an algorithm that associates similar

scans) is used to determine the meaningful area of the observation likeli-

hood function. Then the sample is taken in that meaningful area. This

helps to have a more accurate proposal distribution in the prediction step

of the filter. Furthermore, the resampling step can potentially eliminate the

correct particle. This effect is also known as the particle-depletion problem,

or particle impoverishment. In [1] this step is improved using a adaptive re-

sampling strategy, allowing to perform a resampling step only when needed,

and in this way keeping a reasonable particle diversity. An example of the

output map of GMapping is showed in Figure 2.2.

The last approach presented here is graph-based SLAM. In this kind of

solution to the SLAM problem the sensor data is saved in nodes and the

robot movement in the edges between the nodes [14]. The main idea be-

hind graph-based SLAM methods is to use a graph to represent the problem

in which every node in the graph corresponds to a pose of the robot dur-

ing mapping and every edge between two nodes corresponds to a spatial

constraint between them, the goal is to build the graph and find a node

configuration that minimize the error introduced by the constraints.

1https://www.openslam.org/gmapping.html

14



2.2 Evaluation of the map quality

In the previous section we showed that SLAM is a problem that can be

solved with different techniques. Every technique has pros and cons and

understanding which works better is useful when it comes to choosing an

algorithm. Unfortunately, since these algorithms are different, they provide

different kinds of maps and also different kinds of errors. Having a single,

consistent way of assessing the quality of the map is not a trivial task. In the

area of grid-based mapping techniques, people often use visual inspection

to compare maps with blueprints of buildings [24]. Map quality is not the

only thing that matters in SLAM algorithms, and other ways to evaluate

an algorithm consider different factors, for example the time in which the

map is built and the computing load needed. The relative importance of the

factors depends on the task that the robot has to achieve.

The derivation of meaningful quantitative assessments of map quality is

desirable for many reasons. It can allow a ranking, which can be used in

competitions like RoboCup. Also, in a work that tries to improve a SLAM

algorithm, quantitative results can be compared to understand if a new

feature enhances the quality. Another useful consequence of a quantitative

measure is that it can allow researches to compare their systems and provide

information about the development of the field as a whole.

A way of assessing the quality of a map is by using different attributes

[36]. Those attributes can be measured separately and weighed according

to the needs of the application [26]. Those attributes can include:

• Coverage: how much area was traversed/visited;

• Resolution quality: to what level/detail are features visible;

• Global accuracy: correctness of positions of features in the global ref-

erence frame;

• Relative accuracy: correctness of feature positions after correcting (the

initial error of) the map reference frame;

• Local consistencies: correctness of positions of different local groups

of features relative to each other;

• Brokenness: how often is the map broken, i.e., how many partitions of

it are misaligned with respect to each other by rotational offsets [9].

Another point that doesn’t allow a single evaluation of the algorithms is

that the evaluation methodologies are often biased by hardware and settings.
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Indeed the quality of a map produced by a robot is influenced by many

different factors:

• Environment: sparse environments are difficult for most mapping ap-

proaches. SLAM algorithms perform better in structured datasets

than unstructured ones, because features can be more easily identified

[28];

• Robot path: the path that a robot took to gather the sensor data can

contain different occurrencies of loops. A loop is closed when the robot

returns in a location that it has already seen. Loop closing is the main

way to reduce the accumulated error in the map [32];

• Sensors: the range, field of view, accuracy, and the position of the

sensor on the robot are factors influencing mapping algorithms;

• Computing power: SLAM algorithms can be very computational inten-

sive and computing power on mobile robots can be limited. Moreover

process time is often restricted in real time applications because other

tasks depend on mapping and localization, like path planning. To re-

duce the hardware load several limitations to the algorithms can be

applied, for example use less scans from the range sensors or execute

less frequently loop closing algorithms, at the cost of a probably worse

performance;

• Algorithm: the mapping algorithm itself influences the map quality to

a great extend.

After analyzing the factors that influence the evaluation of a map we

had to find a method to determine the quality of this map in a quantitative

way and not only by human visual inspection.

Here follows a review on the techniques for map evaluation proposed in

the literature:

Yairi [46] proposed to use Least Mean Squares of Euclidean Distances

(LMS-ED) to measure the distance between similar points from both maps.

As well as any similar Euclidean neighborhood-based metric LMS-ED is

expensive to compute. It is hence usually not applied to all cells of the

occupancy grids, but only to a very limited sets of landmarks.

Varsadan, Birk and Pfingsthorn [43] use an image based approach. The

similarity function defined in this work is the sum over all colors of the

average Manhattan-distance of the pixels with color c in picture a to the
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nearest pixel with color c in picture a
′

and vice versa. In the context of

occupancy grid maps, the color c simply corresponds to occupancy informa-

tion. Unlike LMS-ED this metric can be computed very efficiently, namely

in linear time. They tested it on four type of errors: salt and pepper noise,

translation, rotation, and scaling. Maps with a very good geo-reference can

be evaluated quite nicely, but slightly broken maps or errors in the initial

frame of reference lead to bad values, although the map might look very

nice.

Lakaemper and Adluru [25] use a comparison with a ground truth map.

They get from the laser scans lines and rectangles of the environment with a

method called Virtual Scans and align it with the ground truth. The align-

ment energy quantify the similarity of the two maps. This metric measures

topological correctness and can also quantify the global correctness. It can

maybe have problems with unstructured environments because it is based

on lines and rectangles.

The metric of Wagan, Godil and Li [44] is a feature based approach

comparing a map to a ground truth map. They focus on the structural

details in the map, proposing a novel method to assess the map quality

based on three separate algorithms, each corresponding to a different type

of features found in the map. These are: Harris Corner Detector, Hough

Transforms, and Scale Invariant Feature transform. These measures will

give three values which can be used to assess the quality of the map in three

different terms. The three algorithms are run on the map produced and

on the ground truth map and then the ratio between the set of features is

the metric assessing the quality. This system is only suitable for offline-

measurement for the quality of the maps and, as mentioned in the paper,

noise, jagged lines, and distortions pose problems to the feature detectors.

This approach can thus only be applied to nearly perfect maps.

Pellenz and Paulus [31] also propose to use feature extraction. They use

Speeded Up Robust Features (SURF) and extract rooms as features from

the grid map. Then the translation vector and the rotation matrix that

minimize the location error of the matched features are computed. Quality

is computed as the average match error over features. This is a completely

automatic way for evaluation. However, experimental results of the metric

are not presented.

All the metrics presented till now are based on the comparison of the map

produced by the SLAM algorithm with the ground truth, but there are other

ways of judging SLAM algorithms. Every algorithm produces a trajectory

that is the sequence of estimated poses, so if the ground truth trajectory
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is available the deviation can be computed. This kind of evaluation have

the important property to be independent of the sensor setup of the robot,

and this allows for example to compare laser-based systems with vision-

based ones. Here the assumption is that correct localization is a sufficient

indicator for a good map quality.

In [45] a system to evaluate the quality of a 3D map, obtained with Monte

Carlo Localization (MCL) for matching 3D scans, with a map obtained from

the land registry office has been developed. However the MCL output is

checked by a human to be sure that the path computed is feasible as ground

truth. The comparison between generated map and ground truth is carried

out by computing the Euclidean distance and angle difference of each pose.

Standard deviation and maximum error of the trajectory are provided for

comparisons. Comparing the absolute error between two trajectories might

not yield a meaningful assertion in all cases. This effect gets even stronger

when the robot makes a small angular error especially at the beginning of

the dataset (and when it does not return to this place again). Then large

parts or the overall map are likely to be consistent since the error is only at

the beginning of the path. However the output error given by this system

will be huge because every pose after the initial error will be considered

erroneous.

The more relevant metric of this type is the one introduced in [24] that

is also the basis of our work. It is based on the deformation energy that is

needed to transfer the estimate into the ground truth. Unlike in [45], the

displacement from every pose of the real path is computed independently

from the others. So if there is a error at the beginning of the mapping

this is not carried on for the rest of the process. It will be described with

more precision in Chapter 3. This method is an excellent metric for map

evaluation if a ground truth path is available. It is used in [23] to test the

performance of three teams in the RoboCupRescue Interleague Challenge

2009 and in [28] to compare different open source packages of visual SLAM.

Birk [9] computes one interesting attribute of maps that can be used

for map evaluation: the level of brokenness. This value tries to capture

the structural errors in grid maps, structural error here means a fault that

affects the global spatial layout. The map is partitioned into regions that are

locally consistent with ground truth. Brokenness measures the number of

these regions not aligned with the reference map. It can be use to determine

the structural quality of a map in a quantitative way.

At last, in [35] it is proposed a metric for topology graphs. From the

2D grid map the nodes and edges of the graphs are extracted to have a

model of the structure of the environment. Based on a similarity metric on
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Figure 2.3: A typical example of “broken” map (right) and the same map without

errors. Image from [9]

vertices in topology graphs, the vertices can be matched across maps and

spatial (dis)similarities, and hence errors in the mapping, can be identified

and measured. More precisely, the vertex-similarity is the basis to match

the structures of topology graphs up to the identification of subgraph iso-

morphisms through wave-front propagation. This allows to determine map

quality attributes up to very challenging structural elements like brokenness.

2.2.1 Comparision between SLAM algorithms

Another way to evaluate SLAM algorithms is to compare the algorithms in

the same environment and see which performs better. This is an interesting

method but the test cases have to be chosen accurately. In many cases

the map in which the algorithms are tested is not very challenging and this

can lead to misleading results. An algorithm that works well in a small

room can fail to handle more large environments with respect to another

that is less accurate but more efficient. Further, using few maps is not

really meaningful because of the varying performance of SLAM algorithms,

depending on the way they extract landmarks and associate data. This

means that an algorithm can overcome the accuracy of another in a type of

map but perform worse elsewhere.

In the work presented in [34] the available laser-based 2D SLAM algo-

rithms already implemented in ROS are compared. The experiments are run

both in simulated and real world environments. The algorithms tested are

HectorSLAM, GMapping, KartoSLAM, CoreSLAM and LagoSLAM. The

robot has been teleoperated by a human in all the experiments, the re-

sults showed that GMapping is robust in different environments and with a
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low computational complexity. The best results are provided by Karto and

GMapping. The evaluation of the quality is given by a comparison of the

ground map and the generated map. The distance from each occupied cell of

the ground truth map to the nearest cell in the resulting map is determined

computing the k-nearest neighbor cell. The sum of all distances obtained

is then divided by the number of occupied cells in the ground truth map.

The test were performed in 2 maps with low degree of complexity, so more

investigation can be performed.

In [8] three different bearing-only SLAM algorithms are evaluated: Ex-

tended Kalman Filters, Incremental Maximum Likelihood and Rao-Blackwellized

Particle Filters. The experiments were conducted on simulated environ-

ments with different noise, landmark density, and paths. To check how well

an algorithm has performed two criteria are considered. The first one is

robustness that is the percentage of successful runs: a run is considered suc-

cessful when the localization and mapping errors are below two empirically

chosen thresholds, however, it is not clear how the error is computed. The

other criteria is efficiency that is the average amount of time in milliseconds

that each method spends per step. Rao-Blackwellized PFs showed robust-

ness with respect to the other two approaches. Also here the environment

is not particularly complex: a simulated rectangle with low (5 landmarks)

or high (100 landmarks) landmark density.

In [28] a comparision of different open source packages of visual SLAM

algorithms is performed. The algorithms were tested on a variety of en-

vironments (including indoor, outdoor, and underwater) and vehicle types

(including terrestrial, air-borne, marine surface, and underwater platforms),

here all the hardware settings are well documented. The algorithms were

evaluated using the provided datasets from each package using cross-validation

(i.e., evaluating every algorithm on the datasets provided in the other pack-

ages) and in eight new datasets. In [28], the metric evaluation from [24] is the

basis to compute the quality of the maps produced by the SLAM algorithms

but without considering the rotational error. Human interaction is needed

to control the ground truth data. Also track loss percentage, that is the ra-

tio between the time in which the system is not localized and the total time

of the dataset, and memory usage are considered. The results show that the

SLAM algorithms evaluated perform better in structured datasets than in

unstructured ones, because features can be more easily identified. Another

result is that the algorithms perform well in their respective datasets and

also in the datasets provided with the other packages. This is not the case

in the new datasets were the performance are many times worse also with

parameters tuned ad hoc.
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Balaguer, Carpin, and Balakirsky [7] utilize the USARSim robot simu-

lator and a real robot platform for comparing different open source SLAM

approaches. They demonstrated that maps resulting from processing simu-

lator data are very close to those resulting from real robot data. Hence, they

concluded that the simulator engine could be used for systematically bench-

marking different approaches to SLAM. However, it has also been shown

that noise is often, but not always, Gaussian in the SLAM context [39].

Gaussian noise, however, is typically used in most simulation systems. In

addition to that, [7] do not provide a quantitative measure for comparing

generated maps with ground truth. As with many other approaches, their

comparisons were carried out by visual inspection. In this paper it is also

pointed out that there is no rigorous approach in comparing different per-

formance in the robot community and that there is a lack of shared code: it

is still too often observed that when a new project is started, certain tasks

are coded again from scratch, rather than relying on existing libraries.

Sharing the data and the code is not so common in the community, but,

as stated in [5], comparison concerns the capability not only of knowing what

has been already done in the past, but also of comparing the new results

with the old ones. This means that all the results have to be presented,

good ones and bad ones, and they have to be well documented. It is not al-

ways the case in the field of SLAM evaluation where happens frequently that

the parameters of the algorithms and the hardware are not specified. The

main settings in which SLAM algorithms are evaluated are articles where

a new metric is presented, comparisons on public datasets, or competitions

like RoboCup. When a evaluation metric is proposed most of the times the

environment is not particularly stressful for the system, like only one map

not representing a real environment of use. Also some settings are selected

because it is recognized (a posteriori) that they have brought to satisfactory

results.

The competition settings are likely to generate additional noise due to dif-

fering hardware and software, furthermore the environments are not always

real but designed ad hoc.

The public datasets are the best way to assess a good comparison and thanks

to the ease of use and availability their use is common. For example Radish

[19] and Rawseeds [3] are collections of recorded robot real-world runs. The

drawback of these datasets is their poor variety: most are collected in-

side university campuses, university parking structures, research labs, re-

searchers’ offices, and university cafeterias. They represent only a very nar-

row and specific class of environments [5]. For example, a robot that has to
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work in a complex environment, such as an old hospital, may face problems

that are difficult to detect with tests performed in a modern office building

because of the differences in the architecture. This can influence the selec-

tion of landmarks and hence bad landmarks can be chosen in environments

with objects and obstacles that the algorithm has never seen before.

These limitations in achieving comparison and generalization don’t al-

low to predict the performance of SLAM algorithms in new environments

due to all the factors influencing map quality stated above. So their appli-

cability in settings different from those in which they have been developed

is not guaranteed. From these conditions follows this thesis. To the best

of our knowledge, there are no works in literature that try to predict the

performance of SLAM algorithms in a new environment, but an interest-

ing work is [47]. The aim of the system described in the [47] is to predict

the performance of autonomous robots measuring the complexity of the

environment. The hypothesis is that by modeling the complexity of the

environment in which a system will operate, it is possible to predict the sys-

tem’s performance. However, with this approach, the overall system, and

not SLAM algorithms, are evaluated. To predict the quality of the map

built by SLAM algorithms thus can be useful understand the structure of

the environment, this can be related to semantic mapping, i.e., associate

a high-level human-understandable label (like “office” or “corridor”) to a

portion of an environment [29]. Know how well SLAM algorithms operate

in a type of environment can be used to predict the performance in another

environment of the same type. But this need lots of data to generalize the

results.

All the studies described so far provide a background that has been of

inspiration for this thesis. The SLAM algorithm we evaluated is the ROS

implementation of GMapping [1]. In almost all the approaches found in

the literature a human intervention is performed to check the reliability of

the map or to build the ground truth, this makes an automatization of the

evaluation process impossible. In this work we try to completely remove the

human to have the possibility to run several evaluations of the map quality

in a fast and automated way. We use the metric by [24] to evaluate maps

but we modify the generation of the ground truth to make it completely

automatic. Using simulations, in particular the Stage simulator [13], we test

GMapping with the same settings in many different environments to achieve

generalization and have a better understanding of its ability to build maps.
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Chapter 3

Problem setting

The objective of this thesis is to predict the quality of the map that a

SLAM algorithm will build in an environment, before actually exploring

it. In order to tackle this problem we think that the availability of an

extended set of measured performance of a SLAM algorithm in different

environments can allow us to generalize and thus predict its performance

(i.e., the quality of map and localization output) in new environments, based

on the environment’s characteristics. The main problem faced in this thesis

is how to evaluate, without any human interaction, the quality of the maps

produced by a SLAM algorithm run on a dataset composed of buildings

of different structure. As explained in Chapter 2 there is not a standard

evaluation methodology of the quality of a map in a quantitative way. We

chose to use the metric presented in [24] because it is considered a reliable

evaluation methodology when the ground truth path is available [36]. In our

solution we extensively evaluate the ROS implementation of GMapping by

automatizing the generation of data of several maps and data representing

the maps’ quality as produced by GMapping. Generating this data with

real robots is an expensive task, but the use of simulations is an accepted

method in the community to test new systems [5]. Simulations have many

advantages in our case. First of all, we have easily access to the ground

truth path of the robot. Secondly we can repeat the same experiment with

the same conditions (same starting point, exactly same environment, same

sensors) multiple times without any further procedures. Finally, since we

need lot of data, we can run simulations without human supervision for long

time.



3.1 Evaluation method

We need a reliable way to asses the quality of the map produced by the

SLAM algorithm. The output of a SLAM algorithm is a series of estimated

poses of the robot, and a map of the environment. The evaluation approach

we used, presented in Kümmerle et al. [24], relies on the evaluation of the

displacement between the estimated poses and the corresponding ground

truth poses.

The assumption it makes is that if the localization is good, then the

mapping is also good. Let x1:T be the poses of the robot, estimated by the

SLAM algorithm from time step 1 to T . Let x∗1:T be the ground truth poses

of the robot, ideally the true locations. In planar environments a pose of a

robot is summarized by three variables, these are its two-dimensional planar

coordinates, x and y, relative to an external coordinate frame, along with

its angular orientation θ. The pose at time t is described by the vector:

xt =

xy
θ



A straightforward error metric could be defined as

ε(x1:T ) =
T∑
t=1

(xt 	 x∗t )2 (3.1)

where xt 	 x∗t is the relative transformation that moves the pose x∗t onto

xt. Let δi,j = xj 	 xi and accordingly δ∗i,j = x∗j 	 x∗i . The mathematical

operation that computes δi,j is the roto-translation that moves xi to xj .

A roto-translation is the rigid body transformation that moves the pose at

time i to the pose at time j. Since we are in an absolute reference frame

from linear algebra we have:

δi,j = M−1
i ×Mj (3.2)

where M−1
i is the inverse of the matrix that moves the robot from the origin

of the frame to the pose xi, and Mj is the matrix that moves it from the

origin to xj , as shown in Figure 3.1.

Mj thus is composed by a rotation and then a translation, that in matrix

notation is:
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Figure 3.1: Representation of δi,j = xj 	 xi. The poses considered are xj and xi and

the grey arrow represents δi,j . The black arrows are the translations needed to move

from the origin to the poses. The red arrows indicate the orientation of the robot. The

dashed line is the orientation of pose xi compared to xj . The green line is the series

of poses of the robot, namely the trajectory

Mj =


1 0 0 xj
0 1 0 yj
0 0 1 0

0 0 0 1

×

cos(θj) −sin(θj) 0 0

sin(θj) cos(θj) 0 0

0 0 1 0

0 0 0 1


Equation 3.1 can be rewritten as

ε(x1:T ) =

T∑
t=1

((x1 ⊕ δ1,2 ⊕ ...⊕ δt−1,t)	 (x∗1 ⊕ δ∗1,2 ⊕ ...⊕ δ∗t−1,t))
2 (3.3)

where ⊕ is the inverse of 	. This means that every pose xt is composed of

the summation of the roto-translations from the origin (pose x1) to pose xt.

Assume the robot makes a translational error of e during the first motion

δ1,2 = δ∗1,2 + e, but perfectly estimates all other points in time δt,t+1 = δ∗t,t+1

for t > 1. Thus, the error according to (3.3), will be T · e, since δ1,2 is

contained in every pose estimate for t > 1. However, if we estimate the

25



Figure 3.2: This figure illustrates a simple example where the metric in (3.1) fails.

The light blue circles show the reference positions of the robot x∗i while the dark red

circles show the estimated positions of the robot xi. The correspondence between the

estimated locations and the ground truth is shown with dashed lines, and the direction

of motion of the robot is highlighted with arrows. In the situation shown in the upper

part, the robot makes a small mistake at the end of the path. This results in a small

error. Conversely, in the situation illustrated on the bottom part of the figure the robot

makes a small error of the same entity, but at the beginning of the travel, thus resulting

in a much bigger global error. Image from [24]

trajectory backwards starting from xT to x1, or alternatively by shifting the

whole map by e, we obtain an error of e only. To illustrate this, consider

the example in Figure 3.2 in which a robot travels along a straight line.

Based on this experience, [24] proposes a measure that considers the

deformation energy that is needed to transfer the estimate into the ground

truth. This can be done by considering the nodes as masses and connections

between them as springs. Thus this error metric is based on the relative

displacement between robot poses. Instead of comparing x to x∗ (in the

global reference frame), the operation is based on δ and δ∗ as

ε(δ) =
1

N

∑
i,j

trans(δi,j 	 δ∗i,j)2 + rot(δi,j 	 δ∗i,j)2 (3.4)

where N is the number of relative displacements considered, the relations

δi,j , while trans() and rot() are used to separate, and weight, the transla-

tional and rotational components. Since every relation is independent from

the others, the ε (or transformation energy), of the example in Fig 3.2, will

be consistently estimated as the single rotational error, and the error will

not change regardless of where the error occurs in the space, or in which

order the data is processed. The error metric, however, leaves open which
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Output Map Total Error A Error B Error % B on total

error

226,950712 162,11416 64,836552 28,63

1855,651358 126,020906 1729,630452 93,21

Table 3.1: In the table, 2 different runs of the same dataset are presented with the

respective translational total errors. In the first row the map is coherent with the ground

truth, while in the second it is completely different. It can be seen that the B relations

have a large impact on the error when the map is bad

relations δi,j are included in the summation in Equation (3.4). Selecting the

more relevant relations is the problem of the metric of Kümmerle et al..

In the paper [24] the relations are manually selected by the authors:

besides the definition of the metric, Kümmerle et al. provide 5 different

datasets with the corresponding sets of relations. These datasets S are

composed by two types of relations: the first type of relations A are intended

to measure the local consistency of the trajectory, comparing two poses i and

j that are temporally close, considering as temporally close two poses with

under a second of difference. The second type of relations B are intended to

measure the topological consistency with long temporal displacements, that

can be from time 0 to the end of the run. The term “run” indicates a single

exploration of an environment by a real or simulated robot. The length of

the runs reported in [24] is between 20 minutes and an hour and a half.

B relations allow to verify if the SLAM algorithm has built a topologically

consistent map.

There are some problems with the relations provided, in fact, after we

analyzed the datasets, we find that the A relations barely affect the global

error when bad maps are produced. From now on when a map is referenced
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as good (or bad) it means that is visually similar (or not) to the ground truth

map. The reason why the A relations affect in a little measure the error is

because the displacement of the predicted trajectory, with respect to the

ground truth trajectory δi,j	 δ∗i,j , with i, j close temporally, usually has not

a high value. E.g., if the difference between i and j is 0.5 seconds, then, due

to the relatively low velocity of the robot, the translational displacement

can be in the order of centimeters and the rotational displacement in the

order of few degrees. Furthermore, the error is normalized over the number

of relations N . Instead, we found that the major contribution to the error

is given by the second type of relations, namely the B relations, that, with

large displacements, can have a high value and thus signal the errors of the

SLAM algorithm. For example, let’s assume we map a corridor and there

is only a rotational error in the middle of it, so the first part and the last

part of the corridor is right. Along the whole length of the corridor there

are the A relations and there is a B relation that starts at the beginning

of a corridor and ends at the end of it. Only few of the A relations will

catch the error, and since the error can happen in more than one second, it

will be divided in little pieces and normalized on the number of relations.

Instead, the only B relation will catch the whole error because the end point

produced by the SLAM algorithm is far away from the ground truth end

point. Table 3.1 shows how the error of the A relations doesn’t increases,

actually in this case decreases, when the map is bad. However, the error

due to the relations of type B is high.

Unluckily the relations are build by a human that knows the structure

of the environment, and in the paper they state that “for a standard dataset

with 1700 relations, it took an unexperienced user approximately four hours

to extract the relative translations that then served as the input to the

error calculation”. This is unfeasible for our scope. But, unlike in [24], we

simulate the robots and thus we can have ground truth data. Since we have

the ground truth path of the robot we can easily generate the A relations

like this: we take every 0.5 seconds the pose of the robot and we create a

relation between t and t + 0.5, so δ∗t,t+0.5 = x∗t+0.5 	 x∗t . We can build a

set of A relations on the whole path, but as we have seen they most likely

don’t contain enough information to detect the error. We will see it clearer

in Chapter 4. Hence, in our work, we focused on an automated way to

generate B relations.
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3.2 Factors influencing SLAM algorithms

In the last section we saw that the main problem is how to evaluate the

quality of a map in a automated way, but there are other factors to consider

to have a reliable evaluation of the map. In this section we analyze a set

of factors, pointed out in Chapter 2, that influence the quality of the map

produced by the SLAM algorithm. In our analysis, we want to focus our

attention on only one of such factors that influences the performance of

GMapping, namely the environment, so we kept fixed as possible the others.

The factors are:

• Algorithm;

• Robot path;

• Computing power;

• Sensors;

• Environment.

The SLAM algorithm that we use is GMapping, it is kept the same with

the same settings for all the runs. The parameters settings for Gmapping

that we used are for the most part the default ones of the ROS implemen-

tation. The ones we changed are: the particles and the angular update, we

use 40 particles, instead of 30, and 0.25 radians to update the map, instead

of 0.5 radians, to have a better performance in the building of the map. The

other parameter changed is maxUrange, that is the max range of the laser

sensor in meters, and we set it to 30.

Another factor that has to be considered is the robot path. For our work

it can’t be controlled manually, because, since we have to automatize the

generation of data, and we can’t teleoperate the robot in every environment.

A solution can be to register the series of commands needed to explore all

the environment, then run the SLAM algorithm on that path. However,

this is not a flexible solution, because for every new environment inserted

in the system a manual exploration have to be performed. This lead us to

the implementation of an autonomous navigation and exploration system.

It resulted, as we will see in Chapter 4, that tuning a good exploration

method was a major problem, since the navigation relies on the localization

provided by the SLAM algorithm. Further, the navigation system can crash

the robot against a wall and make the SLAM algorithm fail. Differentiating

the navigation errors from the ones of the SLAM algorithm is thus necessary.
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The computing power is another factor that influences the runs. We run

simulations on different machines to generate more data, and the results

were slightly different. The performances of GMapping are affected by the

computing load if it saturates the CPU. This, however, is not a problem

that happens frequently since if the system is launched on a machine with

a Core2 Quad Q9400@2.66Ghz and 4GB of memory the percentage of CPU

used on average is around 40%.

Sensors are kept the same in every simulation. The Hokuyo laser ranger

used in the simulations has a range from 0 to 30 meters, a field of view of

270 degrees and a definition of two samples for every degree. The odometry

information is provided by the simulator and it has a error provided by a

uniform random distribution. The error is set for x, y, and θ respectively as

0.01, 0.01, and 0.02. For each value, if the value specified is E, the actual

measure is chosen at random in the range -E/2 to +E/2.

The last factor is the type of environment mapped. In our work we want

to understand how well GMapping performs in different environments, so

we need to test it in many environments with various structure. We use

simulations, so we can map different kinds of buildings to obtain a good

generalization easily, since we only need a 2D floorplan, in an image format,

to have an explorable environment. The buildings explored have different

number of rooms, dimensions, and presence (or not) of furnitures. We used

two distinct datasets from universities and schools.

All these problems are addressed in the next chapters, where the pro-

posed solutions and their implementation are presented.
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Chapter 4

Data generation

In this chapter we present the solutions proposed to automatize the genera-

tion of the data. The first problem is to generate the ground truth relations

for the evaluation metric in an automated way. We begin analyzing the data

sets provided by Kümmerle et al.. There are 5 data sets, each of these is

the log of a run in university building. The data sets contain the odometry

and laser measurements of a real robot. Every run has its corresponding

set of relations. In the experiments presented in [24] different SLAM algo-

rithms are tested with these log files, and the quality of the path produced

is measured. Since we have to generate automatically the relations files, we

investigate the files provided. This is a piece of an original relations file:

90.239599 90.719599 0.422330 −0.000750 0.000000 0.000000 0.000000 0.017260

90.719599 91.321399 0.213430 −0.014750 0.000000 0.000000 0.000000 −0.405780

94.399600 94.759600 0.277100 0.063830 0.000000 0.000000 0.000000 0.097740

94.759600 95.239900 0.295310 0.033520 0.000000 0.000000 0.000000 0.059840

95.749899 96.469599 0.222950 0.050560 0.000000 0.000000 0.000000 0.125440

these values, from their documentation, indicate, respectively:

timestamp1 timestamp2 x y z roll pitch yaw

A single line corresponds to a relation: δ∗i,j = x∗j 	 x∗i . The two poses i and

j are identified by the two timestamps: timestamp1, t1, and timestamp2,

t2. x, y, and yaw represents the relative roto-translation needed to move

the pose from t1 to t2. x and y are provided in meters and yaw in radians.

For example, to go from the pose at time 90.239599 to the pose at time

90.719599, first it has to be performed a rotation of 0.017260 radians, and

then a translation of 0.422330 meters on the x axis and of -0.000750 on the y

axis. Because we are in 2D environments z, roll, and pitch have always value

0. The whole of these relations represents the ground truth. The evaluator



software uses this file as follows: it takes as input this data set of relations

and the estimated trajectory built by the SLAM algorithm, for every line

of the relations file, it computes the roto-translation from t1 to t2 between

the poses estimated by the SLAM algorithm, identified by x1, y1 and yaw1.

Then the evaluator determines the difference between the computed values,

x1, y1 and yaw1, and the corresponding values of the relations file, i.e., x, y,

and yaw. The sum of these differences is the total error, and will be divided

by N that is the number of relations. As mentioned in Chapter 3, the

relations can be divided into A and B. The A relations are characterized

by a short time difference from t1 to t2 and in all the data sets are the

major part. The B relations are fewer in number, inserted by a human, and

generally at the end of the file. After an experimental evaluation, that is

presented in Chapter 6, we have seen that the A relations are not important

for the detection of the quality of the map. Instead, the B relations reveal

important informations.

4.1 Generation of B relations

Thus we need to build the B relations. We have to find a way to detect the

errors on the whole length of the trajectory in an uniform way. The best

way that we found is to generate a random set of δi,j , with no bounds on

i and j and big enough. After some experiments this method to generate

the relations showed a good correlation between the error computed by the

evaluator and the visual quality of the maps produced.

The first thing to do is define what is the value of N , the number of

relations in the set. From statistics we know that, to generate a relevant

sample of the population, we need the standard deviation σ of it. In our case

we don’t know it, so we sample 500 test relations to compute σ and then

compute the number N of the population. We take 500 as number of test

relations because we have tried different numbers experimentally, and we

saw that after 500 the standard deviation begins to stabilize. The equation

that we use to compute the population size is:

N =

(
zσa

2

E

)2

(4.1)

where:

• za
2

is known as the critical value, the positive z value that is at the

vertical boundary for the area of a/2 in the right tail of the standard
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normal distribution. To have a 95% degree confidence this value is

1.96;

• σ is the sample standard deviation;

• E is the margin of error, the maximum difference between the observed

sample mean and the true value of the population mean, our setting

for the experiments is 0.05;

• N is the population size.

Once that we have the population size N we randomly take 2 poses from

the ground truth trajectory N times. For each time, we compute the roto-

translation, x, y, and yaw, needed to move the first pose, at time t1, on the

second pose, at time t2. These values go to compose relations the file. In

Table 4.1 an example of the error from automatic generated B relations is

shown. Visually inspecting the maps, it can be seen that in the ones that

are really different from the ground truth the mean error is in the order

of tens of meters, in maps with small differences the mean error is in the

order of few meters and in maps very similar to the ground truth the error

is lower than 1 meter. Now we have a reliable way to generate the ground

truth file that the metric evaluator uses, so we can evaluate the quality of

the maps. Nevertheless, we can’t explore autonomously the environments.

We have to set up a stable navigation system that can handle different types

of environments.

4.2 Autonomous exploration

We first tried a navigation package named nav2d [21] that allows to control

a mobile robot within a planar environment. The main features are a purely

reactive obstacle avoidance and a simple path planner. However, we found

that this package works well only in simple environments (4-5 rooms without

furniture) while in more cluttered or vast maps it gets easily stuck or lost.

Our choice went to the Navigation Stack of ROS. This is a set of pro-

cesses that take information from odometry and sensor streams and output

velocity commands to send to a mobile base, i.e., the robot. The Navigation

Stack needs to be configured for the shape and dynamics of the robot to

perform well. It uses two different planners for local and global path: the

local planner uses Dynamic Window Approach (DWA) algorithm. DWA is

proposed by Dieter Fox et al. in [12]. According to this paper, the goal

of DWA is to produce (vx, vy, ω), that are the translational and rotational
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Output Map

B Mean Error
T = 0.396124m

R = 0.019070rad

T = 2.500798m

R = 0.021366rad

T = 14.297833m

R = 0.396734rad

B Std dev
T = 0.778331m

R = 0.027167rad

T = 2.563980m

R = 0.027465rad

T = 17.849961m

R = 0.433986rad

Table 4.1: The table shows the errors provided by the B relations on three different

runs of the same environment. The first run is visually right, the second has some

errors in the rooms at the top, and the third has big mapping errors

velocity commands, which represents a trajectory that is optimal for the

robot’s location. ROS Wiki provides a summary of its implementation of

this algorithm:

1. Discretely sample in the robot’s control space (vx, vy, ω);

2. For each sampled velocity perform forward simulation from the robot’s

current state to predict what would happen if the sampled velocity

were applied for some (short) period of time;

3. Evaluate (score) each trajectory resulting from the forward simulation,

using a metric that incorporates characteristics such as: proximity to

obstacles, proximity to the goal, proximity to the global path, and

speed;

4. Discard illegal trajectories (those that collide with obstacles);

5. Pick the highest-scoring trajectory and send the associated velocity to

the mobile base;

6. Repeat.

The first step is to sample velocities (vx, vy, ω) in the velocity space

within the dynamic window. DWA will only consider velocities within a

dynamic window, which is defined to be the set of velocity that is reachable

within the next time interval given the current translational and rotational
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velocities and accelerations. The second and third steps are to simulate and

evaluate the velocities using the objective function, which outputs trajectory

score. The fourth step is basically obliterating velocities (i.e., kill off bad

trajectories) that are not admissible. The fourth and fifth steps are easy to

understand: take the current best velocity option and recompute.

The global planner of the Navigation Stack that we use is navfn, that

provides a fast interpolated navigation function that can be used to create

plans for a mobile base. The planner operates on a costmap to find a mini-

mum cost plan from a start point to an end point in a grid. The navigation

function is computed with Dijkstra’s algorithm.

The Navigation Stack tuning will be described in more detail in Chap-

ter 6. In our experiments it has shown good performance, but incomplete

explorations are not completely avoided. Depending on the complexity of

the environment, clutter, and path choice, the robot can get stuck.

For automatization, we need to know when an exploration is completed

to start the next one. An exploration is considered completed when the

environment is fully mapped. In our system there are three conditions that

stop the exploration: the first one is to check if the Navigation Stack doesn’t

find new frontiers to explore, and so it considers the environment completely

explored. The frontiers are points, or clusters of points, considered free or

unexplored on the edge of the explored environment. The Navigation Stack

keeps a list of all the frontiers and scores each on the basis of a function

that considers the path that the robot needs to travel to reach the frontier.

When the Navigation Stack doesn’t find new frontiers is not always because

the environment is completely explored, because the frontiers that it finds

depend on it’s settings and on the map. It can happen that an exploration is

stopped early, but it can also happen the opposite, that is, new frontiers are

found even if the environment is completely explored. Hence, the exploration

can go on for much more time than needed. Another case that makes the

first condition fail is if the robot gets stuck. The Navigation Stack will try

to reach the goal forever, and so the exploration will never be stopped. In

these situations the second condition triggers. Every time ti the grid map

built by the SLAM algorithm is taken and saved as a image, the gap between

ti and ti+1 is a parameter g. Starting from t2, the last two grid maps saved,

ti and ti−1, are compared pixel per pixel with Mean Squared Error (MSE),

that is the sum of the squared differences between the pixels of the two

images. If the difference is under a threshold e the exploration is stopped.

The third condition stops the exploration after a time limit m. If the two

previous conditions are not activated, most likely something is gone wrong

with the exploration, or the environment is very big. Every condition have
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a parameter to be set: g, e, and m. In our experiments g was between 3

and 5 minutes, e under 5, and m between 1 hour and 2 hours.

4.3 Data sets

We used two different data sets for the exploration of the environments, one

is the data set used in the paper [10], composed by 20 floor plans with and

without furniture, hence 40 floor plans. They represent university buildings.

The other one is a data set of 20 floor plans of schools without furniture.

The environments are of various shapes, dimensions, and clutter, in order to

test GMapping in many different situations. In the university data set, since

we have also the furniture version of every environment, we can compare the

performance of GMapping in the same environment with clear rooms or with

rooms with clutter. The furniture present is for the most part composed

of chairs, tables and desks, and the robot can go through the legs of the

furniture because of its size. The schools data set instead has no furniture

but different structures of the buildings. They have on average more rooms

(30.1 against 26.1) since they have many classrooms. In many buildings

there is a big room, that is the hall or the gym, that in the other data set

is rarely present. In Figure 4.1 there is a sample of the environments of the

first data set, while in Figure 4.2 there are all the school buildings.
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Figure 4.1: A sample of the environments contained in the first data set used, with

furniture and without furniture. It can be seen the variety of the shape and structure
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Figure 4.2: The environments contained in the second data set used. Schools have a

different type of structure with respect to university offices
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Chapter 5

System architecture

This chapter presents the software architecture designed to generate the

data described in Chapter 4. In Section 5.1 we give an overview of the main

characteristics of the Robot Operating System (ROS), on which we build

and test our system. Then in Section 5.2 we explain the ROS nodes that

compose the system to automatically explore an environment and collect the

data, and, at last, in Section 5.3 we explain the Python script that launches

multiple executions of the aforementioned system, builds the ground truth

data, and computes the errors about the quality of the maps.

5.1 ROS: Robot Operating System

ROS is a distributed, flexible framework for writing robot software that of-

fers a message exchanging interface providing inter-process communication,

behaving like a middleware. As described in [33], the main components of

the ROS middleware are nodes, messages, topics, and services.

Nodes are processes that perform computations. As ROS is designed to be

modular, a system is typically composed by several nodes, that together

compose a graph. For example, one node controls a laser range scanner,

one node controls the robot’s wheel motors, one node performs localization,

one node performs path planning, one node provides a graphical view of the

system, and so on. The use of nodes in ROS provides several benefits to the

overall system. There is additional fault tolerance, as crashes are isolated to

individual nodes. Code complexity is reduced in comparison to monolithic

systems. Implementation details are also well hidden as the nodes expose a

minimal API to the rest of the graph and alternative implementations, even

in other programming languages, can easily be substituted. Nodes commu-

nicate with each other by passing messages in two different ways: through



topics or through services. The difference between the two ways of handling

the message exchange is the following: when dealing with topics, a node

sends a message by publishing it to the topic of interest, while a node that

is interested in receiving the same kind of data subscribes to the same topic.

There may be multiple concurrent publishers and subscribers for a single

topic, and a single node may publish and/or subscribe to multiple topics.

On the contrary, services are defined by a pair of strictly typed messages,

one for the request and one for the answer, and only one node can advertise

a service. The introduction of the service mechanism overcomes the prob-

lem of synchronous transactions, not taken care by the publish-subscribe

paradigm. The consequence of this architecture is that, once a node sub-

scribes to a topic, it sees all the messages arriving on that topic, also those

not directly meant for it. In both cases, the communication pattern used

by ROS is a publish-subscribe one. In order for ROS nodes to be able to

communicate, a ROS network must have its roscore running. The roscore is

a collection of nodes and programs that are pre-requisites of a ROS-based

system: it includes a ROS master, that provides naming and registration

services to the rest of the nodes and allows them to locate each other, a ROS

parameter server, initialized by the master and used to retrieve and store

parameter values, and a rosout logging node. For our experiments we used

the ROS distribution Kinetic Kame.

5.2 ROS nodes for exploration

The launch file starts the nodes in Figure 5.1. They perform the exploration

of an environment and write the files for the subsequent evaluation: the

ground truth trajectory from the simulator and the estimated one from the

SLAM algorithm. The nodes are:

• Stage, the simulator;

• Mapper, the SLAM algorithm, that is GMapping in our case;

• recorder, that records ground truth data from Stage;

• RVIZ, that is the 3D visualization environment present in ROS. It

shows the map built by GMapping, the current path of the robot,

obstacle data, and sensor data;

• listener, that writes to a file the estimated poses of the robot;

• laser noise, that creates some Gaussian noise on the simulated laser

ranger, it is optional since the noise can be turned off;
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Figure 5.1: The ROS graph of the nodes involved in our system

• move base, that sends the move commands to the robot, it is part of

the Navigation Stack;

• explorer, that finds the goals to reach, also part of the Navigation

Stack;

• range proximity safety controller, that keeps the robot at a safe dis-

tance from the obstacles.

5.2.1 Stage

For simulation we have used Stage, a 2D simulator already implemented

in ROS. It is described as a lightweight, highly configurable robot simula-

tor that supports large populations of robots. Together with Stage there

is Player, that is a robot device server that provides network transpar-

ent robot control and offers a combination of transparency, flexibility, and

speed. Stage provides robots with different kinds of sensors operating in a

two-dimensional bitmapped environment. The devices are accessed through

Player, as if they were real hardware. Stage aims to be efficient and config-

urable, it can simulate tens or hundreds of robots on a desktop PC, and with

behaviours similar to those of real robots. Stage runs on many UNIX-like

platforms, and is released as Free Software under the GNU General Public

License [4]. It is maintained at: http://playerstage.sf.net. Users have found
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Figure 5.2: The P3AT real robot on the left and the Stage simulation on the right

that clients developed using Stage will work with little or no modification

with the real robots and vice versa [30], that is a proof of its reliability.

In practice it provides a virtual world, shown in Figure 5.2 on the right,

represented by a image that it takes as input, populated by a mobile robot,

identified by a numerical id and equipped with sensors and actuators. The

image of the environment that Stage uses is a simple matrix of 0s and 1s,

with the 0s representing areas of the environment that are free from ob-

stacles, and 1s representing the areas in which obstacles are present. We

simulated a Pioneer 3-AT, shown in Figure 5.2 on the left, that is a highly

versatile four wheel differential drive robotic platform [22], and the sensor

that we mounted in the simulations is a Hokuyo UTM-30LX laser sensor

with field of view of 270◦ and range up to 30 meters [2]. The input the

system needs is a world file, that is a description of the world that Stage

must simulate. It describes robots, sensors, actuators, moveable and im-

movable objects. The world file can also be used to control many aspects of

the simulation engine, such as the scale, its speed, and fidelity.

5.2.2 Mapper

The Mapper node is the node that is concerned with the building of the

map, namely, the SLAM algorithm. In our work we used GMapping, that

is a SLAM algorithm based on a particle filter, in which each particle repre-

sents an individual map of the environment. The GMapping implementation

available on ROS is a wrapper of the OpenSlam version [38], that is coded

in C++. Basically, the algorithm requires time-stamped odometry (i.e.,

Transform messages) and time-stamped readings from the laser topics (i.e.,

LaserScan messages). It creates a 2D occupancy grid map from laser and

pose data collected by a mobile robot subscribing to the topics:
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tf (tf/tfMessage)

scan (sensor msgs/LaserScan)

In ROS the laser messages are encoded in the LaserScan type, which contains

all the information of a single scan from a planar laser range-finder. The

definition of the message from docs.ros.org is:

LaserScan:

std msgs/Header header

float32 angle min

float32 angle max

float32 angle increment

float32 time increment

float32 scan time

float32 range min

float32 range max

float32[] ranges

float32[] intensities

The measurements are encoded in the ranges vector, while in the header

there are the timestamp of the acquisition time of the first ray in the scan,

and the ID of the scan. angle min and angle max define the field of

view of the sensor, ang le inc rement its resolution, and range min and

range max the minimum and maximum values of the readings.

t ime increment , scan t ime , and intensities are not relevant in our case.

Odometry is contained in the tfMessage type, that is a vector of Transform-

Stamped messages. These are Transform messages with ID and timestamp.

The Transform messages represent the transform between two coordinate

frames in free space. Transform is, in turn, composed by a Vector3 message,

that represents the translation, and a Quaternion message, that represents

the rotation. From docs.ros.org:

TransformStamped:

ID

Timestamp

Transform:

geometry msgs/Vector3 translation:

float64 x

float64 y

float64 z

geometry msgs/Quaternion rotation:

float64 x

float64 y
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float64 z

float64 w

The topics published by GMapping are:

map (nav msgs/OccupancyGrid)

that is the map data, which is latched and updated periodically, and the

correction of the pose of the robot in:

map → odom

the current estimate of the robot’s pose within the map frame.

Since the SLAM algorithm is a node, it can be changed easily to build

the map with a different algorithm, the only requirement is to publish the

estimate of the robot’s pose within the map frame.

5.2.3 recorder

All the ROS messages can be recorded in bag file format. We used them to

log the run of the robot and build the relations file. The recorder node is

the node that gets from Stage the ground truth pose every 0.1 seconds, in

the global reference frame, and saves it in a .bag file. This will be used to

extract the trajectory and compose the relation file.

5.2.4 RVIZ

RVIZ is a ROS tool to visualize the robot and its movements in the envi-

ronment, the sensors data that it receives, and the occupancy grid built. As

can be seen from the graph in Figure 5.1 it doesn’t publish data to the other

nodes, though we need it to see the robot behavior during the explorations

and tune the Navigation Stack consequently.

5.2.5 listener

The listener node listens for the Transform messages published on

map → odom

that are the estimates of the robot’s pose, which are then written into a file

in a readable way for the evaluator. This is done using a CARMEN log file

format, in which every row is composed as follows:

FLASER num readings [range readings] x y theta odom x odom y

odom theta timestamp
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The data that the evaluator uses are composed by only the last 4 fields:

odom x, odom y, odom theta, and timestamp. These fields represent the

pose estimated by GMapping in the absolute reference frame. Hence, the

other fields are always 0. This is an example of a piece of file:

FLASER 0 0.0 0.0 0.0 −45.9153122597 15.4101963164 3.12809938018 4215.9

FLASER 0 0.0 0.0 0.0 −45.9153122597 15.4101963164 3.12809938018 4215.9

FLASER 0 0.0 0.0 0.0 −45.9254113403 15.4103325943 3.12809938018 4216.0

FLASER 0 0.0 0.0 0.0 −45.9254113403 15.4103325943 3.12809938018 4216.0

FLASER 0 0.0 0.0 0.0 −45.9355104208 15.4104688722 3.12809938018 4216.1

FLASER 0 0.0 0.0 0.0 −45.9355104208 15.4104688722 3.12809938018 4216.1

5.2.6 laser noise

The laser noise node is a simple node that adds a Gaussian noise to the

readings of the simulated laser sensor. It can be tuned to different levels of

noise and it takes a parameter that is the standard deviation (“spread” or

“width”) of the Gaussian distribution.

The next three nodes automate the exploration of the environments, tak-

ing as input the odometry and the laser sensors information, and producing

as output the velocity and direction commands to the robot to explore the

environment. The first two are part of the Navigation Stack present in ROS

and the last one is a safety controller that integrates the Navigation Stack.

5.2.7 move base

The move base node provides an implementation of an action that, given

a goal in the world, will attempt to reach it with a mobile base. This

node links together a global and a local planner to accomplish its global

navigation task. As said in Chapter 4, we used navfn for the global planner

and DWA for the local planner. The move base node also maintains two

costmaps: a costmap is a occupancy grid map with a value in every cell

that represents if there is a obstacle with three values: free, occupied, or

unknown. In ROS, the costmap is composed of static map layer, obstacle

map layer, and inflation layer. The static map layer directly represents

the static SLAM map provided to the Navigation Stack. Obstacle map

layer includes 2D obstacles. Inflation layer is where obstacles are inflated to

calculate cost for each 2D costmap cell. There is a global costmap, as well as
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a local costmap. Global costmap is generated by inflating the obstacles on

the map provided to the Navigation Stack. Local costmap is generated by

inflating obstacles detected by the robot’s sensors in real time. The tuning

of the parameters of the costmaps is crucial for a right navigation. The

move base node may optionally perform recovery behaviors when the robot

perceives itself as stuck. The node will take the following actions to attempt

to clear out space: first, obstacles outside of a user-specified region will be

cleared from the robot’s map. Next, if possible, the robot will perform an

in-place rotation to clear out space. If this too fails, the robot will more

aggressively clear its map, removing all obstacles outside of the rectangular

region in which it can rotate in place. This will be followed by another

in-place rotation. If all this fails, the robot will consider its goal infeasible

and notify the user that it has aborted.

The DWA planner depends on the local costmap which provides obstacle

information. The local planner takes the velocity samples in robot’s control

space, examines the trajectories represented by those velocity samples, and

finally eliminates bad velocities (ones whose trajectory intersects with an

obstacle). Each velocity sample is simulated as if it is applied to the robot for

a fixed time interval, controlled by sim time parameter. We can think of sim

time as the time allowed for the robot to move with the sampled velocities.

DWA maximizes an objective function to obtain optimal velocity pairs. In

ROS’s implementation, the cost of the objective function is calculated like

this:

cost = pb ∗ dp + gb ∗ dg + ob ∗ costo (5.1)

where

• dp is the distance (in meters) to the path from the endpoint of the

trajectory;

• dg is the distance (in meters) to the local goal from the endpoint of

the trajectory;

• costo is the maximum obstacle cost along the trajectory in obstacle

cost (0-254);

• pb is the weight for how much the local planner should stay close

to the global path. A high value will make the local planner prefer

trajectories on global path;

• gb is the weight for how much the robot should attempt to reach the

local goal, with whatever path;
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• ob is the weight for how much the robot should attempt to avoid ob-

stacles. A high value for this parameter results in indecisive robot that

stucks in place.

The objective is to get the lowest cost.

5.2.8 explorer

The explorer node has the task to find a proper goal for the move base node.

Its approach is based on the detection of frontiers, regions on the border

between free known space and unexplored space. From any frontier, the

robot can see into unexplored space and add the new observations to its map.

By reaching each frontier, or determining that frontier to be inaccessible, the

robot can build a map of every reachable location in the environment. Beside

frontier detection, exploration strategies are available to select goal points.

In particular the exploration strategies available are:

• Navigate to nearest frontier, based on the travel path;

• Navigate using auctioning with cluster selection using nearest selection

(Kuhn-Munkres);

• Navigate to furthest frontier;

• Navigate to nearest frontier, based on Euclidean distance;

• Navigate to random frontier;

• Cluster frontiers, then navigate to nearest cluster using Euclidean dis-

tance;

• Cluster frontiers, then navigate to random cluster.

The strategy that worked better for us was nearest frontier, based on

the travel path. Hence, when we talk about the exploration strategy from

now on we intend this one.

5.2.9 range proximity safety controller

The range proximity safety controller node prevent the robot from running

into walls or obstacles by publishing the cmd vel topic, that is the topic

that controls the robot velocity. When the robot is under a certain dis-

tance threshold to a obstacle, that we set at 0.2 meters, the node drives the

robot backwards and to the left, if the perceived obstacle is on the right, or
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vice versa. The node is created by Charly Huang of the National Taiwan

University [20].

There were problems with the navigation tuning, since the Navigation

Stack in ROS is prone to errors, and the robot can crash during exploration.

Tuning was a consistent part of the work to make the robot autonomously

explore all the environments that it is given. A helpful guide is the ROS

Navigation Tuning Guide by Kaiyu Zheng [48]. The parameters used are

provided in the next chapter for completeness and to help future works.

5.2.10 ROS launch files

roslaunch is a tool for easily launching multiple ROS nodes, as well as setting

parameters on the parameter server. roslaunch was designed to fit the ROS

architecture through composition: at first, write a simple system, then,

combine it with other simple systems to make a larger one. Hence, it is

suitable for projects like ours. It also includes options to automatically

respawn processes that have already terminated for an error, that is a nice

feature if something goes wrong. roslaunch files use one or more XML

configuration files (with the .launch extension) which sets the parameters

and contains a list of nodes to launch. We used roslaunch for launching at

the same time all the nodes of the system. Our roslaunch file takes as input:

• worldfile, the file for the simulator;

• outputfile, the file where to write the SLAM estimated trajectory;

• bag, the file where to record the ground truth trajectory.

5.3 Python script

The whole system is launched by a Python 2.7 script. Python interpreters

are available for many operating systems, allowing Python code to run on a

wide variety of systems. This makes our code portable on different platforms.

Our script takes as input a folder that contains .world files. These files are

used by the Stage simulator to simulate the environments. When the script

is called it starts a launch file and thus a exploration of an environment.

The launch file launches all the nodes needed for simulation and exploration

previously described. While the exploration is going, the script saves the

grid map produced by GMapping as a png, every g seconds. The maps

are used to check whether the exploration of the map is completed and
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Figure 5.3: On the left there is a completed map with the respective translational mean

error, rotational mean error, translational standard deviation, and rotational standard

deviation. On the right the ground truth trajectory (green) and estimated (red) trajec-

tory of the run that has built the map on the left

this is done by comparing the last two saved maps. This method to stop the

exploration has its drawbacks: in large maps it can happen that the two last

maps are the same, because the robot is moving in already explored areas,

before entering new unknown areas. Another reason of undesired stop is that

the robot can try to find a path and, hence, it remains still for more than

g seconds, due to long computations. However, stuck problems are related

most of the time to a bad tuning of the navigation algorithm, otherwise this

method to stop the exploration works well. When the exploration is stopped

we need to compute the error. The script first generates the relations file,

then it calls the evaluator to generate the translational and rotational error

files. To generate the relations file it takes the file written by the listener

node and, as previously explained, it generates 500 random relations to

compute the standard deviation σ, then, based on this value, it generates

a relevant sample of relations, and writes them to a relations file. Since

to understand the entity of the errors is useful for a human to visualize

it, the script plots the ground truth trajectory and the one estimated by

GMapping. Further, the last map saved is taken and the translational mean

error, rotational mean error, translational standard deviation, and rotational

standard deviation are printed on the map to have a visual confirm of the

reliability of the error. Figure 5.3 shows these last two files.
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Chapter 6

Experimental evaluation

This chapter presents the experiments performed to test the validity of our

autonomous map quality evaluation system, at first discussing how we define

the random model to generate the relations, then discussing the tuning of

the autonomous exploration system, and at last showing the results of the

evaluation of map quality produced on multiple runs of the data sets.

6.1 Random relations

The evaluator needs a reliable ground truth file, that is the relations file, to

produce an error that measures the quality of the map. Further, we need an

automatic method to generate it. The selected method to accomplish this

task relies on a set of random generated relations. In order to arrive to this

method, several methods have been tested previously. We will now explain

the various methods tested and how we arrived to what we consider to be

the most appropriate method to generate random relations. In other works

that use the evaluation proposed by Kümmerle et al., like in the work of

Quattrini Li et al. [28], only the A relations, are used. As said in Section 3.1

the A relations are the relations built by taking poses sequentially from the

trajectory. Hence, our first try is to build these relations taking every 0.5 s

subsequent poses of the robot and we compute the transformation (rotation

and translation) needed to move the first pose on the second. Here is a piece

of our A relations file:

25.8 26.3 0.115231457561 0.0145470435818 0.0 0.0 0.0 0.31068761832

26.3 26.8 0.108272621659 0.0118482917111 0.0 0.0 0.0 0.27195075041

26.8 27.3 0.0986139442487 0.00939971339177 0.0 0.0 0.0 0.24163496546

27.3 27.8 0.0883247476921 0.00737905211678 0.0 0.0 0.0 0.20121391734



Output Map

A Mean Error
T = 0.007841m

R = 0.003744rad

T = 0.008280m

R = 0.004148rad

A Std dev
T = 0.034581m

R = 0.015620rad

T = 0.012489m

R = 0.013806rad

Table 6.1: The table shows the errors provided by the A relations on two different runs

of the same environment, as can be seen the error doesn’t detect that the left run has

produced a bad map, since it has almost the same error of the good map

In [28] these kind of relations showed that they detect the error well,

but the SLAM algorithms evaluated are visual SLAM approaches. Instead,

we evaluate GMapping, that is a laser based approach, and on average it

produces lower errors with respect to visual SLAM approaches. In fact, in

our experiments, these relations influence the total error almost in the same

way in every run, independently if the map produced is visually considered

good or bad. It can be seen in Table 6.1: two runs in the same environment,

which produced really different maps, produced an error based on the A

relations very similar. This behavior is due to the fact that also in bad runs

the local consistency of the map is mostly preserved, and since the error is

the average of the errors produced by the relations, having many relations

with low values produce a low error even in clearly bad maps. Figure 6.1 is

an example of this. Even if there are big errors in the mapping this happens

only for few poses, resulting in a good mapping of the remaining part of the

environment, but shifted or rotated. This is why the brokenness metric has

been proposed in [9]: as said in Section 2.2, brokenness measures how often

the map broken, i.e., how many partitions of it are misaligned with respect

to each other by rotational offsets. The A relations fail to detect this kind

of failures of the mapping, and so the error produced by A relations will

hardly have a high value.
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Figure 6.1: The four plots show the error produced by the A relations on the runs in

Table 6.1. On the left there are the translational errors and on the right the rotational

errors. In the plots about the rotational error there is not a sensible difference, while

in the plots about the translational error there are some peaks (red circles) where the

SLAM algorithm fails to localize the robot, but these errors are compensated by the

other errors, resulting in a average translational error of 0.007841 for the visually bad

map, and of 0.008280 for the visually good map
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Hence we test another method, to create different kinds of relations at

significant points:

• at the closure of a loop, L;

• after a displacement of x meters, M ;

• after x seconds, S.

For the L relations we have to understand on the ground truth trajectory

when there is the closure of a loop. A loop is considered a significant point

because, for SLAM, loop closing is the main way to reduce the accumulated

error in the map. We thought that when the robot returns in a point near

to a previous visited point the loop can be considered closed. We have to

define what near means for our scope. We used a parameter to define the

Euclidean distance under which a point is considered near to another, in the

experiments set at 0.2 meters. Also we define another parameter to check

that the robot effectively returned near to a point and don’t simply it stood

still there, set to 0.5 meters. This parameter defines the Euclidean distance

that the robot has to move from a point to consider it a possible return point

for the closure of a loop. It can be noted that these parameters require the

computing of several Euclidean distances for pairs of points, this results in a

time complexity of this method in the order of O(n2), where n is the number

of poses that can be in the order of hundreds of thousands. However, this

kind of relations don’t show a good effectiveness empirically, producing low

values also when evaluating maps with big mapping errors. The M and S

relations are easy to compute. For M , we compute the Euclidean distance

from the point 0 until the x meters are reached, then the new point 0 is set

as the current point. This is done for the whole length of the trajectory,

with linear time complexity. For the S relations, it is even simpler, every

x seconds a pose is taken, still with linear time complexity. The M and S

relations produce a low number of relations and if there is a error in a point

of the trajectory it is recognized by only one relation. This is a problem

since, in this way, the value of the average error remains low. So we defined

the smart relations, SM , that are all the poses in the trajectory that have

a Euclidean distance that is more than m meters. For example, if m is set

to 5 meters all the poses in the trajectory that have a Euclidean distance

d > 5 are considered as relations. The computing time is in the order of

O(n2), where n is the number of poses: to lighten the computing load we

define another parameter t that is the temporal displacement between the

poses considered in the trajectory. For example, if t is set to 2 seconds only

the relations with 2 second of difference are considered: at 0, 2, 4, 6, 8, ...

54



Figure 6.2: The maps produced by the runs to which the values of the following table

refer. The visually bad map (bad) and the visually good map (G).

second instead of the standard displacement given by the simulator that is

0.1s. With the SM relations, when a map is visually wrong the relations

file produces a significantly higher error, similar to the one computed by

the B relations introduced in the previous chapters. However, compared to

the B relations, these relations are more complex to compute. The time

needed to build a relations file it can be of several minutes on a desktop

PC, with respect to few seconds of the B relations. Further, there are two

parameters to tune by hand with respect to the single one (the dimension of

the sample), that has a statistical motivation, of the B relations. In Table

6.2 the comparison of the different kinds of generated relations on the 2 runs

in Figure 6.2 is shown. The experiments are made with different values of t

and m. With lower values of t and m the computing complexity for the SM

relations increases, but the Mean Translational Error is more similar to the

B relations. The loop relations don’t affect much the error even when the

run is visually bad.
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Data

set

Temporal

displacement t

Distance

m

SM

relations

B

relations
Loops MTE

Std

deviation

bad 10 5 Yes No No 2.89 3.98

bad 5 2 Yes No No 3.27 4.01

bad 4 2 Yes No No 3.37 4.02

bad 2 2 Yes No No 3.47 4.04

bad 2 2 Yes No Yes 3.49 4.05

bad - - No Yes No 3.42 4.01

bad - - No No Yes 0.20 0.20

G 2 5 Yes No No 0.47 0.75

G 2 2 Yes No No 0.61 0.82

G - - No Yes No 0.58 0.81

Table 6.2: In the table are shown the Mean Translational Error (MTE) and the standard

deviation produced by different kinds of generated relations on a visually bad mapping

run B and on a visually good mapping run G. The temporal displacement is in seconds

and the distance in meters. As can be seen the loop relations don’t affect much the

error even when the run is visually bad. Instead the SM relations have values similar

to the B relations in every run.

6.2 Autonomous exploration tuning

The ROS Navigation Stack has many different parameters that can be tuned

to obtain a good performance. Here we show the most important in our

experience. There are 4 files that contain the parameters to set:

• bas e l o ca l p l anne r pa rams , the parameters that determine the

behavior of the global and local planners;

• pioneer3at costmap common params , the parameters common to

the two costmaps: footprint of the robot, the obstacle layer, inflation

layer, and static layer;

• p ionee r3a t l o ca l co s tmap params , the parameters of the local

costamp;

• p ioneer3at g loba l cos tmap params , the parameters of the global

costamp.

In our experiments we need a system working in real time, so the com-

puting complexity can’t be too high for the hardware used. Some of the

parameters of the Navigation Stack are related to the computing power

available, and setting them higher, to a certain extent, will provide a better
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exploration of the environments. One of these parameter is max ve l x :

0.85, that is the maximum velocity that the robot can reach, and is kept to

a relatively low value. With higher values, the path that the local planner

has to simulate is longer, so there are more possible trajectories to compute,

but the time to compute them is the same, so it’s more likely that the Nav-

igation Stack will crash the robot since it has little time to decide where to

go.

Another parameter that depends on the computing power is s im time , this

parameter indicates how long the trajectory is simulated beforehand. In our

case it is set to 1.5 seconds.

The update frequencies of the local and global costmaps are strictly related

to the computing power, and especially increasing the update frequency of

the local costmap can have good effects on the path produced. These pa-

rameters are set as 10 updates per second in the local costmap and 2 per

second in the global costmap.

The parameters for the local planner, namely DWA, to select the trajec-

tory are:

pdist scale: 0.6

gdist scale: 0.8

occdist scale: 0.05

These are the default parameters for p d i s t s c a l e , the weighting for how

much the controller should stay close to the path it was given, and g d i s t s c a l e ,

the weighting for how much the controller should attempt to reach its lo-

cal goal, while for o c c d i s t s c a l e , the weighting for how much the robot

should attempt to avoid obstacles, we have raised its value to 0.05 from 0.01,

because with the smaller value the robot passes too close to the obstacles

and this can cause the robot to crash. We used mete r s co r ing : true, that

means that instead of using the cells of the grid map as units, the distances

computed by DWA are in meters.

Costmap parameters tuning is essential for the success of the planners. The

costamp is composed of a static layer, a obstacle layer, and an inflation

layer. The static layer is the map that GMapping, or the SLAM algorithm

used, provides. The obstacle layer tracks the obstacles as read by the sensor

data. Inflation layer is an optimization that adds new values around obsta-

cles (i.e., inflates the obstacles) in order to make the costmap represent the

configuration space of the robot. To have smooth paths we found that the

following values for these two parameters in the inflation layer are good:

cost scaling factor: 7.5

inflation radius: 2.25
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c o s t s c a l i n g f a c t o r is inversely proportional to the cost of a cell. Setting

it higher will make the decay curve of the values around the obstacles more

steep. i n f l a t i o n r a d i u s controls how far away the zero cost point is from

the obstacle in meters.

ROS navigation has two recovery behaviors. These behaviors will be run

when DWA fails to find a valid plan. After each behavior completes, DWA

will attempt to build a plan. If planning is successful, DWA will continue

the normal operations. Otherwise, the next recovery behavior in the list will

be executed. The behaviors are: clear costmap recovery and rotate recovery.

Clear costmap recovery is basically reverting the local costmap to have the

same state as the global costmap removing all obstacles outside of the rect-

angular region in which it can rotate in place. The a g g r e s s i v e c l e a r a n c e

behavior will clear out to a distance of 4 ∗ r, where r is the circumscribed

radius of the robot. Rotate recovery makes the robot rotate 360 degrees in

place. Sometimes rotate recovery will hit an obstacle during the rotation

and cause worse problems, so we don’t use it. We also changed the behavior

of the explorer node enabling the o p e r a t e w i t h g o a l b a c k o f f parame-

ter, this makes the robot navigate to a goal point which is close to (but not

exactly at) the selected goal. This is helpful when the selected goal is too

close to a wall. To help future works we provide all the parameters:

base local planner params:

controller frequency: 10.0

recovery behavior enabled: true

clearing rotation allowed: false

recovery behaviors: [{name: aggressive clearance,

type: clear costmap recovery/ClearCostmapRecovery}]
aggressive clearance:

reset distance: 0.0

max replanning tries: 3

planner patience: 5.0

planner frequency: 0.2

controller patience: 15.0

TrajectoryPlannerROS:

max vel x: 0.85

min vel x: 0.1

max vel theta: 0.7

min vel theta: −0.7

acc lim theta: 2.5

acc lim x: 1.5

acc lim y: 1.5
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min in place rotational vel: 0.4

escape vel: −0.1

escape reset dist: 0.15

escape reset theta: 0.15

holonomic robot: false −Since the P3AT is a differential robot,

this parameter is kept to false

yaw goal tolerance: 0.2

xy goal tolerance: 0.3

latch xy goal tolerance: false

pdist scale: 0.6

gdist scale: 0.8

meter scoring: true

occdist scale: 0.05

oscillation reset dist: 0.25

oscillation reset timeout: 10.0

prune plan: false

sim time: 1.5

sim granularity: 0.025

vx samples: 10

vtheta samples: 20

dwa: true

GlobalReplanner:

old navfn behavior: true

allow unknown: true

track unknown space: true

default tolerance: 0.0

pioneer3at costmap common params:

footprint: [ [−0.2,−0.2], [0.2, −0.2], [0.2, 0.2], [−0.2,0.2] ]

footprint padding: 0.0

obstacle layer:

enabled: true

max obstacle height: 0.6

min obstacle height: 0.0

obstacle range: 30.0

raytrace range: 30.0

observation sources: base scan

base scan: {data type: LaserScan, sensor frame: base laser link,

topic: /base scan, marking: true, clearing: true,
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max obstacle height: 0.6, min obstacle height: 0.0,

expected update rate: 0.4}

inflation layer:

enabled: true

cost scaling factor: 7.5

inflation radius: 2.25

static layer:

enabled: true

map topic: /map

subscribe to updates: true

pioneer3at local costmap params:

local costmap:

global frame: odom

robot base frame: base link

update frequency: 10

publish frequency: 0.2

static map: false

rolling window: true

width: 6.0

height: 6.0

resolution: 0.02

transform tolerance: 0.15

track unknown space: true

unknown cost value: 255

pioneer3at global costmap params:

global costmap:

global frame: map

robot base frame: base link

update frequency: 2

publish frequency: 0.1

static map: true

transform tolerance: 0.25

track unknown space: true

unknown cost value: 255
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6.3 Quality of the maps

The results of the experiments that we present in this section are the re-

sults of the runs of the system on the data sets presented in Chapter 4.

All the experiments were run with the parameters of the Navigation Stack

mentioned in the previous section, on the Stage simulator with the P3AT

robot equipped with a Hokuyo laser sensor of 270 degrees of field of view

and 30 meters of range. The SLAM algorithms used is GMapping, set with

40 particles.

6.3.1 Success rate

We run the explorations of the data sets in Table 6.3 on a machine with

a Core2 Quad Q9400@2.66Ghz and 4GB of RAM. A map is considered as

successfully mapped if the exploration has produced a map visually similar

to the ground truth map. There are two ways in which a run can not have

success: if GMapping fails or if the Navigation Stack fails. The explorations

have a good success rate thanks to the high reliability of GMapping and to

the good settings of the Navigation Stack. In fact, changing the parameters

of the Navigation Stack can have high influence on the success of a explo-

ration. Most of the explorations that don’t succeed are due to navigation

problems, i.e., the robot hits a wall, rather than to the SLAM algorithm.

The environments with lower number of successes are generally the ones that

visually have a more complex structure, with many rooms and corridors.

Environment Success Map

freiburg52 10

freiburg52 furnitures 10
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lab intel 9

lab a 8

lab c 10

lab c furnitures 10

lab d 9

lab f 6
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NLB 7

office b 8

office c 10

office f 6

office h 10

office h furnitures 7

Table 6.3: The table shows a sample of the environments with its name, the number

of successful runs on 10 explorations, and on the rightmost column a complete map
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6.3.2 Furniture

Figure 6.3: The error bars represents the average mean translational error and the

corresponding average standard deviation of 10 runs in environments with and without

furniture. In every environment the presence of furniture increases the error computed

by the evaluator.

The height of the simulated robot is 0.5 meters, therefore the part of fur-

niture detected by the laser range sensor at this height are the one repre-

sented in the 2d environments. Legs are the only part detected of tables and

chairs and these are represented as points. Instead, wardrobes and cabinets

are represented as rectangles. In Figure 6.3 the same environments with

and without furniture are compared. As it can be seen, the average error

increases when the same environment presents furniture. In some environ-

ments, like f r e i b u r g 5 2 and l ab b , that are two small environments, the

difference between the errors with and without furniture is limited. Instead,

for example, in o f f i c e b the difference is large. It is a much bigger environ-

ment with more rooms. With furniture it’s easier to make errors during the

exploration, and the sum of these errors eventually makes a bad map. The

presence of furniture also increases the possibility for the robot to get stuck,

since the legs of tables and chairs are obstacles that increase the clutter of

the environment.
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Figure 6.4: The number of succesfull explorations in 2 different environments with

standard deviation of the Gaussian distribution set to 0, 0.1, and 0.3.

6.3.3 Noise

We run experiments introducing Gaussian noise on the laser range sensor

with a node. The l a s e r n o i s e presented in Section 5.2.6 takes a parameter

n that is the standard deviation (“spread” or “width”) of the Gaussian

distribution. The presence of noise influences the successful exploration of

an environment to a great extent as shown in the following figures. We run

5 explorations with n set at 0, 0.1, and 0.3 in two environments: “office

d furnitures” and “scuola sconosciuta 3”. The success of the explorations

decreases if the noise increases: with the parameter set at 0.3 the system has

not been able to conclude successfully an exploration of “scuola sconosciuta

3” and only one of “office d furnitures”. This is shown in Figure 6.4, while

the average translational and rotational error of the runs is plotted in Figure

6.5 and Figure 6.6.

The error even in successful runs is higher with a higher noise, due to

the difficulty of GMapping to correctly estimate the position of the robot

with bad readings of the range sensor. This behaviour is desirable because

the output map is visually less accurate than the one without noise, as can

be seen in Figure 6.7.
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Figure 6.5: Translational error Figure 6.6: Rotational error

Figure 6.7: The leftmost map is built without noise, the central map with 0.1 Gaussian

noise, and the rightmost one with 0.3 Gaussian noise.

6.3.4 Errors

In the following Tables, 6.4 and 6.5, and in the Figures 6.8 and 6.9, the errors

on 20 successful runs are showed. The two tables, for every environment,

show:

• the mean error, that is the average error of the errors produced by the

relations;

• the standard deviation, that is the standard deviation of the errors

produced by the relations;

• the min error, that is the minimum single error produced by a relation;

• the max error, that is the minimum single error produced by a relation;

• the number of relations in the relations file.

There is not a big difference between the errors of the environments of the

data set of Bormann [10] and the schools data set, even though the schools
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have almost in every case a lower average error. From the the Figures 6.8 and

6.9 it can be noted that the mean error, the standard deviation, and the max

error follow the same trend. The translational errors and rotational errors do

not appear to have a strong relation, only the l a b f environment has both a

high translational error and a high rotational error. l a b f is an environment

with many rooms and it’s exploration runs are longer. In this environment

(and also in others, i.e., NLB and l a b c ) that there are high errors because,

through the explorations, the poses estimated can be wrong with respect to

the ground truth for a short time, but GMapping succeed to relocate the

robot to the right pose and, since the run is long, the average error remains

low. All the runs considered here are runs that have produced a visually

good map so a large max error doesn’t mean that the map produced is

visually bad, but the map probably contains some imperfections although

the structure of the environment is preserved. However, there is not a defined

threshold on the error to identify if a map is visually good or not. Empirically

we observed that if a run has a translation error above 1 meter or a rotational

mean error above 0.03 radians, that are 1.72 degrees, it is visually bad. If

the error is higher than 3 meters or higher than 0.07 radians, that are 4

degrees, the map is completely useless for every kind of task. The system

works well in recognizing if a map is visually good or bad, but in some

cases it doesn’t complete the exploration. If an environment is not explored

completely but the part explored is visually good, the mean error is low.

This happens when the robot gets stuck and is related to the exploration

algorithm. However, if the exploration is completed the mean translational

and rotational error are indicative about the quality of the map.

67



Figure 6.8: The translational errors of the runs. On the x axis there are the environ-

ments’ names. The y axis values on the left are the mean average error that is depicted

through the error bars, while the y axis values on the right are the max error that is

depicted through the orange line. The max error follows the trend of the mean error.

Figure 6.9: The rotational errors of the runs. These are not directly related to the

translational errors: except for l a b f which has high errors in both evaluations, the

environments with the higher rotational errors are not the ones with the higher trans-

lational error.
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ENVIRONMENT MEAN-T STD-T MIN-T MAX-T NUMMEASURES

lab a 0.5674 0.5009 0.0013 6.1065 3712.6129

lab b 0.1735 0.2018 0.0023 2.5153 627.0

lab c 0.2161 0.4937 0.0021 7.0478 216.2222

lab d 0.5735 0.6040 0.0017 11.2952 5412.125

lab f 0.8397 3.0853 0.0005 66.8112 23210.3333

office a 0.6006 0.6256 0.0033 9.0297 6328.1071

office b 0.4286 0.4430 0.0008 5.0689 3028.0357

office c 0.5803 0.9554 0.0004 16.8290 13016.5

office d 0.3928 0.3987 0.0036 4.6523 2496.6764

office e 0.3486 0.7096 0.0128 10.1825 332.8

office f 0.5118 0.6906 0.0010 11.5920 8121.3478

office g 0.5913 0.6128 0.0014 9.9545 9255.70588235

office h 0.3828 0.4042 0.0014 4.2604 2459.1

office i 0.4809 0.6758 0.0021 11.6891 8616.0

lab intel 0.4032 0.3596 0.0026 3.8029 1983.4782

freiburg52 0.1148 0.1330 0.0032 1.4373 259.5

NLB 0.8480 1.9928 0.0018 52.6058 1629.0

freiburg 0.5104 1.1931 0.0050 27.2924 607.0

indian head 0.3670 0.5022 0.0016 9.5708 3816.9756

plans2 0.3004 0.3041 0.0018 3.1101 1459.6785

south mountain school 2 0.3672 0.3802 0.0020 5.0151 2459.3571

bronxville 0.4189 0.4189 0.00 5.4262 2705.4

Valleceppi P0 0.2250 0.1968 0.0012 1.6032 610.8

UMTD School Floorplan 0.2836 0.2829 0.0009 3.2270 1166.4516

scuola sconosciuta 0.1881 0.2115 0.0016 2.3586 706.4444

Sicurezza 1 0.2814 0.3293 0.0010 4.6832 1935.8888

battle creekhs 2 0.3139 0.3250 0.0012 3.5928 2150.9583

herndon 0.3165 0.3763 0.0010 4.8773 2531.7714

Valleceppi P1 0.1928 0.1721 0.0031 1.3660 502.7317

henderson high school 0.4700 0.6208 0.0010 7.5559 8462.4

SKF FloorPlan 0.3247 0.3052 0.0011 2.6430 1426.0238

sidneyriver updated 0.4215 0.5207 0.0013 8.1608 3824.64

south mountain school 1 0.4280 0.4632 0.0013 6.5454 3092.1333

west asheville 0.3215 0.3502 0.0024 4.7859 1754.4814

putnam junior high 0.3975 0.5037 0.0021 8.6455 5287.2142

cunningham2f 0.4638 0.4990 0.0015 6.0004 5838.0689

scuola sconosciuta 3 0.2049 0.2185 0.0023 2.0616 687.8333

Table 6.4: The table shows the name of the environment, the average translational error,

the translational standard deviation, the minimum translational error, the maximum

translational error, and the number of measurements. All the values are the average

on 20 successful explorations per environment and the errors are in meters
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ENVIRONMENT MEAN-R STD-R MIN-R MAX-R NUMMEASURES

lab a 0.0114 0.0156 0.00 0.1471 3712.6129

lab b 0.0041 0.0070 0.00 0.0778 627.0

lab c 0.0238 0.0916 0.00 1.1689 216.2222

lab d 0.0116 0.0162 0.00 0.1988 5412.125

lab f 0.0289 0.1191 0.00 2.5101 23210.3333

office a 0.0102 0.0177 0.00 0.1789 6328.1071

office b 0.0246 0.0435 0.00 0.3008 3028.0357

office c 0.0077 0.0182 0.00 0.1743 13016.5

office d 0.0087 0.0134 0.00 0.1195 2496.6764

office e 0.0110 0.0661 0.00 1.1958 332.8

office f 0.0071 0.0117 0.00 0.1330 8121.3478

office g 0.0098 0.0153 0.00 0.1870 6616.0588

office h 0.0116 0.0171 0.00 0.1339 2459.1

office i 0.0078 0.0146 0.00 0.1519 8616.0

lab intel 0.0067 0.0089 0.00 0.0981 1983.4782

freiburg52 0.0037 0.0065 0.00 0.0592 259.5

NLB 0.0136 0.0274 0.00 0.6403 1629.0

freiburg 0.0111 0.0796 0.00 1.8554 607.0

indian head 0.0079 0.0138 0.00 0.1651 3816.9756

plans2 0.0103 0.0142 0.00 0.1201 1459.6785

south mountain school 2 0.0066 0.0094 0.00 0.1059 2459.3571

bronxville 0.0081 0.0110 0.00 0.1421 2705.4

Valleceppi P0 0.0130 0.0143 0.00 0.0933 610.8

UMTD School Floorplan 0.0100 0.0113 0.00 0.1030 1166.4516

scuola sconosciuta 0.0104 0.0151 0.00 0.1062 706.4444

Sicurezza 1 0.0078 0.0114 0.00 0.1145 1935.8888

battle creekhs 2 0.0105 0.0127 0.00 0.1088 2150.9583

herndon 0.0132 0.0207 0.00 0.1635 2531.7714

Valleceppi P1 0.0109 0.0116 0.00 0.0815 502.7317

henderson high school 0.0137 0.0209 0.00 0.1694 8462.4

SKF FloorPlan 0.0134 0.0135 0.00 0.0958 1426.0238

sidneyriver 0.0084 0.0111 0.00 0.1161 3824.64

south mountain school 1 0.0111 0.0144 0.00 0.1380 3092.1333

west asheville 0.0053 0.0081 0.00 0.0886 1754.4814

putnam junior high 0.0091 0.0136 0.00 0.1487 5287.2142

cunningham2f 0.0111 0.0137 0.00 0.1275 5838.0689

scuola sconosciuta 3 0.0111 0.0124 0.00 0.0900 687.8333

Table 6.5: The table shows the name of the environment, the average rotational error,

the rotational standard deviation, the minimum rotational error, the maximum rota-

tional error, and the number of measurements. All the values are the average on 20

successful explorations per environment and the errors are in radians
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Chapter 7

Conclusions and future

research directions

This thesis has focused on the evaluation, in an automated way, of the

quality of the maps produced by a SLAM algorithm. Defining the quality of

a map produced by SLAM algorithms in a quantitative way is a difficult task,

since it is often the human visual examination that defines it. In this thesis a

method has been proposed for automating the application of the evaluation

metric proposed by Kümmerle et al. [24], based on the comparison with

a ground truth file that represents the trajectory performed by the robot.

The ground truth file, that contains a list of relative displacements between

poses of the trajectory (the relations), was built manually on a limited set

of examples in [24], and we tried different ways to automatically build it.

The best results in our experiments were given by adding relations relative

to random displacements on the whole trajectory. This kind of relations are

fast to compute and produce an error that is a good indicator of the quality

of the maps.

The experimental evaluation has been performed using ROS/Stage simu-

lations. To perform explorations of different environments in an autonomous

way, we tuned the Navigation Stack of ROS by setting its parameters. The

system is built to generate data on the quality of the maps produced by

GMapping autonomously, thus it is able to stop an exploration when it’s

completed and start another one, while generating the evaluation files. The

results obtained denote that the performance of GMapping is stable during

explorations of different structures and different environments. We noted

that the performance of the SLAM algorithm depends on the path that the

Navigation Stack produces, so a good tuning is necessary for the building of

a qualitatively good map. A future work can take a look more in depth in



this sense, studying the correlation between the path and the map produced

by the SLAM algorithm.

In the future, several aspects can be investigated. The first is to predict

the quality of the maps produced by the SLAM algorithms. This means

finding relevant characteristics of the environments that can be correlated

to the performance of the SLAM algorithms. A system capable of doing

so can be of great importance in the industry and in research. Another in-

teresting work is to analyze the performance of different SLAM algorithms

with our approach, to have the data to predict the performance not only

of GMapping, but also of other SLAM algorithms, based on different meth-

ods or sensors. With these data, predictions can be done also for different

SLAM algorithms and these can be compared, before actually explore the

environments, to know which algorithm is the most suitable for that specific

environment. Finally, it would be necessary to validate our approach also

on data set obtained from online use of a real robot.
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