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Abstract

Collaborative robotics over the last few years has gained increasing interest in the

industrial scenario. Collaborative robots, also called cobots, are equipped with

sensors that allow them to perceive the surrounding environment. In particular,

with regard to the synchronization of operations carried out by human and robot,

a key role is taken by vision sensors. These sensors allow the robot to �gure out

where the human is at a certain time, to understand what task he is doing and

even to predict his future actions.

At the basis of such processes, there is the human pose estimation algorithm.

Estimating pose by an image is a di�cult task for a number of reasons: variability

of human visual appearance in images, variability in lighting conditions, variabil-

ity in human aspect, partial occlusions, complexity of human skeletal structure

and the loss of 3D information that results from observing the pose from 2D

planar image projections, etc.. This problem has been approached using several

techniques, but the one most used to estimate the human pose is for sure the

Kalman �lter. However, this technique presents some weaknesses, in particular,

it is complex to take into account for occlusions in the estimation process.

This work aims to provide a solution to the problem of pose estimation of

the operator in the situations of partial occlusion. The estimation algorithm

proposed here is based on the particle �lter technique which, as we will see,

allows to introduce constraints in the estimation process that take into account

possible occlusions. The algorithm has been implemented to use the depth data
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provided by the Kinect V2. Finally, the results obtained have been compared to

those obtained by applying the Kalman �lter.



Sommario

La robotica collaborativa nel corso degli ultimi anni ha acquisito crescente inter-

esse nello scenario industriale. I robot collaborativi, anche detti cobot, vengono

sempre più dotati di sensori che permettono loro di percepire l'ambiente che li

circonda. In particolare, per quanto riguarda la sincronizzazione delle operazioni

svolte da uomo e robot, un ruolo fondamentale è occupato dai sensori di visione.

Questi sensori consentono al robot di capire dove si trova l'uomo in un certo is-

tante di tempo, di capire quale compito sta svolgendo e addirittura di prevedere

le sue azioni future.

Alla base di queste capacità si trova l'algoritmo per la stima della posa

dell'uomo. Stimare la posa da un'immagine è un problema non facile per nu-

merose ragioni: complessità della struttura del corpo umano, variabilità nel �sico,

condizioni di illuminazione ambientale, possibili occlusioni nella scena, perdita

delle informazioni dovuta all'osservazione della posa da proiezioni di immagini

planari 2D, eccetera. Questo problema è stato a�rontato con diverse tecniche,

tuttavia quella sicuramente più utilizzata per stimare la posa dell'uomo è quella il

�ltro di Kalman. Questa tecnica presenta però alcuni punti deboli, in particolare

risulta complesso tenere in considerazione le occlusioni nel processo di stima.

Questo lavoro vuole fornire una soluzione al problema della stima della posa

in situazioni di occlusione parziale dell'operatore. L'algoritmo di stima qui pro-

posto si basa sulla tecnica del particle �lter che, come vedremo, consente di

introdurre vincoli nel processo di stima che tengono conto delle possibili occlu-
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sioni. L'algoritmo è stato implementato per utilizzare i dati di profondità forniti

dal sensore Kinect V2. In�ne i risultati ottenuti sono stati confrontati con quelli

ottenuti applicando il �ltro di Kalman.



Chapter 1

Introduction

1.1 Application scenario

Industrial robots are the solution that best �ts the �exible automation paradigm.

Their mechanical structure and their programmability make industrial robots ca-

pable of performing a wide variety of tasks. If up to the recent past the paradigm

universally adopted for industrial robotics provided for the strict segregation of

robots in protected environments, nowadays the potentiality of a human-robot

collaboration has been revalued. Referring to the classical example of an assem-

bly process there are some actions which are too complex to be performed by a

robot and others which require high precision and repeatability not suitable for

the human. In these situations, collaborative robotics provides a huge bene�t.

In this context, a crucial role is played by the vision sensors, which give to

the robot the sense of sight. In the last years the market of vision sensors has

been revolutionized by Microsoft X-Box Kinect Sensor, a depth camera that is

used in the gaming industry to capture motions of players using the technology of

an RGB camera and infrared camera to recognize depth. Because of its low-cost

depth mapping sensor, Kinect has been largely implemented in all sorts of appli-

cations like unmanned aerial vehicle, human tracking, 3D model reconstruction,
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robot navigation and medical implementations. Among all these applications, hu-

man tracking is particularly relevant for human-robot interaction. De�ning the

position of the human in space is indeed the starting point for safe interaction

trajectory generation algorithms. Despite many years of research, however, pose

estimation remains a very di�cult and still largely unsolved problem. The most

signi�cant challenges are: variability of human visual appearance in images, vari-

ability in lighting conditions, variability in human physique, partial occlusions

due to self articulation and layering of objects in the scene, complexity of human

skeletal structure, high dimensionality of the pose, and the loss of 3D information

that results from observing the pose from 2D planar image projections [2].

A problem which gains relevance in the human-robot collaboration scenario

is the management of occlusion. Occlusions introduce uncertainty in the process

of pose estimation and this is re�ected in a limitation on the generation of tra-

jectories that the robot has to follow. If occlusions were not taken into account,

unsafe trajectories could be generated. On the other hand, overestimating the

uncertainty could lead to an excessive limitation on the set of possible trajecto-

ries. Ultimately we can say that handling occlusion improves both safety and

productivity.

1.2 Goal

At the state of the art, the most used technique to estimate the pose of the

human body is for sure the Kalman �lter. This technique is particularly simple

and e�cient from the computational point of view, however, it is quite di�cult to

take into account occlusions in its formulation. In literature there exist alternative

techniques in order to estimate the pose, which allow to easily introduce arbitrary

constraints in the estimation process. Among these techniques, there are the

non-parametric �lters such as the histogram �lter and the particle �lter which are

characterized by representing the posterior distribution with samples of the state.
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This sample-based nature makes the non-parametric �lters the most versatile

�ltering techniques.

The goal of this work is to address the problem of human pose estimation in

presence of occlusions. To do so we will make use of one of the aforementioned

technique: the particle �lter. Although this technique has been already used to

tackle the problem of human pose estimation, in this work we present a method

to consider also occlusions in the estimation process. Other works address the

problems introduced by occlusions, however, these works start from some simpli-

fying hypothesis such as occlusions a priori known or human's movements limited

to a �nite set [3]. Here we want to provide a more general and robust approach

removing these assumptions in order to solve di�erent scenarios at once.

1.3 Contributions

The main contribution given in this work is the novel approach to the human pose

estimation robust to the case of occlusions. In particular, when occlusions occur,

the method designed is able to limit the uncertainty relative to the pose in areas

of space consistent with the shape of the occlusions and consistent with the con-

straints imposed by the anatomic distances. The method is based on the particle

�lter technique and uses the depth data provided by a depth sensor (Microsoft

Kinect sensor V2). The proposed method has been applied to the human-robot

collaborative scenario and its bene�ts in terms of safety and productivity have

been proven.

1.4 Structure of the thesis

The thesis is organized as follow:

• Chapter 2: in this chapter, the state of the art regarding the pose esti-

mation is presented. In particular, the concept of pose of the human body
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is introduced and two ways to describe it are presented. Next, the Kalman

�lter technique is formulated to solve the problem of pose estimation. Then

we describe the concept of occlusion in the computer vision framework and

the behaviour of the Kalman �lter when an occlusion occurs will be anal-

ysed. Alternative techniques which are better suited to include occlusions in

their formulation are shown. Among them, the particle �lter is particularly

deepened. The chapter ends with an overview of how the pose estimation

in presence of occlusion has been treated in literature.

• Chapter 3: here the instrumentation used is described. More in depth

we describe the Microsoft Kinect sensor and YuMi, the collaborative robot

used for the �nal demo.

• Chapter 4: this chapter describes the implementation of the algorithm

proposed to estimate the human pose in presence of occlusions. First, we

modeled the occlusion, starting from the depth map, as a constraint to

impose in the particle �lter formulation. Then some technical details re-

garding the implementation of the algorithm are discussed, such as the

imposition of distance constraints or the estimation of process noise and

measurement noise covariance matrices. Finally, in the last section of the

chapter, a summary of the algorithm's operation is provided.

• Chapter 5: in this chapter the results obtained are presented. First, the

performance of the particle �lter is analysed. Then the e�ectiveness of the

algorithm is shown through experimental results using the data provided by

Kinect and �nally, the algorithm is applied to a real collaboration situation

and the results are presented.



Chapter 2

State of the Art

2.1 Introduction

In this chapter, we will introduce the concept of pose of the human body and we

will show the main techniques used to estimate it. More in depth, in Section 2.3

two ways to describe the human pose are presented and then the mainly used

technique for pose estimation is described: the Kalman �lter. Afterwards, the

problem introduced by occlusions in the process of estimation is treated and some

techniques to cope with this problem are proposed. Among these techniques, the

particle �lter is studied in depth. Hence, a simple example of estimation in

presence of occlusion is made. Finally, an overview of the use of particle �lter to

approach the human pose estimation is presented in Section 2.7.

2.2 Preliminaries

The pose of an object identi�es the attributes of position and orientation of an

object in space (Figure 2.1). The position de�nes the location of the object in a

coordinate system while the orientation identi�es the angles formed by the major

axes of the object relative to a reference frame.
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In computer vision, the task of estimating the pose of an object from an image

is called pose estimation. By human pose, we refer to the con�guration of the

human body in space. The human pose can be described in di�erent ways: the

most common representation is obtained by describing the body with a kinematic

model. For our purposes, we will focus only on the human upper body without

loss of generality. The complete kinematic model of the full upper body motion

is reported in the next section.

Figure 2.1: Position and orientation of an object in space

2.3 Kinematic model of the human motion

The human pose can be described using a 12-components vector:

p = (x, y, θ, ρ, αright, αleft)t

where x, y, θ represent the unicycle joint variables while ρ, αright, αleft are the

torso �exion angle and the arms joint variables respectively, see Figure 2.2 . We

make use of the human arm kinematics de�ned in [4].
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Figure 2.2: Model of the human walking kinematic (right) and kinematic model

of human arm and torso �exion angle ρ (left)

The full motion of the upper human body results in a 3-dof base moving on the

ground plane, one lumped 1-dof (�exion/extension) torso, a head (�xed) and two

4-dof arms. A graphical representation of such kinematic model is given in Figure

2.3.

Figure 2.3: Complete human kinematic model: DOFs, frames and bodies

An analogous representation of this kinematic model can be given in terms of

a set of 3D points composing a rough scheme of the human skeleton (Figure 2.4).

Since only the motion of the upper part of the human body is considered, the

points of interest are: thorax (T), neck (N), head (H), left shoulder (LS), right

shoulder (RS), left elbow (LE), right elbow (RE), left wrist (LW), and right wrist

(RW).
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Figure 2.4: Approximated human skeleton

The skeletal representation is particularly useful because there are several algo-

rithms in the literature (for instance [5]) that can be used to extract the skeletal

points from a depth image which can be obtained using a depth sensor. In or-

der to move from the skeletal representation to the corresponding kinematic one,

an inverse kinematic procedure have to be implemented. Conversely, the oppo-

site transformation requires a forward kinematic procedure. Details regarding

forward and inverse kinematics are provided in Appendix A and Appendix B

of[4].

2.4 Pose estimation with Kalman �lter

In this section the most common technique for pose estimation is presented.

The Kalman �lter (KF) is a widely used technique for state estimation. It as-

sumes all the variables involved to follow a Gaussian distribution so that the

posteriori distribution can be described in a modal way by its �rst and second

order moments i.e. its mean µ and its covariance Σ. In case of linear systems,

Gaussianity of variables is kept all the time and KF provides the optimal solution.

Consider a system in the following form:

xk = Akxk−1 +Bkuk + wk (2.1)

yk = Ckxk + vk (2.2)
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where xk, uk, yk are state, input and output respectively, wk ∼ N(0, Qk) and

vk ∼ N(0, Rk) are the process and measurement noise.

The working principle of the KF algorithm is reported in Algorithm 1.

Algorithm 1 Closed loop Kalman �lter

1: procedure Kalman Filter(µk−1,Σk−1, uk, yk)

2: µk = Akµk−1 +Bkuk

3: Σk = AkΣk−1A
t
k +Qk

4: Kk = ΣkC
t
k(CkΣkC

t
k +Rk)

−1

5: µk = µk +Kk(yk − Ckµk)

6: Σk = (I −KkCk)Σk

7: return µk,Σk

8: end procedure

At time k the inputs of the KF are the estimated values of µ and Σ at time k−1,

the input uk and the measurement yk. The output are the mean µk which is

the state estimate (also denote with x̂k) and the covariance matrix Σk. In order

to provide these values the prior µk and Σk are computed based on the input

value uk (lines 2-3). µk (also denote with xk) and Σk represent the predicted

state estimate. The prior belief is subsequently transformed in the desired belief

by incorporating the measurement yk (lines 4 to 6). The variable Kk computed

in line 4 is the so called Kalman gain and represents the degree according to

which the measurement is incorporated in the new estimate. Figure 2.5 shows

the working principle of the KF technique.
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Figure 2.5: Working principle of KF in a positioing application

For the sake of simplicity let's assume that no input uk is available: at each

time instant k the algorithm provides an updated value of the mean µk and of

the covariance Σk based on the previous ones and on the incoming measurement

data yk.

If no measurements are available the KF algorithm runs in open loop (Algo-

rithm 2). This behavior will be analysed in the next section while dealing with

occlusions (Section 2.5).

Algorithm 2 Open loop Kalman �lter

1: procedure Open Loop Kalman Filter(µk−1,Σk−1)

2: µk = Akµk−1

3: Σk = AkΣk−1A
t
k +Qk

4: return µk,Σk

5: end procedure

The pose estimation problem can be reformulated in terms of state estimation.

Recalling that p = (x, y, θ, ρ, αright, αleft)t, consider the problem of estimating the

pose by joint variables. The adopted process model consist in a chain of three

discrete time integrators for each joint variable. In detail:
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sk+1 = Ask + ηk (2.3)

sk =


pk

ṗk

p̈k
...
p k

 A =


I ∆tI ∆t2

2
I ∆t3

6
I

O I ∆tI ∆t2

2
I

O O I ∆tI

O O O I


ηk ∼ N(0, G) where G is a diagonal matrix parametrized as follows: for each

block of the state vector we consider the corresponding �rst truncated element

of the Taylor expansion contained in matrix A:

G =


σ2
p

∆t4

24
I O O O

O σ2
ṗ

∆t3

6
I O O

O O σ2
p̈

∆t2

2
I O

O O O σ2...
p ∆tI


where standard deviations σp, σṗ, σp̈, σ...p are tunable parameters.

Concerning the output equation, since the inverse kinematics from skeletal

points to joint variables can be computed in closed form, we consider as output

vector the measure of all joint positions so that we have:

yk = Csk + ζk (2.4)

C =
(
I12×12 O12×36

)
ζk ∼ N(0, R) represents the output noise and R = σ2

yI is the covariance matrix.

On the system described by the equations (2.4) and (2.5) it is possible to apply

the KF and retrieve the state estimate.
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2.5 Kalman �lter behaviour under occlusions

The aim of this section is to introduce the concept of occlusion and show the

issues that arise using a Gaussian �lter like the KF when occlusions occur.

First we de�ne what an occlusion is. Considering the object tracking frame-

work an occlusion is a situation in which one or multiple objects partially or

completely hide the target object. Let's analyse a simple case of position estima-

tion of an object moving through occlusions in the xy plane. The system can be

described by the following equations:

sk = Aksk−1 + ηk (2.5)

zk = Cksk + ζk (2.6)

where sk represent the state, zk the measurement vector, ηk is the process noise

and ζk is the measurement noise. Let's suppose that we want to estimate the state

sk = (xk, yk, ẋk, ẏk)
t where the �rst two components are the x and y coordinates

of the object center of mass and ẋk and ẏk are the speed in the x and y direction

respectively. The measurement vector zk is formed by the x and y position of the

object measured by a vision sensor. In the following the dynamic matrix and the

observation matrix are reported:

A =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 C =

1 0 0 0

0 1 0 0



ηk ∼ N(0, G) models the process noise; its covariance G can be parametrized as

follows:
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G =


σ2
p

∆t2

2
0 0 0

0 σ2
p

∆t2

2
0 0

0 0 σ2
ṗ∆t 0

0 0 0 σ2
ṗ∆t


ζk ∼ N(0, R) is the measurement noise and its covariance matrix R can be

modeled like R = σ2
yI.

Suppose now that the object is moving in the xy plane and no occlusions

occur. The situation will appear similar to the one in Figure 2.6:

Figure 2.6: Object tracking with KF

On the object three di�erent circles are drawn: the green one is centered in the

x and y coordinates given by the vision sensor, the red one de�nes the �rst two

components of the estimated state vector obtained using the KF and the blue

circle is the uncertainty relative to the position estimate �xed a certain con�dence

level. The ellipse can be computed as etxΣ
−1ex = χ2

α where ex is the state error

vector and α is the con�dence level considered.

Let's now consider the case when the object to be tracked is occluded (see

Figure 2.7).
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Figure 2.7: KF behaviour under occlusion

The occlusion is represented by the black rectangle. As we can see from the

picture when the object is occluded, the green circle disappears because the

vision sensor cannot provide a valid position measurement and the estimation

proceeds in open-loop (see Algorithm 2). The position is computed by only

considering the dynamics of the system and the uncertainty starts growing until

new measurement data are available. Note that, from a certain time instant

on, the ellipse associated with the position uncertainty becomes bigger than the

occlusion itself so that we have non zero probability to �nd the object outside the

occlusion. This situation is clearly paradoxical because if the object was really

outside the occlusion the vision sensor could provide a position measurement.

This inconsistency comes from the way KF represents the estimate: Gaussian

description of the uncertainty is not coherent with the shape of the occlusion.

While the occlusion occurs our aim is to have a probability distribution of the

estimate consistent with the constraints imposed by the occlusion itself. In the

next section, a set of constrained Bayesian estimators will be presented and it

will be shown how they can be adapted to solve the problem of pose estimation

in presence of occlusions.
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2.6 Constrained Bayesian estimators

Before entering the analysis of the techniques considered, we invite the reader to

read the Appendix A related to the Bayes' estimation problem.

2.6.1 Unscented Kalman Filter

The �rst technique examined is the unscented Kalman �lter (UKF). This tech-

nique belongs to a bigger class of �lters called sigma-point Kalman �lters or

linear regression Kalman �lters, which use the statistical linearization technique

[6], [7]. This technique is used to linearize a nonlinear function of a random

variable through a linear regression between a set of points drawn from the prior

distribution of the random variable. The UKF is founded on the intuition that

it is easier to approximate a probability distribution than an arbitrary nonlin-

ear function [8]. The posterior distribution is directly approximated by a set of

deterministic points called sigma points.

Figure 2.8: Unscented Kalman �lter: two steps working principle

Several algorithms have been developed during the years, but in this work the

symmetric sigma points formulation is presented . Refer to Algorithm 3.
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Algorithm 3 Unscented Kalman �lter

1: procedure Unscented Kalman Filter(x̂k−1, Pxk−1
, uk, yk)

2: for i=1 to 2n do

3: if 1≤ i ≤ n then

4: x̃i = [rowi(
√
nPxk−1

)]t

5: else if n+1≤ i ≤ 2n then

6: x̃i = [−rowi(
√
nPxk−1

)]t

7: end if

8: Xk−1 = {x̂k−1 + x̃i}

9: X−k,i = fk(Xk−1,i, uk)

10: end for

11: x̂−k =
∑2n

i=1 W
x
i X

−
k,i

12: P−xk =
∑2n

i=1W
c
i (X−k,i − x̂

−
k )(X−k,i − x̂

−
k )t +Qk

13: for i=1 to 2n do

14: γk,i = h(X−k,i)

15: end for

16: ŷk =
∑2n

i=1W
x
i γk,i

17: Pykyk =
∑2n

i=1W
c
i (γk,i − ŷk)(γk,i − ŷk)t +Rk

18: Pxkyk =
∑2n

i=1W
c
i (X−k,i − x̂

−
k )(γk,i − ŷk)t

19: Kk = PxkykP
−1
ykyk

20: x̂k = x̂−k +Kk(yk − ŷk)

21: Pxk = P−xk −KkPykykK
t
k

22: return x̂k, Pk

23: end procedure

W x
i and W c

i are the state weight and covariance weight respectively. Also UKF
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algorithm follows a prediction/correction structure. The sigma points are pro-

cessed through the nonlinear model of the system, producing a set of propagated

sigma points. By choosing appropriate weights, the Kalman gain is computed

and the prediction estimate is corrected according to the measurement evidence.

The description of the probability distribution through a set of sigma points

introduces the possibility to impose constraints in the process of state estimation.

This strategy is known in literature as clipping technique [9]. The basic idea is

to set up a minimization problem in this form:

min
x̃k

(x̃k − x̂k)tWk(x̃k − x̂k)

subject to Dkx̃k ≤ dk

(2.7)

where x̃k denotes the constrained state. equation (2.7) can be rewritten as a QP

problem like:

min
x̃k

x̃tkWkx̃k − 2x̂tkWkx̃k

subject to Dkx̃k ≤ dk

(2.8)

Note that if Wk = I and Dk = I the solution to the minimization problem is

x̃tk = dk when x̂k violates the constraints. The application of constraints can

be done in di�erent phases of the algorithm and a reformulation in terms of

maximum likelihood can be given:

min
x̃−k

(x̃−k − x̂
−
k )t(P−xk)−1(x̃−k − x̂

−
k ) subject to Dx−k

x̃−k ≤ dx̃−k
(2.9)

min
ỹk

(ỹk − ŷk)tP−1
ykyk

(ỹk − ŷk) subject to Dỹk ỹk ≤ dỹk (2.10)

min
x̃k

(x̃k − x̂k)tP−1
xk

(x̃k − x̂k) subject to Dx̃k x̃k ≤ dx̃k (2.11)

Although this technique can be used for our purposes, in the literature there are

estimation techniques that dominate the UKF in terms of estimation error and

computational e�ort [10].
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A non-parametric �ltering technique will now be presented. The next tech-

nique tries to approximate directly the posterior distribution by a set of �nite

samples. We are talking about the particle �lter.

2.6.2 Particle �lter

Particle �lter (PF) is an estimation technique which does not rely on lineariza-

tion techniques or Gaussianity assumption. It tries to approximate the posterior

distribution by a set of �nite samples called particles. This approximation can

represent a much broader space of distribution than the unimodal Gaussian one

[11].

We denote the set of particles at time instant k by Xk = {x(1)
k , · · · , x(N)

k }

where N is the total number of particles in the set. Each particle x
(i)
k represents

an instantiation of the state at time k i.e. an hypothesis on the true value of

the state. The posteriori distribution can be approximated by a discrete sum as

follows:

p̂(xk|y1:k) =
N∑
i=1

wikδ(xk − xik) (2.12)

where wik is the weight associated to the particle xik and δ(·) is the Dirac delta

function.

The PF algorithm can be subdivided into three phases:

1. Motion update: starting from a set of particles Xk−1 a new set Xk is

obtained where each xik is drawn proportional to a proposal distribution

q(xk|y1:k). A common choice for the proposal distribution is p(xk|uk, xk−1).

2. Measurement update: in this phase, for each particle, the algorithm com-

putes the probability that, given the state of the particle, the output is the

one actually measured. It assigns a weight wik for each particle proportional

to the said probability.
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3. Resampling : a new set of N particles Xk is drawn from the previous belief

with probability proportional to the weight wik. Particles consistent with

sensor readings are more likely to be chosen (possibly more than once)

and particles inconsistent with sensor readings are rarely picked. Denser a

subregion of the state space is populated by samples, more likely it is that

the true state falls into this region.

Concerning the resampling phase, this is particularly important in order to

avoid degeneration problems [12]. The resampling step has the important func-

tion to force particles back to the posterior. In literature, there are di�erent kind

of resampling techniques like the Multinomial Resampling (MR), the Strati�ed

Resampling (SR), the Residual Resampling (RR), etc... [13]. In this work, we

will use the Bootstrap Resampling (BR). The BR algorithm is characterized by

the following steps:

1. the weight associated to each state particle is normalized;

2. computation of an array containing the cumulative sum of the normalized

weights;

3. a random number is drawn from a uniform distribution 0-1;

4. the �rst index relative to the element in the array of cumulative sum which

has a value greater o equal to the random number generated before is con-

sidered (Figure 2.9);

5. the particle corresponding to the index selected is replicated.



24 State of the Art

Figure 2.9: Bootstrap Resampling procedure taken from [1])

Algorithm 4 describes the PF algorithm taken from [11]:

Algorithm 4 Closed loop particle �lter

1: procedure Particle Filter(Xk−1, uk, yk)

2: Xk = Xk = ∅

3: for i=1 to N do

4: sample xik ∼ p(xk|uk, xk−1)

5: wik = p(yk|xik)

6: Xk = Xk + xik, w
i
k

7: end for

8: for i=1 to N do

9: draw xik with probability ∼ wik

10: add xik to Xk

11: end for

12: return Xk

13: end procedure

In the �rst for loop the particles are generated according to the proposal distri-

bution and they are weighted proportionally to p(yk|xik), while in the second loop

the resampling phase is performed.
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Figure 2.10: Phases of the PF algorithm

The open loop behaviour is also reported in Algorithm 5.

Algorithm 5 Open loop particle �lter

1: procedure Open Loop Particle Filter(Xk−1, uk)

2: Xk = Xk = ∅

3: for i=1 to N do

4: sample xik ∼ p(xk|uk, xk−1)

5: wik = 1/N

6: Xk = Xk + xik, w
i
k

7: end for

8: return Xk

9: end procedure

Note that when no measurements are available all the particles have the same
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weight equal to1/N . In fact there is no reason to weight more a particle with

respect to another one.

The sample-based nature of the PF algorithm facilitates the process of in-

cluding constraints in the state estimation problem. An e�ective way to perform

this is to de�ne a likelihood function [9]:

Lc(x
i
k) =

1, if xik ∈ Xk

0, if xik /∈ Xk

(2.13)

where Xk represent a certain state constraint region at time k. The idea is to

assign wik = Lc(x
i
k)p(yk|xik). This modi�cation enables the algorithm to discard

all the particles violating constraints. The advantage of acceptance/rejection

scheme is twofold. First, it guarantees the particles to stay in constraint region

and nearly no extra computation cost is needed. Second, the method retains the

Monte Carlo sampling feature of PF which makes it suitable for non-Gaussian

problems.

Let's analyse the example introduced in the previous Section 2.5 applying now

the constrained PF.

Figure 2.11: On the left particles before the resampling phase; on the right parti-

cles after the resampling phase

Figure 2.11 shows a non-occluded situation. In the picture on the left we can

see the particles coming from the motion update phase and their relative weights

computed in the measurement update phase: particles take a color between blue,
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which corresponds to a weight equal to zero, and red associated to the maximum

weight. Note that each particle has been weighted according to:

wik =
exp(−1

2
(yk − yik)tR−1(yk − yik))√

|2πR|
(2.14)

where in our example yik = CAsik−1. On the right we can see in black the particles

which survive after the resampling phase, in red the position estimate (the "center

of mass" of all particles) and the measurement data in green.

Assuming that the shape and position of the occlusion is known to us at

each time instant k let's analyse what happens to the estimation process in the

occluded scenario (Figure 2.12).

Figure 2.12: Constrained PF behaviour under occlusion

When the object goes under the occlusion we lose the measurement from the

vision sensor and the uncertainty starts to grow but it remains limited inside the

occlusion. Note that all the particles outside the rectangle have a weight equal

to zero because the function Lc(x
i
k) is zero for all that particles while the inside

ones are all equally weighted. When the object goes under occlusion the particles
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start propagating in open loop. After a su�cient time interval the probability to

�nd the object in any position under the occlusion becomes uniform.

2.7 PF for pose estimation in literature

Particle �lter has already been used to approach the problem of pose estimation

and in some case also to treat the occlusion issues. There are several examples

in literature. Here we want to name just a few to o�er a complete overview of

how this problem has been treated.

[14] addresses the full-body articulated human motion tracking from multi-

view video sequences. The tracking is formulated as a multi-dimensional non-

linear optimisation and solved using particle swarm optimisation (PSO), a PF-

derived algorithm which has gained popularity in recent years due to its ability to

solve di�cult non-linear optimisation problems. The joints in the kinematic tree

are optimised in a sequence, starting with the torso and proceeding towards the

arms. This follows the inherent hierarchical structure of the human body, where

the con�guration of the joints at higher levels of the kinematic tree constrains

that of joints appearing at lower levels.

The hierarchical approach to estimate the pose has been used also in [15].

In this work, the authors tackle the hand tracking problem with a model-based

approach. The hand is tracked using the Hierarchical Model Fusion framework

(HMF), �rst proposed by Makris et al. [16], which is a particle �lter (PF) vari-

ant that decomposes the initial problem into smaller and simpler problems and

e�ciently addresses the implications of the high dimensionality (a problem which

has been encountered also in our case study).

In [3] an attempt to cope with occlusion is made. This work presents an im-

proved motion model based on the intuition that people tend to follow e�cient

trajectories through their environments rather than random paths. The proposed

motion model learns common destinations within the environment by clustering
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training examples of trajectories, then uses a path planner to predict how a person

would move along routes from his or her present location to these destinations.

The motion model was integrated into a particle-�lter-based person-tracker, and

it was experimentally demonstrated that the new motion model performs signif-

icantly better than simpler models, especially in situations in which there are

extended periods of occlusion during tracking.

Finally in the work [17] the idea emerges that PF can also use di�erent kinds

of additional information that may be available, with the use of likelihood func-

tions and sampling distributions. Such information may arise from targets having

constraints in their motion. The ability to incorporate such kinematic behavior

into the tracking algorithm can improve tracking performance. Kyriakides intro-

duces the constrained motion proposal (COMP) algorithm that uses multi-target

proposal densities and motion models that incorporate kinematic constraint in-

formation into a particle �lter. More speci�cally, it uses methods of sampling and

likelihood functions that take into account motion constraint information. This

idea will be exploited in the following during the implementation.
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Chapter 3

Instrumentation

3.1 Introduction

In the following, the instrumentation used for the algorithm implementation will

be presented. First, we will describe the Microsoft's Kinect sensor used to retrieve

the skeletal points and the depth data regarding the environment. Then we will

give a brief description of the robot YuMi, used in the �nal demo.

3.2 Microsoft Kinect

A recent development in range sensing technology is Microsoft's Kinect sensor

(Microsoft, 2010). Kinect was primarily designed for natural interaction in a

computer game environment. However, the characteristics of the data captured

by Kinect have attracted the attention of researchers from the �eld of mapping

and 3D modeling [18].

On February 21-2011, Microsoft announced that it would release a non-

commercial Kinect software development kit (SDK) for Microsoft Windows in

spring 2011, and the �rst beta was released for Windows 7 on June 16, 2011.

The SDK includes Windows 7 compatible PC drivers for Kinect device. It pro-
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vides Kinect capabilities to developers to build applications with C++, C#, or

Visual Basic by using Microsoft Visual Studio 2010 and includes the following

features:

• raw sensor streams: access to low-level streams from the depth sensor, color

camera sensor, and four-element microphone array;

• skeletal tracking: the capability to track the skeleton image of one or two

people moving within Kinect's �eld of view for gesture-driven applications;

• advanced audio capabilities: audio processing capabilities include sophis-

ticated acoustic noise suppression and echo cancellation, beam formation

to identify the current sound source, and integration with Windows speech

recognition API;

• sample code and documentation.

The Kinect contains three components that work together to detect human

motion and create the physical image on the screen. These three components

are:

1. RGB color VGA video camera: the camera detects the red, green, and blue

color components as well as body-type and facial features. This helps in

facial recognition and body recognition.

2. Depth sensor: the depth sensor contains a monochrome CMOS sensor and

infrared projector that help create the 3D imagery measuring the dispar-

ity of the resulting image respect to a reference pattern (it will be better

explained in the following).

3. Multi-array microphone: the microphone is an array of four microphones

that can isolate the human voices from other background noises allowing

human to use their voices as an added control feature.
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Figure 3.1: Microsoft Kinect V2

The Kinect used in this work is the Microsoft Kinect Version 2. The technical

details of the depth sensor are reported in Table 3.1.

Table 3.1: Microsoft Kinect V2 datasheet

Color camera resolution 1920× 1080

Depth camera resolution 512× 424

Accuracy (0.5 m to 3 m) 2 mm

Frame rate 30fps

Min. depth distance 50 cm

Max. depth distance 8 m

Depth horizontal FOV 70◦

Depth vertical FOV 60◦

Skeleton joints de�ned 25

Max. people tracked 6

The data have been retrieved from the Microsoft MSDN and the study conducted

in [19].
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3.3 YuMi

Figure 3.2: YuMi ABB

YuMi is a collaborative robot designed by ABB company. O�cially launched in

September 2014, YuMi is conceived to work side-by-side with humans in manufac-

turing environments. The soft padded dual arms and the collision detection fea-

ture ensure the complete safety of the robot's co-workers. Whereas most heavy-

manufacturing robots are aimed at performing precise tasks cyclically, YuMi is de-

signed to replicate a human assembly worker, making it extremely �exible. YuMi

is characterized by a lightweight structure (38 Kg) and high accuracy (0.02 mm).

In the recent years, YuMi has been used in operation of assembly, packaging,

gluing, dispensing and palletizing.

The end e�ectors of YuMi are endowed with grippers and suctions and can

even come equipped with integrated vision systems.

The programming task of the robot is also simpli�ed: users can exploit a

�lead-through� to reduce the weight of the arms and allow for manipulation. The

position of the arms can be changed and the joint con�guration can be saved

to provide an outline of the desired path. The saved trajectory be tested and

changed when necessary.
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Methods for pose estimation in case

of occlusions

4.1 Introduction

In this chapter, we will focus on the implementation. First, we use the depth data

provided by the Kinect sensor to model the occlusions as constraints to impose

in the PF formulation. Then we choose the representation of the human pose

comparing the advantages and disadvantages of operating in the Cartesian space

rather than in the joint space. Next we de�ne the cases of occlusion to consider

and �nally, we report a summary of the algorithm implemented.

4.2 Depth map

The basic principle behind the Kinect depth sensor is the emission of an IR

pattern and the simultaneous image capture by an IR camera. The laser source

emits a single beam which is split into multiple beams by di�raction to create a

constant pattern of speckles projected onto the scene. This pattern is captured by

the IR camera and is compared to a reference pattern [20]. The reference pattern
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is obtained by capturing a plane at a known distance from the sensor and is

stored in the sensor memory. When a speckle is projected on an object whose

distance to the sensor is smaller or larger than the one of the reference plane, the

position of the speckle in the infrared image will be shifted in the direction of the

baseline between the laser projector and the perspective center of the infrared

camera. These shifts are measured for all speckles by a simple image correlation

procedure, which yields to a disparity image. For each pixel, the distance from

the sensor can then be retrieved from the corresponding disparity (this will be

better explained in the following).

Figure 4.1 illustrates the relation between the distance of a point object k

from the sensor relative to a reference plane and the measured disparity d. To

express the 3D coordinates of the point object we consider a depth coordinate

system with:

• origin at the perspective center of the infrared camera;

• Z axis is orthogonal to the image plane and pointing towards the object;

• the X axis perpendicular to the Z axis in the direction of the baseline b

between the infrared camera center and the laser projector;

• Y axis orthogonal to X and Z forming a right handed coordinate system.

Figure 4.1: Schema of the depth disparity relation
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Assume that the reference plane is at Z0. If an object is moving from the

reference plane closer or further away, the corresponding location of the speckle

on the image plane will be displaced in the X direction (on the right or on the

left respectively). The displacement can be measured in the image plane as a

disparity d. From the similarity of triangles we can write:

D

b
=
Z0 − Zk
Z0

(4.1)

d

f
=
D

Zk
(4.2)

where Zk denotes the depth of the point k in object space, b is the base length,

f is the focal length of the infrared camera, D is the displacement of the point k

in object space, and d is the observed disparity in image space. Rearranging the

equations we can obtain:

Zk =
Z0

1 + Z0

fb
d

(4.3)

Equation (4.3) is the basic formula to derive depth from the observed dispar-

ity, provided that the constant parameters Z0, f and b can be determined by

calibration. The X and Y components can be computed in the following way:

Xk = −Zk
f

(xk − x0 + δx) (4.4)

Yk = −Zk
f

(yk − y0 + δy) (4.5)

where xk and yk are the image coordinates of the point, x0 and y0 are the coor-

dinates of the principal point, and δx and δy are corrections for lens distortion,

for which di�erent models with di�erent coe�cients exist [20].

Microsoft Kinect can provide depth values in two di�erent spaces: the camera

space and the depth space. Camera space refers to the 3D coordinate system used

by Kinect. The coordinate system is de�ned as in Figure 4.2 (same as the one

previously described).
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Figure 4.2: Camera space coordinate system

Depth space is the term used to describe a 2D location on the depth image.

It can be described as a matrix of pixel where i is the row and j is the column.

So i = 0, j = 0 corresponds to the top left corner of the image and i = 423,

j = 511 is the bottom right corner of the image. At each pixel is associated a

depth value, in mm, corresponding to the Z coordinate of the point in camera

space. Depth data are expressed by default in the depth space.

Figure 4.3: Depth space representation

4.3 Model of the occlusion

In Chapter 2 we showed an example of tracking an object moving in an en-

vironment where occlusions occur. In that situation, it was assumed that the

geometric description of the occlusion was known. In this way, it was possible

to exclude particles out of the occlusion. However, in our case of study, the only
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information relative to the surrounding environment is provided by the depth

information coming from Kinect.

Before entering into the analysis of the case of study, consider the problem of

tracking a point object in the 3D space. Once again consider a state equation and

output equation like in (4.6), (4.7), where the state is made for instance by the

x, y, z object position coordinates and the corresponding velocity components.

sk = Aksk−1 + ηk (4.6)

yk = Ckxk + ζk (4.7)

Suppose that the available measurements come from an object detection pro-

cedure implemented in the Kinect sensor which provides the x, y and z coordi-

nates of the camera space. Also assume that this procedure provides a con�dence

value with which the measurement is retrieved. If this con�dence value is below

a certain threshold the measurement is considered not valid.

The situation when the measured value is not valid can be essentially due to:

1. high noise on the measurement;

2. occlusions.

The occurrence of the �rst situation can be limited by trying to eliminate the

sources of noise such as di�used ambient light. Occlusions are more di�cult to

avoid, especially if they are inherent in the application considered.

When an occlusion occurs another object hides our target interposing between

the latter and the sensor. Consider a reference frame of the sensor like in Figure

4.2. If an object occludes our target it means that its z coordinate is less than

the one where the target object is located (see Figure 4.4). On the contrary if

the object is not in occlusion its z is less than the background behind it.
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Figure 4.4: Example of occlusion. The object is moving in the space at a �xed y

coordinate

Now our goal is to estimate the state of the system using the particle �lter

technique. How to impose constraints on the particles evolution? To answer this

question consider the following situation:

• at time k the object is visible and a valid measurement is given by the

sensor. The particle �lter provides the estimate of position and velocity of

the object at that time instant: p̂k and v̂k respectively;

• at time k + ∆t the object is occluded and the sensor doesn't provide any

measurement, so the particle �lter runs in open loop (see Algorithm 5).

The situation is pictorially represented in Figure 4.5. Observe that at time k+∆t

the object is under occlusion, the particles are updated according to the state

equation and the relative weight is equal for all particles. Among these particles

the only surviving ones are those with a z coordinate which is greater than the z

of points at the same x and y in the depth map. This leads to a propagation of

the particles consistent with the shape of the occlusion.
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Figure 4.5: Model of the occlusion as a constraint in the PF formulation

In the previous statement, there was an implicit assumption: there exists a

point in the depth map at the same x and y coordinate to those of the particle. In

practice, this assumption doesn't hold. In fact, the probability that this situation

happens is close to zero. Therefore we should compare the z of the point in z

of the particle with the one of the point in the depth map which has the closest

x and y to those of the particle. In order to do this, however, it is necessary to

look at each point in the depth map and check its x and y coordinates. This is

clearly computationally ine�cient especially when the number of points in the

depth map is very high (in our case considering a resolution of 512 × 424 the

number of points is equal to 217088). The solution adopted to solve this problem

is to map the coordinates of the particles in the depth space. Remember that in

the depth space the image captured by the Kinect is described by a matrix M

of pixels in which each element mij is a depth value expressed in millimeters. So

the particle mapped in the depth space has a proper row and column index. In

this way, we can compare the z of the particle with the z of a point in the depth

map at the corresponding row and column of the particle.
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Summarizing:

• if occlusions do not occur position and velocity of the object are estimated

according to the standard formulation of PF Algorithm 4;

• if the object goes under occlusion the PF runs in open loop Algorithm 5.

The particles are projected in the depth space and their z is compared to

the z of the corresponding elements in the depth map. If the particle z is

less than the one of the pixel z at the same position i, j the particle weight

is set to zero.

4.4 Filters on the depth map

Analysing the data provided by the Kinect it is possible to observe that there are

di�erent values of depth equal to zero. Zero is the value used by Kinect to indicate

invalid data or out of range measurements. Invalid data are mainly related to

the lighting condition and imaging geometry. The lighting condition in�uences

the measurement of disparities. In strong light, the laser speckles appear in low

contrast in the infrared image, which can lead to outliers or gap in the resulting

point cloud. The imaging geometry includes the distance to the object and the

orientation of the object surface relative to the sensor. Also the properties of the

object surface impact the measurement of points. Smooth and shiny surfaces that

appear overexposed in the infrared image impede the measurement of disparities,

and imply a gap in the resulting point cloud: see for instance the surface of the

table in Figure 4.6.
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Figure 4.6: Depth map. At each pixel a colour associated representing its depth

value in millimeters: from dark blue which corresponds to zero to yellow repre-

senting the max depth measured

Zero values must be replaced because they lead to an incorrect representation of

the surrounding environment and in particular of the possible occlusions. Stan-

dard �lters such as Gaussian �lters or median �lters are not suitable for our case.

The question now is how to replace these zero pixels in the depth map? To answer

this question we experiment two di�erent approaches.

4.4.1 Stretching �lter

This �lter is intended to replace the zero with the �rst non-zero value on the left

along the row. If this does not exist, the �rst non-zero value on the right is taken.

The name comes from the fact that non-null values are stretched along the row

to replace zero values. The algorithm is reported below (see Algorithm 6).
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Algorithm 6 Stretching �lter

1: procedure StretchingFilter(depthMap)

2: for i = 1 to n_rows do

3: if depthMap(i, 1) = 0 then

4: depthMap(i, 1) = depthMap(find(depthMap(i, :) 6= 0)

5: box = depthMap(i, 1)

6: else

7: box = depthMap(i, 1)

8: end if

9: for j = 1 to n_cols do

10: if depthMap(i, j) = 0 then

11: depthMap(i, j) = box

12: else

13: box = depthMap(i, j)

14: end if

15: end for

16: end for

17: return depthMap

18: end procedure

Consider the example in Figure 4.7 to better understand the stretching �lter

technique.
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Figure 4.7: Stretching �lter example

The results after applying the stretching �lter on the depth map is shown in

Figure 4.8. Note how all the zero values on the table surface and on the image

boundaries have been substituted (the chromatic scale do not start from zero).

Also the contour of the screen has been better reconstructed.

Figure 4.8: Stretching �lter applied on the depth map in Figure 4.6
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4.4.2 Neighbour �lter

Instead of substituting zero values with the nearest non-zero value in the row,

the neighbour �lter substitutes the zeros with the nearest non-zero values in the

depth map. To do so the algorithm searches in squares of increasing size until

a non-zero value is found. The number of pixels to be checked increases linearly

with the level considered, in particular, it grows as 8l where l is the level. For

instance, in the �rst level, we have to check at most 32 − 12 pixels that is to say

(2l + 1)2 − (2(l − 1) + 1)2 pixels. Therefore if the region of zeros is very large

the algorithm is very demanding from the computational point of view. This

situation is common at the boundaries of the depth image. The algorithm of the

neighbour �lter is reported in Algorithm 7.

Once again an example of the working principle of the �lter is reported below

in Figure 4.9.

Figure 4.9: Neighbour �lter example: green line indicates the �rst level, red one

indicates the second level
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Algorithm 7 Neighbou �lter

1: procedure Neighbour Filter(depthMap)

2: for i = 1 to n_rows do

3: for j = 1 to n_cols do

4: flag = 0

5: if depthMap(i, j) = 0 then

6: l = 1

7: while flag = 0 do

8: if ∃e ∈ depthMap at level l: e 6= 0 then

9: dm(i, j) = e

10: flag = 1

11: end if

12: l + +

13: end while

14: end if

15: end for

16: end for

17: return dm

18: end procedure
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The result after applying the neighbour �lter on the depth map can be seen

in Figure 4.10.

Figure 4.10: Neighbour �lter applied on the depth map in Figure 4.6

4.4.3 Comparison

Both �lters share the strategy of �lling the missing information with the near

one available. If the stretching �lter does it by rows, the neighbour �lter search

in all directions. In general neighbour �lter performs better in the sense that the

resulting image is closer to reality. This can be seen for instance looking at the

pro�le of the screen or in how the chair structure is reconstructed (see Figure

4.11).
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Figure 4.11: Comparison between the stretching �lter (top) and neighbour �lter

(bottom)

On the other hand in terms of computational e�ort, the stretching �lter is

more than 50 times faster than the neighbour �lter. The computation time esti-

mate using MATLAB is approximately of 0.05 s for the stretching �lter and 2.5 s

for the neighbour �lter. To reduce the computational time the �lters have been

applied only to the pixels of the depth map of interest, that is, those where the

particles are projected. This expedient dramatically reduces the computational

time needed. Both �lters have been tested and a deep analysis of the results will

be later discussed in Chapter 5.

4.5 Skeletal tracking

Skeletal tracking is a feature implemented in the Kinect which allows to recognize

people and follow their actions. This feature provides the skeletal points also

named human joints. Kinect V2 detects up to 25 di�erent skeletal points as we

can see in Figure 4.12. In our work we consider only the upper body and in

particular we used only the skeletal points relative to the head, spine mid, left

shoulder, right shoulder, left elbow, right elbow and left hand and right hand.
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Figure 4.12: Skeletal points recognized by Kinect

These points are given in the camera space of the Kinect. Determining the

skeletal points is a two stage process:

1. compute the depth map using the structured light;

2. infer body position using machine learning.

This second stage requires the use of a randomized decision forest learned from

over a million of training examples.

With Kinect V2 it is possible to track up to six people. Skeleton tracking is

designed to recognize users facing the sensor. At each skeletal joint returned a

tracking state is associated. The tracking state can take three di�erent values:

0, 1 or 2: 0 stands for joint not tracked, 1 for inferred and 2 for tracked. Value 1

is used by Kinect to denote a partially occluded, clipped or low con�dence joint.

For our purpose we consider values other than 2 as not valid.

4.6 Cartesian vs joint space

In this section, we will enter the application details regarding the human pose

estimation in presence of occlusion.
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As already seen in Chapter 2 to describe the human pose we can use two di�erent

approaches: the �rst one uses a kinematic model to represent human motion while

the second one uses the skeletal points. Now we will see the pros and cons of

pose estimation using these two di�erent approaches.

Consider the pose estimation by joint variables. To de�ne the human pose in

joint space we need 12 dofs p = (x, y, θ, ρ, αright, αleft)t. Since the Kinect provides

the skeletal data in the camera space, to retrieve the measurements we need to

perform a kinematic inversion. This procedure has to be done at each frame.

Moreover, the kinematic inversion has to be changed according to which skeletal

point goes under occlusion. In the joint space, it is very easy to impose constraints

on the evolution of particles in order to satisfy physical limits on joint variables

like those in [4]. Moreover, we do not need to consider the distance between

skeletal points because they can be �xed during the initialization phase.
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−43◦ +
α1

3
≤α2 ≤ 153◦ − α1

6

−90◦ +
7α1

9
− α2

9
+
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810
≤α3 ≤ 160◦ +

4α1

9
− 5α2

9
+

5α1α2
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20◦ ≤α4 ≤ 180◦

−30◦ ≤ρ ≤ 90◦

However, describing an occlusion in the joint space requires the use of the

con�gurational space (C-space) totally impractical if a space made of 12 dimen-

sions is considered. Let's for instance consider the simple case where the right

hand is occluded. Performing the kinematic inversion we can determine all the

joint variables except for αright3 and αright4 . So the particles associated with these

variables start propagating in open loop. Letting the particles propagate within

their joint limits is not su�cient. The admissible joint space is further rede�ned
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by the occlusion itself (Figure 4.13).

Figure 4.13: In blue: joint space where αright3 and αright4 can propagate according

to their physical limits. In red: joint space allowed by the occlusion

Since con�gurational space is an impracticable way to exclude the particles which

violate the occlusion constraints as de�ned in Section 4.3, the particles must be

projected into Cartesian space. This requires a direct kinematic procedure that

has to be applied to each particle. It is clear that the number of computations

grows linearly with the number of particles.

The alternative is to estimate the human pose through skeletal points. To do

so we can track 8 skeletal points which correspond to 24 coordinates, (x, y and z

per each skeletal point). No kinematic inversion is needed to run the PF because

we can operate directly in the Cartesian space. Imposing constraints on the

feasible pose is very hard in the Cartesian space because constraints are naturally

expressed as limits on the joint variables. Another disadvantage is related to the

skeletal distances that have to be imposed as an additional constraint on the

propagation of particles (it will be better explained in the next section). On

the other hand, the constraints coming from the occlusions are very trivial to be

imposed because also the depth map is expressed in the Cartesian space.

To choose which of the two approaches to use, the following aspects must be

considered:
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• the algorithm must operate in real time, that is to say with a frame rate

not below 20 frames per second;

• even in presence of occlusions the estimate must be consistent with the

possible con�guration of the human body.

To meet the �rst requirement it is clear that working in the joint space is a hard

approach. In fact to exclude particles inconsistent with the occlusions a direct

kinematic is needed. Although the computation time required by this task is

rather small, approximately 1.5 ms in MATLAB, considering a huge number of

particles it can become the bottle neck to ensure real-time estimation.

Concerning the second aspect, pose estimation in joint space seems to be the

best approach thanks to the possibility of imposing limitations on the human

pose, di�cult to be obtained in the Cartesian space. However looking at Figure

4.14 we realize how unfeasible poses involve a part of the workspace behind the

human. Now, considering the scenario where the collaborative robot is placed in

front of the human co-worker and the vision sensor on top of that, limiting the

possible pose behind the human has little interest. More important is instead to

keep the uncertainty limited coherently with the skeletal distances.
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Figure 4.14: Reachable workspace of the right human arm

For the above-mentioned reasons, we decided to estimate the pose using the

skeletal points. We tracked each skeletal point independently one from the other.

The reason why we do so, instead of tracking at the same time all the 8 skeletal

points, is that PF su�ers from dimensionality problem. When the state to be

tracked becomes too big the performance of the PF gets worse in terms of esti-

mation error. This is a well-known problem in the literature, in fact, hierarchical

PF approaches have been proposed to face this issue [15]. In this way, we reduced

the problem of pose estimation to a problem of tracking multiple point objects

in the Cartesian space.

Each point to be tracked is described by the following dynamic equation:

sk = Ask−1 + ηk (4.8)

where sk = (xk, yk, zk, ẋk, ẏk, żk)
t. The �rst three components of the state are

the position of the skeletal point in space, while the second three are the velocity

components. ηk has been modeled as a Gaussian noise ∼ N(0, Q). The procedure

to estimate Q will be discussed in Section 4.8. Each skeletal point has been
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estimated using N = 500 particles for a total number of Ntot = 4000 to estimate

the entire pose. The number of particles has been chosen so as to obtain a good

compromise between the estimation error and the computation time.

Regarding the output equation, once again we consider:

yk = Cksk + ζk (4.9)

where C = (I3×3 O) and ζk ∼ N(0, R). We modeled it as R = σ2
yI with a value

of σy = 0.01 m greater than the real one. This has been done to avoid degeneracy

phenomenon [11], [12].

The skeletal points have been tracked in a reference frame di�erent from the

camera frame. We have expressed the estimated pose in the reference frame where

the movements of the robot are de�ned (see Figure 4.15). In order to do this, we

make use of a rotation matrix and a translation vector. The relation between the

two reference frames is given in equation (4.10):

P robot = Rot · P camera + Trn (4.10)

Rot =


0 0.669131 0.743145

1 0 −1.66533 · 10−16

−1.66533 · 10−16 0.743145 −0.669131

 Trn =


−0.3

0

0.755



Figure 4.15: Camera and robot reference systems
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4.7 Implementation of distance constraints

The distances between skeletal points can be imposed as additional constraints on

the particles propagation. Before imposing them two steps are required. The �rst

one consists in estimating the distances between the skeletal points. This can be

done considering an initialization phase. In this phase, the data incoming from the

Kinect relative to the skeletal points can be used to retrieve the skeletal distances

for instance by computing the Euclidean norm between points. The second step

consists in determining a hierarchical structure in the human skeleton. In order

to de�ne such a structure, we limit the possible occlusions to those of the arms

(nevertheless the analysis of all the 28 possible cases can be done). However, this

simplifying hypothesis is reasonable if we consider that in the assembly process

the body parts which have a high probability to be occluded are the arms.

Under the previous assumption, the possible situation of occlusions are the

following:

1. occlusion of the hand;

2. occlusion of the elbow;

3. occlusion of both the hand and the elbow.

We numbered the skeletal points as in Figure 4.16. The derivation of the

hierarchical structure will be made according to this numbering.
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Figure 4.16: Numbering of the skeltal points

For the sake of simplicity the analysis of the possible occlusions will be per-

formed only for the skeletal points associated to the left arm. Similar arguments

can be used for the right arm.

When only the hand is in occlusion we can use the available information of

the elbow to limit the possible position in space of the hand. In fact, the hand

can be in the points of space which lie at a distance dEH from the estimated

position of the elbow, where dEH is the Euclidean distance between the elbow

and the hand computed during the initialization phase (Figure 4.17). Now, since

the probability that particles survive along the surface of a sphere is very low,

the region of propagation has been modi�ed to assume the shape of a spherical

crown. In a similar situation, we de�ne skeletal point number 4 as "father" of

skeletal point 6 and we denote this like 4 � 6.
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Figure 4.17: Occlusion of the hand

When instead only the elbow goes in occlusion, we can say that 2 � 4 but

also 6 � 4. In such a way the particles associated to the elbow can propagate in

the intersection of the two spherical crowns which have a mean radius dSE and

dEH respectively with the obvious meaning of notation (see Figure 4.18).

Figure 4.18: Occlusion of the elbow

Finally, the case where both hand and elbow are in occlusion is tackled. In

this case, the particles associated to the elbow can propagate in a spherical crown

centered in the estimated position of the shoulder with mean radius dSE, while

the ones related to the hand can propagate inside the sphere of radius dSH =

dSE + dEH once again centered in the shoulder. We design such a constraint on

the hand position to take into account position close to the shoulder one. We

describe this situation according our formalism in this way: 2 � 4 and 2 � 6

(refer to Figure 4.19).
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Figure 4.19: Occlusion of the hand and the elbow: in green the area where particles

of the hand can propagate; in red the spherical crown where particles of the elbow

can propagate

4.8 Process and measurement noise estimation

The performance of the PF depends heavily on the covariance matrices R and Q

associated with the measurement and the process noise, respectively. In particu-

lar, the covariance matrix of the process noise is crucial to de�ne the behaviour

of the particles in open loop. In the presence of occlusions, our goal would be to

propagate the particles in a way consistent with the dynamics of human move-

ments. To achieve this goal we have to estimate the process noise. Generally

speaking, the covariance matrix of process noise is harder to be determined than

that of the measurement noise by routine experiments, since the statistical prop-

erty of process noise cannot be obtained directly by collecting a large number of

sensor data due to the intrinsic coupling of process noise and system dynamics.

To estimate process noise we use a recursive covariance estimation (RCE) algo-

rithm. This algorithm has been taken from [21] and reformulated to �t our case

study.

First of all, we estimate the measurement noise covariance matrix. To do

this we collect the position measurements of a stationary skeletal point in space.

Considering a data set made of 300 samples we retrieve the variance in the three

spatial directions. The results are shown in Table 4.1.
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σ2
X (m2) σ2

Y (m2) σ2
Z (m2)

4.26 · 10−5 2.89 · 10−5 2.43 · 10−5

Table 4.1: Variance on the x, y, z direction

Making the assumption that the noise is equal along all directions we average the

variances and we obtain a variance of 3.19× 10−5 m2.

Under the previous assumption, to estimate the process noise covariance, we

can consider the following simpli�ed system:

sk+1 = Ask + ηk

yk = Csk + ζk

where the state is sk = (xk, ẋk)
t and the matrices A, B and C are formed in this

way:

A =

1 ∆t

0 1

 B = I2×2 C =
(

1 0
)

Our goal is to retrieve the terms of matrix Q which in our case is:

Q =

q1 q2

q3 q4


Introducing the backward shift operator z−1, it is possible to rewrite yk as function

of the process and measurement noise:

yk = C(I − Az−1)−1Bηk−1 + ζk (4.11)

Performing the left coprime factorization we can express (4.11) in the form:

yk = C(I − Az−1)−1Bηk−1 + ζk = a−1(z−1)b(z−1)ηk−1 + ζk (4.12)
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where a(z−1) and b(z−1) are polynomial matrices with the following structure:

a(z−1) = a0 + a1z
−1 + · · ·+ anz

−n

b(z−1) = b0 + b1z
−1 + · · ·+ bnz

−n

In our case n = 2 (it represents the dimension of the state) and the polynomial

matrices take this form:

a(z−1) = 1− 2z−1 + z−2 (4.13)

b(z−1) = (1 0) + (−1 ∆t)z−1 + (0 0)z−2 (4.14)

Multiplying both sides of equation (4.12) by a(z−1) we get:

a(z−1)yk = b(z−1)ηk−1 + a(z−1)ζk (4.15)

Let's call ξk = a(z−1)yk, Wk = b(z−1)ηk−1 and Vk = a(z−1)ζk. Under the as-

sumption that process and measurement noise are uncorrelated and E(ξ) = 0,

E(W ) = 0, E(V ) = 0 it holds that Cov(ξ) = Cov(W ) + Cov(V ):

E[ξkξ
t
k−j] =

n∑
i=j

aiRa
t
i−j +

n∑
i=j

biQb
t
i−j ∀j = 0, ..., n (4.16)

Since R is know, we computed it previously (Table 4.1), and the Cov(ξ) can be

computed by the measurements, we can retrieve the covariance matrix of the

process noise Q. Hence we can transform the equation (4.16) into an equivalent

linear system ΩV ec(Q) = θ. Recalling that V ec(·) is the vectorization operator

the solution of this system is:

V ec(Q) = Ω†θ (4.17)

where Ω† denotes the Penrose-Moore pseudoinverse of Ω. The complete derivation

of the matrix Q is reported in Appendix B.

We performed an experiment collecting a set of 1000 data samples of the right

hand motion, acquired using a sampling time of ∆t = 0.04 s and we obtained the

results in Table 4.2 for q1, q2 (q3 = q2) and q4.
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q1 (m2) q2 (m2/s2) q4 (m2/s2)

7.18 · 10−4 −4.10 · 10−10 6.26 · 10−9

Table 4.2: Terms of the process noise covariance matrix Q

Since the values of the o�-diagonal terms are one order of magnitude less than

the smallest term on the diagonal (q4), we neglect them considering a diagonal

Q matrix.
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4.9 General structure of the algorithm

To provide an overview of the algorithm designed, the fundamentals steps are

reported in Algorithm 8.

After an initialization phase where the matrices A, C, Q and R are de�ned the

algorithm enters a state machine. As long as there are no humans in the scene

the algorithm remains in state 1 and the scene is continuously updated.

When a human enters the scene we move to the second state. Here the skeletal

distances are computed and the initial conditions of the PF are imposed.

After the initialization phase, the system enters the state number 3. Here at

each iteration the depth map and the humans in the scene are updated. Then

the skeletal points and their tracking state are acquired. According to which

skeletal point is under occlusion, the hierarchy of the skeletal points is de�ned

as we have previously described in Section 4.7. For each skeletal point, the PF

is run. If the skeletal point is not in occlusion the closed loop formulation of the

PF is executed, otherwise the open loop formulation is performed. In the latter

case, the particles not consistent with the depth map and the skeletal distances

are eliminated.
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Algorithm 8 Pose estimation under occlusion

1: procedure Pose Estimation Under Occlusions

2: PF_ParametersInitialization(A, C, Q, R)

3: ∀ frame, begin state machine:

4: if state = 1 then

5: UpdateHumans()

6: if ∃ human in the scene then

7: state = 2

8: end if

9: else if state = 2 then

10: ComputeSkeletalDistances()

11: AcquireSkeletalPoints()

12: s0 = InitializeStateEstimate()

13: s_P = InitializeStateParticles()

14: state = 3

15: else if state = 3 then

16: UpdateDepthMap()

17: UpdateHumans()

18: AcquireSkeletalpoints()

19: AcquireTrackingState()

20: De�neTheHierarchyAccordingToTheOcclusion(tracking_states)

21: for i =1 to n_skeletal_points do

22: PF(data_skeletal_points, father):

23: if tracking_state = 2 then

24: Closed loop formulation of PF

25: else

26: Exclude the particles not consistent with the depth map

27: Exclude the particles which violate the distance constraints

28: end if

29: endPF

30: end for

31: end if

32: end procedure



Chapter 5

Simulation and experimental results

5.1 Introduction

In this chapter, we present the results achieved in this thesis. First of all in Section

5.2 we show the results obtained using the MATLAB simulation environment.

Here the tracking capabilities of PF algorithm are discussed and a simulation

of the behaviour under occlusion is presented. The chapter continues with the

experimental results obtained by processing the data provided directly by the

Kinect. Finally, a demonstration of the algorithm performance when applied to

a real human-robot collaborative task is shown.

5.2 Simulations

5.2.1 Particle Filter performance

First of all the tracking capabilities of the PF algorithm have been tested. In

this phase, no occlusions have been considered. To do so we simulate a motion

of the human body and we compute the estimation error of the skeletal points

position. The simulated motion has been de�ned in the joint space according to
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the equations below, describing a walking motion.

fps = 25

x(k) = 2k/fps

y(k) = 0

θ(k) = 0

ρ(k) =
π

20
+

π

20
sin(4k/fps)

αright1 (k) =
π

20
sin(k/fps)

αright2 (k) =
π

5
cos(2k/fps)

αright3 (k) = 0

αright4 (k) = −π
6
− π

4
cos(2k/fps)

αleft1 (k) =
π

20
cos(k/fps)

αleft2 (k) = − π

20
cos(2k/fps)

αleft3 (k) = 0

αleft4 (k) = −π
6

+
π

4
cos(2k/fps)

We obtain the measured values of the skeletal points by adding a Gaussian noise to

the true positions. We used a covariance matrix of the noise equal toR = σ2
yI with

σ2
y = 3.19× 10−5 m2 . In the PF algorithm we used instead a σ2

y = 1× 10−4 m2

to avoid degeneracy problems. The estimation error has been computed like the

Euclidean distance between the true skeletal position and the estimated one. The

results are shown below in Figure 5.1.
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Figure 5.1: Estimation errors on the skeletal points position
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Analysing the data we retrieve a maximum estimation error equal to 2.75 cm and

a mean error approximately of 9 mm.

5.2.2 Simulation of an occlusion

Then we tested the algorithm in an occlusion situation where the shape of the

occlusion was a priori known. We simulate an operation where the operator's

right hand goes into occlusion with a box-shaped object.

First, the constraints on the distances were not considered. The set of particles

associated with the right hand after the resampling phase are represented in green

in the �gures below. Figure 5.2 shows the situation before (a) and during the

occlusion (b), (c) .

(a) (b) (c)

Figure 5.2: Propagation of particles in an occlusion situation. In green, we can

see the particles associated with the right hand, in red the true pose while in blue

the estimated one

The same situation has been tested considering also the distance constraint

imposed on the propagation of particles. We can see from Figure 5.3 that the

particles propagate only in the intersection of the spherical crown and the region

of occlusion. The same situation will be presented next while considering a real

experiment.
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Figure 5.3: Distance constraint on the right hand particles

The other possible situation of occlusion considered are reported in the next

section.

5.3 Experimental results

Now we present the experimental results obtained using the data from the Kinect

sensor. This subsection is structured as follows:

• in the �rst part we compare the results obtained when an occlusion of the

hand occurs applying �rst the stretching �lter and then the neighbour �lter

(no distance constraints have been taken in account in this phase);

• in the second part we present the cases of occlusion studied relative to the

occlusions of shoulder, elbow, and hand;

• �nally, the situations of miss and false detections are shown.

Comparison between stretching �lter and neighbour �lter

Figure 5.4 and Figure 5.5 report a situation where the hand goes in occlusion with

a panel. We can see in blue the skeletal points measured by the sensor, in red the
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estimated one and in green, the particles associated to the hand are represented.

In Figure 5.4 we have the results when the stretching �lter algorithm is applied to

the depth map while in Figure 5.5 the results when instead the neighbour �lter is

applied. As we can see from the �gures below the neighbour �lter performs better

in terms of image reconstruction. Note how the panel pro�le is distorted when the

stretching �lter is applied. Due to this distortion, some particles survive also out

of the occlusion. Those particles have been highlighted by a red ellipse in Figure

5.4 (b). In order to get the whole images, the �lters have been applied to the

entire depth map. However, remember that the �ltering operation of the image

is only performed on the points of the map in which the particles are projected

to.

Since the neighbour �lter performs better, from now on all the results that

we will present have been obtained using this �lter.

(a) (b)

Figure 5.4: Example of hand occlusion when the stretching �lter is applied on the

depth map
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(a) Frontal view (b) Top view

Figure 5.5: Example of hand occlusion when the neighbour �lter is applied on the

depth map

Cases of occlusion studied

Below are the results regarding the cases of occlusion considered.

First, let's analyse the case when the hand goes into occlusion. Refer to Figure

5.6. Once again in blue, we have the skeletal points measured by the Kinect and

in red the estimated ones (from now on we consider this convention of colours).

We can see how the measured value of the hand position has been placed at

the border of the occlusion and it is completely inconsistent with the forearm

con�guration. Note how the particles propagate only in the spherical crown

centered in the estimated position of the elbow. Moreover, as we can see from

Figure 5.6 (b) the particles remain behind the occlusion.
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(a) Front view (b) Top view

Figure 5.6: Occlusion of the hand

The case when only the elbow is in occlusion is reported below in Figure 5.7.

Given the available information on the hand and shoulder position, we can see

how the particles associated with the elbow remain limited in a restricted volume

in space. In both �gures, the estimated pose is closer to the real pose than the

measured one. Once again we can observe the tendency of the Kinect to place

the measured value at the border of the occlusion.

(a) (b)

Figure 5.7: Occlusion of the elbow
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Finally, the results when both the hand and the elbow are in occlusion are

shown (Figure 5.8). Note how the particles propagate according to the way

described in Section 4.7: those of the wrist remain inside the spherical crown

centered in the estimated position of the elbow while those associated to the

hand remain inside the sphere of radius δSH centered in the shoulder.

(a) (b)

Figure 5.8: Occlusion of both the hand and the elbow

Particular cases

Now we want to show some particular situations. More in depth we will show:

• false detection;

• miss detection.

A pair of examples belonging to the �rst category is represented in Figure

5.9. In Figure 5.9 (a) the operator has both the hand and the elbow occluded by

a panel, while Kinect interprets as occluded only the hand. Another example of

false detection is shown in Figure 5.9 (b): the Kinect provides a valid measure of

the right hand (tracking state = 2) but, as we can see, it is totally inconsistent

with the true hand position. These situations are particularly di�cult to be
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handled since they are related to the identi�cation process of the skeletal points

used by the sensor.

(a) (b)

Figure 5.9: Situation of false detection

As far as the missed detection is concerned, we can see some examples in

Figure 5.10. In these situations the Kinect loses some skeletal points despite

they are visible. Miss detection is not so crucial as the false detection, in fact

imiss detection is treated as it were an occlusion situation.

(a) (b)

Figure 5.10: Situations of miss detection
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5.4 Test with YuMi

The pose estimation is the starting point for the computation of the so-called

swept volumes i.e. the entire volume that the human can reach given a speci�c

kinematic con�guration and a chosen time horizon. Knowing the volume occupied

at each time instant and predicting the human's intentions are two fundamental

elements of the safe trajectory generation process.

Consider now a scenario in which human and robot cooperate in an assembly

process. It is evident that limiting the uncertainty relative to the human pose

improves productivity since the robot will follow trajectory closer to the optimal

ones. To prove this we performed an experiment in which we compared the

estimation technique based on the KF and our proposed technique. How the

experiment has been structured is explained in the following.

Figure 5.11: Electronic board

First, we de�ned an assembly operation. This operation consists in assembling

some electronic components over a printed circuit board (Figure 5.11). Consider

the workstation in Figure 5.12: the workstation is represented from the point of

view of the human co-worker. In the picture, we can see the robot YuMi (Y)

and the Kinect sensor (K) on top of that. In addition, there are two slides: one

which feeds the robot (1) and a second one that receives the boards worked by

the robot (2). There are also three boxes: in the red one, there are the pieces

that have to be assembled (4), in the gray one the worked boards (6) are collected

while in the green box there are the worked boards ready for the next assembly
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phase. In the process of assembling occlusions occur. The �rst one is generated

in correspondence with the object in (5) while the second one by the panel in (7).

Figure 5.12: Workstation

The operations performed by the robot and the human are the following ones:

Robot operations:

1. the left arm picks a board from the slider (1);

2. it carries the board in the position (2);

3. when the left arm leaves the board the right arm goes in (2) and assembles

a component on the board;

4. the left arm goes back in (2) and picks up the board ;

5. �nally the board is brought to the slide (3).

Human operations:

1. picks a board from the box (4);

2. takes a fuse from (5) and assembles it on the board;
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3. places the board on the slide (1);

4. takes the worked board from the gray box (6) and leaves it in the green one

(8).

To prove how uncertainty about the pose in�uences the productivity we con-

sider the following experiment. For both the estimation techniques a swept vol-

ume on the estimated pose and its uncertainty was built. In particular, we con-

sider a con�dence level of 90%. We de�ned a virtual plane in front of the robot.

If the swept volume associated with an occluded skeletal point goes beyond the

virtual plane, the speed of the robot is reduced to the 5% of its nominal speed.

Some remarks:

• the KF was built to estimate the position of the skeletal points not the

value of joint variables. This is a simplifying assumption since in real ap-

plication KF estimates the joint variables. However, this assumption does

not preclude the validity of the conducted experiment since an uncertainty

on the joint variables is re�ected in an uncertainty on the skeletal position;

• to determine the swept volume including the uncertainty we considered

for KF the ellipses associated to each skeletal point built according to

etxΣ
−1ex = χ2

α where ex is the state error vector and α is the con�dence

level considered; for the PF we reduce the speed of the robot when the 10%

of the particles associated at any skeletal point crosses the virtual plane.;

• when the swept volume at the current time instant crosses the virtual plane

the limitation a�ects only the speed not the path of the trajectories followed

by the robot.

We record the time taken by the robot to perform a cycle. One cycle is de�ned

as the sequence of operations from a pickup board from slide (1) action to the

next one. We collect the time data relative to 30 robot cycles per each technique

considered. The results are shown in Figure 5.13.
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Figure 5.13: Histogram relative to the robot cycle time

Table 5.1 reports the mean cycle time (MCT).

MCT no �lter (s) MCT KF (s) MCT PF (s)

11.18 12.74 11.27

Table 5.1: Mean cycle time

The MCT when no �lters are applied i.e. when the robot always proceeds at

nominal speed, is very close to the MCT obtained when the PF is applied. We

can observe a decrease in the MCT of approximately 13% when our developed

technique is applied. This reduction in the cycle time clearly depends on how

long the operator is in occlusion.

Pictures regarding the experiment with the KF are reported in Figure 5.14

(a) and (b): we can see in blue the measured pose and in red the estimated one.

At each skeletal point, an ellipse is associated representing the con�dence region.

We can see how the ellipses diverge when occlusions occur. In Figure 5.14 (c)

and (d) we have the depth data and the skeletal joints extracted by the Kinect.
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(a) (b)

(c) (d)

Figure 5.14: Frames from the experiment performed by using the KF

From the experiment performed using the PF based technique we can see

in both Figure 5.15 (a) and (b) how the uncertainty related to the position is

con�ned in space. Moreover particles (in green) remain behind the occlusions.
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(a) (b)

(c) (d)

Figure 5.15: Frames from the experiment performed by using the PF base tech-

nique

The video showing the comparison between KF and our developed technique is

available at https://www.youtube.com/user/MERLINpolimi.

Summarizing: from the experimental results obtained is evident how the esti-

mation technique developed is able to limit the uncertainty relative to the pose in

a way consistent with the shape of the occlusions and the skeletal distances. How-

ever, the performance in terms of estimation error highly depends on the skeletal

https://www.youtube.com/user/MERLINpolimi
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recognition algorithm implemented in the Kinect. The bene�ts that our devel-

oped technique could bring in terms of productivity have been proven through

the demo with YuMi. The bene�ts have been quanti�ed in an increase of the 13%

in productivity, but this improvement depends on the application considered.
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Chapter 6

Conclusions

In this work, we presented a technique to estimate the human pose in presence of

occlusions. In particular, our aim was to overcome the limits of the currently used

estimation technique: the Kalman �lter. Our starting point was the analysis of

the KF and in particular its behaviour when occlusions occur. From this analysis,

the complexity to impose constraints on the state estimate and the impossibility

to approximate distribution di�erent from the Gaussian one emerged.

For these reasons, we continued with a research of alternative estimation tech-

niques which best suit our problem (Section 2.6). Among these, we chose the

particle �lter. This technique is characterized by approximating the state esti-

mate by a set of samples called particles. The sample-based nature of the PF has

allowed to introduce, in a very e�ective way, constraints on the state estimate.

These constraints have been exploited to model the surrounding environment (in-

cluding the occlusions) and to better use the available information on the human

pose.

In Chapter 4 we entered the implementation of our technique. More in depth

we explained how the depth data from Kinect has been used to model occlusions

and in which way we structured our algorithm.

Finally we presented the result achieved. First, we presented the simulation
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results obtained in MATLAB. Then we implemented the algorithm to work with

Kinect and a series of images from the real application has been shown. We

concluded this work performing a demo of a human-robot collaboration to prove

how limiting pose uncertainty increases productivity (Section 5.4).

However, we identi�ed some limits in our technique which mainly depend on

the data retrieved by Kinect. In particular, the skeletal positions retrieved by the

sensor are subjected to the phenomenon of miss detection and false detection.

Despite the �rst one is easily manageable, the second one is more di�cult to

be tackled. In fact, false detections directly depend on the process of skeletal

recognition performed by the Kinect. This process is particularly complex since it

is based on training an algorithm to detect the human body in di�erent scenarios

and involves techniques of arti�cial intelligence. This sort of process has been

kept out our �eld of work for reasons of time and complexity.

6.1 Future developments

Pose estimation is one of the numerous aspects necessary to the human-robot

interaction. As already said, knowing the position of the human is at the basis of

the computation of the swept volumes and thus the generation of safe interaction

trajectories. The results achieved by this work can be integrated into the process

of the swept volumes computation. If up to now these were computed starting

from the estimated value of position and velocity expressed in the joint space,

now they must be computed starting from the information in the Cartesian space.

An attempt to do so has already been done in the last stages of this work approx-

imating the swept volumes with the volume occupied by the particles propagated

in open loop (see Figure 6.1). However, this topic must be de�nitely deepened.
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(a) (b)

Figure 6.1: Swept volumes evolution in 5 ·∆t

In addition, position uncertainty can be further limited if the information

concerning human's intentions and the nature of collaborative action are taken

into account in the estimation process. Finally, this work can be easily adapted

to work in a sensor redundancy framework.
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Appendix A

Bayes estimation

Consider the following discrete time system:

xk = fk(xk−1, uk) + vk (A.1)

yk = hk(xk) + wk (A.2)

where xk, uk, yk are state, input and output respectively, while vk and wk are

the process and the measurement noise possibly non-Gaussian; fk(·), hk(·) are

nonlinear functions. equation (A.1) is the state equation and equation (A.2) is

the output equation.

In the following we will consider the model to satisfy Markov assumptions [22],

that is to say that past and future data are independent if one knows the current

state xk: in particular we have that p(xk|x0:k−1, y1:k−1, u1:k) = p(xk|xk−1, uk) and

p(yk|x0:k, y1:k−1, u1:k) = p(yk|xk).

The goal of Bayesian estimation is to construct the conditional a posteriori

distribution p(xk|y1:k, u1:k) given the one at the previous time instant, the input

variable uk and the incoming measurement yk [23]. The solution is obtained by

solving in a recursive way the Bayes' rule:
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p(xk|y1:k−1, u1:k) =

∫
p(xk|uk, xk−1)p(xk−1|y1:k−1, u1:k)dx (A.3)

p(xk|y1:k, u1:k) =
p(yk|xk)p(xk|y1:k−1, u1:k)

p(yk|y1:k−1, u1:k)
(A.4)

p(yk|y1:k−1, u1:k) =

∫
p(yk|xk)p(xk|y1:k−1, u1:k)dx (A.5)

Let's denote the conditional posterior distribution as post(xk), then it is pos-

sible to de�ne a recursive algorithm in order to compute the posterior at each

time instant (Algorithm 9 taken from [11]):

Algorithm 9 Bayes �lter

1: procedure Bayes Filter(post(xk−1), uk, yk)

2: for all xk do

3: post(xk) =
∫
p(xk|uk, xk−1)post(xk−1)dx

4: post(xk) = p(yk|xk)post(xk)
p(yk|y1:k−1,u1:k)

= ηp(yk|xk)post(xk)

5: end for

6: return post(xk)

7: end procedure
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Recursive Covariance Estimation

In the following are reported all the passages needed in order to retrieve the terms

of matrix Q (these passages are not reported in [21]).

We can rewrite equation (4.16) with the terms depending on Q at the left side of

the equation:

n∑
i=j

biQb
t
i−j = E[ξkξ

t
k−j]−

n∑
i=j

aiRa
t
i−j ∀j = 0, ..., n (B.1)

We can rewrite the �rst member of equation (B.1) as

n∑
i=j

biQb
t
i−j = bjQb

t
0 + bj+1Qb

t
1 + · · ·+ bnQb

t
n−j (B.2)

Consider for instance the �rst term of this sum. We can rewrite it as follows:

bjQb
t
0 =

(
bj(1) bj(2)

)q1 q2

q3 q4

b0(1)

b0(2)


where bj(i) represent the i

th term of the bj matrix. Performing the computation

we get an expression for the �rst term like:

bjQb
t
0 = bj(1)b0(1)q1 + bj()b0(1)q3 + bj(1)b0(2)q2 + bj(2)b0(2)q4
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which can be brought in the form:

bjQb
t
0 =

(
bj(1)b0(1) bj(2)b0(1) bj(1)b0(2) bj(2)b0(2)

)

q1

q3

q2

q4


Vector (q1, q2, q3, q4)t is the result of the vectorization of matrix Q. We denote

this with V ec(Q). Thus we can express the left term of equation (B.1) as:

n∑
i=j

(
bi(1)bi−j(1) bi(2)bi−j(1) bi(1)bi−j(2) bi(2)bi−j(2)

)
V ec(Q) (B.3)

Let's denote the row vector resulting from the sum with the letter Ω, so that

(B.3) can be written in the form ΩV ec(Q).

Finally recalling the expression of the sample autocorrelation function we can

substitute E[ξkξ
t
k−j] with:

E[ξkξ
t
k−j] =

1

N

N−j∑
k=1

ξk+jξ
t
k

If we now denote with θ the following quantity:

θ =
1

N

N−j∑
k=1

ξk+jξ
t
k −

n∑
i=j

aiRa
t
i−j

we end up with an undetermined linear system in the form ΩV ec(Q) = θ which

solution is given by:

V ec(Q) = Ω†θ (B.4)

where Ω† denotes the Penrose-Moore pseudoinverse of Ω.
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