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Sommario

De gustibus non disputandum € un celebre modo di dire. Questo & soprat-
tutto vero nella musica, campo in cui gli individui presentano gusti differenti
e li esprimono perlopiu con l'utilizzo di termini diversi, anche nel caso le
preferenze coincidano. Poiché uno dei pit importanti obiettivi dell’industria
musicale ¢é la raccomandazione di contenuti audio, questo pone un problema
di modellazione di contenuti e di coerenza tra sistemi di rappresentazione
appartenenti a persone diverse. Lo scopo di questa tesi é pertanto di costru-
ire un modello personalizzato di descrizione dei contenuti musicali e renderlo
tale da garantire la comparabilita tra individui differenti.

Questo lavoro sard compiuto considerando un dizionario per ogni indi-
viduo, creato sulla base dei termini che quest’ultimo utilizza per descrivere
i suoi gusti musicali, ed estrarre dalle caratteristiche acustiche delle canzoni
una misura specifica, che tenga conto della similarita tra ogni parola del
dizionario. Questo processo si svolgera attraverso una procedura di machine
learning, la quale implementera un algoritmo teso a derivare dai dati una
correlazione di tipo non lineare. Una volta riuniti i modelli soggettivi nella
forma di componenti principali, sara possibile paragonarli e, di conseguenza,
mettere in connessione profili che mostrino interessi simili, anche qualora
questi si manifestassero attraverso sistemi semantici differenti.

La procedura qui descritta sara utile, in un passaggio successivo, per
creare un nuovo sistema di raccomandazione, basato sul collaborative fil-
tering, la cui resa sara migliore rispetto a un approccio solamente basato
sulla corrispondenza nello storico degli ascolti individuali. Inoltre, potendo
integrare questo modello con metadati relativi agli utenti, sara possibile af-
frontare due problemi noti dei sistemi di raccomandazione allo stato dell’arte:
il problema del cold start, che consiste nell’assenza di dati iniziali per la
modellazione di un utente nuovo al sistema, e il comportamento nella long
tail, inteso come la possibilita che il sistema non sia in grado di produrre sug-
gerimenti di ascolto agli utenti con un buon grado di innovativita rispetto al
loro storico.
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Abstract

De gustibus non disputandum is a popular common saying. This is most true
in music, with people having different tastes and expressing most of them by
using different words. Often different users use the same words to descrive
slightly different concepts. Since one of the major tasks in music industry is
recommendation of songs, this poses a problem of concept modeling and of
coherence between the representation models of different people. The aim
of this work is thus to model the way people personally describe music and
make it in such a way to grant comparability between different individuals.

This will be done by considering a dictionary for each person, made
by the words he or she uses to describe music, and extracting from the
computable characteristics of songs a specific measure of their similarity
related to each term in the dictionary. The process will be exploited through
a machine learning procedure implementing an algorithm which derives a
non-linear correlation out of the data. Once gathered the subjective models
in the shape of principal components, it will be possible to compare them
and connect people showing similar interests, even when these are addressed
with different semantics.

The described procedure can be useful in a successive step to generate a
new recommender system based on collaborative filtering, which is supposed
to improve with respect to an approach based solely on the correspondance of
the songs listened. Moreover, by integrating the models with users metadata,
it is possible to smoothen two known issues of the architecture: the cold-start
problem, which consists in the lack of data for modeling new users, and the
behaviour in the long tail, meaning the possibility of the system failing to
provide enough innovation in its suggestions.
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Chapter 1

Introduction

Since the beginning of the twentieth century, the western world has been
changing habits with respect to music consumption: the widespread diffusion
of new technologies, like the radio or the phonograph, allowed it to become
popular and commercial. In particular, the improved economic conditions
following the end of World War II facilitated the creation of a wealthy music
industry that conceives not only the artistic aspect but also looks to the
audience as consumer.

At its early time, the music market deeply involved interactions between
listeners themselves as well as with experts: the discovery of new artists or
genres happened either through word of mouth or the media. The record
stores played a major role in this situation, because their task consisted in
intercepting the tastes of the customers and provide them with good advice
by understanding their input. The Digital Revolution brought this market
along since the late nineties with the creation of content-sharing web plat-
forms like Napster: the unexpected success of the internet as a cheap and
fast delivery method made the industry exploit it for its business. More
in general, the widespread diffusion of e-commerce and streaming services
made the market itself change: its consumers themselves are able to look in
any moment for the product they desire and obtain it without moving from
their desk. A few relevant examples for that can be Amazonﬂ for shopping,
Youtubd?] for video entertainment and Spotifyf’| for music contents.

Supposing the reader already came into contact with one of these services,
it is immediate to notice a difference with the offline way of doing shopping
or musical discovery: automatic systems substitute the human interaction
in collecting information about the listeners’ consumption. This knowledge
will be used to elaborate tastes, habits and musical attitudes in order to
provide the user of the system with accurate suggestions. The reciprocal need

Thttps://www.amazon.com/
https://www.youtube.com/
Shttps:/ /www.spotify.com/



2 CHAPTER 1. INTRODUCTION

between customers and suppliers of having someone improving satisfaction
has been answered in the digital world with the conception of recommending
softwares, which analyse customers’ choices and provide suggestions for new
content (called items) to be made use of. Explicitely focusing on the audio
sector, in order to do so they exploit models which have been studied and
implemented by the music information retrieval (MIR) field of research.

Music can be defined as humanly organized sound [12]. This characteri-
zation entails the integration of multiple aspects within the concept of music:
a first regarding sound as a phisical phenomenon, a second concerning the
human perception of music events and a third involving the cultural elabora-
tion of music knowledge. Thus, the purpose of music information retrieval is
to learn how to automatically extract knowledge from music by conducting
analysis on those different layers of abstraction. The obtained information
spans several aspects, aimed to model the different ways in which people
perceive and describe music. The resulting models may eventually be used
to automate a wide range of processes, like music recommendation, tran-
scription or emotion recognition. The task involves several fields of research,
including statistics and signal processing as well as musicology and psychol-
ogy. Indeed, it comes easily apparent how a scientific approach to the rules of
music has to be matched to a world made of subjective perceptions, feelings
and interpretations.

This heterogeneous community works with tools given by informatics:
sound can be digitised as an audio data stream, then processed in order to
elaborate and possibly modify its properties. These not exhaustively include
rhythmic, timbric, melodic and emotional aspects, which are encoded as
features. A feature is a measurable quantity which can be derived from the
audio data to numerically capture one of the characteristics of sound. Some
of them, referred to as low-level, are objective because strongly related with
the physics of sound, so they appear easy to be computed from the audio
signal but lack of abstraction, for instance the amplitude of an audio signal.
Others, dealing with more structured and subjective concepts, are easier to
understand by a listener but harder to define in a rigorous mathematical
way, because they refer to elaborations over perceptual elements: they are
thus called high-level features, an example of which is the rhythm of a song.
For this reason, it is common in literature to connotate features with those
different levels of abstraction. An intermediate category of mid-level features
can be identified for concepts which are useful in order to raise the level of
abstraction. In particular, lower level input features are transformed into
representations that have some desireable properties such as compactness,
sparseness or statistical independence [35]. For instance, the amplitude of
an audio signal may be analyzed in its temporal patterns (mid-level feature)
in order to identify the rhythm of a music excerpt.

Howbeit, when talking about mid- and high-level features, signal pro-
cessing should leave the field free for contaminations by other disciplines,



more capable to describe or infer ideas which are closer to the human un-
derstanding of music. In particular, the integration between objective and
subjective aspects of music makes necessary to recognise how much individ-
ual perception affects the scene, in order to put the accent on the personal
interpretation of musical concepts. This gives the motivation for which also
psychology and psychoacoustics are disciplines to be looking to: they will
allow the interpretation of the observations and put a basis on the work to
be done. Only statistical techniques, however, can help in solving the issue
of organising data into regular patterns and select which of them are reli-
able in order to achieve the higher level representations which will deal with
perceptions and interpretations. A big improvement in these directions has
been given by the developments in the field of machine learning, the usage
of which is fundamental across the work done by MIR community because
of the higher level of abstraction it is able to capture. In particular, it con-
stitues the implementation environment for recommender systems.

The creation of a recommending engine requires two main steps: a first
devoted to model the available data about the users and the music content;
a second about the generation and delivery of suggestions. The modeling
phase, which is the one this work is mostly focused on, consists in the data
analysis steps which examine the music content in order to investigate the
rules of music abstraction. The process starts indeed from low-level observa-
tions and proceeds towards computing or infering data correlation structures,
which define the higher-level properties. The same rules will then be repli-
cated in a synthesis step, devoted to select the content matching the modeled
behaviour of the users for recommending. The matching is measured by some
definition of similarity between modeled objects: the various modeling ap-
proaches differ on the kind of collected data and the definition of similarity
itself. More and more complex models have been built during time, along
with the discovered issues and, consequently, the evolution of the hypothesis
made by professionals. Those mostly concern which kind of information is
actually relevant in order to raise the level of abstraction, from consumption
data to actual sound properties and context information.

Important examples of issues addressed in this work are the so-called
cold-start and long-tail problems: these can be explained as what to do if
no information is given about a new user or item in the system and how to
characterize items in a way that is independent of their popularity. The first
question finds answer into an accurate profiling of users, in order to exploit
any information about them, even if not related with music consumption
itself. The second problem drops instead a hint about how to manage the
users’ listening histories in order to determine suggestions. An easy but
widespread example of recommender indeed assumes that users experiencing
the same items will prosecute in doing so: in this way, items that co-occur
in the consumption histories of many users immediately become a reference
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for other people, generating a rich-gets-richer kind of dynamic.

An important aspect to analyse in order to solve these issues is the need of
personalization: the modeling algorithm should consider the characteristics
of the individual user as the parameters for computing his own model, in
order to encapsulate the personal tastes into different realizations of the
high-level features of music. The importance of individuality, rather ignored
in MIR’s early times, has been underlined in many occasions, among which
is noticeable the intervention by Arthur Flexer in [22].

Starting from this observation, the model described in this work considers
a new way of exploiting users’ music consumption data. As mentioned above,
the layers of abstraction in music need to be modeled according to personal
characteristics in order to acquire the individual nuances into the high level
representations, which will identify the users’ models. The method described
in this work will exploit semantic processing for shaping user tastes. Starting
from clusters of songs, identified with a label by each of the users on the basis
of a common musical meaning, we will analyse the low-level acoustic features
of the audio excerpts included in each group. This will allow to extract a
model of the high-level representation for the given musical meaning which
will intrinsecally be personalized. The approach detaches from the usual
modeling of co-occurrences between songs listened by users, because each
user will be free to define and aggregate songs in the way he prefers. These
aggregations, which are outcome of independent classification processes and
might even be disjoint to each other, will be examined towards defining which
of the characteristics of songs are actually relevant for every user’s listening
trends.

The mentioned procedure will allow to define an acoustic model of labels,
identifying a user by the set of his generated label models. It will thus be
necessary to identify concepts of similarity linking to each other the labels
and the users respectively: our work will compare the metrics identified on
the low-level features space for each label of each user, with a similarity
metric defined on linear projections. Finally, user models will be compared
considering a concept of similarity based on* two main aspects:

1. the presence of similar labels showing different acoustical meaning;
2. the presence of different labels showing similar acoustical meaning.

The impact of this approach over recommending quality should be apparent:
users’ models will no more consider only the presence of songs into categories,
but giving also an acoustic explaination about why they fit into, improving
the user profile with significant additional information. Moreover, the model
here presented is intended to revert a common approach in music tagging:
usually, in fact, genre labels like blues are looked to as having a kind of
universal meaning, derived by the so-called wisdom of crowd [21] or out
of the opinion of music experts [30]. This reduces personal differences to



be shades in the interpretation of those concepts, whereas in the present
work they become the starting point to build an effective individual model,
following a need which is strongly perceived in the MIR field [16} 23], 24].

The model has been built and tested on a real listening setting by ex-
ploiting CAL500, a well known music database in MIR literature [20]. The
model showed important results in assessing both user similarities and label
relationships by considering also different individuals, towards the directions
explained above. This will allow an application within a real recommending
environment: a model for building label suggestions has been developped
and tested, running in particular for songs that have not been tagged by
users. Moreover, simulations have been done exhibiting the capability of the
system to distinguish between real user tags and randomly generated ones.
This result is particularly surprising, since it proved that individual seman-
tics actually plays a role in music feature modeling. Another important fact
is that working on music genres as clusters of songs was a choice due to the
huge amount of literature already facing the theme: this method is suffi-
ciently general to be used for any kind of musical personal labeling, thus
entailing possible applications in other fields of MIR (e.g. music emotion
recognition).

This method could furthermore be exploited in order to have user models
linked with metadata coming from other sources. Indeed, user profiles can
be grouped into relevant consumption categories, to be possibly correlated
with some side information, which are already tipically collected by music
streming providers. Once proven this correlation to exist, as it happens in
commercial services, the model could provide a first estimate for tastes profile
of users even when no listening data is available, thus giving a hint in the di-
rection of solving the cold-start problem. In this setting, the same lack of in-
formation would be overcome regarding content data: songs feed the system
only as a collection of their acoustical features, which are always available for
any item in a catalogue, in contrast to listening data. Songs importance in
defining the model is not weighted anymore on the number of listenings they
receive, thus being uncorrelated with respect to their popularity, addressing
also the long-tail problem. The described algorithm owes a user-distributed
structure with satisfactory computational performances, making the method
efficient in both running time and memory. Those explained are the reasons
to suppose that such a system could easily find application in state-of-the
art commercial services for music recommending purposes.

The work is organized as follows: chapter 2 shows an overview of the
state of the art for recommender systems inside and outside the MIR field,
describing different approaches and applications of similarity models. More-
over, the growing importance of studies in the semantic direction and the
role played by personalization in music research will be examined. Chapter
3 contains a detail of all the technical tools which have been exploited for
the development of the present work, focusing on both signal processing and
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mathematical aspects, with a detailed description of the nature of the col-
lected data as well as the main statistical framework. Chapter 4 will then
explain the model with a full mathematical formalization along with the
issues faced within data collection and management. This lead to the ex-
perimental results contained in chapter 5. A last section is devoted instead
to the conclusions and the next steps which could possibly be performed
towards model improvement and implementation in a relevant environment.



Chapter 2

State of the art

2.1 Music Information Retrieval: foundations and
trends

Music information retrieval (MIR) is a discipline which aims to understand
and use of music data through computational approaches and tools. In
particular, it deals with the research, development and application of models
for music description based on combining theories and techniques from a wide
range of disciplines like musicology, computer science, signal processing and
cognition.

Music information for retrieval is encoded in the shape of features, which
are variables representing sound properties with different levels of abstrac-
tion. At the lowest level, they consist of numeric values which are output
of functions applied to the audio data stream. They can capture basic but
fundamental observations about the sound signal energy and shape, which
only sometimes translate into an understandable music property. The intro-
duction of a layer of abstraction in the analysis leads to grouping these out-
puts into more complex data structures, known as mid-level features. These
are usually computed by observing the dynamics of a plurality of low-level
features during time, aiming to a deeper description of the signal. This char-
acterization can be translated into fundamental music elements like notes,
frequencies, intensities, thus owing a first perceptual meaning. At their time,
mid-level features are grouped or elaborated through mathematical models
in order to build semantically higher level content. This is strictly linked
to human representation of music in any of the perceptual, knowledge or
emotional points of view. For instance, a succession of notes or chords may
be embedded in the concepts of melody and harmony respectively [4], which
characterization (major or minor) affects the emotion conveyed by a song
and, along with their rhythmic pattern, may lead to genre recognition.

Mid- and high-level information assume different understandable shapes
for human interpretation: it can be based on scores or directly sound (e.g.

7
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notes), being collected through surveys (genre, emotion), by means of words
or symbols, and scores themselves may either be physical or digital (e.g.,
MIDI). This variety is due to the different objectives in music description,
all of which find an application on the respective research branch in MIR.
It is as well worth mentioning that many of these objectives represent not
just pure theoretical speculation, but find a relevance in correspondant in-
dustries which can span from audio identification (Shaza Gmcenot(ﬂ) to
music recommendation and playlisting (PandomEL Spotify*l Amazon Prime
MusicED, score following (Rock B(mdﬁ), music instruments and reproduction
systems (ROLIIZL Steinbergﬂ Bose@ and many others.

An example could be useful in order to understand the contaminations
between disciplines happening in the MIR field, dealing with both mathe-
matic and technical issues as well as humanistic and psychological aspects.
Consider the problem of genre recognition, meaning the identification of a
high-level feature, called genre, which is able to capture and describe the
acoustical properties of songs through labels [3]. This connotation should
attribute a semantically meaningful word for how the songs sound like. By
the point of view of raw data processing, this can be translated into the
detection of a specific behaviour in the energy of the signal, including rhyt-
mic patterns describing the displacement in time of the loudest instants of
the song along with timbric, melodic or harmonic characterization. This is
clearly insufficient in order to define properly the concept of genre, which is
influenced also by emotional and cultural aspects. Moreover, a song is an or-
ganic whole of performances coming from different sources, the behaviour of
which may considerably differ from each other: genre is deeply influenced by
this partecipation, think for instance to a brazilian samba. Thus, the proper
way in order to obtain a full knowledge of the acoustic phaenomenon results
into the application of statistic techniques embedded into machine learning
models. This allows a computer to make automatic inference on the music
data and to give the desired answers in a human-readable way. Particu-
lar importance has been recently acquired by data representation learning
techniques, the usage of which is more and more spreading across the MIR
community [13, 14, [15].

Back to the genre recognition example, it is possible to understand how
much individual perception affects the scene. It happens, for instance, to
disagree on the mood perceived while listening a song. That happens because

"https://www.shazam.com/

2http:/ /www.gracenote.com/

Shttps://www.pandora.com/

“https:/ /www.spotify.com/
Shttps://www.amazon.it/gp/dmusic/promotions/ AmazonMusicUnlimited /
Shttps://www.rockband4.com/

"https://roli.com/

8https://www.steinberg.net /en /home.html

“https://www.bose.it/
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people do not have the same perceptions and reactions because of what
they listen to. This gives the motivation for having also psychology, and
psychoacoustics in particular, as disciplines to be looking to while working.
Here a personalization of the algorithms is needed, since the training of a
machine learning model should include also variables related to the subject of
the experiment, as a parameter of the problem to be solved. These variables
could include for instance some individual preference expression as well as
perceptual or emotional characteristics of the human user.

The recent achievements in computer science in terms of computability,
meaning memory availability and processing speed, allow to manage a great
amount of data. This enlarged the possibilities of research in MIR, by using
the tools of machine learning, and this reflected into a growing interest in
the field. The International Society for Music Information Retrieval Confer-
ence (ISMIR) is an annual conference that focuses specifically on the area,
being an excellent source of cutting edge MIR research. Also of particular
interest, the Music Information Retrieval Evaluation eXchange (MIREX) is
an annual competition associated with ISMIR where various approaches and
algorithms are compared using the same set of data. Due to its highly mul-
tidisciplinary character, MIR research is also published in a wide variety of
other conferences and journals that were the source of inspiration for this
work.

The current applications of MIR include manipulation and creation of
music: along with recommender systems, it is involved in track separation
and instrument recognition from recordings, which consists in splitting the
individual sources of sound in a song; automatic music transcription, mean-
ing the transscription of an audio excerpt into a musical score, music catego-
rization on the basis of cultural and emotional aspects and music generation,
which is a task similar to rhythm detection but furthermore includes the
analysis and reproducibility of melodic and armonic patterns.

2.2 Recommender systems in MIR

A recommender system is a software which proposes to users of a digital
service the items they may like through the usage of data analysis techniques.
Items is a general word meaning any content, a product to be bought on a
shopping website as well as a song or a video to be played. These systems
operate by focusing on two main approaches:

e content-based systems are the ones which exploit a concept of sim-
ilarity between the available objects based on their properties. They
suggest objects which resemble or are connected the most to others
that the user already experienced in his interaction with the system
itself;
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e collaborative filtering methods exploits instead similarity between
the users, obtained by grouping people because of the interest they
showed on the same objects. These systems tend to suggest items that
were already experienced by compatible users, based on the context.

Recent research showed that a combination of these two approaches could
improve the efficiency of the recommendation. This happens usually by uni-
fying within the same predictive model content analysis and user profiling.
These systems are referred to as hybrid.

Whatever the choice of the method, the evaluation of similarity may not
depend only on the objective properties of the items, but it can also deal
with a preference expressed by the customers themselves. This can come
from a two-level liking feedback, with the user declaring whether he liked
the item or not, as well as a multi-level ranking scale quantifying how good
that experience was.

Up to now, the described methods involve an active participation of the
user, who is supposed to answer an explicit question posed by the software.
For instance, consider the 5 stars ranking by several services on the web or
the like/dislike feedback on a video. This kind of direct interaction often
happens to be uncomfortable or even impossible. Hence, other implicit ways
of collecting informations should be found. A new perspective regarding this
has been given in [18], where the authors suggested that the quality of rec-
ommendations could be improved by considering also the interest elicited on
the user instead of just the given ranking. In this case, a good index for the
pleasantness of an item is represented by the stimulus to interact induced on
the user.

It is important to give a glance to a possible implementation of a recom-
mender system. This will also allow to understand the main kind of troubles
that may come out in its design.

Consider the sets U = {ui,ug,...,un,} of all the users and Z =
{i1,12,...,in,} of all the items, where N, = |U|, N; = |Z|, both finite.
Their cartesian product set U x Z is made out of all the possible user-item
pairs (u, 1), so it is possible to associate a value to each of this pairs, repre-
senting (if it exists) the evaluation that user u gave to item 4. For instance,
we can define a two levels function eval : U x T — {0, 1} such that

1 if u experienced 17
0 otherwise '

eval(u, i) = {

The most immediate way to visualize the data is to store them into a
user-item matrix; each of its rows represents a user and each column stands
for an item. In this case, the pair (u,?) represents the index of the elements.
The ranking matrix will be used to produce a list of recommended items for
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a given user: the algorithm must be able to predict a numerical value ex-
pressing the predicted likeness of any item that the active user has not rated,
within the same scale as the provided opinion values. At this stage, the def-
inition of a similarity measure becomes necessary and this will be the basis
for rating every (u, ) pair. The items that owe the highest similarity values,
called neighbors of the rated elements, will then be provided to the final
user through a suitable interface. Different techniques are implemented in
literature: for instance, content-based filtering could use vector space models
such as Term Frequency Inverse Document Frequency (TF/IDF) or Proba-
bilistic models such as Naive Bayes Classifier [6], Decision Trees [7] or Neural
Networks [8] to model the relationship between different items within a cor-
pus. Collaborative filtering algorithms instead matches users with relevant
interest and preferences by calculating similarities between their profiles to
make recommendations; in this case the neighborhood is built out of similar
users thanks to two techniques called memory-based and model-based [9].
Memory-based techniques calculates similarity between users by comparing
their ratings on the same item, and it then computes the predicted rating
for an item by the active user as a weighted average of the ratings of the
item by users similar to the active user where weights are the similarities
of these users with the target item [I0]. Model-based techniques quickly
recommend a set of items for the fact that they use pre-computed model
and they have proved to produce recommendation results that are similar to
neighborhood-based recommender techniques. Examples of these techniques
include Dimensionality Reduction technique such as Singular Value Decom-
position (SVD), Matrix Completion Technique, Latent Semantic methods,
and Regression and Clustering. Model-based techniques analyze the user-
item matrix to identify relations between items; they use these relations to
compare the list of top-N recommendations [5].

It is easy to figure out that a user could have experienced and ranked
only few of the objects which are present in the system, so we can suppose
the ranking matrix to be highly sparse. Moreover, when considering large
environments, the number of users and items runs about millions, while the
number of entries of the matrix is the equal to N, - V;. So, the quantity
of zeroes (missing informations) within the system could easily be around
thousands of billions. This is useless and detrimental, since it represents a
waste of memory and computational power, which translates into worst per-
formances for the algorithm. The speed in providing an answer and updating
the system is in fact one of the most important issues that goes beyond the
accuracy of the recommendation, thus this kind of data sparsity is to be
considered necessarily in the design.

One of the problem children of data sparsity is the so called cold-start. It
consists in the difficulty of generating a trustable recommendation for a user
who has no ranking history in the system. It happens because any similarity
measure is computed starting from data, that in this case are not available.
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Another still open issue linked to poorness of data is the behaviour of
a recommender with respect to the long tail. In order to clarify what the
long tail is, consider a database made of all the music ever written, each
piece of which is labeled with the number of times it had been listened
to. Some popular songs will have great listening values, while many others,
not to say almost every, would rather have little, if not zeroes. However,
the fact that many songs have little individual impact means as well that
their contribution as a mass is relevant with respect to the overall sum of
the values. This is to be taken care of mostly when using the recommender
system for discovering new items, since a collaborative filtering method could
suggest to many users things that already have great individual impact. This
can create a rich-get-richer effect for popular products known as bias towards
popularity: a good recommender should improve serendipity in case the user
shows interest to explore new, unpopular items.

2.2.1 The similarity rush

All of the recommender systems work by expressing and using a definition of
similarity, which can be referred either to the users or the items. Of course,
different definitions may lead to different estimations and thus to different
results. This poses a problem in terms of finding a good similarity relation,
which means that an investigation on this concept has to be performed.

The similarity is based on an hidden assumption, which consists in the
belief that entities behaving in the same way will continue to do so. Actu-
ally, this statement is essential in order to produce forecasts for the future: it
would not be otherwise possible to infere from data a brand new behaviour,
lacking any relation with the past. This already gives an hint about a sta-
bility property of the function of data to be used, but as well poses another
issue to be discussed: what amount of stability is actually desirable and how
much this represents instead an unwanted constraint to flexibility?

The first music recommenders expressed similarity in terms of simulta-
neous occurence [34]: two songs are defined as similar if many users either
listen to both of them or group them together, as well as two users listen-
ing to the same songs are supposed to have the same tastes. The cosine
similarity between two items ¢ and j can be defined as follows [I1]:
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where 7, ; is the ranking given by user u to item 7 and U is the set of all the
users.
Even if this kind of definition may appear reliable and coherent with data
at first sight, it is true that this statement appears to be somehow misleading.
This happens when confusing the concept of simultaneous occurrence with

(i,7) (2.1)
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correlation: we do not have an a priori clue to state that two songs have
an objective reason to be grouped together just because some user did it.
In this way, we can neither assume that songs listened by the same users
actually sound similar, nor that different users listen to the same songs for
the same motivations. Thus how can we be sure about the coherence durig
time of such a system? An example of similarity model solving this issue is
the Pearson correlation, which is expressed by the following formula [10]:

s(i.7) = ZUEU(T”M - ﬁ)(ruj - ﬁ) 99
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where 7, is the average rating of the user u and U is the set of users that
rated both items ¢ and j.

Arthur Flexer in [23, 25] faces the point of inter-rater agreement in music
similarity and precisely the general notion of “sounding similar” is a central
point of criticism in his papers. Those assess that the idea of similarity is
actually very different between people and almost individual, since depending
on complex multi-dimensional notions like “timbre, melody, harmony, tempo,
rhythm, lyrics, mood, etc.”. This goes in contrast with a simple, universal
definition of similarity like the one coming out of correlation analysis. Indeed,
Flexer declares most of studies exploring music similarity as being restricted
to simple overall similarity judgments, even when using human listening
tests, thus “blurring the many important dimensions of musical expression”.
In order to prove this concept, he showed that there is a low inter-rater
agreement due to the coarse concept of music similarity. Impressively, there
exists an upper bound of performance that can be achieved by algorithmic
approaches to music similarity: this has been already reached and never
surpassed. His conclusion points out that it would be necessary for research
to focus on what music similarity actually means to human listeners.

The concept of similarity is strictly linked with the one of distance, which
can be conceived as its opposite. This means that a change of perspective
is possible, where, instead of looking to what can make entities similar, it is
possible to consider what generates difference or, better, distance. This can
be really useful, considering that the distance is a well-known and formalized
mathematical concept, whereas similarity is not. In [2I], for instance, the
authors face the issue of similarity learning from collaborative filtering, by
exploiting the so-called “wisdom of crowd” and trying to define a distance
metric on items by exploiting user generated knowledge. This paper points
out that there are no assumptions of transitivity or symmetry in the learned
similarity, even if starting from a distance, which of course owes these prop-
erties. It concludes with an improvement of usual content-based similarity
models. An important issue about these kind of definitions is the usual
carelessness in using the distance properties: as it will be shown in Chapter
3, Mahalanobis’ metric is the most comfortable to implement and manage,
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but it owes characteristics which make it not that general and unsuitable
to model some kind of phaenomena. Unluckily, a deep analysis on how the
properties of a distance translate into the ones of a related similarity metric
is often unmanageable because of nonlinearities.

Wolff and Weyde’s [19] deals with modeling music similarity with respect
to user perception. Actually, the work makes no effort in the direction of
individuality, since never mentioning a model of perceived similarity, but
it follows the main principle of adapting the similarity metric to subjective
data. Nevertheless, it is worth to mention that the authors declare a simi-
larity metric to be “not necessarily a linear, positive definite and symmetric
function which satisfies the triangle inequality”. This considerations allow to
fancy a deeper exploitation of personal usage data to model similarity.

2.2.2 Semantic modeling

A first step for automatic learning systems towards interaction with users’
perception has been reached by giving a meaning to particular combinations
of musical features. In fact, once recognised the approach solely based on co-
occurrences is insufficient, a deeper analysis of the music content is needed.
This reflects into considering measurable acoustical features as the real data
to be looked at, while similarity between songs becomes actually a search
into the behavioural rules of music according to listeners.

Statistical analysis over music data lead to the concepts of middle- and
high-level musical features. These characteristics capture complex elements
in music like timbre, rhythm, melody or harmony. The feedback to this
process can only be perception-based and it is just in this phase that ac-
tual signification is provided to the mathematical definitions, since human
experience becomes a formal description of data. This fact introduces the
presence of a semantic aspect in recommending, and the relations between
concepts and their meaning should be translated into either a similarity or
distance formalization. In particular, when the recommending paradigm is
based on tagging songs with labels, like in genre or emotion recognition, this
opens new possibilities for model design.

Orio and Piva in [28] present a study on the contribution of timbric and
rhythmic features for semantic music tagging, starting with the assumption
“that acoustically similar songs have similar tags”. This work operates with
a given universal dictionary for music. In particular, it assigns multiple
concept labels to songs by weighting how much those concepts are compliant
with the acoustic properties of the audio excerpts. This may sound reductive,
since they also state that labeling is not a universal procedure, but relies on
subjective judgements. Starting from this principle, Bogdanov and Herrera
[26] work with a collection of music chosen by the final user, called preference
set, in order to infere a set of high-level semantic descriptors to be correlated
with songs metadata, meaning information that is not related with the audio
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signal, for instance the performer of a song. In order to do so, they compare a
content-based distance, based on those descriptors, with another considering
also rhythmic and timbric properties. Finally, they decide to exploit artist
based metadata within the model. Even if proving the convenience of such
an approach, it comes apparent how the usage of artist metadata gives a
restriction to the acoustical variability that can be noticed among songs by
the same author.

[20] describes instead semantic issues and purposes a similar solution still
based on a predetermined dictionary. The vocabulary is connected to songs
by weights coming out of a multinomial distribution. This paper faces also
the problem of querying by tagging, e.g. making an inquiry on a database
by using labels; in this case the semantic of the query is also inspectioned,
while the goodness of the response is computed by comparison of the se-
mantical weights for the query and the song. This sounds optimal regarding
predictions, but keeps open the issue about modeling, since it also assesses
the existence of a problem due to the predefined taxonomy. Another open
point for discussion is the assumption that feature vectors are conditionally
independent given the label, since it seems clear that it is just feature depen-
dency generating the labels. This paper is as well rather important among
the MIR community, becuase it describes CAL500, a music dataset which
became a reference standard for research in the field and for this reason is
used for the development of this work.

2.2.3 The issue of personalization

Considering the impact of human interaction with MIR systems, it comes
necessary to care about the final user in order to obtain proper recommen-
dations. It is again Arthur Flexer in [22] pointing out that, whenever com-
putational models are used to describe the human perception of music, the
existence of an objective reference ground truth is assumed at least to eval-
uate the models’ performances. This objectivity however argues with the
principle of individual similarity stated above, thus an efficient system shoud
be aware of the aspects influencing what a person perceives as similar.

A personalized system should incorporate information about the user into
its data processing part and this information should rely on music content,
music context and user context. The latter is an extremely important contri-
bution of Flexer’s work, since it justifies the discussion about the temporal
adaptivity of the system: this should reflect the dynamic behaviour of users’
contexts. All of this makes pretty difficult to state which variables could
be most important in affecting similarity perception [23]; the problem then
shifts in the definition of a user model which can implement with flexibility
even complex factors.

Music recommenders have been linked to the research on music tastes in
social psychology [31]. In particular, music taste profiles had been generated
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in research in order to assess independent dimensions of users’ preferences
and their individual dependence on musical attributes. This lead to the con-
clusion that tastes were dependent both on demographic and social variables
— like gender, age, country or social class —, but also on individual charac-
teristics like personality traits or beliefs. While the first are already known
in the field of recommending [29] and exploited in current market services,
the exploration of the personal perception has not gone too far up to now.

If the user interaction is collected by meaningful tags, semantics could
provide a solution for the issue of modeling, since it is the human way of
providing a denotation to abstract concepts. When providing labels, every
user is already able to define what is similar (since it is defined with the
same label) and what is not by his own perception, because the user char-
acteristics of both cultural and individual nature reflect themselves into the
choice of the items to be similar. This leads to the possible generation of a
profile based on the distance the user itself defines between items, not taking
care of how this distance was built. By adopting a context-based approach
on the items, it will then be possible to understand how songs relate to
each other according to the user, thus building an appropriate ontology for
recommending purposes. In [I7], Maleszka et al. conceive user profiles as
weighted hierarchical thesaurus. The analysis of connections between con-
cepts is provided in a tree-shaped way: these maps depict ontologies based
on the relationship of belonging holding between a child node and its root.
The tree may vary from user to user; similarity between individuals and pos-
sibly user grouping are based on the distance among the weights related to
the same tag.

The introduction of a given thesaurus although does not solve an issue
proposed by the same authors, which is that user queries could not reflect
the real individual information needs. Additionally, the same query may
have different meaning for different users. This fact is well known in MIR
field and has been deeply studied in the field of Natural Language Process-
ing. Considering the genre recognition problem, for instance, many machine
learning experiments owe ground-truths consisting in labels either authored
by experts or obtained through knowledge integration. Many authors among
the cited [22] 311 [32] agree that genre is an ill-defined concept, while [30] con-
tains an evaluation of non-expert annotations applied to common-sense word
relations, showing that the reliability of individual quality in tagging is low.
This point should be considered when recommending is based on labels, since
music consumers usually are not experts and subjectivity in tagging process
is raised because of this, which acts like a bias and can be corrected only by
aggregation, which is the principle in collaborative filtering.

All of this contributions lead the way to conceive a new model for hybrid
recommendation system, which should at a time:

1. consider properly personalization, by defining individual models for
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label similarity;

2. compare individual models to deliver inter-user similarity and proceed
with collaborative methods;

3. be content-based in order to relate personal choices to objective music
features;

4. exploit the power of semantics in order to build with flexibility the
necessary connections.

Semantics here lays in the label which is subjectively assigned to a set of
concepts. These are built from data in the shape of aggregating maps, which
are individual and independent to each other as clustering rules and thus
may be different between people, as well as being completely separate or
also overlapping.

The importance of individual semantics has been foreseen in MIR even if
not studied yet. The difficult dialog between this field and music cognition
has been told in [16], an excerpt of which is reported here: “Whether "rock"
is indeed rock or jazz does not matter — actually, we want algorithms that
have the flexibility to also learn that jazz is rock if we like them to. However,
we also have the second research goal of being useful to electronic music
distribution systems. Now, in this world, defining a unique ground truth is
suddenly very relevant, but you soon realize it is also close to impossible: we
have plenty of examples where what some call rock, others will call pop or
jazz and so on. [...]| Most of our recent research tries to address this paradox:
for instance, how tags learned on one dataset generalize to other datasets,
how to personalize music recommendations or even letting users define their
own personal categories in interaction with the system.”.






Chapter 3

Theoretical review

This chapter introduces a detailed description of the technical tools used
to develop the model. These involve both algorithms for sound processing,
which constitute the data acquisition part of this work, and the statistical
theory and methods which had been applied for data cleaning, processing
and modeling. In particular, the first sections are devoted to methods for
collecting music features and to a characterization of those data based on
both signal processing and perceptual concepts; in a squent section, a full
definition of the mathematical and statistic techniques is provided in order
to justify the chosen methods. Finally, a section is devoted to the discussion
of the mathematical issues faced during this work along with their possible
solutions provided in literature.

3.1 Data management

Data management is closely related to the implementation of data mining
systems. Although many research papers do not explicitly elaborate on data
management, it is extremely important for the correct usage of data. A good
preprocessing ensures indeed the data format and quality as well as it im-
proves the efficiency and simplify the subsequent processing. For instance,
an accurate feature extraction plays a critical role in music data mining, as
we will see in the next section. The actual mining tasks possibly involve
data visualization, association mining, classification, clustering, and similar-
ity search. Finally, a postprocessing step is needed to organize and evaluate
the knowledge derived from the previous stage. Since postprocessing mainly
concerns nontechnical work such as documentation and evaluation, this sec-
tion will concern the first two parts and will briefly review data management
in this context.

Data management concerns the mechanism and structures of how the
data are accessed, stored and managed. It focuses on data quality, involving
data cleansing, data integration, data indexing, and others [55]. Data cleans-

19
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ing refers to cleaning the data by filling in missing values or removing non
significant samples, smoothing noisy data, identifying or removing outliers,
and resolving inconsistencies. For instance, there might be the necessity to
set a default value for any missing data to proceed further in the analysis.
Once ensured the quality of data, their integration consists in combining
data obtained from different sources and providing users with an unified
view of such data. This process plays a significant role in music data, for
instance, when performing genre classification using both acoustic features
and consumption data. Data indering refers to the problem of storing and
arranging a database of objects so that they can be efficiently searched for on
the basis of their content. Particularly for music data, data indexing aims at
facilitating efficient content management. Due to the nature of music data,
indexing solutions are needed to efficiently support similarity search, due to
the high-dimensional nature of the data to be organized and the complexity
of the similarity criteria used to compare objects.

Data preprocessing describes the operations performed on raw data in
order to prepare for the processing procedure. It includes data sampling,
dimensionality reduction, feature extraction and transformation. Data sam-
pling allows a large data set to be represented by a much smaller random
sample (or subset) of the data. For acoustic data, data sampling refers to
measure the audio signals at a finite set of discrete times, since a digital
system cannot directly represent a continuous audio signal. Discretization
instead is used to reduce the number of values for a given continuous attribute
by dividing the range of the attribute into intervals. In particular, in music
data mining, it finds application whenever working with a discrete amount
frequencies bands. Dimensionality reduction is a further important step in
data mining, since many analysis methods become significantly harder to
apply as the size of the data increases. The reduction of dimensionality by
selecting a subset of attributes is know as feature selection: its goal is to find
a minimum set of variables such that the resulting probability distribution
of the data is as close as possible to the original distribution derived from
all of the features. A good selection may significantly improve the compre-
hensibility of the resulting models, often building algorithms that generalize
better to unseen points, allowing the data to be less noisy and visualized in
an easier way. Moreover, it is often the case that finding the correct subset
of predictive features is an important issue on its own. Some of the most
common approaches, particularly for continuous data, use techniques from
linear algebra to project the data from a high-dimensional space into a lower-
dimensional space, for instance, Principal Component Analysis, which will
be described later in this chapter.

Feature extraction refers to simplify the amount of resources required to
describe a large set of data accurately. For music data, feature extraction
involves low-level musical feature measurements (e.g., acoustic features) and
inference for higher-level characteristics of sound (e.g., music keys). An
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overview of the feature extraction procedure performed in this work will be
done from now on. Feature extraction is usually integrated with feature
selection in terms of identifying the appropriate features for further analysis.
Variable transformation finally refers to a map that is applied to all the
values of a variable in order to confer some desired properties to the variable
itself. For instance, if only the positive magnitude of a variable is important,
then its values can be transformed by taking the absolute value. For acoustic
data, a transformation consists of any operation or process that might be
applied to a musical variable in composition, performance or analysis.

3.2 Feature extraction

Music acoustic features include any acoustic properties of a sound that may
be recorded and analyzed: audio feature extraction is the foundation for
any type of music data mining. This is the process of distilling the huge
amounts of raw audio data into much more compact representations, which
capture also semantically relevant information about the underlying musical
content. The difference in abstraction of the information captured in those
data structures leads to the characterization of music features in low-level,
mid-level and high-level ones.

A common way of grouping audio features is based on the type of information
they capture. On an abstract level, one can identify different high-level
aspects of a music recording: in particular, the hierarchical organization of
sounds in time is referred to as rhythm and their hierarchical organization
in frequency or pitch is referred to as harmony. Timbre is the quality that
distinguishes sounds of the same pitch and loudness generated by different
sound sources. To analyze music stored as a recorded audio signal we need
then to design representations that roughly correspond to how we perceive
sound through the auditory system. At a fundamental level, such audio
representations will help determine when things happen in time and how
fast they repeat. Therefore, the foundation of any audio analysis algorithm
is a representation that is structured around time and frequency, which will
be shown later in this section.

As introduced previously, the objective of this work is to derive a model
of the individual concept of similarity for users of an audio reproduction
system. This will be realized by modeling personalized high-level features.
Indeed, the relationship existing between user’s perception of music and
acoustic features data or their combinations is to be studied, in order to link
the individual music experience to observable characteristics. Bogdanov in
[27] shows that low-level features are more suitable to model user preferences
than high-level descriptors, thus songs will be described by means of a set
of simple audio signal descriptors. This will be represented as functions
of the digital audio data, which consist in the sampling of the continuous
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signal representing changes in air pressure over time. This makes apparent
how deep in meaning can be the low-level description of music, thus, in
order to collect the fundamental descriptive aspects, each feature used will
be described in detail in this section. Features will be characterized in terms
of qualitative type and output value and in particular they can be grouped
in four different kinds:

e Energy: Energy-related features capture information about the en-
ergy distribution and evolution within the time evolution of the signal.
These features can be deeply affected by how the song sounds like.
For example, the different timbre of instruments playing in a song may
influence the perception of the song genre based on characteristics like
the loudness or the RMS value (Section Will contain details about
loudness and RMS) due, for instance, to the usage of sound compres-
sors. Moreover, genre will affect the time evolution of the energy val-
ues: jazz music can show rapid energy variations, while pop, rock and
commercial songs tend to have a higher and steadier loudness curve.

e Temporal: Temporal features analyze aspects of music that are re-
lated to the distribution of audio events on time. These can be derived
directly from the sampled signal, but also refer to spectral variations
in order to detect temporal events, in which case they make particular
use of the STFT algorithm described in[3.2.1] The most important fea-
ture in this group is tempo, measuring the frequency of the rhythmic
accents in a music excerpt. Although this may seem relevant, it was
chosen not to exploit them in the development of this work in order to
focus on acoustic properties of lower level.

e Spectral: Timbrical aspects of music are defined based not only on
the energy of the signal, but also on the distribution of this energy
over the different frequencies. This distribution is called spectrum and
it is computed on every frame of the audio signal in order to have
a view that which is as istantaneous as possible. The accuracy on
time of this representation allows to track the short-time variations in
the frequency distribution of energy, denoting both note changes over
time and instruments’ characteristics. For instance, the spectral inhar-
monicity feature measures the divergence of the spectrum components
from the multiples of the fundamental frequency, and provide informa-
tion about how much a sound is harmonic. Chromatic features instead
define the distribution of notes in each time slice of a song.

e Waveform: Some features need no pre-processing in shape of spec-
trum or energy computation in order to describe sound characteristics,
but are extracted directly from the audio waveform. These are most
useful to understand the rapidity of variations in a musical piece and



3.2. FEATURE EXTRACTION 23

] TYPE

FEATURES \

Energy Energy dip probability, Intensity, Intensity Ratio, Loudness,
RMS energy, RMS energy delta

Spectral Chromagram, Crest, Irregularity J, Irregularity K, MFCC
coefficients, Odd-even ratio, Rolloff, Sharpness, Spectral
inharmonicity, Spectral centroid, Spectral contrast, Spectral
flatness, Spectral flux, Spectral kurtosis, Spectral skewness,
Spectral slope, Spectral smoothness, Spectral spread,
Spectral standard deviation, Spectral variance, Tristimulus
Waveform | Average deviation, Kurtosis, Mean, NonZero Count,
Skewness, Variance

Table 3.1: Summary of all the considered features, grouped by type

are related to statistical properties of the waveform itself in a given
time range.

Table contains a list of all the features we consider in this thesis,
grouped by type. Those face different acoustic characteristics of sound, which
proved to have an influence in previous works in MIR in describing acoustic
properties like timbre or even high-level concepts like mood [36], 38}, 39, 43 [44]
47|. Since music is known to present abrupt change of its properties during
the time evolution, feature extraction is performed over short overlapping
time frames, which allow to capture rapid variations of the music content.
This windowing process is to be studied carefully in order not to introduce
distortions of the signal properties, as it will be explained below. The actual
data used as a feature will then be the mean of the values captured for all
of the time windows.

3.2.1 Time-frequency analysis

At a very fundamental level music is made out of a mixture of sounds and
noises. The difference among them lies in the fact that sound consists of
periodic pressure fluctuations, while noises are irregular in time. People
make sense of their auditory environment by identifying periodic sounds with
specific frequencies and these sound events can start and stop at different
moments in time. Therefore, representations of sound capture time and
frequency components separately are commonly used as the first step in
audio feature extraction.

Even if it may seem strange to divide specular aspects like time and
frequency during the analysis, this is fundamental in order to focus on two
different time-related aspects affecting the behaviour of music, which we can
refer to as short-time and long-time. As staten above, in fact, sound is made
out of periodic oscillations which can be represented as a continuous signal
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over time. In order to represent the continuous process in a limited amount
of resources, the signal is sampled at regular periodic intervals. The result-
ing sequence of samples still has continuous values, thus it is converted to
a sequence of discretized samples through the process of quantization. This
introduces two variables, the sampling rate Fs and the dynamic range, the
former of which is important in defining the quality of a sound recording:
the fundamental theorem by Nyquist and Shannon (1949) states that the
sampling rate should be at least twice as big as the maximum oscillating
frequency generating the signal in order to allow for perfect reconstruction.
Considering that the human perceptual range spans in frequency between
20 and 22000 Hz, this means at first that the minimum sampling frequency
should be greater than 44 kHz; then the time period for an oscillation lies
between 4-1075 and 5-1072 seconds. The variations in the frequency content
of a signal, corresponding to the variation of the perceived sound, happen
instead within a time window which is way longer than the longest possible
period. This makes the motivation for the mentioned procedure of win-
dowing, consisting in splitting the time of the sampled signal into shorter
windows, any of which defines an acoustic setting to be analysed in its fre-
quency content. The output of this observation is called spectrum and it
is to be further studied in its variations along different time windows, the
interval between which has to be taken large enough in order to monitor the
noticeable variations in sound.

The Short-Time Fourier Transform (STFT) is the most common time-
frequency representation and has been widely used in many domains in addi-
tion to music processing. An important factor in the wide use of the STFT
is the high speed with which it can be computed in certain cases when
using the Fast Fourier Transform algorithm. The fundamental concept of
Fourier transform is to represent the signal of interest as a linear combination
of elementary signals forming a complete orthonormal basis of the signals’
space. Those generators are actually sinusoids, representing simple, unique-
frequency oscillations. The coefficients of this linear combination contains
information about how the energy of the signal is distributed in frequency,
generating a discrete spectrum as depicted in Figure [3.1]

The STFT is essentially a sequence of Discrete Fourier Transforms (DFTs)
applied over subsequent audio segments overlapping in time. Here the term
discrete defines the possibility of having only a finite amount of frequency
bins to analyze, bounded by the length of the evaluated signal [52]. Actu-
ally, it is possible to calculate the DFT of an entire audio clip and show how
the energy of the signal is distributed among different frequencies. However,
such an analysis would provide no information about when these contribu-
tions start and stop in time, giving only a partial and static information.
The idea behind the STFT is thus to process small segments of the audio
clip at a time and the resulting sequence of spectra will contain information
about time as well as frequency, as it can be seen in Figure |3.2



3.3. FEATURE DESCRIPTION 25

At this stage, the mentioned process of windowing should be better an-
alyzed, since it may damage the signal properties. In particular, it can be
viewed as a convolution of the original audio signal with another signal (time
window) that equals 1 during the time period of interest and 0 outside it.
Such a signal in particular is called a rectangular window, but it is not the
only possible type of window as long as it is not even the most effective: the
signals which are targeted by Fourier analysis are periodical by nature, but,
if the analyzed signal has been obtained by rectangular windowing, there
will be a large discontinuity where the end of the signal is connected to the
start of the signal in the process of periodic repetition. This discontinuity
will introduce significant energy in all frequencies and distort the analysis.
In order to reduce this effect, called spectral leakage, a non-negative smooth
bell-shaped window can be used instead of a rectangular one: there are in
literature several variants, with slightly different characteristics. The most
famous of these are Hanning, Hamming, and Blackman. The convolution
window is represented with w(n) in the following formula, which expresses
the whole STFT algorithm:

L—1
X(m,k) =Y w(n)z(mNy, +n)e 21" k=0,...,L-1 (3.1)

n=0

Here m represents the index of the current time frame, which addresses the
spectrum in the temporal sequence, % stands for the normalized frequency
component (the actual frequency in Hz is %S%), n is the sample within
the window, L is the length of the window and finally N, is the hopsize,
meaning the number of non-overlapping samples between two consectutive
time frames.

It is important to notice that the spectrum is complex, indeed usually it
is splitted into its magnitude and phase parts also because of the relationship
holding between the energy of a signal and the one of its spectrum. As long
as this is just an introduction to the sound processing techniques used in
scope of the present work, more details on this matter can be found in [55].

3.3 Feature description

In this section we provide the details about the features chosen for this
work, similarly to what was done in [I]. Each paragraph starts with two
tags defining the value type (scalar or vector) and the reference bibliography
for the feature. The following naming conventions will be used: z(n) is
the n-th sample of the audio signal; NV is the total number of samples of
the windowed signal; aj is the amplitude of the k-th frequency bin in the
spectrum, while f(k) is the frequency corresponding to that bin; K is the
total number of bins in a spectrum.
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Figure 3.1: Discrete Time Fourier Transform — The plot depicts a possible
output for a Fourier transform of an audio segment (spectrum). The z-azis contains
the reference frequency for the analysis and it appears logarithmically scaled in
compliance to human hearing system, which also is. The y-axis instead defines the
energy level in dB for each component. The peaks identify the frequency locations
of the strongest components forming the analysed sound.
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Figure 3.2: Short-Time Fourier Transform — The plot consists in a juxtaposi-
tion of a sequence of DTFTs along time. The peaks and valleys in the above figure
here become colours in the depicted scale, while the abscissa represent the timeline
of the audio excerpt. It is possible to identify a first silence phase (blue) and the
final fade out of the sound where the yellow lines slowly disappear. The analysed
sound corresponds to a single flute note.

20000

15000

10000

5000

0
0 0.5 1 15

time (sec

[dB]



3.3. FEATURE DESCRIPTION 27

3.3.1 Energy-related features

Energy dip probability
VALUE TYPE: Scalar
REFERENCES: [51], 53] [54]

Some high-level features are affected by the behaviour of a human voice
over music, for instance this can be the key point for the identification of
the genre rap, showing a great presence of speech-like vocals. It is very
intuitive to try to discriminate speech and music based on shape of signal’s
energy envelope: speech signal has characteristic high and low amplitude
parts, which represent voiced and unvoiced speech, respectively. On the
other hand, the envelope of music signal is more steady. The energy contour
is thus capable of separating speech from music, while considering energy
minima below some threshold related to peak energy allowed to improve
the recognisers’ performances. In this context, the dip probability estimate
consists in the ratio of frames that have dipped below the dip threshold
within the averaging window, where the threshold is a product of a default
thresold and the moving average of RMS spanning across sub-frames.

Intensity and Intensity Ratio
VALUE TYPE: Scalar
REFERENCES: [36]

First, the signal is divided into p sub-bands with the following frequency
ranges:

FS FS FS FS FS
(. E)(Buf) o (B.5) o

For each sub-band with a frequency range from L, to Hj, the intensity ratio
is the ratio of that sub-band’s intensity to the overall intensity I:

1 &
Iratio, = i Z ay. (3.3)
k=L

The intensity I is computed by summing all the components:

1= . (3.4)
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Figure 3.8: Loudness — The plot depicts data taken be songs pertaining to differ-
ent genres: it is immediately noticeable how a “loud” rock song (Queen - We Will
Rock You) assumes higher values with respect to a quiet soft-country song (Cowboy
Junkies - Postcard Blues)

Loudness
VALUE TYPE: Scalar

REFERENCES: [37]

Computes the loudness on each frame. The loudness is the characteristic by
means of which music can be ordered on a scale extending from quiet to loud.
This feature is affected by parameters other than sound pressure, including
frequency, bandwidth and duration. Its value is computed with an approach
that takes into account these factors and is built on psychoacoustical theories
that explain how the human ear perceive sounds. For instance, soft and slow
pieces will have lower values than rock and metal highly compressed and
distorted songs. In Figure this is visualized by choosing a soft, slow
country song with respect to a popular, energic rock anthem.

RMS energy

VALUE TYPE: Scalar
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REFERENCES: [3§]

RMS energy for each frame is computed as

where L is the length of the signal z(n).

RMS energy delta
VALUE TYPE: Scalar
REFERENCES: [38]

RMS energy delta represents the difference between the RMS energy among
successive time frames:

AW = RMS™HY — RMS™

N N (3.6)
=\ 2 (@) D)E = [ (a(m)om)®
n=1 n=1

3.3.2 Spectral-related features

Chromagram
VALUE TYPE: Vector
REFERENCES: [52]

The western music scale splits the octave in twelve equally spaced intervals
(pitch elements), commonly known as notes. The chroma feature captures
harmonic and melodic characteristics of music. They are robust to changes
in timbre and instrumentation, in order to analyze the spectral content of
an audio segment and classify the sound components into pitch classes. This
is based on the fact that humans perceive two musical pitches as similar
in color if they differ by an octave: a pitch can thus be separated into two
components, which are referred to as tone height and chroma. The first refers
to which octave the sound pertains to, seen as a range of frequencies, while
the latter refers to the actual note which is played. Thus, it can assume values
represented by the set {C,CH, D, D4, E, F, F4,G,GH, A, A, B}. A pitch class
collects the whole set of pitches that share the same chroma.

Given an audio recording, the main idea of chroma features is to aggre-
gate all the information that relates to a given chroma into a single coeffi-
cient for a given local time window. Shifting the time window results in a
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Figure 3.4: Chromagram — The plot depicts a 14 seconds long chromagram of
a jazz music excerpt. The abscissa contains the time axis, the y-azis instead con-
tains the 12 pitch classes. The intensity of colours, scaled starting from blue up to
red, defines how much the spectrum of the analyzed time frame shows peaks which
frequency locations are compatible with the given pitch class.

sequence of chroma features each expressing how the representation’s pitch
content within the time window is spread over the twelve chroma bands.
The resulting time-chroma representation is also referred to as chromagram.
Figure [3.4 shows a chomagram obtained from the an audio recording excerpt
of jazz music excerpt.

Crest
VALUE TYPE: Scalar
REFERENCES: [40)]

It is related to the flatness of the frame spectrum, i.e. to the noisiness/har-
monicity of the related signal:

max ag

crest = ———— (3.7)
K 2o O
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where aj is the amplitude of the k-th frequency bin and K is the number of
bins.

Irregularity J
VALUE TYPE: Scalar

REFERENCES: [41]

This feature is related to the variation of the successive harmonic components
of the spectrum. It is computed as the square of the difference in amplitude
between adjacent partials:

Zh(ah - ah—1)2
>naj

where h is the number of the spectral components corresponding to the
multiples of the fundamental frequency.

wry =

(3.8)

Irregularity K
VALUE TYPE: Scalar
REFERENCES: [42]

Measures the irregularity of the spectrum harmonics, which is empirically
related to perceived timbral characteristics:

TR = Z

k

ap—1 + ap + apt1
3

(3.9)

ap —

where h is the number of the spectral components corresponding to the
multiples of the fundamental frequency. It differs from the previous in having
the dimension of an amplitude.

MEFCC coefficients
VALUE TYPE: Vector
REFERENCES: [43]

Human perception of the frequency content of sounds does not follow a linear
scale. This fact has led to the idea of defining subjective pitch of pure tones;
thus, for each tone with actual frequency f (measured in Hz), a subjective
pitch is measured on a scale called Mel scale. As a reference point, the pitch
of a 1 kHz tone, 40 dB above the perceptual hearing threshold, is defined
as 1000 mels. Other subjective pitch values are obtained by adjusting the
frequency of a tone such that it is half or twice the perceived pitch of a
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reference tone. The MFCC (Mel Frequency Cepstral Coefficients) feature
extraction procedure is based on a Mel filter bank that shows triangular
overlapping windows having center frequencies and bandwidths scaled by
subjective measures. MFCCs are commonly derived as follows (see Figure
for a block diagram of the procedure):

1. Take the Fourier transform of each signal frame;
2. Filter the obtained spectrum, using the Mel filter bank;
3. Take the logs of the powers at each of the Mel frequencies;

4. Compute the discrete cosine transform (DCT) of the list of Mel log
powers, as if it were a signal. The MFCCs are the amplitudes of the
resulting spectrum.

Considering a logarithmic scale in power leads to a better approximation
of the auditory system, allowing a better modeling of the human timbre
perception. Figure shows a comparisons between excerpts of two songs
belonging to different genres, respectively a vocal performance and hard rock.
Each dot represents an MFCC coefficient, computed on 35 different audio
frames for the two tracks. As we can see, there is a substantial difference
in the two plots. The vocal performance’s MFCCs are on average strongly
below zero, while the hard rock song shows values that are slightly higher. As
we can see, just considering only the MFCC coefficient allows us to discern
songs having strongly different timbres, such as those plotted in the figure.
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Figure 8.5: MFCC - Illustration of the steps performed to compute Mel Frequency
Cepstral Coefficients coefficients from a signal frame.

Odd-even ratio
VALUE TYPE: Scalar
REFERENCES: [39]

It has been shown that some instruments have discernible lacks of energy in
even or odd spectral harmonics (components corresponding to frequencies
that are multiple of the fundamental frequency). The odd-even ratio is
defined as the ratio between odd and even harmonics:

odd = 22021

R
2_n A2n
Sonan’

(3.10)

even =
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Figure 3.6: MFCCs comparison — A plot of the MFCC coefficients extracted
from excerpts of a hard rock song (Led Zeppelin - The Immigrant Song) and a vocal
performance (Drevo - Our Watcher, Show Us The Way).

where h is the number of the spectral components corresponding to the
multiples of the fundamental frequency. We are not dealing with single
instruments here, but this feature can be a useful indicator for spectrum
regularity.

Spectral rolloff
VALUE TYPE: Scalar
REFERENCES: [44]

This is the minimum frequency value fx, , such that a given percentage R

(usually 95%) of the spectrum energy stays below that frequency:

Kron K
ZaszZak}, (3.11)

k=1 k=1

rolloff = min {me”

where K, is the spectral component corresponding to fx, ;-
It is a measure of the brightness of the sound: the higher the rolloff, the more
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high-frequency components are present in the spectrum, denoting a brighter
sound.

Sharpness
VALUE TYPE: Scalar
REFERENCES: [45] 49]

Sharpness is the perceptual equivalent of the spectral centroid and it is based
on psycho-acoustical models. It follows from the definition of the Bark psy-
choacoustical scale [49], which divides the space of frequencies into perceptu-
ally equal bands in term of distance. It approximates to a logarithmic scale
above 500 Hz, while tends to be linear below that threshold.

S, 2 g(2)- y(2) (3.12)

h =0.11-
sharpness T ,

where z indicate a Bark band, Ls(z) is the specific loudness (exhibits the
loudness across specific Bark bands), Ly is the total loudness (sum of all the
specific loudness values), Z is the number of Bark bands and

1 if z <15
9(2) = . :
0.066 - exp(0.171 - 2) if z > 15

Spectral inharmonicity
VALUE TYPE: Scalar
REFERENCES: [39]

Measures the divergence of the spectrum components from the multiples of
the detected fundamental frequency fo:

32k|fk — kfolaj,
fo Dok ai ’

where fi, ar and k are as usual. The obtained value is an indicator of how
much a sound is harmonic. For instance, the spectrum of a purely harmonic
sound would determine an inharmonicity value equal to 0, as the multiples
of the fundamental frequency would be null.

(3.13)

inharmonicity =

Spectral centroid
VALUE TYPE: Scalar

REFERENCES: [39]
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Spectral centroid basically represents the center of mass of the spectrum:

centroid =

Zii’fa’kf k. (3.14)

It states if the spectrum is mostly composed by low or high frequency com-
ponents, which in turn it is often related to the perceived brightness of the
sound.

Spectral contrast (mean, peak, valleys)
VALUE TYPE: Vector
REFERENCES: [40]

Usually, in a spectrum obtained from harmonic sounds, the strong spec-
tral peaks roughly correspond to harmonic components, while non-harmonic
components often appear at spectral valleys. The Spectral Contrast is a
measure that reflects the respective distribution of the harmonic and non-
harmonic components. First, the track is segmented into overlapping frames;
then the spectrum is computed and filtered by an octave-scale filter that di-
vides it into seven sub-bands.

Let us consider the p-th sub-band. We sort it in descending order, such
that agp ) > as(p) > -+ > algp ). In order to increase the steadiness of the
features, the peak and valley strengths are found by taking a proportion
(defined as «) of FFT bins respectively from the top and bottom of the
sorted bins and finding the mean of those.

1 aK 1 aK
peak, = log 7e Z a,ip), valley, = log e Z aglkH. (3.15)
k=1 k=1

« is a regularization parameter: here, we keep it equal to the value fixed by
the author in the original paper, i.e. 0.02.
Finally, the spectral contrast is defined as:

contrast = peak,, — valley, (3.16)

for each sub-band.

In our dataset we do not include it directly, but we consider only separated
peak and valley strengths. The means of all the spectral components in each
sub-band are also calculated and included in the dataset.

Spectral flatness

VALUE TYPE: Scalar

REFERENCES: [50]
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Spectral flatness is a measure used to characterize a spectrum as noisy-like
or tone-like. The perceptual difference holds in the fact that the latter kind
sounds pitched, so that an actual note could be heard. The usage of this fea-
ture may thus resemble the one of spectral variance, but in this context the
meaning of tone-like considers much more the amount of resonant structures
in the spectrum. A high spectral flatness (approaching 1 for white noise)
indicates that the spectrum has a similar amount of power in all spectral
bands, sounding similarly to white noise, and the graph of the spectrum
would appear relatively flat and smooth. A low spectral flatness (approach-
ing 0 for a pure tone) indicates that the spectral power is concentrated in a
relatively small number of bands. This would typically sound like a mixture
of sine waves, while the spectrum would appear spiky and regular.

The spectral flatness is calculated by dividing the geometric mean of the
power spectrum by its arithmetic mean:

T ool St o

flatness = " ,

Zyﬁi& * Lio @

where aj, represents the magnitude of the k-th spectral frequncy bin. Note
that a single (or more) empty bin yields a flatness of 0, so this measure is
most useful when bins are generally not empty. The ratio produced by this
calculation is often converted to a dB scale for reporting.

Spectral flux
VALUE TYPE: Scalar
REFERENCES: [I]

Spectral flux is a measure of the change in energy between various frequency
bands in a sequence of spectra measured from the audio data. Spectral flux
is calculated in three steps:

) 2

spftut, = [+ = o) = @\ e _ o], 3.15)

where m stands for the m-th spectrum of the sequence. Usually, one consid-
ers only the positive values in the spectral difference:

spfluz, = HH+ (al(fﬂ) - algp)) HQ, (3.19)

where H'(z) = x+|w‘ is the positive half-wave rectifying function which sets
negative values to zero and leaves positive values unaltered.
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Spectral kurtosis
VALUE TYPE: Scalar
REFERENCES: [39]

Kurtosis is a measure to determine the flatness of a probability distribution
around its mean value; when applied to a spectrum becomes an indicator of
the noisiness of the signal:

L ap —a)t
Kz’f(af ) , (3.20)

kurtosis =

where o is the standard deviation of the spectral components.

A high-kurtosis spectrum has a sharper peak and fatter tails, while a
low-kurtosis spectrum has a more rounded peak and thinner tails. Thus, we
expect a high kurtosis from songs where high and low frequencies succeed
one another without mixing together. On the contrary, in common songs
frequencies are usually mixed together and are quite balanced up to a certain
frequency range, thus the kurtosis will be smaller.

Spectral skewness
VALUE TYPE: Scalar
REFERENCES: [39]

Skewness determines the asymmetry of the spectrum around its mean value:

7 o lar — 5)3'

skewness = 3
o

(3.21)

A positive value means that the spectrum is skewed towards the right, thus
showing a long tail on lower frequency components; with negative values,
the spectrum is skewed towards the left; for perfect symmetry, skewness has
to be 0.

Spectral slope
VALUE TYPE: Scalar

REFERENCES: [39]

Spectrum components usually tend to decrease towards higher frequencies.
The spectral slope gives the rate of descent of the spectrum, obtained by
computing the linear regression of the spectral amplitude:

1 szfk‘ak—Zkfk'zkak
Ytk K 2 (i)

slope =

: (3.22)
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Figure 8.7: Spectral Slope — The two plots show the spectral slope values computed
on audio frames of an ethnic instrumental song (Yakshi - Chandra) and of a modern
pop song (Bobby Brown - My Prerogative).

where fj, is the frequency corresponding to the k-th spectral component ay.
Considering the definition of spectral slope, we expect higher values for

dark and gloomy songs, and, contrarily, lower values for bright and clear

songs.

Figure [3.7] contains a plot of spectral slope values computed on the frames of

two songs. The first track, an ethnic instrumental song, clearly shows higher

values with respect to the second pop song.

Spectral smoothness
VALUE TYPE: Scalar

REFERENCES: [47]

Related to the differences between adjacent spectral components. It has been
empirically found that single instruments can be discerned by means of the
spectral smoothness value. For example, a resonant sound like sitar’s one
shows a fairly smooth spectrum, while a human voice has a more irregular
one. This is verified in Figure 3.8 where the data from an indian folk
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Figure 8.8: Spectral Smoothness — Spectral smoothness values extracted from the
frames of a strongly resonant song (Kourosh Zolani - Peaceful Planet) and a rap
song (Eminem - My Fault).

song show greater smoothness values with respect to a rap one. Spectral
smoothness is calculated by evaluating the log of a component minus the
average of the log of the surrounding components:

log(ag_1) + log(ax) + log(agi1)

; . (3.23)

smoothness = 20 Z log(ax) —

k

Spectral spread
VALUE TYPE: Scalar
REFERENCES: [50]

The spectral spread describes the average squared deviation of the spectrum
around its centroid, which is commonly associated with the bandwidth of
the signal. Noise-like signals have usually a large spectral spread, while indi-
vidual tonal sounds with isolated peaks will result in a low spectral spread.
Similar to the centroid, the spectral spread is normalised by the sum of the
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frequency amplitudes, such that the feature value ranges between zero and
one:

S (fx — centroid)? - ay,
> Gk '

spread =

(3.24)

Spectral standard deviation
VALUE TYPE: Scalar
REFERENCES: [39]

Captures the standard deviation of the spectral amplitudes:

stdev = \/[1( zk:(ak —a)?. (3.25)

It is an index of the distribution of the spectrum energy, thus of the noisi-
ness of the sound. A small spectral standard deviation means that all of the
spectrum energy is concentrated around the same frequency, thus the pro-
duced sound cannot be considered noise. Contrarily, a flat and distributed
spectrum is typical of noisy sounds.

Spectral variance
VALUE TYPE: Scalar
REFERENCES: [39]

Captures the variance of the spectral amplitudes:
variance = 1 Z(ak —a)? (3.26)
I d . .

The same considerations holding for spectral standard deviation are of course
true also for spectral variance, the only difference among which is the fact
that the latter in the squared value of the first, thus measuring the same
phaenomenon with a different scaling.

Tristimulus (1,2,3)
VALUE TYPE: Vector

REFERENCES: [4§]
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The three tristimulus values were introduced as acoustic equivalent to the
color attributes of the RGB model. These values are defined as energy ratios,
and respectively account for the strength of the fundamental, the mid-range,
and high-frequency harmonic content.

., ai
tristimulus, = ,
> Ok
tristimulusy = G2t a3t a4
2 S an (3.27)
H
_sa
tristimuluss = @

> han .

Here h represents the number of the spectral components corresponding to
the multiples of the fundamental frequency. Notice as well that the sum of
the three values always equals 1.

3.3.3 Waveform-related features

Mean

VALUE TYPE: Scalar

REFERENCES: [50]

It corresponds to the mean value of the waveform samples in the frame and
it is fundamental for the computation of the other Waveform features:

Zivzl z(n)
N .

T =

(3.28)

Average deviation

VALUE TYPE: Scalar

REFERENCES: [39]

Computes the average deviation of the frame signal, i.e. the mean of the
absolute deviations of each sample from the samples mean:

nile(n) — 2
= 3.29
S (329)
where N is the number of samples in the frame, z(n) is the n-th sample and
T as above.

avgdev =

Kurtosis

VALUE TYPE: Scalar

REFERENCES: [39]

It has the same definition of spectral kurtosis in Section [3.3.2] but it is
applied to the samples of each frame.
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Skewness
VALUE TYPE: Scalar
REFERENCES: [39]

It has the same definition of spectral skewness in Section but it is
applied to the samples of each frame.

Variance
VALUE TYPE: Scalar
REFERENCES: [39]

It has the same definition of spectral variance in Section but it is
applied to the samples of each frame.

3.4 Statistical tools

This section will be devoted to the description of the mathematical and sta-
tistical foundations of this work. It starts with a brief description about
data mining, explaining its role of primary importance in being the field of
research which collects the statistical experience and transforms it in knowl-
edge acquisition mechanisms. The second part of this section is devoted to
the concept of distance, according to what was stated in Chapter [2, and it
includes formal definitions as well as a collection of technical approaches and
tools descriptions. The last part of the present is devoted to delineate some
techniques that are used for the management of data, with particular care
given to the concepts coming from data exploration, data standardization
and prediction.

3.4.1 Data mining and machine learning: investigating data

Data mining is a recent subfield of informatics which goal is to transform
raw data into understandable structures. It involves pre-processing steps
as well as modelization and data visualization. Hence the contribution of
statistics and machine learning techniques is strong, since this fields of re-
search provide the knowledge and the applied techniques. The core of data
mining is made of concepts like inference, classification and model learning.
In particular, this work will use the first to extend the knowledge collected
from a sample of users and songs to the whole population; in Chapter 4 we
will see that classification will be adopted for integrating the respective in-
ferred characteristics. Finally, model learning will be used in order to define
high-level structures where to incapsulate the information and to correlate
it throughout the populations.
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The meanings of understandable structures of data, towards the above
ideas, are:

e Data visualization is an effective approach for displaying data in-
formation in graphic, tabular or other visual formats. The goal of
visualization is to allow data to be immediately recognisable in their
visual patterns. Thus, they will easily be interpretated in order to syn-
thesize the information they contain both as inner correlations or as
evolution tendencies. Successful visualization requires the data to be
formatted in such a way that those relationships can be analyzed and
reported.

e Association mining is the task of discovering interesting relations
between variables in large databases: it is intended to identify strong
regularity rules using some measures of interestingness. It differs from
sequence mining because of the lack of an order in data presentation.

e Sequence mining is the task of recognising patterns that are visible
in a series of data, if those are presented as a ordered sequence (time
series). The patterns consist in subsequences of the original data show-
ing the same characteristic behaviour, keeping the same samples order
in any of the pattern instances.

e Inference is the process by which a population is characterized in
its properties by induction out of a partial amount of data. Usually,
an observation allows to provide an hypothesis on the distribution of
data: inference is accomplished by either the explicitation or the re-
fusal of a cause-effect relationship in the shape of a statistical test on
that hypothesis. It basically deals with the comparison of the statis-
tical distributions of data. It is worth to mention also that inference
allows two different approaches which divide the whole statistic the-
ory, frequentist and bayesian. While the former works only on data
in order to make its considerations, the latter permits the formulation
of an a-priori conjecture on the distribution to be verified after data
realizations are known.

e Clustering and classification techniques both consist in rationally
grouping objects. The former start from the data to derive the best
way of aggregating or disgregating clusters of objects, on the basis of
some optimality criteria, possibly without information on the number
of classes. This encompasses an implicit similarity rule, since the points
belonging to the same class are defined as similar, while the points be-
longing to different classes will be dissimilar.

Classification techniques identify to which of a set of sub-populations
(called categories) a new observation belongs, on the basis of a train-
ing set of data containing observations which category membership is
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known. The focus is on finding the best relationship between an at-
tribute set and the class label of the input data. The model generated
by a learning algorithm should then both fit the input data and predict
the class labels of records it has never seen. Therefore, a key objective
for classification is to build models with good generalization capability.

e Model learning consists in deriving an hypothesis on the model which
originated the data. This entails considering a given dependent vari-
able, possibly the belonging class in a classification problem, and ex-
plaining it as a function of the other independent variables: e.g., the
features collected plus some kind of noise, which is always present
when measuring and modeling. The most trivial example of model to
be learned consists in linear regression, but general models may present
nonlinear structures, as we will see later.

e Similarity search is a task which objective is to capture the simi-
larity of complex domain-specific objects: data are encapsulated in a
multi-dimensional vector space as features of objects but the distance
function in this feature space is not known. That is to be obtained
by adapting some usual metric through data transofrmation according
to a known similarity concept which behaviour to be emulated: the
similarity search is naturally translated into a neighborhood query in
the feature space.

The machine is thus required to learn properties from the data in a way that
resembles the human attitude: it builds a knowledge by grasping informa-
tions from the world and deriving a general rule, which can possibly be used
later for prediction purposes on the behaviour of new data.

3.4.2 The concept of distance

As stated in Chapter [2 distance between objects, along with its opposite,
similarity, is one of the most important concepts in recommending. Never-
theless, its description is a difficult task: a real world distance can in fact be
oTfickle and unclear, far from the usual euclidean way of describing equidis-
tant places from an origin point as a circle centered in it. Here will be
shown some of the theories and applications which had been basis for the
investigations of the present work.

Distances in mathematics

A distance is a numerical description of how far apart objects are. In math-
ematics, a distance function or metric is a generalization of the concept of
physical distance: a metric is a function that behaves according to a specific
set of rules and a way of describing what it means for elements of some space
to be “close to” or “far away from” each other.
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Definition 3.1. Let X be a nonempty set. A function p: X x X — R is
called a metric provided, for all x,y,z € X,

1. p > 0 (non-negativity);

= p(y, =) (simmetry);

(z,y)
2. p(z,y) =0 <= =y
3. p(z,y)

(z,y)

4. p < p(z, 2) + p(z,y) (triangle inequality).

A pair (X, p) is called a metric space. If X is a linear vector space, a nonneg-
ative real-valued function ||-|| : X — R is called a norm provided, for each
u,v € X,a € R,

1. |lul| =0 <= u=0;
2. [lou] = aflul;
3. [+l < Jlull + v]-

The pair (X, ||-]|) is called a normed linear space, and any norm on a linear
space induces a metric p on the same space by defining

p(x7y) = H.%' - y” nyy € X.

In the previous definition, some condition may be relaxed in order to
obtain spaces which are characterized in a different way. An useful example
is the pseudometric space, which holds when allowing the possibility that
p(z,y) = 0 even if x # y. On such a space, it is possible to define an
equivalence relation, namely = = y provided p(z,y) = 0, and the set X can
be partitioned into a collection of disjoint equivalence classes X /== It comes
apparent how the pseudometric p defines a metric p on this quotient set. This
solution finds application when dealing with different points in a space owing
equivalent properties, as in the case of silent song slices belonging to songs
owing different properties.

Once given a metric space (X, p), it is possible to define the concept of
open ball in order to characterize better the metric in a geometric way:

Definition 3.2. Let (X, p) be a metric space. Given a point z € X and
r > 0, the set

B(z,r) = {2’ € X|p(a',z) <r} (3.30)

is called the open ball of radius r, centered in x. A neighborhood of = is a
subset of X that contains at least an open ball of some radius r, centered in
.
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Figure 3.9: fP-norms — Showing the different shapes of unitary balls in R? (with
x =(0,0), r =1). This extends naturally for a higher number of dimensions.

The definition makes clear the notion of closeness, since it explains
how a point becomes a neighbor for another. It is important to notice that,
anytime a radius is fixed, the open ball becomes a defined subset of X, thus
it acquires a shape in its representation. This shape does not depend strictly
on the points in X, but rather on the metric p which is the only responsible
of what points are close or not to each other inside X.

Example 1. The most common example of normed linear spaces is the
Euclidean space, defined by the pair (R™,|-||,), where ||z|, = /> i, 2?
for all x € R™. This space owes a corresponding metric space, within which
a unitary radius open ball owes the shape of a n-dimensional sphere, as it
appears from the formula defining the norm. Even if it is easy to generalize
this result in an algebraic way, this is not true in a geometrical perspective.
The most natural extension of the Euclidean metric space consist in the so-
called £P-norms, which are generated by substitution of the index 2 with a
generic p € [1,00):
n

Ma,y) = llz—ylly = i — il ;

i=1

(3.31)

n
pZ’sz’—yz’\p for p € (1, 00);
i=1

(x,y) = max |x; —y;|.
i=1,...,n

The consequence of the chosen metric on the shape of the unitary open
balls is clear, as it can be seen in Figure [3.9] However, it is important to
notice that the one showed is a simple extension of the notion of Euclidean
distance which does not affect relevant properties like, for instance, the in-
variance on translations over the space X. Although other concepts and
approaches had already been studied, it is easy to figure out that, without
considering nonlinear behaviours, the building of a metric in order to shape
real distance concepts may lead to models which are too simplistic even if
easier in construction and computation.
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Definition 3.3. Suppose X is a linear space, let ||-|| and |||, be two different
norms on X. They are said to be equivalent if there exist 0 < m < M € R
such that

m ]|, < [le] < Mzl Vee X
Proposition 1. Any norm on RY is equivalent.

Proposition 2. Any normed linear space X with finite dimension equal to
N is isomorphic to RV,

Proof. Tt is sufficient to exhibit an isomorphism I : X — RY: consider a
basis of X given by the set of vectors {x1,...,2x}. Then it is sufficient to
define the mapping I : x; — e; where ¢; is the i-th basis vector of RV, O

When working with data, the usual approach considers sampled obser-
vations of continuous measurements as points in a vector space, where each
variable corresponds to a dimension taking values in R. This leads to the
conclusion that any distance defined in the variable space is equivalent, ac-
cording to the previous Propositions. The usual theory which is applied is
thus the one of numeric Hilbert spaces, because it naturally generalizes the
notion of Euclidean space:

Definition 3.4. A Hilbert space H is a real or complex inner product space
that is also a complete metric space with respect to the distance function
induced by the inner product. To say that H is a complex inner product
space means that H is a complex vector space with an inner product (z,y)
associating a complex number to each pair of elements x,y € H that satisfies
the following properties:

1. The inner product of a pair of elements is equal to the complex conju-
gate of the inner product of the swapped elements: (y,z) = (z,y);

2. The inner product is linear in its first argument: (azq + bxe,y) =
a(z1,y) + b(x2,y) Va,b e C;

3. The inner product of an element with itself is positive definite: (x,z) >
0, where the case of equality holds precisely when « = 0.

A real inner product space is defined in the same way, except that H is a real
vector space and the inner product takes real values. Such an inner product
will be bilinear, meaning linear in each argument. It can be noticed that the
inner product of any element with itself, namely (x,z) for x € H, defines a
norm, and this justifies the first asserption about H being a metric space.

In the following part, H will be a Hilbert space, V' a subset of H.
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Definition 3.5. The orthogonal complement of V is defined as
V= {z e H|(z,v) =0, Yo eV}
and it is a subspace of H.

Proposition 3. Let V be a closed subspace of H, x € H. Then it exists a
unique v* € V such that

dist(x, V') = 52‘5 |z — || = |z —v*].
Proposition 4. Under the same conditions above,
H=VaoVt={v+tuwpveV,weW},

where the ® operator is called orthogonal sum.

Proof. Let x € H. From the previous Proposition, it exists a unique v € V/
such that dist(z, V) = ||x — v||. Define then w = z — v and consider u € V
and A # 0 such that \(w,u) > 0. It results

2 2 2 2 2 2
[wl < flz = v = dul|” = flw = Muf|” = [Jw]]" + A" [Ju]” = 2X{w, u).

When dividing everything by |A| and then applying the limit as |A\| — 0,
A
[{w, u)| < ‘2’ ul® = (w,u) =0. (3.32)

This proves that w € V1 because of the generality in the choice of u € V. O

Definition 3.6. The vector v in the previous proof is called the orthogonal
projection of x onto V and the linear map Py : H — V, x + v is called
projection map. Its output is the point in V which realizes the minimum
distance of x from V. In particular, the projection map equals the identity
map if restricted to the subspace V' and, if the codomain of Py is extended
to H itself, this means the map to be trivially idempotent, since P‘% =
Py (Py(x)) = Py(v) = v. The range of Py equals to V itself; it corresponds
to the kernel of its complementary map Py,1 = Iy — Py and vice versa.

For every x,y € H, this means that (Px, (y— Py)) = ((x— Pz), Py) = 0.
Equivalently: (x, Py) = (Px, Py) = (Pz,y).

Proposition 5. Given {vi,...,vx} an orthonormal basis of the subspace
V and let A denote the n-by-k matriz which columns are {vi,...,vx}. The
projection matrix P is given by

K
P=AAT = (v, ). (3.33)
i=1
The matriz AT is the partial isometry that vanishes on the orthogonal com-
plement of V and A is the isometry that embeds V into the underlying vector
space.
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Proof. Consider an arbitrary z € H as the sum of the two orthogonal com-
ponents x| = Py(x) and x; = (I — Py)(z). Applying the defined matrix
transformation,

Pz = P(l’” +x,)= AATCCH + AAT:CJ_ =T+ 0= x| = Py (x).
O

Proposition 6. Given U # V subspaces of H, A = {a1,...,an,}, B =
{b1,...,bn, } the matrices defining an orthonormal basis for U, V respec-

tively, the projection operator Pyy : U — V' 1is represented by the matriz
Pyy = BBT A.

Proof. Consider v € U; & = (AT A)~1 AT is the vector representing v within
the coordinates system defined by A. Then, according to the previous nota-
tion, Py (u) = Pu = PA. O

Since the geometric properties of this map can be studied by looking
to either the singular values of the matrix Pyy or the eigenvalues of the
symmetric version Pg;VPUV, it is important as well to state some results
about the related estimates. The basic notion about this is the Gershgorin
theorem:

Theorem 1. Let A = (a;;) € C"*™. Then each eigenvalue of A lies in one
of the disks in the complex plane

n
D; ::{)\‘ IA—aiu| <7 :ZZ|aij|}’ 1=1,...,n. (3.34)
j=1
J#i
Furthermore, if k disks constitute a connected region but are disconnected

from the other n — k disks, then exactly k eigenvalues lie in this region.

The usage of the eigenvalues of P(:]FVPUV nevertheless takes a disadvan-
tage in the fact that the smallest singluar value will be very badly conditioned
in such a way that it will not be possible to give a nonzero lower bound for
it. Thus another result is presented:

Proposition 7. Suppose A = (a;j) € C™*™. Provided

n m
r; = Z |lasjl, c; = Z lajil s; == max(ry, ¢;), a; = |ag|
j=1 j=1
i#i i
fori=1,...,min(m,n); for m # n define

max y.._qlaij| form>n
A j=1 14i;
g ) ntl<ism (3.35)

m ..
mﬂ%ﬁ‘gn ijl laji| form <n
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Then each singular value of A lies in one of the real intervals

B = [(a; — 8i)+,ai + si] 1=1,...,n,

Bpy1=10,5]. (3.36)

Ifm=norm>nanda; >s;+s fori=1,...,n, then By41 above is not
needed. Furthermore, every component interval of the union of B; contains
exactly k singular values if it contains k intervals of By, ..., By.

A sharper estimate is still possible:

Proposition 8. The previous Proposition still holds true if B; for ¢ =
1,...,n is replaced with G; = [(1;)+, u;], where

_ 2 ¢ 2y
li:mln( a?—aﬂ‘i—l—j—é’, a?—aicrl-zz—é )
/ a2 ¢ rZ oo
ui:max< a?+airi+j+§l, a?+aici+zz+§l ,

and the non-real numbers in the previous formula can be omitted.

(3.37)

Proofs for the previous results, which are out of the scope of this work,
along with deeper details and references can be found in [56].

Distances in statistics

Most multivariate analysis techniques are based upon the simple concept of
distance. Straight-line Euclidean distance is unsatisfactory for most statisti-
cal purposes, because each coordinate contributes equally to the calculation
of this metric. When the coordinates represent measurements that are sub-
ject to random fluctuations or differing magnitudes, it is often desirable to
weight coordinates subject to a great deal of variability less heavily than
those that are not highly variable: this suggests to adopt a different measure
for distance, which accounts for differences in variations and to the presence
of correlations.

The one of Mahalanobis is maybe the most important statistical distance,
widespread in any field of analysis and easy to implement and understand.
It is due to Prasanta Chandra Mahalanobis (1893-1972) and dates back to
1936. Given a dataset, represented as a point cloud in some vector space,
the basic idea is to compute the covariance of each pair of variables and use
it as a weight. The Mahalanobis distance can be seen as distorting the space
of features in different ways towards different directions. It becomes thus
interesting to investigate how this warping happens.

The Mahalanobis distance of an observation & = (z1,...,zx)" from a
set of observations with mean ji = (y1,,...,un)? and covariance matrix S
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is defined as:

Day(@) = \/ (& — )57~ ) (3.39)

This can also be defined as a dissimilarity measure between two random
vectors Z and 7 of the same population owing the covariance matrix S:

A&, §) = \/ (&~ )TSH(@ — ). (3.39)

If the covariance matrix is the identity matrix, the Mahalanobis distance
reduces to the Euclidean distance; if the covariance matrix is diagonal, then
the resulting distance measure is called a weighted Euclidean distance; if
two observations in the point cloud are far along a direction which has low
variability, their distance will be considered greater with respect to another
pair showing the same separation along an axis which is covered by a wider
distribution. Geometrically speaking, this means that the locus of equidis-
tant points from a fixed origin becomes an ellipse. Consider Figure for
a better graphical explanation.

A final consideration regards normality: if data are normally distributed
in any number of dimensions, the probability density value in correspondance
of an observation is uniquely determined by the Mahalanobis distance d. In
particular, the distance is proportional to the square root of the negative
log likelihood. In general, given a Gaussian random variable X with variance
s = 1 and mean g = 0, any other normal random variable R with mean
p1 and variance S7 can be defined in terms of X by the equation R =
p1 ++/Si. Conversely, to recover a normalized random variable from any
normal random variable, one can typically solve for X = (R — u1)/+/S1. If
both sides are squared and the square-root is taken, this will result in an
equation for a metric that looks similar the Mahalanobis distance:

D =VXT = \/(R=)?/Si = \/(R—u)ST (R— ). (3.40)

Principal components analysis (PCA) is a statistical procedure that uses
an orthogonal transformation of the covariance matrix to convert a set of
observations of possibly correlated variables into a set of values of linearly
uncorrelated variables called principal components. The number of principal
components is less than or equal to the smaller of the number of original vari-
ables or the number of observations. This transformation is defined in such
a way that the first principal component has the largest possible variance
(that is, accounts for as much of the variability in the data as possible). Each
succeeding component has the highest variance possible under the constraint
that it is orthogonal to the preceding components. The resulting vectors are
an uncorrelated orthogonal basis set of the data space. It is important to
notice that PCA is sensitive to the relative scaling of the original variables.
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Mahalanobis distance

Second dimension

First dimension

Figure 3.10: An example of Mahalanobis distance — The red ellipse, which
1s centered on the mean of some randomly generated data, represents the locus
with distance equal to one from it. The blue points on the horizontal and vertical
azes are the projections of the point cloud on the two directions respectively. This
makes clear that the variance along the two dimensions is different. The black lines
instead represent the two principal components. Code for this plot can be found in

Appendiz[4]

In order to implement PCA, it is possible to use the eigendecomposition
of the covariance matrix and find a pattern of orthonormal axes, representing
a set of fictional variables, along which the distortion is stronger, meaning the
variance is higher. These axes correspond to the first k eigenvectors of the
matrix, which are related to the k eigenvalues which are greater in absolute
value. The directions correspond to the principal components, while the
reciprocals to the eigenvalues represent the scaling factor of axis warping with
respect to those directions. This makes clear what the relation is between
Mahalanobis’ distance and the PCA.

The principal components analysis is really useful whenever the dimen-
sion of the data space is too great to be easily managed: the design parameter
k can in fact be lower with respect to that dimension, thus this procedure
can help in saving memory whenever the contribution in variance of the last
directions is negligible, meaning they are poor of informations. Of course
Mahalanobis distance along with PCA is not the only possible approach, in
particular it does not allow a nonlinear generalization. A possible solution
consists in the substitution of the usual scalar product in the data space with
a nonlinear, kernelized scalar product. This, according to the theory in the
previous paragraph, transforms the data space in a different Hilbert space,
which metric is transformed consequently. The implementation consists in
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a data trasformation step which maps the old feature space onto a new one,
which can be linearly analyzed. This introduces an important advantage,
consisting in the possibility of performing algorithms in a different space
without having to modify them, thus allowing a deeper investigation (e.g.
nonlinear regression) with essentially no computational effort even in pres-
ence of complex, high-dimensional feature spaces. For instance, according
to [I], the upgrade for a linear support vector regression algorithm becomes
no more complex than a value substitution, whereas a complete optimiza-
tion algorithm on a deeply nonlinear structure would become an hard task.
Nevertheless, many attempts can be done towards finding the best possible
nonlinear transformation of data but no warranty is given about the compli-
ance of the chosen kernel to the structure of data themselves; in particular,
the choice of a kernel does not resolve the issue of dealing with anisotropic
metrics.

The Gaussianization technique

Density estimation is a fundamental problem in statistics. In literature, the
univariate problem is well-understood and well-studied [58], [59] 60]. Tech-
niques such as variable kernel methods, Gaussian Mixture Models etc. can
be applied successfully to obtain univariate density estimates. However, the
high dimensional problem is very challenging, mainly due to dimensionality:
data samples are often sparsely distributed, it requires very large neighbor-
hoods to achieve sufficient counts and the number of samples has to grow
exponentially according to the dimensions in order to achieve sufficient cov-
erage of the sampling space. This however can be overcome by exploiting
independent structures in data, by reducing the problem to a multiplicity of
univariate problems along each dimension. [57] describes the gaussianization
techniques for high dimensional estimation, but it is important to notice, ac-
cording to what stated before, that the same methods allow for keeping a
concept of neighborhood which is inherent to data.

Definition 3.7. For a random variable X € RY the Gaussianization trans-
form is an invertible and differential transform 7 : RY — R¥ such that the
transformed variable 7(X) ~ N(0, In).

Now, it is important to understand how to build such a function. For
the scope of this work, only univariate gaussianization is used, but theory
for the multivariate technique is presented in [57] and it could be interesting
for immediate further developments in the method. In order to do so, some
notation is required. ¢(-) will denote the probability density function of
a standard multivariate normal N(0, I), while ¢(-, i, X) will describe the
same for N (ji,¥) with ¥ € MY*N(R); then, ®(-) will denote the cumulative
distribution function of the standard gaussian.
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Definition 3.8. Let X € R be a univariate random variable and let assume
its density function to be strictly positive and differentiable; define with F'(-)
its cumulative distribution function. T is a Gaussianization transform if and
only if it satisfies the following partial differential equation:

oT
p(z) = ¢(T(x)) |5\ (3.41)
x
This equation has a unique solution, except for the sign:
T(X) =+ 1(F(X)) ~ N(0,1). (3.42)

In practice, F'(-) is not available and it has to be estimated from the
training data. Possible ways to proceed include a raw estimate by exploiting
directly the quantiles of the sample cumulative distribution and Gaussian
mixture models:

=t (3.43)

where NN is the number of realizations of the variable, x,, represents each of
the sample values, I is the number of gaussians in the mixtures and m;, p;, o;
are parameters that can be estimated via maximum likelihood using the
standard expectation-maximization algorithm.






Chapter 4

Method

4.1 Motivation

This work has the dual objective of model individual music semantic based on
user-provided song classification and define a personalized similarity function
in the context of music recommendation. The algorithm will allow the com-
parison between class models belonging to either the same or different users,
as well as the creation of a similarity measure regarding users themselves.
The capability to compare users depending on their tastes in particular will
exploit the generated class models in order to allow for collaborative filter-
ing in a future recommending application. Moreover, it will be possible to
exploit the same models in order to provide personalized content recommen-
dation in the shape of automatic classification of songs along with rated label
predictions.

The motivation for this work lies in the two-faced need for personalization
in similarity modeling, as stated in Chapter 2. Indeed, researchers found a
limit in approaches for music similarity which do not involve the study of the
individual user in their analysis. At the same time, business requirements
in the field of music recommendation constantly look for some improvement
towards identifying the needs of each user. This personalization is more
and more consideredamong the commercial services as it is proven to be a
key point for their market success. It is clear, indeed, how different people
owe different perceptions and tastes, especially in music consumption and
listening experience. Nevertheless, users of a music database often show
the same consumption habits, thus the difference among them lies in the
subjective interpretation of what they listen to. Several factors contribute
to form personal listening experience: demographic aspects like country or
age as well as cultural level, musicological background and music attitude,
just to cite some of them. The same factors also influence how people refer to
music. Each user might provide personal meaning to labels and concepts used
to describe music as well as the way similarity between songs is perceived:

o7
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for instance, a label like chillout music will rely on the individual idea of
chilling out. This gives the reason for having this work scoped to individual
semantic modeling, with the attempt to characterize how and what acoustic
features are significant according to the meaning a user gives to music.

Apart from the business and musicological interest towards this subject,
this work is intended also to investigate towards a novel and efficient method
for music data preprocessing. Indeed, procedures for the management of
nonlinearities achieved a strong relevance recently as a fundamental step for
an accurate analysis, though some mathematical issues are still open or lie
hidden in usual implementations. In this sense, the present follows a previous
work: [I] indeed already assumes, mostly for the sake of simplicity, that
there exists a linear relation between features and human perception, thus
using linear functions to model the similarity among songs. However, this
relation might be nonlinear; in particular here is shown that the same feature
space does not owe a structure allowing to safely assume its linearity. A
solution is thus purposed, aiming at overcoming these limitations: differently
from previous works, this work will not introduce any arbitrary nonlinear
kernel in the analysis, but exploits the inherent metric structure provided
by data distributions. This reveals to be more flexible with respect to users’
classification of music.

4.2 The method and its formalization

A full methodological description of the work will be provided in this sec-
tion, along with the mathematical formalization of all the necessary steps.
A high-level introduction to each component of the model will be interposed
to the detailed analysis in order to understand what the main operations
and the expected output are. On a very general perspective, as shown in
figure [£.1] the main scope of the model is to collect information from users in
the shape of personal musical tags and elaborate those in order to establish
the hidden semantic logic for the data-label association: users are asked to
associate personal tags to a predefined set of songs and the model will cap-
ture the different users’ classification methods. This will happen by building
a relation between the labels and the acoustic features of the songs. This
relation may be exploited lately for classification purpose, with the predic-
tion of new songs’ individual tags, as well as concept comparison, meaning
the identification of the similarity relation between labels derived from the
similarity of the respective classification functions. The workflow diagram is
summarized in Figure The adoption of the mentioned approach entails
that exploiting music tags solely is sufficient to describe the similarity con-
cept for any user, as well as it looks forward to overcome the different ways
of expressing music concepts. This can be due to either the users’ cultural
background or the purposes in listening music; the observation of individual
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Figure 4.1: The information workflow — The users are required to label a pro-
vided song dataset with personalized labels. This informations are then linked to
acoustic data, obtained by songs through feature extraction, in order to provide in-
dividual semantical models.
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music tagging process lead to interesting observations which are collected in
Section 4.4l

In order to build the model, it is at first needed a set of users, a set of songs
and the possibility of collecting individual tags. Consider a triplet (U, S, D).
U is the set of users, while S is the set of all the songs in our dataset and D is
the dictionary, the set of all the words that can be used to describe music. For
each user u € U it exists a personal dictionary D O Dy, = {dy1,...,dun,}
made by the words that u uses to describe the songs in S.

Once the setting is clear, it is necessary to define what the personalized
labeling operation is and to understand how to relate individual labels to
songs. The meaning of individual here lies in the fact that different users are
allowed to autonomously choose the words they want to use for describing
music, which are not necessarily shared among them:

Conjecture 1. Individual semantic assumption — In general D, # D,
for u,v e U, u # v.

This means that each user is free to associate any song in the dataset to
whatever label in his own personal dictionary:

Definition 4.1. We can define the personal labeling as a relation
L:UxXS—PD), (u,s) — Dy C Dy (4.1)

A remark here is necessary:
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Figure 4.2: The block diagram — This figure shows the detail of data processing:
songs are first acquired and feature acquisition is performed. This generates a data
space, which points are classified once for each user, according to his personal dic-
tionary (cf. Fig. , Data are then classwise remapped through Gaussianization
and a final linear model is generated for further uses.

Remark. (Multi-labeling) In general £ is not a function, since it is possible
for the same user to describe the same song with different words belonging
to D,; thus its output is a set and not a single point.

This assumption has not been considered during the development of this
work for the sake of simplicity in data acquisition. However in principle
the model is flexible to manage multi-labeled songs, this in order to be more
precise in the analysis and allow fuzzy labeling. This is necessary since people
may apply to songs different concepts or genres.

As far as data modeling is concerned, the objective is to relate the col-
lected labels to the acoustic features of songs. This introduces a new data
collection and analysis phase, oriented to the acquisition and structuring of
feature data from music. In order to perform this step, it comes necessary to
define an algebraic structure which is suitable for the operations described
in Section consider S as a Ny-dimensional linear space, the dimensions
of which consist in the acoustic features measurements. For each song s € S,
a set of K music excerpts is extracted and s; € 8, j = 1,..., K represents
a complete set of features extracted for each song segment. Consequently,
for each song s € S it exists a set S’ O S = {s;}.

Definition 4.2. The feature acquisition map is a function

FA:S8 - P(S), s— S (4.2)



4.2. THE METHOD AND ITS FORMALIZATION 61

representing the composition of the segmentation and actual feature extrac-
tion.

It may be interesting to investigate the characteristics of the FA map,
making it compliant with the practical process in In particular, the
injectivity of the sole extraction phase would be a desirable property in
order to avoid local overlapping between songs representatives in the linear
space. It is also rather reasonable to assume it, since completely identical
acquired features should correspond to perfectly equal acoustic properties,
meaning that the musical excerpts analyzed are composed out of the same
sounds. Thus the following

Conjecture 2. Unicity assumption — The map FA(-) defines a partition
of 8" such that any s; € S” corresponds at most to only an s € S.

Unfortunately, in practice it is not always possible neither to assume nor
to check directly that the same measurement is not repeated in the database,
as it will be shown later. Thus, a lighter formulation of this approach is
needed. As long as the work is not focused to individual songs but rather to
model global sound properties, it is sufficient to require that, if two identical
samples are present, the songs they come from must be identified by the
same label. Of course, for generality purposes this should hold for all of the
users, namely

Conjecture 3. Relaxed unicity assumption - If 3s; € §’, s,t € S such
that s; € FA(s) NFA(t) then, Vu € U, L(u,s) = L(u,1).

The following step will be the connection between user- and content-
originated data: given the user u, it is necessary to associate to each of his
N, individual labels d,,; the corresponding data in S’. This will of course
be done by exploiting the personalized labeling relation; in particular, it will
be necessary to apply the feature acquisition to the songs which the user
labeled with each of the considered tags. We give thus two definitions for
the dataset, a first formal and a second operative.

Definition 4.3. Provided a user v € U and one of his labels d,;, i €
{1,..., Ny}, the labeled data consists in the feature acquisition applied to
the preimage of d,; through the restriction to user u of the personalized
labeling relation:

dus = FA(L ™ (u, )[dui))- (4.3)

)

An equivalent implementative definition is

dy;={s; €S |Is€S, dui€ L(u,s), s; € FA(s)}. (4.4)
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d,; is a multivariate dataset with IV, ; samples and N features, each
variable of which owing a different metric. It is not possible to make any
prior assumption neither over its (univariate or joint) distributions nor on the
metric to be adopted. Moreover, the data space is not even a linear space,
because some of the variables cannot take negative values. This creates
the necessity for the implementation of a model which should reconstruct
the metric over the space of observation. The metric should depend on the
observations in order to account for the different data structures, according
to the classification the users apply to data:

Conjecture 4. Modeling assumption —Vu € U, i € {1,..., N,}, we can
model d,,; and define a distance on &', D,,; : &' x & — R™ which depends
on the chosen (user, label) pair.

In order to build different metrics for different datasets, the only available
information to rely on is the distribution of each over the space &', with no
prior assumption on the shape data would take. Thus the following

Conjecture 5. Data-related metric assumption — For each (user, label)
pair (u,14), d,; owes an inherent metric structure which can be collected out
of the probability density functions fy;.(-), v € {1,..., N} on the current
univariate spaces.

In statistics, the standard score is the signed number of standard de-
viations by which the value of an observation or data point is above the
mean value of what is being observed or measured. Observed values above
the mean have positive standard scores, while values below the mean have
negative standard scores. The standard score is a dimensionless quantity
obtained by subtracting the population mean from an individual raw score
and then dividing the difference by the population standard deviation. This
conversion process is called standardization or normalization. This method
sets the basis for the execution of hypothesis tests, since standard scores are
most frequently used to compare an observation to a standard normal devi-
ate and they can be defined without assumptions of normality. The process
of course does not change the structure of data in terms of the probability
density function. The further information provided by the density itself may
be of particular importance, since it conveys information that are not fully
captured by the simple covariance parameter. This can be seen in Figure|4.3
where two different distributions are compared: they owe the very same co-
variance matrix, equal to the idenitity, but do not show the same plot and
the data structure is actually different. Usually, the metric considered for
data processing is the Mahalanobis’ one described in Section which
only relies on the covariance structure of data. As stated there, this is ac-
tually effective in terms of univokely modeling data when the variables are
normally distributed, since this is the only case in which a direct relation-
ship holds between distance and probability distribution. This makes the
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Figure 4.3: Different distributions, same covariance — These plots show two
bivariate datasets: the first is obtained out of two uncorrelated gaussians random
variables with null mean and variance equal to 1, the second with the same proce-
dure, but the RVs are uniform, null mean and range \/3, which still corresponds to
variance equal to 1. Their covariance matrices both correspond to the identity, thus
the PC decomposition is the same.
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reason for change the usual data preprocessing step from standardization to
Gaussianization:

Conjecture 6. Metric building assumption — It is possible to redefine
the metric structure of the data space to be Euclidean by univariate Gaus-
sianization of the features.

Via univariate Gaussianization we obtain a N-dimensional Hilbert space,
in which the usual inner product represents a user-label-related covariance
kernel. Data are transformed according to this, leading to an Euclidean
space within which usual covariance analysis is possible.

Definition 4.4. For v € {1,..., Nt} and u, ¢ as usual, the univariate Gaus-
stanization transform is Ty, = <I>_1(Fu7ijv(-)), where ® represents the cu-
mulative distribution function of a standard Gaussian random variable and
F, ;v is the empirical cumulative distribution function obtained out of the
v-th variable of d,, ;.

Definition 4.5. The user-label covariance kernel transformation is the com-
position of the independent univariate transforms:

Tuﬂ' : S, — RNf, Tu,l(f) = [Tu%l(fbl), Ce 7Tu,i,Nf (CCNf)]. (45)

Remark. The user-label covariance kernel always exists and it is unique, pro-
vided the cumulative distribution function of data. Moreover, the Gaussian
cumulative distribution is an injective function along with its inverse, thus,
the only way to have T, ; = T, j for u # v € U is to have d,; = d, ;.

The metric in the transformed features space is well known and clear,
then it is interesting to understand the kind of metric transformation induced
on &'. In particular, it is possible to exploit the usual kernel approach in
order to describe the user-label metric on the old feature space, D, ;, by the
shape of its unitary open ball centered in s:

B(s,1) = {s' € §'|||Tui(s) — Tua(s)|, =1} (4.6)
More in general, this procedure allowed to finally define
Du,i(s,t) = [[Tu,i(s) = Tui(t)]l, - (4.7)

Remark. Due to the high nonlinearity of map T, ;, D, is not isotropic, thus
it is not certain that triangle inequality holds. For sure instead positivity
and symmetry do, so in general we can only state that D, ; is a semimetric.

Unfortunately, it is pretty difficult to show the shape of a unitary ball
in the new metric with respect to the old one (Euclidean on S§’) due to the
fact that it is only possible to know samples of Fy ; ,(-), but not the whole
function, if not approximately. What is it actually feasible to compute with



4.2. THE METHOD AND ITS FORMALIZATION 65

precision is the opposite procedure, as to say the transformation of a unit
ball in the old feature space to the new one: it is immediately noticeable in
Figure the high level of nonlinearity that this method is able to capture.
Moreover, the shape may vary dependent of the input data distributions.
Now the data have been preprocessed in a convenient way to manage their
nonlinearity and this new space can be exploited for the practical scope of
the work: the creation of a linear model for the characterization of the label
dy.;, which allows easy comparison in the definition of a semantic similarity
measure.

For each pair (user, label) = (u,) a new sampling S, ; = T, ;(dy ;) of RV
is defined. It is now possible to perform dimensionality reduction through
principal components analysis and obtain a final model S’M of dy ;. This
consists in the orthonormal basis of the transformed feature subspace which
is maximally relevant in terms of explained data variance, with a chosen
explained variance threshold of 90%. The matrix M,; will collect the ba-
sis vectors, and it is noticeable that the column space dimension of S’uz is
variable depending on how many pseudovariables are actually relevant for
explaining the dataset variance.

In order to compare labels, we can make a projection of a label subspace
onto another one and find the multidimensional angle between them. The
bigger it is, the less the labels depend on one another, because they approach
orthogonality. The arcsine of that angle will provide a measure for label
similarity:

Definition 4.6. For each pair of possible label models SAW, SAW-, their label-
to-label semantic similarity \;; is defined as

2
Aij =1 — —arcsin(min(1, max(oy))). (4.8)
™ n

Here, o, represents the singular values of the matrix
Pu,i,v,j = Muz - Mvag;'Muia (49)

constituting the projection of model Sv,j onto S’M

The item similarity identification task is concluded with this definition,
because it is now possible to take any song, then transforming its acoustic
features according to any possible user identified music group and state if it
is compliant or not, in order for instance to provide for personalized music
genre prediction. The compliance can be determined by measuring how the
data metric defined by the song itself is similar to the label model, as well as
this method can be used more in general to have a similarity index for two
general songs. The approach is similar to traditional cosine similarity, but it
is supposed to work better in determining the relevant correlations between
variables.
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An important task in music recommending, other from item similarity,
is user similarity identification. Considering now that the knowledge of the
user is based on the provided labels along with their models, it is possible to
suggest a method based on the previous procedure in order to provide also
this information:

Definition 4.7. Consider two users u # v € U along with their label mod-
els S'u’l, ... ,S’MN“ and 31,71, . ,S’v,Nv. We define the inter-label similarity
matrizc USM,,, = [\;j] as the matrix containing the pairwise label-to-label
semantic similarities for i € {1,...,N,}, j € {1,..., Ny}

Now it is necessary to define how to extract a general users’ behavior
information out of label-to-label similarities. The principle is to exploit again
the power of linear algebra with the following:

Conjecture 7. User comparison assumption — The more two users’
labels are similar to each other, the more the same users will be similar as
well and vice versa. This argument is included in the SVD analysis of their
inter-label similarity matrix.

Remark. Of course, the similarity between a user and himself should be
maximal, namely equal to 1.

This leads to

Definition 4.8. The overall user similarity function is defined as
min(Ny,Ny)
0j

usim : U x U — [0,1], (u,v) — %, (4.10)

where o; are the singular values of USM,, , and C' is a normalization constant
depending of some Gershgorin-like estimate chosen under the constraint
usim(u,u) =1 Yu € U.

A Dbasical requirement for checking if the method is working in model-
ing users lies in is its capability to understand the labeling rule. Another
procedure has been identified under the following hypothesis:

Conjecture 8. User acknowledgement assumption — The label mod-
eling separates real user-crafted labels from randomly machine generated
ones.

In order to check for this, there must be a higher-level user structure
which identifies the human behaviour not to be casual. This should be
related to an overall acoustic feature map, which transcends single label-
to-label relationships towards being more explicative of the individual music
perception. This work aims at capturing subjectivity by exploiting the struc-
ture of the labeled data: this will be the starting point for further analysis.
The formal translation of this reasoning is the concept of user-characteristic
feature space.
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Definition 4.9. Given a user u € U and his label models Su,l, . ,S’u’Nu,

we define the characteristic space T, := rank {S’ul + -+ SuNu}

As long as we are working on transformed features space with the same
structure, a way to operate for comparison of user-characteristic spaces fol-
lows: it will be sufficient to proceed with the same algorithm used for inter-
label similarity determination in order to understand if users are somehow
related or orthogonal to each other in their determination:

Definition 4.10. For each pair of possible user characteristic spaces I',, and
I',, their characteristic space similarity -y, is defined as

Yuw =1 — %arcsin(min(l, mgx(an))). (4.11)
Here, o, represents the singular values of the matrix

Pyiwj = Mr, — Mp, M{ Mr,, (4.12)
constituting the projection of model T';, onto T',,.

Remark. As long as the user-characteristic space represents a linear trans-
form to R/, an equivalent definition could exploit the ker of the same sub-
space of RN,

The next Sections will focus on the data processing steps, along with
the description of the issues met in applying this whole procedure to ac-
tual training data for modeling and prediction. The accurate description
of the tests performed in order to grant the quality of the model and the
respective results are instead given in Chapter | Instead, the R code devel-
oped for generating the figures used in the present Section is provided in the
Appendix.

4.3 Content data collection and management

The dataset which was used for the development of this work is a MIR
standard called Computer Audition Lab 500-song (CAL500). It has been
developed within the research in music semantic description (see [20] for
details) and it consists of 500 popular western music songs collected as .mp3
files in order to address the shortcomings of noisy semantic data mined from
text-documents. The songs in the dataset span across the last 50 years of
music production, corresponding to an heterogeneous set of tracks covering
different genres and sonorities, thus allowing a widespread evaluation. Some
issues emerged during the song processing, it is known for instance that
some of the present audio files are partial or corruptedﬂ and this had been
addressed during a first data preprocessing stage.

"http://media.aau.dk/null space pursuits/2013,/03 /using-the-cal500-dataset.html
contains some examples
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The first step of content data analysis consists in a process called seg-
mentation. From everyone’s music experience, it is clear that songs are
characterized by different events in their temporal evolution: these could
correspond to changes in the instruments played during its different parts,
in its tempo or dynamic properties and, more in general, in its sonority.
Noticeably, this happens especially for some kind of music genres, like jazz
for instance. Nevertheless, a common audio file contains several informa-
tion which makes it too large for the complete evaluation of its properties
all along the duration. In order to address this processing issue, all of the
audio files in the dataset had been segmented by extracting K = 35 audio
excerpts spanning 3 seconds of the song each. The starting time instants of
the segments have been choosen by sampling a uniform random distribution
on the whole duration of the songs, as it can be seen in the code included in
Appendix [A]

In order to perform feature extraction, a python script provided in [2] has
been used. This exploits the Librosa python library for sound processing,
along with a series of VAMP pluginsﬂ elaborated by different institutions
(e.g., the Queen Mary University of London and BBC R&D Dept.). These
perform actual song annotations of the provided audio tracks and the result
are output as .csv files. Table shows the plugin bundles where the respec-
tive algorithms for feature extraction can be found. As described in Chapter
3, each song in the database is represented by features extracted from audio
tracks and combined into vectors. According to the feature’s value type, this
operation may or may not require averaging on the audio frames, and may
return a single representative value or a vector of values.

Referring to what previously in this Chapter and due to the dataset
issues, some preprocessing has been necessary. In particular, some data
samples revealed to be corrupted, as well as some of the song segments
showed unacceptable acoustic characteristics. For instance, many songs, due
to fade-in or fade-out sound effects, revealed in a prolonged recording of
silence, which is useless in data analysis or rather harmful; indeed, feature
extraction out of almost silent excerpts is reflected into a massive presence
of either null or not applicable (NA) values. This phaenomenon helps to
justify the Relaxed Unicity Assumption (Conjecture ; moreover, it may be
impossible to check whether the songs owing a silent segment are actually
labeled in the same way by all of the users: the set U may in fact be too
large to perform this. A solution to fulfil the assumption is to discard any
measurement violating it. This is not a big deal, in fact the event may appear
within songs showing in general very different properties. In the specific
case, an almost silent segment collected from a rock song could exhibit the
same features as another extracted from a classical music piece. Thus it is
not the labeling procedure to be uneffective, but the measurement itself is

Zhttp:/ /www.vamp-plugins.org/ is the website of VAMP project


http://www.vamp-plugins.org/

4.3. CONTENT DATA COLLECTION AND MANAGEMENT 69

] PLUGIN BUNDLE \ FEATURES

Libxtract! Average deviation, Crest,
Irregularity J, Irregularity K,
Kurtosis, Loudness, Mean,
NonZero Count, Odd-even ratio,
Rolloff, Sharpness, Skewness,
Spectral centroid, Spectral
flatness, Spectral inharmonicity,
Spectral kurtosis, Spectral
skewness, Spectral slope,
Spectral smoothness, Spectral
spread, Spectral standard
deviation, Spectral variance,
Tristimulus, Variance

Queen Mary? Chromagram, MFCC coefficients
BBC3 Energy dip probability,
Intensity, Intensity Ratio,

RMS energy, RMS energy delta,
Spectral contrast, Spectral flux

Uhttps:/ /code.soundsoftware.ac.uk /projects /vamp-libxtract-plugins
2 http:/ /vamp-plugins.org/plugin-doc/qm-vamp-plugins.htm]
3https://github.com /bbc/bbc-vamp-plugins

Table 4.1: Summary of the VAMP plugins used for extracting features from audio-
tracks.

untrustable and could be deleted.

A last technical aspect to take care of is the one regarding the Gaus-
sianization process. When applying the raw estimation technique for the
empirical cumulative density function of data, indeed, the output (estimated
ECDF) will consist in a stepwise function assuming value equal to 0 before
the minimum sample value and 1 after the maximum, as shown by Equa-
tion The successive application of the Gaussian ECDF &(-) will map
the corrisponding data points respectively to —oco and +oo, which represent
the quantiles of the Gaussian random distribution itself. This of course is
not acceptable, since it means to generate a pair of infinite values everytime
a variable is analyzed, and this unbounded mapping does not reflect the be-
haviour of data. The solution consists in adding to the measurements a pair
of values —oo, +00 as placeholders for correctly mapping the intermediate
data; this will as well remap the quantiles of the estimated ECDF, that needs
to be corrected accordingly. Doing so, the new raw estimate for the ECDF
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of the measurements becomes

N
Fyo) = (NN”; (oo (@) — 1) . (413)

Of course, the artifact consisting in the infinite values previously added has
to be removed prior to the further processing.

4.4 User data collection and overview

The user data collection was performed manually, by filling a table contain-
ing user labels, which were provided for a subset of the song database during
a perceptual survey. The individual execution of the survey did not require
predefined dictionaries or topics as basis for the users to discern songs, but
allowed them maximum freedom in supplying the musical descriptive tags
they perceived as the most appropriate. In particular, music genre descrip-
tion constituted the main focus in the evaluation, even if it was not explicitly
asked.

Users’ interaction with the dataset happened in a neutral context, in
order to be as compliant as possible to the usual listening approach of the
subjects: they were asked to listen to a song until they were able to provide
a label for that, unless they desired to explore it better or asked to skip it
since no evaluation was possible. In the former case, the listening restarted
by skipping to another random point within the song, otherwise the provided
label would be recorded as non applicable (NA). Users were not allowed
to know any metainformation on the song, like for instance the artist, the
title or the release year, previously to providing their evaluation; this in
order not to influence their decision with other than the acoustic properties
of the songs. In particular, from user feedback it was acknowledged that
cultural metainformation like the song year proved to be relevant for their
classification process.

Some observations on the data allow to better understand the reason for
collecting information in this way. A first is that users’ perception of their
classification criteria improved along the analysis: the first provided cathe-
gories always tend towards generality and are poorly personalized, oriented
to identify a common-sense definition of music genre in a wide shape. This
results in popular labels like pop or rock which appear constantly across the
different people involved. While going further, the labels specialize instead
into personal semantic related details, with deep characterization of the emo-
tional impression coming from the songs. For instance, it happened often
to have the pop concept to be divided into more cathegories, like melodic
or easy listening, while also the rock label spreads across individual sub-
genres like alternative, hard or progressive. Others provide a classification
based on a sound-likes-those-times basis. This of course generates a wide
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range of possibilities, as expected, and corresponds to a fragmentation in a
relevant number of tags which may differ a lot among users, namely from
10 to more than 40 different labels. Many of these, due to the nature and
the size of the dataset, are scarcely represented and this could generate an
issue in modeling due to few data samples. In order to prevent the issue,
a final step in the survey involved the collection of the poorly characterized
labels for users’ review: whenever applicable, people was asked to make la-
bel association in order to join concepts that were too similar to be analyzed
separately. Songs out of this logic were simply marked as non applicable and
kept for further label prediction. An important consideration in this sense,
coming from users’ feedback, consists in the the dataset being felt as poorly
exploratory: even not experienced users perceived the dataset, made only of
western popular music, as if songs were globally similar, meaning that their
concept analysis had to go deep into music structure in order to determine
an effective difference.

Data coming from surveys had been processed as mentioned: the result
consists in the non applicable songs to be classified, according to the de-
scribed projection method, and paired to all of the individual user’s possible
labels along with a similarity score. This has been done for all of the users on
a second test dataset of 20 songs, which was built in order to allow users to
provide their feedback on the overall classification result; moreover, in order
to automatically test the algorithm, the whole dataset was divided multiple
times into a training and a testing part in the proportions of 80% — 20%
of the songs. The objective is to check the performance of the method, by
training the model with the first part of the dataset and to provide pre-
dictions for the second: the difference between the real classified data (test
dataset) and the extimates made by the algorithm will provide a measure
for the performance of the classifier. In Chapter 5 we will have a description
for this method, in order to verify that the method is effective and is able to
model the users’ perception of music similarity.

4.5 Issues

A relevant part of the work has been oriented to provide a sufficient amount
of information inside the dataset, in terms of samples of music excerpts
pertaining to each of the individual labels. This indeed revelead to be an
important parameter in order to perform a correct analysis: the dimension
Ny of the data space conditions the number of points that should sample
it, each corresponding to a song segment to be analyzed. The necessity of
having a minimum number of the latter forced the choice to collect at least
3 songs per label and to extract K = 35 segments per song, in order to grant
the points to sufficiently explore the space. Moreover, this has an influence
also on the global number of songs to be listened to, with respect to the
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number of labels the user provides: songs should populate adequately every
new definition. A poor characterization for the experienced users, whose
evaluation is more punctual and discriminative, follows from this reasoning.

If the previous can be seen as an under-sized version of the mentioned
cold start problem, it is important to notice that the system deals with the
long tail issue. In a first attempt to implement the prediction step, indeed,
a different model was provided with respect to the one described above; this
working through the analysis of the variation induced in a label model by
a new song which is added to it. The method was ill-posed with respect
to the sample dimensionality, because the abundance of data characterizing
a given, popular label reflects into the little impact of new data on the
overall distribution. In practice, this results in a predictive bias towards
popular labels, which keep being similar to themselves more than the poor
ones whenever a new song is assigned to them. This rich-gets-richer effect
resembles the usual mentioned for standard collaborative filtering algorithms.
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Figure 4.4: Metrics comparison (1) — This plot shows the bivariate independent
gaussian dataset in Figure [[.3 and its transform: the red circle on top represents
a unit ball in the old metric, which comes nonlinearly reshaped in the figure at the
bottom. In the case of independent RVs, the nonlinear map is actually the identity.
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Figure 4.5: Metrics comparison(2) — This plot shows the bivariate independent
uniform dataset in Figure [[.3 and its transform: the red circle on top represents
a unit ball in the old metric, which comes nonlinearly reshaped in the figure at the
bottom. In the case of independent RVs, the circle keeps it shape, but the radius is
reduced.



4.5. ISSUES 75

Standardized Gamma(2,2) and log(Gamma(2,2))+Gauss(0,1)

random2
0
1

3

|

@
%o

(]

-3 -2 -1

o
)
w

random1

Ex-Standardized Gamma(2,2) and log(Gamma(2,2))+Gauss(0,1)

random2
0
1

random1

Figure 4.6: Metrics comparison(8) — This plots shows a correlated dataset made
out of X ~T'(2,2) andY =log(X)+Z, Z ~ N(0,1), along with its transform. The
red circle on top represent a unit ball in the old metric, which comes nonlinearly
reshaped in the figure at the bottom. Notice that, in the case of dependent RVs,
circles do not keep their shape. In particular, the green ellipse shows the shape of
a confidence region.






Chapter 5

Experimental results

The previous chapter described the model in deep, along with the character-
ization and management of the collected user and content data which were
needed to train it. The result of this elaboration is showed hereafter, where
a thorough evaluation of the involved algorithms is described along with its
conclusions on the effectiveness of the provided method.

Four different tests were conducted in order to assess the precision of the
method in describing the semantic music similarity for the different users:
the first two involve directly the comparison of individuals, by presenting
two standalone analysis on the discriminative capability of the model in sep-
arating real users from randomly simulated fake individuals; a third instead
assesses the correctness in prediction by exploiting the usual training-testing
division of the dataset. The three described tests provide an objective evalua-
tion of the algorithm. Nevertheless, because this work aims at the modelling
of the single user, a subjective evaluation is also needed in order to under-
stand if this method correctly deals with the personalization issue. Thus, a
further test was performed on the basis of new data.

5.1 Objective evaluation

The objective evaluation of the model consists in all of the procedures applied
in order to allow for automatic self-evaluation of the performance based on
the collected data. This kind of assessment can be done in different ways, by
using either the dataset as a whole or by splitting it into two parts. The first
option is to be chosen while evaluating the data processing procedures; the
second instead is preferrable in the case the test deals with the measurement
of the prediction performances of the algorithm: the first part of the dataset
will be used to train the model, the second instead will be used for predicting
the values of a variable according to the model previously trained. The real
values taken by the variable will provide a ground truth to be compared with
the predicted values in order to check for their compliance.

7
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A first test that was performed used the whole dataset as training sam-
ples. This aimed to understand the correctness of the model in individuating
a real user behaviour by testing the similarity of the users’ characteristic
spaces: for each user, a phantom user has been generated by applying his
same tags to random songs in the dataset. The phantom user results then in
a fake user profile, which labels are the same of the correspondant real user
but with a complete rearrangement of the music categories in the feature
space. In order to understand if the model is able to distinguish the real
user from his phantoms, the characteristic space from Conjecture was
used. The test consists indeed in measuring the characteristic space simi-
larity ~yy, u, between a real user model I'y, and the correspodant phantom
models T'y,, p € {1,..., P}. This first test did not give positive results in
discriminating real users from phantoms: a deeper analysis on the testing
hypothesis shows that the characteristic spaces originate from a basis of the
sum of other label-specific linear subspaces. Those are the images of a series
of different non-linear mappings of the same original space, thus they can
neither be compared with each other nor be summed: the only condition for
having them compareable would be to have the transformed feature mapping
to be the same. This means that the songs would define the same feature
distribution on the space once provided the label. Thus, the choice of the
label for each user would be independent of the feature distribution, which
is against the preliminary hypotesis of this work. This proves the hypothesis
expressed in Conjectures[£.9] [£.10[to be wrong along with the similarity com-
putation method. Another procedure to identify user similarity and allow
comparison is consequently to be found and analysed: this this consists in
the projection method, verified by means of the second test.

This forward step involves the evaluation of the label similarity proce-
dure and, therefore, the svd-based algorithm for user similarity identification.
Given the user model in shape of a label-indexed sequence of transformed
feature subspaces, label-to-label similarity is performed by projecting one
subspace on another at a time, regardless to which user the label pertains
to. This leads to the generation of an inter-label similarity matrix USM,, ,
for u,v € U. From this set of matrices it is immediate to elaborate the user
similarity matriz containing the values of the user-to-user similarity com-
puted according to the user similarity function defined in Conjecture [L.8}
US = [usim(u, v)], Yu,v € U. A test like the previous, involving the gener-
ation of a number P of phantom users for each of the real ones, is necessary
to understand if this model is able to capture the human perception of the
acoustic features. In order to perform this, P = 100 was chosen to be
the number of running simulations: in this way, for each pair u,v of real
users, including the case u = v, we will have a computed similarity value
US,,» = usim(u, v) and P phantom similarity values usim(u, v,). We assume
the model to be able to distinguish between real users and phantoms if the
simulation is biased, meaning that the computed similarity value is an outlier
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Figure 5.1: Hypothesis testing — For each pair of users, a t-test is performed.
This tries to reject the null hypothesis of having the mean of the phantom user
similarities equal to the real user similarity. The histogram shows the frequency
of p-values for 144 possible pairs of users: the hypothesis is almost always rejected
also with significance o = 0.01, thus we can conclude that the phantom users are
far from the real ones according to the algorithm.

with respect to the distribution of the phantom similarities. This was per-
formed by means of a t-test, checking the null hypothesis that the phantom
similarity distribution mean corresponds to the computed similarity values.
This can be assessed only after checking for normality of the simulated data,
assumption which is satisfied according to the results of the Shapiro [61] test
that was performed. As it can be seen in Figure[5.1] the test rejects the null
hypothesis in most of the cases, thus proving that the computed user simi-
larity can never be assumed to be the average of the phantom similarities.
The model manages to distinguish a real human behaviour in labeling from
randomly generated tags, because the distribution of the phantom data is
never compatible with the algorithmic result. It is noticeable that now the
testing method is valid: even if different feature spaces are involved, they
are different monotonic mappings of the same variables, thus keeping the
orientation of relevant correlations in the space.

A last objective test has been performed by exploiting directly the pro-
vided user classification: this is important in order to assess the predictive
capability of the model. The evaluation consists in the application of a
method called cross-validation. Cross-validation [62, [63] [64] is a model val-
idation technique for assessing how the results of a statistical analysis will
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generalize to an independent data set. It is mainly used in settings where
the goal is prediction in order to understand how the model will perform
in practice. In a prediction problem, a model is given a dataset of known
data on which training is run, called training set, and a dataset of unknown
data against which the model is tested, called wvalidation or testing set. One
round of cross-validation involves partitioning the whole available dataset
into complementary subsets, performing the analysis on the training set and
validating the analysis on the testing set. In order to reduce variability, mul-
tiple rounds of cross-validation are performed using different partitions, as
described in Section [£.4] In our case, the outcome of this process consists
in the test set of songs to be labeled in an individual way, according to the
different users’ classes. The output will be a descending ranking for the most
relevant classes the song could belong to. This is computed by maximizing
an index which represents the similarity between the transformed song data
model and any label model. In particular, data points belonging to a song
are transformed according to the user-label covariance kernel map; then, the
projection method is used to assess the actual similarity, supposing the pro-
vided label actually to be the correct one. This was performed for all of
the users and labels in order to rank the possible label choices prior to the
assignment to the song. As mentioned in Section it should possible for
a user to assign more than a single personal label to any song, both because
musical genres might easily overlap and different kind of classifications are
possible within one’s own consumer habits. The conclusion is to deliver a
recommendation which is not choosing solely the first element in the ranking
of labels, rather it selects a set of possible labels which exceed a dynamic
threshold in their similarity with the song itself. Furthermore, the thresh-
old has been chosen to be the 10% of the maximum similarity index in the
ranking, this in order to make it compelling with the self-awareness of the
algorithm confidence on the results, thus testing also the latter.

A first assessment of the predictive capability of the method is shown in fig.[5.2}
Here, it is possible to see, for each user, the amount x of labels which should
be predicted in a top-r recommendation ranking in order to reach a certain
accuracy. This plot considers 100 predictive simulations; the results of those
are presented in the shape of ECDFs and a further information about the
average matching label position is given. This assessment was fundamental
for the decision of considering label prediction in a broader sense, but, as
long as all of the labels are taken into consideration, this does not face the
description of the capability of the algorithm to recognise a trustable pre-
dictive result. The definition of trustable lies in the 10% reference threshold,
since it helps in creaming off the labels for which the prediction seems fuzzy.
Within this interval, at least the top-ranking label is always present, while
the dimension of the chosen label set underlines the safety or dubiousness
of the prediction. Figure [5.3] shows in a boxplot the accuracy in prediction
for each user, providing a result that spans across the different simulations.
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It is possible to identify at first sight which users are correctly modeled and
which model instead need a deeper training. Indeed, a relevant part of the
labels were modeled on the basis of a meager quantity of songs. This of
course impoverish the precision of the analysis and makes the predictions to
be fickle. Moreover, the average index of the correct label in the ranking is
shown in red above every user’s results. If compared with what can be seen
in fig. it comes easily apparent how the introduction of the threshold
allows to improve the predictions without affecting the accuracy. Figure[5.4]
goes forward in this analysis, showing how many of the labels are needed
proportionally to the amount the user provided (in red). The main evidence
from this consists, of course, in the significant negative correlation between
the overall number of available labels and the selected ones. This means
that a fixed amount of labels are sufficient to predict the correct one with
accuracy. We can thus infere from the figures that a top-3 recommendation
ranking would be sufficient in most of the cases to hit the correct label.
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Figure 5.2: Cross-validation testing — For each user, 100 different simulations of the model are runned by splitting the songs into
training and testing sets in different ways. The training test is chosen randomly to represent 80% of the labeled data in each case, the
remaining testing data are used for prediction. Each plot shows, for a user, the cumulative distribution of the correct prediction label in
the whole ranking.
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Percentage of labels in top 10% per user
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Figure 5.4: Cross-validation testing (8) — For each of the above simulations, a different number of labels is contained in the interval
of 10% of the maximum value. This boxplot collects the amount of kept labels for each user in each simulation. In order to allow for
comparison between users, not to be affected by the different amount of total individual labels, the values are expressed in percentage with
respect to the previous value (in red).
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5.2 Subjective evaluation

The subjective evaluation represents the most important feedback for the
algorithm, since it allows performance measuring based on actual judgements
by users. These must inherently be the same people providing the data for
training, since the algorithm is aimed to personalization. In particular, the
test consists in the same operations performed in the objective evaluation of
predictions, but considering a new set of songs, which the users evaluated
separately. Results of this first stage, fully compliant with the objective
evaluations, are shown in figs. and Like the previous step, for each
user the predicted labels are compared to the ones the user provided, but in
this case people are required to provide also a value of agreement with the
automatic annotation of each song. This value is chosen accordingly to a
Likert scale, which ranges from 1 (complete disagreement with the assigned
labels) to 7 (complete agreement). A further step in the evaluation consists
in the analysis of the predictive error: if the prediction is wrong, the correct
label is not among the ones owing maximum scores. The relative difference
among the maximum score and the one of the exact label can be used not
only as an overall measure of correctness, but also to check for correlation
with the level of user agreement, measured with the Likert score. This is
supposed to be present and negative, since the bigger the error, the worst
the prediction will be. Furthermore, another metric which is investigated
is related to indecision situations, meaning when the predicted scores in a
top-z labels recommendation ranking are low and considerably similar to one
another: the decision becomes an harder task, because many labels in this
case are almost equally assignable to the query song. In order to deal with
this, the correlation between the same Likert and the maximum predicted
score is considered as a measure for indecision: this will allow to understand
if some link is present among the indecision metric and the overall predictive
capability.

The results of the described analysis follow: the correlation between the
relative prediction error score and the Likert subjective evaluation is relevant
and negative as expected, meaning that the prediction comes worst when the
prediction error is bigger, thus the incertainty in the predicted scores already
allows the system to understand that the following prediction can be wrong.
The same holds for the description of the user agreement with the prediction,
which is in positive correlation with the absolute value of the label similarity
score, proving that also that value could a-priori identify the credibility of the
predicted label. The last considered measures concern these observations in a
more systematic way: two tests were run in order to check if the populations
of the correctly identified labels and the wrong ones are different in terms of
either the prediction scores or the minimum predictive delta. These analysis
do not show significance to state they have different means, probably due to
the small dimension of the song sample.
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Figure 5.5: Correct predictions rates distribution and density of top-score
labels — The figure shows an histogram and a boxplot which have the same function
of the ones shown for the objective evaluation of the algorithm. It is possible to
observe that the values of the histogram are compliant with the mean values of
the boxplot in figure and the same holds for the boxplot related to the one in

figure .
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Figure 5.6: Correlation with subjective evaluation — This histograms show the
distribution of the correlations between the Likert-scaled indvidual evaluation of the
predictions and two different parameters for performance self-evaluation: the first
shows a significant negative link with the relative prediction error, meaning that
correctness in predictions actually follows the users’ agreement; the second instead
positively relates the users’ feedback with the score of the correct label, showing that,
if the system assigns a greater score to a label, this will result in a more satisfactory

prediction.






Chapter 6

Conclusions and next steps

This thesis provided a new personalized approach to music similarity based
on individual semantic. The work started with extracting suitable features
from a database of audio tracks which was previously labeled by users. The
next step consisted in modeling each individual label by considering it as a
class of audio events, designed according to the acoustic features of its songs.
The method had the advantage of taking into account the subjectivities
of each user while assessing the similarity between songs thus defining a
personalized classifier, which could be applied for recommending purposes
either in a content- or collaborative-based environment.

The model was based on exploiting the probability distribution of acous-

tic data within each of the labels: since most algorithms for data analysis
are based on Euclidean spaces, which is not always the case within musical
features data, a first feature space mapping was necessary in order to make
uniform the linear space of observations. This entailed a metric learning
procedure, aimed to represent the actual structure of data in a more suitable
way for processing. The procedure consisted in exploiting the cumulative
probability density function of each acoustic feature within a label. The
shape of a class in the data space was thus modeled, while the data were
trasformed to univariate gaussians in order to explorate correlations in the
Euclidean space. Those data were analyzed with the application of principal
components analysis, which allowed for data reduction, and the label models
obtained in the shape of low-dimensional vector spaces were compared by
projection. The numeric results of projections were used as similarity met-
rics when comparing labels first and users in a successive step.
Of course, any song new to the model could be modeled as well as a set
of acoustic events with given feature data. In this way, it could be joint
with any of the labels with a similarity index. This score was maximized in
order to provide for a classification: this has been the entry point for the
recommendation step.

The obtained metric was inherently user- and label- specific, thus it could
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be exploited to provide for similarity measurements between either individual
labels or users, as well as it allowed to provide an indication about the
pertinence of any song to the label. This was necessary in order to have
a practical application for the model, which was identified in providing a
new statistical engine for the outbreaking field of recommender systems for
digital marketing.

The evaluation of this work included two different aspects, linked to
both the objective predictive capability of the algorithm and the subjective
satisfaction of the final user when the automatic classification is performed.
In particular, we allowed each song to be labelled by more tags because of
the fuzziness of the classification process. A suitable amount of labels was
quantified in the top-scoring 10% of the user’s labels, varying from 2 to 4 for
the subjects of our tests. The performance of this operation was comparable
with the state-of-the-art for non-personalized recommenders. Regarding the
subjective tests, the users were provided with new songs along with their
user-specific predicted classification and asked to express their satisfaction
within a Likert scale. The result was compliant in efficiency with the previous
objective evaluation. Moreover the users’ feedback showed to be significantly
correlated with some self evaluation of the confidence in prediction.

This proves the effectiveness of the algorithm, which it is worth to model
music similarity according to the single user. In particular the model is
able to provide good predictions even with a small amount of labeled songs.
This can be a hint for possible applications towards reducing the impact of
two well-known issues in recommending, known as cold-start and long-tail
problem. Moreover, we proved the use of non-linear models to be necessary
to successfully model the acoustic measurements: there is not a trivial linear
relation among the features we chose to model songs and the user perception
of music similarity.

6.1 Future works

The assessments on the proposed method have been performed by using a
well known academic database of songs, called CAL500. This audio track
collection was designed to contain different songs in terms of genre, age and
popularity. Nevertheless, we proved users to have deeply subjective opinions
about similarity among heterogeneous songs, as a common feedback on tests
was the distribution of songs being non homogeneous towards genre. It
would thus be interesting to consider the behavior of the algorithm with
other user-specific songs collections (playlists), which are supposed to show
this coherence towards more personalized characteristics. To this end, we
would repeat our tests using user-generated listening databases. We could
determine up to what extent our method is able to catch the subjectivities of
the users on very specific music contexts. This could moreover improve the
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analysis in solving the issue of having too few song representatives within
the user-specific classes.

The previous assessment could be the starting point for the implementa-
tion of an effective recommender system based on user-generated playlists.
Another possible development in this direction is the integration of user-
related metadata for linking user similarities with their geographical or cul-
tural data, in particular focusing on factors, such as music attitude and
musicological background, that could influence the similarity perception of
people. This could be useful in identifying correlations between the tastes
of a group of users and their characterization: the generation of a listening
persona based on its cultural or demographic metadata could importantly
contribute to further smoothing the mentioned cold-start problem. The con-
clusion of this evaluation is the necessity of a broader and less characterized
user database.

Some development could finally involve the modeling techniques: a deeper
analysis may be necessary towards improving some methodological choices.
In particular, in the gaussianization process, the empirical cumulative den-
sity of data could be changed by considering a smoother estimate (like
expectation-maximization of gaussian mixtures). The same gaussian target
distribution may be discussed with the objective of finding another probabil-
ity kernel, whereas an analysis has already been performed on the similarity
normalization constants: studies like [56] suggest different estimates for sin-
gular values which could be implemented while looking for improvements.
Nevertheless, the present work is meant in its originality to set up an explo-
rative study in statistics for personalized music recommending, introducing
the importance of unpredictable nonlinear variations in the algebraic steps
towards building a working implementation.
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Appendix A

Codes

Mahalanobis R code for Figure [3.10

### Principal Component Analysis

# data generation

library (mvtnorm)

mu <— c(1,2)

sig <— cbind(c(1,1), c(1,4))
n <— 100

X <— rmvnorm(n, mu, sig)

# data plotting
plot (X, asp=l,main = "Mahalanobis distance", xlab="First dimension",
ylab = "Second dimension")

# plotting the average
points (colMeans (X) [1], colMeans (X) [2], col='red', pch=16)

# plotting the projections over the axis and computing variance
abline (h=colMeans (X) [2], 1lty=2)

points(X[,1], rep(colMeans (X)[2], n), col='blue')

var (X[,1171)

abline (v=colMeans (X) [1], 1lty=2)
points (rep(colMeans (X) [1], n), X[,2], col="blue')
var (X[,21)

# plotting the ellipse
library (car)

M <— colMeans (X)

S <— cov (X)

ellipse(M, S, 1, add=T)

# computing eigenvalues and eigenvectors
eigen (S)
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x <— seg(min(X), max(X), length = 100)

lines (x, M[2]+eigen (S)S$vectors[2,1]/eigen(S)$Svectors([1l,1]* (x—M[1]),
col='black', lty=2, lwd = 2)

lines (x, M[2]+eigen (S) $vectors[2,2]/eigen (S) $vectors[1,2]* (x—M[1]),
col="black', lty=2, lwd = 2)

Segmentation Matlab code for segmentation process

tic
orig = 'C:\Users\pansi\Desktop\TESI\ongoing\ISPG20";
dest = 'C:\Users\pansi\Desktop\TESI\Script Python\data_segmented2';
mkdir (dest)
ext_out = '.wav';
num_seg = input ('Please insert the number of the desired
segments per song:');
seg_len = input('Please insert the duration of a segment [s]:');

filetype = {'/x.wav'; '"/+.mp3'};
for type = 1:2
ext_inp = filetype{type};

filelist = dir([orig,ext_inp]);

names = [];

foldlist = dir (dest);

foldernum_0 = str2num(foldlist (end) .name);

if isempty (foldernum_0) foldernum_0=0; end
for i=l:length(filelist)
foldernum = i+foldernum_0;
if foldernum<10
foldername = ['00"' num2str (foldernum)];
elseif foldernum<100
foldername = [num2str (0) num2str (foldernum)];
else foldername = num2str (foldernum);
end
mkdir (dest, foldername) ;
filepath = [orig '\' filelist (i) .name];
filename = filelist (i) .name;
[X,fs] = audioread(filepath);
seg_gnt = fs*seg_len;
for j=1:num_seg
init_pos = randi ([l length(X)—seg_qgnt—1]);
segment = X (init_pos:init_pos+seg_gnt, :);
numlab = num2str (j—1);
if <11 numlab=['0' numlab]; end
outname = [dest '\' foldername '\'
filelist (i) .name(l:end—4) '_' numlab ext_out];
audiowrite (outname, segment, £s) ;
end
disp(['Elaborated file ' num2str(i) ' of '
num2str (length(filelist)) ' after ' num2str(toc)])
end
end
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