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Abstract

Nowadays collaboration between human operators and robots is a growing field.
To ensure the safety of the worker, while preserving robot’s productivity, several
control strategies have been developed.

One effective approach is based upon the construction of the "swept volumes",
that are the volumes containing human predicted motion for next instants of time.
To obtain this prediction, the operator is tracked with depth sensors and then
measurements are exploited by a Linear Kalman Filter, that estimates human
speed, acceleration and jerk.

In past works, swept volumes were generated in a conservative way, because
the algorithm, that computes the reachable set of the human operator, utilized
only the velocity estimate, while it assumed that acceleration was always set to its
maximum or minimum value, to strengthen the safety constraint.

The goal of this thesis is to improve the computation of swept volumes, with
the aim of obtaining reduced volumes and consequently enhancing robot’s produc-
tivity. To achieve this result, first, bounded accelerations have been replaced with
estimated ones, then, bounded jerk has been introduced in the algorithm.

Another result, achieved by this thesis, was the realization of a better estimate:
an Adaptive Kalman Filter has been implemented; the peculiarity of this new filter
is that it adapts the process noise covariance matrix.

To validate the new algorithm and the Adaptive Kalman filter, first computer
simulations have been done and then some experiments, simulating real Human-
Robot Collaboration (HRC) scenarios, using ABB YuMi robot, have been per-
formed.
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Sommario

Oggi il campo della collaborazione tra operatori umani e robot è in forte crescita.
Per garantire la sicurezza del lavoratore, pur preservando il rendimento del robot,
sono state sviluppate diverse strategie di controllo.

Uno di queste si basa sulla costruzione degli "swept volumes", cioè i volumi che
contengono la predizione del moto dell’umano per i prossimi istanti di tempo. Per
ottenere questa previsione, l’operatore viene monitorato con sensori di profondità
e le misure ottenute vengono inviate a un filtro lineare di Kalman, che stima la
velocità, l’accelerazione e il jerk dell’operatore.

Negli studi precedenti, gli "swept volumes" erano generati in modo conserva-
tivo, poiché l’algoritmo, che calcola l’insieme di punti raggiungibili per l’uomo,
utilizzava solo la stima della velocità, mentre veniva ipotizzato che l’accelerazione
fosse sempre impostata al valore massimo o minimo, per rafforzare il vincolo di
sicurezza.

L’obiettivo di questa tesi è quello di migliorare l’algoritmo che calcola gli "swept
volumes", per ottenere volumi ridotti, aumentando così la produttività del robot.
Per ottenere questo risultato, innanzitutto, la stima dell’accelerazione è stata intro-
dotta nell’algoritmo che calcola l’insieme raggiungibile, rimuovendo così l’ipotesi
di movimento umano sempre ad accelerazione massima o minima. Poi il jerk,
impostato al suo valore massimo o minimo, è stato aggiunto all’algoritmo.

Un altro aspetto su cui la tesi fornisce un contributo è il miglioramento della
stima. È stato infatti implementato un filtro di Kalman adattivo: la peculiarità
di questo nuovo filtro è quella di adattare la matrice di covarianza del rumore sul
processo.

Per validare il nuovo algoritmo e il filtro adattivo, dapprima sono state eseguite
simulazioni al computer e quindi sono stati condotti esperimenti di collaborazione
uomo-robot, utilizzando il robot ABB YuMi.
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Chapter 1

Thesis Outline

Industrial manipulators represent a well-established technology in several industry
sectors, such as automotive, or for machines tending and parts movement. How-
ever, their diffusion in Small and Medium-sized Enterprises is hampered by an
insufficient flexibility. Human-Robot Collaboration (HRC) represents a promis-
ing solution to such a problem, as cooperation between robots and workers could
greatly increase robots flexibility, and, at the same time, increase the productivity,
because robots perform repetitive operations faster than a human operator. Never-
theless, the deployment of industrial robots in HRC scenarios poses new challenges
for robot manufacturers and system integrators: guaranteeing safety for human
operators cooperating with robots, while maximizing productivity. Robots should
avoid collisions and reduce the risk of consequent injuries. At the same time, the
need for safety must not diminish robots productivity, nor should it disrupt the
possibility of task completion or generate a risk of damages for the manipulator or
the production setup. In the last years, many robots, specifically built for HRC,
have been introduced onto the market; furthermore, control strategies, to ensure
workers’ safety, preserving robots’ productivity, have been developed. One of these
is based on the generation of human "swept volumes": they are the portion of the
space, that is predicted to be occupied by the human in a given time interval,
based on his/her current state of motion, perceived with some optical sensors.

The aim of this thesis is to improve swept volumes generation, further en-
hancing robot’s productivity, while preserving safety. To achieve this result, an
improvement of the algorithm, that computes swept volumes, is proposed and a
technique, making swept volumes generation adaptive, is introduced.
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1.1 Thesis Contributions

In this thesis, two main contributions are given:

1. A modification of the algorithm that computes the Reachable Set of the hu-
man, that dictates how large swept volumes will be. The modified algorithm
is less conservative than the original one. In this way, swept volumes will be
smaller, enhancing the productivity of the robot, while maintaining human
worker’s security.

2. A technique to adapt the Kalman filter process noise covariance matrix. The
Adaptive Kalman Filter permits to have better estimates and, if jerk is con-
sidered as process noise, instead of being part of the state, to adapt jerk
bounds, that are used to compute the reachable set of the human in the
modified algorithm.

Both contributions have been experimentally validated in a realistic setup, in-
volving collaboration between a human operator and an industrial robot.

1.2 Thesis Organization

The thesis is organised as follows:

In Chapter 2 an overview of Human Robot Collaboration and the state of the
art for Detecting and Predicting Human Motion techniques are introduced.

In Chapter 3 a review of safety constrains, model of Human Motion, Con-
strained Linear Kalman Filter, Reachable Set and swept volumes algorithms and
finally robot’s velocity scaling is given.

In Chapter 4 the modifications to the Reachable Set algorithm are presented:
first a simple change is discussed and then the main modification is given.

In Chapter 5 the Adaptive Kalman Filter is introduced: first a brief outline
of different adaptation methods is given, then the chosen method and the changes
to the Constrained Linear Kalman Filter are presented.

In Chapter 6 some Matlab simulations, used to check the correctness and the
efficiency of algorithms and techniques introduced in previous chapters, are carried
out.

In Chapter 7 the strategies proposed in previous chapters are validated by an
experiment of HRC, in which a robot and a human operator cooperate to assemble
an electronic board.
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In Chapter 8 conclusions are drawn and possible future developments are
proposed.
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Chapter 2

State of the Art

The industrial robots’ market is growing year after year (see [40]); these robots
are able to perform fast and accurate tasks of various kind, like welding, painting,
packaging, palletizing, etc. Up to the past years, robots were placed in protected
environments by means of physical infrastructures (fences or optical barriers) for
safety reasons (see Fig. 2.1). But nowadays, the idea of a collaboration between
human workers and robots (HRC) is rapidly spreading: in fact, there are too
complex operations to be performed by the robot and vice versa repetitive ones in
which the precision and reliability of the robots cannot be matched by human.

Figure 2.1: Traditional industrial robotic cell with safety barriers.

In this new scenario robots and humans work together, so physicals barriers
must be removed (see Fig. 2.2). To ensure the safety of the human operator and
to comply with European standards (see [2], inspired by American standard [1]), a
new kind of robots has been developed. They are lighter, without edges, sometimes
covered with paddings to damp the effects of any impacts. The robots are also
more sensitized than in the past: they can recognize the presence of obstacles
and interrupt the operation in case of collisions. Many of these robots are also
equipped with kinematic redundancy, i.e. they have a number of joints greater
than the strictly necessary one. This gives more naturalness to movements of the
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arm and may allow to perform certain operations enhancing security. Sometimes
they also have a two arms configuration(see, for example, YuMi, recently marketed
by ABB).

Figure 2.2: HRC scenario where human workers and robot work directly in touch.

Furthermore many control strategies, to guarantee a safe HRC, have been de-
veloped. A technique is the Human motion Detection and Tracking (HDT) and
human motion prediction, which is also known as Intention Estimation (IE), to
generate safety constraints for collision avoidance. HDT consists in detecting the
presence of one or more human beings inside the supervised environment and to
track their movements on the basis of a series of consecutive "descriptions" of the
scene provided by one or more sensors. On the other hand, IE consists in predicting
the intentions of a human in a structured environment on the basis of the tracked
positions.

Techniques to perform HDT in an industrial environment, using single camera
or multiple cameras, are described in [11], while high-visibility industrial clothing
detection strategies based on RGB and IR cameras have been proposed in [29].
Approaches based on pressure-sensitive sensors mounted on the floor have been
proposed as well, like for instance [32] and [4], in which the concept of "smart
floor" is introduced. Finally, examples of HDT relying on RGB-D sensor can be
found in [30].

Regarding IE, in [19] techniques combining vision and physiological signal mea-
surement for human motion estimation during HRC are presented, while [5] de-
scribes a system for predicting the probability of an accident in a HRC industrial
scenario based on a dynamic stochastic model of human motion. Other approaches
utilize Hidden Markov models to estimate and reshape human intention, as for in-
stance [9]. A technique, for human walking IE, through the use of a Kalman Filter,
is proposed in [46]. A method, that employs neural networks to estimate motion
intention, can be found in [20]. Lastly, in recent works, algorithms to infer human
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arms motion estimation are proposed: one is based on Multiple Model Filtering
(see [39]), the other is an Expectation-Maximization Algorithm with online Model
Learning (see [38]).

A technique, combining HDT and IE, is based on "Swept Volumes" generation:
swept volumes are the portions of the environment, containing human predicted
motion for next instants of time. To obtain these volumes, first the operator is
tracked with depth sensors, then human motion is predicted. This method of safe
HRC is developed in [36], that constitutes the main background of this thesis (see
also [37], for a summary of the Ph.D. thesis). Other studies on swept volumes
generation can be found in [42] and [23].

Other strategies for HRC are proposed in [12], in which a Depth Space approach
to Collision Avoidance is introduced, and [22], where phase estimation makes it
possible to classify human actions, and to generate a corresponding robot trajectory
before the human finishes his/her movement.

In the last two years, many other control strategies for safe HRC have been
developed. In [34], the focus is on prediction of arm occupancy, to implement a safe
collision-avoidance strategy. [15] presents an approach to formulate a cost function,
for motion planner, so that the motion is both safe and efficient. A real-time
gesture-based HRC can be found in [10]; the human pose in this work is estimated
using a self organizing map approach, and particular attention is paid to hand-
finger pose estimation. An energy-based technique, to compute safety constraints,
is introduced in [25]. In [33], a probabilistic approach, to generate safe robot
trajectories, is proposed. [14] presents a method, based on distance calculation and
discrete detection, for dynamic obstacle avoidance in a HRC scenario. In [28], a
novel technique for active collision avoidance, driven by vision sensors, is given.
Finally, a HRC framework, based on the understanding of human intention, can
be found in [21].
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Chapter 3

Background on Swept Volumes
Generation

In this chapter, a review of the main concepts developed in [36] is given. While this
is not a contribution of this thesis, it is essential to fully understand the algorithms
presented in next chapters, and to make the present document self-contained.

3.1 Safety Constraints

If an industrial manipulator is performing a task in the presence of both static
and dynamic obstacles (for instance, human workers moving inside the robot
workspace), the problem of possible collisions between the robot itself and these
obstacles could easily arise. In order to safely accomplish the task by avoiding
such collisions, the robot control system must be able to detect the presence of
the obstacles, to monitor the distance between them and the manipulator, and to
adapt the robot velocity accordingly.

Figure 3.1: Trade-off between productivity and safety.

Figure 3.1 shows the relationship between production (in terms of robot veloc-

9



ity) and safety. As the distance between the robot and the human becomes smaller,
the velocity of the robot should be reduced, thus decreasing the productivity of
the robot. On the other hand, even in case of a reduced separation distance, the
robot should continue its task if its velocity is oriented so that the distance with
the human operator will increase.

To achieve a fruitful trade-off between safety and productivity it is possible to
consider the first as a hard constraint, in which respect the latter could be somehow
maximized. In other words, safety constraints must be defined in order to ensure
that the entire kinematic chain of the manipulator performs a collision-free motion
during task execution. These constraints must necessarily take into account the
kinematic configuration of the manipulator, known obstacles positions and their
geometry.

3.1.1 Safety constraints for a point obstacle

First, derivation of safety constraints for a point obstacle is reported, as introduced
in [49,51]. A generic robot link, whose endpoints are at positions ra and rb and a
point obstacle robst are considered (see Fig. 3.2).

Figure 3.2: A rigid beam representing one link and a point-shaped obstacle.

At all time, the robot trajectory must obey the following safety requirement
expressed as an inequality:

velocity · Ts ≤ max (0, distance−∆) (3.1)

where "velocity" represents the robot velocity in the direction of the obstacle, the
worst-case braking time Ts possibly depends on the robot payload [1], "distance"
is the distance between the robot and a generic obstacle and ∆ allows to take into
account both robot and obstacle dimensions, sensor uncertainties and ultimately
an actual clearance.

10



For a generic point rs on the robot link, with velocity vs:

vs
T
robst − rs
‖robst − rs‖

Ts ≤ max (0, ‖robst − rs‖ −∆) (3.2)

where vsT ((robst − rs) / ‖robst − rs‖) represents the projection of vs onto the nor-
malized segment connecting rs to robst. This constraint can be further arranged
as

vs
T (robst − rs)Ts ≤ max

(
0, ‖robst − rs‖2 −∆‖robst − rs‖

)
(3.3)

Assume now the following parametrization of the link in terms of position and
velocity of its end points

rs = ra + s (rb − ra) vs = rb + s (vs − va) (3.4)

In order to enforce the safety constraints,the inequality in (3.3) is required to be
satisfied for all s ∈ [0, 1]. The left hand side becomes

vs
T (robst − rs) = va

T (robst − ra) + s (vb − va)T (robst − ra)

− svaT (rb − ra)− s2 (vb − va)T (rb − ra)︸ ︷︷ ︸
=0

(3.5)

Moreover, notice that for the right hand side

[max (0, ‖robst − rs‖ −∆)]2 ≤ max
(
0, ‖robst − rs‖2 −∆ ‖robst − rs‖

)
(3.6)

As a result, the set of inequalities describing the safety constraints can be
written as follows

α + βs ≤ g (s) ,∀s ∈ [0, 1] (3.7)

where

α = Tsva
T (robst − ra)

β = Ts (vb − va)T (robst − ra)− TsvaT (rb − ra)

g (s) = [max (0, ‖robst − rs‖ −∆)]2
(3.8)

Since the left hand side is a linear function in s, it is possible to write the following
sufficient condition for the safety constraint (3.7) to be satisfied

max {α, α + β} ≤ min
s
g (s) (3.9)

In turn, within the right hand side term, it is possible to exchange the min and
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max operators, obtaining

min
s
g (s) =

[
max

(
0, min

s
‖robst − rs‖ −∆

)]2
(3.10)

where the term mins ‖robst − rs‖ −∆ represents, when it is positive, the distance
between a sphere of radius ∆ centred in robst and the segment from ra to rb.
Finally, the following pair of inequalities is obtained

α = Ts (robst − ra)T va ≤ min
s
g (s)

α + β = Ts (robst − ra)T vb − Ts (rb − ra)T va ≤ min
s
g (s)

(3.11)

Summarizing, the minimum separation distance criterion can be written in matrix
form as:

TsEq̇ ≤ f (3.12)

where

E =
 (robst − ra)T Ja

(robst − ra)T Jb − (rb − ra)T Ja


f = min

s
g (s)

1

1


(3.13)

Ja and Jb are position Jacobians of the two link end points.

3.1.2 Safety constraints for an arbitrarily-shaped convex
obstacle

So far, safety constraints have been formulated by considering only point-shaped
obstacles. In order to account for more complex obstacles, like for instance work-
pieces, tools or human workers cooperating with the robot, the mathematical for-
malization of safety constraints must be extended to the case of obstacles having
more complex geometry. Consider for instance a generic polytopic obstacle O as
shown in Fig. 3.3.

The constraints to be enforced for such an obstacle can be written as follows

TsE (robst) q̇ ≤ f (robst) ,∀robst ∈ O (3.14)

The number of constraints to be enforced at run time is conceptually infinite, i.e.
one per each point belonging to O. However, some geometrical properties of the
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Figure 3.3: A generic polytopic (convex) obstacle.

obstacle can be exploited in order to make the problem tractable.
A sufficient condition for (3.14) to be satisfied for all points robst ∈ O is

TsE (robst) q̇ ≤ d

1

1

 , ∀robst ∈ O (3.15)

where the right hand side term

d = min
robst∈O

‖f (robst)‖∞ (3.16)

represents the minimum distance between the link of the robot and the polytopic
obstacle O and can be easily computed using the GJK algorithm [13]. Moreover,
notice that the left hand side term is linear with respect to the parameter robst ∈ O.
Therefore the safety constraints regarding the pair link-obstacle can be written as
follows

Ts
(
robst

TE0 +E1
)
q̇ ≤ d,∀robst ∈ O (3.17)

For linearity (and thus convexity) the aforementioned constraint (which actually
still consists of an infinite number of scalar inequalities) can be equivalently written
in terms of the vertices (thus a limited number) of the polytope representing the
obstacle O, hence ∀robst ∈ vert (O).

3.2 Kinematic Model of Human Motion

In the previous section, a mathematical formulation to represent the safety con-
straint arising in a typical human-robot interaction scenario was presented. As
already discussed, even if it is possible to consider arbitrarily geometrically shaped
obstacles, their motion is not directly accounted for in the expression of the safety
requirement. However, in a HRC set-up, the motion of the human, and particularly
the prediction of his/her occupancy, has to be clearly taken into account to safely
adjust the trajectory of the robot. In order to compute this prediction, a relatively
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simple kinematic model suitable for real-time calculations is used.

3.2.1 Human Walking Kinematics

To properly describe the kinematics of human walking it is convenient to approx-
imate the human being with a single point moving in a 2D environment. Conse-
quently, by fixing a world-base Cartesian frame on the ground plane, the kinematic
configuration of a walking human can be described as:

p = [x, y, θ]

ṗ = [ẋ, ẏ, ω]
(3.18)

where:

• x is the coordinate with respect to the world base frame X-axis;

• y is the coordinate with respect to the world base frame Y-axis;

• θ is the angle formed between the tangent to the walking path and the world
base frame X-axis;

• ẋ is the velocity along the world base frame X-axis;

• ẏ is the velocity along the world base frame Y-axis;

• ω is the angular velocity;

However, human locomotion can be modelled as non-holonomic, since the linear
velocities ẋ and ẏ are actually coupled to the body orientation. Consequently, the
kinematics of human walking can be described using the following unicycle-based
non-holonomic model: 

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

v̇ = al

ω̇ = aω

(3.19)

where v is the tangential velocity directed along θ.
Finally, according to the assumption that both the linear velocity v and the

angular velocity ω are piece-wise constant, the linear and angular accelerations,
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al and aω, can be modelled as two independent and uncorrelated Gaussian white
noises acting respectively on v and ω:

al ∼ N(0, 1)

aω ∼ N(0, 1)
(3.20)

In order to account for lateral walking, it is necessary to extend model (3.19)
by removing the non-holomic constraint.

By introducing the orthogonal velocity term v⊥, the following holonomic model
is obtained: 

ẋ = v cos θ − v⊥ sin θ

ẏ = v sin θ + v⊥ cos θ

θ̇ = ω

v̇ = al

ω̇ = aω

(3.21)

It is worth noticing that model (3.21) can be expressed in terms of a linear
formulation by simply considering fully de-coupled linear velocities vx and vy:

ẋ = vx

ẏ = vy

θ̇ = ω

v̇ = al

ω̇ = aω

(3.22)

As a matter of fact, the new formulation is completely equivalent to the previ-
ous one, since a unique correspondence exists between the two different sets of
velocities: vx

vy

 =
cos θ − sin θ

sin θ cos θ

 ·
 v
v⊥


 v
v⊥

 =
 cos θ sin θ

− sin θ cos θ

 ·
vx
vy



To summarize, the kinematic configuration of a walking human being can still
be described in terms of pose and velocity vectors p and ṗ (see (3.18)), but, differ-
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ently from the non-holonomic case, velocities components ẋ and ẏ can be parame-
terized either in terms of forward and orthogonal components, according to (3.21),
or in terms of de-coupled Cartesian components, according to (3.22).

3.2.2 Human Arm Kinematics

In order to describe the human arm kinematics, the kinematic model, originally
introduced in [7] and further refined in [50], is used (see Figure 3.4). As a matter of
fact, only the first 4 DOFs or the original model are considered since the human arm
is roughly approximated with two segments: the first one (upper arm) connecting
the shoulder to the elbow and the second one (lower arm) going from the elbow to
the wrist.

Figure 3.4: Kinematic model of the human (right) arm and torso flexion/extension
angle ρ.

On the basis of this approximation, the kinematic model of the human arm can
be formulated in terms of four integrators for each joint angle:

d

dt
α = α̇

d

dt
α̇ = α̈

d

dt
α̈ = ...

α

d

dt

...
α = η

(3.23)

where
α =

[
α1 α2 α3 α4

]
(3.24)
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is the vector containing the joint angles represented in Figure 3.4, while, under the
hypothesis that the jerk is piece-wise constant, η components can be modelled as
independent and uncorrelated Gaussian white noises:

η ∼ N(0, I) (3.25)

3.2.3 Complete Kinematic Model

Combining together walking and arm kinematics, a model, that describes the full
motion of the upper human body, is obtained . More in depth, this new kinematic
model is composed of a 3-DOF base moving on the ground plane, one lumped
1-DOF (flexion/extension) torso, a head (fixed) and two 4-DOF arms. A graphical
representation of such kinematic model is given in Figure 3.5.

Figure 3.5: Complete human kinematic model: DOFs, frames and bodies

Given the new model, the kinematic configuration p can be extended in the
following way:

p =
[
x y θ ρ αright αleft

]T
(3.26)

where:

• x, y and θ corresponds to the walking kinematic configuration;

• ρ is the torso bending angle;

• αright and αleft are respectively the joint angles vectors for the right arm
and for the left arm.

Finally, since models (3.22) and (3.23) are both linear and all the status com-
ponents are completely de-coupled, also the complete kinematic model can be
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formalized by means of a chain of four integrators for each joint variable:

d

dt
p = ṗ

d

dt
ṗ = p̈

d

dt
p̈ = ...

p

d

dt

...
p = η

(3.27)

It is worth noticing that an analogous representation of this kinematic model
can be given in terms of a set of 3D points composing a rough scheme of the human
skeleton, see Figure 3.6. Since only the motion of the upper part of the human
body is considered, the points of interest are: Thorax (T ), Neck (N ), Head (H),
Left Shoulder (LS), Right Shoulder (RS), Left Elbow (LE), Right Elbow (RE),
Left Wrist (LW ), and Right Wrist (RW ).

Figure 3.6: Approximated Human Skeleton.

This skeletal representation is particularly useful because several well-known
algorithms (for instance [3]) can be used to extract skeletal points from a depth
map acquired by either a depth sensor or an RGB-D camera. Consequently, it is
convenient to consider the skeletal representation as the output of model (3.27)
and to formulate the corresponding forward kinematic calculations.

On the other hand, in order to convert a generic skeletal representation into the
corresponding kinematic configuration p, it is necessary to formalize also inverse
kinematic calculations (for the formulation of the forward and inverse kinematic
calculations see [36]).
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3.3 Constrained Linear Kalman Filter

In order to gain an estimation of the kinematic state of the human worker from
measurements obtained by one or multiple depth sensors, a Linear Kalman Filter
[17] is utilized. Depth sensors provide the position (in Cartesian coordinates) of
skeletal points highlighted in Figure 3.6, then kinematic inversion is computed to
obtain configuration (3.26). Furthermore, the kinematic state estimation provided
by the filter is modified so as to satisfy the following bounds:

• pinf and psup: lower and upper bounds on human joint positions;

• ṗinf and ṗsup: lower and upper bounds on human joint velocities;

• p̈inf and p̈sup: lower and upper bounds on human joint accelerations;

3.3.1 Linear Kalman Filter implementation

The adopted process model consists in a discretized version of model (3.27) and
it is composed by a chain of three discrete-time integrators for each joint variable.
Moreover, the filter state vector s (that already contains joint positions, velocities,
accelerations and jerks) is further extended to take into account also the param-
eters of the human kinematic model that are specific for each individual (i.e. the
distances between the skeletal points acquired by the depth sensors). These pa-
rameters, labelled as π in equation (3.29), can be estimated by simply imposing a
constant dynamics. In detail:

sk+1 = Fsk + ηk (3.28)

sk =



pk

ṗk

p̈k
...
pk

πk


F =



I ∆tI ∆t2
2 I ∆t3

6 I 0

0 I ∆tI ∆t2
2 I 0

0 0 I ∆tI 0

0 0 0 I 0

0 0 0 0 I


(3.29)

In particular:
ηk ∼ N (0, G) (3.30)

models the process noise, whose covariance matrix G can be parametrized as fol-
lows. For each block of the state vector the corresponding first truncated element
of the Taylor approximations contained in matrix F is considered (see equation
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(3.29)), and one obtains:

G =



σ2
p

∆t4
24 I 0 0 0 0

0 σ2
ṗ

∆t3
6 I 0 0 0

0 0 σ2
p̈

∆t2
2 I 0 0

0 0 0 σ2...
p ∆tI 0

0 0 0 0 0


(3.31)

where standard deviations σp, σṗ, σp̈ and σ...p are tunable parameters.

Regarding the observation model, since the inverse kinematics of the human
motion model can be computed in closed-form, all the joint positions and all the
kinematic parameters corresponding to the data acquired from the n available
depth sensors are considered as observed output. Consequently, the following linear
transformation is considered as observation model :

zk = Hsk + ζk (3.32)

zk =



p1,k
...

pn,k

π1,k
...

πn,k


H =



I 0 0 0 0
... ... ... ... ...

I 0 0 0 0

0 0 0 0 I

... ... ... ... ...

0 0 0 0 I


(3.33)

where pi,k and πi,k represent the set of joint positions and the set of parameters,
respectively, computed via inverse kinematics on the basis of the skeletal points
acquired by the i-th sensor.

Moreover, ζk models the measurement noise, whose covariance matrix R is
given by:

ζk ∼ N (0, Rk)Rk = σ2
zI (3.34)

where standard deviation σz can be determined on the basis of the accuracy of the
skeletal points acquired by the depth sensors.

A relevant issue in the design of this sensor fusion strategy is the lack of syn-
chronization between the acquisition process and the process implementing the
LKF. As a matter of fact, in order to ensure accurate estimation it is needed to
run the LKF at a frequency that usually is much greater than the data acquisition
frequency. Consequently the filter will execute several iterations on the basis of
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the same set of measurements.

A possible solution consists in updating the observation covariance matrix Rk

according to the presence (or not) of new measurements, in such a way that each
element on the main diagonal of Rk follows a saw tooth shape. More specifically,
every time the LKF receives a new set of measurements, the corresponding blocks
of matrix Rk are reset to σ2

z I. On the other hand, whenever the same set of
measurements is re-used, the corresponding blocks in Rk are updated by adding
σ2
z I. In this way it is obtained an uncertainty that is reset to a starting value

whenever a new measurement arrives and that grows linearly in time between two
consecutive measurements.

Clearly, the described LKF produces an estimation of both the kinematic state
of the human worker and of his/her kinematic parameters:

ŝk =
[
p̂Tk

˙̂pTk ¨̂pTk
...
p̂
T
k π̂

T
k

]T
(3.35)

More specifically, in case at time step k there are no valid measurements available,
the filter directly outputs the a-priori estimates:

ŝk|k−1 = F ŝk−1 (3.36)

Pk|k−1 = F Pk−1 F
T + G (3.37)

ŝk ← ŝk|k−1 (3.38)

Pk ← Pk|k−1 (3.39)

while if there is at least one valid measurement, the filter also executes the predic-
tion update and outputs the a-posteriori state estimation:

ỹk = zk −Hŝk|k−1 (3.40)

Kk = Pk|k−1 H
T
(
H Pk|k−1 H

T + Rk

)−1
(3.41)

ŝk|k = ŝk|k−1 +Kkỹk (3.42)

Pk|k = (I −HKk)Pk|k−1 (3.43)

ŝk ← ŝk|k (3.44)

Pk ← Pk|k (3.45)

Unfortunately, data acquired from depth sensors can suffer from non-valid mea-
surements due to various reasons (occlusions, human workers being too near with
respect to the sensor, human workers leaving the sensor field of view, etc.). Since
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the acquisition process is able to detect these situations, each set of measurements
pi,k and πi,k is accompanied by a boolean variable, named validi, that is true if
the measurements are valid, and false otherwise.

Thanks to this boolean flag, during the calculation of the innovation signal ỹk
in equation (3.40), we set to zero all the innovation components corresponding to
a non-valid set of measurements:

∀i ∈ [1, n] , validi = False =⇒ ỹi,k ← 0 (3.46)

In this way non-valid measurements are prevented from affecting the a-posteriori
state estimate ŝk|k , thus ensuring that it is determined only by valid data. On the
other hand both stability and correctness property of the LKF are not invalidated
by this calculation since it is equivalent to consider a time-varying observation
matrix Hk (see equation (3.33)), whose blocks switch between the identity and the
null matrix.

3.3.2 Bounded kinematic state estimation

Since the estimation ŝk, computed by the LKF, does not necessarily satisfy the
chosen bounds on joint positions, velocities and accelerations, a hierarchy of opti-
mization problems is introduced.

At first, the set of positions, that are the nearest to LKF estimation and that
satisfy position bounds, is founded by solving the following quadratic programming
(QP) problem:

min
p̃k

‖p̃k − p̂k‖
2 (3.47a)

pinf ≤ p̃k ≤ psup (3.47b)

and the estimated joint positions are updated as follows:

p̂k ← p̃k

Then, a second QP problem is introduced, to find the nearest set of velocities with
respect to the LKF estimation, that are also inside velocity bounds:

min
˙̃pk

∥∥∥ ˙̃pk − ˙̂pk
∥∥∥2

(3.48a)
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˙̃pinf ≤ ˙̃pk ≤ ˙̃psup (3.48b)

where bounds ˙̃pinf and ˙̃psup are computed as

˙̃pinfi,k = max
(
ṗinfi,k ,

(
pinfi,k − p̂i,k

)
/∆t

)
˙̃psupi,k = min

(
ṗsupi,k ,

(
psupi,k − p̂i,k

)
/∆t

)

in order to satisfy velocity bounds and to ensure that the a-priori position estimate
at time step k + 1 stays inside position bounds. Once again, the estimated joint
velocities are updated :

˙̂pk ← ˙̃pk

Finally, the same procedure can be applied to the estimated joint accelerations,
thus obtaining a kinematic state of the human worker that is completely coherent
with respect to position, velocity and acceleration bounds and that, at the same
time, is close to the estimation computed by the LKF(for a detelaid description of
the algorithm, see [43,44]).

3.4 Human Motion Prediction

To guarantee human workers’ safety in a HRC set-up, the motion of the human
worker has to be clearly taken into account to safely adjust the trajectory of the
robot. Moreover, beside predicting the final destination of the human worker
moving inside the robotic cell, the control system should also be able to predict
the volume occupied by the human, at least when he/she is actually sharing the
workspace with the manipulator during cooperative tasks.

Given the human kinematic model (3.27), it is possible to develop a simple
algorithm that predicts the space occupied by a human worker within a pre-defined
time span (for example the time needed by the robot to stop). This prediction
consists in a series of swept volumes, i.e. convex polytopes that represent the
entire volume that the human can reach, given a specific kinematic configuration
and a chosen time horizon.

To compute the swept volumes, first a reachable set is determined for each
DOF composing the kinematic model and then the swept volumes are obtained by
superimposing the motion of each joint, according to the reachable set previously
determined.
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3.4.1 Human Kinematics Reachable Set

The reachable set of each DOF of the human kinematic model is computed on
the basis of joint positions and velocities and by considering fixed bounds on joint
accelerations.

While the walking parameters x, y and θ are unbounded, the Human Arm
DOFs have bounds, due to some intrinsic limitations in the gleno-humeral joint
(shoulder) as well as in the elbow. Differently from robots, however, these limits
are coupled. In particular, the range of motion of the human arm is limited to the
region identified by the following constraints:

− 9◦ ≤ α1 ≤ 160◦ (3.49a)

− 43◦ +
α1

3 ≤ α2 ≤ 153◦ −
α1

6 (3.49b)

− 90◦ +
7α1

9 −
α2

9 +
2α1α2

810 ≤ α3 ≤ 60◦ +
4α1

9 −
5α2

9 +
5α1α2

810 (3.49c)

20◦ ≤ α4 ≤ 180◦ (3.49d)

− 30◦ ≤ ρ ≤ 90◦ (3.49e)

where α1, α2, α3, α4 are the arm joint angles expressed in degrees and ρ is the torso
bending angle also expressed in degrees.

For a generic DOF q, the reachable set is computed as in algorithm 1.
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Algorithm 1 Human DOF Ts-reachable set qTs

1: if q̇ + q̈supTs ≤ q̇sup then
2: q+

Ts
= q + q̇Ts + 1

2 q̈
supT 2

s

3: else
4: T ∗ = (q̇sup − q̇) /q̈sup
5: q+

Ts
= q + q̇T ∗ + 1

2 q̈
sup (T ∗)2 + q̇sup (Ts − T ∗)

6: end if
7: if q̇ + q̈infTs ≥ q̇inf then
8: q−Ts

= q + q̇Ts + 1
2 q̈
infT 2

s

9: else
10: T ∗ =

(
q̇inf − q̇

)
/q̈inf

11: q−Ts
= q + q̇T ∗ + 1

2 q̈
inf (T ∗)2 + q̇inf (Ts − T ∗)

12: end if
13: q+

Ts
= max

(
q+
Ts
, q
)

14: q+
Ts

= max
(
qinf ,min

(
q+
Ts
, qsup

))
15: q−Ts

= min
(
q−Ts
, q
)

16: q−Ts
= max

(
qinf ,min

(
q−Ts
, qsup

))

Notice that, when velocity saturation has to be applied, acceleration is set equal
to its maximum/minimum value for the first T ∗ (time to reach the velocity bound)
and for the last Ts−T ∗ is set equal to zero, so the hypothesis of piecewise constant
acceleration holds.

3.4.2 Human Swept Volumes Calculation

Given a generic 3-dimensional convex object O, there are two different swept vol-
umes that can be computed: a translational swept volume and a rotational one,
depending on the kind of motion O is subjected to. If a prismatic joint is con-
sidered, the translational swept volume of O can be computed by applying the
corresponding translation to each point belonging to O and by determining the
convex hull of the resulting points, as shown in Figure 3.7a.

In turn, for a rotational DOF, one of the methods described in [45] is exploited.
In particular, when applying a rotation to each point belonging to O, a circular arc
is obtained. A possible way to approximate this arc with a finite number of points
is to construct a triangle as it is shown in Figure 3.8. Therefore, the rotational
swept volume of O can be easily obtained as the convex hull of the vertices of all
the triangles, see Figure 3.7b.
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(a) (b)

Figure 3.7: Figure 3.7a: translational swept volume of convex object. Figure 3.7b:
rotational swept volume of convex object. The corresponding convex hulls are also
highlighted.

Figure 3.8: Triangular approximation of a circular arc.

Knowing how to determine the translational and rotational swept volumes for
a generic set of points and given the reachable set for each DOF of the human
model, the prediction of human occupancy can be determined by computing a
specific swept volume for each limb:

• head - HD;

• thorax - THX;

• upper left arm (from shoulder to elbow) - ULA;

• lower left arm (from elbow to wrist) - LLA;

• upper right arm - URA;

• lower right arm - LRA.
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Assume that a convex object Vl representing the l-th limb is given by means
of its vertices set. Then, referring to the human kinematic model (3.27), a list of
DOFs from the current limb to the world frame can be arranged.

Algorithm 2 Swept Volume Calculation
1: SV ← ∅;
2: L = {HD, THX, ULA, LLA, URA, LRA};
3: for all l ∈ L do
4: P = kinematicChain (l,p);
5: Vl ← InitSweptV olume ();
6: if isPrismatic (p1) then
7: Vl ← sweepLin

(
Vl, p−Ts,i, p

+
Ts,i

)
;

8: else
9: Vl ← sweepRot

(
Vl, p−Ts,i, p

+
Ts,i

)
;

10: end if
11: for all pi ∈ P do
12: if pi 6= p1 then
13: Vl ← Aii−1 · Vl =

{
Aii−1 · r

j
l | r

j
l ∈ Vl

}
;

14: if isPrismatic (pi) then
15: Vl ← sweepLin

(
Vl, p−Ts,i, p

+
Ts,i

)
;

16: else
17: Vl ← sweepRot

(
Vl, p−Ts,i, p

+
Ts,i

)
;

18: end if
19: end if
20: end for
21: SV ← SV ∪ {Vl};
22: end for

Consequently, the swept volume of the l-th limb can be determined by itera-
tively applying the proper sweeping strategy to Vl for each DOF connecting the l-th
limb to the world-base frame. Each sweeping operation is calculated on the basis
of the upper and lower bounds p−

Ts
and p+

Ts
previously computed. A pseudo-code

version of this procedure is sketched in Algorithm 2, where:

• kinematicChain (l,p) is a function that computes P , i.e. the set of DOFs
connecting the limb to the world-base frame. The set is ordered starting from
the limb and going backwards along the kinematic chain until the world-base
frame is reached;

• InitSweptV olume () is a function that initializes a swept volume by including
into the set the endpoints of the link corresponding to the first DOF;

• isPrismatic (pi) is a logical predicate that is true if its argument is a pris-
matic DOF and false otherwise;
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• p−Ts,i and p
+
Ts,i are, respectively, the lower and upper bound of the i-th DOF

selected by kinematicChain;

• sweepLin
(
V , p−Ts,i, p

+
Ts,i

)
computes the translational swept volume of the set

of points V , given the DOF bounds;

• sweepRot
(
V , p−Ts,i, p

+
Ts,i

)
computes the rotational swept volume of the set of

points V , given the DOF bounds;

• Aii−1 is the linear transformation matrix from frame i to frame i− 1, with
respect to the output of kinematicChain;

• rjl is the j-th vertex of the l-th swept volume Vl.

Finally, in order to account for the dimensions of the different human body
parts, a radius parameter r is introduced and each convex swept volume V is
augmented by computing the Minkowski sum ⊕ of its convex hull and a sphere of
radius r:

∀Vl ∈SV =⇒ Vrl = convhull (Vl)⊕
{
b ∈ R3 : ||b|| ≤ r

}
(3.50)

It is worth mentioning that the augmented swept volumes Vrl are used only for
visualization purposes. As a matter of fact, according to the formulation of the
safety constraints given in Section 3.1, it is possible to incorporate the radius r in-
side the clearance parameter d of equation (3.17) and to state the safety constraints
separately for each swept volume Vl.

3.5 Kinematic Scaling Algorithm

In order to solve the safety-aware trajectory motion planning problem, a kinematic
scaling algorithm is proposed, whose block scheme is sketched in Figure 3.9. The
algorithm suitably scales a pre-planned trajectory in time in order to guarantee
that the robot completely stops before colliding with a generic obstacle O.

Assume the following well-known parametrization of the task with respect to
time:

x (τ) x′ (τ) =
∂x

∂τ
(3.51)

where τ is the time variable and x (·) is a differentiable task function specifying the
desired trajectory. Given a specific value of τ is it possible to evaluate the motion
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Figure 3.9: Kinematic scaling algorithm block scheme.

primitives, i.e. to determine the values of both x (τ) and x′ (τ). Let

δ ∈ [0, 1] (3.52)

be a scalar quantity adopted to kinematically scale the trajectory in time. More
in depth:

• δ = 1 =⇒ nominal trajectory, i.e. path executed at programmed speed;

• δ = 0 =⇒ the robot stops;

then, the following Linear Programming (LP) optimization problem is introduced:

max
δ, q̇

δ (3.53a)

TsE (robst) q̇δ ≤ d

1

1

 ,∀robst ∈ O (3.53b)

J (q) q̇ = δx′ (3.53c)

0 ≤ δ ≤ 1 (3.53d)

where J (q) is the manipulator Jacobian matrix, Ts is the manipulator stopping
time and the equality constraint (3.53c) guarantees that the robot does not deviate
from the pre-programmed path. Moreover, notice that each pair link-obstacle is
accounted for in the inequalities (3.53b), that correspond to the safety constraints
already introduced in Section 3.1. It is worth noting that, since the prediction
of human occupancy introduced in the previous Section 3.4 consists in a set of
convex volumes, each swept volume can be treated as a single convex obstacle
when formulating the safety constraints.
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As a matter of fact, the solution of the LP problem tends to maximize the
throughput of the robot, while being consistent with safety requirements, thus
resulting in a trade-off between safety and productivity. Notice that the problem
always has a trivial solution:

δ = 0

which guarantees its solvability in realistic applications.
In order to avoid chattering behaviour of variable δ that would result in multiple

activations and suspensions of the task, a hysteresis has been implemented: once
δ is set to zero, the output of the trajectory scaling algorithm is forced to zero,
until the minimum distance exceeds a predefined threshold. Finally, the computed
value of δ is used to perform the update of the time variable τ :

τk+1 = τk + ∆t · δ (3.54)

where ∆t is the control algorithm cycle-time.
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Chapter 4

Modifications of the Human
Kinematics Reachable Set

One of the main steps to generate the swept volumes of human motion is the
computation of the maximum and minimum position, that each DOF of the Human
Model can reach in a certain amount of time.

In algorithm 1, presented in Section 3.4, it is assumed that the human opera-
tor moves always at maximum or minimum acceleration. But during an everyday
activity or a repetitive task, human movements are rarely at maximum/minimum
acceleration (see [41]). So the computed reachable set bounds will be bigger than
the ones computed using the "real" acceleration of the DOFs, bringing to the gen-
eration of more conservative swept volumes, strengthening safety at the expense of
productivity (see Fig. 3.1).

In the following sections, two modifications of algorithm 1 are presented: in
the former, bounded accelerations are replaced with the ones estimated by the
Kalman Filter. The latter is a further enrichment of the first one: reachable sets
are computed on the basis of joint positions, velocities and accelerations and by
considering fixed bounds on joint jerks.

4.1 Insertion of Estimated Accelerations

The Constrained Linear Kalman Filter, presented in Section 3.3, gives an estimate
of each DOF’s acceleration (see the vector of the state of (3.29)). Furthermore,
the LKF provides, if estimated accelerations are not coherent with their bounds,
the nearest set of accelerations, with respect to the estimation, that are also inside
bounds. So, to compute the reachable set of each DOF of the Human Kinematics
Model, the estimate of accelerations is used, removing the assumption of motions
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always at maximum/minimum acceleration.
For a generic DOF q, the reachable set is computed as in algorithm 3.

Algorithm 3 Human DOF Ts-reachable set qTs

1: if q̇ + q̈Ts ≤ q̇sup ∧ q̇ + q̈Ts ≥ q̇inf then
2: qest = q + q̇Ts + 1

2 q̈T
2
s

3: else
4: if q̇ + q̈Ts > q̇sup then
5: T ∗ = (q̇sup − q̇) /q̈
6: qest = q + q̇T ∗ + 1

2 q̈ (T ∗)2 + q̇sup (Ts − T ∗)
7: end if
8: if q̇ + q̈Ts < q̇inf then
9: T ∗ =

(
q̇inf − q̇

)
/q̈

10: qest = q + q̇T ∗ + 1
2 q̈ (T ∗)2 + q̇inf (Ts − T ∗)

11: end if
12: end if
13: if qest ≥ q then
14: q+

Ts
= qest

15: q−Ts
= q

16: else
17: q+

Ts
= q

18: q−Ts
= qest

19: end if
20: q+

Ts
= max

(
qinf ,min

(
q+
Ts
, qsup

))
21: q−Ts

= max
(
qinf ,min

(
q−Ts
, qsup

))

Notice that, compared to algorithm 1, there is only one equation to compute the
reachable set bounds, instead of two (one using the acceleration upper bound value,
the other using the lower). Once that the estimate of the Ts-reachable position qest
is obtained, the set bounds are given, checking which one is bigger between qest

and the actual position q.
When velocity saturation has to be applied, similarly to the original algorithm,

acceleration is set equal to its estimated value for the first T ∗ (time to reach the
velocity bound) and for the last Ts − T ∗ is set equal to zero, so the hypothesis of
piecewise constant acceleration still holds.
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4.2 Reachable Set Computation using Bounded
Jerk

To model the kinematics of the human arm, jerk is assumed to be piecewise con-
stant (see (3.23)). But when reachable sets are calculated, jerk is not considered;
in addition, it is the acceleration that is considered piecewise constant.

So, to make the reachable set computation algorithm more consistent with
the Human Kinematics Model, fixed bounds on each DOF jerk are introduced.
Furthermore, acceleration is no longer considered to be piecewise constant.

The new algorithm is structured in the following way: for each DOF, first, times
needed to reach the upper/lower bounds of velocity and acceleration are calculated;
then, comparing them with Ts, the reachable set bounds are computed. To build
the algorithm, a cue is taken from [52], with the difference that in the paper a
position-velocity plane is considered, while here a velocity-acceleration plane is
taken into account.

4.2.1 Computation of Times to Saturate Velocity and Ac-
celeration

The case of upper bounds saturation is firstly introduced; for the lower bounds,
the formulas are very similar, only some signs change, because it is assumed that
velocity, acceleration and jerk bounds are symmetric.

Given actual velocity and acceleration, and velocity, acceleration and jerk upper
bounds values, the time to reach the velocity upper bound is calculated as in
algorithm 4.
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Algorithm 4 Time to reach velocity upper bound
1: a = 2...q sup
2: b = 4q̈
3: c = q̈2/

...
q sup + 2 (q̇ − q̇sup)

4: delta = b2 − 4a ∗ c
5: sol1 =

(
−b+

√
delta

)
/2a

6: sol2 =
(
−b−

√
delta

)
/2a

7: if sol1 ≥ 0 then
8: Tp1 = sol1
9: else
10: Tp1 = sol2
11: end if
12: Tp2 = (q̈sup − q̈) /...q sup
13: if Tp1 < Tp2 then
14: q̈new = q̈ + ...

q supTp1
15: q̇new = q̇ + q̈Tp1 + 1

2
...
q supT 2

p1
16: Tm = q̈new/

...
q sup

17: Ttot = Tp1 + Tm
18: else
19: q̈new = q̈ + ...

q supTp2
20: q̇new = q̇ + q̈Tp2 + 1

2
...
q supT 2

p2

21: To =
(
q̇sup − q̇new − 1

2 q̈
2
new/

...
q sup

)
/q̈new

22: Tm = q̈new/
...
q sup

23: Ttot = Tp2 + To + Tm
24: end if

The main idea is to calculate times Tp1 and Tp2. The first one is the time to
reach the limit curve, along which, with the jerk set to its minimum value, velocity
reaches its upper bound with acceleration equal to zero (see for example the blue
curve of Figure 4.1). Tp2, instead, is the time to reach acceleration upper bound.

If Tp1 is smaller than Tp2, jerk is set for Tp1 seconds to its maximum value and
for Tm to its minimum. In the other case, jerk is set for Tp2 seconds to its maximum
value, for To to zero and for Tm to its minimum value.

Time to reach the velocity lower bound is calculated as in algorithm 5.
If Tp1 is smaller than Tp2, jerk is set for Tp1 seconds to its minimum value and

for Tm to its maximum.
In the other case, jerk is set for Tp2 seconds to its minimum value, for To to

zero and for Tm to its maximum (see Figure 4.2).
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Algorithm 5 Time to reach velocity lower bound
1: a = 2...q sup
2: b = −4q̈
3: c = q̈2/

...
q sup + 2 (−q̇ − q̇sup)

4: delta = b2 − 4a ∗ c
5: sol1 =

(
−b+

√
delta

)
/2a

6: sol2 =
(
−b−

√
delta

)
/2a

7: if sol1 ≥ 0 then
8: Tp1 = sol1
9: else

10: Tp1 = sol2
11: end if
12: Tp2 = (q̈sup + q̈) /...q sup
13: if Tp1 < Tp2 then
14: q̈new = q̈ −

...
q supTp1

15: q̇new = q̇ + q̈Tp1 − 1
2
...
q supT 2

p1
16: Tm = −q̈new/

...
q sup

17: Ttot = Tp1 + Tm
18: else
19: q̈new = q̈ −

...
q supTp2

20: q̇new = q̇ + q̈Tp2 − 1
2
...
q supT 2

p2

21: To =
(
q̇sup + q̇new − 1

2 q̈
2
new/

...
q sup

)
/q̈new

22: Tm = −q̈new/
...
q sup

23: Ttot = Tp2 + To + Tm
24: end if

Figure 4.1: Trajectory (in blue), that reaches velocity upper bound without accel-
eration’s saturation.
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Figure 4.2: Trajectory (in red), that reaches velocity lower bound with accelera-
tion’s saturation.

4.2.2 Reachable Set Bounds Computation

Once time Ttot is calculated, the reachable set upper bound is computed as in
algorithm 6.

To compute the lower bound, the algorithm is very similar to the previous one
(see algorithm 7).
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Algorithm 6 Human DOF Ts-reachable set upper bound q+
Ts

1: if Tp1 < Tp2 then
2: if Ts > Ttot then
3: q+

Ts
= q + q̇Tp1 + 1

2 q̈T
2
p1 + 1

6
...
q supT 3

p1 + q̇newTm + 1
2 q̈newT

2
m − 1

6
...
q supT 3

m + q̇sup (Ts − Ttot)
4: else if Ts > Tp1 then
5: q+

Ts
= q + q̇Tp1 + 1

2 q̈T
2
p1 + 1

6
...
q supT 3

p1 + q̇new (Ts − Tp1) + 1
2 q̈new (Ts − Tp1)2−

6: −1
6
...
q sup (Ts − Tp1)3

7: else
8: q+

Ts
= q + q̇Ts + 1

2 q̈T
2
s + 1

6
...
q supT 3

s

9: end if
10: else
11: if Ts > Ttot then
12: q+

Ts
= q + q̇Tp2 + 1

2 q̈T
2
p2 + 1

6
...
q supT 3

p2 + q̇newTo + 1
2 q̈newT

2
o + (q̇new + q̈newTo)Tm+

13: +1
2 q̈newT

2
m − 1

6
...
q supT 3

m + q̇sup (Ts − Ttot)
14: else if Ts > Tp2 + To then
15: q+

Ts
= q + q̇Tp2 + 1

2 q̈T
2
p2 + 1

6
...
q supT 3

p2 + q̇newTo + 1
2 q̈newT

2
o +

16: + (q̇new + q̈newTo) (Ts − Tp2 − To) + 1
2 q̈new (Ts − Tp2 − To)2 − 1

6
...
q sup (Ts − Tp2 − To)3

17: else if Ts > Tp2 then
18: q+

Ts
= q + q̇Tp2 + 1

2 q̈T
2
p2 + 1

6
...
q supT 3

p2 + q̇new (Ts − Tp2) + 1
2 q̈new (Ts − Tp2)2

19: else
20: q+

Ts
= q + q̇Ts + 1

2 q̈T
2
s + 1

6
...
q supT 3

s

21: end if
22: end if
23: q+

Ts
= max

(
q+
Ts
, q
)

24: q+
Ts

= max
(
qinf ,min

(
q+
Ts
, qsup

))
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Algorithm 7 Human DOF Ts-reachable set lower bound q−
Ts

1: if Tp1 < Tp2 then
2: if Ts > Ttot then
3: q−Ts

= q + q̇Tp1 + 1
2 q̈T

2
p1 − 1

6
...
q supT 3

p1 + q̇newTm + 1
2 q̈newT

2
m + 1

6
...
q supT 3

m − q̇sup (Ts − Ttot)
4: else if Ts > Tp1 then
5: q−Ts

= q + q̇Tp1 + 1
2 q̈T

2
p1 − 1

6
...
q supT 3

p1 + q̇new (Ts − Tp1) + 1
2 q̈new (Ts − Tp1)2 +

6: +1
6
...
q sup (Ts − Tp1)3

7: else
8: q−Ts

= q + q̇Ts + 1
2 q̈T

2
s − 1

6
...
q supT 3

s

9: end if
10: else
11: if Ts > Ttot then
12: q−Ts

= q + q̇Tp2 + 1
2 q̈T

2
p2 − 1

6
...
q supT 3

p2 + q̇newTo + 1
2 q̈newT

2
o + (q̇new + q̈newTo)Tm+

13: +1
2 q̈newT

2
m + 1

6
...
q supT 3

m − q̇sup (Ts − Ttot)
14: else if Ts > Tp2 + To then
15: q−Ts

= q + q̇Tp2 + 1
2 q̈T

2
p2 − 1

6
...
q supT 3

p2 + q̇newTo + 1
2 q̈newT

2
o +

16: + (q̇new + q̈newTo) (Ts − Tp2 − To) + 1
2 q̈new (Ts − Tp2 − To)2 + 1

6
...
q sup (Ts − Tp2 − To)3

17: else if Ts > Tp2 then
18: q−Ts

= q + q̇Tp2 + 1
2 q̈T

2
p2 − 1

6
...
q supT 3

p2 + q̇new (Ts − Tp2) + 1
2 q̈new (Ts − Tp2)2

19: else
20: q−Ts

= q + q̇Ts + 1
2 q̈T

2
s − 1

6
...
q supT 3

s

21: end if
22: end if
23: q−Ts

= min
(
q−Ts
, q
)

24: q−Ts
= max

(
qinf ,min

(
q−Ts
, qsup

))
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Chapter 5

The Adaptive Kalman Filter

In the Linear Kalman Filter, presented in Section 3.3, the process noise covariance
matrix (see 3.31) has standard deviations σp, σṗ, σp̈ and σ...p , that are tunable
parameters. But in all the experiments described in [36], these parameters are
fixed.

In the following sections, a modification of the Kalman Filter, that permits to
adapt the process and measurements noise covariance matrices, is discussed. First,
an overview of different methods to obtain an Adaptive Kalman Filter (AKF), that
are available in the literature, is given. Then, the chosen method of adaptation
and the modifications to the LKF are presented.

5.1 Introduction to the Adaptation Methods

The adaptive Kalman filtering schemes most frequently found in the literature
are Innovation-based Adaptive Estimation (IAE) and Multiple Model Adaptive
Estimation (MMAE).

IAE methods estimate the covariance matrix of the process noise Q and/or the
measurement noise R and utilize the fact that for the right values of Q and R the
innovation sequence of the Kalman filter is white noise. By tuning Q and/or R and
studying the resulting innovation sequence one can get an idea of the appropriate
values of the covariance matrices. An early example of IAE is found in [26], while
more recent attempts are for instance [8] and [48].

MMAE methods handle model uncertainty by implementing a bank of several
different models and computing the Bayesian probability for each model to be the
true system model given the measurement sequence and under the assumption that
one of the models in the model bank is the correct one. The state estimate can be
either the output of the most probable model or a weighted sum of the outputs of
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all models. This method is suitable for applications such as fault detection where
one has some a priori information on the system dynamics. Examples of MMAE
algorithms are found for instance in [24] and [47].

A different method, that can be found in [18], is the Optimization-based Esti-
mation (OAE). It produces an estimate of the process noise covariance matrix Q
by solving an optimization problem over a short window of data.

The model of the KF is unique, so a MMAE method is not advisable, while for
OAE one, an optimization algorithm for a big system should be implemented; this
could slow down too much the entire swept volumes generation. So, the chosen
method to implement the AKF is the Innovation-based one.

The main steps for the implementation of the method are taken from [26], while
for the derivation of Q estimate, two different approaches are followed: one, more
analytic, is derived in [6]. The other is an approximation, that is introduced in [27].
The notation for the KF parameters is the one already introduced in Section 3.3.

5.2 Innovation-based Adaptive Kalman Filter

The problem is that true values of Q and R are unknown. It is required to:

1. check whether the Kalman filter built using some estimates of Q and R is
close to optimal or not (hypothesis testing).

2. obtain unbiased and consistent estimates of Q and R (statistical estimation)

3. adapt the Kalman filter at regular intervals using all the previous information
(adaptive filtering).

To solve these problems, the innovation property of an optimal filter is used:

For an optimal filter, the innovation sequence (3.40), is a Gaussian
white noise sequence.

For a suboptimal KF, it could be proven that the autocorrelation function of
ỹk does not depend on k. Therefore, ỹk is a stationary Gaussian random sequence
(Gaussian because of linearity) and it can be defined:

Cj ≡ E
[
ỹkỹ

T
k−j

]
Then

Cj = HPHT +R, j = 0 (5.1)

Cj = H [F (I −KH)]j−1 F
[
PHT −KC0

]
, j > 0 (5.2)
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Furthermore,

C−j = CT
j

Notice that the optimal choice of K (see (3.41)) makes Cj vanish for all j 6= 0 (the
innovation property).

Whiteness property can be tested statistically by a method given in [16]. In this
method, an estimate of Cj, denoted as Ĉj can be obtained, by using the ergodic
property of a stationary random sequence

Ĉj = 1
N

N∑
k=j
ỹkỹ

T
k−j (5.3)

where N is the number of sample points.
Then, estimates of the normalized autocorrelation coefficients ρj are obtained

by dividing the elements of Ĉj by the appropriate elements of Ĉ0, e.g.

[ρj]ik =

[
Ĉj
]
ik√[

Ĉ0
]
ii

[
Ĉ0
]
kk

(5.4)

where
[
Ĉj
]
ik

denotes the elements of the ith row and the kth column of matrix Ĉj.
Here the diagonal elements of ρj are of particular interest for the case of white
noise. In fact, the test is performed looking at a set of values for [ρj]ii , j > 0
and checking the number of times they lie outside the band ±

(
1.96/

√
N
)
. If this

number is less than 5 percent of the total, the innovation sequence is white. This
test is based on the assumption of large N.

If the test reveals that the filter is suboptimal, the next step is to obtain better
estimates of Q and R. This can be done using Ĉj of equation (5.3) and proceeding
with three passages:

1. Obtain an estimate of PHT .

2. Obtain an estimate of R.

3. Obtain an estimate of Q.

An estimate of PHT can be obtained directly from (5.2):

P̂ ĤT = KĈ0 + A∗


Ĉ1
...

Ĉn

 (5.5)
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where

A =



HF

HF (I −KH)F
...

H [F (I −KH)]n−1 F


(5.6)

and A∗ is the pseudo-inverse of A.
Then, an estimate of R can be obtained from (5.1):

R̂ = Ĉ0 −H
(
P̂ ĤT

)
(5.7)

5.2.1 Estimation of Q

First the analytic solution to derive an estimate of Q is proposed.
State covariance matrix P could be expressed as

P = FPF T +M + ΓQΓT (5.8)

where Γ is the input matrix of dynamic system and

M = F
(
−KHP − PHTKT +KC0K

T
)
F T (5.9)

Now a recursive solution for equation (5.8) is considered. In a first substitution
one has

P = F
(
FPF T +M + ΓQΓT

)
F T +M + ΓQΓT (5.10)

or
P = F 2P

(
F 2
)T

+ FMF T + FΓQΓTF T +M + ΓQΓT (5.11)

and after q substitutions one gets

P = F qP (F q)T +
q−1∑
j=0

F jM
(
F j
)T

+
q−1∑
j=0

F jΓQΓT
(
F j
)T

(5.12)

Before solving equation (5.12) for Q, it is first necessary to extract the set of
equations for which only knowledge of PHT (estimated in (5.5)) is needed. These
equations are attained by post-multiplying both sides of (5.12) by HT and pre-
multiplying by HF−q. This gives

HF−qPHT = HP (F q)T HT+HF−q
q−1∑
j=0

F jM
(
F j
)T
H t+HF−q

q−1∑
j=0

F jΓQΓT
(
F j
)T
HT

(5.13)
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Given that P is symmetric, the HP product to the right of the equal sign can be
expressed as

(
PHT

)T
and one has

q−1∑
j=0

HF j−qΓQΓT
(
F j
)T
HT = HF−qPHT−

(
PHT

)T
(F q)T HT−

q−1∑
j=0

HF j−qM
(
F j
)T
HT

(5.14)
For convenience both sides are transposed

q−1∑
j=0

HF jΓQΓT
(
F j−q

)T
HT =

(
PHT

)T (
F−q

)T
HT−HF qPHT−

q−1∑
j=0

HF jM
(
F j−q

)T
HT

(5.15)
To shorten the previous equation

Aj = HF jΓ (5.16)

Bj = ΓT
(
F j−q

)T
HT (5.17)

and

sq =
(
PHT

)T (
F−q

)T
HT −HF qPHT −

q−1∑
j=0

HF jM
(
F j−q

)T
HT (5.18)

so equation (5.15) becomes
q−1∑
j=0

AjQBj = sq (5.19)

Applying the vec operator to both sides of the previous equation one has

q−1∑
j=0

(
BT
j ⊗ Aj

)
∗ vec (Q) = vec (sq) (5.20)

where ⊗ denotes the Kronecker product. Equation (5.20) can be evaluated for as
many q values as one desires, although it is evident that all the equations obtained
are not necessarily independent. Furthermore a more compact form for the previous
equation could be

C ∗ vec (Q) = S (5.21)
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where

cq =
q−1∑
j=0

(
BT
j ⊗ Aj

)
(5.22)

C =



c1

c2
...

cq


(5.23)

S =



vec (s1)

vec (s2)
...

vec (sq)


(5.24)

The matrix Q is symmetrical and can often be assumed diagonal. The con-
straints of symmetry and/or a diagonal nature of Q can be reflected in a linear
transformation of the form

vec (Q) = T ∗ vec (Qr) (5.25)

where vec (Qr) is the vector of unknown entries in Q after all the constraints are
imposed. By definition, the true matrix Q is positive semi-definite (i.e., all its
eigenvalues are ≥ 0), however, due to approximations, the least square solution
may not satisfy this requirement. In the general case one can satisfy positive
semi-definitiveness by recasting the problem as an optimization with constraints.
Namely, minimize the norm of (C × vec (Q)− S) subject to the constraint that all
eigenvalues of Q ≥ 0. This problem is particularly simple for the case where Q is
diagonal.

Compared with the analytic solution, the approximated one is very simple

ΓQΓT ≈ KĈ0K
T (5.26)

Knowing Γ structure, the diagonal elements of Q can be easily extracted from
ΓQΓT
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5.3 Implementation of AKF for Human Kine-
matics Estimation

Some modifications have been introduced with respect to the KF model of Section
3.3. Firstly, there is not a unique KF that estimates and filters the entire state
(3.29), but four Kalman Filters work in parallel. The state vector of the first one
is composed of the four Kinematic DOFs of Human Walking (θ, x, y and ρ), their
velocities and accelerations (jerk is not inserted). In the states of the second and
the third filters there are the four joints of the Right and Left Arms, their velocities
and accelerations, while the last one is composed of parameters π (the distances
between skeletal points).

So, for the first three filters

sk+1 = Fsk + Γwk (5.27)

sk =


qk

q̇k

q̈k

 F =


I ∆tI ∆t2

2 I

0 I ∆tI

0 0 I

 (5.28)

where wk is a Gaussian stationary white noise sequence with zero mean and co-
variance Q. Notice that the model of process noise covariance matrix is changed
(see (3.31)). Model of Γ is taken from [7]

Γ =


∆t3

6 I

∆t2
2 I

∆tI

 (5.29)

Q is considered diagonal and each diagonal element is the covariance of the jerk
related to a Kinematic parameter.

The observation model is very similar to (3.32), only zk and H are slightly
different from (3.33)

zk =


q1,k
...

qn,k

 H =


I 0 0
... ... ...

I 0 0

 (5.30)
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For the last KF

πk+1 = Fπk F = I (5.31)

So, for parameters π, process noise is not considered. In the observation model

zk =


π1,k
...

πn,k

 H =


I

...

I

 (5.32)

For the first three filters, after N time steps, matrix Q is adapted using the innova-
tion sequence (matrix R is not adapted, because the covariance of the measurement
noise is assumed to be known). Considering the approximated estimation (5.26),
to extract diagonal elements of Q from ΓQΓT , it is needed to take the last four
diagonal elements of this matrix (that is a 12 × 12) and divided each of them by
∆t2.

Estimating Q, one could also adapt jerk bounds defined in Section 4.2, using
the jerk covariance σ2 (e.g. ...q sup = 3σ2 and ...

q inf = −3σ2).
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Chapter 6

Simulations in Matlab
Environment

In this chapter, some simulations, used to check the correctness and efficiency of
the algorithms introduced in Chapters 4 and 5, are presented. First, a simulation
to test algorithm 3 is discussed. Then, algorithms of Section 4.2 are analysed.
Finally the Adaptive Kalman filter is tested.

6.1 Simulation of Reachable Set Computation with
estimated acceleration

The first Matlab script simulates the Swept Volumes generation of a human who
walks in a room. No real data are used, in fact measurements are given by three
simulated depth sensors and afterwards are fouled by a random noise. Then, the
inverse kinematic is calculated, to obtain the Human Kinematic DOFs of Section
3.2. They are sent to the Kalman filter, that estimates their velocity, acceleration
and jerk. Finally, Reachable Sets are computed and Swept Volumes are generated.

The Kalman filter parameters are

Parameter Value
∆t 0.004 [s]

Process noise covariance 1
Measurement noise covariance 10

Initial state covariance 1000

Table 6.1: Parameters of Kalman Filter.

While positions, velocities and accelerations bounds are taken from [37]
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Joint Min Pos. Max Pos. Min Vel. Max Vel. Min Acc. Max Acc.
x −∞ [m] ∞ [m] 0 [m/s] 0.80 [m/s] -0.10 [m/s2] 0.10 [m/s2]
y −∞ [m] ∞ [m] -0.80 [m/s] 0.80 [m/s] -0.10 [m/s2] 0.10 [m/s2]
θ −π [rad] π [rad] −π/4 [rad/s] π/4 [rad/s] −π/8 [rad/s2] π/8 [rad/s2]
ρ −π/6 [rad] π/2 [rad] −π/10 [rad/s] π/10 [rad/s] −π/20 [rad/s2] π/20 [rad/s2]
αr,1 −π/20 [rad] 8π/9 [rad] −π/2 [rad/s] π/2 [rad/s] −π/4 [rad/s2] π/4 [rad/s2]
αr,2 inequality 3.49b −π/2 [rad/s] π/2 [rad/s] −π/4 [rad/s2] π/4 [rad/s2]
αr,3 inequality 3.49c −π/2 [rad/s] π/2 [rad/s] −π/4 [rad/s2] π/4 [rad/s2]
αr,4 π/9 [rad] π [rad] −3π/10 [rad/s] 3π/10 [rad/s] −3π/20 [rad/s2] 3π/20 [rad/s2]
αl,1 −π/20 [rad] 8π/9 [rad] −π/2 [rad/s] π/2 [rad/s] −π/4 [rad/s2] π/4 [rad/s2]
αl,2 inequality 3.49b −π/2 [rad/s] π/2 [rad/s] −π/4 [rad/s2] π/4 [rad/s2]
αl,3 inequality 3.49c −π/2 [rad/s] π/2 [rad/s] −π/4 [rad/s2] π/4 [rad/s2]
αl,4 π/9 [rad] π [rad] −3π/10 [rad/s] 3π/10 [rad/s] −3π/20 [rad/s2] 3π/20 [rad/s2]

Table 6.2: Positions, Velocities and Accelerations Bounds.

Running the script, with braking time Ts = 0.50 s, one obtains the plot shown
in Figure 6.1.

Figure 6.1: Swept volumes of a human who walks in a room.

Comparing Figure 6.2a with Figure 6.2b, it is easy to notice that swept volumes
computed with algorithm 3 are smaller.
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(a)

(b)

Figure 6.2: Figure 6.2a: Top-view of a human swept volumes computed with reach-
able set algorithm 1. Figure 6.2b: Top-view of a human swept volumes computed
with reachable set algorithm 3.

The second part of this simulation consists in checking if the swept volumes,
generated with both Reachable Set algorithms, contain Human position for the
next Ts seconds. To test this fact, for each of the four swept volumes shown in
Figure 6.3, GJK algorithm (see [13]) is used (notice that each Ts horizon is divided
into six parts). It returns the distance between the volumes and skeletal points
highlighted in Figure 3.6 (if a point is inside a volume, it returns zero).
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Figure 6.3: Swept volumes of a human, with position of skeletal points (in magenta)
for the next Ts seconds.

The script is run ten times: the distances, found using algorithm 1, are collected
in the histogram of Figure 6.4a, while the results for algorithm 3 are shown in Figure
6.4b.

Using the original algorithm, about 31% of the skeletal points are outside the
swept volumes; the maximum distance is 8 cm and the mean is of 2 cm. For the
modified algorithm, the points outside are more, about 57%; the maximum distance
is 12 cm, while the mean is still of 2 cm. Notice that, in these tests, swept volumes
are not augmented accounting for each body part dimension (see equation 3.50).
This choice has been made to better appreciate the differences between the two
algorithms, especially for second test, where the majority of points outside swept
volumes are very close to them, so they would be inside the augmented spherical
swept volumes.
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(a)

(b)

Figure 6.4: Figure 6.4a: Distances between skeletal points and swept volumes using
algorithm 1. Figure 6.4b: Distances between skeletal points and swept volumes
using algorithm 3.

6.2 Simulations of Reachable Set Computation
with bounded jerk

To test algorithms 6 - 7, first a simple simulation of trajectory generation is set up.
Jerk is given and considered piecewise constant; from it acceleration, velocity and
position are obtained. Then Reachable Set bounds are computed using algorithm
1 and algorithms 6 - 7.

Observing Figure 6.5, it can be noticed that the bounds computed with bounded
acceleration are bigger than the ones calculated with bounded jerk.
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Figure 6.5: a trajectory, with Reachability bounds computed with bounded accel-
eration or bounded jerk.

The second Matlab script simulates the swept volumes generation of a seated
human, who is performing some assembly operations. In this case, measurements
are given by a single, but real, Kinect camera and logged in a file that the KF
takes to estimate the state.

The only parameter that is changed from Table 6.1 is the discretization time ∆t,
that is now set equal to 0.03 s. DOF x minimum velocity is changed from 0 m/s to
−0.80m/s, to maintain the hypothesis of symmetrical bounds given in Section 4.2;
the other values of Table 6.2 remain unvaried. Jerk bounds are obtained taking
maximum and minimum values of each DOF’s estimated jerk and are summarized
in Table 6.3.

Joint Min Jerk Max Jerk
x -0.050 [m/s3] 0.050 [m/s3]
y -0.050 [m/s3] 0.050 [m/s3]
θ −π/16 [rad/s3] π/16 [rad/s3]
ρ −π/40 [rad/s3] π/40 [rad/s3]
αr,1 −π/8 [rad/s3] π/8 [rad/s3]
αr,2 −π/8 [rad/s3] π/8 [rad/s3]
αr,3 −π/8 [rad/s3] π/8 [rad/s3]
αr,4 −3π/40 [rad/s3] 3π/40 [rad/s3]
αl,1 −π/8 [rad/s3] π/8 [rad/s3]
αl,2 −π/8 [rad/s3] π/8 [rad/s3]
αl,3 −π/8 [rad/s3] π/8 [rad/s3]
αl,4 −3π/40 [rad/s3] 3π/40 [rad/s3]

Table 6.3: Jerks Bounds.
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In Figure 6.6, two swept volumes, obtained by running the script, are shown.

Figure 6.6: Swept volumes of a seated human, who picks up something from a
table.

Comparing Figure 6.7a with Figure 6.7b, the difference between the two swept
volumes is quite evident.

Notice that, if in some instants of time, estimated accelerations were near to
their bounds, swept volumes computed with bounded jerk could be very similar to
the ones computed with bounded accelerations.
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(a)

(b)

Figure 6.7: Figure 6.7a: Top-view of a human swept volumes computed with reach-
able set algorithm 1. Figure 6.7b Top-view of a human swept volumes computed
with reachable set algorithms 6 - 7.

The same test, to check if the swept volumes contain human position for the
next Ts seconds, is performed. The obtained distances are shown in Figure 6.8a
and Figure 6.8b.

Using the original algorithm, about 24% of the skeletal points are outside the
swept volumes; the maximum distance is 13 cm and the mean is of 1 cm. For the
modified algorithm, the points outside are more, about 52%; while the maximum
distance and the mean are still of 13 cm and 1 cm respectively.
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(a)

(b)

Figure 6.8: Figure 6.8a: Distances between skeletal points and swept volumes using
algorithm 1. Figure 6.8b: Distances between skeletal points and swept volumes
using algorithms 6 - 7.

Using the two simulations presented in this section, also a comparison between
algorithms 3 and 6 - 7 has been made. The visual difference between the swept
volumes generated with the two algorithms is practically null. But, performing
second test, the number of points out of swept volumes is greater for algorithm 3,
as shown in Figures 6.9a - 6.9b, even though the percentage difference is very small,
around 2 % (in the two histograms, only the interval [0.005, 0.03] is reported, to
better appreciate the difference). For this reason, but mostly because acceleration
is generally not constant also for small windows of time (see studies on velocity and
acceleration profiles of human arms, presented in [31]), algorithm with bounded
jerk approximates better the Reachable Set of Human motion. Also for these
simulations not-augmented swept volumes are considered, for the same reasons
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described in previous section.

(a)

(b)

Figure 6.9: Figure 6.9a: Distances between skeletal points and swept volumes using
algorithm 3. Figure 6.9b: Distances between skeletal points and swept volumes
using algorithms 6 - 7.

6.3 Simulations of Adaptive Kalman Filter

The first test for the AKF is the estimation of the dynamics of a simulated system
that has three DOFs. The state is composed of their positions, velocities and accel-
erations, while jerk is modelled as a zero mean Gaussian noise and only positions
are measurable.

True values of process and measurement noise covariance matrices Q and R are
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given and are

Qtrue =


0.05 0 0

0 0.05 0

0 0 0.05

 Rtrue =


0.1 0 0

0 0.15 0

0 0 0.8

 (6.1)

But they are unknown to the AKF, that starts the estimation with

Q0 =


0.01 0 0

0 0.01 0

0 0 0.01

 R0 =


0.02 0 0

0 0.03 0

0 0 0.16

 (6.2)

The innovation batches dimension is of 400; R is adapted using (5.7), while for Q
both methods presented in subsection 5.2.1 are tested.

To minimize the norm of (5.21), subjected to the constraint that all Q values
must be ≥ 0, Matlab function "fmincon" is utilized. For a ∆t = 0.5 s, R is
estimated quite well (see Figure 6.10a); for Q, results are acceptable (see Figure
6.10b). But, if ∆t is reduced, e.g. set equal to the one of the second simulation of
the previous section (∆t = 0.03 s), the Q estimate is totally wrong.

Instead, using approximation (5.26), Q estimate is good also for ∆t = 0.03 s
(see Figure 6.11). So, to adapt Q in the swept volume generation case, equation
(5.26) will be utilized, while the first method is discarded.

Second simulation is the test of AKF insertion in swept volumes generation
script illustrated in the previous section. The AKF structure is the one introduced
in Section 5.3.

First, the whiteness test described in Section 5.2 is run: it reveals that the in-
novation sequence, for a batch of 400 samples, is not white. So matrix Q is adapted
(R is kept fixed), using approximation (5.26) and, for each DOF, jerk bounds are
computed as ±3σ2, where σ2 is the jerk covariance. After some adaptations, diag-
onal elements of Q take very small values (around 10−9); the presence of very small
values in the process noise covariance matrix seems to cause an under-estimation
of the state with respect to the one obtained in previous section. However, a
comparison cannot be made, because true values of the state are unknown.
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(a)

(b)

Figure 6.10: Figure 6.10a: Estimation of measurement noise covariance matrix R.
Figure 6.10b Estimation of process noise covariance matrix Q.
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Figure 6.11: Estimation of process noise covariance matrix Q, using equation
(5.26).
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Chapter 7

Experimental Validations

In this chapter an experiment of HRC is described and results, obtained by applying
techniques developed in this thesis, are presented. The robot has to accomplish a
simple pick and place plus visual inspection task while cooperating with the human
worker.

7.1 Experimental Setup

For the implementation and validation of the modified Reachable Set Computation
algorithm and of the Adaptive Kalman Filter, experimental setup consists of:

• ABB FRIDA robot: a prototype of the currently commercially available ABB
YuMi. It is a two arms collaborative robot; each arm has 7 joints and can
be considered as an independent robot. A pair of grippers is mounted on the
left arm, while on the right there is a camera, to perform visual inspection
(see Figure 7.1). The robot is connected to an External PC through an
Ethernet-based interface.

• Microsoft Kinect V2: a RGB-D motion sensing camera used to detect the
presence of a human worker inside the robotic cell and to perform skeletal
tracking (highlighted in Figure 7.1).

• External PC: a workstation responsible of computing all the quantities to
generate swept volumes of the human worker, to compute safety constraints
introduced in Section 3.1 and consequently to scale both arms’ velocity. More
in depth: once that human worker is tracked, measurements are exploited
by the KF, that estimates human velocity, acceleration and jerk; then swept
volumes are generated. After that, based on robot joints actual positions and
velocities, and on swept volumes, safety constraints are computed. Finally,
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velocity scaling factor δ is calculated and sent to the robot (see Section 3.5).
Last two operations are performed for both robot’s arms separately.

Figure 7.1: ABB FRIDA robot and Microsoft Kinect V2 (highlighted in green).

In Table 7.1, values of the different radii used to determine the sphere-swept
volumes are displayed. Position bounds are unchanged with respect to the ones of
Table 6.2, velocity, acceleration and jerk bounds instead are varied (for new values
of velocity and acceleration a cue is taken from [41]).

The new values are reported in Table 7.2. Other relevant parameters values
are:

Ts = 0.30 s (7.1)

Process noise covariance = 0.5 (7.2)

Measurement noise covariance = 0.0001 (7.3)
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Body part radius [m]
Head 0.1
Thorax 0.1

Upper Arm 0.03
Lower Arm 0.03

Table 7.1: Values of radii, used to generate spherical swept volumes.

Joint Min Vel. Max Vel. Min Acc. Max Acc. Min Jerk Max Jerk
x -0.10 [m/s] 0.10 [m/s] -0.50 [m/s2] 0.50 [m/s2] -0.025 [m/s3] 0.025 [m/s3]
y -0.10 [m/s] 0.10 [m/s] -0.50 [m/s2] 0.50 [m/s2] -0.025 [m/s3] 0.025 [m/s3]
θ −0.25π [rad/s] 0.25π [rad/s] −π [rad/s2] π [rad/s2] −0.05π [rad/s3] 0.05π [rad/s3]
ρ −0.1π [rad/s] 0.1π [rad/s] −0.5π [rad/s2] 0.5π [rad/s2] −0.025π [rad/s3] 0.025π [rad/s3]
αr,1 −0.25π [rad/s] 0.25π [rad/s] −0.6π [rad/s2] 0.6π [rad/s2] −0.03π [rad/s3] 0.03π [rad/s3]
αr,2 −0.25π [rad/s] 0.25π [rad/s] −0.6π [rad/s2] 0.6π [rad/s2] −0.03π [rad/s3] 0.03π [rad/s3]
αr,3 −0.25π [rad/s] 0.25π [rad/s] −0.6π [rad/s2] 0.6π [rad/s2] −0.03π [rad/s3] 0.03π [rad/s3]
αr,4 −0.15π [rad/s] 0.15π [rad/s] −0.3π [rad/s2] 0.3π [rad/s2] −0.015π [rad/s3] 0.015π [rad/s3]
αl,1 −0.25π [rad/s] 0.25π [rad/s] −0.6π [rad/s2] 0.6π [rad/s2] −0.03π [rad/s3] 0.03π [rad/s3]
αl,2 −0.25π [rad/s] 0.25π [rad/s] −0.6π [rad/s2] 0.6π [rad/s2] −0.03π [rad/s3] 0.03π [rad/s3]
αl,3 −0.25π [rad/s] 0.25π [rad/s] −0.6π [rad/s2] 0.6π [rad/s2] −0.03π [rad/s3] 0.03π [rad/s3]
αl,4 −0.15π [rad/s] 0.15π [rad/s] −0.3π [rad/s2] 0.3π [rad/s2] −0.015π [rad/s3] 0.015π [rad/s3]

Table 7.2: Velocities, Accelerations and Jerks Bounds.

The work cell is shown in Figure 7.2. The robot performs the following tasks:

1. Left arm takes a board from the feeder (highlighted in green) and places it
in the area in the blue circle.

2. Right arm performs a visual inspection.

3. Left arm takes the board again and places it on the slide (highlighted in
yellow).

While human operator:

1. takes a fuse from the red box on the right and mounts it on the board.

2. takes a chip from the red box on the left and affixes it on the board.

3. puts the assembled board on the feeder and takes a new board.
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Figure 7.2: A view of the work cell where human operator and robot collaborate.

To better understand the whole operation, in Figure 7.3 there are some screen-
shots of the tasks accomplished by the robot, without operator presence, while in
Figure 7.4 robot and human operator are working together.

Figure 7.3: Some screenshots taken during the experiment, without human opera-
tor presence.

64



Figure 7.4: Some screenshots taken during the HRC experiment.

7.2 Results

The experiment is performed three times: in the first one Reachable Set is com-
puted using algorithm 1. Second time algorithms 6 - 7 are utilized. In the last
test Reachable set is still computed with bounded jerks, but the Adaptive Kalman
Filter is inserted and jerk bounds are adapted accordingly. Human operator tries
to perform the same sequence of movements for all the three experiments, to have
repeatability, but it is impossible to avoid variations.

A video of these three experiments can be found in [35]. In the first experiment,
where bounded accelerations are used, after one of the robot arms has stopped to
avoid collisions with human operator, it takes a long time to start again its motion,
even though the worker completes his task quite quickly. Furthermore, sometimes
robot does not stop when the worker is performing his task, due to a not perfect
estimate of human movements: no collision happens, but it would be dangerous if

65



the carried object was bigger than an electronic board.
In the second test, when bounded jerks are used, after a stop, robot arm motion

restarts faster, because the generated swept volumes are smaller. Like for the
first experiment, sometimes the robot does not stop, again due to an imprecise
estimation.

Finally, when the AKF is introduced, robot always stops when the operator is
performing a task, so the estimate is improved. Moreover, the robot movements
restart quite fast after a stop, like in the previous experiment.

Now the experiments are examined more in depth, considering a time window
of 100 seconds. Every time the right arm (called Robot1) has to stop to avoid
collisions, the interval, in which its speed scaling factor δ is equal to zero, lasts on
average 2 seconds, when bounded accelerations are used. Furthermore, once over
four cycles, Robot1 does not halt, even if the operator is performing his task (δ
behaviour is shown in Figure 7.5, the black arrows approximately indicate the time
instant in which the operator enters in robot workspace). In the second test, where
bounded jerks are used, the interval is smaller, about 0.9 seconds and Robot1 stops
its motion whenever human worker is taking a fuse from left box (see Figure 7.6).
Finally, when AKF is utilized, δ is equal to zero for approximately 1 second and
Robot1 halts during all four cycles, as one can notice from Figure 7.7.

Considering the left arm (called Robot2), differences between the three tests
are more evident. In the first experiment, each interval, in which speed scaling
factor is null, lasts on average 2 seconds. Moreover, human operator enters in
the scene seven times, but Robot2 stops only six times; this fact also underlines
that, using bounded accelerations, three and a half cycles are completed during the
considered time window (human operator performs a task twice a cycle in Robot2
workspace). Using bounded jerks, each interval lasts 0.7 seconds, but Robot2 stops
only six times out of eight, because of an imprecise estimate. However, notice
that four complete cycles are accomplished, unlike the previous test. In the last
experiment, δ is kept equal to zero for a longer time compared with previous case,
in fact intervals last on average 1 seconds, nevertheless, four cycles are completed
and Robot2 halts whenever human worker is performing a task, so the estimation
of his motion is more precise. Plots of δ for the three experiments are shown in
Figures 7.8, 7.9, 7.10.
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Figure 7.5: Robot1 speed scaling factor for bounded accelerations test.

Figure 7.6: Robot1 speed scaling factor for bounded jerks test.
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Figure 7.7: Robot1 speed scaling factor for AKF test.

Figure 7.8: Robot2 speed scaling factor for bounded accelerations test.
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Figure 7.9: Robot2 speed scaling factor for bounded jerks test.

Figure 7.10: Robot2 speed scaling factor for AKF test.
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Robot1 and Robot2 joints velocities can be found in Figure 7.11; time intervals
during which δ is null are highlighted in black.

Figure 7.11: On top, there are joints velocities of Robot1 and Robot2 for bounded
accelerations test. In the middle, one can found velocities for bounded jerks test.
At the bottom, velocities for AKF test are shown.

Finally, swept volumes of the human operator are generated for three noticeable
time instants (the ones in which the worker is performing a task). It is easy to notice
that swept volumes generated with bounded accelerations are bigger than the ones
generated with bounded jerks (see Figure 7.12). Swept volumes obtained in the
AKF test are not shown, because differences with respect to the second test are
minimum, due to the fact that jerk contribution for Reachable Sets computation
is very small, so, also adapting jerk bounds, quite the same swept volumes are
obtained.
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Figure 7.12: On top, there are swept volumes of human operator taking a fuse. In
the middle, one can found swept volumes of the human picking up a chip. At the
bottom, swept volumes of the worker, putting a board on the feeder, are shown.
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Chapter 8

Conclusions

This thesis aims at giving a contribution to make the Swept Volumes generation
adaptive and less conservative, in order to increase robot’s productivity, while
preserving human operator safety, during cooperative tasks. Two main solutions
have been developed. The former is a modification of the algorithm computing
Reachable Set of Human Motion: lower and upper bounds are computed on the
basis of human joints position, velocity and acceleration, while jerk is supposed
to be bounded. The latter is the introduction of an Adaptive Kalman Filter, that
substitutes the Linear Kalman Filter. The peculiarity of AKF is that process noise
covariance matrix is adapted online, to retrieve its true value, so a better estimate
is obtained and, considering jerk as process noise, jerk bounds previously defined
can be adapted from jerk covariance.

After a brief introduction to Human-Robot Collaboration and an overview of
the state of the art of Human Detection & Tracking and Intention Estimation
(Chapter 2), a review of the background on Swept Volumes generation has been
given (Chapter 3). To better understand algorithms and techniques introduced in
next chapters, Section 3.3 and Section 3.4 are of particular importance. In the
former LKF implementation has been explained, and in the latter, Reachable Set
computation algorithm with bounded acceleration has been defined.

An effective contribution of the thesis has been the modification of Reachable
Set computation algorithm (Chapter 4). At first, bounded accelerations have been
substituted with estimated ones, and then, fixed bounds on jerk have been intro-
duced. In Chapter 5 the Adaptive Kalman Filter has been proposed: the chosen
method is Innovation-Based and two different strategies to estimate process noise
covariance matrix have been given.

After this theoretical part, some Matlab simulations have been carried out
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(Chapter 6). The swept volumes, generated with new algorithm, are less conserva-
tive, while the AKF works well in a 3 DOFs simulated system, but a comparison
with the LKF in the swept volumes generation case cannot be given, because the
estimated positions, velocities and accelerations values are different in the two case,
but the true values are unknown.

Finally, experiments of HRC have been performed (Chapter 7). From the anal-
ysis of these tests, it has been proven that robot productivity has been increased
by the algorithm with bounded jerk. It has also been demonstrated that the AKF
provides a better estimate, in fact robot always stopped when human operator was
entering in its workspace, while using a LKF sometimes it did not halt.

Considering possible future works, one of the most interesting might be the in-
troduction of Machine Learning strategies into Swept Volumes generation. Human
operator usually performs repetitive tasks, so swept volumes could be adapted
according to the knowledge of what he/she is doing. Other works could focus
their attention on a further improvement of the Kalman Filter estimate, for ex-
ample introducing new sensors, as for instance accelerometers, or accounting for
time-delayed measurements.
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