
POLITECNICO DI MILANO
MSc in Computer Science and Engineering

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

AN EXPERIMENT IN AUTONOMOUS

NAVIGATION FOR A SECURITY

ROBOT

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Supervisor: Prof. Matteo Matteucci

Co-supervisor: Ing. Gianluca BARDARO

Master Graduation Thesis by:

Fabio Santi VENUTO,

Student ID 837644

Academic Year 2016-2017

A qualcuno...

Abstract

One of the most useful purpose in self driving autonomous robots is to

substitute for human activity in dangerous and heavy jobs. The Ra.Ro

platform, developed by NuZoo, is designed to work as a security robot,

able to patrol, detect and eventually send alarm to a centralized station.

This platform is often required to be adapted to different purposes, but

most of them require an autonomous navigation. The aim of this thesis

is to propose a mapping and localization system to avoid the well-known

drifting problem. In particular we are dealing with the indoor environment,

which is challenging because is not available any fixed point reliable sensor

such as GPS. The odometry system provided by the wheel encoders is not

precise enough and very sensitive to errors, thus it is important to fuse the

information retrieved by multiple sensors such as IMU, LIDAR and a camera

used to recognize specific markers.

The final results, tested in the real world, are quite satisfying at the end,

but can be further improved.

5

Sommario

Uno dei principali scopi di robot a guida autonoma è quello di sostituire

l’uomo nelle attività più pericolose a nei lavori più pesanti. La piattaforma

Ra.Ro., sviluppata da NuZoo, è progettata per lavorare come robot di si-

curezza, capace di pattugliare, individuare e infine lanciare un allarme ad

una stazione centralizzata. Spesso è stato richiesto che questa piattaforma

venga adattata per diversi scopi, ma la maggior parte di essi richiedono una

navigazione autonoma. L’obbiettivo di questa tesi è di proporre un sistema

di mappatura e localizzazione che ovvi al noto problema del drifting. In par-

ticolare ci occupiamo di un ambiente interno, il quale è difficoltoso a causa

della mancanza di un sensore, come il GPS, che ci dia informazioni affid-

abili su dei punti fissi. Il sistema di odometria fornito dagli encoder delle

ruote non è abbastanza preciso e molto sensibile agli errori, per questo è

molto importante fondere le infomazioni ricevute da molteplici sensori quali

una IMU, un LIDAR e una videocamera utilizzata per riconoscere marker

specifici.

I risultati, testati in un ambiente reale, sono stati soddisfacenti alla fine,

ma possono essere ancora migliorati.

7

Ringraziamenti

Ringrazio

9

Contents

Abstract 5

Sommario 7

Ringraziamenti 9

1 Introduction 13

1.1 Thesis contribution . 14

1.2 Structure of the thesis . 14

2 The Ra.Ro. platform 17

2.1 Hardware . 17

2.2 Software . 18

2.2.1 ROS topics . 19

2.2.2 Built-in navigation . 20

2.3 Platform purposes . 22

3 Knowledge requirements 23

3.1 State estimation . 23

3.1.1 Baysian state estimation 24

3.1.2 Graph-based State Estimation 26

3.2 Odometry estimation . 26

3.2.1 Generic odometry . 27

3.2.2 Differential drive odometry 29

3.2.3 Skid-steering odometry 32

3.3 Sensor fusion framework . 35

3.3.1 ROAMFREE . 35

3.4 Simultaneous Localization and Mapping (SLAM) 40

3.4.1 Gmapping . 42

3.4.2 Cartographer . 44

3.5 Localization . 45

11

3.5.1 Adaptive Monte Carlo Localization (AMCL) 46

3.6 A note on ROS reference system 47

4 Navigation system for the Ra.Ro. 51

4.1 Navigation system overview 51

4.2 Sensor fusion and odmetry estimation modules 54

4.2.1 Custom odometry . 54

4.2.2 ROAMFREE module 57

4.3 SLAM module . 59

4.4 Autonomous navigation module 61

5 Experiment 63

5.1 Setup description . 63

5.2 Odometry experiments . 64

5.2.1 Odometry with custom odometry 65

5.2.2 Odometry with ROAMFREE odometry 65

5.2.3 Odometry with ROAMFREE odometry and markers . 66

5.3 Mapping experiments . 67

5.3.1 Mapping with custom odometry 67

5.3.2 Mapping with ROAMFREE odometry 67

5.3.3 Mapping with ROAMFREE odometry and markers . 68

5.4 Navigation experiments . 68

6 Conclusion and Future Work 77

Bibliografy 79

Chapter 1

Introduction

“Narrator: Deep in the Caribbean, Scabb Island.

Guybrush: ...So I bust into the church and say, “Now you’re in for it, you

bilious bag of barnacle bait!”... and then LeChuck cries, “Guybruysh! Have

mercy! I can’t take it anymore!”

Fink: I think how he must have felt.

Bart: Yeah, if I hear this story one more time, I’m gonna be crying myself.”

Monkey Island 2: LeChuck’s revenge

Autonomous robots as security guardian are not so common. Certainly an

efficient guard must be very smart in detecting unauthorized people or any-

thing else wrong. It must be reactive, fast and of course hard to be defeated.

Probably the actual technology is premature to perform this task, but the

Ra.Ro. platform is very easy to be adapted to different scenarios, according

to the customers’ requests. Being a skid-steering based robot, certainly the

ability to move autonomously in the environment is very appreciated, re-

gardless of the high-level purpose of the robot. Until now, the “autonomous”

navigation of the commercialized Ra.Ro.s consists in following colored lines

sticked or painted on the floor and/or following indications given by markers

belonging to a specific set and recognized by the installed cameras.

The potential problems are easy to identify. First of all, in some locations

is not desirable to have the floor ruined by sticked or painted lines while in

outdoor environments it is almost impossible to draw or stick them. More-

over, different light conditions can affect the line color detection. We can

have a similar issue when dealing with markers, which need to be hanged

on walls or on similar stable structures. If the robot uses the lines and

markers to patrol a building for security reasons, it will be quite easy for an

ill-intentioned person to cover, delete or detach them, getting the robot lost

in seconds.

1.1 Thesis contribution

The Ra.Ro. platform had already been equipped with different sensors such

as IMU (gyroscope, accelerometer and magnetometer), cameras and a LI-

DAR, but they were not used as much as they could be potentially done.

This thesis proposes a multi-sensor navigation system based on the ROAM-

FREE framework, a system that provides a multi-sensor fusion tools to im-

prove the odometry estimation using the information provided by the differ-

ent sensors. We decided to use the wheel encoders, gyroscope, accelerometer

and, for a better result, markers as landmarks.

1.2 Structure of the thesis

The thesis is structured as follows:

• In chapter 2 we describe the Ra.Ro. platform. In particular in section

2.1 we introduce the hardware components which include the sensors

provided with the robot. In section 2.2 we introduce the software

environment. In particular we describe the ROS topics used by the

robot and the built in navigation systems in the following subsections.

Moreover briefly write about some Ra.Ro. purposes.

• In chapter 3 we describe the knowledge needed to deeply understand

in what our project consist and some state of the art examples. In

particular section 3.1 we introduce the most common state estimation

approaches. Then in section 3.2 we focus on odometry estimation

methods. Subsequently, in section 3.3 we introduce the sensor fusion

frameworks we applied in this thesis. The following section 3.4 is

about SLAM, simultaneous localization and mapping, and two of the

most popular mapping ROS systems. In section 3.5 we describe the

localization AMCL algorithm. We conclude with a note about the

ROS reference system convention, in section 3.6

• In chapter 3 we start to write about the actual work, starting with

navigation system overview in section 4.1. Then, in section 4.2 we

describe the detail about the odometry estimation implementation and

the sensor fusion framework applied. In section 4.3 we explain how we

used the mapping module.

• In chapter 5, after a brief set up introduction in section 5.1, we describe

the most significant experiment we make and the resulting outputs.

In particular we describe experiments about odometry estimation, in

14

section 5.2, about mapping in section 5.3 and a brief discussion about

localization and autonomous navigation in section 5.4

• Finally in chapter 6 we write about our conclusion, the main challenges

we had to deal with, and our suggestion about future works in this

field.

15

16

Chapter 2

The Ra.Ro. platform

“Guybrush: My name’s Guybrush Threepwood. I’m new in town

Pirate: Guybrush Threepwood? That’s the stupidest name I’ve ever heard!

Guybrush: Well, what’s YOUR name?

Pirate: My name is Mancomb Seepgood.”

The Secret of Monkey Island

In this chapter we will introduce the Ra.Ro. platform, the robot we worked

on.

Ra.Ro. stands for Ranger Robot, that is to say that its main purpose is

to work as a security guard. However, the producer company, NuZoo offers

the possibility of customizing the platform to meet different requests. In the

following paragraphs we will focus on the version we worked on, introducing

the hardware and software suite.

2.1 Hardware

Ra.Ro. is a skid steer drive robot. The base is 460 mm x 540 mm and it is

270 mm tall. The robot reaches 750 mm including the cameras support. It

is equipped with four wheels driven by two 50W stepper motors, set in the

middle of the two sides of the robot. Each motor drives a front and a rear

wheel connected with two transmission belts.

The robot is equipped with a 9 axis IMU composed by a LSM303D

module (3 axis magnetometer and 3 axis accelerometer) and a L3GD20H (3

axis gyroscope). The IMU is managed by a R2P board by Nova Labs [2]. A

Hokuyo Laser Scanner is included inside the robot body and allows a 170◦

view by projecting rays trough a 160 mm wide and 20 mm high body slit.

Figure 2.1: Three Ra.Ro. views

Inside the “head” of the Ra.Ro. are two HD cameras: a surveillance

camera, which rotates according to the head itself and a navigation camera,

which can, in addition, rotate around a horizontal axis. The cameras’ vision

into the darkness is guaranteed by two led flashlights.

The core of the robot is an INTEL NUC built with an i5-5250U 64bit

CPU, DDR3 4 GB RAM and SSD 60GB as a hard drive support. A Wi-Fi

module is used to connect the robot to wireless nets or to convert it into

an access point, in case of accessible net unavailability or first net setup.

Ra.Ro. is able to recharge itself in a semi-autonomous way through a wide

contacts-pins matching with its recharging station. In case of needing, a

wired connection is also available to recharge the robot.

2.2 Software

The operative system currently installed on the NUC is Ubuntu 14.04 LTS,

and all the robot features are managed by ROS Indigo.

The provided ROS workspace includes most of the nodes and topics

needed to start our work. In particular, there are nodes responsible for

publishing sensors data, such as encoders, IMU, camera vision, laser scans

and markers. Moreover, we have the nodes used to control the robot through

the command velocity topics, via joy-pad or browser interface. The browser

interface itself is also a useful piece of software, which allows the user to see

the images provided by the two cameras and the recognized marker, and to

18

Figure 2.2: NuZoo web interface. The recognized marker is orange bordered.

manage the various minor functionalities such as speakers, lights and so on.

2.2.1 ROS topics

In this section we will describe the most relevant, for our purposes, ROS

topics published and/or subscribed by the previously implemented nodes.

They allow the ROS system to communicate both with sensors and actu-

ators, by reading outputs and sending commands respectively. The topics

are introduced with the name and the message type used.

• /r2p/encoder l and /r2p/encoder r, std msgs/Float32:

These topics, and all of the following ones which have a name starting

with r2p/, are published by the r2p board, which manages most of the

sensors. In particular, these topics publish as messages the number of

ticks per second done by the left wheels (r2p/encoder l) and the right

ones (r2p/encoder r). Every tick corresponds to a portion of spun

wheel.

• /r2p/imu raw, r2p msgs/ImuRaw:

This topic contains the raw messages from the IMU, which include

gyroscope, accelerometer and magnetometer. The r2p msgs/ImuRaw

is a custom message type built by a three tridimensional vectors:

angular velocity, linear acceleration and magnetic field. The

names are self-explanatory enough and every vector has one compo-

nent per axis: x, y, z. The values published represent the MEMS

sensor register copy. In particular, the gyroscope has a 16 bit reading,

19

covering a range from -500 dps to +500 dps, with a sensitivity of 17.50

mdps per LSB and the accelerometer has a 12 bit reading, covering

the range from −2g to +2g, that is about 1mg per LSB. The g here

stands for the gravitational acceleration which measures about 9.81

m/s2

• /r2p/odom, geometry msgs/Vector3:

In this topic is published a very raw odometry, built in the board

system. It is retrieved only by encoders data elaborations and is pub-

lished as a vector of three elements in which the first and the second

elements represent the position variation in meters (x and y) and the

third element represents the orientation angle variation in radians.

• /nav cam/markers, nav cam/MsgMarkers:

In this topic is published the list of markers recognized by the robot in

real time. Each marker is represented as a nav cam/MsgMarker mes-

sage, which includes a numerical id of the marker (id), the name of the

published marker frame (frame id) and its transform with the respect

of the camera frame (pose), divided in position, as a tridimensional

vector, and orientation, as a quaternion.

• /odom, nav msgs/Odometry:

In this topic is published the odometry, built by integrating the gyro-

scope measurement in a ad hoc way. We improved this odometry for

these project, as we will explain in ??. The nav msgs/Odometry mes-

sage contains pose information, divided in position and orientation,

and twist information, i.e. velocity, which is divided in linear and

angular, both with the respective covariance matrices.

• /scanf, sensor msgs/LaserScan:

In this topic are published messages from the Hokuyo laser scanner,

after being filtered by some outliers. The sensor msgs/LaserScan

messages represent the collection of the distances at which an infrared

ray beamed by the laser scanner has been intercepted by an obstacle.

2.2.2 Built-in navigation

The provided workspace includes different ways to teleoperate the robot. All

of them always use the so called “laser bumper” which basically interrupts

all forward movements in case of obstacle detected by laser scanner in a very

20

Figure 2.3: Ra.Ro. photograph from NuZoo website

close range. The teleoperation system operates in three ways: a manual one,

an assisted one and a semi-autonomous.

Manual teleoperation

The manual teleoperation managed through the web application using a

remote controller being plugged into a computer and connected to the robot

via network. It is the simplest way and it is relies completely on human

control.

Assisted teleoperation

The assisted teleoperation is managed via the web application interface

which in this case can be runned even on mobile devices. It is Google

street view inspired and allows to move the robot towards a specific spot

by clicking or touching on the correspondent on-screen spot in the map

besides its basic movements such as forward, backward and left and right

rotation. The system cannot manage any obstacle in the trajectory. We can

also consider as assisted teleoperation the one with the particular follow me

marker. The operator must show the marker to the robot’s navigation cam

and the robot it will try to keep the marker into the camera frame, following

the person that holds it.

Semi-autonomous teleoperation

The most advanced navigation systems built into the robot consist in

line following and in marker indication following. The first one consists in

following colored line sticked or painted on the floor. It is possible to switch

from one color to another. The second one consists in executing simple

navigation tasks according to the recognition of a specific marker, which

can be attached in sequence on walls creating, if needed, a patrol path.

21

Examples of a marker command can be to turn left 90◦, turn 180◦, keep

the wall on your right. Moreover, a special marker is set on the recharging

station and the robot can, under proper conditions, autonomously connect

itself to the station after recognizing the marker, if desired.

None of these system implements a proper obstacle avoidance algorithm,

nor a good odometry calculation. There is no mapping system, thus no

localization is possible.

2.3 Platform purposes

As introduced at the beginning of this chapter, the full Ra.Ro. platform is

designed to be a security guard, able to patrol parkings, supermarkets and so

on. It has been already adapted by the producer company for other different

purposes, usually starting from its simpler version, code name Geko, which

is very similar to Ra.Ro. except for the cameras, which are attached directly

to the robot base.

22

Chapter 3

Knowledge requirements

“Smirk : I like your spirit. I’ll do what I can. Of course... it’ll cost you.

What have you got?

Guybrush : All I have is this dead chicken.

Smirk : That isn’t one of those rubber chickens with a pulley in the middle

is it? I’ve already got one. What ELSE have you got?

Guybrush : I’ve got 30 pieces of eight.

Smirk : Say no more, say no more. Let’s see your sword.

Guybrush : I do have this deadly-looking chicken.

Smirk : Yes, swinging a rubber chicken with big metal pulley in it can be

quite dangerous... BUT IT’S NOT A SWORD!!! Let’s see your sword.”

The Secret of Monkey Island

3.1 State estimation

For a robot interacting with the environment it is important to retrieve

information about the state of the environment around it and the state of the

robot itself. This knowledge cannot be summarized into a unique hypothesis,

in fact it is crucial to also have a characterization of the uncertainty of this

knowledge [9].

We define the state of a robot as the values of specific variables needed

to identify the robot and/or parts of it in a specific state space, for exam-

ple velocity, position or orientation of a particular component. Most of the

contemporary autonomous robots represent the possible states using proba-

bility distributions in order to not rely only on a single “best guess”, but to

have the possibility to update frequently the estimate of the state and the

past states as well while required.

A well designed movable robot should be able to retrieve heterogeneous

information given by different kind of sensors, in order to make the update

of the possible states.

This is basically the definition of sensor fusion and in the following

paragraph we are going to introduce the most used probabilistic techniques

to estimate a state. These techniques are employed in different fields but on

this essay we will focus only on robotic field.

3.1.1 Baysian state estimation

We define the belief of a state with the following formula:

bel(xt) = p(xt|z1:t, u1:t)

So the belief of a state in time t is defined as the probability to be in that

state given the measurements z from the sensors and the known input values

u until the time t.

To retrieve the measurement of the sensor at the t time is not very

practical. In fact, the formula

bel(xt) = p(xt|z1:t−1, u1:t)

is more often used, in wich a posterior distribution represents the probability

of each state given its prior, i.e. sensor readings and the controls until time

t − 1. Hence this distribution is called prediction. From bel(xt) we can

obtain bel(xt) in recursive fashion, considering the first term as prior and

the second one the posterior. The most general form of the recursive state

estimation is the Bayes filter, which is here reported.??

For each state variable we can divide its estimation into two steps.In the

first one, the prediction, we estimate the state variable at time t given the

ut and xt−1. In the second one, the innovation, the sensor readings zt are

used, combined with the previously calculated prediction. The mathematical

formulation of the Bayes filter is given by

bel(xt) = ηp(zt|xt)
∫
x
p(xt|xt−1, ut)p(xt)dxt−1

which can be obtained:

• from the Bayes rule: P (B|A)P (A)
P (B) , together with the law of total prob-

ability: P (A) =
∑

n P (A|Bn)P (Bn)

• assuming that the states follow a first-order Markow process, i.e. past

and future data are independent if the current state is known: p(xt|x0:t−1) =

p(xt|xn−1)

24

Algorithm 1 Bayesian filtering

1: function BayesFilter(bel(xt−1), ut, zt)

2: for all x do

3: bel(xt)←
∫
x p(xt|xt−1, ut)p(xt)dx

4: bel(xt)← ηp(zt|xt)bel(xt)
5: end for

6: return bel(xt)

7: end function

• assuming that the observation are independent of the given states, i.e.

p(zt|x0:t, z1:t.u1:t) = p(zt|xt)

The generic Bayes filter algorithm is mostly impossible to use since the

analytical representation of the multivariate posterior is usually difficult to

retrieve. Moreover, the integrals involved in the prediction represent a very

high computational effort.

The first practical implementation of the Bayesian filter for continuous

domains was made by Rudolph E. Kalman, in 1960. The original formu-

lation assumes that the belief distributions and measurement noise follow

a Gaussian distribution and that system and observation models are linear

[6]. Under these assumptions, the Kalman update equation yields the opti-

mal state estimator, in terms of mean squared-error. The so called Kalman

Filter (KF) is very important and it is still considered the state of the art in

state estimation, especially its more generic version, the Extended Kalman

Filters (EKFs), which admit in a sense the non-linearity of the system. The

solution lies in Taylor series expansion applied to linearize the requested

functions. These solutions are still widely employed today and are often the

first choice in recursive state estimation. However, none of the KFs hold in

the non-linear case. In particular, the EKFs can suffer from a poor approx-

imation caused by the linearization of highly non-linear models affected by

the propagation of the Gaussian noise.

In 1997, Simon Julier and Jeffery Uhlmann proposed the Unscented

Kalman Filter (UKF) which, using the unscented transform for the lin-

earization, can obtain better results in terms of accuracy, keeping the char-

acterization of the error as Gaussian noise, which is usually reliable enough,

and above all, easy to represent since the mean and the covariance give the

full description of the distribution.

An alternative to the Kalman Filters is given by non-parametric filters.

These ones does not rely on an analytic representation of the posterior prob-

ability distribution, nor on parameters or statistics that can represent them.

25

A well-known approach is the particle filter, proposed by Gordon et Al. in

1993 [4]. The idea is to describe the posterior distribution in a Monte Carlo

fashion, representing a possible state with a particle. The more particles

are present in a certain region of the state space, the more that state is

likely to be the real state. The advantage of this approach is that any kind

of distribution can be represented in this way, but still problems exist. In

particular we have to deal with a possible high dimension of the state space

which carries the exponential growth of the number of particles needed to

represent the probability distribution of the belief.

3.1.2 Graph-based State Estimation

For SLAM problem, in 1997, Lu and Milios developed and proposed a graph-

based approach. In their formulation the nodes in the graph represent poses

and landmark parameterizations. If a landmark is visible from a certain

pose, then an edge linking the two poses is added. The state estimation

problem consists in a maxi-likelihood optimization. Since every node and

edge represents respectively poses and landmarks, the aim is to maximize

the observations joint likelihood. This requires to solve a large non-linear,

least-squares, optimization problem.

Graph-based approaches are considered to be superior to conventional

EKF solutions, even though a more accurate research from the point of view

of computational complexity is required in order to make them faster and

thus more usable in on-line state estimation. The graph technique implies

that not only the latest state can be estimated, but also the previous ones,

making possible to continuously estimate the full robot trajectory.

An even wider generalization of the graph approach is the factor-graph,

which is basically a hypergraph in which edges do not incide only between

two nodes, but can possibly affect many of them. This comes up with a

powerful tool in multi-sensor fusion problems, in particular it is appreciated

the possibility to represent heterogeneous measurement, in sense of number

of poses effected, maintaining a quite explicit design of the graph.

3.2 Odometry estimation

Odometry basically measures the distance traveled by a robot, or any kind of

movable system, from an initial point, into the space in which it operates. It

is crucial to have a good odometry estimation for many reasons, in particular

for autonomous navigation. A good odometry estimation can be done only

by retrieving and combining different sensor measurements, but certainly

26

the piece of information given by the wheels’ rotation is the base for the

whole estimation, for every wheeled mobile robot.

3.2.1 Generic odometry

As mentioned before, the wheels’ rotation usually gives the most of the

information about odometry, especially in the case in which an absolute

pose measurement is not available, e.g. GPS sensor in indoor environment.

As we are dealing with wheeled robots we can collapse our working space

in a 2D plane, so estimate its odometry means indeed to estimate the posi-

tion and the orientation of the robot in this space. It follows that a three

element vector (x, y, θ) is enough to represent this information. More pre-

cisely the x and the y represent the two coordinate of the plane, considering

the origin (0, 0) the initial position, and θ the rotation of the robot, with

the respect of the initial orientation, around its vertical axis.

Each wheeled mobile robot (WMR) to be able to move must have a

point around which all wheels follow a circular course. This point is known

as the instantaneous center of curvature (ICC) or the instantaneous center

of rotation (ICR). In practice it is quite simple to identify, because it must

lie on a line coincident with the rotation axis of each wheel that is in contact

with the ground. Thus, when a robot turns the orientation of the wheels

must be consistent and a ICC must be present otherwise the robot cannot

move.

If we could retrieve the sequence of the exact position variation of the

robot (∆x,∆y,∆θ) at a good rate, the odometry would be simply the inte-

gration of these measurement. These delta positions could be, if necessary,

derived from the velocity along the axis.

Defined as v(t) the linear velocity in a t instant of time and ω(t) the

angular velocity at the same time, can be generally retrieved the position

and orientation of the robot at time t1 as follows

x(t1) =

∫ t1

0
v(t)cos(θ(t))dt

y(t1) =

∫ t1

0
v(t)sin(θ(t))dt

θ(t1) =

∫ t1

0
ω(t)dt

(3.1)

In order to deal with concrete cases, namely discrete time, exist different

integration methods. We will present three of the most common ones: Euler

method, II order Runge-Kutta method and the precise reconstruction. For

27

(a) Euler method (b) Runge-Kutta method (c) Exact reconstruction

Figure 3.1: Different integration methods results

these explanation we will use the relaxed notation xk = x(tk), vk = v(tk)

and so on, and we define Ts = tk+1 − tk, namely the sampling period.

Euler method 
xk+1 = xk + vkTscosθk

xk+1 = yk + vkTssinθk

θk+1 = θk + ωkTs

(3.2)

This is the most simple integration method, but also the most subject

to error in xk+1 and yk+1. θk+1 is exact in fact and it will be used also for

all the other integration methods, indeed. The whole system is correct for

straight path. In general the error decreases as Ts gets smaller.

II order Runge-Kutta method



xk+1 = xk + vkTscos(θk +
ωkTs

2
)

xk+1 = yk + vkTssin(θk +
ωkTs

2
)

θk+1 = θk + ωkTs

(3.3)

Comparing with the Euler method, the II order Runge-Kutta one de-

creases the error in computation of xk+1 and yk+1 using the mean value of

θk. Also in this case the smaller is sampling period Ts, the smaller is the

error.

28

(a) TurtleBot (b) Khepera

(c) Robuter

Figure 3.2: Commercial differential drive robots

Precise reconstruction
xk+1 = xk +

vk
ωk

(sinθk+1 − sinθk)

xk+1 = yk −
vk
ωk

(cosθk+1 − cosθk)

θk+1 = θk + ωkTs

(3.4)

Here is involved the instantaneous radius of curvature R = vk
yk

. Note

that for ωk = 0→ R =∞ the equation degenerate matching the Euler and

Runge-Kutta algorithms. The method is based on geometrical considera-

tions.

3.2.2 Differential drive odometry

The differential drive mechanism consist in two active wheels, rotating on a

common axis, drove by two different motors. In addition one or more passive

castor wheel(s) can support the robot stability without interfere with the

robot kinematic. Many commercial robots adopts this kind of mechanism

due the simplicity of implementation, the relative low cost and the com-

pactness of the system. We can found it in TurtleBot, Khepera or Robuter.

The whole robot motion is based on the difference in rotation velocity of the

29

Figure 3.3: Differential drive kinematics

two active wheels. The ICC lies on of course on the axis the wheels rotate

around and the curve that the robot will follow depend on the position of

this point with the respect of the middle point between the two wheels.[IMG]

The relationship between the wheels velocity vr and vl, the distance be-

tween the ICC and the midpoint of the wheels R and the angular velocity

of the robot ω is given by the following

ω(R+
l

2
) = vr

ω(R− l

2
) = vl

where l is the distance between the 2 wheels.

We are actually interested in retrieve R and ω” from the velocities, which

are usually available data given by the encoders, and l which is a fixed

parameter. So the formulas are:

R =
l(vr + vl)

2(vr − vl)

ω =
vr − vl
l

(3.5)

It is interesting to analyze a couple of special case. When vr = vl then

R = inf, which means that the robot is moving in a straight line, is not

curving. When vl = −vr then R = 0, which means that the robot is only

rotating around the vertical axis passing through the midpoint between the

wheels.

30

Figure 3.4: Differential drive robot motion from pose (x, y, θ) to (x′, y′, θ′)

Since the differential drive structure is non-holonomic, is not possible to

do, for example, a lateral movement or any other kind of displacement not

represented by the previous equations.

The position (x′, y′, θ′) in a particular instant of time is given by the

computation on the previous (x, y, θ) and the time span ∆t between the two

positions

x′y′
θ′

 =

cos(ω∆t) −sin(ω∆t) 0

sin(ω∆t) cos(ω∆t) 0

0 0 1


x− ICCxy − ICCy

θ

 +

ICCxICCy
ω∆t


Where ICCx and ICCy are the coordinate computed as follows:

ICC = (x−Rsin(θ), y +Rcos(θ))

The specific case for the odometry calculation in differential drive, ac-

cording with 3.1 is

x(t1) =
1

2

∫ t

0
(vr(t) + vl(t))cos(θ(t))dt

y(t1) =
1

2

∫ t

0
(vr(t) + vl(t))sin(θ(t))dt

θ(t) =
1

l

∫ t

0
(vr(t)− vl(t))dt

(3.6)

31

3.2.3 Skid-steering odometry

The skid-steering mechanic tries to maintains the simplicity and compact-

ness of the differential drive, improving in the meanwhile the robustness of

the model. It consists in four wheels that we can divide in a pair on the left,

front and rear, and a pair on the right, again front and rear. Each couple of

wheels is driven by one motor, located in the middle of the front and rear

wheel. These two wheels are usually connected by a transmission belt or a

chain. Each motor allows to rotate the pair of wheels connected at with the

same velocity.

Skid-steering compactness and the high maneuverability, in addition to

the higher robustness, with the respect of the differential drive, makes this

kind of mechanic an optimal choice for different purposes. This mechanic,

indeed, offer a good mobility on different terrains, not only indoor ones, but

also outdoor, because one of the advantages is the possibility of mount tracks

for the terrains that require them, without changing the whole mechanic.

Unfortunately the drawback is a more complex kinematics because the

pure rolling and no-slip assumption, that was possible to use for the differ-

ential drive case, is no more an option because the wheels must slip during a

curve. This implies a hard to predict motion, given the velocity input. Other

disadvantages are an energy inefficient motion and a fast tires’ consumption,

caused by the slippage indeed.

Wang et al. help to partially resolve the problem of the complex skid-

steering kinematic proposing an approximation to the differential drive one.

It is based on three assumption:

(i) the mass center of the robot is located at the geometric center of the

body frame

(ii) the two wheels of each side rotate at the same speed (wfr = wrr and

wfl = wrl)

(iii) the robot is running on a firm ground surface, and four wheels are

always in contact with the ground surface

Then considering the figure and the deriving the Equations ?? we obtainvxvy
wz

 = f

[
wlr

wrr

]
(3.7)

where v = (vx, vy) is the vehicle’s translational velocity with respect to

its local frame, wz is its angular velocity, r is the radius of the wheels and

wl and wr are respectively the angular velocity of the left and right wheels.

32

Figure 3.5: Skid-steering platform

During robot turn there are different ICRs: ICRl, ICRr and ICRG,

that are respectively of the left-side tread, right-side tread, and the robot

center of mass. We define the coordinates of the ICRs respect to the local

frame as (xl, yl), (xr, yr) and (xG, yG). All the treads share the same angular

velocity ωz, so these equations follows

yG =
vx
wz

(3.8)

yl =
vx − wlr
wz

(3.9)

yr =
vx − wrr

wz
(3.10)

xG = xl = xr = − vy
wz

(3.11)

from (??) to (??) the generic odometry kinematic (??) can be repre-

sented as:

vxvy
wz

 = Jw

[
wlr

wrr

]
(3.12)

33

Figure 3.6: Skid-steering to differential drive equivalence

Where Jw depends on IRCs coordinates and is defined as follows:

Jw =
1

yl − yr

−yr yl
xG −xG
−1 1

 (3.13)

If the robot is symmetrical, then the ICRs will lie symmetrically on the

x-axis, and will be xG = 0 and y0 = yl = −yr. The Jw matrix be rewritten

as:

Jw =
1

2y0

 y0 y0

0 0

−1 1

 (3.14)

So the velocities defined in (??) can be defined, for the symmetrical

model, as follows: 
vx =

vl + vr
2

vy = 0

wz =
−vl + vr

2y0

(3.15)

and from (??) we can get the instantaneous radius of the path curvature:

R =
vG
wz

=
vl + vr
−vl + vr

y0 (3.16)

34

The ratio of sum and difference of left and right wheels’ linear velocities

can be defined as a variable λ

λ =
vl + vr
−vl + vr

and (3.16) becames

R = λy0

A similar approach is used in Mandow’s work, in which an IRC coeffi-

cient χ is defined as:

χ =
yl − yr
B

=
2y0

B
, χ ≥ 1 (3.17)

χ represents the approximation from the differential drive kinematic. We

can notice that when χ is equal to 1 there is no slippage and the skid-steering

model coincide with the differential drive. It implies that we can use the

differential drive model to approximate the skid-steering one, working on the

χ variable. In particular the skid-steering coincide with a differential drive

with a larger span between the left and right wheels as shown in Figure.

This is a very useful method and will be very appreciated for our work.

3.3 Sensor fusion framework

Since, as mentioned before, the pure kinematics equations are actually just

an approximation of the real world, they are not enough to retrieve the

correct odometry of a robot with a satisfying precision. This is why the

multi-sensor fusion is required. Here we introduce the framework used to

make this process in a way possible to set up.

3.3.1 ROAMFREE

The acronym ROAMFREE stays for Robust Odometry Applying Multi-

sensor Fusion to Reduce Estimation Errors. The main aim of the framework

is to offer a set of mathematical techniques and to perform sensor fusion in

mobile robotics, focusing on pose tracking and parameter self-calibration.

The main goals of the project include ensuring that the resulting software

framework can be employed on very different robotic platforms and hardware

sensor configurations and that it can be easily tuned to specific user needs

by replacing or extending its main components.

In ROAMFREE the information fusion problem is formulated as a fixed-

lag smoother whose goal is to track not only the most recent pose, but all

35

the positions and attitudes of the mobile robot in a fixed time window: short

lags allow for real time pose tracking, still enhancing robustness with respect

to measurement outliers; longer lags allow for online calibration, where the

goal is to refine the available estimate of sensor parameters.

The system is based on a graph-based approach. In particular a factor

graph is generated. This graph keeps the probabilistic representation of

the pose retrieved by the sensor fusion measurements, the estimated sensor

parameters and the sensor error models. All the modules interact in some

way with this graph, for example to update it with new measurements or new

estimated poses. The factor graph is designed to allow an arbitrary number

of sensors, even if they work at different rates, without a predictable rate or

producing obsolete data.

The framework implements a set of logical sensor, which are indepen-

dent from the actual hardware that produce the measurement. For example

an odometry measurement can be retrieved from a laser scanner elabora-

tion or an wheels’ encoders one, but both can be properly setted up as a

logical GenericOdometer sensor. Each logical sensor is characterized by a

parametric error model specific for its domain. This means that we must

initialize the sensors passing the specific parameters for that sensor. For

example a DifferentialDriveOdometer requires the wheels radius and the

wheels distance, expressed in meters. Another required parameter needed

to properly set up a sensor is its position and orientation with the respect of

the tracked base frame, in order to properly use the information retrieved.

For example the camera sensor, possibly used to retrieve markers positions,

must be properly set in order to calculate the exact transformation between

the seen marker and the base frame.

The ROAMFREE’s modularity and its ROS implementation make it

a very powerful tools for sensor fusion purposes and the other side aims.

Unfortunately we had to deal with a lack of documentation which made the

development of a stable ROS node quite hard.

Factor graph filter As mentioned before the core of ROAMFREE lies

in the factor graph filter. We already written about the important features

of graph-based approaches in paragraph ?? in a general way. The most rel-

evant advantage is the possibility of menage high-dimensional problems in

relatively short time. The graph holds the full joint probability of sensor

readings given the current estimate of state variables, representing its factor-

ization in terms of single measurement likelihoods. Each node of the graph

contains a the pose of the robot and the sensors’ calibration parameters, i.e.

gains, biases, displacement or misalignments. The nodes are generated by

36

Figure 3.7: An instance of the pose tracking factor graph with four pose vertices ΓWO (t)

(circles), odometry edges eODO (triangles), two shared calibration parameters vertices

kθ and kv (squares), two GPS edges eGPS and the GPS displacement parameter S
(O)
GPS

new measurements, represented as hyper-edges (factors) connecting one or

more nodes, depending on their order. For example a velocity measurement

connects two nodes since it need one integration to retrieve a position; an

acceleration needs three nodes because the twice integration required.

One, and only one, of the available sensors must be chosen as architecture

master sensor, and a good practice is to choose an odometry sensor to play

this role, because it has usually a high rate and it is the one that gives

a hopefully good starting point for the optimization process. Once the

master sensor measurement is collected, an initial guess of the new pose is

made and then begins a non-linear optimization process, using also the other

measurement retrieved in the meanwhile. It can happens that sensor reading

are late for low rate, connection problems or in general are not available. In

these cases, if the available once are not sufficient to generate a pose, the

measurement handling is delayed until enough data are available.

The new node generation is based on a fixed-lag window. It means that

only nodes contained in these time span are considered for the following pose.

Older nodes and factors, since are no more used, are deleted. In order to

avoid high loss of information older nodes and factors can be marginalized,

keeping the information they used to holds in a new generated factor.

We can resume the factor-graph advantages here:

• Flexible with the respect of sensors’ nature and number. The mod-

ularity of the system allows to manage all the inserted sensors in an

independent and uniform way, by means the abstract hyper-edges in-

37

terface, as they are inserted into the graph.

• Sensors can be, if necessary, turned on and off during the process. The

factors’ management is asynchronous, so they can be added into the

graph as soon as new reading are available.

• Possible to deal with out-of-order measurements. If an old informa-

tion is received, according to its time stamp, it will not be simply

discarded, but will be created an appropriate factor, connecting the

nodes interested by and updating and refining them.

• The quality of the estimation is higher and, in certain circumstances,

faster than traditional filters, such as EKFs [8].

• The high degree of sparsity of the considered information fusion prob-

lem is explicitly represented and can be exploited by inference algo-

rithms. Indeed in our case a factor may involve up to three robot poses;

moreover, it is difficult to imagine a robot employing much more than

ten sensors for pose estimation, implying that each pose is incident to

a limited number of factors.

Error models For each logical sensor model an error model definition is

needed. All of these ones start from a common definition

ei(t) = ẑ(t; x̂Si(t), ξ)− z + η (3.18)

where hatxSi(t) is the extended state for the sensor frame Si in which are

represented the position and the orientation of the frame with the respect of

the world frame, its position and orientation at time t; ξ represents the vector

of the parameters relative to that sensor and ẑ(t; x̂Si(t), ξ)) is a predictor

measurement computed as a function of the previously defined parameters

and the incident nodes. z is the real sensor output and η is the zero-mean

Gaussian noise representing the measurement uncertainty. It is evident that

the more the prediction is accurate, even equal to z, the more the error is

near to 0, net of the Gaussian noise.

The equation that describes the actual error depends on the type of

measurement considered. We can distinguish five classes:

(i) absolute position and/or orientation (e.g. GPS)

(ii) linear and/or angular velocity in sensor frame (e.g. gyroscope)

(iii) acceleration in sensor frame (e.g. accelerometer)

38

Figure 3.8: ROAMFREE estimation schema

(iv) vector field in sensor frame (e.g- magnetometer)

(v) landmark pose with respect to sensor (e.g. markers)

Moreover the other thing that characterize the sensor in ROAMFREE

is the parameter’s vector ξ, which includes gain, bias and other specific

parameters according to the sensor class. These parameters sometimes are

easy to retrieve from sensors’ specifications or from observation, but often

they need an accurate tuning to let everything works well.

An even more attention is required for covariance matrix setup. Indeed

the factor graph wants this matrix as input in measurement update, in

addition to the measurement itself and the sensor name. The covariance

matrix can be even different according to the actual measurement, of course

always being of the right dimension. Changing the value of the matrix

means change the reliability of a sensor. In other words if two measurement

indicate two conflicting outputs the system will trust more the one with a

lower covariance.

A convenient feature is the outlier management made through the ro-

bust kernel technique. It consist in setting a threshold in the measurement

domain. If this threshold is exceeded, in module, the error model of the

sensor, for that measurement, becomes linear instead of quadratic, which

means that it is less involved in the following computation. It is useful to

manage with errors that can sometimes occur in data retrieving.

Optimizations The optimization algorithms implemented in ROAMFREE

are Gauss-Newton and Levenberg-Marquardt. Both of them require a prob-

lem formulated as non-linear, wighted and least-squares optimization and

here will discuss about how it is done. Consider the error function ei(xi, η)

39

associated to the i-th edge of the hyper-graph and defined as (??). We can

approximate the error function as ei(xi) = ei(xi, η)|η=0 since ei is a random

vector. It can involve non-linear dependencies with respect to the noise, so

its covariance Ση is computed by means of linearization, i.e.:

Σei = Ji,ηΣηJ
T
i,η|xi=x̆i,η=0 (3.19)

where Ji,η is the Jacobian of ei with respect to η evaluated in η = 0 and

in the current estimate x̆i. The covariance matrix Sigmaη is the one we

mentioned before and here is where it is involved in the optimization.

A negative log-likelihood function can be associated to each edge in the

graph, which stems from the assumption that zero-mean, Gaussian, noise

corrupts the sensor readings. Omitting the terms which does not depend on

xi, for the i-th edge this function reads as:

Li(xi) = ei(xi)Ωeiei(xi) (3.20)

where Ωei = Σ−1
ei is the information matrix of the i-th edge. The solution

for the information fusion problem is given by the assignment for the state

variables such that the likelihood of the observations is maximum,

P = argmin
x

N∑
i=1

Li(xi) (3.21)

It is possible to observe that this is a non-linear least-squares problem where

the weights are the information matrices associated to each factor. If a

reasonable initial guess for x is known, a numerical solution for P can be

found by means of the popular Gauss-Newton (GN) or Levenberg-Marquardt

(LM).

3.4 Simultaneous Localization and Mapping (SLAM)

With simultaneous localization and mapping (SLAM) is meant the building

of a map while the robot locate itself into the map that is being created.

The SLAM can be considered a preliminary phase in which the robot create

the map and then it will use it for the autonomous navigation, or can be

contextual to the autonomous navigation. It is important to point out that it

does not matter if the robot, during the SLAM phase, is human controlled or

not. The first localization guess is given by the odometry, but, as mentioned

in section (??), it accumulates error as long as the robot moves. A good

odometry estimation is desirable for the SLAM problem, but the error given

by the odometry can be corrected using world references observed through

40

laser scanner(s), camera(s) (Visual SLAM) or similar sensors. It follow that

the observation should be done in an environment as static as possible, even

if SLAM frameworks can deal with mobile objects. Moreover the localization

makes sense if it is made with respect of a map, but if the map is being made

is evident the possible problem that can shows up. For sure SLAM must

be done in recursive way and this is one of the main reason why is a so

complex task. From a probabilistic point of view, there are two main forms

of SLAM. One is known as the online SLAM problem: it involves estimating

the posterior over the momentary pose along with the map:

p(xt,m|z1:t, u1:t) (3.22)

Where xt is the pose time at time t, m is the map and z1:t and u1:t are

the measurements and controls, respectively. This problem only involves

the estimation of the variables that exist at time t. Many algorithms for

the online SLAM problem are incremental: they discard past measurements

and controls once they have been processed.

The second SLAM problem is called the full SLAM problem. Here we

want to calculate a posterior over the entire path x1:t along with the map,

instead of just the current pose xt:

p(x1:t,m|z1:t, u1:t) (3.23)

Instead of computes the state incrementally as in online case, here the se-

quence of states is computed one time.

Regardless of the method used to implement a full or online SLAM, the

algorithm must follows these steps:

(i) Landmarks detection: the robot must recognize some feature from the

environment, called landmarks. For a 2D map, horizontal LIDAR are

the most common sensor used for this kind of task. Angles, edges,

particular shapes are good candidates to be detected as landmark.

(ii) Data association: once the landmark is been detected, it must be

matched with an possibly existing landmark into the map. It can

be a hard task because a single feature can match with many, growing

exponentially as long as the map grows.

(iii) State estimation. It takes observations and odometry to reduce errors.

The convergence, accuracy, and consistency of the state estimation are

the most important properties. Thus, the SLAM method must main-

tain the robot path and use the landmarks to extract metric constraints

to compensate the odometer error.

41

Figure 3.9: The image represent the topics subscribed and published by the mapping

node, independently by the exact mapping system used

The major difficulties of SLAM are the following:

• High dimensionality: since the map dimension always grows when

the robot explores the environment, the memory requirements and

time processing of the state estimation increase. Some submapping

techniques can be used to reduce these consumption, at the cost of a

worse performance

• Loop closure: when the robot revisits a past place, the accumulated

odometry error might be large. Then the data association and land-

mark detection must be effective to correct the odometry. Place recog-

nition techniques are used to cope with the loop closure problem.

• Dynamics in environment: state estimation and data association can

be confused by the inconsistent measurements in the dynamic envi-

ronment. There are some methods that try to deal with these envi-

ronments.

We will focus on 2D SLAM, using a laser scanner as sensor and related

laser scans measurements. In general the aim of a SLAM framework is to

collect the laser scans and try to associate them in one occupancy grid map.

Then, if following scans match with the memorized map, the position will

be corrected according to this match, hopefully improving the localization

estimation. The more various the environment is, the more the localization

is easy, because the probability to deal with a potential ambiguity is lower.

3.4.1 Gmapping

Gmapping is the most widely used laser-based SLAM package in robots

worldwide. The algorithm has been proposed by Grisetti et al.in 2007 and

it is a Rao-Blackwellized Particle Filter SLAM approach.

We mentioned the Particle Filter in section ?? and here we will describe

RBPF, which is an optimized version for the SLAM problems.

42

Algorithm 2 Improved RBPF for map learning
Require:

St−1, the sample set of the previous time step

zt, the most recent laser scan

ut−1, the most recent odometry measurement

Ensure:

St, the new sample set

St = { }
for all s

(i)
t−1 ∈ St−1 do

〈x(i)t−1, w
(i)
t−1,m

(i)
t−1〉 = s

(i)
t−1

//Scan−matching

x
′(i)
t = x

(i)
t−1 ⊕ ut−1

x̂
(i)
t = argmaxx p(x|m

(i)
t−1, zt, x

′(i)
t)

if x̂
(i)
t = failure then

x
(i)
t ∼ p(xt|x

(i)
t−1, ut−1)

w
(i)
t = w

(i)
t−1 · p(zt|m

(i)
t−1, zt, x

′(i)
t)

else

//Sample around the mode

for all k = 1 to K do

xk ∼ {xj | |xj − x̂(i)| < ∆}
end for

//Compute Gaussian proposal

µ
(i)
t = (0, 0, 0)T

η(i) = 0

for all xj ∈ {x1, . . . , xK} do

µ
(i)
t = µ

(i)
t + xj · p(zt|m

(i)
t−1, xj) · p(xt|x

(i)
t−1, ut−1)

η(i) = η(i) + p(zt|m
(i)
t−1) · p(xt|x

(i)
t−1, ut−1)

end for

µ
(i)
t = µ

(i)
t /η(i)

Σ
(i)
t = 0

for all xj ∈ {x1, . . . , xK} do

Σ
(i)
t = Σ

(i)
t + (xj − µ

(i)
t)(xj − µ

(i)
t)T · p(zt|m

(i)
t−1 · p(xt|x

(i)
t−1, ut−1)

end for

Σ
(i)
t = Σ

(i)
t /η(i)

//Sample new pose

x
(i)
t ∼ N (µ

(i)
t ,Σ

(i)
t)

//Update importance weights

w
(i)
t = w

(i)
t−1 · η

(i)

end if

// Update map

m
(i)
t = integrateScan(m

(i)
t−1, x

(i)
t , zt)

// Update sample set

St = St ∪ {〈x
(i)
t , w

(i)
t ,m

(i)
t 〉}

end for

Neff =
1

ΣN
i=1(w̃(i))2

if Neff < T then

St = resample(St)

end if

We can start from (3.23) and factorize it as:

p(x1:t,m|z1:t, u1:t) = p(m|x1:t, z1:t)p(x1:t|z1:t, u1:t−1) (3.24)

This factorization allows to first estimate only the trajectory of the robot and

then to compute the map given that trajectory. In particular p(m|x1:t, z1:t)

can be easily computed using “mapping with known poses” since x1:t and

z1:t are known.

The RBPF occupancy grid SLAM works as follows:

If new control data ut from the odometry and a new measurement zt

43

form the laser scanner is available:

1. Determine the initial guess x
′(i)
t , based on ut and the pose, since the last

filter t update xt−1 has been estimated.

2. Perform a scan matching algorithm based on the map m
(i)
t−1 and x

′(i)
t .

If the scan matching fails, the pose x
(i)
t of particle i will be determined

according to a motion model, otherwise the next two steps will be per-

formed.

3. If the scan matching is successfully done, a set of sampling points around

the estimated pose x̂
(i)
t of the scan matching will be selected. Based on

this set of t poses, the proposal distribution will be estimated.

4. Draw pose x
(i)
t of particle i from the approximated Gaussian ditribution

of the improved proposal distribution.

5. Perform update of the importance weights.

6. Update map m(i) of particle i according to x(i) and zi.

The more detailed RBPF algorithm pseudo-code can be read in (??).

The author proposes a way to compute an accurate distribution by taking

into account both she movement of the robot and the most recent observa-

tions. This decreases the uncertainty about the robot’s pose in the prediction

step of the particle filter. As a consequence, the number of particles required

decreased since the uncertainty is lower, due to the scan matching process,

improving the performance.

3.4.2 Cartographer

Another possible approach for SLAM problem is using graph-based meth-

ods. These ones use optimization techniques to transform the SLAM prob-

lem into a quadratic programming problem. The historical development

of this paradigm has been focused on pose-only approaches and using the

landmark positions to obtain constraints for the robot path. The objective

function to optimize is obtained assuming Gaussianity. Since this meth-

ods are based on a factor graph, they are able to remember better the old

sub-maps and the old localization and thus results more accurate respect to

other approaches.Their main disadvantage is the high computational time

they take to solve the problem, so they are usually suitable to build maps

off-line.

44

Google’s Cartographer provides a real-time solution for indoor and out-

door mapping. The system generates submaps from the matching of the

most recent scans at the best estimation position, which is assumed to be

accurate enough for short periods of time. Since the scan matching works

only on submaps the error of the pose estimation in the world frame eventu-

ally increase. For this reason the system runs periodically a pose optimiza-

tion algorithm. When a submap is considered finished, no more scans are

added to it and it takes part in scan matching for loop closure. If the robot

estimated pose is close enough to one or more processed submap, the algo-

rithm runs the scan matching between the incoming laser scans and those

maps. If a good match is found it is added as a loop closing constraint to

the optimization problem. By completing the optimization every few sec-

onds, the loops are closed immediately when a location is revisited. This

leads to the soft real-time constraint that the loop closure scan matching

has to happen quicker than new scans are added, otherwise it falls behind

noticeably. This has been achieved by using a branch-and-bound approach

and several precomputed grids per finished submap.

3.5 Localization

As mentioned before, robot localization is the problem of estimating a

robot’s pose relative to a map of its environment. It has been defined as one

of the most fundamental problems in mobile robotics [3].

We can recognize different levels of localization problems. The localiza-

tion tracking is the simplest one; the robot starts from a known position

and the localization aim is to correct the hopefully small odometry errors.

A more challenging problem is the global localization problem; the robot

must localize itself without a given initial position. An even more difficult

problem is the kidnapped robot problem; it can happen that an even well

localized robot is moved, with no information about this transportation, to

a different location. It can seems a similar problem to the second one, but

here we can not trust a measurement as consistent with a previous one, be-

cause the loss of information during the unexpected movement. Moreover

it is useful to correct very bad localization problems.

In other words the localization problem consist in identify an appropri-

ate coordinate transformation between the global frame, which is fixed and

integral with the map, and the robot frame. Then a detected object from

the robot point of view can be, in turn, transformed with the respect of the

global frame by coordinate transformation.

In robot localization the state xt of the system is the robot position,

45

Algorithm 3 Adaptive variant of Monte Carlo Localization

1: procedure AMCL(Xt−1, ut, zt,m)

2: X t = Xt = 0

3: for all m := 1 toM do

4: x
(m)
t = SampleMotionModelOdometry(ut, x

(m)
t−1)

5: w
(m)
t = MeasurementModel(zt, x

(m)
t ,m);

6: Xt = Xt − 〈x(m)
t , w

(m)
t 〉

7: wavg = wavg +
1

M
w

(m)
t

8: end for

9: wslow = wslow + αslow(wavg − wslow)

10: wfast = wfast + αfast(wavg − wfast)
11: for all m := 1 to M do

12: with probability max(0.0,1.0 -
wfast
wslow

) do

13: add random pose to Xt
14: else

15: draw i ∈ {1, . . . , N} with probability ∝ x(m)
t

16: add x
(i)
t to Xt

17: end with

18: end for

19: return Xt
20: end procedure

which, for the two dimensional mapping, is typically represented as a three

dimension vector xt = (x, y, θ) in which x and y indicate the position of the

robot in the map plane, and θ the angle formed by the robot orientation. The

state transition probability p(xt|xt−1, ut−1) describes how the robot position

changes, given the previous position xt−1 and the new sensors’ measurements

ut−1. The perceptual model p(zt|xt) describes the likelihood of making the

observation zt given that the robot is at position xt.

3.5.1 Adaptive Monte Carlo Localization (AMCL)

The Adaptive Monte Carlo Localization (AMCL) is a method to localize a

robot in a given map. It is an improved implementation of particle filter.

The word “adaptive” means that the number of particle used for the Monte

Carlo localization is not fixed, but changes according to the situation. This

number of particle is retrieved using the KLD-Sampling (Kulback-Leibler-

Divergence) [5] [7]. The AMCL algorithm is here reported [??]. It requires

the set of particles of the last known state Xt−1 and the control data ut for

46

the prediction; the measurement data zt and the map m for the update.

The algorithm returns the new status as a set of particles Xt. This filter

implementation is able to deal with the global localization problem, the

localization problem and the kidnapping problem. The AMCL is flexible

with the respect of the resampling technique, it means that an arbitrary

one can be used. Another advantage is that AMCL is able to recover from

localization errors by adding some random particles to the Xt set, after a

specified decade (lines 15 and 16 of ??). An AMCL ROS package is available

[1] and a lot of robots uses this package for the localization since it provides

a good configuration parameter suite.

3.6 A note on ROS reference system

Developers of drivers, models, and libraries need a share convention for co-

ordinate frames in order to better integrate and re-use software components.

Shared conventions for coordinate frames provides a specification for devel-

opers creating drivers and models for mobile bases. Similarly, developers

creating libraries and applications can more easily use their software with

a variety of mobile bases that are compatible with this specification. In

this chapter we will explain the reference frames that should be used for a

localization system, according to the ROS standard [?].

Coordinate frames

base link The coordinate frame called base link is rigidly attached to

the mobile robot base. The base link can be attached to the base in any

arbitrary position or orientation; for every hardware platform there will be

a different place on the base that provides an obvious point of reference. A

right-handed chirality with x forward, y left and z up is preferred.

odom The coordinate frame called odom is a world-fixed frame. The pose

of a mobile platform in the odom frame can drift over time, without any

bounds. This drift makes the odom frame useless as a long-term global

reference. However, the pose of a robot in the odom frame is guaranteed

to be continuous, meaning that the pose of a mobile platform in the odom

frame always evolves in a smooth way, without discrete jumps. In a typical

setup the odom frame is computed based on an odometry source, such as

wheel odometry, visual odometry or an inertial measurement unit. The

odom frame is useful as an accurate, short-term local reference, but drift

makes it a poor frame for long-term reference.

47

map The coordinate frame called map is a world fixed frame, with its

Z-axis pointing upwards. The pose of a mobile platform, relative to the

map frame, should not significantly drift over time. The map frame is not

continuous, meaning the pose of a mobile platform in the map frame can

change in discrete jumps at any time.

In a typical setup, a localization component constantly re-computes the

robot pose in the map frame based on sensor observations, therefore elim-

inating drift, but causing discrete jumps when new sensor information ar-

rives.

The map frame is useful as a long-term global reference, but discrete

jumps in position estimators make it a poor reference frame for local sensing

and acting.

earth The coordinate frame called earth is the origin of ECEF (earth-

centered, earth-fixed) [?].

This frame is designed to allow the interaction of multiple robots in differ-

ent map frames. If the application only needs one map the earth coordinate

frame is not expected to be present.

Relationship between Frames

The relationship between coordinate frames in a robot system can be rep-

resented as a tree since each coordinate frame can have a parent coordinate

frame and an arbitrary number of child coordinate frames. Thus, the frames

described before are attached as follows:

Figure 3.10: The tree frame representation.

The map frame is the parent of odom, and odom is the parent of base link.

Although intuition would say that both map and odom should be attached to

base link, this is not allowed because each frame can only have one parent.

Frame Authorities

The transform from odom to base link is computed and broadcast by one

of the odometry sources.

48

The transform from map to base link is computed by a localization

component. However, the localization component does not broadcast the

transform from map to base link. Instead, it first receives the transform

from odom to base link, and uses this information to broadcast the trans-

form from map to odom.

The transform from earth to map is statically published and configured

by the choice of map frame. If not specifically configured a fallback position

is to use the initial position of the vehicle as the origin of the map frame.

If the map is not georeferenced so as to support a simple static transform

the localization module can follow the same procedure as for publishing the

estimated offset from the map to the odom frame to publish the transform

from earth to map frame.

49

50

Chapter 4

Navigation system for the

Ra.Ro.

“Guybrush: Van Winslow, head to Isle of Ewe!

Van Winslow: Please, sir, I think we should hit land first!

Guybrush: Isle of Ewe... It sounds like ”I Love You”. Nice joke.

Van Winslow: [Disappointedly] Yes, sir, joke...”

Tales of Monkey Island - The Siege of Spinner Cay

4.1 Navigation system overview

As we mentioned before, Ra.Ro. has already a kind of “autonomous” nav-

igation system. It is based on line following and marker recognition, used

as indication giver, such as “turn left”, “keep right”, “follow me” and so

on. The system is quite reliable, if we accept the fact that we must attach

in some way markers on walls and/or lines on the floor, and we are sure

that the robot will not deal with movable or unpredicted obstacles, but it is

very far from a real autonomous navigation. It is not possible, for example,

to indicate any point on a map and expect that the robot will reach that

point. So, our aim was to reach a solution at least reliable as the previous

one, but more powerful. Ra.Ro. is ROS based, so the most logic approach

was to implement the ROS navigation stack, and to work around it. The

best advantage from this approach is the modularity of the system, and here

follows the explanation of the modules we used in our project:

Optimizations

Figure 4.1: The ROS standard navigation stack schema

Odometry source

The odometry source provides the estimated robot position with respect

to the starting pose. The easiest way to provide this data is to use the wheel

encoder, but it is usually very imprecise because the slippage of the wheels,

different floors friction, small obstacles that let the wheel rotate without

robot movement, imprecise sensor itself and so on. So, to have a better

odometry source is a good choice to use a multi-sensor fusion system, and

it is basically most of the work of this thesis.

We compared a custom source developed manually integrating gyroscope

and raw odometry provided by the wheels’ encoders and two factor graph

filters built using the ROAMFREE framework; the first one using IMU

sensor and encoders, and the second one using, in addition, the markers

recognition.

Sensor sources

The sensor source is used by the navigation stack for mapping and for

localization inside the mapped environment. It must generate PointCloud

or LaserScan messages. In our case, since we mount a Hokuyo Laser scanner,

we used this one as sensor source. A future work on this project could add

as sensor source a module that can extrapolate point cloud from cameras.

Sensor transforms

For each sensor is necessary to provide a transform between the base frame

and the sensor frame itself. The transformation must be published as a TF

message and in our case is the static transform between the base-frame and

the laser-frame.

52

Amcl

This module is optional. The Adaptive Monte Carlo Localization ap-

proach uses a particle filter to track the pose of the robot against a known

map (see map server, the following module). It corrects the robot position,

estimated by the odometry system, moving the odom frame with the respect

of the map frame. The less is the error in odometry estimation, the less the

amcl module have to correct the position of the odom frame. During the

initial phase, in which the robot doesn’t have to navigate autonomously, the

amcl module can be missing.

Map server

As the amcl module, the map server is optional because is used in the

autonomous navigation phase. It consists in a map previously collected or

created.

Global Costmap and Global Planner

The global costmap carries the information about the obstacles in the

map. It is possible to set up an inflation radius which represents a security

distance that the robot must keep from the walls and other objects. These

pieces of information are associated with a cost, and the global planner uses

this cost information to find the most efficient path to reach a goal into the

whole map.

Local Costmap and Local Planner

The local costmap is similar to the global one, but instead of deal with the

whole map, is localized in a scrolling window around the robot. It is used to

modify the global path according to unexpected obstacles, not included in

the provided map. The local planner generates a modified path that should

not deviate too much from the global one, according to the costs provided

by the local costmap.

Base controller

The Twist messages outputted from the local planner are sent to the base

controller. These messages represent the velocity that the robot should have

to follow the generated path. The base controller is the module that interpret

these messages and convert them into actual robot movement controlling the

wheels’ speed.

53

4.2 Sensor fusion and odmetry estimation mod-

ules

This the module is basically the most important for localization, mapping

and autonomous navigation, since it is involved in all of these processes. In

chapter ?? we discuss about the importance in having a good localization

system and the theory behind it; here we discuss about its logical structure.

As mentioned before, we are dealing with a Ra.Ro. suite projected for

indoor environment, so we cannot count on the GPS, also because the re-

ceiver module is not provided in this version. This implies that the odometry

system has to rely on sensors that inevitably accumulates errors.

4.2.1 Custom odometry

During an initial phase of the project it was developed an ad hoc odometry

modifying the already existing Ra.Ro.’s code that was producing the odom-

etry only from wheels encoders. This modification consists in implementing

the Runge-Kutta integration method (??) and the precise reconstruction

(??), instead of the Euler method (??), already implemented. Morover, in-

stead of the θk retrieved from the encoders ROS messages (/r2p/odom), we

used the ones from the gyroscope (/r2p/imu). Here follows the commented

code snippet.

//

// msg.x : is the variation in forward displacement,

// retrieved from wheels’ encoders.

// msg.z : is the angle variation,

// retrieved from wheels’ encoders.

// imuDeltaZ : is the angle variation,

// retrieved from the gyroscope sensor.

// mSensValues.odom : the struct describing the computed odometry, where

// x and y represent the position into the plane expressed in meters,

// and z the orientation (yaw angle) expressed in radians.

//

//Euler method, the most simple, but error sensitive. No more used

//mSensValues.odom.x +=msg.x*cos(msg.z);

//mSensValues.odom.y +=msg.x*sin(msg.z);

//mSensValues.odom.z +=msg.z;

if (fabs(imuDeltaZ) < 0.0001)// To avoid zero division

{

//Runge-Kutta method, using angle from gyroscope

54

mSensValues.odom.x +=msg.x*cos(mSensValues.odom.z + imuDeltaZ/2);

mSensValues.odom.y +=msg.x*sin(mSensValues.odom.z + imuDeltaZ/2);

mSensValues.odom.z +=imuDeltaZ;

}

else

{

//Precise reconstruction, using angle from gyroscope

float ratio = msg.x/imuDeltaZ;

float old_mSensValue_z = mSensValues.odom.z;

mSensValues.odom.z += imuDeltaZ;

mSensValues.odom.x += ratio*(sin(mSensValues.odom.z) -

sin(old_mSensValue_z));

mSensValues.odom.y -= ratio*(cos(mSensValues.odom.z) -

cos(old_mSensValue_z));

}

The gyroscope sensor is subject to a bias, i.e. the quantitative term

describing the difference between the average of measurements made on the

same object and its true value. We must take into account this measurement

inaccuracy. Moreover our particular sensor bias is not constant, and then

we have to frequently update the bias estimation. A good way to do that

has been to implement an observer that correct the gyroscope measurement.

In particular our observer checks, using encoders sensor, if the robot stays

still, and, if it is true, it updates the gyroscope bias using a low-pass filter, in

order to manage the sensor noise. Here follows the commented code snippet.

// Initialize the angle variation as the difference between the incoming

// angle from gyroscope (msg.z) and the previously saved one

// (mSensValues.imuRaw.z)

double deltaZ = msg.z-mSensValues.imuRaw.z;

//If the encoders yelds that the robot stays still (not moving along the

// x axis, nor rotating around the z axis) and the computed difference is

// not very big (in order to not fit very noisy data, even they are

// filtered in the following line)

if(mSensValues.odomRaw.x == 0.0 && mSensValues.odomRaw.z == 0.0 &&

fabs(deltaZ) < 0.005)

{

//Update the bias estimation using a low-pass filter.

mGyroZBias = mGyroZBias * 0.9 + deltaZ * 0.1 ;

}

// Finally update the angle variation with the corrected value

imuDeltaZ = deltaZ-mGyroZBias;

55

Figure 4.2: Gyoroscope measurement during two different time spans, with the robot

stands

56

4.2.2 ROAMFREE module

The most reliable result we had is based on the ROAMFREE framework,

introduced in ??. The final set up is based on measurement given by the

encoders, the gyroscope and the accelerometer and eventually with mark-

ers as fixed feature position sensor. More details about the set up will be

explained in chapter 5. The main developed ROS nodes are the following:

• /raroam test node:

This node builds and manages a factor graph using the ROAMFREE

libraries.

The topic subscribed for measurement retrieving are /r2p/encoder l,

/r2p/encoder r and /r2p/imu raw. The /nav cam/markers is used

as well for the markers improvement. The resulting odom r frame is

published in /tf topic. This node represent the core of our sensor

fusion and subsequent odometry estimation. The parameters about

the numbers of Gauss-Newton iterations, the fixed window time and

the marginalization time can be modified in the launch file. These

parameters heavily influences the goodness of the estimation, but are

also hardware depending, intended as computational power availabil-

ity. Another feature of this node is the possibility of publish the

ROAMFREE estimated path as nav msgs/Path, in order to be easily

seen though rviz application.

• /msg stamper node:

It was necessary to develop this node which simply republish messages

read in r2p’s topics and modified adding a header containing, above

other header’s info, the time stamp. It is useful to synchronize the

left and right encoders’ messages and to let ROAMFREE deal with

possibly out-of-order messages. The messages are republished in top-

ics with the same name as the original ones, but with the /stamped

string before them. So /r2p/imu raw became /stamped/r2p/imu raw

and so on. The encoders messages are at first matched using the

ROS message filter and the republished with the added header in

stamped/r2p/encoders topic.

IMU + Encoders setup

One of the most reliable configuration we finally showed up is based on

the data received from gyroscope, accelerometer in addition to the wheels’

encoders ones. The ROAMFREE implementation does not includes the

Skid-steering odometry implementation as logical sensor, but we could take

57

advantage of the Skid-steering to differential drive odometry conversion that

we mentioned in ??. Thus, instead of pass the real distance between the

wheels as parameter we passed a value

L′ = L · λ

where α has been experimentally calculated as

λ =
ωreal
ω̂diff

where ωreal is the real angular velocity, retrieved by the OptiTrack system,

which provides the ground truth, and ω̂diff is the differential drive estimated

angular velocity, retrieved by differential drive equations.

We used as AngularVelocity sensor the raw information given by the IMU

sensor, as copy of the MEMS memory, properly scaled. We should have used

as scale factor the one provided by the sensor specifications manual, but,

since errors can happens in sensor production phase, we estimated this factor

experimentally, as well. We obtained a slightly different value, which has

been used to describe more accurately the real angular velocity.

Because of the difficulty in real acceleration retrieving, we had to use

the specifications information for the LinearAcceleration sensor, i.e. the

accelerometer.

Adding markers recognition

In addition to the other sensor we introduced the possibility to hopefully

have a more accurate odometry estimation by means the marker visualiza-

tion. As mentioned before, the Ra.Ro. software already provides the aruco

marker recognition, which can retrieve the visualized marker identification

number and the tf transform with the respect of the camera frame.

According to the ROAMFREE implementation, each marker must be set

up as a single sensor. We could choose to represent these sensors as Fixed-

FeaturePosition, which means we use only the retrieved marker position, or

FixedFeaturePose which includes, in addition, the marker orientation. Since

the retrieved orientation is not reliable enough, we decided to represent

the marker sensors as FixedFeaturePosition in order to not introduce errors

and having the possibility to use a lower covariance in measurement addi-

tion. The measurement required is the observed transformation between the

marker and the camera frame.

The ROAMFREE FixedFeaturePosition sensor requires the camera frame

position as sensor frame position and the absolute marker position as con-

stant parameter. The sensor frame position is supposed to be fixed with the

58

respect of the base frame, but in our case we are able to rotate the camera

according to the robot head module or along its horizontal axis. For this

reason we decided to set up the sensor frame as coincident with the base

frame and pass as measurement the calculated transformation between the

marker frame and the base frame, maintaining the possibility to move the

camera.

Because the extent of the environment we worked on, the markers real

positions were not easily to retrieve, moreover we think that the solution

we used introduces a desirable flexibility. We decided to initialize a new

marker sensor as soon as the first marker observation, for a specific marker

id, is done. It implies that the first marker observation should be done with

a odometry error as small as possible, in order to not introduce a wrong

placed marker. This is the reason why we introduced the marker sensors

as the last feature, in order to have better state estimation in long distance

covered. So the most desirable case is to see the marker as soon as possible,

with the odometry estimation error hopefully small, set the marker sensors,

and then using the set marker to keep the odometry estimation as correct

as possible.

The marker visualization, as here presented, cannot be used if a node

moves the odom frame in order to improve the localization, as explained in

??, because the ROAMFREE framework is an odometry source, so it pro-

vides the transform between the odom frame and the base frame, do not con-

sidering what happens between the map frame and the odom frame. Thus,

what happened if the we use the previous configuration is that, as a marker

is viewed, ROAMFREE tries to move the base frame in order to reduce the

error between the observed marker and the previously fixed one. In case the

odom frame has been moved by another authority, the ROAMFREE cor-

rection attempt results as an unpredictable base frame teleportation, which

continues to happen as long as a marker measurement is added.

We solve this problem in a way that can seems counterintuitive, but is

actually exact and experimentally confirmed. The idea is to pass as the

marker observation measurement the composition of the map-odom trans-

form and base-marker transform. In this way we inform ROAMFREE about

the transform behind the odom frame, and the movement that it applies to

the base frame happens to be consistent to the error reduce desired.

4.3 SLAM module

At high level the mapping node does not depend on the algorithm used to

do the SLAM process. Both gmapping and cartographer, the two systems

59

(a) The transform required by ROAMFREE

(b) The transform passed to ROAMFREE, setting the base frame as sensor frame

(c) The transform passed to ROAMFREE, during the mapping and autonomous move-

ment phases

Figure 4.3: Different marker frame measurement passed to ROAMFREE. The ones

blue highlated are the tranformation required and composed, the orange ones are the

resulting transforamations

used here, takes as input the messages containing the transforms and the

ones containing the laser scans. The localization part of the SLAM node

has the aim of virtually move the robot frame in order to let it match the

localization estimation, retrieved by means the laser scans data, with the

60

Figure 4.4: The tree frame representation, with node explanations

odometry estimation. This movement is done by applying a estimated error

rigid transformation to the odom frame. The ?? can explain better the

concept of the relationships between the frames and the nodes that correct

them. The AMCL node works between the same nodes as the mapping

nodes, as we will explanin in 4.4. As output we have the map, periodically

updated, and the odom transform, corrected as explained before. Once the

mapping phase is done, the final map is saved in a appropriate file, used

subsequently in the autonomous navigation phase.

In our definitive architecture we choose to use the gmapping framework

because we had better results, in particular in case of straight corridors. We

was able to set up gmapping in order to trust more the estimated odometry

and the final results are good. We could not reach a so good final map with

the cartographer module, so we have not included experiments about it in

the ??. The best results we had with the odometry estimation given by the

ROAMFREE set up including gyroscope, accelerometer, wheels’ encoders

and markers recognition. Even if the resulting map is not perfect, for ex-

ample a slight corridor bend happens, the robot can navigate into the map,

seldom losing the localization.

4.4 Autonomous navigation module

We decided to work with the most used autonomous navigation module in

ROS navigation stack. It is composed by three nodes:/map server, /amcl

61

and /move base. With the appropriate set up, the /amcl node, combined

with the /move base one, is possible to reach a great performance due

the high number of configuration parameters available. These modules are

highly supported and used by the ROS community, so the work around them

was just to setting it up and tune some parameter. We were not interested in

having a very fast performance, nor an optimal path planning. We accepted

a good solution, being aware that it can be still easily improved working

on the configuration parameters. Here follows some details about the three

nodes involved in autonomous navigation module:

• /map server:

It loads a map previously build or drawn and publish it in the /map

topic.

• /amcl:

This node wants as input the map, and the robot position in TF fash-

ion in order to estimate the position into the map environment. The

output is the transform between the map frame and the odometry

frame, similarly the gmapping approach.

• /move base:

This node is responsible for reading of a goal point, path planning

between that goal and the estimate position of the robot and sending

the actual velocity command for the robot movement. It has to deal,

in order to create the path, with the set global and local costmaps.

62

Chapter 5

Experiment

“ [Guybrush, tarred and feathered, enters Blondebeard’s restaurant.]

Captain Blondebeard: ¡Madre de Dios! ¡Es el Pollo Diablo!

Guybrush: ¡Śı! ¡He dejado en libertad los prisioneros y ahora vengo por ti!

Captain Blondebeard: Well, yer not takin’ me without a fight!

[Blondebeard bashes Guybrush over the head with a frying pan]”

The Curse of Monkey Island

In this chapter we will illustrate the most significant cases in which we

tested our system. We are going to introduce the general environment setup

for the experiments and then we will give more details about them.

5.1 Setup description

For practical reasons we used the rosbag system. It is a ROS package that

allows to record ROS data streams and then replay them as if they are

happening in real time. It is a good system, widely applied, for tests. We

recorder, for our experiments, the following topics:

– /nav cam/markers

– /odom

– /r2p/encoder l

– /r2p/encoder r

– /r2p/imu

– /r2p/imu raw

– /r2p/odom

– /scan

– /scanf

– /tf

to which must be added system topics:

– /rosout

– /rosout agg

– /clock

We applied the rosbag system for at least two reasons. The first one is

the classical practical reason. Since a long parameters’ tuning was needed,

it was not very handy to let run the robot into the laboratory environment

tens of times, both for other people trouble, made or been made, and for

save the robot from early wear. The other reason to use the rosbag system

is given from the possibility of replay a bag slower than normal. It is a useful

feature because it allows to run code that can require to much effort for real

time usage. For example, for mapping phase, the ROAMFREE system, with

specific configurations, can be computationally heavy, so a slower replay is

appreciate. It can be acceptable even for a production phase because the

robot can easily do the exploration for mapping purposes and then it just

need to wait some time more for the actual map building in the replay phase.

The experiments focusing on the mapping phase, reproducing the bags

at the 70% of the real time speed.

The Polimi’s AirLab is provided of the OptiTrack - Motion Capture

System, which gives the possibility of retrieve the ground truth in the covered

area. It is an area around 5m × 5m wide; not so much, but can be significant.

5.2 Odometry experiments

In this section we will focus on the experiments involving only the odometry

estimation. In particular we will compare the three main configurations we

think are the most significant. We recorded a rosbag in which we drove

the robot in manual configuration. We can summarize the path followed in

these steps:

• Start at the black square into the AirLab.

64

• Have a round into the room and then go out through the door.

• Go right until the end of the corridor is reached.

• Turn around an go back until the vertical corridor is reached.

• Follow the corridor and back again.

• Continue to the left corridor moving through the big room big room

and go inside the small room connected to the big one.

• Continue to the left corridor until the end is reached and then go back

following an almost straight line.

• Go again through the vertical corridor for a little and then come back

to the AirLab.

• Finish the ride in the same point we started.

We ran the same rosbag, each time with one of these configurations. We

compare the resulting paths with a real floor plan of the building. Because

we are focusing only on the odometry part, the map frame will be the same

as the odom one. We wants to point out that none of these odometry

estimation uses the LIDAR sensor, which is usually the best sensor to rely

on.

5.2.1 Odometry with custom odometry

For this experiment we used only the custom odometry. Trying to fit the

path generated into the floor plan we can notice that it is a quite good

results. We can notice that the path generated is almost straight along the

corridors and for the return part we can see that, when we drove the robot

inside the vertical corridor again, the path are very close to match. The

final point diverge form the initial one for about 2 meters, out of the more

than 100 meters traveled.

5.2.2 Odometry with ROAMFREE odometry

For this experiment we set ROAMFREE as presented in ??. We can see that

for more then half of the traveled path the result is good, better then the

one with the custom odometry. After the round into the big room the path

became too much bended, probably due to a bad gyroscope bias estimation,

which persists for all the following part of the ride, finishing far from the

initial point. It is necessary to point out that replaying the same bag we

65

Figure 5.1: The resulting path generated with the custom odometry

can occur in different results. This can happen because the heavy mathe-

matical computations done by the framework which sometimes need some

approximation which can became significant after various multiplications.

5.2.3 Odometry with ROAMFREE odometry and markers

This configuration is evidently the best one. We set up the ROAMFREE

environment as the previous one, except the addition of marker sensor as

presented in ??. We point out that the marker position was unknown at

the beginning of the ride. Each marker was added as new sensor as soon

it has been seen for the first time. It implies that a good odometry, with-

out markers, is necessary. Moreover, the marker measurements improve

the estimation of the gyroscope bias made by ROAMFREE, improving the

odometry estimation itself. Markers add to the system the missing fixed

point reference that we needed because the GPS unavailability, giving a

very good odometry estimation, finally. It is important to point out that we

used markers as fixed point, but, due the ROAMFREE modularity, it can

be possible to substitute markers with other kind of fixed features retrieved

by cameras or other sensors. In the picture ?? we can also see the generated

markers constellation.

66

Figure 5.2: The resulting path generated with the ROAMFREE odometry, without

markers

5.3 Mapping experiments

In the final map experiments we decided to use only the Gmapping tool, be-

cause we could not properly set Goolge’s Cartographer in order to trust more

the odometry system, instead of rely only on laser measurement, causing a

vary bad map creation in the long corridors we had to deal with. Instead, we

could set up Gmapping for this purpose and the most significant parameters

are reported in ??.

5.3.1 Mapping with custom odometry

Using the custom odometry we retrieve a good enough map, slightly bended

along the long corridors, which is a typical error in mapping. To notice,

instead, that the length of corridors is very similar to the real ones, even

though the common problem in mapping in long corridors is their shortening.

For the set up we completely deactivated the ROAMFREE module

and we launch a static transform between the base-frame-custom and the

base-frame in order to not be needed to change the Gmapping reference

frame.

5.3.2 Mapping with ROAMFREE odometry

The resulting map, using the ROAMFREE odometry, without markers, is

slightly better then the custom odometry one, but very similar. In this case

67

Figure 5.3: The resulting path tree generated with ROAMFREE odometry and markers

we leave both the odometry running because the poor modularity into the

built in robot system, but we set the Gmapping system to run with the

base-frame published by ROAMFREE.

5.3.3 Mapping with ROAMFREE odometry and markers

The map generated with the ROAMFREE odometry with markers included

is in a way better, because the corridors results less bended, but on the

other hand they happens to be a little bit shorter than the real ones, causing

eventually a bad scan matching were the corridor finishes into the big room.

The TF tree in this case includes the saved markers frames attached to the

map frame.

5.4 Navigation experiments

We tested the navigation system selecting the map generated with the

ROAMFREE including markers odometry and switching the estimation

odometry system. Due the good map generated, in every case the possibly

error caused by the odometry estimation can be well corrected by AMCL,

which improves the localization into the map using the laser scans. Thus

we can conclude that all the odometry system, together with the move base

module, can let the robot navigate autonomously inside the generated map,

reaching a given goal without loosing its localization.

68

Figure 5.4: The resulting map generated with the custom odometry

The occurred problems during the navigation are caused by obstacles in-

visible to the laser scanner, causing the robot crushing into them and getting

it stuck for a while. In some situation the recovery system, which consist

basically in turning around the robot vertical axis finding laser features to

match, was able to relocate the robot, no matter which odometry estimation

system was involved.

69

ROAMFREE configuration

Logical Sensor

(sensor) Measurement covariance Note

DifferentialDriveOdometer

(Encoders)


0.01 · · · 0.0

0.0
. . . 0.0

... · · ·
...

 The matrix is 6 × 6

wide, with 0.01 diago-

nal values. This im-

plies a quite high im-

portance for the odom-

etry retrieved from the

encoders.

AngularVelocity

(Gyroscope)

 0.0001 0.0 0.0

0.0 0.0001 0.0

0.0 0.0 0.02

 We decided to fix the

x and y measurement

to 0, being a dif-

ferential drive, giving

very high importance

to these two compo-

nent, and set the rota-

tion around the z axis

covariance to 0.02.

LinearAcceleration

(Accelerometer)

 1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 0.0001

 In this case we decided

to set the z component

fixed to -9.81, i.e. the

g acceleration, and set

low accuracy for the

other components, be-

cause the accelerome-

ter is not very accu-

rate as sensor, and dif-

ficult to manage be-

cause needs to be inte-

grated twice

70

Markers in ROAMFREE configuration

Logical Sensor

(sensor) Measurement covariance Note

FixedFeaturePosition

(Markers)

 0.0001 0.0 0.0

0.0 0.0001 0.0

0.0 0.0 0.0001

We imposed very high

reliability on markers

because we noticed a

very accurate recogni-

tion.

Gmapping parameters

Parameter Default value Used Value Description

srr 0.1 0.01 Odometry error in translation as a function of translation (rho/rho)

srt 0.2 0.02 Odometry error in translation as a function of rotation (rho/theta)

str 0.1 0.01 Odometry error in rotation as a function of translation (rho/rho)

stt 0.2 0.02 Odometry error in rotation as a function of rotation (rho/rho)

71

Figure 5.5: The resulting TF tree generated with the custom odometry

72

Figure 5.6: The resulting map generated with the ROAMFREE odometry without

markers

73

Figure 5.7: The resulting TF tree generated with the ROAMFREE odometry without

markers

74

Figure 5.8: The resulting map generated with the ROAMFREE odometry with markers

Figure 5.9: The resulting TF tree generated with the ROAMFREE odometry with

markers

75

76

Chapter 6

Conclusion and Future Work

“Guybrush: At least I’ve learnt something from all of this.

Elaine: What’s that?

Guybrush: Never pay more than 20 bucks for a computer game.

Elaine: A what?

Guybrush: I don’t know. I have no idea why I said that.”

The Secret of Monkey Island

The main purpose of this thesis was to build an autonomous navigation

system for the provided Ra.Ro. platform, reliable at least as much as the

built-in semi-autonomous navigation, but more powerful, able to deal with

obstacles, flexible and non environment invasive. The focus was on the

sensor fusion in order to retrieve a good odometry, which is involved in

all the pieces of the navigation stack, both for the map building, and the

autonomous navigation system itself.

Both the ROAMFREE solutions, in particular the one with the marker,

can be considered a good solution for the sensor fusion problem, moreover

the custom odometry, even if is not a so flexible solution, is even more

reliable in some situations for our specific case.The final result, taking into

account the physical platform limitation, such as those we will write below,

are satisfying from our point of view and the NuZoo point of view, as well.

We had to deal with the most common problem in indoor environment:

the absence of a GPS measurements. The ROAMFREE library was mostly

used in outdoor environment and, when used in indoor ones, the markers

were heavily used. Another solution in indoor environment was been to use

a pair of laser scanner, covering the whole range around the vehicle, and set

as ROAMFREE input the laser odometry generated. It was impossible in

our case because the poor laser scanner placement.

The physical hardware limitation we encountered, in fact common to

many robot are the following:

• Bad laser scanner placement:

The laser scanner is placed inside the robot body and the cover itself

limits the laser scanner range, which makes the localization and the

mapping phase harder. Moreover the LIDAR is placed about 10 cm

from the floor, which is good because the robot can overcome maxi-

mum 10 cm high obstacles, nominally, but it introduce problem with

tables and other similar object caused by the actual height of the

robot, which is 75 cm.

• Bad mounted wheels:

Probably because of the oldness of the platform, some of the wheels

are no more perfectly aligned. This fact implies that the trajectory

must be continuously corrected. If the robot is manually driven, this

correction is done by human almost subconsciously, but if the robot is

driven by the artificial intelligence it is more complex and the result

is a swinging trajectory.

Another main problem we had to deal with was the poor ROAMFREE

documentation. We could count on the help of the author and of other

people who previously worked with this library, but obviously is not a very

feasible way, even less practical in a non academic environment.

A ROAMFREE extension can be appreciated, in particular a future work

can include the development of a SLAM system integrated in the ROAM-

FREE framework, in order to include the use of the laser scanner as main

sensor, through the scan matching process. In the meanwhile, the creation

of the map should be an easy task, once the previous part is done. It will

avoid strange tricks, as the one we had to use to properly take advantages

of the marker as sensor.

78

Bibliography

[1] Amcl documentation. Accessed: Jan 2017.

[2] Novalab website. Accessed: Jan 2017.

[3] Ingemar J Cox. Blanche: Position estimation for an autonomous robot

vehicle. In Autonomous robot vehicles, pages 221–228. Springer, 1990.

[4] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach

to nonlinear/non-gaussian bayesian state estimation. In IEE Proceedings

F (Radar and Signal Processing), volume 140, pages 107–113. IET, 1993.

[5] N.L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate dis-

tributions. Number v. 2 in Wiley series in probability and mathematical

statistics: Applied probability and statistics. Wiley & Sons, 1995.

[6] Rudolph Emil Kalman et al. A new approach to linear filtering and

prediction problems. Journal of basic Engineering, 82(1):35–45, 1960.

[7] J.A. Rice. Mathematical Statistics and Data Analysis. Duxbury ad-

vanced series. Thompson/Brooks/Cole, 2007.

[8] Hauke Strasdat, JMM Montiel, and Andrew J Davison. Real-time

monocular slam: Why filter? In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pages 2657–2664. IEEE, 2010.

[9] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic

robotics (intelligent robotics and autonomous agents). 2005.

79

