
Politecnico di Milano

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Telecommunication Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

Counting people through Wi-Fi probe

detection on a low-cost sensor

Relatore: Prof. Alessandro Enrico Cesare Redondi

Correlatore: Prof. Matteo Cesana

Tesi di laurea di:

Paolo Eugenio Galluzzi Matr. 835876

Anno Accademico 2016�2017

Abstract

What if you could know the study hall's occupancy before leaving your house? What
if, during a hard study period, you could know what classrooms are completely free?

It would be useful and could sometimes saves you some precious time, right?

The main goal of this thesis project is to develop a low-cost occupancy sensor, that
can estimate the number of people in classrooms, laboratories, study halls and other
environments frequented by the students of Politecnico di Milano. The estimation is
carried out through the Wi-Fi probes detection and count. These probes are particular
types of Wi-Fi packets, which contain the unique identi�cation number of the sender
devices.
Along with the occupancy estimation, the sensor provides also environmental data like
temperature, humidity, pressure and brightness. All the data collected are uploaded to
a public website, to make them easy to reach by students. Along with the typical web-
site method, a chat-bot is implemented, in order to make the data consulting quicker
by students using smartphones, without loading the entire website. We think that this
last solution will be more appreciated by those students who frequently use messaging
apps, rather than websites, to retrieve informations.
We achieved promising results, that makes us better comprehend the potentiality of
this non intrusive Wi-Fi count method. If combined with environmental data, we be-
lieve that this technique can lead to further steps, in order to achieve the higher goal
of a smart campus development.

Keywords: IoT, Smart Campus, Wi-Fi probe detection, Wi-Fi sensing, Indoor Occu-
pancy count.

Sommario

E se potessi sapere il grado di occupazione della biblioteca prima di uscire di casa? E
se, durante un forte periodo di studio, potessi sapere quali aule sono completamente

libere? Sarebbe utile e ti potrebbe far risparmiare del tempo prezioso, giusto?

Lo scopo principale di questo lavoro di tesi è quello di sviluppare un sensore a basso
costo, capace di stimare il numero di persone presenti nelle classi, nei laboratori, nelle
aule studio e in altri ambienti frequentati dagli studenti del Politecnico di Milano. La
stima viene e�ettuata attraverso la cattura e il conteggio dei probe request del proto-
collo Wi-Fi. Questi probe sono dei particolari tipi di pacchetti Wi-Fi, che contengono
l'identi�cativo univoco del dispositivo che gli invia.
Assieme alla stima dell'occupazione dell'aula, il sensore fornisce anche misure sui dati
ambientali quali temperatura, umidità, pressione e luminosità. Tutti questi dati sono
poi caricati su un sito di pubblico dominio, di modo che gli studenti possano consultarli
facilmente. Oltre al classico sito internet, viene fornito anche un chat-bot, di modo che
i dati siano più velocemente consultabili dagli studenti muniti di smartphone, senza
aver bisogno di caricare l'intero sito. Pensiamo che quest'ultima soluzione verrà parec-
chio apprezzata dagli studenti che usano spesso applicazioni di messaggistica, rispetto
ai siti, per ricevere informazioni.
Abbiamo ottenuto risultati promettenti, che ci hanno fatto capire meglio le potenzial-
ità di questo metodo di conteggio non invasivo. Se combinato con i dati ambientali
crediamo che questa tecnica potrà portare a grossi passi avanti, con l'obiettivo di rag-
giungere presto lo sviluppo di uno Smart Campus.

Parole Chiave: IoT, Smart Campus, Cattura dei probe Wi-Fi, Wi-Fi sensing, Con-
teggio dell'occupazione in interni.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Project Objective . 2
1.3 Thesis Outline . 3

2 State of the art 5
2.1 Wi-Fi Probe frequency . 5
2.2 Estimating occupancy through probe request 7
2.3 MAC Address Randomization . 9
2.4 Occupancy detection through ambient measurements 10

3 Theoretical considerations 11
3.1 The IEEE 802.11 Standard . 11

3.1.1 Physical Layer . 12
3.1.2 Medium Access Control layer - 802.11 MAC Frame 16
3.1.3 IEEE 802.11 Standard Scanning Functions 18

3.1.3.1 Probe Requests - A little focus 19
3.2 The MQTT Protocol . 22

3.2.1 Protocol Structure . 22
3.2.2 Retain function and QoS . 24
3.2.3 Protocol Messages and Example 25

3.3 Node-RED and MQTT duo . 29
3.4 The ESP8266 Microcontroller . 32

3.4.1 The Microcontroller . 32
3.4.2 Espressif Systems' ESP8266 . 33

3.4.2.1 The Watchdog Timer 34
3.4.3 Serial Interfaces . 35

3.4.3.1 I2C . 35
3.4.3.2 SPI . 36

4 System Implementation 37
4.1 Sensor-Side Implementation . 38

4.1.1 Sensors and wiring . 38
4.1.2 From the schematic to the Printed Circuit Board 42
4.1.3 The Program . 45

i

Contents

4.1.3.1 Power-safe mode . 52
4.1.3.2 The Estimation Model 52

4.2 Server-Side Implementation . 57
4.2.1 The Server . 57
4.2.2 The MQTT Broker - Installation and set-up 61
4.2.3 Node-RED and its extensions 64
4.2.4 The Final Flows . 67

4.2.4.1 Telegram Bot's creation and set-up 72
4.2.4.2 Final Homepage . 72

5 Experiments and results 75
5.1 The Dataset . 76
5.2 The Model's validation technique . 76
5.3 The Model's Performance . 77

5.3.1 ANTLab . 77
5.3.2 Sala Tesisti - OpenSpace room 83
5.3.3 B.5.3 . 88
5.3.4 L.26.01 . 90
5.3.5 Final Table . 93

6 Conclusions and future works 95
6.1 Thesis achievements . 95
6.2 Future Works . 97

Appendix A 99

Bibliography 101

ii

List of Figures

2.1 A Wireshark screen-capture - by Julien Freudiger 9

3.1 OSI model and IEEE 802.11 interested layers 11
3.2 802.11 Architecture . 12
3.3 DSSS example . 13
3.4 IEEE 802.11 Physical and MAC Frame 17
3.5 Active Scanning and Authentication . 18
3.6 Probe Request frame's structure . 19
3.7 Probe Request Frame - Wireshark . 20
3.8 An example of MQTT structure . 22
3.9 QoS=0 transmission . 24
3.10 QoS=1 transmission . 24
3.11 QoS=2 transmission . 25
3.12 Connection scheme . 26
3.13 Publish scheme . 26
3.14 Subscribe scheme . 27
3.15 Unsubscribe scheme . 27
3.16 Publication with PuTTY and a Mosquitto broker 28
3.17 Subscription with PuTTY and a Mosquitto broker 28
3.18 The Node-RED logo . 29
3.19 Node-RED �ow page . 30
3.20 Node-RED dashboard module . 30
3.21 Node-RED �ow . 31
3.22 Arduino Uno board . 32
3.23 NODEMCU devkit, based on ESP-12 module 33
3.24 NodeMCU pin arrangement . 34
3.25 Watchdog timer function . 34
3.26 An I2C connection . 35
3.27 This �gure shows an example of SPI connection with 2 peripherals . . . 36

4.1 Adafruit BME280 PCB and sensor's picture 38
4.2 A simple LDR circuit, its structure and dimensions. 39
4.3 Photo and circuit of a simple button. 40
4.4 The circuit's schematic created with Eagle CAD 41
4.5 Breadboard's inner connections. 41

iii

List of Figures

4.6 Fritzing's prototype image, and real implementation photo 42
4.7 PCB layout printed by EAGLE Cad software. 43
4.8 A 3D printer adapted as a sort of CNC machine. 43
4.9 The board immersed in a solution of hydrogen peroxide and muriatic acid 44
4.10 Final circuit onto the PCB. The NodeMCU board is not soldered in

order to be easy changed,upgrade or detach. 44
4.11 Arduino IDE interface in the board selection menu. 45
4.12 The libraries included in the program in the Arduino IDE. 46
4.13 The program's �owchart. 50
4.14 The removing function. 51
4.15 The estimation model's function is a "brute force" research of the correct

coe�cients and power value. 55
4.16 The Raspberry Pi 3 Model B single-board computer 57
4.17 Amazon Web Services console's main page 59
4.18 Instances' page, where running instances are managed and new ones

created. 59
4.19 AMIs selection page. 60
4.20 The instance's type selection. Is the selection of the hardware of th

virtual machine. 60
4.21 The SSH connection with PuTTY client on Windows. 61
4.22 MQTT publish without and with username and password. 62
4.23 MQTT subscription without the correct username and password. 62
4.24 Mosquitto's con�guration �le opened with nano editor. 63
4.25 Node-RED editor's login page. 64
4.26 Node-RED setting.js lines to add authentication. 65
4.27 Node-RED vast library of nodes and �ows from the community. 65
4.28 Node-RED's editor page with the main project's �ow. 66
4.29 The �rst sub�ow represented by the tab "Sala Tesisti" on the Node-RED

Dashboard . 67
4.30 The Main �ow of Node-RED . 71
4.31 A conversation with Telegram's bot implementation. 71
4.32 The BotFather's conversation guides through a bot creation. 72
4.33 The main homepage . 73
4.34 Data from the "Sala Tesisti" tab. 73

5.1 Estimation vs. Real Value and Error graphs - Related to the ANTLab . 78
5.2 Model's parameters in one round. 79
5.3 Evolution of the number of MACs, divided by type. A range of 50 inputs

is considered. 80
5.4 Error graphs of the �rst and �nal model. 81
5.5 Model's parameters confrontation. 81
5.6 The β parameter variations with rounds. 82
5.7 Estimation vs. Real Value and Error graphs - Related to the open space. 83
5.8 Model's parameters of the previous round. 84
5.9 Error graphs of the �rst and �nal model -Open space. 85
5.10 Model's parameters confrontation - Open space case. 86

iv

List of Figures

5.11 The β parameter variations with rounds, and its average - Open space
case. 87

5.12 Error graphs of the �rst and �nal model - Room B.5.3. 88
5.13 Model's parameters confrontation - B.5.3 Classroom. 89
5.14 The β parameter variations with rounds, and its average - B.5.3 Classroom. 90
5.15 Error graphs of the �rst and �nal model - L.26.01 91
5.16 Model's parameters confrontation - L.26.01 Classroom. 91
5.17 The β parameter variations with rounds, and its average - L.26.01 Class-

room. 92

A.1 An example of signal and barker sequence multiplication 99

v

List of Figures

vi

List of Tables

3.1 Channels Availability . 14
3.2 802.11 Amendments . 16
3.3 MQTT protocol - messages . 25

A.1 XOR Rules . 99

vii

List of Tables

viii

Chapter 1

Introduction

1.1 Overview

Since 2007 there has been a rapid rise in the use of Wi-Fi enabled devices. Nowadays

the majority of people uses more than one of these devices, like smartphones, tablets or

notebooks. Some journalists de�nes nowadays smartphones as: "the remote-controls

of our lives". Sure enough what in the past were notebooks are today's smartphones

and tablets: they contain everything, from our social contacts to our work stu�.

According to some interesting statistics of 2014:

1. There will be more than 7 billion new Wi-Fi enabled devices in the next 3 years.

� Sys-Con

2. Wi-Fi has become the medium of choice. 2/3 of US consumers prefer Wi-Fi to

Cellular. � Deloitte

3. By 2017, 60% of carrier network tra�c will be o�oaded to Wi-Fi. � Wireless

Broadband Association

4. 79% of smartphone users have their phone with them for 22 hours a day. � IDC

5. 67% of smartphone users check for messages without being noti�ed. � Pew Re-

search Center

Considering that we can reasonably assumes this statistics valid also nowadays, it seems

that without Wi-Fi or some sort of wireless connection to internet, we are completely

lost.

If we consider that streaming platforms (e.g. Net�ix, Google Play Films, Spotify etc.)

1

1. Introduction

are in continuous growth1, and that these contents are mostly enjoyed using mobile

devices, we can see the importance of Wi-Fi.

Let's now focus on a university campus: this place is a melting pot for students of

di�erent parts of the world. For some of them, Wi-Fi is the only connection they

use inside the campus. Students can therefore bene�t of the university connection in

almost all the campus' places. Although here is the interesting thing: when the Wi-Fi

of our laptops, smarphones or tablets is on, our device sends packet of di�erent types.

Some of them can require a connection to a website, or bring voip tra�c, or multimedia

content. Typically, when connected to an AP, these packets are encrypted, in order

to protect your privacy during web sur�ng. However some of these packets are not,

and they are particular packets called "probes". When your device is searching for

available networks, it sends speci�c packets called "Probe Requests". These packets

are a sort of "Passport" of your device, that tells the device's name (the name of the

manufacturer of the device and the unique number of your device) and, in some cases,

also where you have been (the names of other Wi-Fi access points that you've saved

[4]).

1.2 Project Objective

The main purpose of this project is to lay the foundations of a system that can

improve students' experience at the university campus. In the era of the Internet of

Things, this is a way of moving towards the concept of "smart campus".

Let's clarify these statements with an example: suppose that you're a student in a

hard exam session, and you need to choose between two study halls. They are pretty

far apart thus you want to make sure that, when you get there, there is at least one

free spot where you can study. Suppose also that there are others free spaces e.g.

classrooms, and you want to �nd the one with enough free space for you and your

colleagues. It would be easier and faster to know this information without having to

check yourself all the places, right? So why don't deploy, in every room of the campus,

a sensor which can collect and provide these data?

Until the past years make this sort of measurements requires high cost. A computer

with a Wi-Fi card able to capture nearby tra�c must be used, and therefore the costs

and space requirements were higher. Nowadays cheap electronic sensors can be found

at low price, around 2¿ or less, and microcontrollers becomes more powerful, cheapest

and simpler to use. For these reason, the goal of this thesis project is to develop a Wi-Fi

1Media Consulting estimates that the streaming platforms will cover over the 20% of the "pay"
market by 2018

2

1.3. Thesis Outline

sensor that can estimate people's presence through probe request capture, along with

measuring environments data like temperature, humidity, pressure and brightness. All

the data collected must be anonymised and sent to a central server that makes these

data available to all the students.

1.3 Thesis Outline

This section summarizes the layout and contents of the thesis' chapters.

Chapter 1 presents the context in which the thesis is carried out and de�nes the

goals of this research. The main goal is related to the development of a device

capable of detecting and estimating the number of people in a room. Along with

this estimation, the device provides some ambient measurements, that could be

useful to the students and for future analysis. This chapter also provides the

summary of the thesis and outlines the contents of this work.

Chapter 2 provides an overview of the Wi-Fi sensing and probe request analysis

panorama. It describes the state of the art for indoor and outdoor occupancy de-

tection and tracking, with the use of Wi-Fi and other environment data. Moreover

there is an analysis of the random MAC phenomena, with a hint on the privacy

issues relating to these analysis.

Chapter 3 introduces the theoretical basis of this work. It explain in detail how Wi-

Fi works, with a particular focus on probe requests. Furthermore the protocol

used for the device-to-server communication (MQTT), and the program used to

manage and display all the informations to the users are presented.

Chapter 4 describes the system's implementation part. It's divided in two main

parts: a hardware part, and a software part. The �rst one describes how the

sensors works and how they are connected to the main microcontroller. It ex-

plain also how, from a �rst prototype, we create a �nal Printed Circuit Board,

smaller and more practical than the �rst one. In the �nal section of this �rst

part, we explain the program's functions through a �owchart, and introduce the

estimation's model and its characteristics.

The second part explains the software implementation: the server set-up, the

communication server con�guration, the displaying of the outputs, and the pos-

sible methods for data visualization at users' disposition (the website and chat-

bot).

3

1. Introduction

Chapter 5 its the model's performance test part. Here we explain our dataset and

validation model used. Then we show our model's performance in terms of error

between the estimation, and the real number of people. The performances are

evaluated for every dataset in our possession, and followed by some graphs that

helps the results' explanation. At the end of the chapter a summary table is

presented and commented, in order to give some explanations to the �nal results.

Chapter 6 is the �nal conclusive part of the project. Our initial goals and their

achievement are discussed, leaving then the space for some considerations about

possible future works.

4

Chapter 2

State of the art

This chapter gives an overview of the current advancements in indoor and outdoor

occupancy detection using Wi-Fi. The main goal is to provide a wide view on the state

of the art for the subject of this work. This analysis serves as a common base for all

the investigation, decisions and results presented later on.

The �rst section is an analysis on how talkative are our devices, thanks to the data

presented on [12] by Julien Freudiger.

In the second section we discuss the feasibility of using these captured data to actually

estimate the real number of people, in an indoor and outdoor environment. Among

the plenty of papers regarding this subject, we chose the ones that seems to be more

suitable for our purposes, like [11], [19], [7] and [15]. In this section we also mention a

peculiar use of probe request's capture, thanks to the work of V. Acuna et al [1].

In the third section we introduce the random MAC problematic, and some possible

solutions.

At last in the fourth section we analyse the use of indoor measurements such as light,

temperature, humidity and CO2 in order to help the Wi-Fi occupancy estimation. For

this purpose we present the work of Luis M. Candanedo et al. [8], where the occupancy

detection is obtained only with light, temperature, humidity and CO2 measurements.

2.1 Wi-Fi Probe frequency

One of the challenges of wireless networks is their discovery process. The IEEE

802.11 standard de�nes two mechanism of announcing the device's presence: the ac-

tive scanning, and the passive scanning. While the passive scanning will be explain

later and it's not important for our purposes, the active scanning is the one we're really

interested about. Mobile devices can proactively discover APs by sending probe re-

5

2. State of the art

quest frames (�g. 3.6 of then next chapter) on the various Wi-Fi channels. Since IEEE

standard doesn't impose a broadcasting frequency for probe requests, the scheme used

by devices depends on their Operating System. By actively scanning the channels,

devices can keep the Wi-Fi radio on for just few milliseconds.

Probe requests are practically a unique �ngerprint since they contain the MAC ad-

dress of the mobile devices. Users are mostly unaware of the fact that their devices

broadcast probe requests. For this reason Julien Freudiger in [12] analyse the probe

request's frequency of various devices and OSs.

The measurements are initially divided in six hardware con�guration, in order to un-

derstand which con�guration captures the largest number of probes.

1. dynamic where there is one antenna hopping across 802.11b/g channels.

1. static where the antenna is �xed at one of the three non overlapping channels of

802.11b/g

3. dynamic where there are three antennas hopping accross 802.11b/g channels in a

coordinated fashion

3. dynamic.s where the three antennas haven't coordinated hopping

3. dynamic.s.n where the three antennas explore also the n fashion (5GHz)

3. static where the three antennas are �xed one in every non-overlapping 802.11b/g

channel (1,6,11).

After these tests, the con�guration that gives the better output was the last one, with

the three antennas �xed on the three non overlapping channels of Wi-Fi b/g. Once

selected the hardware con�guration, the test involves four di�erent types of devices:

a Samsung with Android 4.4, LG with Android 5.0.1, Iphone 6 with iOS 8.1.3 and a

Blackberry with its proprietary OS. These devices were tested in di�erent con�gura-

tion: with a di�erent number of APs saved (until 20 APs), while on charging, with

screen on, Wi-Fi settings opened and so on.

In conclusion this work shows that probe requests are bursty in nature and their be-

haviour depends on the OS version. Android devices are particularly "talkative" (ap-

proximately a burst of probes every minute), and their number of probes (in case of

Android 4.4) increase linearly with the number of SSIDs in memory. Approximately

we're talking about a number of probes between 2000 and 3000 per hour on Android

devices, less than 200 for iOS and 0 for Blackberry devices.

In conclusion we can say that Wi-Fi probes o�ers a good parameter for presence esti-

mation in public areas.

6

2.2. Estimating occupancy through probe request

2.2 Estimating occupancy through probe request

We have seen that Wi-Fi probe requests are a big privacy threat, and that di�erent

devices produce a di�erent amount of this packets. In [11] this �ngerprints are used in

order to estimate transit passenger population at a bus stops.

This work presents the sequent question: how it is possible to improve the quality of

public transportation? The work proposes a solution based on an estimation of the

passenger population at bus stops, in order to optimize bus routes in real-time and

increase the quality of service. Two stops are taken as reference: the �rst one in an

uncrowded suburban environment, and the second one in a crowded terminus one.

The hardware of the system is base on a Raspberry Pi (a single-board Linux computer

using an ARM-based system-on-a-chip) with a USB Wi-Fi adapter capable of monitor

mode. This hardware costs almost 30¿, while the one we used in our project is not a

computer but only a microcontroller, and costs about 2¿.

The system uses channel hopping during monitor mode, in order to scan more channel.

With Airodump-ng (a software for sni�ng Wi-Fi packets) a log �le is created, from

which their model applies the next �lters:

RSSI - is used for �ltering according to the distance from the bus stop. Because

signal strength depends on the distance between the receiver and the device, if

the device is further away, the signal strength is weaker.

Number of received packets - if the number of received packets is less than 2 they

are discard because supposed to belong to passers by.

Time - they use two limits: less than one minute duration indicates a "too-short"

time, while more than thirty minutes a "too-long" time. Devices belonging to the

�rst case probably represent people passing by, while devices from the second case

represent permanent devices in residential or o�ce environments in the proximity

of the bus stop.

After applying these �lters, the data collected shows a lower error rate in the crowded

environment rather that in the suburban, less crowded environment. The error was

calculated as:

ei =
ai − oi
oi

100 (2.1)

where ai and oi are the approximate number and exact number of passengers respec-

tively. In the �rst environment they obtain a maximum error of 13.71%, while in the

suburban environment the maximum error reaches 30.91%.

In conclusion the work of Thongtat Oransirikul et al. veri�ed a useful relationship

7

2. State of the art

between distance and RSSI values: this last one decreases proportionally with distance

and independently on the Wi-Fi device type. By delaying their estimation by one

minute they were also able to obtain a near real-time estimation of passenger numbers,

with a moderately-high positive correlation to the observed numbers.

Although they used a more powerful device (the Raspberry Pi), and makes all the anal-

ysis o�ine, the work of this team is similar to the one we want to implement. However,

we want to use a low cost chip without too much computing capabilities. Also our goal

and dataset is di�erent, and composed by students having classes or studying in indoor

environments.

Related to the indoor occupancy detection using Wi-Fi, the work of Edwin Vattap-

paramban et all. [19] shows that, using probe requests, it is possible to track the

occupancy in di�erent zones inside a building. This team have used a hardware called

"WiFi Pineapple", a device with dual integrated radios and Atheros AR9331 System

on a Chip, with 16MB ROM and 64MB of RAM. All these devices are accessed using

their web interface built on a Unix machine called BusyBox. The software used to

capture WiFi probe requests is tcpdump, with a �lter to reject packets with an RSSI

value less than -100dBm or higher than -30dBm. The collected MAC addresses were

hashed, in order to preserve anonymity of the users. Since the �nal goal of this work

was the real-time occupancy monitoring, an algorithm was used for tracking the users

and take advantage of their past location estimations. The WiFi-PA were positioned

in a particular "grid", in order to map the di�erent RSSI values with a precise position

on the grid. To get a more accurate location information and triangulate users, their

RSS informations had to be captured by at least 4 WiFi-PAs. Other than the fact

that in our case we're not interested in users exact location, this work uses, like the

previous, a more powerful SoC with more than one WiFi modem. In conclusion to [19],

they achieved to estimate the location of a mobile device based on probes information

captured at multiple reference locations. This results shows that probe request can,

again, be a valuable solution for occupancy monitoring in future smart buildings.

A �nal particular mention is dedicated to the work of V. Acuna et al. [1]. In this

work the people's localization through Wi-Fi probe capture is applied in important ap-

plication such as search and rescue operations. In this development, a WiFi-PA Mark

V (like the one used in [19], useful since can be battery-powered) is used attached to

a UAV (Unmanned Aerial Vehicle) to estimate user's location in case, for example, of

a natural disaster. The WiFi-PA is mounted on the UAV along with a smartphone,

which provides internet connectivity to the WiFi-PA and therefore its remote control.

Moreover, the random forest machine learning algorithm is used to localize the Wi-Fi

8

2.3. MAC Address Randomization

devices into prede�ned zones, based on the observation of the RSSIs from Wi-Fi de-

vices. In conclusion the results of the project shows an accuracy of 81.8% for �nding

the true zone of a Wi-Fi device.

2.3 MAC Address Randomization

In order to protect users' privacy, since version 8 of iOS, Android 6.0, Windows 10

and Linux kernel 3.18, the MAC address randomization measure was adopted. The

exact methods, timing and MAC generated depends on the OS, but in line of principle

this technique allows the device to send probe request with di�erent MAC addresses

that the real one they possessed.

In [9] a timing-based attack is presented, in order to defeat MAC randomization tech-

niques and discover the real MAC of the device. This attack considers the inter-frame

arrival time between frames using the same MAC address. Evaluating the distances,

the algorithm estimate if two or more groups of frames with di�erent MACs comes

from the same device or from di�erent ones.

Although this method is promising, for our purpose we only want to divide random

MACs from non random ones. From our results, and those of [12] and [19], we founds

that it's easy to detect random MAC addresses. Organizations developing products

using Wi-Fi must register to IEEE MAC Address list [5]. Unless a device generates

a random MAC address with an assigned OUI identi�cation, random MAC addresses

are easy to recognize since they'll not correspond to any of the manufacturer on the

OUI list. Software like Wireshark automatically detects MAC address included in the

OUI list, and label them with the manufacturer's name.

A more careful analysis, brought up by Julien Freudiger, consist in an analysis of the

sequence numbers. This progressive numbers shows that it's possible to link di�erent

packets with di�erent MAC addresses, sent by the same device. As we can see in �g-

ure 2.1, device 5a:e3:24:ea:35:4a broadcasts a probe request with SEQ=1039 and just

after this event, a device Apple_51:2d:db broadcasts a probe with SEQ=1040. It's

Figure 2.1: A Wireshark screen-capture - by Julien Freudiger

reasonable to assume that the incremental SEQ indicates that both packets might be

9

2. State of the art

originated from the same Apple device. In the same �gure we can also see what we've

said before, that if the MAC address is not registered into the IEEE MAC Address,

Wireshark doesn't recognize it as a registered manufacturer.

For our purposes this kind of detection of ID's randomization is enough to create two

groups of MAC Addresses: the random and the non-random ones.

2.4 Occupancy detection through ambient measure-

ments

In this last part of the chapter we want to introduce a study on accurate occupancy

detection using only data of temperature, brightness, humidity and CO2 [8]. Other

works in this direction ([2], [3]) reports that, thanks to occupancy data as an input

for HVAC1 control algorithms, energy savings can raise between 29% and 80% inside

buildings. The work [8] exploits environment data using a Raspberry Pi, a microcon-

troller connected to a DTH22 low-cost temperature and humidity sensor, a camera,

light sensor and CO2 sensor. The data is collected within an o�ce of 5.85m x 3.50m x

3.53m (W x D x H), and the measurements, along with the camera time stamps, are

sent via ZigBee standard. The obtained datasets are then used to train and test four

classi�cation models: CART, RF, GMB and LDA.

The Classi�cation And Regression Trees models stratify the region where the predic-

tions are done, into a number of simple regions.

Random Forest is instead a model that makes an e�ort to improve the accuracy of pre-

diction by creating many classi�cation trees. During the training, a set of observations

not used to obtain the trees, are used to estimate the error and are therefore referred

as "the out-of-bag" observations.

The GBM model tries to improve the prediction for a decision tree by using informa-

tion from previously generated trees.

LDA model uses Bayes theorem to estimate probabilities under the assumption that

each of the variables follows a normal distribution.

In conclusion, the work shown that it's possible to obtain high accuracy in the deter-

mination of occupancy by the sole use of ambient parameters. High accuracy (around

97%) were found when using only two predictors e.g. temperature and light, with LDA

models.

This is an important achievement, that could be fundamental in developing and support

a more precise estimating sensor.

1Acronym that stands for Heating, Ventilation and Air Conditioning.

10

Chapter 3

Theoretical considerations

This chapter is intended as a review of the theoretical fundamentals used in this

thesis. The aim is to better comprehend the working principles of the technologies

used in this work.

In order to do this, the �rst part of this chapter is a review of the IEEE 802.11 standard:

its amendments, the MAC frame, its functions and in particular the discovery function.

In the second part the MQTT protocol for IoT is introduced, along with the NODE-

RED programming tool. The third and last part is an overview of the microcontroller

panorama, with particular focus on the ESP8266 family.

3.1 The IEEE 802.11 Standard

Figure 3.1: OSI model and IEEE 802.11 interested layers

In computer science the IEEE 802.11 standard, better known as Wi-Fi, is a set of

Medium Access Control (MAC) and Physical (PHY) recommendations for implement-

ing a WLAN (Wireless Local Area Network) communication between devices. The

11

3. Theoretical considerations

standard is created and maintained by the Institute of Electrical and Electronic En-

gineers (IEEE) and its �rst version was created in 1997. Since then the standard has

evolved to introduce more functions and capabilities (such as QoS in the 802.11e stan-

dard) either at MAC and Physical layer. The layer of the OSI Model1 in which IEEE

802.11 standard operates is shown in �gure 3.1.

Some of the most relevant component of a Wi-Fi network (see Figure 3.2) are:

� Station (STA): the wireless terminal (Computer, smartphone, sensor...)

� Access Point (AP): it's the "bridge" between wireless and wired network

� Basic Service Set (BSS): set of terminals regulated by the same coordination

function 2. It can be related to the concept of "cell" in a mobile radio network

� Extended Service Set (ESS): set of infrastructure BSS 3.

Figure 3.2: 802.11 Architecture

Without entering in too much details, in the sequent sections the physical and MAC

layers of the 802.11 standard are described.

3.1.1 Physical Layer

The legacy version of 802.11 de�nes three techniques to transmit data and reduce

interference: Infrared (IR), Frequency Hopping Spread Spectrum (FHSS) and Direct

1The Open System Interconnection model was the �rst model to introduce the concept of protocol
layer architecture, with 7 layers. Its aim was to standardize computer networking.

2The c.f. is a logic function that manages the access to the radio channel e.g. decides whether
station A or station B transmits data

3In the infrastructure BSS all communications have to be with the AP. Direct connections between
terminals are not possible, and have to use the access point's relay function.

12

3.1. The IEEE 802.11 Standard

Sequence Spread Spectrum (DSSS).

The infrared technology is based on the 850-950nm wavelength, and this lead to some

disadvantages like the limited coverage radius and the impossibility to overcome ob-

stacles like walls. For these reason, and for the slow 1MBit/s rate, this technique is

obsolete and no longer used.

Frequency hopping spread spectrum is a technique based on the arti�cial expansion of

the band of the signal. It guarantees better performance against noise 4 . In the FHSS

case, the spreading is obtained dividing the band in sub-bands of 1MHz, in order for

the transmitter to change the sub-channel in a given sequence. To avoid interference,

near stations must have orthogonal hopping sequences. This technique guarantees a

rate between 1 and 2 MBit/s but due to these poor performance is no longer used in

Wi-Fi.

Direct sequence spread spectrum, as FHSS, is based on the expansion of the signal

band. In this case the expansion is obtained by means of the multiplication of the

signal by a sequence called "barker sequence"5 of higher rate. The bandwidth is pro-

portional to the rate of the transmitted signal, therefore higher rate (like that of the

barker sequence) coincide to larger bandwidth.

0 100 200 300 400

−1

0

1

Original Base-Band Signal

0 200 400 600 800
0

1

2

3

·104
PSD of the Base-Band signal

0 100 200 300 400

−1

0

1

Spreaded signal

0 200 400 600 800
0

0.5

1

·104
PSD of the spreaded signal

Figure 3.3: DSSS example

4�The term noise is used customarily to designate unwanted waves that tend to disturb the trans-
mission and processing of signals in communication systems and over which we have incomplete
control�[17, p. 179]

5Example of a data stream and random barker sequence multiplication can be found in the Ap-
pendix A

13

3. Theoretical considerations

The power of the signal is therefore distributed along the spectrum and, at the

receiver, this technique improve the signal to noise ratio 6 thus the performance and

robustness of the system. The �gure 3.3 shows the Power Spectral Density (PSD)

in relation to two di�erent signals: the "base-band signal" has lower rate and thus

lower bandwidth requirements; the "Spreaded Signal" is the original signal multiplied

by the barker sequence with higher rate; this causes an enlargement of the occupied

bandwidth, as seen in the right corner �gure. Since in DSSS the multiplication with a

higher rate code has only a spreading purpose (in contrast with the CDMA technique

in which has also a multiple access purpose), all the transmissions inside the same BSS

use the same barker sequence. DSSS guarantees a bit rate between 1 and 2 MBit/s.

The DSSS technique operates in the ISM band 7 among 2,4 and 2,4835 GHz, with a

total range of 83,5 MHz. Within this interval 14 channels are de�ned, with bandwidth

of 22 MHz.

Table 3.1 shows the availability and frequencies of the Wi-Fi channels in various regions.

In U.S.A. and Europe the three non overlapping channels are 1, 6 and 11. In terms of

modulation, the DSSS uses DBPSK and DQPSK.

Country Available Channels
U.S.A. 1-11 (2,412-2,462 GHz)
Europe 1-11 (2,412-2,472 GHz)
Spain 10-11 (2,457-2,462 GHz)
France 10-13 (2,457-2,472 GHz)
Japan 14 (2,484 GHz)

Table 3.1: Channels Availability

The performance, in terms of bit rate, of the above-mentioned techniques, are really

low. Due to this and other factors (such as frequency con�icts or QoS8 requirements),

during the years some amendment to the legacy version of 802.11 were done, charac-

terized with a letter beside the number of the standard:

802.11b Introduced in 1999 it uses a spread spectrum technique known as CCK (Com-

plementary Code Keying). This technique can adapt the rate with respect to

the channel quality, and reaches 5,5 and 11 Mbit/s, depending on the code's

6The Signal to Noise Ratio (SNR) is de�ned as the ratio between the signal and the noise's power.
It provides an intuitive measure for describing the �delity with which the demodulation process in the
receiver recovers the message signal from the modulated signal in the presence of additive noise [17].

7The Industrial, Scienti�c and Medical band is a license free portion of the spectrum around
900MHz and 2,4GHz. Because it's unlicensed, it's also crowded and subject to high interference.

8Quality of Services

14

3.1. The IEEE 802.11 Standard

length in use9. Also shorter physical layer frame and DQPSK modulation limit

the overhead and increase the throughput. To guarantee compatibility through

di�erent releases, the preamble and header part of the physical frame are always

transmitted at 1 Mbit/s.

802.11a Described as a clause of the 1999 speci�cation, it allows to reach up to 54 Mbit/s

using a di�erent portion of the spectrum, the 5 GHz band, and a di�erent trans-

mission's technique: the Orthogonal Frequency Division Multiplexing (OFDM).

This technique divide the main data stream in di�erent data streams with lower

rate and transmits every "sub-stream" at di�erent carriers. These sub-carriers

are characterized by orthogonality, that means that di�erent carriers don't inter-

fere each other. Moreover the modulation techniques are di�erent, and based on

the quality of the channel: for a good quality channel 64-QAM modulation can

be used which guarantees up to 54 Mbit/s.

802.11g Rati�ed in June 2003 this extension is a "copy" of the 802.11a speci�cation trans-

lated in the 2,4 GHz ISM band. As this is the same frequency of the 802.11b

release, there are some compatibility issues to be solved due to di�erent rates and

techniques (802.11g uses OFDM that is a multicarrier technique while 802.11b

uses DSSS, a single carrier technique). To guarantee compatibility while data

are transmitted with OFDM, control and signaling information use the old phys-

ical layer based on modulation on a single carrier. Like 802.11a, even 802.11g

transmits at a bit rate of 54 MBit/s.

802.11n This standard has the peculiarity of not being implemented for a speci�c por-

tion of the spectrum, but can be used in di�erent frequencies depending on the

region. Just like other releases, the aim of this speci�cation is to improve the

throughput. To obtain this purpose 802.11n implements modi�cation in physical

and MAC layer, de�ning a new Advanced MAC layer 10. In the Physical layer the

increasing of the rate is obtained by the combination of di�erent approaches like

spatial multiplexing - the use of more antennas (MIMO - Multiple Input Multiple

Output) in transmission and/or reception to have more independent information

streams at once (up to 4 in 802.11n); A higher bandwidth - 40 MHz instead of

22 MHz; Enhanced modulation techniques with higher constellation, like 128,

9With respect to DSSS that uses barker sequences of 11 bit, CCK uses codes of 4 or 8 bit, to obtain
respectively 5,5 and 11 Mbit/s

10More information about MAC layer in the next section, however Advanced MAC will not be
covered for the purposes of this thesis.

15

3. Theoretical considerations

256 QAM; Shorter guard bands. The combination of these improvements allow

a theoretical rate of 600 Mbit/s, and commercial rate of 300 Mbit/s.

802.11ac Published in December 2013, is based on the previous standard and uses the 5

GHz spectrum. MIMO system now uses up to 8 antennas, and a MU-MIMO

system 11 can be implemented. Also wider bandwidth up to 80 and 160 MHz

are used. The theoretical bit-rate is 1 Gbit/s, while the real is 500 Mbit/s.

This standard, as 802.11a, is less important in this work of thesis, because the

implementation uses only 802.11b/g/n, in the 2,4 GHz bands.

Table 3.2 sums up all the standards and their principal characteristics.

Standard Year Band Bandwidth Modulation Data Rate
802.11b 1999 2,4 GHz 20 MHz CCK 11Mb/s
802.11a 1999 5 GHz 20 MHz OFDM 54Mb/s
802.11g 2003 2,4 GHz 20 MHz OFDM 54Mb/s
802.11n 2009 2,4-5 GHz 20-40 MHz OFDM (up to

64-QAM) with
up to 4 MIMO
antennas

600Mb/s

802.11ac 2013 5 GHz 40-80-160 MHz OFDM (up to
256-QAM) with
up to 8 MIMO
antennas

1Gb/s

Table 3.2: 802.11 Amendments

3.1.2 Medium Access Control layer - 802.11 MAC Frame

This section presents the MAC frame and IEEE 802.11 functions. Channel access

control mechanism are not discussed here because are less important to the thesis'

objective, but further information about 802.11 Medium Access Control can be found

in [13].

The IEEE 802.11 syntax is more complex with respect to the wired LAN one,
mainly because of the propagation medium that require more robust transmissions due
to interference/attenuation.
There are three types of frame: Management, Control and Data frame.

11MU-MIMO is a technology that allow the router to communicate with multiple devices simulta-
neously, as opposed o MIMO with uses multiple antennas to communicate only to a single device at
once.

16

3.1. The IEEE 802.11 Standard

Management frames are those type of frame used for functions like authentication,
association, and for all those that enables stations to establish and maintain commu-
nications. Control frame coordinates the data transfers between stations and AP e.g.
access control mechanism. The data frame, as the name says, transports the user data.
The structure of the MAC frame is represented in the �gure 3.4, along with the size of
every �eld of the frame.

Figure 3.4: IEEE 802.11 Physical and MAC Frame

Frame Ctrl 2 Byte �eld that contain:

� Protocol Version: speci�es the protocol version (the current is the 0)

� Type: 00 for Management, 01 for control and 10 for data frames. 11 is not
assigned yet.

� Subtype: further information about the type of frame e.g. Probe Requests
(�g. 3.6) are 0100.

� To DS : with the next �eld, speci�es how to solve the 4 address �elds.

� From DS : same as above �eld.

� More Frag : it's a �ag with value 1 if there are more frame following.

� Retry : de�ne if the frame is the retransmission of a previous frame.

� Pwr Mgt : assumes 1 value if the station goes to power safe mode after
transmission.

� More Date: signal to the station in power safe that there are more data
frame in the AP bu�er.

� Wep: no more in use. It was used to indicate wep cryptography un the
frame body.

� RSVD : indicates that frames have to be elaborated in receiving order.

Duration ID Indicate the transmission duration in microseconds.

17

3. Theoretical considerations

Address 1-4 Indicate the station, access point, source or destination based on ToDS and
FromDS.

Seq. Ctrl used to represent the order of the fragments of the same frame and recognize
duplicates.

Frame Body Has variable length and contain the informations of the upper level protocols.

CRC Cyclic Redundancy Check, it's an error code recognition sequence.

3.1.3 IEEE 802.11 Standard Scanning Functions

The IEEE 802.11 Standard implements various function such as addressing,power

management, synchronization, authentication; for the purpose of this work however,

we only focus on the scanning function.

Whenever a station wants to connect to an access point, it has to make an operation to

discover nearby available BSSs. This operation is called Scanning, and can be perform

in two di�erent ways:

Passive Scanning The station selects the �rst channel and waits the beacon frames12

from APs. Then changes channel and repeats the procedure until all the channels

are scanned. This procedure, although less consuming because the station doesn't

transmits anything, is slow and may require many seconds to be completed.

Active Scanning In this case the station always scans all the channels, but a so-

licitation mechanism is introduced: the station now participates actively to the

scanning sending a packet called "Probe Request". As shown in �gure 3.6 the

Figure 3.5: Active Scanning and Authentication

12Beacon frame is a management frame transmitted periodically to announce the presence of a
Wireless LAN, and it contains all the information about it. In an Infrastructure BSS only the AP
sends beacon frame.

18

3.1. The IEEE 802.11 Standard

station waits until the channel is free, then sends a probe request packet in

broadcast13; Once a probe is sent the station starts a probe timer countdown,

and waits for answers. At the end of the timer the station process the answers

and then switches to the next channel. The APs that receive the probe request

messages answer with a unicast14 packet called "Probe Response", that contains

information about its BSS. Probe responses are collected by the devices for every

channel. This method is more power consuming, because requires the device to

actually transmits packets and be active during the scanning period, but has the

advantage of being faster than the passive method.

3.1.3.1 Probe Requests - A little focus

The probe request is a packet of management type (0100 in the subtype �eld) sent
by a station searching for available networks. Probe requests are a big hazard with
respect to privacy, because they're not ciphered, hence the source and destination's
MAC address are exposed to everyone who's monitoring the network. With the aid of
a wireless card with sni�ng capabilities any device in the connection range can captures
probe requests from the surrounding environment, and keeps trace of di�erent MAC
addresses (for various purposes, see chapter 2).
Figure 3.6 shows the probe request frame.

Figure 3.6: Probe Request frame's structure

Some important �elds for our purposes are:

� Destination Address: is the broadcast MAC address FF:FF:FF:FF:FF:FF

� Source Address: is the device's MAC address

� SSID: it's the network's name e.g. "polimi"

� Supported Rates: List of the rates supported by the device

� RSSI: Received signal strength indication is the power level in dBm at which the
sni�ng adapter received the packet. Gives also an estimate of the distance of the
device.

13Broadcast's destination address is FF:FF:FF:FF:FF:FF, and it means that all the devices in that
range are recipient of the message.

14Unicast means that the message have a unique recipient

19

3. Theoretical considerations

In �gure 3.7, thanks to the aid of a software called Wireshark15, a probe packet

structure can be seen.

Figure 3.7: Probe Request Frame - Wireshark

As seen in Chapter 2, since the probe requests are unencrypted and contain the unique

ID of the device, they can be collected and analysed in order to tracking devices for

various scopes e.g. targeted advertising. In 2013, for example, an article from Ars

Technica [18] reports a known marketing �rm which implements Wi-Fi probe tracking

15https://www.wireshark.org

20

3.1. The IEEE 802.11 Standard

behind a smart trash can.

In order to avoid (or better raise the complexity) user-tracking through Wi-Fi probe de-

tection, most nowadays Operating Systems (OSs) have implemented di�erent variants

of MAC address randomization. This technique rely upon the transmission of probe

requests with di�erent MAC addresses with respect to the real device's one. The e�ect

is that when the device is in scanning mode, it uses a random ID for every packet, so

the user's tracking is more complex, and therefore privacy less compromised.

Since the purpose of this work is the occupancy estimation through Wi-Fi probe de-

tection, the MAC address randomization is a real problem, because it leads to an

overestimation of the number of devices. To our advantage, only iOS devices actually

used this technique by default.

The method used to solve this problem is shown in the next chapter, but it is important

to point out that our device doesn't send out the collected MAC addresses, but the

sole total number of them.

21

3. Theoretical considerations

3.2 The MQTT Protocol

In 1999 Andy Stanford-Clark (IBM) and Arlen Nipper (Arcom) needed a com-

munication protocol that minimizes the power and band consumption during device

communication. This protocol should have been simple to implement, reliable, low data

consuming and agnostic16. What was conceived for internal use was then published

without license costs in 2010 with the name Message Queue Telemetry Transport. In

2014 the MQTT was standardized by the OASIS17, and in 2016 by the ISO18 with name

ISO/IEC PRF 20922. Nowadays MQTT is used for Machine-to-Machine communica-

tion, Internet of Things and every environment that requires simple implementation

and low power consumption. Big corporation like Facebook (with Facebook Messenger)

and Microsoft (with Azure IoT) use the MQTT protocol.

3.2.1 Protocol Structure

MQTT is based on a publish/subscribe model: a client (could be a sensor, com-

puter, smartphone etc.) called "publisher" sends a message, and other clients called

"subscribers" can receive this message (one-to-many message distribution system). In

this way publisher and subscriber ignore the existence of other clients. Moreover a

third player named "Broker" is added. It behaves as a sort of "client proxy", and is

able to �lter and distribute the communication between publishers and subscribers -

it manages the data stream. With the term "client" we intend both publisher and

subscriber. This infrastructure doesn't need any synchronization, and an example can

be see in �gure 3.8.

Figure 3.8: An example of MQTT structure

16Agnostic, in computer terms, means independent from the implementation's platform.
17Organization for the Advancement of Structured Information Standards, see [10]
18International Organization for Standardization, see [6]

22

3.2. The MQTT Protocol

Broker is the main player of the publish/subscribe structure. Its role is to manage all

the mqtt clients and their messages, then �lters and decides which subscribers

has to receive them or not.

MQTT client can be a publisher, subscriber or both and sends or receives messages

from the MQTT broker.

Topic is an UTF-8 string19 with a structure similar to directories. This string is used

by the broker to �lter and sort incoming messages, and by the client to publish

and subscribe. The portions of the topic are separated by a slash "/" called

"topic level separator". An example could be:

Polimi/DEIB/�oor3/o�ce5/temperature (3.1)

Topics are case-sensitive and also spaces can be used, so "Polimi" its di�erent

from "polimi" and "hithere" its di�erent from "hi there" topic. In order to

enhance �ltering capabilities mqtt implements some "wildcards", for example:

Polimi/DEIB/�oor3/+/temperature (3.2)

Polimi/DEIB/�oor3/# (3.3)

Topic 3.2 shows the use of a single level wildcard (+) to show all the temperature

data for the third �oor of the DEIB building, while 3.3 topic uses a multi level

wildcard (#) that shows all the data (e.g. temperature, humidity, occupancy) of

the same place. Wildcards are useful to select more topics at the same time.

Filters The broker �lters messages so that any subscriber receives only the right ones.

This �ltering procedure can be based on di�erent properties:

� Topic: as seen above, the broker can �lter and sort messages with respect

to the topic they refer, and delivers only the required topic's messages.

� Content: the message is �ltered based on its content. It's a powerful but

also risky method because messages can change or be ciphered.

� Type: interesting method that can, for example, recognize and �lter error

messages from event messages.

19UTF-8 is a character encoding standard, like ASCII, to represent symbols.

23

3. Theoretical considerations

3.2.2 Retain function and QoS

When a client subscribe to a topic, this last one is empty. Only when someone

publish something the subscribers will see the change. Thanks to the retain function

a publisher can force the broker to save the last message for a given topic. In this way

when a new client subscribes to that topic, the broker sends the last saved message.

This could be useful, for example, in the case in which a client subscribes a temperature

topic which receives updates every 15 minutes. Thanks to the retained �ag by the

publisher side, the subscriber receives the last temperature registered in the room

without having to wait for the next update.

The basic publish/subscribe model described doesn't guarantees that a sent message

arrives at destination. To improve the reliability of the system QoS techniques where

introduced, in particular the standard distinguishes among 3 di�erent class of Quality

of Service:

Class 0 "At most one": is a best e�ort approach without any warranty, that means

that no acknowledge of successful transmission packet is needed by transmission's

side.

Figure 3.9: QoS=0 transmission

Class 1 "At least one": the client continues to transmit the message until it is ac-

knowledged (PUBACK) by the broker. In this case the message can be received

more that once.

Figure 3.10: QoS=1 transmission

Class 2 "Exactly once": the client sends the message with QoS �eld equal to 2. The

broker receives the message and stores its ID while sends a PUBREC packet to

the client to inform it about the correct reception. The storing of the message

ID is useful to the broker to discard duplicate packets. When the client receives

24

3.2. The MQTT Protocol

the PUBREC discards the initial packet and sends a PUBREL. Upon receiving

the PUBREL packet the broker clears the stored ID and ends the exchange with

a PUBCOMP message.

With this method the message arrives only once.

Figure 3.11: QoS=2 transmission

3.2.3 Protocol Messages and Example

This section is intended as a review of the type of packets of MQTT protocol, and

an example of connection, publish and subscribe.

Table 3.3 shows some control packets and their description.

Control packet Direction of Flow Description
CONNECT Client to Server Client request to connect to server
CONNACK Server to Client Connect acknowledgement
PUBLISH Client to Server or Server

to Client
Publish message

PUBACK Client to Server or Server
to Client

Publish acknowledgement

PUBREC Client to Server or Server
to Client

Publish received (QoS=2 part 1)

PUBREL Client to Server or Server
to Client

Publish release (QoS=2 part 2)

PUBCOMP Client to Server or Server
to Client

Publish complete (QoS=2 part 3)

SUBSCRIBE Client to Server Client subscribe request
SUBACK Server to Client Subscribe acknowledgement
UNSUBSCRIBE Client to Server Unsubscribe request
UNSUBACK Server to Client Unsubscribe acknowledgement
PINGREQ Client to Server PING request
PINGRESP Server to Client PING response
DISCONNECT Client to Server Client is disconnecting

Table 3.3: MQTT protocol - messages

25

3. Theoretical considerations

Connect

The connection starts with a request called Connect, composed by essential informa-

tions like the client ID, the type of connection - session if the broker has to save all

client's activity and loss packets; Clean if all the informations of previous session are

cleaned. Also a username and password �elds are required to authenticate the client;

it's possible to use SSL encryption and in this case username and password are not

necessary. It is also possible to send a "last will message", that informs the other clients

in case of an interruption.

The broker responds with a CONNACK packet that contains the session, a �ag indi-

cating if the opening of the session is successful (if the session was already open the

�ag will be false) and a return code from 0 to 5 that tells the result of the action:

0: Successful connection

1: Unacceptable version

2: ID rejected

3: Server unavailable

4: Wrong username and password

5: Unauthorized

Figure 3.12: Connection scheme

Publish

The publish message is composed by a packet identi�er (a name or unique code), the

topic, the type of QoS required, the retain �ag, the payload (the data of the packet)

and a �nal �ag that tells if the packet is a retransmission or not. The respond to the

PUBLISH message depends on the QoS �eld as seen above.

Figure 3.13: Publish scheme

26

3.2. The MQTT Protocol

Subscribe

This is the message that the receiving client sends to the broker in order to announce his

availability to receive data from the respected publisher/topic. In a single subscribe

message the subscriber must specify the topic/s (a single subscription message can

contain more than one topic) and QoSs requirements. This message is acknowledged

by a SUBACK message that must contain the packet ID used by the SUBSCRIBE

packet, and a return code like CONNECT messages' ones, for each topic subscribed.

Figure 3.14: Subscribe scheme

Unsubscribe

This message cancels the client's subscription to a topic, so it contains the client ID and

the topic from which being disconnected. As a response the broker sends an UNSUB-

ACK message containing only the packet ID used by the UNSUBSCRIBE message.

Figure 3.15: Unsubscribe scheme

27

3. Theoretical considerations

Figure 3.16 shows an example of publication20 to a topic "test" with di�erent QoS

for each message.

Figure 3.16: Publication with PuTTY and a Mosquitto broker

Figure 3.17 shows a subscription to the same topic where the subscriber sees what

the publisher sends.

Figure 3.17: Subscription with PuTTY and a Mosquitto broker

In this cases either publication and subscription are protected by username and

password: in this way not all the users that knows the broker's public IP address and

topic can publish or subscribe because they have to know the credentials (in this case

"tesi" and "1802").

20See www.mosquitto.org for more details about the commands

28

3.3. Node-RED and MQTT duo

3.3 Node-RED and MQTT duo

In the 1970s J. Paul Morrison, computer programmer for IBM, invented the �ow-

based programming as a way of describing an application's behaviour with a series of

black-boxes connected together to form a network. Each box has a well-de�ned purpose,

with a data input, an elaboration part and an output. In this way the representation

of a program in simpler because each problem can be divided in simple steps and, even

without understand every line of code within each box, everyone can look at the glow

and get a sense of what it's doing.

Based on the idea of �ow-based programming, in early 2013 Nick O'Leary and Dave

Conway-Jones, IBM's engineers, give birth to Node-RED21.

Figure 3.18: The Node-RED logo

Started as a tool for visualising and manipulating mappings between MQTT top-

ics, Node-RED quickly became a much more general software tool for wiring together

hardware devices, APIs and online services. In September 2013 Node-RED became

Opensource and in October 2016 it became one of the founding projects of the JS

Foundation.

Nowadays Node-RED provides a browser-based editor that makes it easy to wire to-

gether �ow using the wide range of nodes in the palette. There are node for every

type of service, and new nodes are developing everyday. The programming language

used by Node-RED is JavaScript but the �ow-implementation allows to reduce users'

programming knowledge to a minimum.

Here are some examples of �ows implementation with Node-RED:

1. The following (3.19) is a simple �ow created using the Dashboard module that

create a live data dashboard. The input nodes receive a numerical value (slider)

and a string (text input) and send them via MQTT thanks to the MQT output

node properly con�gured. Then two MQTT input nodes are con�gured to receive

inputs from the same topic used as output before, and print their outputs to a

21See www.nodered.org for more details

29

3. Theoretical considerations

free line space in the dashboard, and a graph. Also a ping node is used, and

con�gured to ping Google's site and giving the result in the dashboard.

Figure 3.19: Node-RED �ow page

2. The next �gure (3.20) is the dashboard's user interface of the above �ow (3.19).

Slider, text input, text output and graph are shown in the dashboard UI, while

MQTT input and output nodes are hidden because they're not from the dash-

board module. The website created by Node-RED is visible, within the network,

searching for the machine's IP address (the computer where Node-RED is in-

stalled) followed by :1880 (the default Node-RED's port).

Figure 3.20: Node-RED dashboard module

30

3.3. Node-RED and MQTT duo

3. The last �gure show a more complex �ow, divided in two main parts: the top

part begins with an HTTP request node, that retrieves the current temperature

that a sensor is reading via HTTP request. After that the �ow proceed with

a function node that �lters out outlier values, those outside of a certain range.

Finally if the temperature is determined to not be an outlier, it is stored into a

database in the �nal node.

The lower half part of the �ow is settled to be triggered every 15 minutes. During

this section the program looks at the data stored in the database and collects

the average temperature over a 15 minute time frame. Once done, the average is

sent via MQTT message and either turn on air conditioning or do nothing based

upon a certain temperature threshold.

Figure 3.21: Node-RED �ow

31

3. Theoretical considerations

3.4 The ESP8266 Microcontroller

3.4.1 The Microcontroller

A microcontroller (also called MCU - MicroController unit) is an integrated elec-

tronic device on a single chip. It is born as an evolution of the microprocessor and it's

used in embedded systems. The microcontroller, as opposed to the microprocessor, is a

complete system that integrates on a single chip the processor, the program and RAM

memory and also some I/O channels (Pins).

Since 2005 the microcontroller panorama has changed and gain more interest from all

sort of people. Thanks to Arduino platform, the microcontrollers and in general the

world of DIY (Do It Yourself) spread among all the world. This is because the sim-

plicity of fast prototiping, where thanks to a hardware platform connected to the pc

and a simple piece of software with which people can program microcontrollers, makes

simple electronic projects and basic knowledge available to all the people.

Figure 3.22: Arduino Uno board

Figure 3.22 shows an Arduino Uno board. It uses an ATmega328P microcontroller,

32KB of �ash memory, 2KB of ram, 1KB EEPROM, 14 I/O digital pins and 6 analog

input pins. Thanks to its simple hardware, wiring, and software, it's easy for hobbyist

and professional prototyping with the board.

Thanks to its open-source nature, the Arduino has a lot of cheapest clones, that work

with the same software and helped expanding the microcontroller di�usion. Along

with clones, shields that expand Arduino Uno capabilities, like adding more I/O pins,

Wi-Fi, Servo-motor dedicated connectors and so on, were commercialized.

One of this low cost "expansion" adds Wi-�, and it's based on the ESP8266 chip by

Espressif.

32

3.4. The ESP8266 Microcontroller

3.4.2 Espressif Systems' ESP8266

Figure 3.23: NODEMCU devkit, based on ESP-12 module

The ESP8266 is a low cost Wi-Fi chip produced by the Chinese manufacturer

Espressif Systems. It combines Wi-Fi capabilities with an MCU with its memory, ram

and I/O pins. Depending on the module's version it can have from 3 to 22 active pins.

Its very low price (more or less 2$) and compatibility with Arduino IDE contribute to

its di�usion. Some of the chip's features are:

Power ESP work at 3.3v, while Arduino works at 5v.

CPU Tensilica Xtensa Diamond Standard L106 Micro, a 32bit RISC microprocessor

with a clock frequency of 80MHz.

Memory The NodeMCU module used in this thesis has 128 KB and 4 MB of respectively

memory and storage.

Connectivity IEEE 802.11 b/g/n Wi-Fi, with support to WEP and WPA/WPA2 authentica-

tion.

GPIO 16 General Purpose I/O pins

Interfaces ESP support SPI, I2C and UART on dedicated pins.

In this thesis the NODEMCU module with ESP-12 version is used. With respect to

ESP-01 module, this implementation has the advantage of having an FTDI USB to

serial UART integrated, and can be connected to the PC with a simple USB - microUSB

cable, without having to connect other components.

Figure 3.24 shows the pin disposition and functions in a NODEMCU v1 board:

33

3. Theoretical considerations

Figure 3.24: NodeMCU pin arrangement

3.4.2.1 The Watchdog Timer

A common features of microcontrollers is the so-called Watchdog. The main reason

to explain this part of the MCU will be seen later on. The watchdog timer is a timer

used to detect in�nite loops or deadlock during an execution. In �gure 3.25 a graphical

explanation can be seen.

Figure 3.25: Watchdog timer function

During the normal execution of a program, the microcontroller regularly resets the

watchdog timer, in order to avoid its expiration. If a malfunction, some long cycles

or deadlock occurs, the MCU is not able to "kick" (or fed) the timer. When this one

expires, the harware is automatically reset, in order to prevent the deadlock. The

34

3.4. The ESP8266 Microcontroller

problem with this timer is that, in case of long cycles, it may expires and reset the chip

even when not necessary.

3.4.3 Serial Interfaces

A serial interface is a communication interface that transmit data in serial mode,

that means one bit at a time sequentially. There are a number of di�erent standards for

serial interfaces to microcontrollers, that di�er from the number of pins and approaches

to communication.

In this section we'll explore the I2C and SPI serial interfaces, in order to better com-

prehend the principal connections used with microcontrollers and the one used in this

project.

3.4.3.1 I2C

Sometimes known as the Two-Wire Interface (TWI) it is a bus (Binary Unit System)

that can support multiple devices connected to the same two wires. It can run at either

5 or 3.3V, with top speeds of up to 400Kbit/s.

The two data lines of I2C operate as both inputs and outputs, and must have pull-up

resistors connected (unless they are integrated in the microcontroller board). In general

remote sensors connected to the microcontroller will require 4 wires: two for data and

two for power (Vin and GND). I2C is based on the master-slave paradigm: devices are

either masters or slaves, and there can be more than one master device per bus.

Figure 3.26: An I2C connection

The SCL is the Serial Clock Line, and it's a clock, the timing supplied by the master.

The SDA is the Serial DAata line and carriers the data. When there is data to be

transmitted, the sender (master or slave) takes the SDA line and sends data as logic

hights or lows in time with the clock signal. When the transmission is complete the

SDA pin is released.

35

3. Theoretical considerations

3.4.3.2 SPI

The Serial Peripheral Interface is a microcontroller bus standard that uses four

data lines and a top speed of 80Mbit/s. While the �rst three data lines are shared,

the fourth is unique for every device connected. In this interface there can only be one

master device (usually a microcontroller).

Figure 3.27 shows an example of SPI connection.

Figure 3.27: This �gure shows an example of SPI connection with 2 peripherals

The master have a dedicated Slave Select (SS) line for each of the slave devices to select

the one it communicates with. The other two lines are required for data communication

since separate lines are used for each direction of communication:

MOSI - Master Out Slave In, carriers the data from the master to the slave device.

MISO - Master In Slave Out does the reverse, carriers the data from the slave to the

master.

Finally the SCLK (Serial CLocK) line is for the clock.

The SPI protocol is also used as a means of ICSP (In-Circuit Serial Programming) on

some microcontrollers such as the ATmega22 and ATtiny23 families.

22http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx
23http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx

36

Chapter 4

System Implementation

In every project there are theoretical basis and a practical application of them. In

the previous chapter the theoretical fundamentals were discussed while this chapter is

intended as an explanation of the system's implementation. In order to avoid messing

stu� up, and divide what is the hardware implementation from the software one, the

chapter is divided into two main parts:

1. Sensor-side: the "hardware part" of the project (except for the program inside

the ESP8266) dedicated mainly to the construction of the circuit. In this part

the choices, characteristics and functionalities of the sensors are discussed. Af-

ter a brief introduction on their characteristics and behaviours, the schematic

drawing is illustrated with the building of the prototype. Later on the PCB1

layout and making process is faced, in order to implement a more reliable and

compact hardware device. In conclusion the software part of the microcontroller

is discussed: its functions, behaviour, implementation issues that came up and

the �nal code with a �owchart explanation.

2. Server-side: it's the "software part" of the project. This part will cover the server

set-up, started with a Raspberry Pi 3, then with Amazon Web Services and at

the end with Polimi Cloud. The Mosquitto MQTT broker installation, with

some test commands and con�guration �le examples. Node-RED installation,

its modules and �ow implementation and, in the conclusion, a little hint of the

telegram's application role, and its bot implementation in Node-RED.

Acquired data and their analysis are discussed in the sequent chapter, with the aid of

MATLAB programming and simulations tools.

1Printed Circuit Board is a mechanical support for electronic components that connects them using
conductive tracks etched from copper-covered boards.

37

4. System Implementation

4.1 Sensor-Side Implementation

4.1.1 Sensors and wiring

The main purpose of the project was to implement a system that gives occupancy

information using Wi-Fi probe requests, along with ambient informations like temper-

ature, humidity and pressure.

Starting from this assumptions we chose the NodeMCU ESP8266 chip that (see chapter

3 section 3.4.2) is based on the esp-12 chip, and have Wi-Fi capabilities and an inte-

grated micro-controller with some I/O pins. On the I2C pins of the ESP (pin D1 and

D2) we connect Adafruit's environment sensor based on the Bosch BME280 (�g.4.1).

Figure 4.1: Adafruit BME280 PCB and sensor's picture

This sensor is capable of detect temperature, humidity and barometric pressure with

an accuracy of ±1°C, ±3% and ±1hPa respectively. Given that pressure change with

altitude, the sensor can also be used as an altimeter, with an accuracy of ±1 meter or
less. As a matter of fact, given the air pressure at sea level, between altitude (h) and

pressure (p) exists the relation:

p = 101325 × (1 − 2.25577 × 10−5h)5.25588 (4.1)

where 101325 is the normal pressure at sea level in Pa, h and p are in meters and pascal

respectively.

The BME 280 can be used in both SPI or I2C communications types (see chapter

3 section 3.4.3) and thanks to the 3.3V internal regulator, it can be used even with

a 5V logic e.g. Arduino Uno board. In the ESP8266 case the voltage regulator is

useless because the chip already uses a 3.3V logic. To increase the environment's data

38

4.1. Sensor-Side Implementation

collection and also helping the estimation process2, a photoresistor is also connected to

the sole analogue input pin of the board. A Photoresistor or LDR (Light Dependent

Resistor), is a light-controlled variable resistor. This component is usually very resistive

(in the order of megaohms) when placed in the dark. However, when it is illuminated,

its resistance decreases and may drop as low as a few hundreds of ohms, depending

on the light's intensity. Photoresistors may require few milliseconds or more to fully

respond to changes in light intensity, and their sensitivity and resistance range may

vary from one device to another. Usually photoresistors are used in light/dark-activated

switching circuits, in a circuit with a capacitor to avoid �uctuations of the output signal.

In our circuit, to be measured by the analogue input pin, the photoresistor is included

in a voltage divider with a comparable resistor (typically a 10kΩ).

In �gure 4.2 is represented a simple circuit for the photoresistor along with its dimension

and characteristics. As part of a voltage divider, the output voltage of the circuit follow

Figure 4.2: A simple LDR circuit, its structure and dimensions.

the equation:

Vout =
Rph

Rph ×R1

× Vin (4.2)

As the intensity of the light increases, the resistance of the photoresistor decreases, so

Vout gets smaller
3 as more light hits the device. On the contrary as the intensity of the

light decreases, the resistance of the photoresistor increase so Vout gets bigger.

In the �nal project also a "send now" button is implemented. It works as an override

2Brightness can be correlated with the occupancy of the room e.g. when the lights are o� and in
the outside is dark, probably the room is empty.

3Remember the Ohm's law: V=R×I, where R is the resistance of the resistor expressed in ohms
(Ω), V the voltage in volts (V), and I is the current in amperes (A).

39

4. System Implementation

control that forces the chip to send the actual people estimation and environmental

data, ignoring the send-frequency selected by the user via Node-RED dashboard's user

interface4.

Figure 4.3: Photo and circuit of a simple button.

The working principle of a button is simple: when pushed, it makes a connection

between legs 1-2 and 3-4 (see �gure 4.3 for references) previously disconnected.

In our circuit (4.6) the pin is connected to port 1 of the button, while port 2 is connected

to ground through a 10kΩ pull-down resistor. The port 4 of the button is connected

to 3.3V. When the button is open (unpressed) there is no connection between 1-2 and

3-4 legs, so the pin is connected directly to the ground through the 10kΩ resistor. On

button press, it makes a connection between the above nominated legs, connecting

the 3.3V to the pin and pull-down resistor, making a voltage divider. By setting the

purple pin in �gure 4.6 as an input pin, and making a constant reading of that, the

micro-controller can check the status of the input. In the case of open button the input

will be LOW, because the pin will be at 0V. In the close button status, the input will

be HIGH, because of the higher voltage.

In the next �gure (4.4) the schematic of the circuit is shown. The schematic is a

blueprint of the circuit, and must include all the information necessary so that everyone

reading it can �gure out what parts to buy and how to assemble the parts. For creating

our schematic we used an electronic computer-aided design tool (CAD) named EAGLE,

from Autodesk. One of the advantages of using a CAD software is that it provides two

layouts: schematic and printed circuit board (PCB). In this way it's easier and faster

to create the PCB layout from the schematic.

After the schematic, the next step is to make a prototype of the circuit, making sure

that everything works well. The most common tool used for the prototype's assembly

4In the �nal project the user can select the time frequency at which receive people estimation and
environment's updates. More details about this in sub-section 4.1.3 and section ??

40

4.1. Sensor-Side Implementation

Figure 4.4: The circuit's schematic created with Eagle CAD

is a modular breadboard. A breadboard acts as a temporary assembly board on which

all the electrical parts (sensors, resistors, microcontrollers etc.) are placed and joined

together by wires or by the built-in conductive pathways underneath the surface of the

board (�gure 4.5).

Figure 4.5: Breadboard's inner connections.

When a wire or component's pin is inserted into one of this sockets, it's held by two

metal extremities. Because of their connections, the upper and lower rows are typically

reserved for power supply connections, while the sockets between the central gab region

are reserved for the others components (sensors, MCUs, buttons etc.)

Once connected the sensors, resistors, button and microcontroller in the breadboard,

we obtain the prototype circuit shown in �gure 4.6.

Brief explanation of the connections:

� The BME 280 uses only four pins out of the seven pins of its PCB. The Vin

and GND are connected respectively to the 3v3 and GND pin of the NodeMCU

board. Instead of using SPI, that requires 4 pins, the sensor is connected via

41

4. System Implementation

Figure 4.6: Fritzing's prototype image, and real implementation photo

I2C5 to the D1 and D2 pin of NodeMCU, enabled respectively to be used as SCL

(Serial Control Line) and SDA (Serial Data Line).

� The Button, as you can see, is connected to the D4 pin of the board and, on the

other side, to 3.3V and GND. When pressed, the D4 pin goes up to 3.3 putting

the logical input value to "HIGH".

� The photoresistor is connected in parallel to the ground through 10kΩ resistor,

and to the sole analogue pin of NodeMCU. The other pin is connected to the

3.3V input.

To simplify the circuit's reading, every connection to the ground is black, and to the

source is red. Signals, instead, have di�erent colours.

4.1.2 From the schematic to the Printed Circuit Board

Achieving portability through size reduction is an important part of developing a

sensor. Passing from a proto-board (breadboard) to a PCB is justi�ed by the size

reduction (the breadboard is bigger than a custom-made board), packaging and relia-

bility issues.

Creating the PCB layout and the actual PCB can be made in di�erent ways: by hand

with an etch-resistant pen, with a CAD software printing the layout and using photo-

sensitive boards, and so on (see [14] for more informations).

For the �rst PCB of this project we use EAGLE CAD software, which we use to create

the schematic, to generate the layout of the PCB out of the schematic. Once placed all

5See chapter 3 section 3.4.3 for details about SPI and I2C.

42

4.1. Sensor-Side Implementation

Figure 4.7: PCB layout printed by EAGLE Cad software.

the electronic elements in the layout, the routes among devices are created (manually,

and not with the auto-route function), see �gure 4.7.

Having at our disposition a 3D printer adapted to draw circuits, we used an etch-

resistant pen and print the PCB layout onto an insulated board covered on one side

with a very thin copper coating (�gure 4.8).

Figure 4.8: A 3D printer adapted as a sort of CNC machine.

After this procedure the board is placed in a tub of etching solvent (�gure 4.9) and in

a few minutes the copper dissolves away from the sections of the board that are not

43

4. System Implementation

Figure 4.9: The board immersed in a solution of hydrogen peroxide and muriatic acid

cover by the marker.

After removing the marker's sign, the �nal PCB (4.10) is obtained and ready to be

drill and solder with the sensors.

Figure 4.10: Final circuit onto the PCB. The NodeMCU board is not soldered in order to be easy

changed,upgrade or detach.

In case of multiple copies of the circuit it's suggested the use of di�erent techniques

in order to actually make the PCB, or the use of specialized websites that provide the

users great circuits at low costs.

44

4.1. Sensor-Side Implementation

4.1.3 The Program

A microcontroller without a program - a set of instructions - it's like a car without

an engine. In this section the project's program is illustrated with focus on the "esti-

mation function".

Every Arduino-like board can be programmed with the Arduino IDE software6, that

makes writing code and uploading it to the boards easier. The software run on Win-

dows, Linux and Mac OS and it's written in java and based on the open-source software

Processing. The ESP8266 breakout board comes with NodeMCU's Lua[16] interpreter,

a �rmware that permits the user to coding using Lua scripting language, a powerful, e�-

cient and lightweight language that supports procedural programming, object-oriented

programming, functional programming and data-driven programming. Despite its sim-

plicity, for who knows C or C++ the use of Arduino IDE is convenient. To do so, the

users must install the ESP8266 Board Package7 and then select the correct board in

the Tools menu.

Figure 4.11: Arduino IDE interface in the board selection menu.

This procedure will write directly to the board's �rmware, erasing the NodeMCU

6www.arduino.cc/en/main/software
7Packages can be installed by entering their URL into the Additional Board Manager URLs

�eld in the Arduino IDE 1.6+ preferences. In the case of ESP8266 the added URL was: http :
//arduino.esp8266.com/stable/packageesp8266comindex.json

45

4. System Implementation

�rmware with its Lua interpreter.

Figure 4.11 shows the settings in the tool menu when the correct board (NodeMCU

1.0 in this case) is selected.

The �rst part of the program is the libraries' declaration. In this project we used the

mqtt protocol, the BME280 sensor in I2C con�guration, and the Wi-Fi sni�ng and

normal mode of the ESP8266. In the program are therefore included the respective

libraries that are:

� ESP8266WiFi.h: the library containing all the functions to connect to an AP,

check connections and more.

� PubSubClient.h: provides a client for doing simple publish/subscribe messages

to a server that supports MQTT.

� Wire.h: It's the library that enables I2C connection.

� Adafruit_Sensor.h: this one and the sequent is the library with functions for

enabling Adafruit's BME280 data capture.

� Adafruit_BME280.h: Same as the above one, providing speci�c functions for

the BME like the "BME.begin()".

� pgmspace.h: this library enable/correct the use of the PROGMEM function

in ESP8266 to save data into the program storage space instead of the dynamic

memory.

� user_interface.h: this library add the promiscuous mode support in the Wi-Fi

chip.

Figure 4.12: The libraries included in the program in the Arduino IDE.

46

4.1. Sensor-Side Implementation

In the "include" part it is also added an #include "./defmacORD.h" that is not a

library but a ".h" �le containing the OUI - Organizationally Unique Identi�er[5] a 24-

bit (�rst 3 bytes of the MAC address) hexadecimal number that uniquely identi�es the

manufacturer of the wireless card. More about this �le and its usage will be discussed

later on.

After the libraries inclusion, the de�ne and declaration part of global variables begins.

Some constant variables, useful to understand the program, are: the MQTT topic's

name; the broker's IP, port, username and password; the sensors' pins; the AP ssid

and password; the range of powers considered. For this last one parameter a detailed

explanation is necessary: every probe packet captured comes with a RSSI �eld that

gives an idea of the distance between sensor and device. Choosing to �lter the probes

reception to packets beneath a certain power meant to limit the range of the probe

capture process adapting it to the size of the room. With this is mind, the program

divides the power into 40 values from -44dB to -120dB (not uniformly distributed, but

packed between -70dB and -90dB), and calculate the number of devices between 0dB

and the selected value, making a cumulative distribution function of the number of

devices e.g. N_devices(-40dB) gives the number of devices from 0dB to -40dB, and

N_devices(-60dB) gives the number of devices from 0dB to -60dB, not only between

-40 and -60dB. As a matter of fact, more dense is the power range considered, more

accurate will be the prediction on the number of people.

On the other hand, some non-constant variables are: the send frequency (changed

on-demand by the user), the current model variables (4.1.3.2), state variables (like

the state of the button or the internal LED), actual captured packet for each power

step (as explained before) and past history (a registry that keeps memory of last 40

measurements and is shifted by any new measure input).

The �owchart in �gure 4.13 shows a panoramic of the program operation. For the sake

of clarity, the program can be divided into three main parts:

Set-up This part is the upper part of the �owchart, and runs only at the �rst start-up

(or reboot) of the sensor. When just powered up, the ESP tries to connect to the

AP8 and retrieve data from the MQTT broker to check the last model's param-

eters used and set them in the program (more about the estimation function's

parameters in 4.15 and its explanation). After retrieving (or not) the data, the

program pass to the next step, putting the Wi-Fi chip in sni�ng mode.

8The AP name and password are saved into the program, so every ESP must have the right AP
memorized, or a set of them.

47

4. System Implementation

Sni�ng This is the main part of the program, the part at which the ESP is for the 80-

90% of time, and is the left one in the �owchart 4.13. After activate the sni�ng

mode, the ESP starts "listening" to other devices' requests 3.1.3.1 and saving

their IDs (MAC addresses) and RSSI. This scanning stage is run on a single

channel (the channel 1, one of the three non-overlapping channels of Wi-Fi, see

3.1.1). Although in [12] the best performance (in terms of number of captured

probes) was obtained using multiple antennas at di�erent channels, in our project

we were not able to reproduce this method. We tried to implement a system

that changes channel every �xed amount of time instead, but the measurements

obtained shows that there were not important di�erences with the single channel

implementation.

When a new probe arrives the microcontroller checks if the MAC has already

been saved in the past 7 minutes9 or it's a new unknown device. In the �rst case

the program updates the RSSI �eld of the saved MAC and update the number

of devices for each power range. In the latter case there is no record about the

device yet, so the program creates a new record with 4 �elds: MAC address,

RSSI, last time seen and a �ag named Rndm with value 1 or 0 depending of

the type of MAC address found (see 3.1.3.1). To recognize random versus non-

random IDs the #include "./defmacORD.h" comes into play: this �le contain

all the registered OUIs assigned by the IEEE. The program checks10 if the �rst

six digit of the captured MAC address are part of this list, and as a results puts

the Rndm �ag equal to 1, if the ID is not present in the OUI's list, and to 0 if

it is. After the new record is added, the program updates the number of devices

found with respect to the power range.

There are two "N_devices" variables depending on the Rndm �ag: the �rst

updated when the device have a non-randomized MAC address, and the second

one updated when the device have a random MAC address.

These operations are made for each probe packet captured.

Report This is the right part of 4.13 and is activated on-demand by pressing the button,

or setting the "send timer" via web interface (4.33). After one of those events, the

ESP notify the entrance in this part of the program lighting up its internal LED;

the promiscuous mode is stopped, and the chip connects to the AP. After the

connection to the Access Point and the internet, the ESP connects to the MQTT

9After a period of 7 minutes, if there are no probe captured for a certain MAC address, this is
erased from the list presuming that the device is no longer present in that area

10A Binary search algorithm is implemented in order to reduce the searching time with respect to
a normal search (with a gain of at least 30ms on the process' time).

48

4.1. Sensor-Side Implementation

broker to retrieve the "send frequency" decided by the user, the real number of

people and a �ag called "PowerLock". This last �ag decide the sequent tasks

because it tells if the "number of people" value retrieved is still valid or expired

(it expires after 10 minutes from its last modi�cation).

If the PowerLock value is 1, the real number of people retrieved is not valid. In

this case the MCU has to esteem the actual number of people using its previous

model's parameters (4.1.3.2), retrieve the sensors' data (brightness, temperature,

humidity, altitude and pressure) and send all these data to the right MQTT

topics.

If the PowerLock value is 0, the real number of people retrieved is valid. In

this case the model's parameters have to be calculated to minimize the Root

Mean Square Error function, using the real number of people retrieved. After

this operation, as above, the ESP retrieve the sensors' data and send them along

with the people estimation and, in addiction, the devices' count for every power

range, either the random and non-random count.

The last tasks of this part of the program are in common: the internal LED

is switched o�, the timer that starts this part of the program when the "send

frequency" expires is reset and the Wi-Fi module is switched on sni�ng mode to

re-start the part 2 of the program.

49

4. System Implementation

Figure 4.13: The program's �owchart.

50

4.1. Sensor-Side Implementation

In order to simplify the �owchart 4.13 a function, together with the estimation

model, were omitted.

This function is the one that remove a device informations after seven minutes without

receiving its probe requests. This is a simple function that is necessary in order to

keeping track of the people, with devices, that went away from the room. This period

of time has been chosen given [12], where in page 5 is shown a series of histograms

about the time between bursts of probe requests for di�erent devices. Choosing an

interval of 420 seconds (7 minutes) seems to be a reasonable time interval after which

a devices can be supposed gone. Of course is not 100% possible to guarantee that

after 7 minutes of silence a device is gone. Tests on some devices shown that not

all of them sent probes when the screen is turned o�, depending on the OS installed

and manufacturer personalizations. Flowchart 4.14 brie�y illustrate how this function

works and where, in the the �rst �owchart, is placed.

Figure 4.14: The removing function.

51

4. System Implementation

4.1.3.1 Power-safe mode

It's useful to keep sending data during night? As a response to this question, we

decide to optimize the power consumption of the chip, enabling a so-called "power-safe

mode". This part is omitted in 4.13, in order to simplify its comprehension. Since we

have provided our board with a light sensor, we decide to make a good use of it: during

the nights, when the lights are switched o� and the outside environment light is low,

the chip starts to lower its send frequency. During its "Report" part, the program reads

the brightness value given by the photoresistor. When this value goes under a certain

threshold for more that one consecutive send time, the chip supposed that the lights

are o�. Intepolating this data with the estimated number of devices (supposed to be

zero during nights), the chip stops its sni�ng mode, power o� the modem, and reduce

the send frequency (which requires the connection to the AP, so the powering on of the

Wi-Fi modem). When, during another measurements, the brightness value rise, the

chip returns to its normal operation mode, using the user's imposed send frequency,

and turning on the sni�ng mode.

4.1.3.2 The Estimation Model

The very core of this project is the algorithm to get the correct number of person

in a room knowing the probe requests' power distribution. A correct and e�cient al-

gorithm bring the ESP to make the correct estimation without too much computing

power, since in a MCU calculations in �oating-point variables are a real problem.

In this project we implemented a simple but e�ective algorithm that, taking into ac-

count the last 40 measurements, tries to minimize the error between the estimation and

the reality. The history is made out by 40 elements, due to space limitation into the

microcontroller: a higher value will saturate the internal memory during its runtime,

because implies larger vectors, records and longer calculations.

Let's see in details the model de�ning some parameters. Let:

NT (t) be the sole model's input parameter, indicating the real number of persons in

the room at time t. This input is retrieved from the MQTT server before sending

the estimation and ambient measurements (see the right part of 4.13).

N θ
V (t) be the number of devices seen by the Wi-Fi chip at time t and power ≥ θ. The

maximum amount of event t saved is 40, and the power ranges are also 40. So

this variable is a table having the power range as columns, and events as rows.

N θ
R(t) be the number of random MACs seen by the ESP. This is the equivalent, for

52

4.1. Sensor-Side Implementation

the random MACs, as the table before where the columns are the power ranges,

and the rows the events.

α be a correction factor for N θ
V (t). Since one person can use more than one device

with Wi-Fi enabled (smartphone, notebook, smartwatch, tablet and so on) or

don't have any Wi-Fi device at all (or with Wi-Fi disabled), this factor corrects

the occupancy's over or under estimation. Its range varies between 0.1 (1 person

every 10 di�erent non-random MACs received) and 2 (2 person per probe requests

e.g. half students has one device with Wi-Fi enabled and the other half don't).

β be the counterpart of the α factor for N θ
R(t), the number of random MACs received

at time t. Supposing that a devices sends probes with 3 di�erent MACs, the β

value will be 0.3. This value varies from 0 (it completely ignores random MACs)

to 2, and must always be less than the α value. This last imposition is based on

the assumption that the number of random MACs changes more frequently, is

more unpredictable. For this reason is more "risky" to make an estimation based

mainly on the random MACs number.

n be the number of inputs considered in the calculation. At �rst start-up the value

will be 0 and will increase with every new input until 40. Once reached this

maximum value, every new input will replace the "oldest" one and so on, leaving

the total input considered to 40.

The formula behind the estimation is:

min
α,β,θ

√√√√ 1

n

n∑
t=1

(NT (t) − αN θ
V (t) − βN θ

R(t))2 (4.3)

with θ=1,2,. . . ,40; α=0.1,0.2,. . . ,2; β=0,0.1,. . . ,2 and α > β

In conclusion, at every new input, the model calculates the values of the parame-

ters α,β and θ to minimize the overall error. In this way, we create a dependence

between the new and past parameters of the model.

Let's call α∗, β∗ and θ∗ the values that minimize the above equation. Therefore the

estimation at t+1 instant is calculated as:

N̂(t+ 1) = α∗N θ
V (t+ 1) + β∗N θ

R(t+ 1) (4.4)

where the result is rounded to the nearest integer (we cannot say that there are 3.4

person in the room, we have to round the estimated value). The results of the appli-

53

4. System Implementation

cation of this model can be seen in chapter 5.

It's now more clear that, due to the low computing power and storing capabilities

(already under pressure with the list of OUIs), limit the number of inputs taken into

account in the formula was a necessity, not an option. To make more clear how much

hard this cycles are, we calculate the time interval of this part of the program, and the

sni�ng part:

the program requires approximately 1ms of time to capture, analyse, and save one

probe request.

To calculate the correct parameters having already 40 inputs, the program takes almost

3.5 seconds. It's clear now that the biggest problem was, on a chip like this, avoiding

the automatic reboot due to overload (see the watchdog timer in 3.4.2.1). To solve

this problem we use a function that, during every cycle, "kick" the watchdog timer, in

order to avoid its expiration.

The next �owchart (4.15) illustrates the application of the 4.3 formula in the program.

To simplify the 4.13 this model part was omitted, and the next �gure shows in which

part of the �rst �owchart this calculation takes part.

54

4.1. Sensor-Side Implementation

Figure 4.15: The estimation model's function is a "brute force" research of the correct coe�cients and

power value.

55

4. System Implementation

Model B

The �nal model discussed until now was not the �rst model implemented in the project.

At the very beginning, one of the �rst codes implements a di�erent type of model: the

MAC addresses recognized as random were discarded. This model is the equivalent of

putting the β variable to a �xed zero value. Although, since the MAC randomization

is a growing phenomena (with newest mobile and PC OSs releases), the �nal model

is more "enduring" in the long period. In the next future, the random MAC probes

will probably overtake the non-random values, and for this reason the β value is fun-

damental for our purposes.

The results of this "Model B" are shown in the next chapter, along with the results of

the �nal model.

56

4.2. Server-Side Implementation

4.2 Server-Side Implementation

The server part comprehend the MQTT broker and the Node-RED environment,

extensions and �ows. This section is therefore divided into four main parts:

1. The server's choice

2. MQTT broker installation and con�guration

3. Node-RED, installation, con�guration, expansion

4. The Node-RED �ow - the server part's core

4.2.1 The Server

Run an MQTT broker and Node-RED client is not a very di�cult task (in terms

of computing power). With this in mind our �rst choice was to implement the server-

part on a Raspberry Pi 3, a single-board low cost computer with: Broadcom quad

core 1.2Ghz 64-bit CPU, 1GB of RAM, Wi-Fi, Bluetooth and Ethernet connections,

4-USB 2.0 ports, 40 GPIO pins, an HDMI port and, more important, a consumed

power between 1.5W, when in idle state, and 6.7W under heavy usage.

Figure 4.16: The Raspberry Pi 3 Model B single-board computer

The only lack of this implementation a �xed IP address of the network connection.

The Raspberry Pi was connected to the ISP11 network by the ethernet cable through a

11ISP stands for Internet Service Provider, an organization that provides access to the internet as
long as other services like (but not always) web hosting, domain name registration, �xed telephone
line access, media streaming, mobile access etc.

57

4. System Implementation

modem-router. In the local network the RPI had a �xed IP, given by the router. The

ISP although, doesn't o�er a �xed IP option from home users, therefore the IP address

with which the internet "sees" the server (RPI in this case) was changing every time.

For a server to be reachable from the outside a �xed IP is needed.

At the beginning the solution was to use a DDNS12 service, to make the MQTT server

always available from the outside with a �xed name. The DDNS is a technology that

allows users to give their home network PC or server a permanent address on the

internet. With DDNS although internet service providers change the user's IP on a

regular basis, he can keep his domain name pointed to the current IP address of the

home server/PC.

The implementation works like this:

1. The user chooses a service (in our case www.dynu.com) and registers to it.

2. A thir level domain name (usually free) or a top level domain name can be chose.

In our case we chose a third level domain name eg. example.dynu.com. After

this choice the domain name is created and updated with the current IP address

used.

3. Install the client software, a daemon that keeps running in background even when

no one is logged into the system.

4. Con�gure the software by insert the username, password and the update rate.

The program will now on update automatically the IP pointed from the chosen

DNS at the chosen update rate.

This method works well for the MQTT server. Unfortunately once Node-RED was

installed it was di�cult to be reachable from the outside. Since the aim of the project

was to have a website reachable with ease by every student in and out of the campus,

this �rst choice was not suitable for the purpose.

Due to poor connection speed and the necessity to have a �xed IP address for Node-

RED's dashboard accessibility (see next sections for details about Node-RED dash-

board), the project was moved on an Amazon EC2 virtual server through a free sub-

scription to the Amazon Web Services. Amazon's Elastic Compute Cloud is one of

the central part of Amazon's cloud computing platform: it allows user to rent virtual

computers on which they can run their applications. Although in the near future the

idea is to bring the system on the campus' servers, in order to get rid of the dependence

on other external companies, and avoid fees that will be applied after the 12-Month

12Dynamic Domain Name System

58

4.2. Server-Side Implementation

Free Tier account's expiration.

The AWS console is shown in �gure 4.17 where in the compute part the EC2 services

can be seen.

Figure 4.17: Amazon Web Services console's main page

In 4.18 the Instances (EC2) page can be seen. In this case the instance running is the

one for this project, where you can see the details and IPv4 public IP.

Figure 4.18: Instances' page, where running instances are managed and new ones created.

As seen in the next �gures, when you create an instance with an AWS free tier, you can

59

4. System Implementation

choose between several AMIs (Amazon Machine Images, 4.19) of di�erent OSs. Our is

running on Ubuntu Server 16.04.

Figure 4.19: AMIs selection page.

In the sequent page you can choose between several server's hardware con�guration.

Figure 4.20: The instance's type selection. Is the selection of the hardware of th virtual machine.

In our case, for the free tier, the t2.micro was the only available option. It is based on

1 virtual CPU@2.5GHz clock speed, from the Intel Xenon family, and 1GB of RAM.

The storage memory chosen is of 40GB, that for our purposes is fully enough. After

60

4.2. Server-Side Implementation

this procedures, the important part is to set the right "Security Group", the set of rules

that manage what connections the server can receive or make. In our case we have

to open the SSH port 22 - the Secure Shell protocol that allow the user to establish a

ciphered remote session through command line, useful to manage the server, install the

programs and so on. The MQTT port 1883, to allow our sensor to connect through

MQTT to the server and send data. At last the Node-RED port 1880, in order to

access to the �ows from the outside. Of course the MQTT and Node-RED port can be

changed, but we used the default ones. Since Node-RED �ows can be viewed by any

user who knows the public IP and port, in the con�guration phase a login page was

created (more details later on).

Once the creation of the server is �nished a key is given. This key must be used in

order to connect through SSH to the server, (see �gure 4.21) with which it is possible

to install the programs needed.

Figure 4.21: The SSH connection with PuTTY client on Windows.

4.2.2 The MQTT Broker - Installation and set-up

Once the server is running, the various installations processes can begin. The �rst

thing to do is to choose the MQTT broker. In our project we've installed the open-

source message broker Mosquitto13 that implements the MQTT protocol version 3.1.

Since our server was based on Ubuntu 16.04 that already has a version of Mosquitto

in its default software's repository, to install the broker only an "apt-get" line was

necessary:

sudo apt-get install mosquitto mosquitto-clients

13https://mosquitto.org/

61

4. System Implementation

this line tells the server to install Mosquitto and mosquitto-clients, which enables the

possibility to publish/subscribe through command line (see 3.16 and 3.17).

The default settings for the broker permits any user to publish and subscribe to a

topic. To add a higher security level in the project is necessary to accept only certain

connections. In our project we use a username and password, in order to accept only

publications and subscriptions that have the correct parameters.

In �gure 4.22 a publication without username and password is shown.

Figure 4.22: MQTT publish without and with username and password.

It can be seen that without the correct username and password the server doesn't

accept the connection. In �gure 4.23 is shown the subscription case.

Figure 4.23: MQTT subscription without the correct username and password.

Brief explanation of the commands:

mosquitto_pub : it's the command to publish a message in a topic.

62

4.2. Server-Side Implementation

mosquitto_sub : command to subscribe to a topic

-d : indicate the debug-mode, the terminal will show the debug messages (in our case

the CONNECT, CONNACK and PUBLISH messages).

-t : speci�es the topic on which to publish the message, or to subscribe. This is wrote

after the -t and, in our case, is "test".

-m : The message to be sent. In our case "Hello!"

-u : Speci�es the username, that in our case is "tesi".

-P : The password's �eld, in our case "1802".

To con�gure Mosquitto to use passwords the �rst thing to do is create the password-�le,

and for this purpose Mosquitto includes a utility to generate it called "mosquitto_passwd".

In our case:

sudo mosquitto_passwd -c /etc/mosquitto/passwd tesi

will create a �le named "passwd" in the directory "/etc/mosquitto" with the password

wrote after the command and the username "tesi".

Afterwards Mosquitto has to be con�gured in order to use the username and password.

For this purpose the �le default.con�g has to be modi�ed like 4.24, where:

allow_anonymous false will disable all non-authenticated connections.

password_�le /etc/mosquitto/passwd tells Mosquitto where to look for the user's

password information.

Figure 4.24: Mosquitto's con�guration �le opened with nano editor.

After this �nal procedure the MQTT broker is ready and reachable from the IP address

54.93.65.245, on the 1883 port.

63

4. System Implementation

4.2.3 Node-RED and its extensions

The last part of the server's set-up is the installation and con�guration of the

Node-RED instance. Thanks to the SSH and PuTTY (on Windows) the installation

process is very simple and illustrated in the o�cial Node-RED site14. It is similar to

the installation of the MQTT broker, with two commands15:

sudo apt-get install -y nodejs build-essential

and

sudo npm install -g node-red

Once installed and started, the Node-RED editor can be found using a common web

browser at: http://<server's-IP-address>:1880

Since the editor is on a public IP address, without an authentication method any user

can, knowing the IP address of the server, access to the editor and modify the �ows.

To securing the editor's access it's possible to create a "login screen" (see 4.25) with

a username and password. To enable this user authentication the "setting.js" �le on

Figure 4.25: Node-RED editor's login page.

the Node-RED's directory is modi�ed adding the lines in �gure 4.26 where in the

password's �eld is inserted the hash of the password obtain with the command:

node-red-admin hash-pw

14https://nodered.org/docs/platforms/aws#running-on-aws-ec2-with-ubuntu
15For the commands related to the automatic start-up of the Node-RED instance see the website.

64

4.2. Server-Side Implementation

Figure 4.26: Node-RED setting.js lines to add authentication.

One of the advantages of the Node-RED platform is the vast quantity of nodes created

by the community. There is a node for every kind of purposes (4.27), and it is simple

to create one for our own purpose.

Figure 4.27: Node-RED vast library of nodes and �ows from the community.

In the project we used two principal set of nodes from the community: the Node-RED

Dashboard and the Chatbot. The �rst one creates a set of nodes in the editor to quickly

create a live data user interface with graphs, buttons, sliders and so on. The latter

adds a set of nodes to visually build a chatbot16 for Telegram, Facebook Messenger

and Slack.

To install these two node sets the following code, written in the command line through

SSH, is needed:

16A chatbot is a computer program designed to simulate a conversation with a human user. Chatbot
are usually base on a mechanism of talk-reply, where the conversation is started by the user.

65

4. System Implementation

cd /.node-red

npm install node-red-contrib-chatbot

npm i node-red-dashboard

to go to Node-RED's installation folder

to install the chatbot's nodes

to instal the dashboard

After the installation, the Dashboard's User Interface is reachable at the same address

of the editor with "/ui" in the �nal part, e.g. in this project is http://54.93.65.245:1880/ui.

In �gure 4.28 the editor is shown, with this project's �ows.

Figure 4.28: Node-RED's editor page with the main project's �ow.

The installed nodes are on the left part of the editor, the �ows are positioned in the

centre and in the right bar an info,debug and dashboard tab are present. This last

three tabs are useful to show the errors in the �ows (the �rst two) and to show the

position of the elements on the dashboard (the third one). Once the �ow is ready and

con�gured it can be "compiled" with the "deploy" button, the ui will be reset (if there

are some data on the graphics) and the changes will take place.

66

4.2. Server-Side Implementation

4.2.4 The Final Flows

This �nal part of the chapter is the most important of the server-side implementa-

tion. It's the equivalent for the program inside the ESP, that is the brain that moves

the hardware, but by the server side. This part is the Node-RED's �ows implementa-

tion.

The project the Node-RED implementation is the key that puts a link between the

hardware part and the visual-data part, where the user's can view the results of the

estimation, the sensors' data and interact with the bot to retrieve information. The

�ow part is also the one that allow the administrator to interact with the ESP, giving

the initials real number of persons in the room, and retrieving the estimations and

values for the o�ine simulations. In the following part the structure of the �ows are

presented, with an explanation of their functionalities and results.

The structure of the program is divided in two four parts: one main �ow, and three

sub�ows representing the three rooms taking into account. Of course the number of

sub�ows depends on the number of the rooms and it's easy to clone a sub�ow.

Let's start with an explanation of the sub�ows' structure. In �gure 4.29 the �rst sub-

�ow can be seen (all the sub�ows have the same nodes and functionalities).

Figure 4.29: The �rst sub�ow represented by the tab "Sala Tesisti" on the Node-RED Dashboard

In the sub�ows there are various nodes of di�erent colours. Every colour represent a

type of node: liliac - the mqtt nodes, blue - dashboard graph's nodes, brown - the �le

67

4. System Implementation

nodes, ochre - function's nodes, and so on.

As a matter of fact it is easier to explain the sub�ows dividing the nodes for their type:

MQTT Nodes

These nodes are the input (left) and the output (right) from an MQTT topic. They

represent the link between the hardware part (ESP and sensors) and the user. In

4.29 these nodes are used to receive sensors' measurements, occupancy estimation and

model's values. The MQTT outputs on the other hand, are used to set the PowerLock

value (see �owchart 4.13), give the real number of people in the room (Ground Truth)

and setting the send frequency value.

Join-csv-�le Nodes

These set of nodes are used, in 4.29, to generate a .csv �le containing the sensor values,

the Ground Truth values, and the number of captured probes divided by the power's

range and their type of MACs (random or not).

The join node creates a raw containing the received values; the csv node creates a .csv

�le writing in append the values passed by the join node. At last the �le node saves

the .csv �le in a chosen directory of the server, for o�ine analysis.

Dashboard's nodes

The dashboard UI has dedicated nodes to display charts, button, sliders and so on in

the UI page. In the project's �ow the above nodes are used, where:

ui control receives as input the state of a button (Homepage, in 4.29) and change the

tab if the button is pushed, bringing the user to the Homepage tab.

switch : prints out a switch on the page that change as the input changes. In our

case it represents the PowerLock value.

68

4.2. Server-Side Implementation

date picker draws a drop-down menu where the user can select the value (in minutes)

of the time between data-refresh. It has as input the value received by the MQTT

topic, and as output the same MQTT topic, where the drop-down menu selection

is sent. This "loop" is needed to keep memory of the last selected value when

the dashboard restarts.

chart draws a graphic of the data in input. There are di�erent types of charts, some

of them accept more than one inputs and print it in di�erent lines; other prints

only one value at time. In 4.29 it's used several time to print out the values of the

di�erent data, from the temperature data, to a graph that shows the di�erence

between estimated and real occupancy.

text this one is a box in which the numerical values are printed. In the �ow is used to

print out values such as the time of last update, the actual estimated occupancy,

the pressure. the altitude, and the number of total sent data (#iteration).

Trigger and Rbe nodes

These nodes are used in cascade in our system. The trigger node sends a message on

the output only if no data is received in the input after a certain amount of time. The

Report By Exception (Rbe) node passes data from the input to the output only if its

payload changes from the previous one.

In the project's �ow these two nodes are used to automatically change the "PowerLock"

value after 10 minutes from the last input. The Rbe receives as input the Ground Truth

value (real number of persons) only if it's di�erent from the previous one. Upon re-

ceiving the rbe output, the trigger sends a "0" value to its outputs node: the mqtt-out

node and the dashboard's switch node. After 10 minutes of no input, the trigger sends

to the "setpwr" topic and Power Lock switch the value "1". The trigger node is also

used to update the time of the last update. When an input is received it activate a

function that generates current date and time values to send to the text node of the

dashboard.

Inject and Function nodes

69

4. System Implementation

The inject node sends an output into the �ow either manually or at regular intervals.

In our case this node is used only at Node-RED start-up, and it sends a "0" value to

the mqtt "SetPwr" node as a "reset" of the previous value.

The function node is "programmable" node: it's a JavaScript function block that runs

the written function against the input value to generates an output. In our case this

function node is used three times: the "Percentage" block receives as input the esti-

mated number of people and sends as output the percentage of the room's occupancy

based on the total number of seats in the room.

The "getTime" block is a block that sends as output a string with the current date

and time only if an input is received.

At last, the ESPreboot function sends as output a message telling that the sensors has

been rebooting, only if the MQTT input node "iteration" is equal to "1", meaning that

the ESP is at his �rst transmission, so it's just powered up.

Telegram set of nodes

This chain of nodes has the only function of telling if the ESP has rebooted by sending

a Telegram17 message only to the con�gured user. By default every message sent by

the bot is received by any user who joint the bot's conversation. In this case the bot is

con�gured to send this type of message, the reboot notice, only to one user identi�ed

by a "chatId" �eld in the message's packet.

All the three sub�ows are part of a single main �ow, that is the main homepage of the

site. Each sub�ow has two outputs (the grey boxes in the upper-right corner of �gure

4.29): the �rst output gives the percentage of occupation of the sub�ow's room; the

latter gives the temperature value, that is the main data people are interested about.

The main �ow is shown in �gure 4.30. It can be seen that the output of the three sub-

�ows are connected to a dashboard's text node which shows their values. The inject

node here is used to change tab (the Tab Change node) at a press of a button node; to

get the IP address of the current visitor (IpGet node) and to redirect the user to the

university homepage pressing on the button "Polimi News".

The major part of the main �ow is the Telegram's bot implementation. The outputs

of the sub�ows are joint and saved with a join and function node in global variables

(data1, data2, data3 respectively). When a message is received the Telegram Receiver

17Telegram is a free messaging app available for all the major OS platform on the market.

70

4.2. Server-Side Implementation

Figure 4.30: The Main �ow of Node-RED

node send its content to a switch node. As the name suggest, the switch node selects

the correct output based on the payload of the input message. As a default value it

activates the Keyboard node which sends, through the Telegram Sender node, a key-

board layout in the user's chat, displaying the available class from which retrieve data.

Since the project take into account three classes, there are another three outputs of the

switch node, one per class. The functions next to the outputs prepare the packet pay-

load format, including the data related to the choice, and sends them to the Telegram

Sender node. The output of the conversation is shown in �gure 4.31.

Figure 4.31: A conversation with Telegram's bot implementation.

71

4. System Implementation

4.2.4.1 Telegram Bot's creation and set-up

Telegram Bots are special accounts that do not require an additional phone number

to set up. Messages, commands and requests sent by users to Bots passed through

Telegram's servers that manages the encryption and the communication with the API.

The server with the bot running communicate via HTTPS through, in our case, the

Node-RED nodes.

All telegram nodes are con�gured to use an authorization token, which give access to

the Bot's chat. To obtain the token, hence create a bot, a Telegram account is needed.

Once having an account there is a Bot created with the purpose of create and manage

the other bots called "BotFather". Following some simple steps, the bot will guide

you in the creation of your own bot, setting the name and the picture and some other

options. Some of the available commands on the BotFather are shown in picture 4.32,

with some screenshots taken directly from the messaging app.

Figure 4.32: The BotFather's conversation guides through a bot creation.

4.2.4.2 Final Homepage

After the �ows creation, thanks to a free domain subscription, the main site can

be found at www.poliaule.ml. This visualization uses the Node-RED dashboard nodes,

and enables the user to visualize the room's data and choose their update frequency.

72

4.2. Server-Side Implementation

Figure 4.33: The main homepage

Figure 4.34: Data from the "Sala Tesisti" tab.

73

4. System Implementation

74

Chapter 5

Experiments and results

This chapter is dedicated to the performance analysis of the previous discussed

models (4.1.3.2). Thanks to the data provided by the sensor we are able to replicate

the model's implementations in an "o�ine" mode, verifying its validity and trying

to increase the performance in terms of estimation error. To replicate the models and

analyse datas the Matlab (Matrix Laboratory) computing environment is used. Thanks

to its powerful language and software, Matlab allow the creation of matrices, tables,

graphs, simulations and so on. A sort of cross-validation approach (like in Machine

Learning) is used to validate the models in di�erent environments analysis.

The chapter is divided into three parts: in the �rst one the datasets used are presented,

with a panoramic on the environments and methods used to get them. The second part

is a panoramic on the model's validation technique used, with reference to the cross-

validation. The third and most valuable part are the actual results of the model's

validation, with the di�erent characteristics and graphs explanations either for the

�nal model and the "Model B" type of model.

Once the data are collected, through simulations the model can be optimized, in order

to increase the performance of its error rate, and also the performance in terms of

runtime for the code. For example, the code's runtime depends, as we've seen in

4.1.3.2, in large part by the model's function. If, through o�ine analysis, we reduce

the range of the parameters α and β, the cycles will be shorter, and the program

faster. Although this is an interesting solution, keep in mind that the optimization

of the model based on a close dataset, can bring to the "over�tting problem". The

model will adapt too close to a particular set of data, and will produce more errors

(fails) in a di�erent environment. The model will therefore "work well" only in certain

particular conditions that is not the aim of this project. Trying to increase the model's

performance through �tting the α and β range on the detected room, increase our

75

5. Experiments and results

results by a minimum of 0.01 to 0.1 units. Because of this results, and the over�tting

problem, we decide to not include this part of the work in this thesis.

5.1 The Dataset

The data we're working on divides in two categories: the one taken from the devel-

oped sensor, and the one taken from a previous thesis work, with Wireshark.

The data taken from the sensor serves also as a "test" of the hardware and program's

stability. It happen, in various occasion, that �aws on the code were found thanks

to these tests. On this subject, one of the most critical problem was that, after some

hours/days of working, the chip will casually restart. As explained in 4.1.3.2, after some

debugging it becomes clear that this error depends on the WatchDog timer (3.4.2.1)

that keeps expiring and resets automatically the board. This little problem, along with

the change of the initial model and other minor bugs, is the main reason for the lack

of a bigger dataset.

The data from the sensor were taken in two main places in Politecnico di Milano: the

ANTLab, the Advanced Network Technologies LABoratory; an open-space dedicated

to students that are about to graduate. The �rst area has about twenty always-on

computers that uses the LAN network, and about 23 seats in a surface of 100m2 (the

"break room" is not counted). The latter has eighteen total seats, with a variable

number of computer, usually connected over Wi-Fi. The observations in these sets are

almost 200 (counted as the number of inputs "NT (t)" given) either for the �rst and

the second room.

As said above, we used also data from a previous research, from di�erent rooms. Be-

cause of the lower number of inputs available, we decide to test only 2 of the rooms:

the B.5.3 and L.26.01. The �rst one has a capacity of 80 seats, and the latter 70. Both,

as opposed to the above rooms, are actual classrooms attended by students of di�erent

courses.

5.2 The Model's validation technique

The main purpose of the project was to estimate the number of persons in a room

by their Wi-Fi devices. To achieve this goal we presented an estimation model 4.1.3.2

that "predicts" the occupancy of a room, and in order to test the accuracy of this

predicting model, we use a sort of Cross-Validation technique. The dataset is therefore

76

5.3. The Model's Performance

divided in two part: the training set, that is the subset in which the training of the

model is run. And the validation set, that is the remaining part of the total dataset

with which the trained model is tested.

Since our hardware supports only a maximum "training" set of 40 data (due to hard-

ware's limitation the ESP memorize only the last 40 inputs and apply the learning

model only in that dataset), we implement a Matlab script that divides the total

dataset in two part: the training phase is run over 40 inputs (in the case of a total

input of 200) or 7 (in the case 10 total inputs), while the test phase is run over the

remaining data. The validation process is run over either the �nal model and the model

B of the estimation. To reduce variability multiple rounds of this cross-validation tech-

niques are performed: in particular the program performs 500 rounds and, in every

round, scrambles the order of the dataset in order to implement the training and test

phase on di�erent sets of data. The validation results are then combined (making the

average) over the rounds to estimate the prediction model's performance.

This part basically replicates the chip's behaviour with di�erent data inputs, in order

to have a better view on the model's performance.

5.3 The Model's Performance

This section is divided into four part, one for each room analysed. Within each

part, we show a confrontation between results of the �nal model, and the �rst model

used (Model B, 4.1.3.2). Graphs and a �nal table (??) are included, in order to better

explain and show the results.

5.3.1 ANTLab

The Advanced Network Technologies LABoratory is a research lab. of about 100m2,

with an adjacent smaller restroom. In our measurements we do not take in considera-

tion the restroom part, but only the main lobby. We placed the sensor more or less in

the middle of the room, and made 200 measurements along di�erent days. Once the

data are collected, we applied our model's validation technique described above and

obtain the subsequent results.

Estimation's Error

This next graph 5.1 is divided in two part: the above one shows the confront between

77

5. Experiments and results

the actual number of people and the estimated one. The bottom one shows the error,

calculated as the absolute value of the di�erence between the actual and estimated

number. The straight line in the second one is the mean value of this error. This chart

Figure 5.1: Estimation vs. Real Value and Error graphs - Related to the ANTLab

represents one single round of the 500 performed by the validation program. In this

case the maximum error was of 8 people, the minimum of 0 and the MAE - Mean

Absolute Error (the red line of the second graph) was 2.1187 (2 if we approximate to

the nearest integer). Considering that the total number of seats in the Lab. is 21, 2

persons out of 21 seats makes an average error rate of 10%.

Model's parameters

In graph 5.2 the model's parameters are shown: these are the variables calculated in

the training part of the model, among the 40 inputs. At the beginning the algorithm

tries to �nd the values of α, β and Power that minimizes the RMSE (the upper left

graph). After 40 inputs the last parameters found are supposed to be the best ones,

and used in the test phase among the remaining part of the dataset (160 elements in

our case). In this particular round, the optimal values are: α=0.6, β=0 and Power=-

79dB. In this case the �nal model and Model B are equal, since the β used in the

test part is equal to zero. From the charts it can be seen that the �rst values of these

three parameters have a higher variance with respect to the �nal values. This is a

consequence of the estimation model's function, that reduce the variance taking into

78

5.3. The Model's Performance

Figure 5.2: Model's parameters in one round.

account the past values of the parameters and inputs. As explained in 4.1.3.2, every

new choice of parameters has to consider also the past inputs, trying to be suitable

for the present and past measurements. The consequence is that, after some initial

changes, the parameters begin to stabilized to a �xed or few amount of near values. In

this case, without considering the �rst 10 values, α is in a range between 0.6 and 0.8,

the power between -73 and -77dB, and β between 0 and 0.7.

The β parameter is the one with more variability because of its nature: it's the coef-

�cient of the random MACs count that has, itself, a high variability. As a matter of

fact, the graph 5.3 shows the evolution of the total number of random and non-random

MAC addresses seen by the ESP during time. It can be seen that the variance of the

Random MACs count is higher than the non-random ones. In particular, the �rst is

around 146 and the latter around 75.

Final Comparison

The shown values are taken from a single round of the validation algorithm. As explain

in the previous section, our cross-validation technique runs 500 rounds, each one with

di�erent training values.

In graph 5.4 a comparison between the �nal and the B model is shown, along the 500

rounds.

Although is hardly visible, the MAE value of the �nal model is higher than the one

from the model B. The �rst one is 2.2257 while the second one 2.1963. As expected

79

5. Experiments and results

Figure 5.3: Evolution of the number of MACs, divided by type. A range of 50 inputs is considered.

even the RMSE is higher in the �nal model, with values of 2.21 and 2.18 respectively.

Of this results we calculate also the maximum error committed. In the �nal model the

maximum error reaches 15 persons, against the model B's 14. Of course this maximum

value cannot be seen in the graph 5.4, because it only represents the MAE value of

each round, so it's calculated memorizing the maximum value obtain in each round

and then taking the maximum of all 500 rounds.

Having a more precise average error, the percentages of the two models, with respect

to the whole capacity, are 10.6% and 10.46% respectively.

In the next graphs, 5.5 and 5.6, the parameters values can be seen. Also in this case,

there are slightly di�erent values between the two models.

The �rst set of graphs shows the confrontation between α and Power values of the two

models. Though again is di�cult to see, the mean values are slightly di�erent. From

the �nal model we have α=0.545 and Power=-79.4480, while from the model B we have

α=0.528 and Power=-79.8140. Of course these di�erent values are due to di�erent β

values, as seen in the 5.6 graph. Although the MAE and RMSE are slightly better in

the case of the �rst model, the �nal one remain the best choice relating to the possible

future scenario.

80

5.3. The Model's Performance

Figure 5.4: Error graphs of the �rst and �nal model.

Figure 5.5: Model's parameters confrontation.

81

5. Experiments and results

Figure 5.6: The β parameter variations with rounds.

82

5.3. The Model's Performance

5.3.2 Sala Tesisti - OpenSpace room

This room is an open space of more or less 21m2, and 16 seats. As in ANTLab, we

tried to place the sensor in the middle of the room to make measurements. Although

smaller, this room is characterized with a high rate of people that comes and goes, but

a lower mean number of total presence.

Estimation's Error

Like in the previous subsection, the �rst graph presented is the one related to the error

rate. The �rst one represent actual amount of people (blue line) in contrast with the

estimated number (red line). The second graph represent the error of this particular

round (that can be lower or higher in di�erent rounds). This time the error values are a

Figure 5.7: Estimation vs. Real Value and Error graphs - Related to the open space.

little di�erent. The maximum error of this round is 6, while the minimum is obviously

0. The mean error is 2 that, with respect to the capacity, correspond to an error of

83

5. Experiments and results

11%. In this single round the RMSE is 2.07, similar to the MAE value.

Model's parameters

In the 5.8 chart the parameters of the training phase are shown. Thanks to the model,

Figure 5.8: Model's parameters of the previous round.

we can see the same behaviour of the previous charts: at the beginning the parameters'

values have a high variance, but after some inputs they begin to settle down. In this

round, α and β at the end of the training part are 0.5 and 0.1 respectively. The power

settles to -78dB.

Final Comparison

Running 500 rounds with this dataset gives better results with respect to a single

round. If in the previous charts the error of the �nal model was 2, after 500 rounds the

MAE results 1.72 and 1.70 respectively to the �nal and model B variant. Even in this

case the model B performs slightly better than the �nal model. In terms of RMSE the

84

5.3. The Model's Performance

two models reach 1.61 and 1.57.

In 5.9 the comparison between the two errors can be seen. The maximum error is of 9

Figure 5.9: Error graphs of the �rst and �nal model -Open space.

and 8 persons for respectively the �nal and B model. The percentage error with respect

to the capacity of the room is respectively 10.75% and 10.62%, calculated using the

MAE and not the RMSE. It can be seen that the di�erence between the two models is

negligible.

In charts 5.10 and 5.11, the di�erence of parameters values can be seen. It can be

seen that, since the power range of the �rst model is wider (-82.62dB on average), its

α values are lower with respect to the �nal model. In particular we have an average α

value of 0.47 and 0.71 respectively. In the �nal model the average power is -79.14dB,

lower than the one in model B but balanced with the higher value of α and β (this last

one is 0.15 on average).

85

5. Experiments and results

Figure 5.10: Model's parameters confrontation - Open space case.

86

5.3. The Model's Performance

Figure 5.11: The β parameter variations with rounds, and its average - Open space case.

87

5. Experiments and results

5.3.3 B.5.3

This is a classroom with a capacity of 80 seats. Unlike the above rooms, this one

is placed in a very crowded building during lesson periods. It's on the �fth �oor of

a building, so it receives "noise" (unwanted probes) also from the others �oors (the

rooms before received noise only from the upper or lower �oor, but not from both).

From this classroom we are able to capture only 11 inputs. Of this 11 inputs, 7 are

used for the training part, while the other 4 for testing.

Since the dataset is smaller, we propose directly the output of the validation model

after 500 rounds, with the comparison with the two models. In the �rst chart 5.12 a

comparison between the error of the two models is shown.

Figure 5.12: Error graphs of the �rst and �nal model - Room B.5.3.

In this case the average error of the �nal model is clearly smaller than the one from

the �rst model. While the �rst one is 7.8, the latter stops at 9.7. The RMSE of the

two models are 4.14 and 5.3 respectively for the �nal and B model. Compared to the

88

5.3. The Model's Performance

whole capacity of the classroom, these MAE translated to a percentage error of 9.75%

and 12%.

In the next graphs we can see the di�erences in the parameters' choices. In 5.13 we can

Figure 5.13: Model's parameters confrontation - B.5.3 Classroom.

see that the α value of the �nal model is higher with respect to the B model, but the

power range used is lower. For the �nal model the average power used is -55dB, with

coe�cients α and β equal, on average, to 1.5 and 1 respectively. The α on the other

model is 1.2, with an average power value of -63.7dB. Unlike before, with this dataset

the value of β increases till 1.03. This means that in this case the count of random

MACs gives a high contribute to the �nal estimation.

89

5. Experiments and results

Figure 5.14: The β parameter variations with rounds, and its average - B.5.3 Classroom.

5.3.4 L.26.01

This last room is a classroom located near the dining hall of the university. It's on

the basement of the building, and can be a�ected by the noise coming from the more

crowded upper �oor. The classroom has a capacity of 70 seats.

For this classroom our dataset is composed of 10 measurements: 7 inputs used for

training the model, and the remaining 3 to test it. Giving a look to the results of 5.15

it can be seen that the �rst model gives a slightly better performance with respect to

the �nal one. When the �rst one reach an average error of 4 persons, the �nal one

performs poorly, reaching a value of 4.37. Translated in percentage with respect to the

capacity of the classroom, the errors are of the 5.7 and 6.24% respectively. The RMSE

is placed at 1.92 for the B model, and 2.04 for the �nal model.

In 5.16 and 5.17 there are the usual graphs shown the parameters of the models. In this

case the values of α are nearly the same, with values of 1.294 and 1.264 respectively

in the �nal and B model. Even the mean powers are really similar, with -59.18dB and

-59.23dB values. In conclusion, the di�erent values of error are produced by di�erent

values of β during the various rounds. Even if the average value is 0.08, β assumes

values di�erent from zero in various rounds.

90

5.3. The Model's Performance

Figure 5.15: Error graphs of the �rst and �nal model - L.26.01

Figure 5.16: Model's parameters confrontation - L.26.01 Classroom.

91

5. Experiments and results

Figure 5.17: The β parameter variations with rounds, and its average - L.26.01 Classroom.

92

5.3. The Model's Performance

5.3.5 Final Table

In this section, a �nal table is presented. This table summarize all the measurements

of the previous section, related only to the �nal model. It is divided into 9 columns:

Room : the name of the room tested.

Dim. : the approximate dimension of the room in square meters.

N° of seats : the capacity of the room in number of seats available.

Power Limit : the range of power considered giving the minimum error. It's ex-

pressed in decibel (dB).

RMSE : the average error expressed in percentage related, this time, to the mean

occupancy of the room.

Av. Error (MAE) : the average error committed by the model during its 500 rounds.

Av. Error in % : the average error expressed in percentage with respect to the total

capacity of the room.

Max Error : the maximum error, in number of persons, encounter during all the

rounds.

Min Error the minimum error committed by the model. Unless the model is really

imprecise, this will be always 0.

Room Dim.
[m2]

N° of
Seats

Power
Limit
[dB]

RMSE Av.
Error

Av.
Error
[%]

Max
Error

Min
Error

ANTLab 100 21 -79.45 2.14 2.23 10.6 15 0
Sala Tesisti 21 18 -79.3 1.61 1.72 10.75 10 0
B.5.3 60 80 -55.8 4.14 7.8 9.75 35 0
L.26.01 54 70 -59.23 2.04 4.37 6.24 15 0

The results of these tests shows that there are some room for improvements. The

average error related to the total rooms capacity always remain around 10%, that is a

good value for a detection based on only one sensor's probe capture.

Another peculiar result is that, except for room B.5.3, the model B that doesn't consider

the random MAC addresses performs slightly better. Although in the real device, an

error of 1.8 or 2.2 doesn't change the results that will be always 2 (you cannot make a

mistake of 2.2 person). Therefore in the real deployment the two models are similar. As

93

5. Experiments and results

said in 4.1.3.2, we choose the Final model instead of the B one because, in our opinion,

it's more sustainable in a world with growing random techniques implementation.

From the table we can see that the values of power used are di�erent and seems to

be independent from the dimension of the room. There is a simple explanation for

this values: in crowded environments (such as those of the last two rooms analysed)

the model prefer to keep the power lower, but increase the α and β values. On the

contrary in the �rst two rooms the parameters are kept lower, while the power range

(the "radius" of sight of the chip) is larger. This could be again caused by the position

of the rooms: the last couple of rooms are placed in more crowded buildings with

respect to the �rst couple. Furthermore, of the last two rooms we have a smaller

amount of data: the model is trained over 7 inputs against the 40 inputs of the �rst

two rooms.

The minimum error is always 0 and it's correct as a value. It means that in some

instants the estimation matches completely the real world observation. The maximum

error although it's impressive at a �rst look, but consider that it's really rare and in

real condition and could be the e�ect of a sudden change in the number of real people

not immediately registered by the sensor. Let's clarify this last statement: the probe

request capture has the problem of being slow on reacting to sudden changes. If, for

example, a group of 30 students enters in a room, the sensor captures their probe

request right away, with no problem. But if the same group exits rapidly from the

room, the sensor doesn't react immediately but takes at most 7 minutes to remove

inactive MAC addresses. In case like these the error can drastically increase until

reaches the values in the table. The risk on taking a lower time to remove memorized

MAC addresses is to remove devices that are still present in the room but not talkative

(see [12]).

94

Chapter 6

Conclusions and future works

The last years have been characterized by a growing interest in smart buildings,

smart objects and everything related to simplify everyday tasks and optimizing the

resources used. In chapter 2 we've seen how occupancy detection can optimize public

transportation, or power consumption in buildings. We have also seen the privacy

risks related to a malicious use of probe requests' data, like the possibilities of tracking

people. Finally we have also seen how modern OSs tries to use MAC address random-

ization in order to protect their users' privacy.

The main drawbacks of the techniques we've seen are the use of speci�c high cost

hardware, powerful SoCs used for trivial sni�ng tasks and the amount of space this

hardware needs. In chapter 2 we've seen a large use of Raspberry Pi or other speci�c

hardware like WiFI PineApple, that are all powerful devices around 35-70¿. Although

still a�ordable, these devices can be replaced by other low-cost hardware for the simple

probe-capturing and analysis tasks. Despite the growing interests in this subject, as a

part of the Smart-Buildings era, a very low-cost infrastructure for occupancy estimation

has not been deployed yet.

6.1 Thesis achievements

At the end of this work of thesis, the goals achieved can be summarized as follows:

� Development of a low cost and small sensor (5cm x 4.5cm x 2cm) with Wi-�

capabilities and temperature, humidity, pressure, altitude and brightness sensing.

� Development of an estimation model to calculate the number of present persons

using Wi-Fi probe detection.

95

6. Conclusions and future works

� Development of the front-end part, with the communication with the sensor

through MQTT protocol, and two methods of retrieve room's information: clas-

sical website method1 and Telegram's bot alternative.

� Deployment of the sensor for in-site measurements.

� Analysis of the measurements for model's performance characterization.

Sensor's development

In chapter 4 the sensor's wiring and PCB development is discussed. For a smart sensor

the dimensions and costs are important, and we decide to reduce them at a minimum.

At the actual change, all the components used can be found in an online show at more

or less 5¿. To produce 10 of these sensor, considering using an external site for the

PCB production2, the price will be around 60¿.

The estimation model

Chapter 2 subsection 4.1.3.2 describes the estimation model used. The results doesn't

take into account the environment measurements but only the probe's count. The op-

eration done by the chip is a minimization of the Root Mean Square Error calculated

taking into account a maximum of 40 past measurements. The minimization function

gives the correct parameters (α, β and Power) in order to calculate the room's occu-

pancy.

Front-End development

In section 4.2 the server-side implementation is discussed. The work started with a

"home-made" server based on a Raspberry Pi 3, and then moves the con�guration onto

Amazon Web Services. The installation and con�guration of an MQTT and Node-RED

server is performed, and then the �ow implementation on Node-RED conclude this part

of the project. With the �ow implementation it was possible to create a dashboard site

publicly reachable, and a Telegram's bot in order to give more choices for retrieving

data at the �nal users.

Sensor Measurements and model's performance evaluation

In chapter 5 the model's performance in four di�erent locations is evaluated. The �rst

two locations were also an evaluation of the developed sensor, in order to "stress-test"

1www.poliaule.ml
2EasyEDA.com, for example, o�ers an online PCB making tool and shop to order them at low

price.

96

6.2. Future Works

its capabilities and improve some possible bugs3. The developed model gives an error

around 10% with respect to the rooms total capabilities. In number of people, this error

was always around 1-4 people, as it can be seen in table ??.Using only probe requests

as information about occupancy, and considering the limitations due to slow reactivity

to rapid changes in the number of people present, these results are encouraging, and

leave some space for improvements.

6.2 Future Works

This work has presented the development of a complete board with sni�ng and

measurements capabilities. There is some scope for further improvements, mainly

driven by the experiences gained during the development. In this section some of those

improvements are presented.

Using temperature, humidity and pressure data to help the estimation pro-

cess

As we've seen in [8], temperature, humidity and other ambient measurements can be

used in order to estimate the occupancy in an indoor environment. In the developed

board there are already temperature, pressure and humidity sensors, but these values

are not taken into account in the model. A future improvement will be to modify the

model in order to keep track and help the estimation process using also these ambience

data already collected.

Using vectors of coe�cients α and β

In our model, after the training part, we use a single value of α and β in order to cal-

culate the estimation. A possible future work could be the evaluation of the feasibility

of using coe�cients vectors, instead that single coe�cients, with a dimension equal to

the number of power-range considered. The model will have to calculate every element

of these vectors in order to minimize the total RMSE obtained. This evaluation will

have to consider the computing power limitation of the low-cost chip.

Optimizing the model's runtime

In the deployed model we've seen (4.1.3.2) that the parameters' calculation requires a

lot of time (almost 4 seconds). An improvement will be to �nd a way to reduce this

calculation time reducing the number of operations done by the MCU.

3On this note, see the watchdog timer problem in section 3.4.2.1 and 4.1.3.2

97

6. Conclusions and future works

Using LPWAN4 instead of Wi-Fi for data uploading

One of the limitation of the ESP8266 is that it doesn't support WPA/2 Enterprise Wi-

Fi con�guration with EAP-TLS authentication. The University network also blocks

MQTT port for communication. For these reasons the chip cannot be deployed in all

the rooms, but needs always a dedicated Wi-Fi network in order to send it's data to

through MQTT to the server.

During the latest years, new chips were developed enabling the use of both Wi-Fi

connectivity and a LPWAN technologies like LoRa5. Using powerful chips with these

communication techniques, it will be possible to leave the sni�ng mode always on

and using the LoRa technology in order to send data to the gateway. This method

will solve the Wi-Fi authentication limitation of ESP8266 and increase the computing

power available.

4LPWAN is an achronym for Low-Power Wide Area Network. It's a type of wireless network
designed to allow long range communication at low bit-rate for smart object. The low bit-rate is
essential for sensors operating on a battery, in order to reduce power consumption.

5LoRa is a proprietary radio modulation technique base on spreading spectrum techniques. This
wireless network operates in licensed-free frequency bands like 169 MHz, 433 MHz, 868 MHz and 915
MHz.

98

Appendix A

In the �gure below A.1 a signal and a random barker sequence are represented.

A B R

0 0 0

0 1 1

1 0 1

1 1 0

Table A.1:

XOR Rules

It can be seen that the XOR operation (rules recap in table A.1, where

A and B are the inputs and R the output) between the signal and

the barker sequence, generates a signal with rate equal to that of the

barker sequence, higher that the signal S(t). Given that for higher rate

we have higher bandwidth requirements, the multiplication of the two

signals generate the so-called "spreaded signal", a signal in which the

power is spread along a larger interval of frequencies.

Figure A.1: An example of signal and barker sequence multiplication

99

A.

100

Bibliography

[1] V. Acuna et al. �Localization of WiFi Devices Using Probe Requests Captured

at Unmanned Aerial Vehicles�. In: IEEE Xplore (2017).

[2] Jonathan Brooks et al. �An experimental investigation of occupancy-based energy-

e�cient control of commercial building indoor climate�. In: IEEE Xplore (2015).

[3] Jonathan Brooks et al. �Energy-e�cient control of under-actuated HVAC zones

in commercial buildings�. In: Science Direct (2015).

[4] Sartori Camilla. �Estimating users' provenience through analysis of wi-� probe

requests�. Master Degree thesis. Politecnico di Milano, 2015�2016. url: http:

//hdl.handle.net/10589/132469.

[5] IEEE. IEEE Registered OUI. 2016. url: https : / / standards . ieee . org /

develop/regauth/oui/oui.txt.

[6] ISO. ISO - International Organization for Standardization. 1946. url: www.iso.

org.

[7] Florian Dorfmeister Lorenz Schauer and Florian Wirth. �Analyzing Passive Wi-

Fi Fingerprinting for Privacy -Preserving Indoor-Positioning�. In: IEEE Xplore

(2016).

[8] Véronique Feldheim Luis M. Candanedo. �Accurate occupancy detection of an

o�ce room from light, temperature, humidity and CO2 measurements using sta-

tistical learning models�. In: Science Direct (2015).

[9] Célestin Matte et al. �Defeating MAC Address Randomization Through Timing

Attacks�. In: ACM WiSec 2016 (2016).

[10] OASIS. OASIS - Advanced open standards for the information society. 1993. url:

www.oasis-open.org.

[11] Thongtat Oransirikul et al. �Feasibility of analyzing Wi-Fi activity to estimate

transit passenger population�. In: IEEE Xplore (2016).

101

http://hdl.handle.net/10589/132469
http://hdl.handle.net/10589/132469
https://standards.ieee.org/develop/regauth/oui/oui.txt
https://standards.ieee.org/develop/regauth/oui/oui.txt
www.iso.org
www.iso.org
www.oasis-open.org

Bibliography

[12] Julien Freudiger (PARC). �Short: How Talkative is your Mobile Device? An Ex-

perimental Study of Wi-Fi Probe Requests�. In: WiSec '15 Proceedings of the

8th ACM Conference on Security & Privacy in Wireless and Mobile Networks

Article No. 8 (2015).

[13] Achille Pattavina. Reti di Telecomunicazione - Seconda Edizione. McGraw-Hill,

2007.

[14] Simon Monk Paul Scherz. Practical Electronics for Inventors - Third Edition.

McGraw-Hill, 2013.

[15] Weijun Qin et al. �Mo-Fi: Discovering Human Presence Activity with Smart-

phones Using Non-intrusive Wi-Fi Sni�ers�. In: IEEE Xplore (2014).

[16] Waldemar Celes Roberto Ierusalimschy Luiz Henrique de Figueiredo. Lua, an

embeddable scripting language. 1993. url: www.lua.org/.

[17] Michael Moher Simon Haykin. Communication Systems - Fifth Edition. Wiley,

2010.

[18] Ars Technica. No, this isn't a scene from Minority Report. This trash can is stalk-

ing you. 2013. url: https://arstechnica.com/information-technology/

2013/08/no-this-isnt-a-scene-from-minority-report-this-trash-can-

is-stalking-you/.

[19] Edwin Vattapparamban et al. �Indoor Occupancy Tracking in Smart Buildings

U sing Passive Sni�ng of Probe Requests�. In: IEEE Xplore (2016).

102

www.lua.org/
https://arstechnica.com/information-technology/2013/08/no-this-isnt-a-scene-from-minority-report-this-trash-can-is-stalking-you/
https://arstechnica.com/information-technology/2013/08/no-this-isnt-a-scene-from-minority-report-this-trash-can-is-stalking-you/
https://arstechnica.com/information-technology/2013/08/no-this-isnt-a-scene-from-minority-report-this-trash-can-is-stalking-you/

	Introduction
	Overview
	Project Objective
	Thesis Outline

	State of the art
	Wi-Fi Probe frequency
	Estimating occupancy through probe request
	MAC Address Randomization
	Occupancy detection through ambient measurements

	Theoretical considerations
	The IEEE 802.11 Standard
	Physical Layer
	Medium Access Control layer - 802.11 MAC Frame
	IEEE 802.11 Standard Scanning Functions
	Probe Requests - A little focus

	The MQTT Protocol
	Protocol Structure
	Retain function and QoS
	Protocol Messages and Example

	Node-RED and MQTT duo
	The ESP8266 Microcontroller
	The Microcontroller
	Espressif Systems' ESP8266
	The Watchdog Timer

	Serial Interfaces
	I2C
	SPI

	System Implementation
	Sensor-Side Implementation
	Sensors and wiring
	From the schematic to the Printed Circuit Board
	The Program
	Power-safe mode
	The Estimation Model

	Server-Side Implementation
	The Server
	The MQTT Broker - Installation and set-up
	Node-RED and its extensions
	The Final Flows
	Telegram Bot's creation and set-up
	Final Homepage

	Experiments and results
	The Dataset
	The Model's validation technique
	The Model's Performance
	ANTLab
	Sala Tesisti - OpenSpace room
	B.5.3
	L.26.01
	Final Table

	Conclusions and future works
	Thesis achievements
	Future Works

	Appendix
	Bibliography

