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Abstract

Vision-based measurements represent a wide variety of contactless methods able to extract
data from an image-recorded scene using digital cameras. During the last decade, the
development of more performing devices at diminishing costs makes the vision systems an
attractive and valuable solution in many areas of science and engineering. The reasons of this
success are to be found in the easiness of the setup, in the possibility of providing contactless
monitoring and of reconstructing full-field displacements and strains.

Digital Image Correlation (DIC) is one of the most diffused optical techniques to track motions
and deformations when vision-based measurements are employed. Although the majority of
uses and studies involving DIC were focused on static conditions, the technological
improvements of the recent years have enabled the extension of the DIC method also to the
dynamic field. In such a context, motion blur represents a relevant problem, since it is an
important source of uncertainty for DIC measurements. To solve this issue, referenced
deconvolution method has been proposed and tested. The documented attempts, although
successful, showed little robustness.

Continuing on this topic, the thesis proposes an innovative approach to mitigate the effect of
motion blur on 2D Digital Image Correlation. The research work is introduced by the state of
the art of DIC technique, giving particular emphasis on setup characteristics and algorithm
implementation. Then, the impact of motion blur on DIC measurements and motion effect
simulation techniques are investigated relying on the available literature information. In the
following section, a review of the main types of image deconvolution methods is proposed,
useful either to estimate or to remove the motion effect from a given image. Furthermore, the
theory of cepstral analysis is presented as a valid option for image deconvolution processes.
Once the necessary theoretical background has been introduced, the further step is to try to
compensate the undesired blur effect on DIC measurements. Firstly, a theoretical model for
motion blur estimation based on cepstral analysis is proposed and validated. Secondly, the
problem of image restoration is tackled, where two image deconvolution methods are
presented: one based on cepstrum deconvolution and the other based on Wiener filter. The
latter is suggested in presence of noise. Eventually, each mentioned technique is tested with

synthetic DIC experiments, involving numerically generated images, in order to demonstrate
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whether the compensation algorithms are able to improve the accuracy of DIC measurements
in presence of motion blur.

The last part of the study, instead, aims to experimentally validate the previously presented
techniques with a realistic dynamic application. Therefore, a harmonic test is conducted,
imposing the sinusoidal motion law on a cantilever beam able to produce different blurring
conditions on the images grabbed by the camera. Both the motion blur estimation and removal
processes are applied and finally the DIC performance, in terms of uncertainty reduction after

blur compensation, are analysed.

Key words: vision systems; vibration measurements; Digital Image Correlation
(DIC); dynamics; motion blur; uncertainty; cepstral analysis; image deblurring;

image deconvolution; Wiener filter.
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Sommario

La tecnologia basata sui sistemi di visione include un’ampia gamma di dispositivi in grado di
fornire misurazioni partendo dall’analisi di immagini acquisite da una telecamera digitale. Il
miglioramento prestazionale delle telecamere, unito ad un abbassamento del costo delle
stesse, ha stimolato la diffusione dei sistemi di visione nell'ultimo decennio, facendone una
soluzione vantaggiosa sia in applicazioni di tipo scientifico che ingegneristico. Tale tipo di
tecnologia puo offrire diversi vantaggi in campo sperimentale, tra cui la semplicita nella
preparazione del setup, la possibilita di effettuare un monitoraggio senza contatto e di
ricostruire mappe di spostamento e di deformazione.

Gran parte degli attuali sistemi di visione ricorre alla tecnica denominata Digital Image
Correlation (DIC) per processare immagini ed ottenere stime su spostamenti e deformazioni.
Sebbene la quasi totalita degli utilizzi dell’algoritmo DIC sia finalizzata ad applicazioni di tipo
statico, il continuo miglioramento tecnologico degli ultimi anni ha reso possibile I’estensione
anche in campo dinamico, per esempio nell’analisi di misure di corpi vibranti. In un simile
contesto, il moto relativo tra telecamera e misurando durante tempo di esposizione diventa
rilevante, poiché contribuisce alla generazione dell’effetto mosso. Quest’ultimo ¢ in grado di
produrre una degradazione delle informazioni metrologiche contenute nell'immagine,
aumentando di conseguenza l'incertezza di misura ottenuta tramite metodo DIC. Per risolvere
tale problema, sono state sviluppate alcune tecniche di deconvoluzione che permettono di
rimuovere l'effetto mosso durante la fase di image-processing.

1l principale obiettivo della tesi & quello di continuare lungo questa direzione, proponendo un
approccio innovativo che possa contenere l'aumento dell’incertezza di misura causato
dall’effetto mosso. La prima parte del lavoro di ricerca si occupa della descrizione della tecnica
Digital Image Correlation, dedicando particolare attenzione alla preparazione del setup di
misura e all'implementazione dell’algoritmo. Successivamente viene introdotto un modello
analitico capace di descrivere la natura fisica dell’effetto mosso, seguito dal relativo impatto
sulle misurazioni di tipo DIC, facendo riferimento ad informazioni provenienti dalla
letteratura. Nella sezione seguente vengono descritte, invece, le principali tipologie di
deconvoluzione per immagini, adottabili sia per la stima che per la rimozione di processi di
degradazione, quali l'effetto mosso. Tra queste, l'analisi cepstrale rappresenta un’ottima

opportunita.
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Una volta introdotti i necessari accorgimenti teorici, il passo successivo prevede
I'implementazione di una procedura che possa effettivamente migliorare le performance delle
misurazioni ottenute tramite DIC in presenza di effetto mosso. Per prima cosa, viene proposto
un algoritmo in grado di stimare l'entita dell’effetto mosso partendo da un’analisi di tipo
cepstrale. Dopo di che si passa a considerare il processo di restauro vero e proprio
dell'immagine degradata da effetto mosso. A tale proposito, vengono presentate due tipologie
di compensazione, una basata sulla deconvoluzione in dominio cepstrum e l'altra sulla
deconvoluzione con filtro di Wiener. Ciascuna tecnica viene poi testata su esperimenti di tipo
sintetico, ossia su immagini in cui l’effetto mosso € stato generato numericamente. L’obbiettivo
¢ quello di verificare che entrambi gli algoritmi di compensazione siano in grado di migliorare
laccuratezza delle misurazioni con Digital Image Correlation.

La parte finale di questo studio viene dedicata alla validazione sperimentale delle tecniche
appena descritte. Al fine di simulare una possibile applicazione in campo dinamico, viene
utilizzato uno shaker per imporre al target (in questo caso una trave incastrata) una legge di
moto di tipo sinusoidale, generando cosi nelle immagini acquisite dalla telecamera diverse
condizioni di effetto mosso. Esse costituiscono un ottimo banco di prova per 'applicazione
degli algoritmi di stima e rimozione dell’effetto mosso. Anche in questo caso 'intera procedura
¢ finalizzata alla riduzione dell’incertezza di misura stimata tramite metodo DIC dopo la

rimozione dell’effetto mosso.

Parole chiave: sistemi di visione; misura di vibrazioni; Digital Image Correlation
(DIC); dinamica; effetto mosso; incertezza di misura; analisi cepstrale;

deblurring; deconvoluzione di immagini; filtro di Wiener.
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CHAPTER 1
DIGITAL IMAGE CORRELATION AND
MOTION BLUR

1.1 Full-field measurements and Digital Image

Correlation

The measurement of surface deformation and displacement of materials or structures
subjected to various loading conditions (e.g. mechanical loading or thermal loading) is one of
the fundamental task of experimental mechanics. Traditional strain gauges are by far the most
exploited technique when local measurements are required. Instead, in case of full-field
measurements, vision based techniques have been developed and applied, including both
interferometric techniques (such as holography interferometry, speckle interferometry, moiré
interferometry [1]) and non-interferometric techniques (such as the grid method [2], [3] and
digital image correlation (DIC)).

In the firsts, the measurement surface, usually characterized by uniform white texture, is
lighted by means of structured light (using lasers or fringe projectors). The measure is obtained
processing the phase difference of the scattered light wave from the test object surface before
and after the loading, by means of fringe processing and phase analysis.

Non-interferometric techniques, instead, determine the surface deformation by comparing the
gray intensity changes of the object surface before and after deformation, and generally have
less severe requirements under experimental conditions.

As a representative non-interferometric optical technique, the DIC method has been widely

accepted and adopted in solid mechanics, because of its good capability and flexibility to
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measure surface deformations. It directly provides full-field displacements and strains by
comparing the digital images of the specimen surface in the un-deformed (or reference) and
deformed states respectively.

The technique, originally developed by a group of researchers at the University of South
Carolina in the 80’s [4]-[9], is known in literature with different names, such as digital speckle
correlation [10], [11], texture correlation [12], computer aided speckle interferometry [13], [14]
and electronic speckle photography [15]-[18]. During the past few years, the DIC method has
been extensively investigated and significantly improved for reducing computation
complexity, achieving high accuracy of measurement and expanding the application range. For
example, the two-dimensional (2D) DIC method using a single fixed camera is limited to in-
plane deformation measurement of the planar object surface. To obtain reliable
measurements, some requirements on the measuring system must be met [8], [9]. If the test
object is of a curved surface, or three-dimensional (3D) deformation occurs during loading,
the 2D DIC method is no longer applicable. To overcome this disadvantage, 3D DIC based on

the principle of binocular stereovision [19], [20] was developed.

The current thesis is only focused on the 2D DIC method for in-plane displacement
measurement. It should be noted at first that both laser speckle patterns [17], [21] and artificial
white-light speckle patterns (or more accurately, the random gray intensity pattern of the
object surface) have been used as the carrier of surface deformation information in 2D DIC.
The laser speckle pattern can be produced by illuminating the optically rough surface with a
coherent light source (laser beam). However, a serious decorrelation effect occurs when the
test object is subjected to rigid body motion, as well as excessive straining and out-of-plane
displacement [22], which prevents its practicality. In contrast, the white-light speckle is more
robust and appealing. Indeed, it can easily be found that most of the current publications
regarding DIC employ white-light speckle patterns, which used a white light source or natural
light illumination.

Compared to the interferometric optical techniques used for in-plane deformation
measurement, the 2D DIC method has both advantages and disadvantages. For instance, it

offers the following attractive advantages:

e Simple experimental setup and specimen preparation: only one fixed camera is
needed to record the digital images of the tested specimen surface before and after
deformation. Specimen preparation is unnecessary if the natural texture of a specimen
surface has a random gray intensity distribution, or can simply be made by spraying

paints onto the specimen surface.
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Low requirements in measurement environment: 2D-DIC does not require a laser
source. A white light source or natural light can be used for illumination during
loading. Thus, it is suitable for both laboratory and field applications.

Wide range of measurement sensitivity and resolution: since the 2D DIC method deals
with digital images, thus the digital images recorded by various high spatial-
resolution digital image acquisition devices can be directly processed by the 2D DIC
method. This allows 2D DIC to be coupled with optical microscopy or scanning
electron microscopy (SEM), to realize microscale to nanoscale deformation
measurement. Similarly, the instantaneous deformation measurement can be realized
by analysing the dynamic sequence of digital images recorded with high-speed

cameras using the 2D DIC method [23]-[24].

Therefore, it can be said that the 2D DIC method is one of the current most active optical

measurement technologies, and demonstrates increasingly broad application prospects.

Nevertheless, the 2D DIC method also suffers some disadvantages:

the test planar object surface must have a random gray intensity distribution;

the measurements depend heavily on the quality of the imaging system;

at present, the strain measurement accuracy of the 2D DIC method is lower than the
one of interferometric techniques, and is not recommended as an effective tool for

non-homogeneous small deformation measurement.

1.2 Two-dimensional DIC

The standard implementation of a two-dimensional digital image correlation measurement

system is basically composed by three steps:

1.

2.

Specimen surface and measurement setup preparation

Image acquisition of the specimen before (reference) and after loading

3. Digital image processing to estimate displacements and strains induced during loding

In the following, a general framework about the required setup characteristics and the state of

the art of digital image correlation algorithms will be presented.
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Testing layout

An example of standard measurement layout for 2D DIC application is reported in Figure 1.

3 2e= Alrance R1/100
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White light source

Figure 1 Measurement layout for 2-D DIC

The specimen is mounted on a loading structure (e.g. a standard tensile machine) and lighted
by means of white illumination. A digital camera frames the specimen, collecting one static
image as reference and several images during the test execution, each of them will be

independently analysed to quantify the full-field deformation maps.
Surface properties

Two-dimensional digital image correlation technique works properly when dealing with
planar problems. The specimen surface must be flat and out-of-plane displacements or strains
field must not arise during the loading [1], [3]. As already mentioned in the introduction, one
of the key aspects in which digital image correlation relies on is the surface textures of the
specimen. From its analysis it is possible to retrieve the full field displacement map (and
consequently the surface state of strain), comparing the gray intensity changes of the surface
in the acquired image sequence. A local point-by-point correspondence among acquired and
reference images is estimated by the DIC algorithm in the whole analysed area in order to
compute the motion field. Being difficult to find the correspondence between a single pixel of
an image in a second one (the gray value associated to a single pixel can be found in thousands
of other pixels in the second image with no unique correspondence), the analysis extends the
searching of a small neighbourhood (called subset) around the pixel of interest.

To reduce the issues related to this “correspondence problem” [3], a randomly textured flat
surface is mandatory. This characteristic can be rarely found in the natural texture of tested
materials and consequently random textures, namely “speckle pattern”, are artificially applied

on the specimen before starting the tests (Figure 2).
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Figure 2 Examples of typical DIC patterns

Subset matching

The basic principle according to which 2-D DIC operates is the matching of the same points
(or pixels) between images recorded before and after deformation. In order to compute the
displacements of a single point P, usually a square reference subset of (2M + 1) x 2M + 1)
pixels centred at point P (x,,y,) from the reference image is chosen and used to track its
corresponding location in the deformed image, as schematically illustrated in Figure 3. The
reason why a subset, rather than an individual pixel, is selected for matching is that the subset
includes a wider variation in gray levels, being more uniquely identified in the deformed image,

as already explained.

P (x0. Yo) i i Displacement vector

P (xo’, ¥0")

Reference subset = @ (x:. %)

Q(xi", ")

Reference image Deformed image

Figure 3 Schematic illustration of a reference squared subset and target subset after
deformation

A quantitative evaluation of the similarity degree between the original subset and any selected
area of the deformed image has to be introduced, in order to identify P’ as the position that
best matches P in the whole deformed image. This can be obtained through different (but
equivalent) approaches: cross-correlation (CC) criteria, according to which P’ is defined as the

position that maximizes the cross-correlation function between the original subset and the
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deformed subset, or sum-squared difference (SSD) correlation criteria, where P’ is defined as
the position able to minimize an bi-dimensional error function [27], [28].
In detail, being f the reference image and g the deformed one, and (x;,y;), (x;,y;) the

coordinates in their respective reference systems, the two criteria are defined as:

M M
Coc= ) > IfCuydgli, )] g
(=M j=—M
M M
Cso= ) ) [fGeoy - gGxi, v @
i=—M j=——M

For a given square subset of size M + 1) x 2M + 1).

Since it has been proven [3] that the presented parameters are sensitive to linear scale and
offset in illumination lighting, issues that normally occur during a standard test, their
normalized versions (ZNCC — zero normalized cross correlation and ZNSSD — zero normalized
sum of squared differences) are generally preferred, able to successfully handle lighting

variations [3].
Shape functions and interpolation

It is reasonable to assume that the shape of the reference square subset could change in the
deformed image. However, relying on the hypothesis of deformation continuity of a solid
object, a set of adjacent points in a reference subset remains as adjacent points in the target
subset. Thus, recalling Figure 3, the coordinates of point Q (x;,y;) around the subset centre P
(%9, ¥o) in the reference subset can be mapped to point Q' (x;, y;) in the target subset according

to the so-called shape function [29] or displacement mapping function [30]:

xi = x; +&(x0y))

(3
yj =¥; +n(xy)

Where ¢ and 1 identify the analytical formulations of the mapping functions. In addition, the
coordinates of point Q (x;, ¥;) in the deformed subset may locate at non-integer pixel positions
(i.e. subpixel location). To apply the correlation criterion, interpolation of the subset intensity
is consequently required. In literature, many different interpolation algorithms have been
used to accomplish this task. High order interpolation functions (as bicubic or biquintic spline)
must be preferred [31], since they provide higher accuracy and better convergence of the

algorithm with respect to a simpler interpolation scheme.
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Initial guess of deformation and calculation path

To provide a motion estimation of the central point of the considered subset with subpixel
accuracy, the matching procedure is split in two separate steps. The macroscopic position of
the subset is identified at first and then refined in order to achieve higher accuracy. In other
words, a proper initial guess needs to be provided before starting the subpixel registration
algorithms. When the relative deformation or rotation between the reference subset and the
deformed one is quite small, the initial guess can be easily estimated with 1-pixel accuracy
using both spatial domain [32] or frequency domain [13], [15] methods.

Instead, when the single subset is subjected to large strains or rotations, more complex

algorithms need to be exploited [33].
Subset matching-fine matching

A variety of fine matching algorithms for digital image correlation has been presented in the
years in scientific literature [1]. Coarse-to-fine searching strategies can be extended to a
subpixel accuracy simply changing the searching step from integer pixel values to fractional
pixel values [4]. Nevertheless, image interpolation at subpixel values is always required in
advance and this results in time consuming approaches.

To overcome this issue, which strongly limits the practical use of digital image correlation,
iterative spatial domain cross-correlation algorithms are by far the most adopted fine-
matching strategies. In these algorithms, the previously presented shape functions are applied
on the reference subset in order to iteratively deforming it until the convergence in the
identified area of the deformed image is reached. Newton-Rapson method [34] is the most

used searching strategy.
Displacement field measurement

Once a single subset is tracked, the extension to full-field motion estimation is quite trivial. At
first, the object region to be analysed (AOI, “area of interest” or “ROI”, region of interest) is
manually selected on the reference image (green area in Figure 4). Within this area, a regular
matrix of points to be tracked is identified (red dots): these points represent the subset centres.
They are equally spaced in both vertical and horizontal directions, with a predefined grid
spacing (usually called “step”). The step among subsets is independent from the subsets
dimension, since the regular grid is built partially overlapping adjacent subsets to increase the

analysis spatial resolution.
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Figure 4 DIC working principle: ROI and subsets definition

Due to the high number of subsets to be tracked, the initialization plus fine matching
procedure is too demanding to be repeated for each subset. To speed calculation, the
initialization is actually performed only on the first subset and the analysis is carried out by
rows (or by columns) using the displacement and strain of the current point as initialization
for the adjacent ones [1]. This approach could become critical in case of discontinuities in the
displacement field (e.g. associated to cracks in the surface) or high uncertainty in the single
subset estimated motion (due for example to local poor textures of the speckle pattern). To
solve this problem, in [35] the so called “reliability guided” DIC (RG-DIC) method is presented,
where the calculation path is guided by the ZNCC coefficient itself. The subsets used to
initialize the neighbourhoods are the ones characterized by the highest matching score in the

correlation process. Thus, the calculation path is always along the most reliable direction.

1.3 DIC uncertainty in dynamic applications

As one of the most interesting full-field measurement technique, DIC becomes a relevant topic
for the scientific community in the recent years. The available literature in case of static DIC
applications is wide and a lot of studies have been done to investigate the main sources of
measurement uncertainty coming from this method, aiming to furtherly improve the accuracy
of the results. To name a few, M. Bornert et al. [36] proposed a general procedure to evaluate
DIC displacement measurements errors. It uses synthetic speckle pattern images undergoing
spatially fluctuating sinusoidal displacement fields. They evaluated the RMS error of
displacement obtained with various DIC formulations for different subset sizes, speckle sizes
and other parameters. The sensitivity of displacement evaluation to the image acquisition
noise (e.g. digitization, read-out noise, black current noise, photon noise) were analysed for
the first time in [37], [38]. Their analysis was based on corrupting reference image by various
levels of zero mean Gaussian noise and without imposing any displacement field on the image.

They demonstrated that the standard deviation of the displacement error is proportional to
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the standard deviation of the image noise and inversely proportional to the average of the
squared grey level gradients and to the subset size.

Wang et al. quantified the expectation (bias) and variance in image motions in presence of
uncorrelated Gaussian noise for each pixel location, as a function of interpolation method, sub-
pixel motion, intensity noise, contrast, level of uniaxial normal strain and subset size. Their
theoretical results showed that the expectations for the local parameters are biased and a
function of the interpolation difference between the translated and reference images, the
magnitude of white noise, the decimal part of the motion and the intensity pattern gradients
[39], [40]. Other studies have been made to theoretically estimate the DIC uncertainty. Among
them, Reu et al. quantitatively calculated the errors which will result from any given set of real
images obtained in an experiment and concluded that the bias errors can be minimized by
selecting higher ordered shape functions, increasing image contrast, and selecting a subset
with adequate information content. In addition, they suggested that the variance parameter
can be minimized by decreasing intensity noise in the images through better imaging
equipment, improved illumination, lower camera gain, averaging multiple images at each step
[41]. In the same year, Pan et al. investigated the influence of the speckle patterns on the
accuracy and precision of displacement measurement. They derived that the speckle pattern
does not introduce systematic error but a random error in the measured displacement [42].
Even though the above-mentioned works were mostly focused on static issues, DIC has been
recently exploited in dynamic applications too. Some innovative fields are mode shape
recognition [43], [44] and vibration analysis [45], [46]. In 2003, Schmidt et al. [47]
implemented digital image correlation technique in two dynamic applications. The first one
used short duration white light pulses to study a car tire on road with up to 240 km/h speed.
The second study used a pulsed laser to study a flywheel in a spin pit.

Later on, Kirugulige et al. investigated the dynamic crack growth behaviour of a polymeric
beam subjected to impact loading using DIC methodology [48]. DIC have been applied also to
the problem of modal analysis and vibration measurement. In this group of studies, the results
of DIC measurement have been compared with the results obtained from accelerometers,

scanning laser vibrometer or finite element method (FEM) [49]-[50].

1.4 Effect of motion blur on DIC uncertainty

Dealing with DIC dynamic applications, the relative motion between a moving target and the
camera can cause a motion effect (i.e. blurring) on the acquired images. This motion effect
would not exist if the acquisition was instantaneous, but in reality, it is not a valid assumption
to be made. In fact, the effective duration in which a camera shutter is open (namely shutter

or exposure time) is usually not negligible with respect to the velocity of the target. It means
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that a single dot on the target would appear as a stripe on the acquired image, due to the target
displacement during the exposure time. Analytically, the phenomenon can be explained
assuming that, during the exposure time (T), k scene points pass through the position of the
image pixel P; ;, with brightness values (C; ...C;) respectively, such that the resulting brightness
value for pixel P;; is given by eq.(4) (in case of continuous movement the summation is
replaced by integration). According to this formulation, the blurring of the image exists only
along the direction of the motion. This effect of relative motion between the measurand and

the camera is known as motion blur.

L&
P ;= EZ G @

Motion blur represents an important source of measurement uncertainty using Digital Image
Correlation (DIC) technique, which needs to be investigated. Even though in the recent years
the scientific community devoted big efforts to analyse and evaluate the most common sources
of DIC uncertainty, the literature is missing information able to quantify the impact of motion
blur on the total amount of uncertainty. This situation could represent a critical point for many
applications involving dynamic strain and displacement measurements. In the early
documented dynamic applications of DIC [51], [52], the problem of motion blur was already
seen as a relevant one; however, they chose to avoid the quantification of this component by
limiting exposure time at the lowest possible value. This result is achieved by boosting lighting

at elevated levels with the help of pulsed light.

Figure 5 Example of image blurring in horizontal direction

10
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In the last years significant steps forward have been done. Zappa et al. [53] develop a method
able to generate motion effect on a reference image, simulating a real dynamic test and
estimating the uncertainty caused by motion blur. In [54], it was analysed how motion blur
deteriorates the acquired patterns and how this degradation interferes with measurement
uncertainty. In other words, it was modelled a process which defines how the standard
deviation of measured displacement was influenced by motion blur.

One of the aim of this thesis is to continue on these directions, investigating which are the
effects of motion blur on DIC displacement measurement and then proposing a technique able
to improve DIC performances in dynamics (i.e. reducing the measurement uncertainty due to

blurring conditions).
1.4.1 MIG and SSSIG indexes

To analyse the effects of motion blur in terms of image degradation and measurement
uncertainty, two indexes, widely adopted in the literature, are introduced: the mean intensity
gradient (MIG) proposed by Pan et al. [55] and proved to be closely related to both bias error
and random error of displacement, and the sum of square of subset intensity gradient (SSSIG),
which is mainly focused on the random error due to blur [54].

Let us consider an image where f(x,y) is the pixel intensity at point (x,y), while n and m are
the number of pixels in the x and y directions, respectively.

The MIG is computed as the average value of the modulus of the omnidirectional image

gradient, normalized by the size of the image:

mn
1 of
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i,j=1
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Instead the SSSIG is calculated, along the blur direction, as:

2
)
xi,j

As we can see from equations (5) and (6), a good matching exists between such indexes and
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the DIC working principle, since all of them relies on image gradients.
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1.4.2 Blur simulation in case of constant velocity motion

When there is a need to replicate a dynamic test involving DIC technique, sets of reference
images of a target are required. The current section describes the numerical approach applied
to obtain these groups of images, as presented in [53]. The method allows to simulate both
shifting ‘a’ and blurring ‘w’ in the generated images, under the hypothesis of constant velocity
motion of the target during exposure time. Then, the images can be used to quantify, by means

of DIC analysis, the measurement uncertainty induced by motion effect.
Subpixel shifting using DFT

The simulation of the pure translation ‘a’ of the target is the first step towards simulating the
motion effect. Although different methods were introduced in the literature, Fourier shifting
method is claimed to be the optimum sub-pixel shifting technique [56]. It is based on
convolving the image with a shifted impulse function and it can be resumed in three simple

steps:

1. The image is transformed into frequency domain via Discrete Fourier Transform
(DFT).

2. A linear phase shift, proportional to the spatial frequency, is applied in the complex
plane. The amount of added phase determines the amount of spatial shift.

3. The image is transformed back to the spatial domain via Inverse Discrete Fourier
Transform (IDFT).

Note that the transforms are done by means of 1-D DFT/IDFT of a single row or a single
column at a time. It is important to remark that the application of a linear phase shift to the
image in frequency domain is equivalent to convolving the image with an impulse function at

a time different from zero.
Motion effect simulation using square pulse (numerical method)

Different techniques to simulate motion effect are available in literature [57]. However, the
numerical method adopted here [53] is based on convolution of the reference image with a
square pulse. Before explaining the motion effect simulation technique, a brief review of
square pulse characteristics seems to be necessary. The square pulse g(x), symmetric with

respect to spatial position x = 0, is defined as:

g(x) =rect (x) =

w

{1 if |x| <w/2 (7)
0 if|x|>w/2
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Where 'w' is the parameter which indicates the width of the rectangle, corresponding to the
length of blur generated into the image. It was demonstrated [58], that continuous Fourier

transform of this function can be written as follows:

sin(wnf) (8)

witf = w sinc(wf)

G(f) = f rect (%) e 2mfxdx = w

The result of equation (8), models only the situation where the rectangular window is
symmetric. In the general case, rectangular window may be translated in space by a generic
value a. In this case it is possible to write the acquisition window as g(x — a).

In case of dealing with a shifted square pulse as in Figure 6, the Fourier transform is calculated

as below:
FT[g(x —a)] = FT[g(x)] x e~%mfa (9)

Where ‘a’ represents the spatial shift of the square pulse.

N

g(x)

E\f

N
v

X (pixels)

Figure 6 Square pulse g(x) with parameters 'w' (width of the square pulse) and 'a’ (shift)

According to equation (8), the continuous Fourier transform of a square pulse is a sinc
function. It is important to point out that some differences exist passing to the discrete Fourier

transform. It requires the discrete definition of the square pulse in time domain x[n]:

_ (1 0<n<N (10)
x[n] = {0 otherwise

Starting from that, the DFT of x[n] becomes [58]:

13
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1-(eNw) _ _jedi-n o sin(2Y) (11)

x(e/®) = N2 x[nle ™ = FNZfx[nleme = 2=

sin(3)

Since convolution in space domain corresponds to multiplication in spatial frequency domain,
the proposed technique suggests calculating the DFT of each row of the image and multiply it
by the DFT of the square pulse and finally calculate the inverse DFT of the product. In this
way, the final result is a simulation of motion effect in horizontal direction. Note that the same
process can be implemented on the columns of the image to obtain blurring in vertical
direction. Similarly, repeating the above procedure using a shifted square pulse allows to get a

shifted image with motion effect.
Motion effect simulation using square pulse (analytical method)

The limitation of using the numerical method presented before is that the definition of square
pulse width in spatial domain permits to handle only integer pixel values. Since there’s a need
to simulate the motion blur with sub-pixel accuracy, an analytical method was proposed to be
applied. It is based on creating the Fourier transform of the square pulse directly in frequency
domain. Then, the continuous Fourier transform of the square pulse (i.e. the sinc function) is
multiplied by the DFT of each row of the reference image and then the IDFT of the product is
computed. An important issue for the implementation of this method is the correct definition
of oddity or evenity of the signal length in frequency domain [59]. Figure 7 enhances the
differences between continuous and discrete Fourier transform adopted in the numerical and

analytical methods, respectively.

Continuous vs. Discrete Fourier Transform of a Square Pulse
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Figure 7 Continuous and discrete Fourier transforms of a centred square pulse having
width equal to 1 px
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CHAPTER 2
IMAGE DECONVOLUTION AND
COMPLEX CEPSTRUM

2.1 Introduction to image deconvolution

In the previous chapter motion blur has been identified as one of the main source of
uncertainty when vision systems are applied on dynamic measurands. The effect of blur has
been simulated using a theoretical approach based on the theory of convolution. Therefore,
convolution phenomena are identified as a relevant issue in dynamic imaging and required the
work of several scientists and experimenters.

With analogue photography, it was only possible to try to avoid the generation of motion blur
before taking the photo but, once blur has been generated, there was no possibility to recover
the frame. Once digital imaging has been introduced during the late 70’s, allowing the
procedure of storing, analysing and treating images, researchers started to work on the
moderation of motion blur on the acquired photographs [60]. At this time the practice of
deconvolution de-blurring was born. The research field in deconvolution algorithms started
with mono dimensional deconvolution problem applied to general digitally recorded electric
signals. The first published article about a deconvolution algorithm was [61]. Since then, the

family of deconvolution algorithm have been divided in three:
e blind deconvolution

e referenced deconvolution

e deterministic (non-blind) deconvolution
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Blind deconvolution represents the most common case in the generic use of cameras [62],
where a blurred image is recovered without knowing the convolution function (also named
Point Spread Function, PSF) and without having a non-blurred image of the recorded scene.
Referenced deconvolution is the situation where a reference non-blurred picture of the scene
is available, while the PSF still remains unknown. Non-blind deconvolution applies when
convolution function has been determined experimentally (or known a-priori). Therefore,
deconvolution turn into a deterministic problem, which is not in the interest of this
dissertation. Anyway, this sector of research attracts a broad interest, due to the application in
the field of microscopy [63], medical imaging and astronomy [64].

In any case, the development of deconvolution algorithms has been strongly pushed by the
exigence of enhance image readability [65], [66] from a human point of view, without worrying
about possible deterioration of metrologic information contained in the image. Lately, the
wide diffusion of digital cameras (also embedded in small portable devices) encouraged the
development of real time algorithms for image stabilization and enhancement [67], [68].

All these applications require that image processing is done without any a-priori knowledge of
the convolution function or of the recorded scene. Hence, almost the totality of researches on
deconvolution is focused on blind deconvolution. Purpose of this dissertation, oppositely, is to
work on image restoration from a metrologic point of view. Considering that a reference image
of the measurand is available, referenced deconvolution is a viable choice. Furthermore, the
existence of reference image grants the consistency of some metrologic information (i.e.
distances, displacements). However, the task is not trivial, especially for the ill-conditioned
nature of the blur operator: the observed image does not uniquely and stably determine the
underlying original image [69]. Since the problem is already serious when blur is known, it
becomes very critical when there is even a slight mismatch between the assumed blur and the
true one. In the field of referenced deconvolution applied to blurring conditions, it is not
possible to recognize a homogeneous research path. This is due to the relatively smaller field
of application of these techniques. The first recognizable research is [70], where a
computational model to calculate motion out of blurred images has been proposed. In this case
deconvolution is applied to the marker position time history, rather than on the acquired
image. The estimation of deconvolution parameter is done by comparing the width of the
original marker with the width of acquired one. Another proposal has been made by Wang et
al. [71]. Their research is focused onto estimating vibration amplitude out of blurred image.
They gave an optical model of how a target vibrating mono-dimensionally with an unknown
amplitude generates a motion blur trail of measured length. In the same year Guan et al.
demonstrated the feasibility of recognizing image blur parameters by the comparison of an
acquired image with a reference one, even in case of an unknown motion transformation

between the two images [72].
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2.1.1 Image blur model

The possibility of identifying a reference image for the scene changes completely the way to
approach the deconvolution problem. In fact, dealing with dynamic applications, every image
recorded from the vision system can be described as the result of a convolution process that

transforms the reference image into the grabbed one, as specified in eq.(12):

g(x,y) = f(x,y) * h(x,y) + n(x,y) (12)

Where f(x,y) is the original image, h(x,y) is the generic function describing the acquisition
process (called point spread function, PSF), n(x, y) is the additive noise and g(x, y) represents
the grabbed image. In case of a dynamic acquisition, the mathematical description involves a
PSF where target translation is followed by frame blurring. Such a procedure can be fully
determined only when both rigid translation a and image blur intensity w are identified
(Figure 8).

Reference Rigid .| Motion Blurred
image translation blur image
e |
| Translation Blur :
! |
| parameters parameters |
e
Unknown

Figure 8 Block scheme describing the process of image acquisition of a moving target

Over the last decade, a great number of works have been introduced for estimating the motion
blur point spread function in frequency domain [73], [74]. If a reference (still) image of the
acquired target is available, it is possible to formulate the problem in a closed way. The blurring
process is modelled as the convolution of the static image with an acquisition window of a
given length w and shift a, as described in section 1.4.2.

According to convolution theorem [75], [76] the convolution of eq.(12) becomes a product

passing to frequency domain:

G(u,v) = Hw,v)F(u,v) + N(u,v) (13)
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Where H (u, v) is the 2-D frequency response of the PSF, also named Optical Transfer Function
(OTF), and G(u,v), F(u,v), N(u,v) are the discrete Fourier transforms of the blurred image,
original image and noise, respectively. One approach to determine the acquisition window
h(x,y) is to identify the component H (u, v) in frequency domain, which has the form of a sinc
function:

Hu,v)=w- —sin:rwf) (14)

wf =w - sinc(wf)

where f = u-cos(9) + v-sin(9) represents the blur direction and w is the blur length.
Alternate lobes in the sinc produce phase shifts of «t radians, and the amplitude at the higher
frequencies is attenuated. The estimation of blur extent can be done by searching the zero
crossings of the sinc function, taking into account that they occur along the direction
perpendicular to the blur orientation and the half-width of the main lobe is inversely
proportional to the duration of the acquisition window (i.e. the blur intensity w), as shown in

Figure 9.

Figure 9 Two dimensional OTF model, having blur intensity equal to 1 and blur orientation
of 45°

Since the image degradation process is interpreted as a convolution, image restoration
attempts to recover an image by modelling the degradation function and applying the inverse
process, i.e. a ‘deconvolution’. Once the blurring PSF has been fully identified, it can be
removed from the grabbed image in frequency domain with the help of the most common

image recovery algorithms.
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The basic idea is to perform an inverse filtering, where the Fourier transform of the original

image F(u, v) is calculated simply dividing G (u, v) for the degradation function H (u, v):

_ Gwv) (15)
 H(u,v)

F(u,v)

This formulation holds only under ideal conditions, where the exact knowledge of the PSF is
available and the noise contribution is assumed negligible. Since it is not possible to achieve a
faultless H(u, v) description and since the noise effect is always present, the image spectrum

after inverse filtering represents only an estimation of the expected one (F (u, v)).
2.1.2 Wiener filter

Wiener filter is a widely applied filter for image restoration when it has been possible to
identify or estimate a certain Point Spread Function able to model the blur [78]. In order to
describe the working procedure of the filter let us recall eq.(12), where g(x, y) represents the
grabbed image, f(x,y) the blur restored (yet unknown) image, h(x, y) the identified PSF and
n(x,y) the uncorrelated noise.

This time the goal is to find a deconvolution operator p(x, y) able to estimate the unknown 2D

signal f(x,y) in the way described by eq.(16):

fe,y) =pl,y)*g(xy) (16)

It has been demonstrated [78] that, under the hypothesis of signals affected by uncorrelated
noise, the solution of the exposed problem can be found in the frequency domain and it is
expressed by eq.(17), where P(f) represents the deconvolution operator, H(f) the convolution
model, S(f) the power spectral density (PSD) of the acquired image g(x, y) and N(f) the noise

spectral distribution.

H(f)S() 1)
IH(DIZS(H) + N()

P(f) =

Since the noise frequency distribution may be hard to retrieve in most of the cases, it is possible
to rewrite the previous equation, multiplying and dividing by S(f) the whole expression. At

the end eq.(18) is obtained, where the signal-to-noise ratio (SNR) compares.
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(18)
HHr |1 H()I? !

P(f) = =
H NG|~ H
Dlinpre+55| 1O moe+

1
SNR(D)

This last formulation is the most diffused due to its versatility, since it handles SNR either as

a frequency distribution or as a scalar value as well.

2.2 Basic theory of cepstrum

The cepstrum was first proposed in 1963 [79] and defined as the power spectrum of the
logarithmic power spectrum of a signal. The related application at that time was to determine
the depth of the hypocentre of a seismic event, exploiting the function ability to recognise
periodic structures. In the recent years, different classifications have been given for the
cepstrum, depending on the application that was used [80], [81]. However, the most adopted
definitions for signal processing are those of power cepstrum and complex cepstrum. Given a
generic signal f, the power cepstrum is defined as the inverse Fourier transform of the

logarithmic power spectrum:
Cpx (T) = T_l{ln[sxx (f)]} (19)

Where the independent variable 7 has the same dimensions of time.
The complex cepstrum, instead, is defined as the inverse Fourier transform of the logarithm

of the complex spectrum:
ch(T) = T‘l{ln[X(f)]} (20)

It has been decided to consider only the definition of complex cepstrum, because it offers many
advantages, unlike power cepstrum, related to signal deconvolution.

Complex cepstrum is a real-valued function, whose name indicates that it is obtained from the
complex spectrum, with no loss of phase information. For this reason, the process by which it
is calculated is reversible, allowing to rebuild the original signal after performing filtering
operations [81]. Connected to this, suppose that x(nT) is a signal coming from the convolution

of two discrete data sequences,

x(nT) = f(nT) = g(nT) (21)
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and apply all the analytical passages in order to pass to cepstrum domain. The following

expressions are obtained:

X(f)=F(HG() (22)
n(X()) = n(F()) + In(G(f)) (23)
cx(nT)= ¢y (nT) + c4(nT) (24)

As can be seen, not only the effects of convolution are separated in the complex cepstrum, but
it is possible to remove one completely, and then return to the original signal without this
effect. The advantage of doing this in cepstrum instead of frequency domain, is that the former

requires to operate only on a single function rather than on amplitude and phase separately.
2.2.1 Applications of cepstrum

Due to its main properties of periodicity and separability, the complex cepstrum can be used
not only for harmonic components detection, but also for wavelet recovery, since it is able to
retain the phase information. The related literature is rich and varied, and can be divided into
pure diagnostic, processing of signals containing echoes [82], [83], speech analysis [84], [85],
and machine diagnostics [86].

Cepstral analysis has been extended to image processing. In [87], cepstrum has been used in
nonlinear filtering image enhancement, where the logarithm of the Fourier transform is used
to amplify the information in the frequency domain and the inverse Fourier transform is used
to filter certain features. Other common applications are optical flow estimation [88] and
passive stereopsis [89].

The fact that the cepstrum transform maps convolution into addition may be very useful in
image deblurring. As the degraded image g(x,y) is the result of convolution of the original
image f(x,y) with the blur model h(x,y), it is impossible to separate the blur in spatial
domain. However, the blur information can be easily extracted in the cepstrum domain.

The cepstrum of g(x,y) is defined as follows [90]:
Co(p,q) = F~H{In|G (u, v) |} (25)

where G (u, v) is the Fourier transform of g(x,y) and F 1! is the inverse Fourier transform.
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As eq.(25) shows, the image in cepstrum domain is the inverse Fourier transform of the
logarithm power spectrum of the blurred image.
For the computational consideration (the logarithm of zero is negative infinite), the cepstrum

of an image is also calculated as follows:

Cyp, @) = F {1+ In|G(u,v)[} (26)

Such form magnifies small differences, and keeps the zero values of Fourier spectral nulls.
By converting the model shown in eq.(12) into cepstrum domain neglecting the noise effect,

we have [90]:

Cow, @) = Cr(p,q) + Ch(p, q) (27)

The convolution operator in spatial domain becomes additive in cepstrum domain, thus the
blur detection is made much easier.

Therefore, the motion effect estimation and the following removal in cepstrum domain is a
growing area for the research field. In [91], different approaches to estimate the parameters of
motion blur, namely direction and length, are compared directly from the observed image with
and without the influence of Gaussian noise. Then, these parameters are used in a standard
non-blind deconvolutions algorithm. In [92], the authors proposed a novel method to estimate
the parameters of motion blur and out-of-focus from the cepstrum peak detection. Similarly,
Shiqian et al. [93] find a procedure to be used for blind image blur evaluation, able to
automatically identify the blur type and its relevant parameters. In [94], an algorithm that
extracts the blurred object from the background first, and then estimates the parameters of
the PSF using the cepstrum method, is described. Final restoration is achieved by using a
classical Wiener filter. Experimental results show that the proposed method is able to achieve
satisfactory restored images. However, in this dissertation it has been decided to use the
cepstral analysis only for the blur compensation step, while for the estimation of the PSF blur
parameters a fitting procedure which comes back to frequency domain is adopted (see chapter

3), since it is already consolidated [95] and guarantees a good accuracy of the results.
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CHAPTER 3
MOTION BLUR ESTIMATION

In the following chapter, two methods allowing to estimate motion blur parameters are
proposed. Suppose to know both the reference still image and its blurred version. Due to the
property of cepstral analysis, the difference between the cepstrum of the blurred image and
the cepstrum of the reference one permits to extract a function containing all the information
about motion blur. Thus, starting from such a difference and passing to a frequency domain
analysis, it is possible to evaluate motion blur parameters. At the end of the chapter, the
estimation performances are presented, paying attention to the influence of uncorrelated noise

and image pattern type on the estimation process.

3.1 Detect motion blur and net displacement using

complex cepstrum

The main goal of interest is to extract the most significative motion blur parameters, namely
the blur length ‘w’ and the net displacement ‘a’, from a generic image of an object, given that a
reference image (without motion blur) of the same object is known. To estimate them, an
approach based on complex cepstrum is proposed.

As explained in section 2.1.1, blurred images existing in dynamic acquisitions can be modelled
in space domain as the convolution between the static image and a rectangular pulse having a
width equal to the pixel motion w of the target during the exposure time. According to the
convolution theorem, this corresponds, in spatial frequency domain, to the product of the
spectrum of the image with the Fourier transform of the rectangular pulse, i.e. a sinc function
with half-width of the main lobe equal to 1/w (half-width is defined as the distance from zero

frequency and the frequency corresponding to the zero crossing of the spectrum amplitude).
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Because of the property of the logarithm in cepstral domain, this results in the summation of
the cepstrum of the still image with the cepstrum of the rectangular pulse.

Thanks to the separability introduced in cepstrum domain, it is possible to de-convolute (i.e.
remove motion blur) by means of a subtraction. More in detail, the difference Cy;¢ between
the cepstrum of the blurred image C; and the original image C, contains all the information
about motion blur. Ideally, if noise or other transformations did not occur, Cyz — Cy is
identically equal to the cepstrum of the rectangular pulse with generic width w. Thus,
computing such difference and applying inverse complex cepstrum back to the spatial domain,
should return the shape of a rectangular window, having a width equal to the motion blur value

and a shift equal to the net displacement. Two key issues are related to this last point.

e Since the spatial resolution for images is the pixel unit, the description of window
function in spatial domain allows to manage only the case of integer motion blur value.
When dealing with non-integer values of motion blur, the spatial resolution is
insufficient to reconstruct correctly the underlying transformation.

e Thesecond limit appears in Figure 10. The blue line is the square pulse defined directly
in spatial domain, with a shift equal to 60 px and width equal to 20 px, while the red
line shows the square pulse calculated by inverse Fourier transform derived from

frequency domain.

1.2 : . ‘ ‘
1 i —
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§ 06F —From spatial domain |
%_ —From frequency domain
E | .|
= 0.4
0.2 il
0
| | 1 1 | | | | ‘
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Space [px]
Figure 10 Shifted square pulse derived from spatial and frequency domain

Even though in this case the blur is an integer value, the discrepancy between the two methods
comes from the fact that the “theoretical” window function in frequency domain should be
described as an infinite series of points (according to its definition), while in a sampling case

it is considered as a sinc function with a finite number of lobes.
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It is possible conclude that extracting information of motion blur directly from inverse
complex cepstrum, which includes the transformation from frequency to spatial domain, is not
accurate. The issue is solved here applying only the first steps of the inverse cepstrum
calculation, stopping the process when the frequency domain counterpart of Cg;5 is obtained.
The latter is named Fg;f;. In frequency domain, F,;¢r data nominally distribute according to
the Fourier transform of the rectangular pulse: i.e. a sinc function with half-width of the main

lobe equal to % This is confirmed by Figure 11, where the resulting Fy;f is very similar to a sinc

kernel.
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Figure 11 Absolute value of F,;¢f obtained from modified inverse cepstrum for the case w=6
px

For a given blurred image, the detailed procedure to obtain the Fourier transform of motion

blur (Fy;¢f ) with the inverse “modified” cepstrum, is the following:

a) First, for both the blurred and reference images, compute the cepstrum of the same
row (in the case of horizontal motion) or column (in the case of vertical motion).

b) Subtract the cepstrum of the row (or column) of the reference image Cr from the
cesptrum of the row (or column) of the blurred image Cj.

c) Apply the “modified” inverse cepstrum on the difference Cy;rr = Cp — Ci.

d) Repeat the procedure for all the rows (or columns) present in the images and then
average the results. Note that this resulting signal represents the DFT of a 1D square

pulse with determinable ‘w” and ‘a’ parameters (Fg;ff).
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3.2 Estimate motion blur and net displacement

Once obtained the Fourier transform of square pulse (Fy;rr) with the “modified” inverse
cepstrum, the following step is to extract blur parameters from it. Two techniques able to

estimate motion blur are proposed:

e Sinc fitting method, which is the most accurate, even though it requests higher
computational efforts and it could give not reliable results in case of small w values.
e First estimation method, which is simpler and requires low computational efforts.

However, it is capable to give only a rough estimation of blur.
3.2.1 Sinc fitting method

Since for the generic image the values of Fy;rr may be dispersed due to noise and other
transformation, a fitting procedure (where the fitting function represents a sinc kernel) of its
amplitude and phase returns a reliable estimation of motion blur parameters.

Before describing the algorithm, it is necessary to make an observation in advance. Let us
consider an image having a small value of motion blur (i.e. lower than one) and calculate Fg;f
by means of “modified” inverse cepstrum, as explained in the previous section.

Since the width of the main lobe is inversely proportional to the length of motion blur and
since the Nyquist frequency in image processing is 0.5 px~!, when the blur value is rather small
the first lobe of the sinc function appears too wide to be completely shown in the considered

frequency range.
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Figure 12 Fy;¢ for different values of blur
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In Figure 12 is reported the comparison between two sinc-like functions (Fg;¢f) coming from
distinct values of motion blur. For w=0.5 px, the plot is quite flat and does not reach the
minimum point of the main lobe inside the visible frequency range. Moreover, the shape of the
function becomes noisy as frequency increases, worsening the fitting accuracy.

A possible solution to overcome this problem is to select only one portion of the plot on which
performing the fitting to estimate blur parameters. In particular, there is a need to set a
threshold for the amplitude of Fy;¢f, such that the fitting algorithm operates only in the part
from zero frequency to the first frequency at which the amplitude equals the threshold.

For low values of motion blur the main lobe of Fy;f; is flat, meaning that a high threshold (close
to one) is required. Conversely, as blur increases, a lower threshold can be used for the fitting,
because the main lobe becomes steeper.

In agreement with that, an automatic procedure is implemented, able to select for each value
of motion blur the most appropriate threshold, depending on the value assumed by the ratio
between the “slope” of the fitting function and the level of “noise” present in Fy;¢¢. The basic
idea on which it relies is that for small values of blur, where the spline shape is flat and the
noise contribute in the main lobe of the F,;; is relevant, the resulting ratio results very small.
As the blur grows, the slope of the spline increases, and noise reduces, bringing to an overall
raise of the ratio. So, the user has only to introduce a reference value for the ratio (named
ratiolimit), beyond which it is possible to fit F4;s, from the higher to the lower amplitude.

The overall procedure is described in detail as below:

a) Fitthe F,;¢; function with a spline.

b) Calculate the “slope” of the spline as difference between its maximum and minimum
point.

c) Calculate the standard deviation of the difference between Fy;;rand the
corresponding fitting function, which represents an index for the level of “noise”.

d) Calculate the ratio slope/noise.

e) Compare it with the limit reference ratio. If ratio < ratiolimit (small blur), perform
the fitting on the portion of main lobe up to the higher threshold amplitude. If ratio >
ratiolimit (high blur), perform the fitting on the portion of main lobe up to the lower

threshold amplitude.
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Figure 13 Sinc fitting method for different values of blur. (a) w=0.4 px, a=0.2 px. (b) w=6
DX, a=3 px.
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In Figure 13, the function F,;;; coming from “modified” inverse cepstrum and the
corresponding fitting spline are plotted for two different values of imposed motion effect and
shift. The comparison of Figure 13 (a) with (b) reveals that in both cases the imposed shift is
correctly interpolated. Conversely, the graphs show better fitting when it comes to higher
motion blur values w, while in presence of lower motion effect, where the amplitude of the
DFT signal is almost constant (close to 1), fluctuations in the curve due to noise become critical

and misleading for the fitting procedure.
3.2.2 First estimate method

As just explained, since the fitting accuracy reduces dealing with small values of motion blur,
a method able to get a first estimation of motion blur in advance is necessary, in order to
compare it with the results coming from fitting. Therefore, a complementary technique is
proposed, which is simple and works quite well with low values of blur. The procedure is

described in detail as below:

a) Compute analytically the integral of the absolute value of theoretical sinc function
between minus Nyquist frequency and plus Nyquist frequency (e.g. —0.5 px~! to
+0.5 px~! in image processing) as a function of w. In this case, a series of sinc function
having the form sinc (freq = w) are considered, where w ranges from o to 8. Each time
for a specific motion blur value w, the integral command is used to calculate the area
under sinc (freq * w), called “AVG_sinc”. As motion blur w varies, a curve

representing the values of “AVG_sinc” versus w is obtained, like the one in Figure 14.

AVG sinc

Motion blur w [px]

Figure 14 Area under sinc function (AVG sinc) for different values of motion blur
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b)

c)

d)

For small motion blur, the first lobe of sinc function is flat and nearly equal to one into
the Nyquist frequency range. So, the overall area under sinc function approaches the
value 1*[0.5- (-0.5)] =1. When blur increases, as in the case of w=5 px in Figure 12,
both the main lobe and lateral lobes appears in the frequency range. The amplitude of
sinc function varies from 1 to 0, resulting in an underlying area smaller than one. It is
possible to conclude that, as motion blur increases, the area under sinc function
decreases.

Select a blurred image and compute the cepstrum of the rectangular pulse (Fy;¢¢) in
the same way explained at the beginning of section 3.1.

Fit Furr with a spline and calculate the underlying area, (which is indicated by
“AVG_exp”). The considered frequency is always from minus Nyquist to plus Nyquist.
Enter in the diagram obtained at step a) with the value of “AVG_exp” to get the first

estimation of motion blur.

09r 1
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AVG sine
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Motion blur w [px]

Figure 15 Example of First estimation method application

The example of Figure 15 indicates that, if the area AVG_exp is equal to 0.4473, according to

the diagram “AVG_sinc vs motion blur”, the first estimation of motion blur is 2.967 px.
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3.3 Error of estimation for different reference

images

To validate the whole procedure, three different types of synthetic DIC pattern were used. For
each pattern, motion blur is numerically simulated according to the analytical method
described in section 1.4.2. Motion blur levels up to 8 px were generated. Then, both Sinc fitting
and First estimation methods were applied. The aim is to understand either the performances
of the two techniques varying motion blur intensity or the influence of the image type on the
estimation process. Finally, Gaussian noise is added to each blurred image, to simulate a real

digital acquisition and to study the impact of noise in the estimation reliability.
3.3.1 Case 1: Realistic DIC speckle

In case 1, a reference image having a regular speckle pattern (named ‘Fullspeckle’) and

designed for the specific use in DIC applications is adopted (Figure 16).

Figure 16 Reference image for Case 1

To study the influence of noise on the generated images, Gaussian noise is added to each
blurred image in two distinct levels, to understand how the estimation error trend varies. Since
8-bit images are considered, whose full dynamic range is between 0 and 255, noise level1 and
noise level2 are two zero mean Gaussian noises with standard deviation of 2% and 8% of 255,
respectively. It’s important to underline that the addition of noise modifies the variability of

the Fy;¢; function (Figure 17), reducing the previously described ratio slope/noise.
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Figure 17 Influence of noise on sinc function behaviour

Thus, there’s a need to redefine the limit ratio according to which it is possible to pass from

the fitting of Fy;;, with a higher threshold amplitude to the one with a lower amplitude. The
adopted fitting parameters are the same for all the types of pattern and are reported in

Table 1.

Table 1 Fitting parameters for the considered pattern types

Fitting parameters No noise  Noise levell Noise level2
ratiolimit 5 0.45 0.15
Thresh amp max 0.98 0.91 0.85
Thresh amp min 0.3 0.5 0.5

In Figure 18 are reported the results, in terms of estimation error, obtained applying Sinc
fitting and First estimation methods on ‘Fullspeckle’ images, expressed as difference between

the nominal blur value and the estimated one.

Qri inal W=2 px W=4 px W=6 px W=8 px

" q -
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Figure 18 Error of estimation for Case 1
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3.3.2 Case 2: ‘Sample 3b’ from DIC challenge

The purpose of the SEM’s DIC challenge [96] is to supply a set of images for software testing
and verification. The use of a common image data set removes the experimental errors
associated with multiple hardware, providing a framework in which all codes can be tested,
validated and improved for use in experimental mechanics.

These types of DIC pattern are tested to verify the robustness of our technique. In this section,

‘Sample 3b’ from DIC challenge database is used as reference image (Figure 19).

Figure 19 Reference image for Case 2

Also in this situation, the same procedure and analysis implemented for case 1 is carried out,

and results reported in Figure 20.

Original W=2 px W=4 px W=6 px W=8 px
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Figure 20 Error of estimation for Case 2
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3.3.3 Case 3: Sample 7 from DIC challenge

In this section, the reference image ‘Sample 7’ from DIC challenge database is tested (Figure

21)

Figure 21 Reference image for Case 3

Again, the same procedure and analysis implemented for case 1 and case 2 is carried out, and

results reported in Figure 22.
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Figure 22 Error of estimation for Case 3
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3.4 Comparison and analysis

In the following paragraph the estimation error obtained at the previous steps is analysed in
detail, to validate the robustness of the proposed estimation algorithm.

The first general conclusion that emerges from the graphs of sections 3.3.1, 3.3.2, 3.3.3 is that
Sinc fitting is the most reliable method when dealing with high values of motion blur, while
for very small values (w<1 px), the relative error increases, because the motion blur is too small
to get a meaningful result. For this latter situation, First estimation approaches better the
nominal values. From now on, it has been decided to take into account only Sinc fitting
technique, since when w is very small, it can be considered negligible with respect to the further
purposes (impact on DIC uncertainty).

Then, the results between no-noise estimation and with-noise estimation for each image
pattern are compared, to infer the influence of noise on motion blur estimation. Finally, the

analysis moves on the influence of image pattern on motion blur estimation.

3.4.1 Influence of noise on motion blur estimation
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Figure 23 Influence of noise on blur estimation for different image types

As can be seen from Figure 23, the relative error increases proportionally to the amount of
noise for all the considered image types. Adding noise enhances both the uncertainty in motion
blur estimation and, as consequence, the uncertainty of the following image processing
techniques, as blur compensation and DIC analysis. It should be noted that images without
presence of noise represent only an ideal case, given that modern cameras usually operate with
a noise level between 0.5% and 2% of the dynamic range [97]. Since for all image types the
blue curve (no noise) and the red curve (added noise level1) are very similar, it can be inferred
that, although adding moderate levels of Gaussian noise to the image affects the estimation

process, the blurring due to motion remains the predominant source of error.
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It is possible to conclude that Sinc fitting algorithm works well for low-noise acquired images,
even though it shows a strong sensitivity when noise level increases; as represented by the
green curve, the estimation error becomes important where noise standard deviation reaches

8% of 255.
3.4.2 Influence of image type on motion blur estimation

For a better awareness of the characteristic features of the involved patterns, in Figure 24 the

histogram of the pixel distribution for each grayscale value is plotted.
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Figure 24 Histogram of pixel intensity distribution for reference images of Case 1, Case 2,
Case 3

In the first pattern, pixel values are homogeneously distributed over the whole intensity range
(sharp contrast). The same occurs in pattern of Sample 3b, except for a more concentrated
pixel distribution in the darker area. In the third pattern, instead, pixels values are clustered

in a rather small area (low contrast).
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Figure 25 Influence of image type on motion blur estimation

Through the combined use of Figure 24 and Figure 25, it is possible to understand that also
image pattern affects the estimation process. When blur is large (w>2 px), the trend of relative
error is almost the same for all the images, while for small blur values the presence of sharp

contrast helps to increase the reliability of the results.
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Before concluding this chapter, it is interesting to look at a situation in which the error of
estimation coming from Sinc fitting is unreliable. Let us consider ‘Sample 7’ as reference
image, with blur length w=0.8 px and added noise level2. It can be testified from Figure 26
that the notable discrepancy between the nominal and the estimated blur value is due to the
contemporary influence of low blur, presence of noise and low contrast pattern, which are

dangerous parameters for an accurate fitting of the F,;; function.
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Figure 26 Histogram (a) and shape of Fy;¢; function (b) of Case 3, with w=0.8 px and noise
level2
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CHAPTER 4
MOTION BLUR COMPENSATION

In the previous chapter a deconvolution analysis which operates in cepstrum domain has been
performed to estimate the motion blur within a given image. Once motion blur has been
completely identified, the next step provides for its removal. The compensation of motion blur
is pursued by means of two methods: one is based on cesptral analysis and the other on the

use of Wiener filter. Both are presented in this section and validated later on.

4.1 Deconvolution algorithm wusing complex

cepstrum

The starting point of the estimation process developed in chapter 3 was to consider a static
image and the same version corrupted by motion effect to identify the Fourier transform of the
square pulse Fy;¢. Its absolute value and phase contains information about motion blur length
and net displacement, respectively. Once they are known, it is possible to adopt the inverse
procedure, relying on convolution and cepstrum properties, to remove motion blur and return
to the restored image.

From section 3.1, it was claimed that the description of square pulse in space domain is not
accurate, since it deals only with the case of integer motion blur values. To manage sub-pixel
accuracy, there is a need to define the rectangular window in frequency domain.

The blur removal procedure assumes that the blurred image is simulated by convolving static
image with a square pulse. This corresponds, in accordance to convolution theorem, to the
pointwise product of their respective spectra in spatial frequency domain. Due to the
properties of cepstrum, the product becomes a summation. Thus, it is possible to eliminate the

effect of square pulse (motion blur) by a simple subtraction in cepstrum domain and then, by
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computing backwards to space domain through inverse cepstrum, the image without blur is

obtained. The transforms are done considering one row or one column at a time, depending

on the blur direction. Pay attention that in this specific case it is assumed to remove both the

motion blur and the net displacement. Since the original cepstrum code developed in Matlab

(‘cceps.m’) deals only with input in space domain, it has been modified to accept also input

signals in spatial frequency domain. The applied procedure is described in detail as follows:

a)

b)
c)

d)

e)

4.2

Define the square pulse in frequency domain, which is represented by a sinc function
of assigned parameters related to motion blur length and net displacement. Note that,
to remove both the motion blur and net displacement, the expression of the sinc

function is the same of eq.(9), except for the sign of the phase which must be opposite:

G(f) = w sinc(wf) x e?imfa (28)

Compute the cepstrum of sinc function.

Compute the cepstrum of a row (in the case of horizontal motion) or a column (in

the case of vertical motion) of the blurred image.

Subtract the cepstrum of the sinc from the cepstrum of the row (or column) of the
blurred image.

Compute the inverse cepstrum of this subtraction.

Repeat the procedure for all the rows (or columns) of the blurred image. The

corresponding result will be the restored image.

Blur compensation for different reference

images

To validate the effectiveness of the blur compensation method just proposed, several tests are

carried out on the image groups just considered in chapter 3.

First, starting from the static image and using the motion effect simulation method,
the blurred image with the desired nominal motion blur length (w,,,,,) and nominal
net displacement (a,,,,) is generated.

Secondly, the motion blur estimation methods (i.e. First estimation and Sinc fitting)
are applied to extract blur parameters (W, , Aot )-

At this point, a sinc function in frequency domain having nominal blur parameters is

generated and used to compensate the blurred image.
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e The last step is like the previous one, with the only difference that the image is

deblurred using a sinc function defined with the estimated motion blur values.
The following analysis are focused on image types having specific blur values, in particular:

e Since very small values of blur (w<1 px) can be considered negligible for the purposes
of this work and since Sinc fitting is not very reliable there, it has been decided to test
as first the case where w=2 px.

e To check the effectiveness of deblurring technique on images with non-integer blur
value, the result of deblurring when w=4.5 px is reported.

e To check the effectiveness of deblurring technique on images with relatively large and
not-integer blur value, the result of de-blurring when w=7.7 px is reported.

e To understand if some differences occur in deconvolution by changing the image type,
the results of deblurring in case of regular DIC pattern (‘Fullspeckle’) and DIC

challenge’s patterns (‘Sample 3b’, 'Sample 7’) are compared.
4.2.1 Case 1: Regular DIC speckle (‘Fullspeckle’)
From Figure 27 to Figure 29, the compensation results are shown for different blurred images,

when sinc function is defined either with nominal or with estimated values (coming from Sinc

fitting) of motion blur.

MIG=53.6 MIG=48.2 MIG=53.2. ) MIG=53.2
SSSIG=7.1 * 10° 8SSIG=5 * 10° SSSIG= 6.7 * 10° 8SSIG= 6.7 * 10°

Figure 27 Compensation results for Case 1 (w=2 px and a=1 px)
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MIG35.8 MIG=47.2 MIG=47.4
8SSIG=7.1 % 105 8SSIG=1.7 * 105 SSSIG=4.2 = 105 8SSIG= 4.2 x 105

Figure 28 Compensation results for Case 1 (w=4.5 px and a=2.25 px)

Original image Blurred image (w=7.7 px Blur removal (nominal Blur removal (estimated
- — ; ; > - :

o s

2

MIG=53.6 MIG=28 MIG=47.1 MIG=47.1
SSSIG=7.1 * 10° SSSIG=7 * 10* SSSIG= 4 * 10° SSSIG= 4 * 10°

Figure 29 Compensation results for Case 1 (w=7.7 px and a=3.35 px)

4.2.2 Case 2: ‘Sample 3b’ from DIC challenge
From Figure 30 to Figure 32, the compensation results are shown for different blurred images,

when sinc function is defined either with nominal or with estimated values (coming from Sinc

fitting) of motion blur.
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Original image Blurred image (w=2 px Blur removal (nominal Blur removal (estimated

MIG=20.48 MIG=20 MIG=20.35 MIG=20.35
SSSIG= 2 * 10° $SSIG=1.8 * 10° SSSIG= 2 * 105 SSSIG= 2 * 10°

Figure 30 Compensation results for Case 2 (w=2 px and a=1 px)

Original image Blur removal (nominal Blur removal (estimated

Blurred image (w=4.5 px

MIG=20.48 MIG=19.3 MIG=20 MIG=20
SSSIG=2 * 10° $SSIG=1.4 * 105 §SSIG=1.8 * 10° §SSIG=1.9 * 10°

Figure 31 Compensation results for Case 2 (w=4.5 px and a=2.25 px)

Original image Blurred image (w=7.7 px Blur removal (nominal Blur removal (estimated

MIG=20.48 MIG=19.3 MIG=20 MIG=20
SSSIG= 2 * 10° $SSIG=1.4 * 105 §SSIG=1.8 * 10° SSSIG=1.9 * 10°

Figure 32 Compensation results for Case 2 (w=7.7 px and a=3.35 px)
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4.2.3 Case 3: ‘Sample 7’ from DIC challenge

From Figure 33 to Figure 35, the compensation results are shown for different blurred images,
when sinc function is defined either with nominal or with estimated values (coming from Sinc

fitting) of motion blur.

Blurred image (w=2 px B

Original image lur removal (nominal

S ., 2

Blur removal (estimated
L9

MIG=15.2 - MIG=14.4 ‘ MIG=14.8 - MIG=14.8
SSSIG= 6.2 * 10* §SSIG=5.5 * 10* $SSIG= 5.6 * 10* $SSIG=5.6 * 10*

Figure 33 Compensation results for Case 3 (w=2 px and a=1 px)

Blurred image (w=4.5 px Blur removal (nominal Blur removal (estimated

Original image

MIG=15.2 - MIG=12.2 MIG=13.9 ‘ MIG=13.6
§SSIG= 6.2 * 10* $SSIG=3.1 « 10* $SSIG=4.5 « 10* $SSIG=4. 5 * 10*

Figure 34 Compensation results for Case 3 (w=4.5 px and a=2.25 px)
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MIG=15.2 MIG=9.7 MIG=13.3 MIG=13.3
§SSIG=6.2 * 10* 8SSIG=1.5 = 10* $SSIG=3.7 =« 10* $SSI1G=3.7  10*

Figure 35 Compensation results for Case 3 (w=7.7 px and a=3.35 px)

4.3 Comparison and results

From a preliminary observation of figures from Figure 27 to Figure 35, the deblurred images
seem to be very similar to the reference ones and it is always possible to distinguish speckles

or small characters. So, the following considerations can be done:

e Motion blur is successfully removed for all the tested values of blur (w=2, 4.5, 7.7 px).
e Motion blur is successfully removed independently on the considered image type.
e The deblurring algorithm operates well both for nominal and estimated values,

confirming that the estimation error found earlier is negligible.

For a quantitative analysis, the mean intensity gradient (MIG) and the sum of square of subset
intensity gradient (SSSIG), already presented in section 1.4.1, were calculated for each image.
The results clearly highlight that the values of both MIG and SSSIG drop proportionally to the
increase of w, testifying that motion blur caused pattern degradation. After image restoration,
the two indexes approach the values of the reference static images, meaning that an
improvement in the image quality has been done.

However, to validate the blur compensation technique, a further analysis seems to be
necessary. Thus, a good option is to compare the intensity profile of the same row in the
reference image, blurred image and the restored one for the three image patterns. The case
with w=7.7 px and a=3.35 px is selected to understand if the deblurring is able to reconstruct
the image even in the worst conditions, namely when blur was high (Figure 36). Pay attention
that the algorithm operates with images in double format, so the pixel brightness values are

scaled between o0 and 1.
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Figure 36 Row brightness profile before and after deblurring with estimated parameters,

applied on blurred images with w=7.7 px and a=3.35 px

Positive confirmations are achieved from the above figure, since the row profile after the

restoration process becomes very similar to the one of the reference image, meaning that the

change in brightness caused by blurring is almost compensated.
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4.4 Influence of noise

It has been seen from section 3.4.1 that noise plays a negative role in the blur estimation. The
same could occur during blur removal. To study the noise influence in the restoring process,
the three blurred images adopted in the previous section are chosen (with w=7.7 px and a=3.35
px), then Gaussian noise level2 is added. This specific choice is justified by the fact that we
want to put the algorithm into a critical condition, where both high blur and noise are present.
Then, the deblurring with nominal and estimated blur parameters is performed. The results

appear in Figure 37.

-
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%
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1

Remov estimated

Reference image- Blurred image

TN

Figure 37 Compensation results for Case 1, 2, 3 (w=7.7 px and a=3.35 px) in presence of
noise

51



Motion blur compensation

The image deterioration after the deblurring process is quite evident, even though there is a
partial removal of motion blur. For a detailed examination, the same procedure adopted in
section 4.3 is repeated there, reporting in Figure 38 the row profile before and after

deconvolution for each type of pattern.
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Figure 38 Row brightness profile before and after deblurring with estimated parameters,
applied on blurred images with w=7.7 px, a=3.35 px and noise level2

The graph exhibits that, in presence of noise, the row profile after deconvolution is worsened,

meaning that the deblurring is no more able to restore the images effectively.
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Very bad results are achieved in case of ‘Sample 7. This situation can be reconnected to the
same phenomenon that was happened during the estimation process (Figure 23). The
combination of elevated level of noise and low contrast in the image becomes critical either for
estimation through Sinc fitting or for deblurring.

It is possible to conclude that the blur removal algorithm does not reach satisfying

performances if applied on images corrupted by relevant quantity of noise.

4.5 Deconvolution with Wiener filter

Moderate level of noise is always verified during actual image acquisition. Given that
deconvolution in cepstrum domain does not reject the noise contribute, Wiener filter [98] is
also considered as a viable solution to remove motion blur. In fact, both the Wiener causal
filter and its finite impulse response (FIR) counterpart are optimal filters for the signal
deconvolution in presence of additive noise.

To implement the inverse filter according to eq.(18), it is necessary to define in frequency
domain both the convolution model H (u, v) (i.e. the sinc function with blur parameters, named
also Optical Transfer Function (OTF)) and the noise-to-signal ratio NSR (u, v). It represents
the ratio between the power spectral density of the noise N (u, v) and the power spectral density
of the original image S (u, v).

However, to facilitate the operations, it is decided to use as support for Wiener deconvolution
the function which is already implemented in Matlab (‘deconvwnr.m’).

It accepts as input the blurred image, the Point Spread Function (PSF) and the noise-to-signal
ratio, returning as output the deblurred image.

The Point Spread Function (PSF) is the same of the OTF, but defined in space domain. It
describes the degradation process (i.e. blurring) and it is simulated by the code generating a
motion filter to the image, using the blur length and the blur direction specified by the user.
The Noise to Signal Ratio (NSR) is an index able to model the presence of uncorrelated noise
into the image. The code allows to express the ratio either as a frequency distribution having
the same size of the image (N (u, v)/S(u, v)), or as a scalar constant R which approximates the

NSR in every point of frequency coordinates (u, v).
4.5.1 NSR definition

Since a correct definition of the NSR is crucial to achieve good deconvolution results [98], an
algorithm able to estimate NSR with both the two admitted options has been developed, to

understand which one is the most robust. A detailed explanation is reported.
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To reproduce a real acquisition, a static reference image is selected, and the desired Gaussian
noise level is added for a predefined number of times (k), obtaining new different images. The
mean (p) and the standard deviation (o,) between the k noisy images are calculated pixel by

pixel, according to eq.(29), (30).

(29)
I_Q =

k
2.7
=1

_ (30)
Ip = \I#

In this way, it is possible to assembly two matrices containing the mean and the standard

&=

deviation values for each i*" pixel of the image, respectively. The former can be used to find an
estimation of the true signal present into the image, given by its power spectral density S(u, v).
To have a reliable index also for the image noise, the estimated noise variance (var,g;y,) iS

determined starting from the second matrix, as done in eq.(31).

1 ALY (31
Varestim = Wz Z Op i,j2
i=1j=1

Where M and N are the numbers of rows and columns of the image.

Now, a matrix with the same image dimensions is generated, containing Gaussian noise with
zero mean and variance equal to var,g.,. Its power spectral density represents an index for
the image noise in frequency domain N (u, v).

The second option proposes the NSR as a “mean” scalar constant through the overall frequency
distribution. Let us introduce two quantities, defined as the average noise power n, and the

average signal power s,, such that R = n,/s, stands for the NSR estimation.

Ng = ﬁz Z N(u,v) (32)

5y = ﬁ Z Z Swv) (33)

Once modelled the NSR according to the two methods, the Wiener filter engine is applied on

some reference cases and comparisons are made. In Figure 39, it is reported as demonstration
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the deblurring results for a portion of an image having realistic DIC pattern (‘Fullspeckle’),

blur length equal to 4 px and Gaussian noise level2.

(b)

Figure 39 Outcomes from Wiener filter application using two distinct NSR definitions

When NSR is defined as constant scalar value (b), new artefacts appear in the restored image.
These new elements are a natural output of the Wiener filter every time the NSR does not
match exactly the actual noise distribution of the reference image. In this case, by modelling
the noise as constant with frequency, a quite relevant approximation has been introduced. In
fact, it is well known in imaging [99] that there are several kinds of noise and most of them
come with a peculiar spectrum. Therefore, the correct representation for NSR is the frequency
dependent one (a), which guarantees the best trade-off between level of details and presence
of artefacts. From now on, this last definition will be used dealing with Wiener filter

applications.
4.5.2 Applicative example of Wiener filter

Once all the necessary parameters are defined, the filtering operation is implemented on the
same noisy images of section 4.4, to see if some improvements occur with respect to deblurring
with cepstrum. In Figure 40, a final comparison between the restored images coming from the

two deconvolution techniques is reported.
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Figure 40 Comparison of results coming from cepstrum-based deconvolution (c) vs Wiener
deconvolution (d), using estimated blur parameters

It can be claimed that cepstrum-based deconvolution for blur removal is very effective in
absence of noise. At the same time, it becomes very sensitive as the noise level increases,
returning compensated images with significant artefacts. Wiener filter, on the contrary,
generates artefact-free images even in the case of noisy images, provided that the OTF and the

SNR are correctly estimated.

Before concluding this chapter, it seems appropriate to remind that all the methods using
spectral analysis for noise modelling and rejection have a major limitation: they work properly
as long as the noise is a linear and additive stochastic process. Let us consider the case of a
digital acquisition involving vision systems. The CMOS sensors mounted inside the cameras

are afflicted by a phenomenon called “heteroscedastic noise”. The peculiar characteristic of
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such a type of noise is that its variance is directly proportional to the pixel brightness, meaning
that the noise is not linear, but strictly dependent from the signal itself. Accordingly, the
approach described above for the SNR estimation must be considered with added caution

passing to the case of real acquired images.
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CHAPTER 5
BLUR COMPENSATION FOR DIC
UNCERTAINTY REDUCTION

In this chapter the innovative approach to mitigate the effects of motion blur on 2-D digital
image correlation (DIC) measurements is presented. DIC uncertainty is composed by a
correlation bias (namely bias error) and a random error, that generates dispersion in the
measured displacement [36]. In the context of DIC, uncertainty analysis is often carried out
by means of synthetic experiments [100], where image transformations are numerically
imposed. Therefore, DIC analysis on images with numerically imposed motion blur is carried
out. Then, the effect of adding noise to this group of images is investigated. Finally, the blurred
images are compensated using the two deconvolution techniques presented in the previous
chapter, to understand if blur removal can improve DIC performances, especially in terms of

measurement uncertainty reduction.

5.1 DIC analysis on images with motion effect

In the current study Ncorr software [101] is used to perform DIC analysis. The three reference
image groups involved in chapters 3 and 4 are examined, having imposed motion effect and
imposed shift equal to half of the blur length. In [53], it was demonstrated that the uncertainty
of result mainly depends on the motion blur, while the imposed shifting value had a negligible
effect. In order to perform an efficient analysis and maintain the same subset parameters for
all the patterns (Table 2), it has been possible to consider only images having w < 5.5 px,
because the risk of decorrelation for DIC grew significantly when w>5.5 px, returning

inconsistent results.
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Table 2 Parameters for Ncorr DIC analysis

Reference image Size (px)  Subset radius (px) Subset spacing (px)
Realistic DIC specke 291 x 291 35 3
Sample 3b 511 x 511 35 3
Sample 7 487 x 325 35 3

DIC analysis was done on images at increasing levels of motion blur, always using the original

(still) image as reference. DIC process returns the displacement of each subset in which the

image has been divided by the software. The displacement matrices obtained for each image

are used to calculate both the bias error in mean displacement and the standard deviation of

displacement estimated by DIC (Figure 41). Since motion effect has been applied along the

horizontal direction, the reference displacement has been set equal to the imposed shift w/2 in

the horizontal direction.

. x10°3

— Fullspeckle
E " Sample 3b
E M ___ Sample 7

o

fie)

10 . . . . .
0 1 2 3 4 5 5
Imposed motion effect [px]

é 0,04 : : : : :
=

] - 4
e 0.03 Fullspeckle

® Sample 3b

© 0.02 | 1
a Sample ¥
B
S 001 1
(=]
= 9
@ 0 1 2 3 4 5 6

Imposed motion effect w [px]

Figure 41 Bias error and standard deviation of displacement in presence of blur and rigid

motion for the three reference images

As displayed in the above figure, the standard deviation of the displacement field u, is at least

one order of magnitude bigger than the corresponding bias error in mean displacement. This

demonstrates that u, can be considered a solid indicator of measurement uncertainty.
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Moreover, u, is the most meaningful quantity in the description of motion blur phenomena

since it grows as faster as w increases.

5.1.1 Effect of adding Gaussian noise to images with
motion blur

In this section the two levels of Gaussian noise already presented (having standard deviation

equal to 2% and 8% of 255, respectively) are added to the previous images before running the

DIC analysis, to check if somewhat changes in the behaviour of displacement and uncertainty.
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Figure 42 Bias error and standard deviation of displacement in presence of blur and rigid
motion after adding noise leveli
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Figure 43 Bias and standard deviation of displacement in presence of blur and rigid motion
after adding noise level2

Note that in the analysed motion blur range (w < 5.5 px) the bias and the standard deviation
of displacement are quite similar in Figure 41 (no noise) and Figure 42, Figure 43 (added
noise). This justify that, although Gaussian noise affects both the bias and the random error,
the blurring due to motion increases the uncertainty much more than the noise. Once again,
the standard deviation of displacement remains one order of magnitude higher than the
corresponding bias for all the image types. From now on, only the trend of standard deviation

will be displayed as the meaningful quantity of interest for the dissertation.

5.2 DIC uncertainty after blur compensation using
complex cepstrum

As just demonstrated, DIC measurements suffer motion blur. The uncertainty is increased,

and the reconstruction of displacement field is less accurate. In this section the compensation

of such a phenomenon is tested using synthetic experiments. In the next two sections the
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restored images obtained from the techniques presented in chapter 4 (i.e. cepstrum-based and
Wiener filter) are analysed, to see if blur removal can improve the DIC performances.

Since the deblurring using cepstrum is not robust in case of images containing relevant
quantities of uncorrelated noise, the blurred, noiseless image groups are considered to apply
cepstrum deconvolution, using both nominal and estimated blur parameters. DIC analysis is

performed on the restored images, whose results (in terms of standard deviation of

displacement) appear in Figure 44.
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Figure 44 Standard deviation of displacement before and after blur compensation with
cepstrum for the three reference image groups
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By observing the trend of standard deviation for all the reference image types, it is possible to

highlight some interesting features:

o the three curves become steeper as blur increases, testifying that blur is a relevant
source for DIC uncertainty.

e The trend of uncertainty increase is different for distinct types of pattern.

e The maximum uncertainty value (corresponding to the point of the curves with
maximum blur) is affected by the speckle type.

e After blur compensation with nominal (red line) and estimated (green line) blur
parameters, the standard deviation strongly reduces, especially when blur becomes
more intense (w>3 px). Such a behaviour is expected since other sources of random
error exist in DIC processing (i.e. interpolation error, local luminance shift...), so the

share of uncertainty reduction due to motion blur compensation decreases with w.

These considerations demonstrate that the proposed technique can significantly improve the
accuracy of DIC (i.e. reduces the standard deviation of displacements) by means of motion
blur compensation. However, the field of applicability is limited to noiseless images.

From the preceding comments, it has been found that motion blur and image pattern assume
a significant role in the uncertainty behaviour. It would be useful to examine this aspect. Figure
45 illustrates portions of the preceding blurred images with an increasing motion effect, where
pattern degradation becomes quite evident. For a quantitative analysis of pattern quality, the
mean intensity gradient (MIG) and the sum of square of subset intensity gradient (SSSIG) are

recalled.

Original image

MIG=52.2 | MIG=46.8 MIG=41.8 MIG=36.8 MIG=30.8
SSSIG=7.1 10> SSSIG=4.9 » 10° SSSIG=3.4 = 105 SSSIG=2.1 10> SSSIG=1.1* 10°
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Figure 45 Portions of tested images with increasing motion effect (w) with the
corresponding mean intensity gradient (MIG) and the sum of square of subset intensity
gradient (SSSIG)
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By increasing motion blur, MIG and SSSIG values drop independently on pattern type,
showing that the expected uncertainty u, grows. This is confirmed also by the previous DIC
analysis.

Instead, the trend of MIG and SSSIG reduction (passing from the original image to the one
having the maximum motion effect) is different for each pattern (Figure 46). To better
understand the reasons of such a behaviour, it is necessary to make some considerations.

In eq.(14), motion blur has been modelled in frequency domain as a sinc function having zeros
at each 1/w, where w represents the blur length in pixels. Due to convolution theorem, the
product between the spectrum of the original image and the sinc function results in the
spectrum of the blurred image.

Since the frequency content strongly depends by the image type, the pattern owning the
spectrum with the highest frequency components will be filtered in a more significative way
by the sinc, even for low blur values, where zero-crossing occurs later. As demonstration, in
Figure 47 (a) the averaged spectra of the considered reference image types are reported. As
can be seen, the realistic DIC speckle (‘Fullspeckle’) is the pattern with the highest frequency
content. For this specific situation, Figure 47 (b) shows that the effect of sinc filtering becomes
relevant even when blur is small (i.e. w=2 px), modifying the spectrum of the blurred image
and, consequently, the characteristics of the blurred image itself. This justifies why MIG

reduction, which is synonymous of pattern degradation, is more accentuated for the first image

type.
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Figure 47 Averaged spectra of the three reference cases (a) and effect of different blurring
condition on image spectrum (b)

5.3 DIC uncertainty after blur compensation using

Wiener filter

The purpose of this section is to evaluate the improvement of DIC performances after the
deblurring of images corrupted by both motion blur and noise.

As seen in chapter 4, Wiener filter is the preferential restoring technique in presence of
additive noise. Thanks to the knowledge of nominal/estimated blur length, blur direction and
NSR distribution, it is possible to correctly apply the filtering given a certain blurred image.
Wiener filter is adopted on the same classes of blurred images of section 5.1.1, with the addition
of Gaussian noise level1 (having zero mean and standard deviation equal to 2% of the dynamic
range), to simulate a realistic digital acquisition with moderate noise.

The results in terms of standard deviation of displacement in horizontal direction are reported

in Figure 48.
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It should be noted that it is possible to perform the deblurring only on images having motion
blur values greater than 1 px, because convolution processes under the sampling length of a
digital signal are indeed ill-posed. In fact, given a generic sequence x(k) and a generic
convolution window y(k), the convolution product x(k) *y(k)is correctly defined for

convolution windows greater or equal than the unit sample.
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Figure 48 Standard deviation of displacement before and after blur compensation with
Wiener filter for the three reference image groups corrupted with Gaussian noise level1
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Also in this case, by observing the trend of standard deviation coming from DIC, it is possible

to remark some key features:

e As already noted in section 5.1.1, the trend of standard deviation in blurred images is
slightly modified by the presence of noise. The main source of uncertainty remains the
motion blur.

e After blur compensation with nominal (red line) and estimated (green line) blur
parameters, standard deviation reduces, although in a less evident way than in the
case of noiseless cepstrum deconvolution. This is expected, since deconvolution
compensates for the motion blur contribute, but fluctuations due to noise remain.

e ‘Sample 3b’ and ‘Sample 7 are characterized by a better improvement in the trend of
uncertainty after blur compensation with respect to ‘Fullspeckle’. The reason is that
non-optimal speckle patterns suffer badly the exhogenous effects (wheter they are
noise or motion blur). So, the generic uncertainty rejection procedure is more effective

on non-optimal patterns.

Moreover, an unusual situation after blur removal happens in the ‘Fullspeckle’ pattern, where
a sudden increase of standard deviation occurs in the range between 4-4.5 pixel.

To understand the phenomenon, one should consider that regular DIC patterns are realized
starting from a regular grid, with predefined speckles diameter and on-center spacing. The
latter is then randomized with a chosen level of variability. The nominal on-center spacing of

‘Fullspeckle’ pattern is 4.1 pixel, meaning that the harmonic content in the spectrum of the

pattern will exhibit a peak close to the frequency i px = 0.24 px~1 (Figure 49).
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Figure 49 Peak in the image spectrum due to speckle spacing

Let us consider a blurred version of this pattern type, having a blur length which belongs to
the critical range where uncertainty grows, i.e. w=4.1 px.

In frequency domain, the spectrum of an image with blur equal to 4.1 px is modelled as the
product between the spectrum of the original static image and a sinc having the first zero at
417 px~1. Similarly, motion blur compensation in frequency domain by means of Wiener filter
corresponds to the point wise ratio between the spectrum of the blurred image and the sinc.
In the neighbourhood of frequenc i = 0.24 px~1, such ratio becomes huge, due to the fact
that points of blurred image spectrum are divided by points close to the zero of the sinc (Figure
50 (a)). As consequence, Wiener filter is no more able to reconstruct the correct spectrum
profile of the restored image and, passing to space domain, striations and artefacts will appear,
as shown in Figure 50 (b). Since the artefacts are not present in the reference image, the
correlation quality becomes poor. Indeed, this phenomenon boosts the displacement

uncertainty in the range 4-4.5 pixel.
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Figure 50 Deconvolution in frequency domain in case of realistic DIC pattern having blur
equal to 4.1 px (a) and results in frequency and space domain after deblurring with Wiener

filter (b)
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CHAPTER 6
EXPERIMENTAL VALIDATION

Although the performance of the presented techniques (i.e. motion blur estimation and
compensation) are proven to be acceptable in the case of numerically generated images, the
principal issue is how they behave on images acquired in a real dynamic test. Therefore, a
group of dedicated tests have been conducted and described in this chapter. The basic idea is
to simulate a realistic dynamic application in which DIC measurements could be involved. The
subject of the analysis is an aluminium bar, having U-notches in the middle and clamped at
one extremity, submitted to an imposed sinusoidal vibration law through an electrodynamic
shaker. Two distinct types of speckle patterns are attached on the planar surface of the beam
to be tested and the target’s motion is recorded by a high-speed camera. During the image
processing activity, cepstrum-based algorithm is applied on the acquired images to estimate
the motion blur values. Then, Wiener filter is adopted for the blur compensation. Finally, DIC
analysis is performed on both blurred and deblurred images aiming to compare the behaviour

of the DIC displacement uncertainty.

6.1 Experimental setup

It is of primary importance to develop a dedicated test bench able to fulfil the following

requirements:

e Provide a dynamic vibrational motion with varying amplitude and frequencies
e Provide a reference measurement to be compared with the one coming from the vision
system

e Being reliable and repeatable
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To reach the desired goals, an LDS shaker is used to vertically vibrate the target at the desired
frequencies and amplitudes, while the target’s motion is recorded by a high-speed camera,
equipped with a LED lighting system. The object accelerations are simultaneously measured
by accelerometers, mounted on different beam positions. In the same way, the input
acceleration, provided and controlled by shaker, is measured by an accelerometer. The

experimental setup is shown in Figure 51, while its specifications appear in Table 3.

Figure 51 Experimental setup
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Table 3 Setup specifications

Device

Brand and type

Technical data

Shaker

LDS V830

Max Freq = 3 kHz
Max Mass = 12 kg
Velocity sine peak = 2.0 m/s
LMS Test Lab control

Accelerometers

PCB 333B30 (3)

Sensitivity: 100 mV/g (£10%)
Measurement range: £50 g pk
Frequency range:0.5 to 3000 Hz

B&K 4516

Sensitivity: 100 mV/g (+10%)
Measurement range: £500 g pk
Frequency range:1 to 20000 Hz

Signal
acquisition
module

NI 9234

Signal ranges: + 5V
4 channels, BNC connectivity
AC/DC coupling

Sensor: CMOS, 1696 (H) x 1710 (V) pixel
Pixel size: 8 x 8 um with micro lenses
Lens nominal focal length: 18 mm
Image speed: up to 523 fps at full resolution,
more than 200°000 fps at reduced resolution
Shutter: from 2 ys to 1 s with 2 us steps
Recording time: 3 s at full resolution and full speed
Amplification: Digital gain (1, 1.5, 2)

High-speed MotionBLITZ
camera EoSens mini2

6.2 Dynamic characterization of the beam

The moving target used during the experiments is represented by a bar, which is clamped at
one extremity in order to replicate a cantilever beam model. The bar has a square section, two
U-notches in the middle and it is made of aluminium, whose mechanical and physical

properties appear in Table 4.

Figure 52 Notched bar used in the experimental activity
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Table 4 Mechanical and physical properties of Aluminium

Property Value
Density 2,70 kg/dm?
Yield tensile stress (Rp,.) 95 MPa
Ultimate tensile stress (UTS) 110 MPa
Poisson’s ratio (v) 0.34
Young’s modulus (E) 70 GPa
Thermal conductivity () 238W/(m-K)

Thermal expansion coefficient («) 23.5%*10°K~?!

A key issue before starting the tests is to select the appropriate excitation frequency to be
applied on the system. Since exciting the target in resonance conditions (i.e. at a frequency
equal to the natural ones) allows to produce larger displacements which can be recorded from

the camera, the goal is to individuate the main natural frequencies of the cantilever beam.

The experimental evaluation of the dynamic response of the mechanical system requires the
application of a dynamic force to the system itself. Since the main aim here is only to measure
natural frequencies, the precision required for the FRF calculation is much less than when the
measurements are to form the basis for a mathematical model or modal analysis (parameter
identification). So, the adopted strategy is to impose as a shaker input signal a sweep excitation
in the range between 20-3000 Hz, with a sweep rate of 2 octave/min and a closed loop control
on input acceleration. The procedure provides also the use of two reference accelerometers,
one mounted on the shaking table to measure the input acceleration (a,) and the other

mounted on the beam to measure the acceleration of the system (a3), as reported in Figure 53.

Beam
accelerometers
l ay l az lﬂa
ﬂ-u T~
i i~ -
O i--u-o--oo
LI . ,,,"" .
"-o. -' :.o.-:H'-.:-' M .i.
",
Shaker
excitation

Figure 53 Accelerometers arrangement
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The ratio between the spectrum of the beam response over the spectrum of the input
acceleration allows to get the FRF of the mechanical system, which describes its dynamic

behaviour in the frequency range of interest (Figure 54).

Frequency Response Function (FRF)

102
]
[ ] [| X: 7178
® | x 1553 | y:39.86
X:1006 || (| v. [
Y:6.716 | ||| Y1288 I\ |
Y f W \ k | I
w ‘. J\ ;yw. h \] )
w {] “l 1
m-ﬁﬂ 560 1DIDD 1500

Frequency [Hz]

Figure 54 Frequency Response Function (FRF) of the cantilever beam

From the above figure it is possible to clearly distinguish the resonant peaks associated to the
natural frequencies of the first three vibration modes. From the continuum system theory
[102], it is known that the first mode is the one which generates the highest transversal
displacement, dealing with a cantilever beam. For the purposes of this work, there is a need to
obtain significant beam displacements, which imply the possibility for blur generation during
the camera acquisition. Therefore, a sine wave having a frequency close to the first natural one
(100 Hz) is used in the following tests, permitting to concentrate the whole excitation energy

in a single frequency.

6.3 Speckle pattern realization

As explained in chapter 2, in digital image correlation technique the measurement surface
must be characterized by a sufficient amount of information, i.e. variation in its colour

intensity, in order to allow the algorithm to correctly retrieve displacements and deformations.
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This is usually guaranteed by applying on the measurement surface an artificial random
pattern (“speckle pattern”). The variety of specimen materials and sizes results in different
technological approaches for the realization of the pattern itself.

Spray painting [3] is by far the most common technique for speckle pattern realization on
medium size specimens (from few to some tenth of millimetres): a white paint is applied as
background on the specimen and dark speckles are realized by mean of an airbrush. Tuning
the viscosity of the ink, the opening of the nozzle and the spraying distance it is possible to
vary the resulting speckle size, while the density of the speckles is controlled adjusting the
spraying time. However, such a technique cannot allow a real control in the pattern realization,
implying local areas characterized by low speckles density or, at the opposite, by too clustered
blobs (Figure 55 (a)). At the same time, skilled users are required to perform the procedure
and still the repeatability from one specimen to the other and the quality of the result are
difficult to be guaranteed.

Therefore, an alternative technique for DIC pattern realization is adopted there, to provide an
efficient, fast and flexible method for all material types, geometries and surface properties. It
is based on the transfer of melted toner from a printed paper to the measurement surface.

At first, the speckle pattern is numerically designed on a calculator. Then, it is printed with a
common laser printer on a paper used for tattoo making. The pattern is transferred by wetting
and pressing the paper against the surface of the specimen. For a correct transfer of the toner,
the surface must be smooth and clean, while for increasing pattern contrast and avoid
reflections, a thin layer of white paint is sprayed as background on the object surface. Once a
good adherence is achieved, the paper is removed, leaving the ink on the surface and achieving
a result like the one of Figure 55 (b). The high quality of the obtained speckle pattern is clearly

visible in terms of image contrast, pattern details and uniformity.
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Figure 55 Spray painting (a) and toner transfer (b) techniques used to realize DIC patterns

6.4 Speckle pattern design

According to the recent literature, the quality of the speckle pattern deeply influences the final
accuracy and the achievable spatial resolution of measurements made by means of digital
image correlation [42]. An important characteristic of the technique adopted for pattern
realization in the previous section is that the final pattern is numerically generated, meaning
that it can be designed and consequently optimized by the user. Relying on literature
information, the speckle shape has been selected to be circular in order to avoid preferential
direction of local features. Furthermore, preventing sharp edges helps to reduce the high
frequency components of the speckle pattern that may alias the measure. So, an ordinate grid
of blobs with a given diameter d,, and average on-center spacing d,, is numerically generated.
The ordinate grid is then randomized in both horizontal and vertical direction with a chosen
level of variability (R), expressed as percentage of the on-center spacing value. Two types of
synthetic speckle pattern are created (named ‘P1’ and ‘P2’), varying the nominal diameter and
the average distance among speckles (Figure 56). During the experimental activity, they are
transferred on the two opposite beam surfaces (Figure 57), using the method explained in the

previous section. Patterns characteristics are resumed in Table 5.
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Table 5 Pattern properties

Pattern type dp[mm] d,[mm] R[%]
P1 0.9 1.6 42
P2 0.7 14 50

Since the aim of this dissertation is to investigate the effect of motion blur on DIC
measurements, the two pattern types are used only to study the influence of a realistic DIC

image pattern on such a process, without dwelling on aspects connected to pattern

optimization.
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Figure 56 Portions of numerically generated patterns. (a) ‘P1’. (b) ‘P2’

Figure 57 Synthetic patterns transferred on beam surfaces
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6.5 Experimental activity

It is important to highlight that, before starting the dynamic tests, a proper combination of
working distance and focal length must be chosen in order to have the total length of the beam
inside the camera field of view. Moreover, the optical axis of the camera must be perpendicular
with respect to the target surface to avoid geometric distortions. Since the height of the beam
is limited, the vertical resolution size of the camera is reduced from top and down sides as
much as possible, to increase the allowable frame rate and to reduce the amount of stored data.
The latter corresponds to the possibility of increasing the recording time, achieving good
frequency resolution during the following spectral analysis.

Furthermore, the lighting equipment must be regulated and oriented too, in order to guarantee
the correct level of illuminance and avoid reflections (Figure 58 (a)).

Another standard procedure that needs to be carried out before running the test is the camera
calibration, which allows to estimate the px to mm scaling factor, i.e. the ratio between the
camera resolution (pixel) and the measurement region (mm), for the displacement fields. The
procedure consists in the acquisition of a flat regular grid, as the one of Figure 58 (b), placed
on the measurement surface. The physical grid spacing between the centres of each black circle
is known (5 mm) and it is the same in both the horizontal and vertical directions of the image.
It is consequently possible to estimate an average mm to px scaling factor for the

displacements measured during DIC.

(a)
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Figure 58 (a) Camera and lighting placement. (b) Calibration grid positioning

Once all the preliminary procedures have been completed, a group of experimental tests
involving both the usage accelerometers and high-speed camera are conducted, tuning either
the excitation or the acquisition parameters. For the harmonic test, the frequency and
acceleration level are established to produce significant displacements close to the beam tip,
which can be detected and measured by the camera. The selection of camera parameters,
instead, requires a frame rate at least double of the excitation frequency to avoid aliasing
conditions, in accordance with Shannon’s theorem. Exposure time must assume relevant
values to enhance the possibility for blurring conditions, while the digital gain is set equal to
one for all the tests to obtain high-quality images (signal amplification implies also noise
amplification). Then, an index named ‘E2PR’ is introduced, to quantify the ratio between the
exposure time over the period of the target motion. It is a relevant parameter in case of
sinusoidal motion [95].

All the experimental tests reported in Table 6 are repeated for each of the two pattern types.
Before starting the excitation, a set of images of the beam in static conditions is acquired by

the camera to be used as reference in the following DIC analysis.

Table 6 Specifications of the experimental tests

Type of  Frequency Input Framerate Shutter time Gain E2PR
excitation [Hz] acceleration [g] [framels] [us]

Harmonic 100 2.18,3.32,4.43,5.86,7.31,88 1000 998 1 0.0998
Harmonic 100 2.18,3.32,4.43,5.86,7.31,88 500 1998 1 0.1998

The combination of these parameters gives origin to various levels of motion effect intensity.
Furthermore, the selection of a harmonic signal as excitation implies the generation of
different blurring conditions inside the single test itself. After an accurate observation of the

recorded images, the harmonic test having frequency of 100 Hz, input acceleration of 5.86 g
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and camera settings of 500 fps as framerate, 1998 us as shutter time and E2PR equal to 0.1998
is chosen as reference and used for the following analysis, because it offers the possibility to
find within the same test either moderate or important motion blur values on the acquired

images.
6.5.1 Motion blur estimation using complex cepstrum

During the harmonic test execution, each point of the beam displaces with an increasing
amplitude approaching to the free extremity, according to the first mode of the cantilever
beam. As consequence, different blurring conditions appear along the beam length. It is
decided to focus the further analysis on a small region of the images taken by the camera,

which is located below the accelerometer mounted on the beam tip (Figure 59).

Figure 59 Region of analysis for motion blur estimation

Two periods of oscillation of the selected image region are analysed and the same procedure
proposed in chapter 3 for motion blur estimation is applied to the acquired frames. In detail,
the cepstrum of each column (vertical sinusoidal motion) of the blurred image C; and that of
the static image Cr are computed, then the relative difference (Cy;rr = Cp — C) is calculated.
The procedure is repeated for all the columns of the images and the results are averaged. The
application of inverse complex cepstrum back to frequency domain on such a difference gives
as result the Fourier transform of motion blur (Fg;z).

At this point, motion blur parameters are estimated fitting F,; ¢, with a sinc function. In detail,
the blur length w and the shift a are determined by fitting the amplitude and the phase of Fj;/,
respectively. It’s important to underline that, for both pattern types, only the first lobe is used
for the fitting, because the matching between the two curves is better in the low frequency
range and therefore the estimation of motion blur is improved in this way (Figure 60).
Moreover, only one threshold level is chosen, since important blur values (i.e. w>2 px) are
obtained in all the analysed images, meaning that the main lobe is steep, with a zero-crossing

which always occurred inside the Nyquist frequency range (0.5 px™1).
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Figure 60 Example of Fqs; function (a) and the relative fitting procedure (b)
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The trend of estimated motion blur and shift are plotted in Figure 61, for all the images
acquired by the camera during the two periods of oscillation. Since the excitation frequency is

100 Hz and the camera frame rate is 500 fps, during a single period of oscillation five images

are grabbed.
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Figure 61 Estimation of motion blur and the corresponding shift in case of experimental test
for Patterns 'P1' (a) and 'P2' (b)

Focusing the analysis on a single period of oscillation, i.e. frames from 4 to 9 for pattern ‘P1’
and frames from 3 to 8 for pattern ‘P2’, the highest motion effect values correspond to the
moments in which the velocity of the target is the largest (zero-crossing points in sinusoidal
motion). According to eq.(34), the maximum nominal blur length w,,,,, max can be represented
as the length that the target displaces during the exposure time, if it has the maximum speed

in the whole interval:

Wnommax = Vinax X sh= 2annom X sh (34)

Where f and A4,,,, are the nominal frequency (in hertz) and the amplitude (in px) of the

specific test and sh is the shutter time (in seconds).
The nominal amplitude of displacement is calculated starting from a; accelerometer data,

dividing the amplitude of beam acceleration (estimated through spectral analysis) for the
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square of the angular frequency and then converted in pixels through the scaling factor.
Portion of the accelerometer time history in steady state conditions and the relative spectrum

are shown in Figure 62.
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The results in terms of estimated and nominal maximum blur length for the two pattern types
are reported in Table 7. They confirm that the acquired blurred images are characterized by a

blur length which extends for several pixels in the region closer to the beam tip.

Table 7 Maximum nominal and estimated blur length for the two pattern types

Pattern type  A,0m [PX] Whommax [px] West max [px]
P1 4.98 6.26 5.16
P2 5.68 7.14 5.96

It should be emphasized that the formulation used to calculate the nominal maximum motion
effect works under the hypothesis of constant target velocity during the camera exposure time.
Since the ratio between the shutter time and the target motion period is relevant in the real
test (E2PR = 0.2), variations in the target velocity occur inside the exposure interval and
motion blur does not remain constant. For this reason, the nominal value of maximum blur
length calculated with eq.(34) represents an overestimated version with respect to the real
value. Another aspect to be taken into account is that the frames used for blur estimation
West max could not be grabbed by the camera at the exact zero-crossing position of the
sinusoidal motion. If this occurs, the motion effect present into the image only approaches the

maximum quantity.

6.5.2 Motion blur removal using Wiener filter

The compensation of motion blur is pursued in this section using Wiener filter. From chapter
4, it has been possible to understand that such a method is the preferential deconvolution
technique to be used for blur removal during a real image acquisition, where moderate level of
noise is always present. To apply the filtering operation, it is necessary to define the optical
transfer function (OTF) and the spectral distribution of the noise-to-signal ratio (NSR). The
OTF is completely defined by the motion blur value w, estimated with the method described
in the previous section. A correct definition of the SNR, instead, is essential to achieve good
deconvolution results. The NSR is described by a matrix defined in frequency domain, having
the same size of the image and containing the ratio between the power spectral density of the
noise N (u, v) and the power spectral density of the signal S(u, v).

In a first restoration attempt of the blurred images coming from the dynamic test, the same
algorithm presented in section 4.5.1 for NSR estimation has been used, giving back undesired
results (Figure 63 (a)). This situation has occurred because, during the recording of the target
surface in the experimental activity, various noises (e.g. heteroscedastic noise, shot noise,

thermal noise, cut-off noise) and illumination lighting fluctuations are unavoidably presented
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and most of them are characterized by a peculiar spectral distribution, as already
demonstrated at the end of section 4.5.2. On the contrary, synthetic images were numerically
generated, and the only source of noise was the Gaussian one introduced by the user.
Therefore, their power spectral density distribution was much easier to be estimated.

To overcome such an issue, an alternative approach for NSR estimation is presented, aiming
to mitigate the discrepancies in the matching of noise frequency distribution. In this regard,
the set of static images acquired before starting the harmonic test may be useful. The first
image of the series is chosen as reference and its Root Mean Square (RMS) is calculated,

according to eq.(35):

S ST B — pi)? (35)

m-n

RMS =

Where p is the mean value of the image, p; ; is the pixel intensity and m,n are the number of
columns and rows of the image, respectively.

Then, the mean value is subtracted from all the still images to compensate for variations in
lighting conditions. Finally, the reference image is subtracted from each one of the remaining
images, the standard deviation of the matrix difference is computed, and the results are
averaged for the number of involved images.

In this way it is possible to calculate the NSR as the ratio between the averaged standard
deviation of the image series, which represents an index for the noise level, and the RMS of the
reference image, which represents an index for the signal level. For sake of clarity, an example

of Wiener filter output using the new NSR definition is reported in Figure 63 (b).
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Figure 63 Output of Wiener filtering coming from two different definitions of NSR

To validate the effectiveness of the compensation method, the above procedure is repeated for
all the blurred images belonging to the two periods of oscillation of the sinusoidal motion. As

illustrative case, in Figure 64 the images before and after blur removal are reported for the two
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pattern types, focusing the attention on the same period of target motion just considered in

Figure 61.

Blurred images - pattern ‘P1’
Static ] Frame 7

WAl

Figure 64 Compensation results after Wiener filtering for patterns 'P1' and ‘P2’.
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From a preliminary observation of the above figures, the images after blur removal seem to
partially resemble the corresponding static case, meaning that the motion effect has been
compensated in some way. However, the visual quality of the restored images is not so high as

for ones of the synthetic experiments. This could be connected to different causes, including:

e Errors in the blur length estimation: the obtained Fourier transform of motion blur
(Fairr) is very irregular, not permitting a robust fitting operation to evaluate w and, as
consequence, a proper estimation of the Optical Transfer Function.

e Errors in the noise modelling: as just explained, every time the exact noise frequency
distribution is not matched, artefacts are produced as output by the Wiener

restoration engine.

For a quantitative analysis, the mean intensity gradient (MIG) and the sum of square of subset
intensity gradient (SSSIG) are calculated and displayed in Figure 65. The lowest values of MIG
and SSSIG are achieved where the motion blur intensity is the maximum, i.e. in the frames
corresponding to positions closer to the zero crossing of the sinusoidal motion, confirming that
motion effect is a relevant source of pattern degradation. After blur compensation, the two
indexes increase their values for every frame of the period, approaching the ones of the relative

static images. This testifies that an improvement in the image quality is done.
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Figure 65 MIG and SSSIG trend for patterns 'P1' and 'P2' before and after blur removal,
considering one period of oscillation

Since MIG and SSSIG rely on spatial gradients, which measure the change of intensity in the
image pixel according to a specific direction, their values should be the maximum admitted if
calculated on the static image version. In fact, motion effect is responsible of a decrease in the
image contrast, which implies a reduction of the image gradient along blurring direction. In
correspondence of frame 5 of the above figure, contrary to one could expect, both the MIG and
SSSIG exceed the static values after blur compensation. This unexpected behaviour
corresponds to a situation in which the Wiener filter generates artefacts into the restored

image, which modify the original intensity image profile and so the relative MIG, SSSIG

indexes.
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6.5.3 DIC analysis after blur compensation

In chapter 5, it has been clearly demonstrated that the presence of motion effect has a negative
influence on DIC measurements. The standard deviation of displacement (rather than the
mean displacement) is the most meaningful quantity which must be considered when motion
blur phenomena occur, since it grows as fast as w increases. Therefore, blur compensation
could be an appropriate solution to improve the DIC performances in dynamics. A procedure
similar to the one adopted for the synthetic images is developed there, since there is a need to
validate it also in a real experimental context. At first, the same blurred images of section 6.5.1,
corresponding to two periods of target oscillation close to beam tip, are considered and motion
blur is compensated for each of them using Wiener filter. Then, DIC analysis is performed
using Ncorr software on both the blurred and the de-blurred image series. Once again, to

achieve an efficient analysis, the same subset parameters are maintained (Table 8).

Table 8 Ncorr parameters for DIC analysis on experimental images

Pattern type Size (px) Subset radius (px) Subset spacing (px)
P1 61 x 91 10 2
P2 67 x 131 10 2

DIC process returns as output the mean displacement and the corresponding standard
deviation for each image, considering the static image as reference version for the
measurements. In Figure 66 and Figure 67 the results for patterns ‘P1’ and ‘P2’ are reported,
in terms of bias error of vertical mean displacement before and after blur removal (7, —

TUrestoreqa) and of standard deviation of displacement.
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By observing the trend of the previous graphs, some interesting features appear for both

pattern types:

e The graph of standard deviation assumes a sort of periodic behaviour, where the
presence of peaks is associated to the frames acquired when the target was passing to
the neutral position, i.e. the ones with the highest level of motion blur.

e DIC estimation of mean displacement remains almost completely unchanged after
blur compensation. This agrees to what has been found in [95].

e At the same time, DIC uncertainty strongly reduces after blur removal, especially in
the frames where the peak levels appear. In this latter case the amount of reduction is
close to 50%.

e An exception to what just said is represented by the frames 3 and 8 of pattern ‘P1’. In
fact, they are characterized by an increase of uncertainty after blur compensation.
Such a behaviour is directly connected to the presence of some artefacts, produced
during image restoration with Wiener filter, as explained in the previous section.
However, the amount of increase is extremely low, and the level of uncertainty
remains practically equal to the value obtained in static conditions. Therefore, the

phenomenon can be considered negligible for the purposes of this work.

These considerations confirm that motion blur is a relevant source of uncertainty dealing with
dynamic applications. For images acquired in a real experimental context, the technique
proposed to compensate the motion blur can significantly improve the accuracy of DIC
measurements for both pattern types, reducing the standard deviation of displacement

without modifying significantly its mean value.

At this point, it becomes interesting to compare also the displacement measured by DIC to the
one estimated through the cesptrum-based algorithm of section 6.5.1, obtained through the
phase fitting of Fy;¢ function. Figure 68 clearly highlights that the estimated motion (yellow
curve) approaches the ones coming from the DIC process (red and blue curves), proving that

the proposed technique is an accurate method for image shift calculation.
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Remarks and conclusions

The aim of this thesis was to provide a novel approach aiming to compensate motion blur effect
on Digital Image Correlation (DIC) measurements. The review of several researches identified
motion blur as a phenomenon of major importance when vision systems were adopted in
dynamic applications, since the quantification of the measurement uncertainty was strongly
influenced by the blurring due to the relative motion between camera and target during the
shutter time. Therefore, a good displacement estimation depended also on the dynamic
camera parameters, such as the grabbing frequency or the exposure time. For these reasons,
many researchers found a workable solution to prevent blur generation in boosting the lighting
level and selecting very low exposure times, allowing to shoot the moving object in quasi-static
conditions [104]. Unfortunately, it is not possible to respect these conditions in all the
measurement tasks. We should think of the case of a camera mounting on a flying drone [103],
where lighting conditions cannot be easily controlled, or the case of structure monitoring,
where the application of vision systems often requires working with natural light [105]. Where
the exposure time cannot be set arbitrarily, a further step is to compensate the undesired effect
coming from motion blur through image deconvolution.

To remove motion blur, it is of primary importance to evaluate its intensity in a reliable way.
A first original contribution of this work was the development of a technique, based on
convolution and cepstral analysis, to estimate motion blur. In agreement with eq.(27), starting
from the knowledge of both the reference image and its blurred version, the difference between
their respective cepstra permitted to extract a function containing all the information about
motion blur. Thus, considering such a difference and passing to a frequency domain analysis,
the function representing motion blur assumed a “sinc-like” shape. Therefore, a fitting
procedure allowed to extract motion blur parameters (i.e. the blur length ‘W’ and net
displacement ‘a’) in an accurate way. Although it has been proven that sinc fitting accuracy
reduced when blur intensity was less than 1 px, small values of motion blur were considered
negligible for the purposes of this work, since they had an irrelevant impact on DIC
uncertainty.

The estimation algorithm was tested on three types of synthetic DIC patterns. Blurring
conditions up to 8 pixels were numerically generated in the images, using the motion effect
simulation technique illustrated in section 1.4.2. Results showed that the error between the

nominal and the estimated blur values was always lower than 0.1 px, justifying the robustness
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of the estimation procedure. Then, two distinct levels of zero-mean Gaussian noise (having
standard deviation equal to 2% and 8% of the full dynamic range, respectively) were added to
each image. Even though noise contribution influenced the estimation process, motion blur
remained the predominant source of error.

Finally, the influence of image pattern was investigated, detecting that the presence of sharp
contrast helped to increase the reliability of the results, especially for slight blurring
conditions.

Once motion blur was fully identified, the next step provided for its removal. The
compensation of motion blur was pursued by means of two methods: one based on cepstral
analysis and the other on the use of Wiener filter. Both were presented in chapter 4. The whole
procedure was validated on the same types of DIC pattern used in the estimation process,
where motion blur levels up to 8 px were simulated. To resemble realistic operating conditions,
also the two Gaussian noise levels were added to the images.

Considering the cepstral method, motion blur was removed with a subtraction operation in
cepstrum domain. In fact, the input function for cepstrum calculation which described motion
blur was completely known (eq. (28)), since ‘W’ and ‘a’ were calculated by the estimation
algorithm of chapter 3.

Wiener filter was introduced as a viable solution to remove motion blur, too. While the Optical
Transfer Function (OTF) required from the filter implementation was fully defined by the
motion blur value w, the achievement of a correct SNR definition was fundamental for good
deconvolution results in a noisy context. In this work the SNR level was estimated by
processing a sequence of static images of the target.

Results showed that, even if cepstrum-based deconvolution for blur removal was very effective
in absence of noise, as the noise level increased, the compensated images contained significant
artefacts. Wiener filter, on the contrary, generated artefact-free images even in the case of
noisy images, provided that the SNR and the OTF were correctly estimated.

In chapter 5, the blurred images having the numerically imposed motion effect were submitted
to the DIC analysis. From DIC data emerged that the standard deviation of the displacement
field was the most meaningful quantity to be considered in the description of motion blur
phenomena, since it grew as fast as w increased and it was at least one order of magnitude
bigger than the corresponding bias error in mean displacement.

Then, images containing the two levels of additive noise were examined too. DIC outcomes
testified that, although Gaussian noise affected both the bias and the random error, the

blurring due to motion increased the uncertainty much more than the noise.
Once demonstrated that DIC measurements suffered motion blur presence, the compensation

of this phenomenon was tested, using the deblurred images coming from the two

deconvolution algorithms.
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e Since deblurring using cepstrum was not robust on images containing uncorrelated
noise, the noiseless image groups were involved. After the compensation of motion
blur, the standard deviation of displacements was strongly reduced for all the pattern
types, especially when blur became more intense (w > 3 px).

e  Wiener filter, instead, was applied to the same types of blurred images used for the
cepstrum-based deconvolution, with the addiction of Gaussian noise having zero
mean and standard deviation equal to 2% of the dynamic range. After motion blur
compensation, standard deviation was reduced, although in a less evident way than in
the case of noiseless deconvolution. This was expected, since deconvolution
compensated for the motion blur contribute, but fluctuations due to noise remained.
In addition, it was found that the generic uncertainty rejection procedure was more
effective on non-regular patterns, since they were able to better handle the exogenous

effects, either they were noise or motion blur.

The last part of the works was focused on the experimental validation of the previously
presented techniques, i.e. motion blur estimation and compensation. The basic idea was to
simulate a realistic dynamic application in which DIC measurements could be involved. The
subject of the analysis was an aluminium bar, clamped at one extremity and submitted to
imposed sinusoidal vibrations. Two distinct types of speckle patterns were attached on the
planar surface of the beam to be tested, while the target motion was recorded by a high-speed
camera. All the relevant excitation and camera parameters were tuned in order to obtain, in
correspondence of the free extremity of the beam, different blurring conditions during the
harmonic motion.

First, cepstrum-based algorithm was applied on the acquired images to estimate the motion
blur values. Then, Wiener filter was adopted for the blur compensation. Finally, DIC analysis
was performed on both blurred and deblurred images aiming to compare the behaviour of the

DIC displacement uncertainty. The following results were obtained:

e The maximum values of uncertainty were associated to the frames acquired when the
target was passing to the neutral position, i.e. the ones characterized by the maximum
velocity and therefore the highest level of motion blur.

e The estimation of mean displacement remained almost unchanged after blur
compensation, while DIC uncertainty strongly reduced, especially in the frames where
the maximum blur levels appeared. In this latter case the amount of reduction was

close to 50%.

101



These considerations agreed with the outcomes of the simulation activity performed on
synthetic images, confirming that motion blur was a relevant source of uncertainty for DIC to
be taken into account when passing to dynamic conditions. Also for images acquired in a real
experimental context, the techniques proposed either to estimate or to compensate the motion

blur were validated, since they could significantly improve the accuracy of DIC measurements.

As a final remark and proposal of future work, the author’s wish is to extend the procedures of
motion blur estimation and compensation to the entire length of the clamped beam, aiming to
reconstruct its full-field displacement, and then to evaluate the accuracy of DIC measurements
before and after blur removal. Another attractive area for future researches may be a deeper
understanding of the motion blur phenomenon in cepstrum domain, in order to extract the

relevant blur parameters directly in such a domain, without passing from frequency analysis.
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