
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

xSpark: Managing Concurrent
QoS-constrained Big Data

Applications through Dynamic
Resource Provisioning

Supervisor:

prof . sam jesus guinea montalvo

Assistant Supervisor:

dr . giovanni quattrocchi

Master Graduation Thesis by:

simone ripamonti

Student Id n. 849786

Academic Year 2016-2017

colophon

This thesis has been written in LATEX using TeXstudio and is based on
the template “Classic Thesis at DEIB” available here:

https://github.com/Lordmzn/ClassicThesis-at-DEIB

https://github.com/Lordmzn/ClassicThesis-at-DEIB

Ai miei genitori

— Simone

R I N G R A Z I A M E N T I

Con questo lavoro si conclude la mia avventura nel mondo delle
lauree magistrali al Poli.

Voglio prima di tutto ringraziare chi ha reso possibile la stesura di
questa tesi, cioè il relatore Prof. Sam Guinea e il correlatore Dr. Gio-
vanni Quattrocchi, entrambi si sono dimostrati disponibili e carichi
di consigli, facendomi appassionare al loro lavoro.

La mia famiglia ha giocato un ruolo fondamentale, mi ha permesso
di svolgere il mio percorso di studi senza preoccupazioni, fornendomi
tutto il supporto necessario per trascorrere al meglio questa fase della
mia vita. Un abbraccio forte ai miei genitori, Marco e Stefania, e un
in bocca al lupo per il suo percorso a Roberto, un amico oltre che un
fratello. Un bacione a tutti i miei nonni, anche a quelli che oggi non
potranno essere qua.

Grazie a Francesca ♥, che mi è stata accanto e mi ha dato la forza
di affrontare quest’ultimo ostacolo, spronandomi a dare il massimo,
anche quando mi sembrava troppo in salita. Fondamentali sono stati
i consigli lessico-grammaticali, che mi hanno permesso di scrivere
al meglio le varie sezioni di questa tesi e non solo. Spero di poterti
essere di supporto tanto quanto tu lo sia stata per me.

Grazie ad Alberto, Fulvio e Luca, per aver affrontato con me questi
anni di università e avermi dato la possibilità di stemperare la tensio-
ne prima degli esami. Spero in un lunedì del sushi anche negli anni
a venire.

Grazie a tutti i miei amici, vecchi e nuovi, per avermi sostenuto in
ogni momento del percorso di studi e avermi dato la possibilità di tra-
scorrere bellissimi momenti insieme. Un ringraziamento particolare a
Umberto, amico fidato.

Simone

v

C O N T E N T S

Abstract xiii
Introduction xv
1 state of the art 1

1.1 MapReduce 1

1.1.1 Apache Hadoop 2

1.2 Apache Hadoop YARN 4

1.3 Apache Mesos 6

1.4 Apache Spark 9

1.4.1 Spark on Yarn 14

1.4.2 Spark on Mesos 16

1.5 Virtualization and Containerization 17

1.5.1 Docker 21

2 preliminaries 23

2.1 xSpark 23

2.1.1 Architecture 26

2.1.2 Heuristic 28

2.1.3 Controller 29

2.2 Related Work 31

3 solution 33

3.1 Changes in the architecture 33

3.2 Heuristic 34

3.3 Launching Applications 34

3.4 Scalable Off-Heap Memory 35

3.5 Controller 38

3.6 Resolving Resource Contention 43

3.6.1 Earliest Deadline First "All" 43

3.6.2 Earliest Deadline First "Pure" 44

3.6.3 Earliest Deadline First "Proportional" 45

3.6.4 Proportional 46

3.6.5 Speed 47

4 implementation 51

4.1 Heuristic 51

4.2 Launching Applications 53

4.3 Scalable Off-Heap Memory 55

4.4 Controller 60

4.4.1 ControllerSupervisorEDFAll 64

4.4.2 ControllerSupervisorEDFPure 66

4.4.3 ControllerSupervisorEDFProportional 67

4.4.4 ControllerSupervisorProportional 69

4.4.5 ControllerSupervisorSpeed 69

5 evaluation 73

5.1 Benchmarks 73

vii

5.1.1 Spark-Bench 73

5.1.2 Spark Performance Test 74

5.1.3 TPC Benchmark H 74

5.2 Metrics 75

5.3 Different kind of applications 78

5.3.1 Spark-Bench composite benchmark 79

5.3.2 Spark-Perf composite benchmark 80

5.3.3 TPC-H composite benchmark 81

5.3.4 Which configuration to choose? 83

5.4 Deadline as a priority between applications 85

5.4.1 Comparison 1: Spark-Bench 85

5.4.2 Comparison 2: Spark-Perf 87

5.4.3 Comparison extension 90

5.5 Off-heap and heap performances 94

5.5.1 Heap and off-heap impact 94

5.5.2 Multiple application 96

5.6 Threats to validity 97

5.6.1 Internal Threats 97

5.6.2 External Threats 98

6 use cases 101

6.1 Case 1 101

6.2 Case 2 104

6.3 Case 3 106

6.4 Case 4 108

6.5 Case 5 110

7 conclusion 113

bibliography 115

viii

L I S T O F F I G U R E S

Figure 1.1 MapReduce word count job example 2

Figure 1.2 Hadoop MapReduce architecture 3

Figure 1.3 Hadoop HDFS architecture 4

Figure 1.4 Hadoop YARN architecture 5

Figure 1.5 Apache Mesos architecture 7

Figure 1.6 Apache Mesos Resource Offer example 8

Figure 1.7 Spark Standalone architecture 11

Figure 1.8 Spark word count application DAG example 12

Figure 1.9 Spark on YARN Client Mode 15

Figure 1.10 Spark on YARN Cluster Mode 15

Figure 1.11 Spark on Mesos Coarse Grained Mode 16

Figure 1.12 Spark on Mesos Fine Grained Mode 17

Figure 1.13 Virtualization types 19

Figure 1.14 VMs and Containers 20

Figure 1.15 Docker interfaces 21

Figure 2.1 xSpark high level architecture 24

Figure 2.2 xSpark architecture 26

Figure 2.3 Controller set point generation 30

Figure 2.4 xSpark Worker plot 30

Figure 3.1 Spark Unified Memory Manager 37

Figure 3.2 Resource Contention example 41

Figure 4.1 Heuristic Class Diagram 52

Figure 4.2 MemoryManager Class Diagram 56

Figure 4.3 New controller structure 60

Figure 4.4 ControllerSupervisor Class Diagram 65

Figure 5.1 Comparison 1: Spark-Bench Diagrams 88

Figure 5.2 Comparison 2 Spark-Perf Diagrams 89

Figure 5.3 Comparison 1: PageRank off-heap cpu 93

Figure 5.4 Effect of different memory allocations 97

Figure 6.1 Use Case 1 102

Figure 6.2 Use Case 2 105

Figure 6.3 Use Case 3 107

Figure 6.4 Use Case 4 109

Figure 6.5 Use Case 5 111

L I S T O F TA B L E S

Table 3.1 Heap size and Number of applications 36

ix

Table 3.2 EDF "All" allocation example 44

Table 3.3 EDF "Pure" allocation example 45

Table 3.4 EDF "Proportional" allocation example 46

Table 3.5 Proportional allocation example 47

Table 3.6 Speed allocation example 49

Table 5.1 xSpark configuration 74

Table 5.2 Spark-Bench configuration 75

Table 5.3 Spark-Perf configuration 75

Table 5.4 TPC-H configuration 76

Table 5.5 TPC-H tables 76

Table 5.6 Composite Benchmarks 78

Table 5.7 Spark-Bench Composite Benchmark Results 79

Table 5.8 Spark-Perf Composite Benchmark Results 80

Table 5.9 TPC-H Composite Benchmark Results 82

Table 5.10 Comparison 1 Composite Benchmark 86

Table 5.11 Comparison 1 Composite Benchmark Results 86

Table 5.12 Comparison 2 Composite Benchmark 87

Table 5.13 Comparison 2: Composite Benchmark Results 90

Table 5.14 Comparison 1 and 2 Spark static parallel re-
sults 91

Table 5.15 Comparison 1 and 2 xSpark off-heap results 92

Table 5.16 Off-heap impact test 95

Table 5.17 Different memory allocation impact 96

Table 6.1 Use case composite benchmark 103

Table 6.2 Use case composite benchmark results 104

L I S T I N G S

Listing 1.1 Spark word count application example. 12

Listing 2.1 Example of profiling data from a PageRank ap-
plication 24

Listing 4.1 ControlEventListener: loading the correct heuris-
tic implementation. 51

Listing 4.2 HeuristicFixed: using values provided by the
user. 51

Listing 4.3 HeuristicUnlimited: adjusting the number of
stage cores. 53

Listing 4.4 WorkerInfo: keeping track of cores assigned to
applications. 54

Listing 4.5 Master: launching executors on workers. 54

Listing 4.6 MemoryManager: resizing off-heap memory. 55

Listing 4.7 UnifiedMemoryManager: implementation of re-
sizeOffHeapMemory. 55

x

Listing 4.8 Worker: resizing memory when launching an
executor. 58

Listing 4.9 Worker: resizing memory when killing an ex-
ecutor. 58

Listing 4.10 ControllerProxy: updating the value of off-heap
memory. 59

Listing 4.11 ControllerExecutor: finding the next core al-
location. 60

Listing 4.12 ControllerExecutor: applying next core and
updating old values. 61

Listing 4.13 Worker: initialization of ControllerSupervisor. 62

Listing 4.14 ControllerSupervisor: keeping track of active
executors. 62

Listing 4.15 ControllerSupervisor: main loop 63

Listing 4.16 ControllerSupervisorEDFAll: implementation
of method correctCores. 66

Listing 4.17 ControllerSupervisorEDFPure: implementation
of method correctCores. 67

Listing 4.18 ControllerSupervisorEDFProporional: imple-
mentation of method correctCores. 68

Listing 4.19 ControllerSupervisorProportional: implemen-
tation of method correctCores. 69

Listing 4.20 ControllerSupervisorSpeed: implementation of
method correctCores. 69

Listing 4.21 HeuristicBase: calculating the avg nominal rate
of the application. 71

Listing 4.22 DagScheduler: calculating the average nominal
rate of the starting application. 71

A C R O N Y M S

OS operating system

JVM Java Virtual Machine

EDF Earliest Deadline First

FIFO First In First Out

PI Proportional plus Integral

VM virtual machine

HDFS Hadoop Distributed File System

RDD Resilient Distributed Dataset

xi

JT Job Tracker

TT Task Tracker

RM Resource Manager

NM Node Manager

AM Application Master

NN Name Node

DN Data Node

CLC container launch context

DAG Directed Acyclic Graph

I/O input/output

LXC Linux Containers

MPI Message Passing Interface

API application programming interface

SQL Structured Query Language

vCPU virtual CPU

SSD Solid State Disk

TPC Transaction Processing Performance Council

QoS Quality of Service

xii

A B S T R A C T

Cloud computing is based on computing power and storage virtual-
ization, obtained using an infrastructure composed by abstract hard-
ware and software, accessible on the Internet. The cloud enables big
data processing for enterprises of all sizes. Big data are a massive
amount of structured and unstructured data, they are so large that
they can be difficulty processed using traditional database and soft-
ware approaches. When working with large datasets, it becomes diffi-
cult to create, manipulate and manage these data, in particular it be-
comes a problem to search and analyze the data. Big data applications
provide new challenges in searching and enforcing relevant quality of
services, in particular users may be interested in quantifying and con-
straining the execution time of each of the applications’ runs. One of
the most commonly used cluster computing framework for big data
analytics is Apache Spark, which provides a fast and general data
processing platform, that allows quick in memory computation still
being fault-tolerant. Spark computation is based on RDDs, a data ab-
straction, and DAGs, that represents the data manipulation process.
xSpark, developed at Politecnico di Milano, propose an extension of
Spark framework that offers fine-grained dynamic resource allocation
using lightweight containers. xSpark allows users to force the dura-
tion of the execution of an application by specifying a deadline, this
is possible thanks to the runtime allocation of resources requested
during the execution by xSpark’s control loop, that is composed by
a centralized heuristic part and a distributed local control theoretical
one. This thesis has the goal of extending the work done with xSpark,
in particular by supporting the execution of multiple applications in
parallel, trying to satisfy the quality of service requested by the users.
This has been successfully done by extending the controller model
and by taking into account the existence of multiple application run-
ning in parallel that may contend the available resources. In absence
of resource contention, applications behave as if they were running
alone in the cluster, meanwhile in presence of contention we are able
to reduce the number of deadline violations picking the right strategy.

xiii

S O M M A R I O

Il cloud computing è basato sulla virtualizzazione della potenza di
calcolo e dell’archiviazione dei dati, ottenuto tramite un’infrastruttu-
ra di dispositivi hardware e software astratti e accessibili tramite Inter-
net. Il cloud permette ad aziende di qualsiasi dimensione di eseguire
applicazioni big data. I big data vengono descritti come un’enorme
mole di dati strutturati e non, che sono talmente grandi da essere
difficilmente elaborabili tramite basi di dati e approcci software tra-
dizionali. Quando si lavora con grandi set di dati, diventa difficile
creare, manipolare e organizzare questi dati, in particolare ricercare
e analizzare questi dati diventa un problema. Uno dei principali fra-
mework di cluster computing per analisi di big data è Apache Spark,
che offre una piattaforma per elaborare dati in modo veloce e ge-
neralizzato, permettendo una rapida computazione mantendo i dati
in memoria e rimanendo allo stesso tempo tollerante agli errori. L’e-
secuzione di Spark è basata su RDD, un’astrazione dei dati, e DAG,
che rappresenta il processo di manipolazione dei dati. Le applicazio-
ni big data pongono nuove sfide nel cercare e imporre qualità del
servizio rilevanti, in particolare gli utenti sono interessati nel quan-
tificare e limitare la durata delle singole esecuzioni di queste appli-
cazioni. xSpark, sviluppato presso il Politecnico di Milano, propone
un’estensione del framework Spark in grado di offrire allocazione di-
namica delle risorse a grana fine usando i container. xSpark permette
agli utenti di forzare la durata dell’esecuzione delle applicazioni spe-
cificando una deadline, questo è reso possibile tramite l’allocazione
delle risorse richieste durante l’esecuzione dal controllore presente in
xSpark, composto da una parte euristica centralizzata e da una parte
distribuita fondata sulla teoria del controllo. Questa tesi ha l’obietti-
vo di estendere il lavoro fatto con xSpark, in particolar modo si vuole
supportare l’esecuzione di più applicazioni in parallelo, cercando di
rispettare le qualità del servizio richieste dagli utenti. Questo è sta-
to reso possibile estendendo il modello del controllore e tenendo in
considerazione la possibile esistenza di più applicazioni che vengono
eseguite in parallelo, e che quindi potrebbero contendersi le risorse
disponibili. In assenza di contesa di risorse tra le applicazioni, esse si
comportano come se stessero eseguendo da sole nel cluster, mentre in
presenza di contesa, siamo in grado di ridurre il numero di violazioni
della deadline scegliendo la strategia più adeguata.

xiv

I N T R O D U C T I O N

Cloud computing has evolved to the point that it has become a pop-
ular and universal paradigm of service oriented computing, where
infrastructures and solutions are offered as a service. Cloud has revo-
lutionized the way a computing infrastructure is abstracted and used.
Some of the feature that make cloud computing desirable are elastic-
ity (e.g., on demand scaling), pay-per-use, no upfront investment (or a
very little one), low time to market and transfer of risk.

Big data is a word that is used to describe large amounts of data,
that might be structured, semi-structured or unstructured. We call big
data those data that cannot be handled using traditional databases or
software technologies. The term big data is originated from the web
companies that needed to handle loosely structured or unstructured
data. Today, every second 7.500 Tweets are sent, 800 Instagram pho-
tos are uploaded, 1.300 Tumblr posts are created, 2.800 Skype calls
are done, 60.000 Google searches are performed and 2.500.000 emails
are sent [5]. All this data is collected and analyzed. There are many
properties associated with big data: volume, variety, velocity, variability
and value. Storing and processing big volumes of data requires scal-
ability, fault tolerance and availability [29]. Through hardware virtu-
alization, cloud computing provides all the requested characteristics.
Cloud computing enables big data to be available, scalable and fault
tolerant. Big data is also a business opportunity, many companies
started to focus on delivering big data applications as a service, such
as Cloudera1, Teradata2 and many others. Big data applications have
the goal of transforming, aggregating and analyzing large amounts
of data in a easy and efficient way. Specialized frameworks have the
goal of transforming these applications in atomic parts, that can be
executed in a distributed cluster of physical or virtual machines. The
level of parallelism that we can achieve is limited by the number of
machines and also by the synchronizations requested between the
data, such as aggregations and grouping. The first example of this
paradigm was the map/reduce programming model, now more ad-
vanced solutions, such as Apache Spark [2] and Apache Tez [3], pro-
vide a greater flexibility and allow building more complex applica-
tions using a DAG based structure.

One of the most commonly used cluster computing framework
for big data analytics is Apache Spark [30]. It was originally de-
veloped by researchers at UC Berkley AMPLab. Apache Spark is a
distributed compute framework for easy, at-scale, computation [10].

1 Cloudera: www.cloudera.com
2 Terradata: www.teradata.com

xv

www.cloudera.com
www.teradata.com

Spark provides a fast and general data processing platform, letting
users execute programs 100x faster in memory or 10x faster on disk
than Hadoop, indeed in 2014 it won the Daytona GraySort contest
as the fastest open source engine for sorting a petabyte [42]. Spark
is fault-tolerant and is designed to run on commodity hardware, it
generalizes the two stage MapReduce to support arbitrary DAG. The
main advantage of Spark with respect to previous cluster computing
frameworks is the fast data sharing between operations, for example
Apache Hadoop requires intermediate data to be written on disk in
order to be accessible by the following operations, Spark instead al-
lows to execute in-memory computing. Spark offers a quick way of
writing code by means of high-level operators provided in the API:
Spark Core, Spark SQL, Spark Streaming, MLlib (machine learning),
GraphX (graph). Spark integrates well with various storage systems,
including Amazon S3, Hadoop HDFS and any POSIX-compliant file
system. Spark provides its own cluster manager, but it can also run on
clusters managed by Hadoop Yarn or Apache YARN. Spark is often
used for in-memory computation, but it is also capable of handling
workloads whose size exceeds the aggregate cluster memory.

Quality of Service (QoS) notion in big data application change ac-
cording to the type of application. Interactive applications are usually
assessed in terms of response time or throughput, their fulfillment de-
pends on the intensity and variety of the incoming requests. Big data
applications might require a single batch computation on a very large
dataset, thus QoS must consider only the execution of a single run. In
this domain QoS is often states as deadline, that is the desired duration
of the computation. Many factors influence the duration of an appli-
cation execution. A resource allocation problem is due to the fact that
different applications might have a different structure, applications
can run in contexts that have different available resources and also
the input datasets might have different sizes. A scheduling problem
instead is due to the fact that other applications might be running
on the same hardware, thus not all the resources are available for an
application execution.

Satisfying deadline based QoS constraints is a problem related to re-
source allocation, since the amount of allocated resources determines
the duration of the execution of a Spark’s application. The simplest
option available on all cluster managers is static partitioning of the
resources, in this way each application is given a maximum amount
of resources it can use, and holds them for the whole execution. Mem-
ory sharing across applications is currently not provided. Spark also
provides a mechanism to dynamically adjust the resources an appli-
cation occupies according to the workload, applications may give re-
sources back to the cluster if no longer used and may reacquire them
again when there is demand, this is particularly useful if multiple
application share resources in the Spark cluster. This is disabled by

xvi

default, but it is available on all cluster managers. A problem of this
approach is the granularity, since it is performed on the granularity
of the executor.

In this thesis we investigate the problems related to the scheduling
of concurrent DAG-based big data applications, taking into account
QoS constraints. In this field, the state-of-the-practice big data frame-
work is Apache Spark. This thesis is based on an extension of Spark,
called xSpark, which offers dynamic resource allocation and enforces
QoS constraints.

The previous work on xSpark addressed the resource allocation
problem, in order to meet user defined deadlines in Spark. xSpark is
a Spark extension that offers optimized and elastic provisioning of
resources. This is obtained by using nested control loops. A central-
ized loop is implemented on the master node, it controls the execu-
tion of different stages of an application. Multiple local loops, one
per executor, focus on task execution. xSpark exploit an initial profil-
ing application execution in order to create an enriched DAG of the
application, storing informations about the stages. At runtime, the
annotated DAG is used to understand how much work has already
been done and how much work still needs to be done. Since we need
all executions of the same application to use the same DAG, xSpark
requires applications to not contain branches or loops, which might
be resolved in different ways at runtime. The centralized control loop
is activated before the execution of each stages and uses a heuristic to
assign a deadline to the stage and calculate the required CPU cores
needed to satisfy it, using the provided enriched DAG and the user re-
quested deadline. Many factors can influence the actual performances
and invalidate the prediction, local control loops have the objective of
counteracting against those imprecisions, by dynamically modifying
the amount of CPU cores assigned to the executors during the execu-
tion of a stage. A control theory algorithm determines the amount of
CPU cores to be allocated to the executor for the next control period.
Docker is used in order to tune the number of CPU cores allocate to
the executors, which are run inside lightweight containers. xSpark is
able to use less resources than native Spark and can complete execu-
tions with a less than 1% error in terms of set deadlines.

The problem of meeting a particular deadline depends on a re-
source allocation problem (addressed in xSpark work) and a schedul-
ing problem, since other applications may be in execution on the same
hardware.

The scheduling problem on xSpark prevents executing multiple ap-
plications at the same time. This is due to the fact that there is no pol-
icy to share resources across applications. This problem is a relevant
one, in particular when executing applications with a long deadline.
Having a long deadline, intended as greater than the application ex-
ecution time when executed in native Spark, will lead to have a low

xvii

average resource utilization. This has the effect of wasting resources,
since we are not able to exploit them by running another application
in parallel. Our objective is to give concurrent applications the ca-
pability of requesting resources in an elastic way, which means that
every application executes as if it is the only running application at
the time and thus it will try to use all the system resources regardless
the presence of other applications. As one can expect, this behavior
can lead to resource contention between different application, a way
to solve contention needs to be proposed. In the end, it is important to
check that it is possible to solve both the resource allocation and the
scheduling problem at the same time. A relevant limitation in Spark
is the absence of a way to resize the memory that has been assigned
to an executor. Resizing the JVM heap of an executor is impossible
by design, it is required to restart the process. Instead, off-heap allo-
cated memory could be resized since it does not reside on the Java
process, but this feature is absent in native Spark. Being able to resize
the memory assigned to an executor would allow to have an higher
memory utilization, reducing resource waste.

This thesis adapts xSpark to the concurrent applications context.
The two main modifications of the previous work are related to the
application scheduling and the dynamic use of off-heap memory. The
distributed control loop of xSpark has been modified in order to han-
dle the presence of multiple applications’ executors running on the
same worker node. In order to do so, we needed to investigate differ-
ent ways to solve the resource contention state, since we are interest-
ing in allocating no more than the available resources, in order to have
a predictable behavior of the application execution. Different strate-
gies for solving resource contention have been proposed, which may
take into account the priority of an application according to its dead-
line (based on Earliest Deadline First approach) or might be based on
a weight calculated using some characteristics of the application, such
as the requested cores or its speed. A tuning parameter is available
in order to be more tolerant of the presence of other applications run-
ning in the system, in particular its purpose is forcing the allocation
of the entire cluster CPU cores in order to anticipate the completion
of stage execution with respect to their deadlines. This has the advan-
tage of better tolerating the future presence of new applications run-
ning in the system, which might slow down the application execution.
It is important to remember that this might cause the anticipation of
the application completion, with respect to the defined deadline, if no
contention state arises, which as a consequence might cause a large
error between the expected completion time and the resulting one.
In order to be able to use the entire cluster resources, we introduced
a way to dynamically resize the allocable off-heap memory assigned
to an application. Off-heap memory size is updated every time the
context changes, in particular when a new application is launched

xviii

or one terminates. This allows a single application to be able to al-
locate the entire resources of the cluster in terms of CPU cores and
off-heap memory, and still be able to launch another application as if
the previous one was not occupying all the resources.

This xSpark extension has been tested against a different set of
benchmarking applications, that include machine learning, graph pro-
cessing, simple aggregations and SQL queries. We used composite
benchmarks to understand the behavior of the system, which are
composed by a set of applications, each with a specified deadline
and release time. From our experiments, we understood that the dif-
ferent resource contention solving strategies behave differently and
are suitable in different contexts, for example when dealing with a
strict deadline, we may choose a strategy that is based on Earliest
Deadline First approach, when our goal instead is minimizing dead-
line errors instead, we may prefer to choose a weight based strategy.
In order to be able to determine if a composite benchmark is fea-
sible or not, in the sense that a deadline-aware implementation of
Apache Spark would be able to satisfy the deadlines, we developed
a tool that given the vanilla Spark execution logs of the applications
in a composite benchmark, is able to determine a possible parallel
execution behavior using an Earliest Deadline First approach. When
a composite benchmark is feasible, this extension of xSpark is able
to achieve errors under 5% using certain combinations of contention
resolving strategies and tuning parameter. When a composite bench-
mark is infeasible instead, we are able to complete the same number
of applications satisfying the deadline as the ones expected from the
execution log based tool. We have also compared the execution of par-
allel applications in xSpark with serialized and parallelized vanilla
Spark, proving that xSpark is able of outperforming serialized Spark
with certain applications in terms of execution time and in general
performing not worse than a statically partitioned Spark cluster. Lat-
est experiments took into account the changes in performance related
to the use of off-heap allocation, proving that off-heap allocation is a
solution when disk swapping degrades execution performances, but
in general has the effect of slightly increasing execution times due to
an higher time requested to access stored data.

xix

1
S TAT E O F T H E A RT

1.1 mapreduce

MapReduce is a software framework introduced by Google in order
to support the distributed computation of large dataset in cluster
of computers. The framework is inspired by map and reduce func-
tions used in functional programming, even though their purpose
in the MapReduce framework is not the same of the original form.
MapReduce library are available written in different programming
languages. There are open source implementation of the MapReduce
framework, for example Apache Hadoop.

The MapReduce framework is composed by different functions for
each step:

1. Input Reader

2. Map Function

3. Partition Function

4. Compare Function

5. Reduce Function

6. Output Writer

The Input Reader reads the data from mass memory and splits the
input in S different splits, with a fixed dimensions (e.g., 64 MB) that
are successively distributed to M machines of the cluster that have
the Map Function. The Input Reader has also the goal of generating
a pair (key, value). The N machine of the cluster are divided in 1 mas-
ter, whose goal is to detect idling slaves and assign them a task, and
N − 1 slaves that receive the tasks assigned by the master node. In
total, M Map tasks and R Reduce tasks are assigned. A slave that has
been assigned the M− th task reads the content of the input, extracts
the (key, value) pairs and send them to the Map function defined
by the user, that generates zero or more (key, value) pairs as output.
These pairs are buffered in memory. Periodically the buffered pairs
are cached on disk and partitioned in R sections by the partition func-
tion. The addresses of the partitioned sections are sent to the master
node which is responsible of rotating the location of the slaves that
will process the Reduce function. Between the slave with the Map
function and the one with the Reduce one, all the pairs are reordered
in order to find the ones that point at the same value, and thus also

1

2 state of the art

Figure 1.1: MapReduce word count job example. The goal of this job is to
count the occurrences of the different words that are in the input
text.

have the same key. The so called shuffling phase is the process that
is used to transfer data from mappers to reducers. Once all the keys
that point to the same value have been found using the compare func-
tion, a merge operation is performed. The sorting operation is useful
because in this way the reducer can know when a new reduce task
should start. For each of the keys, the associated slave iterates on all
the keys, takes the values with the same key and then applies the
Reduce function defined by the user, generating one or more element
in output. The Output Writer has the goal of writing the results back
on mass storage.

A sample word count application can be seen in Figure 1.1. The in-
put is a document containing words, our goal is to compute the num-
ber of occurrence of each of the words in the document. Each Map
task applies its function on a line of the document, emitting for each
of the words in the line a pair (’word’, 1). For example if the input
line is "Dear Bear River", it is split into ["Dear", "Bear", "River"] and
then mapped into [("Dear", 1), ("Bear", 1), ("River", 1)]. After shuffling
the map results, the Reduce task receives a word and a list containing
as many ones as the times the word appeared in the document, the
reduce function will simply sum the ones in the list, emitting as a
result the pair (’word’, ’count’). For example, a reducer can receive
the key "Bear" with list of values (1, 1), this is reduced into ("Bear", 2).
Reducers results are then collected and stored in mass memory.

1.1.1 Apache Hadoop

Apache Hadoop is an open-source framework for distributed stor-
age and processing of big datasets using MapReduce programming
model.

Apache Hadoop MapReduce [13] cluster have a centralized struc-
ture composed by a single master Job Tracker (JT) and multiple worker
nodes running Task Tracker (TT), as shown in Figure 1.2. JT main goal
is organizing the job tasks on the slave nodes and continuously mon-
itor the Task Trackers by means of heartbeats. Heartbeats provide a

1.1 mapreduce 3

Figure 1.2: Hadoop MapReduce architecture.

way to retrieve informations about the liveliness of the slaves and to
inspect the progress of the executions of the different tasks. In order
to be fault tolerant, if a task execution fails, it is re-executed possi-
bly on a different slave. JT has the role of the cluster manager, so it
needs also to check the admissibility of the submitted MapReduce
jobs. TT have the objective of running the assigned task. They reply to
heartbeats in order to affirm their liveliness and to update the master
about the progress of the assigned tasks. They are configured with a
fixed number of map and reduce task slots.

As previously introduced, Apache Hadoop also offers a distributed
file-system that stores data on different machine, providing an high
aggregate bandwidth across the cluster. This functionality is called
Hadoop Distributed File System (HDFS)[14]. It is highly fault tolerant
and designed to be deployed on low cost hardware. HDFS exposes a
filesystem namespace and allows user data to be stored in files and
retrieved. Cluster structure is similar to the one of MapReduce cluster,
with one master and multiple slaves, as we can see from Figure 1.3.
The master is composed by a single Name Node (NN), that manages
the file system namespace and regulates access to the files by clients.
NN executes filesystem operations such as opening, closing, renaming
files and directory, but the most important operation performed is
keeping track of the mapping between blocks and Data Node (DN).
Indeed a file stored in HDFS is split into one or more blocks, and those
blocks are stored in the Data Node (DN). Data Node (DN) represent
the slaves, they are usually one per node, and manage the storage that
is attached to the node they are running on. They are responsible for
serving read and write operation requests from the clients, but also
can perform block creation, deletion and replication. Block replication
is a significant way to improve fault tolerance.

4 state of the art

Figure 1.3: Hadoop HDFS architecture.

1.2 apache hadoop yarn

Apache Hadoop YARN (Yet Another Resource Negotiator) is the next
generation of Hadoop’s compute platform [37]. The idea is to split
the functionality of resource management and job scheduling and
monitoring. This is achieved by having two different kind of daemons
running, one global Resource Manager (RM) and a per-application
Application Master (AM).

Resource Manager (RM) and Node Manager (NM) form the data
computation framework (Figure 1.4). RM is the authority that man-
ages resources among all the applications that are running in the
system, meanwhile NM is the per-machine daemon who is respon-
sible for managing containers, monitoring and reporting. The per-
application AM has the goal of negotiating resources with RM and
working with NM in order to execute and monitor tasks.

Resource Manager (RM) is composed by two components: Scheduler
and Applications Manager.

The Scheduler is responsible for allocating resources to the vari-
ous applications that are running, by taking into account constraints
about capacity, queues, etc. It is a real scheduler in the sense that
it does not perform monitoring or tracking of the application state.
Moreover, it does not offer any guarantee that a failed that will be re-
executed after an application or hardware failure. The Scheduler per-
forms the allocation according to the resources that are requested by
an application; this is based on the abstract notion of container which
has elements as memory, CPU cores, disk and network bandwidth.
There are pluggable policy that determine the repartition of resources
among the different applications, for example we have the Capacity

1.2 apache hadoop yarn 5

Figure 1.4: Hadoop YARN architecture.

Scheduler, designed for multi-tenant clusters, and the Fair Scheduler,
that shares cluster resources fairly.

The Applications Manager is responsible of accepting the submission
of a job, it negotiates the first container that will execute the AM and
it offers a service that can be used to restart the AM in case of fail-
ure. The per-application AM has the goal of negotiating the needed
containers from the Scheduler, track their status and monitor their
progress.

The RM keeps a global model of the cluster state and thanks to the
resource requirements reported by the running applications, it makes
possible to enforce a global scheduling, but it is required to have an
accurate understanding of the applications’ resource requirements. In
response to AM requests, the RM generates containers together with
tokens that grant access to resources. An extension of the protocol
allows the RM to ask back resources from applications, for example
when cluster resources become scarce.

Application Master (AM) is the process that coordinates the execu-
tion of an application inside the cluster. It is important to remember
that itself is run in the cluster, just like any other container. Periodi-
cally, an heartbeat is sent to the RM in order to confirm its liveliness
and to update the Scheduler about its resource requests. After hav-
ing modeled the application requirements, the AM codifies its prefer-
ences and constraints inside the heartbeat message. This informations
are stored in the form of Resource Request, containing the desired num-

6 state of the art

ber of containers (e.g., 100 container), the resources of each container
(e.g., <2 CPU, 2 GB>), the locality preferences and the priority of this
resource request with respect to the other ones of this application.
When a container lease is received, the AM can choose to modify its
execution plan in order to take into account the abundance or scarcity
of resources.

Node Manager (NM) is the worker daemon in YARN, its purpose
is to authenticate container lease, manage dependencies, monitoring
the execution of containers and offer them a set of services. After
having registered with the RM, the NM sends heartbeats in order to
communicate its status and receives instructions from the RM. All
the containers are described by a container launch context (CLC), that
keeps track of all the environment variables, the dependencies, the se-
curity tokens, but also of the payloads needed by NM services and the
commands that are needed to launch the process inside the container.
After having validated the authenticity of the container lease, the NM

configures the container with the specified resource constraints and
initializes a monitoring subsystem. In order to launch the container,
dependencies are copied into local storage. NM also has the duty of
killings container upon a request from RM or AM, for example when a
tenant is being evicted or when an application completes. Whenever
a container exits, NM needs to clean the working directory. When an
application ends, all the resources held by its container on all nodes
are released. NM periodically checks the state of the physical machine
and informs the RM of a possible unhealthy state.

1.3 apache mesos

Apache Mesos is an open-source project used to manage computer
clusters. The purpose of Mesos is to share cluster between different
computing frameworks, such as Apache Hadoop or Message Passing
Interface (MPI). The sharing increments the utilization of the cluster
and prevents per-framework data replication. Mesos shares resources
in a fine-grained way, allowing to achieve data locality. It presents
a scheduling mechanism on two layer called resource offers. Mesos
decides how many resources to offer to each of the running frame-
works, meanwhile they decide how many resources to accept and
which computation to execute on the granted resources.

New cluster computing frameworks continue to emerge, it is clear
that finding a framework that is optimal for all type of application
is almost impossible. We expect that organization would like to use
different frameworks inside the same cluster, picking the best one ac-
cording to the kind of application that they are going to execute. Two
classic solution are: i) statically partitioning the cluster and executing
one framework per partition; ii) allocate a set of VMs to each of the
frameworks. Unluckily these solution do not achieve high utilization

1.3 apache mesos 7

Figure 1.5: Apache Mesos architecture.

and efficient data sharing. The main problem is the different alloca-
tion granularity of these solutions and the one of the existing frame-
works, for example Hadoop employs a fine grained resource sharing
model, where nodes are divided into slots and each job is composed
by short tasks that match the slots. The presence of short tasks al-
lows us to achieve high utilization, as jobs can rapidly scale when
new nodes are available. But it is not possible to achieve fine grained
sharing across frameworks, because they have been developed in an
independent way, and thus it is difficult to efficiently share the cluster
among different frameworks.

Mesos delegates the control over the scheduling to the different
frameworks. In this way it is possible to have the abstraction of the
resource offers, that encapsulate a bundle of resources that the frame-
work can allocate on a node in order to execute a task. Mesos decides
how many resources to offer to each framework, this is based on
policies, and the framework decides which resources to accept and
which tasks to execute on them. Even though this approach does not
lead to a globally optimum scheduling, it has been proved that it per-
forms particularly well in practice, allowing the frameworks to obtain
near perfect data locality. Mesos provides other benefits to its users,
for example the possibility of runnin different instances of the same
framework or even different versions.

Mesos is composed by a master process that manages slave dae-
mons running on each cluster node and frameworks that run tasks
on these slaves, as we can see from Figure 1.5. Master implements
fine-grained sharing across frameworks using resource offers. Every
resource offer is a list of free resources on the different slave nodes.
The master decides how many resources to offer to each framework,
according to some policy such as fairness or priority. Every frame-

8 state of the art

Figure 1.6: Apache Mesos Resource Offer example. 1) Mesos Agent 1 re-
ports free resources to the Allocation Module; 2) Allocation
Module offers resources to Framework 1 scheduler; 3) Frame-
work 1 scheduler accepts resources and assign tasks; 4) Alloca-
tion Module launches tasks on the executor running in Mesos
Agent 1.

work that is running on Mesos is composed by two components: a
scheduler, that registers with the master in order to obtain the re-
source offers, and an executor process that is launched on the slave
node in order to execute framework’s tasks. While the master chooses
how many resources to offer, the scheduler chooses which resources
to use among those offered. When an offer is accepted, the sched-
uler sends to the master the description of the tasks that should be
executed. The resource offer process is repeated every time tasks are
finished and when there are new free resources. In order to main-
tain a light interface, Mesos does not ask the frameworks to specify
their resource requirements or constraint, instead it gives them the
possibility of refusing offered resources. Mesos allows frameworks to
set up a set of filters, in the form of boolean predicates, specifying
the conditions on which the framework will always refuse a proposal
(e.g., providing a whitelist of nodes it can run on).

In Figure 1.6 we have an example of resource offer process.

1. Agent 1 reports to master that it has 4 CPUs and 4 GB of mem-
ory free. Master invokes its allocation module policy, which tells
that framework 1 should be offered all the resources.

2. Master sends a resource offer describing the resources available
on agent 1 to framework 1.

1.4 apache spark 9

3. Framework’s scheduler replies to master with informations about
two tasks to run on agent 1, using the specified resources for the
two tasks.

4. Master sends the tasks to agent 1, which allocates the appropri-
ate resources to the framework’s executor, that will launch the
two tasks.

Resource allocation is performed by a pluggable allocation module,
such that it is possible to meet different organization needs. The two
basic allocation modules are fair sharing and strict priorities, similar
to those available on Apache Hadoop. In the normal situation, Mesos
does exploits the fact that the majority of the tasks are short and so
it reallocates resources only when tasks end. This usually happens
frequently and so a new launched framework can obtain its share
quickly. The allocation module can also revoke tasks, killing them,
but before doing so it concedes a grace period to the framework in
order to terminate them properly. The allocation module chooses the
policy to revoke tasks, it needs to take into account the fact that this
might be of little impact on some framework (e.g., MapReduce), but
it can be critical in frameworks that have interdependent tasks (e.g.,
MPI). For this reason, the allocation module exposes a guaranteed
allocation for each of the frameworks, an amount of resources that
the framework can allocate without the risk of losing tasks, this value
can be retrieved by the framework using an API call. If the framework
total allocation is under the guaranteed one, it has no risk of seeing
its task killed, on the other hand instead, if the allocation is over the
guaranteed one, any of its tasks can be terminated.

Performance isolation between frameworks executor running in the
same slave is achieved by leveraging existing OS isolation mechanism.
Since they are platform dependent, pluggable isolation modules are
supported.

1.4 apache spark

Apache Spark is an open source framework for distributed compu-
tation [2], that provides an interface for programming entire clusters
with implicit data parallelism and fault tolerance. With respect to the
MapReduce paradigm, the in-memory multilevel primitives of Spark
allow to have performances up to 100 times better in certain applica-
tions. Spark can work as standalone or on a cluster manager such as
Apache Hadoop Yarn or Apache Mesos. It also needs a distributed
storage, it can natively use HDFS and other solutions.

Spark has been designed as a unified engine for distributed data
processing. Spark has a programming model that is similar to the
one of MapReduce, but it is extended with the data sharing abstrac-
tion fo Resilient Distributed Dataset (RDD). Using this abstraction, a

10 state of the art

wide range of processing workloads can be captured, including SQL,
streaming, machine learning and graph processing.

The generality of Spark approach gives great benefits. First of all,
all applications are easier to develop since there is a unified API. Sec-
ondly, it is a lot easier to combine processing task, with previous
distributed computation framework we needed to write data to mass
storage before using them in another engine, instead Spark can work
multiple times on the same data, often keeping the in memory.

The programming abstraction at the foundation of Spark is Re-
silient Distributed Dataset (RDD), that are fault-tolerant collection of
objects partitioned across the cluster that can be manipulated in par-
allel. The users create RDD by applying operations called "transfor-
mations", such as map, filter and group-by, on the data. RDD can be
backed by a file obtained from an external storage. Spark evaluates
the RDD in a lazy way, in order to allow finding an efficient plan to
execute the computation requested by the user. In particular, every
transformation operation returns a new RDD, that is the representa-
tion of the result of the computation, but the computation is not exe-
cuted immediately. When an "action" is requested by the user, Spark
check the entire graph of the transformation and uses it to create
an efficient execution plan. For example, if there are many filter and
maps in a row, Spark can fuse them together and execute a single op-
eration. RDDs also offer an explicit support to perform data sharing
among the computations, by default they are ephemeral but they can
be persisted to disk or memory for rapid reuse. This data sharing is
main difference between Spark and the previous computing models
like MapReduce, because all the other operations that Spark can per-
form are similar to the ones of MapReduce. The data sharing allows
to obtain huge speedups, up to 100 times, in particular when used to
execute interactive query and iterative algorithms.

RDDs can also recover automatically from a failure. Traditionally,
fault tolerance was in distributed computing was achieved by means
of data replication and checkpointing. Spark instead uses a different
approach called lineage. Each RDD keeps track of its transformation
graph that has been used to generate the RDD and re-executes these
operation on the base data in order to recover every lost partition.
The data recovery based on lineage is significantly more efficient than
replication in case of data-intensive workload. In general, recovering
lost partitions is faster than re-executing the entire program.

Spark has been designed in order to support different external sys-
tems for persistent storage, usually it is used paired with a cluster
file system like HDFS. Spark is designed as storage-system-agnostic
engine, in order to make it easy to run computation against data
from different sources.

Different high-level libraries have been developed in order to sim-
plify the creation of programs that can run in Spark framework.

1.4 apache spark 11

Figure 1.7: Spark Standalone architecture.

• SQL and DataFrames: support for relational queries, that are the
most common data processing paradigm

• Spark Streaming: implements incremental stream processing us-
ing a model called "discretized streams", input data is split into
micro batches

• GraphX: graph computation interface

• MLlib: machine learning library, more than 50 common algo-
rithms for distributed model training

Spark architecture follows the master/worker paradigm (Figure
1.7). A master server accepts data and processing request, split them
into smaller chunk of data and simpler actions that can be handled
in parallel by the multiple workers. A Spark application is executed
inside a driver program, that makes the user code executable on the
computing cluster using a SparkContext. The driver program is re-
sponsible for managing the job flow and scheduling tasks that will
run on the executors. The SparkContext will split the requested oper-
ations in tasks the can be scheduled for the distributed execution on
the workers. When a a SparkContext is created, on each worker a new
Executor process is created. An executor is a separate Java Virtual
Machine (JVM) that runs for the entire lifetime of the Spark applica-
tion, executes tasks using a thread pool and store data for its Spark
application. Communication between the SparkContext and the other
components is performed using a shared bus.

When an application is submitted to Spark, it is divided in multi-
ple jobs. Jobs are limited by the presence of Spark actions within the
application. Spark actions are those operations that return a value
to the driver program after running a computation on the dataset.
For each job, a Directed Acyclic Graph (DAG) is created in order to

12 state of the art

Figure 1.8: Spark word count application DAG example. The goal of this
job is to count the occurrences of the different words that are in
the input text.

keep tack of the RDDs that are materialized inside the job. DAG nodes
represent the RDDs, meanwhile arcs represent transformations, that
are those operations that create a new dataset from an existing one.
The application steps inside a single job are further organized into
stages, that are delimited by operations that require data reshuffling,
that will inevitably break locality. Spark distinguishes between nar-
row transformations, that do not reshuffle data (e.g., map, filter), and
wide transformations, that require data reshuffling (e.g., reduceByKey).
Stages are also used to produce intermediate result that can be per-
sisted in order to avoid re-computation. When all stages inside a job
have been identified, Spark can determine which parallel task need
to be executed for each stage, and then schedules them for operation
on the executors. Spark creates one task for each of the partitions of
the RDD that a stage receives in input.

Listing 1.1: Spark word count application example.

sparkContext.textFile("hdfs :// . . . ")
.flatMap(line => line.split(" "))
.map(word => (word, 1)).reduceByKey(_ + _)

.saveAsTextFile("hdfs :// . . . ") �
In Figure 1.8, we can see a simple DAG representing the single job

of the word count application presented in Listing 1.1 [26], the image
has been obtained from Spark Web UI. Through a textFile operation,
the input file is read from HDFS. Then a flatMap operation is applied
to split each of the lines of the document into words. Following, an-
other map is used to create (’word’, 1) pairs. Finally, a reduceByKey op-

1.4 apache spark 13

eration is performed in order to count the occurrences of each word.
The blue boxes represent the Spark operations that the user calls in
his code, meanwhile the dots represent the RDDs that are created as a
result of these operations. Operations are grouped into stages, repre-
sented by the boxes with a red border. The job has been divided into
two stages because the reduceByKey transformation requires the data
to be shuffled. The green dot represents a cached RDD, in particular
the data read from HDFS has been cached, in this way future compu-
tations on this RDD can be done faster since data will be read from
memory instead of HDFS.

The default deployment of Spark is in standalone mode, using its
embedded cluster manager without the need of running on to of
another one. It is important to remember that the cluster manager
is responsible for starting executor processes and determine where
and when they will be run. Using Spark’s embedded cluster manager
might be a problem in terms of resource utilization when we want
to execute different distributed applications together with Spark. Us-
ing a single cluster manager for different distributed applications has
the advantage of providing a global view on which applications are
running and which we want to execute inside the cluster.

Without a single cluster manager, we can have two main approaches
in order to perform resource sharing and allocation:

• allowing every application to allocate all the resources in the
cluster at the same time, this leads to an unfair situation of re-
source contention

• splitting the resource pool into smaller pools, one per applica-
tion. In this way we will avoid resource contention but we will
have a less efficient utilization of the resources, because some of
the applications might request more resources than the ones in
the pool, meanwhile some others are using less resources than
the allocable ones in order to execute

A more dynamic way of allocating resources will led to a better re-
source utilization. Spark natively support executing on top of Apache
Hadoop YARN and Apache Mesos cluster managers.

Spark supports the dynamic allocation of executors, also known as
elastic scaling, this feature allows to add and remove Spark executors
in a dynamic way in order to match the workload.

In traditional static allocation, a Spark application would allocate
CPU and memory upon starting the execution, disregarding how
much resources will effectively use later on. With dynamic alloca-
tion instead it is possible to allocate as much resources as they are
necessary, in order to avoid wasting them. The number of running
executors is scaled up and down according to the workload, in partic-
ular idling executors are removed and when there are tasks waiting
to be executed, new executors are launched. Dynamic allocation can

14 state of the art

be activate in Spark settings and should be used together with the
External Shuffle Service, in this way data that have been manipulated
from the executor is still available after the removal of the executor.
Dynamic allocation has two different policy for scaling the executors:

• Scale Up Policy: new executor are requested when there are
pending tasks, the number of executors is increased exponen-
tially because they start slow and so the application might need
a slightly higher number of them

• Scale Down Policy: idling executors are removed after a certain
amount of time, this amount of time can be configured

In order for dynamic allocation to work, we must configure it, by set-
ting the initial number of executor that are created when application
starts and the minimum and maximum number of executor that can
be reached when scaling down and up respectively. Dynamic alloca-
tion is available on all cluster manager currently supported by Spark,
even in Standalone mode.

1.4.1 Spark on Yarn

Support for running Spark on YARN was added to Spark in version
0.6.0 and has been improved in subsequent releases [32].

When running on YARN, each Spark executor is run inside a YARN
container. Spark supports two different modes to run on YARN, the
Yarn-cluster and Yarn-client mode.

In client mode, as shown in Figure 1.9, the driver program is run
inside the client process. In this way, the Application Master (AM) that
is run in a YARN container is used only to request resources to the Re-
source Manager (RM). This mode is useful for interactive applications
and for debugging purposes, since you can see applications’ output
immediately on the client side process. If the client disconnects from
the cluster, the Spark application will terminate, this is due to the fact
that the driver process resides on the client.

In cluster mode instead, as shown in Figure 1.10, Spark driver pro-
gram is run inside the AM process managed by YARN. After initializ-
ing the application, client can disconnect from the cluster and recon-
nect later on. This mode makes sense when using Spark on YARN in
production jobs.

Running on top of YARN cluster manager has some benefits. First
of all YARN allows to dynamically share the cluster resources be-
tween the different frameworks that are running together. For exam-
ple we can run MapReduce jobs after running Spark jobs without the
need of changing YARN configurations. Moreover, YARN supports
for categorizing, isolating and prioritizing workloads and employs
security policies, in this way Spark can use secure authentication be-
tween its processes.

1.4 apache spark 15

Figure 1.9: Spark on YARN Client Mode.

Figure 1.10: Spark on YARN Cluster Mode.

16 state of the art

Figure 1.11: Spark on Mesos Coarse Grained Mode.

When running on YARN, Spark executors and driver program use
about 6-10% more memory with respect to the standalone execution,
this is due to the fact that this extra amount of off-heap memory is
allocated in order to take into account YARN overheads.

1.4.2 Spark on Mesos

Support for running Spark on Mesos was added to Spark in version
1.5. Spark on Mesos can be executed in two different modes: coarse-
grained and fine-grained [31].

In coarse-grained mode, as shown in Figure 1.11, each Spark ap-
plication is submitted to Mesos master as a framework and Mesos
slaves will run tasks for the Spark framework that are Spark execu-
tors. Mesos tasks are launched for each Spark executor and those
Mesos tasks stay alive during the lifetime of the application unless
we are using dynamic allocation or the executor is killed for various
reasons. The advantage of coarse-grained mode is a much lower task
startup overhead, with respect to the other mode, and so it is good
for interactive session.

The drawback is that we are reserving Mesos resources for the com-
plete duration of the application, unless dynamic allocation is active.
Dynamic allocation allows to add and remove executors based on
load: i) kill executor when they are idle, ii) add executors when tasks
queue up in the scheduler. To use dynamic allocation it is required
that the external shuffle service is running on each node.

In fine-grained mode, shown in Figure 1.12, Mesos tasks are launched
for each Spark task, and those tasks die as soon as Spark tasks are

1.5 virtualization and containerization 17

Figure 1.12: Spark on Mesos Fine Grained Mode.

done. This mode has too much overhead in case that Spark has too
many tasks, for example if Spark application has 10,000 tasks, then
Spark needs to be installed 10,000 times on Mesos agents. Because
of this huge overhead, fine-grained mode has been deprecated since
Spark version 2.0.0. This mode allows multiple instances of Spark to
share cores at a very fine granularity, but it comes with an additional
overhead in launching each task. Thus this mode is inappropriate
for low-latency requirements like interactive queries or serving web
requests, instead it is fine for batch and relatively static streaming.

Similarly to what happens on YARN, it is possible to run spark in
Mesos-client or Mesos-cluster mode. In client mode, the driver process
is executed in the client machine that submits the job, so it is required
that it stays connected to the cluster for the entire time of the applica-
tion execution. In cluster mode instead, the driver program is run on
a machine of the cluster.

1.5 virtualization and containerization

Virtualization refers to creating the virtual version of something, in-
cluded hardware components, storage devices and computer networks.
Virtualization is born in 1960s, as a way to logically partition the sys-
tem resources offered by a mainframe computer between the differ-
ent application. From this point, the meaning of the word has been
widely extended.

Virtualization is a technology that allows creating multiple simu-
lated environments or dedicated resources from a single unique phys-
ical hardware system. An hypervisor is a software that can directly

18 state of the art

connect to the hardware, with the purpose of splitting the unique
physical system into more separate environment, each of them is dif-
ferent and secure, known as virtual machine (VM). These VM rely on
the hypervisor ability of separating the hardware resources and dis-
tributing in a proper way.

The original physical machine equipped with the hypervisor is
called host, meanwhile the VMs that are using its resources are called
guest. These guest use the computation resources, such as CPU, mem-
ory and storage, as a set of resources that are easily re-allocable. The
operators can control the virtual instances of CPU, memory, storage
and other, such that the guests can receive all the resources they need
in order to execute their operation. The words host and guest are
used in order to distinguish the software that runs on the physical
machine from the software that is running on the virtual one.

Hardware virtualization or platform virtualization refer to the cre-
ation of a VM that acts like a real computer with an OS. The software
that is run in this VM is separated from the underlying hardware.
This allows us to run particular configurations, for example we run a
computer with a Windows OS that hosts a VM with Linux as guest OS.

There are at least two different hardware virtualization types:

• full virtualization: it completely simulates the hardware in order
to allow the software, typically a guest OS, to be run without the
need of modifications

• paravirtualization: the hardware environment is not simulated,
anyway guest programs are run in isolated domain, as if they
were run in completely separated systems. Guest programs need
to be modified in a specified way in order to be run in this kind
of environments.

In Figure 1.13, we can see the differences between the two kind
of virtualization. In paravirtualization, the VM presents a different
interface compared to the one of a physical machine. This requires
modification in the guest OS in order to allow its execution inside
the VM. The hypervisor exposes a set of APIs that the guest OS must
use, in particular in order to execute privileged instructions. Calls
to these particular functions are often defined as Hypercall. In full
virtualization instead, VM have the same interface of the physical ones.
Ideally, the guest OS could not be able to determine if it is being
run on a physical or virtual machine. The great advantage of full
virtualization is that we do not need to modify the OS, in this way
the hypervisor can adopt a trap system in order to execute privileged
instruction

We can improve the efficiency of the virtualization by using hardware-
assisted virtualization, in particular we can decide to use CPUs that
provide efficient support for virtualizing on hardware, but also other

1.5 virtualization and containerization 19

Figure 1.13: Full virtualization and paravirtualization.

kind of hardware components that can improve the performances of
the guest environments.

Hardware virtualization can be seen as a trend of the enterprise IT
that includes autonomic computing, a scenario in which the different
environments are able to manage themselves based on th perceived
activity, and utility computing, where the processing power is seen
as a utility that users pay only when needed. The purpose of virtual-
ization is to centralize the administrate task, offering scalability and
good resource utilization. With virtualization, different OS can be run
in parallel on a single CPU, this parallelism reduces overhead costs
and is different from multitasking, where we only execute different
programs in parallel on the same OS. Thanks to virtualization, an en-
terprise IT can better handle updates and rapid changes in OS and
applications, with little impact on its users. Virtualization allows or-
ganizations to have better efficiency and availability of resources and
applications.

It is important to remember that hardware emulation is a complete
different thing from hardware virtualization, in particular with em-
ulation we have a piece of hardware that imitates another piece of
hardware. With virtualization instead, an hypervisor, which is a piece
of software, imitates a piece of hardware or even an entire computer.
Moreover, an hypervisor is not an emulator, even though both are
software programs that imitate hardware, their domain of use is dif-
ferent.

Containerization is a OS-level virtualization technique that allows
deploying and executing distributed applications without the need
of launching an entire VM for each of the applications (Figure 1.14).
These multiple isolated systems are called container, they are exe-
cuted on top of a single host controller and the access a single kernel.

20 state of the art

Figure 1.14: The difference in architecture between virtual machines and
containers.

Since container share the same OS kernel of the host, they can be a lot
more efficient than a VM, that instead needs a separate instance of the
OS. Containers contain all the different components that are needed in
order to execute the desired software, such as files, environment vari-
ables and libraries. The host OS controls the access of the container to
the physical resources, such as CPU and memory, in order to prevent
a single container from occupying the entire resources offered by the
host.

The main advantages of containerization come from efficiency in
terms of memory, CPU and storage, when compared to traditional
hardware virtualization. Since containers do not have the same over-
head of VM, in particular we do not need different instances of the OS,
it is possible to support more containers in the same infrastructure.
Containerization offers better performances since there is a single OS

that takes care of all the hardware calls. A particular point of interest
for the container is the fact that they can be create much faster than
the instances that are based on an hypervisor, this allows to have a
more agile environment and allows the creation of new approaches,
such as the microservices and continuous integration and delivery
ones.

Potential disadvantages of containerization might be the absence of
isolation from the host OS. Since containers share the same host OS, a
potential security threat might easily gain access to the entire system.
This did not happen when using virtualization based on an hypervi-
sor, since in this case the only compromised component would be the
VM. In order to circumvent this problem, a solution might be creat-
ing containers inside an OS that is run from a VM, this prevents the
security breach at container level from letting the attacker gain access
to the OS of the physical host. Another little disadvantage of con-

1.5 virtualization and containerization 21

Figure 1.15: Docker can use different interfaces in order to access Linux
kernel virtualization functionalities.

tainerization is that containers must execute the same OS as base OS,
meanwhile instances based on an hypervisor are allowed to execute
different OSs. Because of this, a container that is running on a Linux
host, can neither execute an instance of Windows OS nor a Windows
designed application.

Containerization has gained more and more relevance thanks to
the diffusion of the open source software Docker, that has developed
a way to give more portability to the containers, allowing them to
be moved from different systems that share the same kind of host
OS without the need for changing lines of code. In particular, with
Docker container there are no environment variables that must be set
on the guest OS or library dependencies that need to be managed.

1.5.1 Docker

Docker is an open source project that automatizes the deployment of
applications inside software containers, giving a further abstraction
thanks to OS level virtualization provided by Linux OS. Docker uses
isolation functionalities provided by Linux kernel, such as cgroups
and namespaces [8] in order to allow the coexistence of independent
containers on the same Linux instance, avoiding the installation and
maintenance of a VM.

Linux kernel namespaces isolate what the application ca see of the
operating environment, including process tree, network, user ids and
mounted file system. Cgroups instead provide resource isolation, in-
cluding CPU, memory, I/O devices and network.

Docker implements a high level API in order to manage containers
that execute in isolated environments. Since it uses Linux kernel func-
tionalities, a Docker container, compared to a VM, does not includes
a separated OS. Instead, it uses the kernel functionalities and exploits
resource isolation and separated namespace in order to separate iso-

22 state of the art

late what each application can see of the underlying OS. Docker can
access Linux kernel virtualization functionalities using different ways,
for example directly using libcontainer or indirectly using libvirt,
Linux Containers (LXC) or systemd-nspawn (Figure 1.15).

Using containers, resources can be isolated, services can be limited
and processes can be started in a way that each of them has a private
perspective of the OS, with their own identifier, file system and net-
work interface. More container can share the same kernel, but each of
them can forced to use a different amount of resources such as CPU,
memory and I/O.

By using Docker we can create and manage container in a way
that simplifies the creation of distributed systems, allowing different
applications and processes to work in an autonomous way on the
same physical machine or on different virtual machines. This allows
us to deploy new nodes only when necessary, in order to follow an
evolution style that is similar to the platform as a service one.

2
P R E L I M I N A R I E S

In this chapter we introduce the previous work done in xSpark, on
which this contribution is based on, and the related work.

2.1 xspark

xSpark is a Spark extension that offers optimized and elastic provi-
sioning of resources in order to meet execution deadlines. This is
obtained by using nested control loops. A centralized control loop,
implemented on the master node, controls the execution of the differ-
ent stages of an application; meanwhile multiple local loops, one per
executor, focus on task execution.

In Figure 2.1 we can see a high level representation of xSpark’s flow.
A preliminary Profiling Phase, that is executed once per application,
is composed by the execution of the application to obtain informa-
tions about the application, its logs are used to generate its Profiling
Data.

During the Execution Phase, we control the execution of the ap-
plication by means of xSpark’s control loops. The centralized control
loop is represented as a Heuristic Based Planner, which exploits the Pro-
filing Data. The profiling data is used to understand the amount of
work that is needed to complete the application’s execution. This com-
ponent uses the provided profiling data to determine the amount of
resources to assign to executors during each of the application stages,
in order to complete the execution before the provided deadline. The
local loops instead are represented as Control Theory Controllers, they
perform fine-grained tuning of the resources assigned to each of the
executors using a control theory based controller. This component is
used to counteract the possible imprecision of the estimated needed
resources, which may be caused by different factors, such as the avail-
able memory, etc.

Usually Spark applications are not run only once, but they are long-
lasting assets. As a consequence, xSpark can exploit an initial profil-
ing execution to create an enriched DAG of the entire application, stor-
ing information about the various stages. For each stage, xSpark an-
notates the DAG with the execution time (stage duration), the number
of task processed, the number of input records read, the number of
output record written and the nominal rate, defined as the number of
records that a single core processes during a second of execution. In
Listing 2.1 we can see a portion, relative to stage number three, of the
profiling data related to a PageRank application executed in xSpark.

23

24 preliminaries

Figure 2.1: High level setup and execution flow of xSpark.

For example, in duration field there is the serialized total duration in
milliseconds of the tasks.

Listing 2.1: Example of profiling data from a PageRank application

{ ...

"3": {

...

"cachedRDDs": [16, 9],

"duration": 504086,

"genstage": false,

"name": "mapPartitions at . . . ",
"nominalrate": 413525.2675138766,

"numtask": 1000,

"parentsIds": [1, 2],

"recordsread": 1000,

"recordswrite": 0.0,

"shufflerecordsread": 208452298,

" shufflerecordswrite ": 1000000,

"skipped": false,

"weight": 4.97875957673889

...

},

... } �
At runtime, the annotated DAG allows us to comprehend how much

work has already been completed and how much work still needs to
be done. This means that xSpark can only optimize the allocation
of the resources if all the executions of the same application use the
same DAG. This might not always be the case, for example when the
code contains branches or loops, because these might need to be re-
solved in different ways at runtime. If the application DAG at runtime

2.1 xspark 25

differs from the one obtained during the profiling phase, xSpark is
not able to estimate the amount of remaining work.

The centralized control loop is activated before the execution of
every stage, it uses an heuristic, explained in Section 2.1.2, in order
to assign a deadline to the stage, calculate the amount of CPU cores
that are needed to satisfy it, and assign cores to the allocated execu-
tors. The per-stage deadline takes into account the amount of work
already completed, the consumed time, and the overall deadline. All
the computations done by the heuristic are based on the informa-
tion stored in the DAG and obtained during the profiling phase. Un-
fortunately many factors can influence the actual performance and
invalidate the prediction, such as the amount of records that have
been filtered-out, the available memory, the number of used nodes,
the storage layer dimension, and so on. It is important to remember
that Spark mostly uses in-memory data, but there are operations like
textFile, saveAsTextFile and saveAsSequenceFile that impose re-
stricting constraints on the storage layer. If not correctly dimensioned,
the storage layer might become a bottleneck, causing the throughput
to degrade and thus making the provisioning predicted by xSpark
incorrect.

Local control loops, explained in Section 2.1.3, counteract this im-
precision by dynamically modifying the amount of CPU cores as-
signed to the executors during the execution of a stage. This can lead
the executor to use more or less resources than the ones previously
assigned by the centralized control loop. The local loop controls the
progress of a specific executor with respect to the tasks it has assigned.
A control theory algorithm determines the amount of CPU cores that
must be allocated to the executor for the next control period, typically
one second, and assigns them.

xSpark uses Docker in order to dynamically allocate CPU cores and
memory, as explained in Section 2.1.1. Memory allocation simply sets
an upper bound to the memory that each docker container (executor)
can use. CPU cores instead are allocated in a more sophisticated way.
Using Linux cgroups, Docker can support CPU shares, reservations
and quotas. In particular, xSpark uses CPU quotas. CPU shares are
not able to limit the number of CPU cores used by a container in a de-
terministic way, in particular it is not independent of other processes
running on the same machine. CPU reservation instead does not have
the fine granularity we are looking for, indeed the allocation would
be limited to entire cores. By using CPU quotas instead, we have a
reliable and tunable mechanism that provides also fine granularity
allocation, in particular it allows xSpark to allocate fractions of cores
to the containers (executors), with a precision up to 0.05 cores.

26 preliminaries

Figure 2.2: Architecture of xSpark. New components are represented in
light grey boxes, meanwhile those that start with an x are the
modified ones. In dark grey there are the containerized compo-
nents (the executors).

2.1.1 Architecture

To achieve the objectives of xSpark, the architecture and processing
model of Spark have been modified. In Figure 2.2 we can se how
xSpark architecture differs from Spark one.

The principal architectural change introduced by xSpark is an in-
creased focus on stages. Instead of considering entire applications,
xSpark reasons on per-stage deadlines. xSpark instantiates an execu-
tor per stage per worker, instead of a single executor per worker for
all the stages that will be executed. This way the resources that are
allocated to a single executor only impact the performance of the
stages that are associated with it, this leads to a fine grained control
over the different stage, and thus on the entire application. When
multiple stages are run in parallel, multiple executors can be running
on the same worker node. When a stage is submitted for execution,
one executor per worker is created and bound to that stage. This way
computation and data are equally spread across the entire cluster.
Thanks to containers, xSpark can isolate the execution of the differ-
ent executors that are running on the same worker node and achieve
quick, fine-grained resource provisioning. On average, containers can
be modified in less than one second, allowing a more precise way of
allocating cores.

2.1 xspark 27

Users submit applications and their deadlines to the master node
using the submit command. This creates a xSparkContext on the mas-
ter node, containing a xMaster object that is used to manage the clus-
ter and that knows all the resources that are available on each worker
node. A xSparkContext is composed by six components:

• xDagScheduler schedules the stages according to the applica-
tion’s DAG. The submitted stage is enriched with the informa-
tions obtained during the profiling phase.

• ContextMonitor monitors the progress of the application, taking
into account stage scheduling and completion. It also stores in-
formation about the performances of the execution, that will be
later used to calculate the deadlines and the resources needed
by upcoming stages.

• Planner is heuristics based and is used to calculate the deadlines
and resources associated with a stage.

• ControlEnactor determines when a stage is ready to be executed,
meaning there are enough resources (cores) and sufficient ex-
ecutors become available. It also has the job of initializing the
different executors.

• xSchedulerBackend controls the stage execution. In particular it
launches new tasks by taking into account the resources avail-
ability and registers their completion.

• xTaskScheduler also controls stage execution, with the goal of
allocating tasks to the available cores to optimize data locality.
In general, the closer a data partition required by a task is to the
task’s executor, the better.

xSpark also modified the worker nodes. Each node contains a xWorker
that connects to a xMaster, generates local controllers for the execu-
tors, and controls the evolution of its executor by dynamically scal-
ing their resources. xWorker creates an Executor Proxy for each of the
executors that are running on its node. These proxies are placed be-
tween the executors and the xSchedulerBackend, and are used to moni-
tor the execution progress of the stage assigned to the executors. It is
important to remember that each executor focuses on a single stage
at a time. The heuristic calculates how many tasks must be executed
by each of the executors of the same stage, the strategy is to have en
equal number of tasks assigned to each of the executors. This way the
deadline assigned to each of the executors coincides with the deadline
of their stage. This allows the different executors of the same stage to
not be synchronized. Native Spark instead requires that executors
with free resources spontaneously require new tasks to execute from
the master node.

28 preliminaries

Every xWorker uses an External Shuffle Service. Native Spark moves
data across the cluster in different ways. If the data is stored on ex-
ecutor’s memory, then the executor itself manages the data exchange.
If the data is stored on an external storage system (e.g., HDFS cluster),
they can be retrieved by using different communication protocols. If
the data is stored in the internal storage of a worker node, then the
data is managed by the External Shuffle Service. Notice that this is not
the default, but xSpark adopts this technique to be able to assign
zero CPU cores to an executor, without loosing the ability to read
data, since it is effectively not performed by the executor but by the
external service.

2.1.2 Heuristic

xSpark uses a heuristic to compute per-stage deadlines and to esti-
mate how many cores must be allocated for a stage to successfully
fulfill the deadline. In order to do this, at submission time the user
is asked to specify three parameters: i) the application deadline, ii)
the cluster size, and iii) the number of cores per worker node. Before
executing the application, xSpark performs a feasibility check given
the available resources.

When a stage is submitted for execution, its deadline is computed

deadline(sk) =
α ·ApplicationDeadline− SpentTime

weight(sk)

where SpentTime is the time already spent for execution and α a
value between 0 and 1 that xSpark uses to be more conservative with
respect to the provided ApplicationDeadline. The weight is com-
puted as

w1(sk) = #(RemainingStages+ 1)

w2(sk) =
∑k+w1

i=k duration(si)

duration(sk)

weight(sk) = β ·w1(sk) + (1−β) ·w2(sk)

where w1 is the number of stages still to be scheduled (s included)
and w2 is the rate between the duration of s and the duration of the
remaining stages (s included).

xSpark then proceeds to estimate how many cores are needed to
execute the stage:

estimatedCores(sk) = d
inputRecords(sk)

deadline(sk) ·nominalRate(sk)
e

where inputRecords is the number of records that will be processed
by sk and nominalRate is the number of records processed by a
single core per second in stage sk.

2.1 xspark 29

Since xSpark controls the resource allocation of a stage both before
and during the execution, the maximum amount of allocable cores
needs to be greater than the estimated one, in order to be able to
accelerate when progressing slower than expected

maxAllocableCores(sk) = overscale · estimatedCores(sk)

The final step is to determine the initial number of cores that should
be assigned to the different executors, xSpark distributes the cores
equally amongst the available workers by creating one executor per
stage per worker. In this way, it is guaranteed that executor perfor-
mances will be equal, and that xSpark can compute the same dead-
line for all the executors. The initial number of cores per executor is
computed as

initCorePerExec(sk) = d
maxAllocableCores(sk)

overscale · cq ·numExecutors
e · cq

where numExecutors is the number of executors and cq is the core
quantum, a constant that defines the quantization applied to resource
allocation, the smaller this value is, the more precise the allocation is.

2.1.3 Controller

Each containerized executor has an associated local controller, whose
goal is to fulfill the per-stage deadline taking into account external
disturbances by dynamically allocating CPU cores. The controllers
use control theory, with no heuristic involved.

The centralized control loop determines the desired stage duration,
the maximum and the initial number of cores that should be assigned
to the executors and the number of tasks that must be processed.
Local controllers adjust the number of allocated cores, according to
the work that has already been accomplished.

Executors that are dedicated to different stages are implicitly inde-
pendent, and thus their controllers are also independent. The execu-
tors that are running in parallel on the same stage must complete the
same amount of work (number of tasks) in the same desired time.
This means that local controllers are independent and do not need
to communicate amongst themselves. Moreover, the heuristic is rel-
egated outside the local controller, thus it cannot compromise the
controller’s stability.

In the controller the progress set point is chosen based on the de-
sired completion time, this value is received from the centralized con-
trol loop. In Figure 2.3 we see the prescribed completion percentage,
in particular tco is the desired completion time and α ∈ (0, 1] is a con-
figuration parameter used to determine earlier with respect to dead-
line, we are willing to complete the execution. In order to track the set
point ramp, we need to use a Proportional plus Integral (PI) controller.
As a result, the discrete-time controller in state space form reads:

30 preliminaries

Figure 2.3: Set point generation for an executor controller.

Figure 2.4: CPU cores allocated to the application aggregate-by-key running
on a xSpark worker node. The blue line represents the allocated
cores over the time, gray and black line are desired and actual
progress rate respectively. Green line represents the obtained
stage ending, meanwhile dashed red one is the desired one.

xC(k) = xC(k− 1) + (1− a)(ao%(k− 1) − a%(k− 1))

c(k) = KxC(k) +K(a
o
%(k) − a%(k))

where ao% is the prescribed progress percentage at each k control
step and a% is the accomplished completion percent at each k control
step. Notice that it is possible that the controller computes a negative
value for c(k), the CPU cores that need to be allocated. To fix this
problem c(k) must be clamped between a minimum cmin and a max-
imum cmax. To maintain consistency, we need to recompute the state
xC(k) as

xC(k) =
c(k)

K
− ao%(k) + a%(k)

In Figure 2.4 the cores allocated to an application executor running
on a worker node are shown. The running application is aggregate-
by-key and is composed by two stages. The black line represents the
progress of the stage, meanwhile the gray one is the desired progress
rate. The goal of the controller is to reduce the error, i.e., the distance
between the two lines. We want the black line to follow as best as
possible the gray one.

2.2 related work 31

2.2 related work

Spark offers the feature of adjusting the quantity of resources used
by an application in a dynamic way. Executors are requested when
a task remain pending for a certain amount of time (user defined).
This action is applied more times if the queue of pending tasks is
still non-empty. On the other hand, an executor is removed if it re-
mains idle for a too long time. Anyway, this dynamic allocation is
limited to the executor granularity, since it is only possible to add
or remove executors with a fixed amount of CPU cores. This is way
far from xSpark granularity. xSpark works in Spark Standalone Mode,
where master and worker node are launched by means of scripts. It is
possible to manage Spark clusters using Yarn or Mesos, both of them
help in scheduling and allocating resources in the cluster, but none
of them focuses on allocating resources according to application-level
QoS.

In academic literature, using predefined deadlines when engineer-
ing Spark application is still under investigation. Gibilisco et al. [11]
propose a performance model for DAG-based applications, allowing
to have an accurate prediction of how the application will behave ac-
cording to a specific input data set size and configuration settings,
without taking into account dynamic resource allocation.

Lots of work instead has been done on engineering techniques for
scheduling MapReduce applications taking into account deadlines
and considering relevant aspects such as fairness, fault-tolerance, user
priorities and data locality. Chen, Lin, and Kuo [4] propose a new
MapReduce scheduler based on bipartite graph modeling, in order to
obtain optimal solution of the deadline-constrained scheduling prob-
lem, as the job progresses, the scheduler can dynamically find differ-
ent computing resources for running the job without violating the job
deadline. He, Lu, and Swanson [15] propose a new real-time sched-
uler for MapReduce, that avoids accepting jobs that will lead to dead-
line misses and improves cluster utilization. Teng et al. [35] propose
an algorithm for scheduling hard real-time tasks on a MapReduce-
based cloud, providing a theoretical analysis of the scheduling per-
formances and proving a bound on cluster utilization, which can
be used in order to determine if a given task set can be scheduled.
Wolf et al. [40] propose a flexible scheduling allocation scheme, try-
ing to optimize a variety of standard scheduling theory metrics (e.g.,
response time) while ensuring the same minimum and maximum job
slot guarantees as in Hadoop Fair Scheduler. Zaharia et al. [41] pro-
pose a simple algorithm to address the conflict between locality and
fairness, when a job that should be scheduled next according to fair-
ness cannot launch a local task, it waits a small amount of time letting
other jobs launch tasks instead, in this way near optimal data locality
is achieved.

32 preliminaries

Concerning scheduling techniques that take into account some form
of dynamic allocation, notable works have been proposed. Polo et
al. [28] propose a new tasks scheduler for a MapReduce framework,
that allows performance-driven management of MapReduce tasks,
the scheduler dynamically predicts the performances of concurrent
MapReduce jobs and adjusts the resource allocation for the jobs, this
allows meeting application performance objectives without over pro-
visioning physical resources. Verma et al. [38] propose the ARIA
framework, composed by three inter-related components: i) a job pro-
file that summarizes critical performances characteristics of an appli-
cation, ii) a MapReduce model that for a given job (with a known pro-
file) and its soft deadline, estimates the amount of resources required
to job completion within the deadline, iii) a soft deadline based sched-
uler, that determines job ordering and resources needed to be allo-
cated. Lama and Zhou [21] propose Aroma, a system that automates
the allocation of heterogeneous Cloud resources and configuration of
Hadoop parameters, in order to achieve QoS goals while minimizing
the incurred cost, it addresses the challenge of provisioning ad-hoc
jobs that have performance deadlines trough a two phase machine
learning and optimization framework.

There is more relevant work on scheduling techniques that do not
focus on dynamic resource allocation. Phan et al. [27] provide a case
study of the online scheduling of MapReduce jobs executed by Hadoop,
showing that the existing Hadoop scheduler is ill-quipped to handle
jobs with deadlines. By adapting existing multiprocessor scheduling
techniques for the cloud environment, it has been observed a signifi-
cant improvement in minimizing missed deadlines and tardiness. Kc
and Anyanwu [19] extend real time cluster scheduling approach in
order to take into account the two-phase computation style of MapRe-
duce, developing criteria for scheduling jobs based on user specified
deadline constraints and evaluating a scheduler that ensures that only
jobs whose deadlines can be met are scheduled for execution.

3
S O L U T I O N

Our goal is to support the coexistence of multiple Spark applications
running on the same infrastructure each with its own controller that
tries to follow the desired progress rate.

One of the ideas we had was to speed up stage computation when
the system load is not high, by allocating more resources than the
ones strictly needed to satisfy the desired progress rate. This way
when a new application is submitted, and the system load becomes
high, we can make easily tolerate disturbances.

A problem that can result from this proposed solution is that, if
there is a single application in the system, it will finish the compu-
tation earlier than the desired deadline. This problem has been ad-
dressed by providing a way to enable or disable this speed up mech-
anism.

We also tackled the problem of how to partition the resources
among the different applications, since the system resources might
not be enough to satisfy all the application requests. Different ways
of managing resource contention are discussed.

Concerning the memory of the application, we choose for a static
allocation of heap memory and a dynamic allocation of off-heap mem-
ory. In particular we decided to assign a small portion of heap mem-
ory to each of the applications and to split the remaining portion as
off-heap memory between all the applications that are using off-heap.
Since it was not previously supported, we developed a way to resize
the assigned off-heap memory to an executor.

3.1 changes in the architecture

Not many changes to xSpark’s architecture were requested to support
multiple applications. Since the only point of contact between the
applications is the allocation of cores and memory, we were able to
preserve most of xSpark architecture.

xSpark instantiates one executor per stage per worker node per
application. This way the dynamic resources allocated to a single
executor will only impact the performances of the stage and of its
associated application. This allows us to perform a fine-grained con-
trol over the different stages of the different applications. Executor’s
memory manager has been modified in order to support the resizing
of the off-heap maximum allocation memory (Section 3.4).

Concerning xMaster, we needed to modify the previous heuristic
(Section 3.2) to support applications that are running slower than ex-

33

34 solution

pected, due to disturbances provoked by the presence of other appli-
cations running in parallel. Furthermore, we needed to support the
instantiation of multiple executors per worker that have access to the
entire set of available cores (Section 3.3). The reason is that we will
handle the allocation of cores to the different applications running.

On the xWorker hand, each of the executors will have its own Ex-
ecutor Proxy and Controller. In particular, the Controller structure has
been extended (Section 3.5) in order to be aware of the presence of
other applications and take care of them. We moved to a hierarchical
structure in which there is an entity that supervises all the controllers
running on the xWorker and adjusts their behavior. The main purpose
of this entity is to handle the situation in which the different appli-
cations try to allocate an amount of resources that is larger than the
ones available on the xWorker (Section 3.6).

3.2 heuristic

As explained in section 2.1.2, the centralized control loop of xSpark
applications works by means of heuristics. This heuristic has the pur-
pose of calculating the per-stage deadline and the amount of CPU
cores that are needed to complete the execution before the deadline.

Since the heuristic works independently for each application, it
doesn’t know the complete state of the system. In particular, it does
not know if there are other applications running that might slow
down the execution of the currently analyzed application. The prob-
lem is that, in order to keep up with the desired progress rate, the
heuristic might suggest a maxAllocableCores value that is larger than
the number of CPU cores actually available in the system. This prob-
lem has been solved by keeping its value under the maximum avail-
able system resources,

maxAllocableCores(sk) =

min(overscale · estimatedCores(sk), TotalCores)

where TotalCores is the number of CPU cores that are usable in the
cluster, defined by the product of the number of running executors
and their available cores. This way execution can continue, even though
it may no longer be possible to complete the execution before the de-
sired deadline.

3.3 launching applications

When launching an application, xSpark waits until the number of ex-
ecutors launched for that application, that are alive, reaches what is
specified in the configuration parameter spark.control.maxexecutor.

An application can specify the total number of cores that its ex-
ecutor should have assigned, by default this is set to unlimited. This

3.4 scalable off-heap memory 35

way, in native Spark in Standalone mode, the first application that is
launched will acquire all the resources available and launch its Spark
executors. The next application will need to wait until the previous
one completes. Spark keeps track of the available resources in the
workers in terms of free CPU cores and memory.

To launch multiple applications we bypass the check on available
cores and allow all the applications to start, given there is enough
free memory to create a JVM process for the executor. We then can dy-
namically tune the number of cores assigned to each executor, since
they are run inside containers. We cannot do the same thing on the
JVM heap memory, because its size is determined before it is created.
Launching executors without taking into account memory consump-
tion often results in the executors crashing because of the impossibil-
ity for the JVM heaps to grow.

Concerning the cores, xSpark’s implementation guarantees that, at
any given time, the total number of cores assigned to the executors of
a given worker is lower or equal to the worker’s available ones.

I∑
i

coresi 6MaxCores, ∀ worker

where coresi is the number of cores associated to the executor i ∈ I,
the set of all executors of a given worker. The value of MaxCores is
determined by the configuration parameter spark.control.coreforvm.

3.4 scalable off-heap memory

One of the main problems when executing a Spark job is how to deter-
mine the amount of memory to allocate to each executor. Spark allows
us specifying this value by tuning the parameter spark.executor.-

memory in an application’s properties [33]. This will change the size
of the executor’s process memory heap. The same configuration can
be applied to the application’s driver process by editing the value of
spark.driver.memory. These settings change the value of the maxi-
mum heap size in the JVM process, which is defined with the parame-
ter -Xmxn when launching a Java application. The n in -Xmxn specifies
the maximum size of the memory allocation pool [18].

When dealing with a single application, choosing the values is sim-
ple: we just need to pay attention to the system’s available memory
and pick a value that is smaller than the system’s total memory. In
general, picking a larger value will improve the performances of the
application by reducing the probability of disk swap, which is a se-
rious threat because it will inevitably degrade application efficiency.
Still, we need to pay attention to the system’s load, because when
the heap tries to grow, and there is not enough free memory in the
system, the process will terminate and the JVM will be restarted.

36 solution

heap size number of applications

100 GB 1

50 GB 2

25 GB 4

10 GB 10

Table 3.1: Example of how changing the heap size of the executor’s and
driver’s process determines the number of applications that can
run in parallel. The total system memory is 100 GB.

Choosing the right value for the heap processes in a multi-application
context adds another point to the problem. In general, we do not
know how many applications will be submitted to our Spark clus-
ter. If this number were known, we could simply equally partition
the available memory to the applications, keeping in mind that we
want to keep the total amount of JVM heap sizes below the system
maximum memory.

Heapi =
SystemMemory

|I|

where I is the set of applications running, Heapi is the amount of
heap memory allocated to the application i ∈ I, and SystemMemory
is the total memory available. Instead, when this number is unknown,
we have to keep in mind that changing the heap size will result in
changing the maximum number of applications that can be run in
parallel, as we can see in Table 3.1.

Spark instantiates one Memory Manager for each JVM. It enforces
how memory is shared between execution and storage. In this context,
Execution Memory refers to the part of memory used for computation
in shuffles, joins, sorts and aggregations, while Storage Memory refers
to the part used for caching and propagating internal data across the
cluster.

Starting with Spark 1.6, the default memory manager is Unified
Memory Manager and memory is divided in 3 regions (Figure 3.1)
[12]. Reserved Memory is the memory reserved by the system and its
size is hardcoded. Even though it is called reserved, it is not used
by Spark in any way but instead it sets a limit on what you can allo-
cate for Spark usage. User Memory is the memory pool used by the
user, for example to store his/her own data structures. Spark Memory
is the memory pool managed by Spark, the pool is split into two re-
gions: storage memory and execution memory. The size of User and
Spark Memory are set by spark.memory.fraction value, while the
sizes of Storage Memory and Execution Memory are determined by
spark.memory.storageFraction. The advantage of this memory man-

3.4 scalable off-heap memory 37

Figure 3.1: Spark Unified Memory Manager introduced in v1.6.

agement scheme is that the boundary is not static, and can therefore
be moved in case of pressure.

The main problem when dealing with heap sizes is that it is not
possible to resize JVM heap memory at runtime, this can only be done
by killing the process and then restarting with other parameters. This
might be a problem when deciding how much memory to allocate to
each application. Knowing that Spark will postpone the launch of an
application if the requested allocation of memory is not satisfiable, we
need to pay attention when choosing the application memory value.
Assigning a high amount of memory will cause application execu-
tions to be serialized, while deciding for a lower value will allow us
to run a higher number of applications in parallel at the price of an
increased risk of disk swapping.

A possible workaround is to use off-heap memory to add flexibility
in terms of memory boundaries. Even though the best performance
is obtained when operating only in on-heap memory, Spark can use
off-heap allocation both for execution and storage memory. In Section
5.5 we will compare the performances of running applications with
and without off-heap allocation. Off-heap refers to objects managed
directly by the operating system and stored outside the process heap,
thus not processed by the garbage collector. Accessing data off-heap
is slightly slower than accessing data on-heap, but it is faster than
reading and writing from a disk [20].

Spark provides a way to configure the amount of memory to be
used off-heap. spark.memory.offHeap.enabled should be set to true

and spark.memory.offHeap.size defines the total amount of memory
in bytes for off-heap allocation (strictly larger than 0). Notice that it
has no impact on heap memory.

38 solution

As with heap memory, Spark does not provide a way to resize the
memory to be used by off-heap objects at runtime. Luckily, since off-
heap memory does not reside inside a JVM process, a simple resizing
mechanism can be implemented thst reduces or increments off-heap
storage and execution pool sizes when needed.

This feature has been achieved by adding to Unified Memory Man-
ager a way to resize the execution and storage pools by specifying the
new total size of the usable off-heap memory. Spark already provides
a way to free memory by writing blocks to disk. This implementa-
tion of Spark Memory Manager is very flexible, since we do not have
hard boundaries between storage and execution memory pools. The
storage pool can borrow as much free execution memory, until the
execution pool reclaims its space. When this happens, cached blocks
will be evicted from memory until sufficient memory is released to
satisfy execution memory request. Thanks to this it has been possible
to reduce, in an unbalanced way, the two pools, by only evicting stor-
age pool blocks if necessary, which resulted in an easier implementa-
tion. Executors are informed by their worker when they are asked to
resize their off-heap memory, this happens when a new application
is starting and when one terminates.

With this feature, we can decide to launch an application with a
relatively small heap memory size and dynamically resize its off-heap
memory according to the number of applications that are running at
a given time. The off-heap memory that is usable by an application is
calculated as

OffHeap =
SystemMemory−

∑I
i Heapi

|I|

where I is the set of applications running, Heapi is the amount of
heap memory allocated to the application i ∈ I and SystemMemory
is the total memory available.

3.5 controller

As previously introduced in Section 3.1, to support multiple applica-
tions running together on the same worker, we need to be sure that
the total resources allocated to the applications do not exceed the re-
sources that the worker is offering. This is an important point, since
allocating a total amount of resources to the containers that is greater
than the ones available in the system leads to resource contention.

In the original implementation of xSpark, every executor controller
calculates the optimal CPU cores allocation for that executor, so that
it could follow the desired progress rate, as discussed in Section 2.1.3.
Now, we want to have a hierarchical structure in which a per worker
supervisor controls the behavior of the controller executors running.
It should remember that on each worker there is one controller execu-
tor per running application, since only one executor per application

3.5 controller 39

is launched on every worker. The idea is that every controller execu-
tor still proposes a desired CPU cores value in order to follow the
progress rate, but the supervisor can decide to modify this value ac-
cording to the resource situation.

Algorithm 1 shows how the supervisor collects all the CPU cores
requested by the executor controllers to be able to follow their desired
progress rate. It simply computes the value of CSRATE for each of
the running executors. The procedure that calculates the value is the
same as the one used in xSpark. At the end of the procedure, CSRATE

contains the requested cores by all the executors.

Algorithm 1 PI Controller that generates the core allocation in order
to follow the desired rate

for i = 1 to N do
if PV[i] < 1.0 then
CSP[i] = K ∗ (SP[i] − PV[i])
CSI[i] = CSIOLD[i] +K ∗ Ts

Ti ∗ (SP[i] − PV[i])
CSRATE[i] = max(0, CSP[i] +CSI[i])

else
CSRATE[i] = 0

end if
end for

Given the previously calculated CSRATE, the supervisor computes
a different core allocation, with the purpose of distributing all the
cores available in the worker node to the executor. From Algorithm
2 we can notice that this operation is performed only if any of the
executors still is requesting resources, which means that it has not yet
finished its assigned task. The Zeroes(N) procedure generates a zero
cores allocation for theN executors, whileDistributeCores(CSRATE)

allocates the system available cores according to different strategies
that will be discussed in Section 3.6. The allocation is called CSALL

because its purpose is to saturate the resources of the worker node.

Algorithm 2 Generation of the core allocation in order to distribute
the entire system resources

SUM_CSRATE =
∑

iCSRATE[i]

if SUM_CSRATE = 0 then
CSALL = Zeroes(N)

else
CSALL = DistributeCores(CSRATE)

end if

Once both allocations CSRATE and CSALL have been calculated,
the supervisor needs to check the situation of the node. In particular
what we want to check is the presence of a resource contention state.

40 solution

When executing multiple applications in parallel, each of them will
request a certain amount of resources (CPU cores) in order to keep
up with the desired progress rate. An application is unaware of other
applications, so it is possible that it will ask to allocate all the system
resources. According to the requests of all the applications, we can
identify two possible situations. We call rci the cores requested by
application i ∈ I.

If the total request is less than or equal to the available resources of
the system (max_cores),

I∑
i

rci 6 max_cores,

each of the applications will obtain the allocation of the requested
resources. This way, the applications do not notice the presence of
others and can continue their execution as if they were the only one
present in the system. In this case we say that there is no contention
between the different running applications.

Instead, if the total request is higher than the available resources of
the system,

I∑
i

rci > max_cores,

we enter in a state of resource contention. Contention means that
the requests of the different applications cannot be satisfied, because
there are not enough resource to fulfill all the allocations. What to do
in this case is to correct the amount of resources to try to restore a
state of absence of contention.

This situation is easily visualizable with two applications in a two
dimensional plan, as shown in Figure 3.2, where on the two axes
we have the resources requested by two different applications. The
maximum amount of resources allocable is fixed at 8 CPU cores. The
white point represents a feasible allocation, because the sum of the
requested cores (3+ 2 = 5) is lower than 8. Instead the black point
represents an infeasible allocation, because the sum (4 + 7 = 11) is
greater than 8, thus we are in a state of contention. The region above
the dashed line represents all the possible resource requests that will
cause contention. When

rcapp1 + rcapp2
6 max_cores

we are in a situation where there is no contention, instead when

rcapp1 + rcapp2
> max_cores

we are in a contention state. In case of contention, we need to find a
new pair ccapp1 and ccapp2 such that ccapp1+ ccapp2 6 max_cores,
where cci stands for corrected cores of the application i.

3.5 controller 41

Figure 3.2: Example of two possible resource requests by two applications
running in a system where the maximum number of allocable
cores is 8.

42 solution

Resource contention is checked by comparing the sum of the con-
trollers CSRATE values with the total number of available cores, CSMAX.
Once we know the state of the system, as we can see in Algorithm 3,
we can determine what to do. In particular, if there is a state of con-
tention, i.e.

∑
iCSRATE[i] > CSMAX, our only possible choice is to

allocate the cores stored in CSALL, since this will guarantee that the
total number of allocated cores is equal to the ones of the system.
If there is no contention, we can use the configuration variable γ to
move with continuity between two different behaviors of the system.
In particular, with γ = 1 we decide to saturate the system resources,
thus applying the CPU cores defined in CSALL. This way we achieve
the complete utilization of the resources. Using γ = 0 we decide to
only allocate the resources that have been requested by the executors’
controllers. This way we keep a low system utilization. Notice that γ
is not a boolean parameter, but it can assume any value in [0, 1].

Algorithm 3 Using γ to select the system behavior and solving con-
tention
SUM_CSRATE =

∑
iCSRATE[i]

if SUM_CSRATE 6 CSMAX then
CS = γ ∗CSALL + (1− γ) ∗CSRATE

else
CS = CSALL

end if

Since the value of CPU cores that the executor will acquire might
not be the same as what the executor controller calculated, we need
to update the state of the controller, to maintain consistency. If we do
not, on the next control operation the controller would perform its
computation based on a wrong previous state. This operation can be
observed in Algorithm 4, where we update the value of CSIOLD[i] ac-
cording to the value of CS[i] that has been used to scale the executor’s
assigned number of CPU cores.

Algorithm 4 Updating CSIOLD values for next iteration

for i = 1 to N do
CSIOLD[i] = CS[i] −CSP[i]

end for

The control operations are performed with a sampling time that is
comparable to the one needed to the executor container to scale. In
particular we know that a container scales in less than one second
and thus using a sample time of one second is enough. It is impor-
tant to notice that the DistributeCores(.) procedure mentioned in
Algorithm 2 should be simple enough to be executed before the next
control step, otherwise its delay would make the control useless.

3.6 resolving resource contention 43

3.6 resolving resource contention

Contention resolution can be performed with different strategies, that
can take into account static or dynamic characteristics of the applica-
tions, such as nominal rate or deadline. We identified some different
strategies that solve contention exploiting those characteristics.

Allocating resources to Spark’s executors of different applications
can be seen as the preemptive online scheduling of sporadic tasks
with arbitrary deadlines in a real time multiprocessor system. This
way, scheduling tasks for execution has the effect of suggesting an al-
location of CPU cores for the executors. We can take inspiration from
real time algorithms to determine a possible partitioning of system
resources amongst the executors. [16, 7, 9] proved that no optimal
online algorithm for sporadic task sets with constrained or arbitrary
deadlines can exists, since such an algorithm would require clairvoy-
ance.

One of the most popular dynamic-priority planning based online
algorithm is EDF scheduling [34], which uses deadlines to determine
tasks priority. We can use xSpark applications’ deadlines to determine
a priority in allocating resources between the applications.

3.6.1 Earliest Deadline First "All"

With this strategy we allocate all the available resources to the appli-
cation whose deadline is the closest, following an Earliest Deadline
First (EDF) approach, even though the controller might have asked for
less resources than the system maximum. In general, we want com-
plete the execution of an application before allocating resources to the
next one, and we want to complete the applications in a certain order,
defined by their deadlines. It is possible that only one application is
running at a given time.

Algorithm 5 shows how the allocation is performed. As we can see,
the inputs to the algorithm are the maximum allocable cores of the
system (max_cores) and, for each application, the time to complete
(ttci) and the remaining tasks (rti).

An example of allocation is shown in Table 3.2, where we have con-
tention between three different applications with different requests
for cores, and different times to complete the execution. The system’s
total number of cores is 16. In this case we suppose that all the appli-
cations have enough tasks and can execute using all the system cores.
We can see that only the application whose available time to complete
is the smallest has acquired all the resources available in the machine.

44 solution

app rci ttci cci

A 10.00 50 16.00

B 8.00 60 0.00

C 12.00 70 0.00

Table 3.2: Example of allocation using EDF "All". From left to right: the ap-
plication (App), requested cores (rci), time available to complete
(ttci), corrected cores assigned (cci).

Algorithm 5 Earliest Deadline First "All" core allocation

apps← [app0, app1, ...]
ttc← [ttc0, ttc1, ...]
remaining_tasks[rt0, rt1, ...]
corrected_c← [0, 0, ...]
remaining_c← max_cores
while remaining_c > 0 do
app← argmin

apps
app (ttc[app])

assigned_c← min(remaining_c, remaining_tasks[app])
remaining_c← remaining_c− assigned_c
corrected_c[app]← assigned_c
apps← apps \ app

end while
return corrected_c

3.6.2 Earliest Deadline First "Pure"

This strategy allocates resources to applications following a priority
that is associated to the applications. The priority of an application is
given by its remaining time to complete: the shorter the time is, the
higher the priority. We allocate resources to the sorted applications ac-
cording to their priority, reserving their desired number of CPU cores
if available. With this strategy it is possible that some applications be
paused since they have low priority.

Algorithm 6 shows how the allocation is performed. Inputs to the
algorithm are the maximum allocable cores of the system (max_cores)
and, for each application, the time to complete (ttci) and the cores
(rci) requested by the executor’s controller.

An example allocation is shown in Table 3.3, where three different
applications with increasing remaining time to complete are in a state
of contention. As a result, the application with the shortest time to
complete will acquire all the cores it asked for, then the second one
will allocate all the remaining cores of the system, because they are
less than the requested ones, and the last application will see no cores
granted for its execution.

3.6 resolving resource contention 45

app rci ttci cci

A 10.00 50 10.00

B 8.00 60 6.00

C 12.00 70 0.00

Table 3.3: Example of allocation using EDF "Pure". From left to right: the ap-
plication (App), requested cores (rci), time available to complete
(ttci), corrected cores assigned (cci).

Algorithm 6 Earliest Deadline First "Pure" core allocation

apps← [app0, app1, ...]
ttc← [ttc0, ttc1, ...]
requested_c← [rc0, rc1, ...]
corrected_c← [0, 0, ...]
remaining_c← max_cores
while apps is not empty do
app← argmin

apps
app (ttc[app])

assigned_c← min(remaining_c, requested_c[app])
remaining_c← remaining_c− assigned_c
corrected_c[app]← assigned_c
apps← apps \ app

end while
return corrected_c

3.6.3 Earliest Deadline First "Proportional"

In this case, we assign each application a weight that is related to its
remaining time to complete ttci. The weight is calculated as

wi = 1−
ttci −min_ttc+ 1∑I
j [ttcj −min_ttc+ 1]

where min_ttc = mini(ttci) and i ∈ I, the set of applications run-
ning at the given time. If there is not a huge difference in terms of
remaining time to complete, all the applications will acquire a por-
tion of the available resources.

Application weights are used in Algorithm 7 to assign cores propor-
tionally to the weights of the applications (wi) taking into account the
requested number of cores (rci) and the system total allocable cores
(max_cores). It is important to provide the applications’ requested
cores because we do not want to allocate more resources than the
useful ones to applications that do not need them, even though their
calculated weight is higher than the one of other applications. In this
way, when all the applications are requesting to obtain the entire set
of CPU cores, the resulting allocation is directly proportional to their
weight. On the other hand, if one application is requesting only one

46 solution

app rci ttci wi cci

A 10.00 50 0.97 7.75

B 8.00 60 0.67 5.35

C 12.00 70 0.36 2.90

Table 3.4: Example of allocation using EDF "Proportional". From left to right:
the application (App), requested cores (rci), time available to com-
plete (ttci), weight (wi), corrected cores assigned (cci).

core but its weight is high in a way that, for example, it could allocate
up to half the available cores, the application will still receive only
one core, because it does not need more to proceed at the desired
rate. We assume that the controller will not lie about the needing of a
certain amount of CPU cores.

An example of allocation is shown in Table 3.4. As we can see, the
initial situation described is the same as in the previous examples in
Table 3.2 and 3.3, with three applications in a contention state running
in a system with 16 allocable cores. The main difference with respect
to the previous cases is that thanks to the allocation proportional to
a weight, now all the three applications will see a certain amount of
cores allocated to them, none of them will be paused in order to give
precedence to the previous ones.

3.6.4 Proportional

This is the most basic way to allocate the available cores, after collect-
ing the requests of all the applications in terms of desired cores (rci),
the weight is simply calculated as

wi =
rci∑I
j rcj

where i ∈ I, the set of applications running at the given time. With
this strategy, we obtain a fair distribution of the resources according
to the requests of the applications, we do not try to improve the per-
formances of a particular one with respect to another.

Application weights are used in Algorithm 7 to assign cores pro-
portionally to the weights, as described in Section 3.6.3.

An example of allocation is shown in Table 3.5, where we have
three applications in a contention state in a system with 16 alloca-
ble cores. As we can see, the weight is directly proportional to the
amount of cores requested the applications, resulting in a final cor-
rected allocation that is also proportional to the amount of requested
cores.

3.6 resolving resource contention 47

app rci wi cci

A 10.00 0.33 8.00

B 8.00 0.27 6.40

C 12.00 0.40 9.60

Table 3.5: Example of allocation using Proportional. From left to right: the
application (App), requested cores (rci), weight (wi), corrected
cores assigned (cci).

3.6.5 Speed

This strategy takes into account the speed of the application mea-
sured in terms of average nominal rate. Nominal rate is the number
of input records processed per second per core, this value is obtained
from the profiling phase and is calculated per stage. In order to com-
pare two applications, we decided to calculate an application average
nominal rate as

anri =

∑S
s nominal_rates ·ws∑S

s ws

where s ∈ S, the set of stages of the application, and ws is the weight
of the stage, also coming from the profiling phase. Knowing the av-
erage nominal rate of the application, we can use it to calculate the
weight of the running application as

wi =
ANR

anri

where i ∈ I, the set of applications running at the given time, and
ANR is the average nominal rate constant calculated taking into ac-
count the nominal rate of different kind of Spark applications.

Application weights are used in Algorithm 7 to assign cores pro-
portionally to the weights, as explained in Section 3.6.3.

An example of allocation is shown in Table 3.6, where we have
three different applications, whose total amount of requested cores
(30) that is larger than the system total allocable cores (16). The ANR
has been set to 1.000.000. Since applications A and B have the same
nominal rate, they will have the same weight. Instead, C has a lower
nominal rate, in particular it is half the nominal rate of A and B,
and we see that its weight is the double with respect to the one of A
and B. As a result, C will obtain half of the resources of the system,
meanwhile A and B one quarter each.

48 solution

Algorithm 7 Allocate cores to applications given their weights and
desired cores
apps← [app0, app1, ...]
requested_c← [rc0, rc1, ...]
corrected_c← [0, 0, ...]
weights← [w0, w1, ...]
remaining_c← max_cores
while apps is not empty and remaining_c > 0 do
completed_apps← []

total_assigned_c← 0

total_weight←
∑apps

a weights[a]

for all app ∈ apps do
assignable_c← weights[app]

total_weight ∗ remaining_c
assigned_c← min(assignable_c, requested_c[app])
corrected_c[app]← corrected_c[app] + assigned_c
if assignable_c > requested_c[app] then
completed_apps← completed_apps+ app

end if
requested_c[app]← requested_c[app] − assigned_c
total_assigned_c← total_assigned_c+ assigned_c

end for
remaining_c← remaining_c− total_assigned_c
apps← apps \ completed_apps

end while
return corrected_c

3.6 resolving resource contention 49

app rci anri wi cci

A 10.00 1.000.000 1.00 4.00

B 8.00 1.000.000 1.00 4.00

C 12.00 500.000 2.00 8.00

Table 3.6: Example of allocation using Speed. From left to right: the appli-
cation (App), requested cores (rci), nominal rate (anri), weight
(wi), corrected cores assigned (cci).

4
I M P L E M E N TAT I O N

In this chapter we show the implementation details of the new com-
ponents that have been added to xSpark and explain which modifica-
tions have been done to already existing ones.

4.1 heuristic

The heuristic to be used in xSpark is determined by the value con-
figuration parameter spark.control.heuristic and is an implemen-
tation of the class HeuristicBase, whose class diagram is shown in
Figure 4.1. As we can see in Listing 4.1, in xSpark the default heuris-
tic that is used is HeuristicControl, but other heuristics have been
implemented: HeuristicFixed and HeuristicUnlimited.

Listing 4.1: ControlEventListener: loading the correct heuristic implemen-
tation.

val heuristicType = conf.getInt("spark . control . heuristic ", 0)

val heuristic: HeuristicBase =

if (heuristicType == 1 && conf.contains("spark . control . stagecores
") && conf.contains("spark . control . stagedeadlines") && conf.

contains("spark . control . stage"))
new HeuristicFixed(conf)

else if (heuristicType == 2)

new HeuristicControlUnlimited(conf)

else

new HeuristicControl(conf) �
HeuristicFixed, which has been used for testing purposes, allows

the user to specify through Spark configuration parameters a fixed
core allocation and stage duration for each of the stage of the running
application. The user needs to specify three different lists, that must
have the same length, representing the stages (spark.control.stage),
their allocated cores (spark.control.stagecores) and their deadline
(spark.control.stagedeadlines). These lists are transformed into
maps in order to have a faster access to their value, as shown in List-
ing 4.2. When the heuristic methods are called, instead of calculating
the allocations of cores and the deadlines of the stages as in the base
version, this implementation simply reads the values from the previ-
ously created maps.

Listing 4.2: HeuristicFixed: using values provided by the user.

\\ parse configuration values

51

52 implementation

Figure 4.1: Class diagram of Heuristic related classes.

4.2 launching applications 53

val stagesToFix: List[Int] = conf.get("spark . control . stage").
replace(" [", " ").replace("] "," ").split(’ , ’).toList.map(_.trim
).map(_.toInt)

val stageCores: List[Double] = conf.get("spark . control . stagecores
").replace(" [", " ").replace("] ", " ").split(’ , ’).toList.map(_.
trim).map(_.toDouble)

val stageDeadlines: List[Long] = conf.get("spark . control .
stagedeadlines").replace(" [", " ").replace("] ", " ").split(’ , ’)
.toList.map(_.trim).map(_.toLong)

\\ create maps

val stageToCoresConf = (stagesToFix zip stageCores).toMap

val stageToDeadlinesConf = (stagesToFix zip stageDeadlines).toMap �
HeuristicUnlimited instead simply extends HeuristicControl and

reimplements the method computeCoreStage. The goal is to avoid re-
questing the allocation of a number of CPU cores that is larger than
the ones available in the system (Listing 4.3). This is done by compar-
ing the result of the same method from the parent class with the avail-
able resources, calculated using the spark configuration parameters
spark.control.maxexecutors and spark.control.coreforvm, that pro-
vide respectively the maximum number of executors per application
and the number of cores each of them can allocate.

Listing 4.3: HeuristicUnlimited: adjusting the number of stage cores.

override def computeCoreStage(deadlineStage: Long = 0L, numRecord

: Long = 0L, stageId: Int = 0, firstStage : Boolean = false,

lastStage: Boolean = false): Double = {

val requestedCores = super.computeCoreStage(deadlineStage

, numRecord, stageId, firstStage, lastStage)

if (requestedCores > coreForVM * numMaxExecutor){

coreForVM * numMaxExecutor

} else {

requestedCores

}

} �
4.2 launching applications

As introduced in Section 3.3, we needed to modify how xSpark launches
executors on its workers. In the original implementation, the maxi-
mum number of usable cores by an executor is the number of cores
free that its worker has. This obviously is not what we are interested
in, since we want to have a soft boundary between the cores allocated
to each of the executors of a worker. For example, in the standard
implementation, the first executor launching is potentially allocating
all the cores available in the machine, in this way, the next application
will have to wait until the previous one finishes, in order to allocate

54 implementation

cores for its executor. We want to avoid this phenomena, since we are
interested in giving the controller the job of controlling the allocation
of the CPU cores.

The simplest solution is to keep track of the amount of cores as-
signed to a particular application on a worker, as seen in Listing 4.4.
This values are updated every time an executor is added, removed or
scaled.

Listing 4.4: WorkerInfo: keeping track of cores assigned to applications.

// cores used by an application

val applicationIdToCoresUsed = new mutable.HashMap[String, Int]()

.withDefaultValue(0)

// old implementation

def coresFree: Int = cores - coresUsed

// new implementation

def coresFree(applicationId: String): Int = cores -

applicationIdToCoresUsed(applicationId) �
Notice that the cores used by an application are initialized at a zero

value, this because we want an application to be able to allocate all
the cores available on the machine, without taking into account if
other applications have already launched their executors. As a conse-
quence, we use the newly defined coresFree(applicationId) when
starting new executors for an application, in this way cores for execu-
tors can be allocated as if there are no other applications running. As
we can see in Listing 4.5, when starting an executor we compare the
number of cores that the executor should have with the amount of
cores already assigned to that application on the selected worker.

Since the same soft boundary is not applicable on the memory
point of view, because we cannot resize the memory allocated to a JVM

process without restarting it, the free memory requested for an execu-
tor is compared with the effectively free memory that the worker can
offer.

Listing 4.5: Master: launching executors on workers.

private def startExecutorsOnWorkers(): Unit = {

// Right now this is a very simple FIFO scheduler. We keep trying

to fit in the first app in the queue, then the second app,

etc.

for (app <- waitingApps if app.coresLeft > 0) {

val coresPerExecutor: Option[Int] = app.desc.

coresPerExecutor

// Filter out workers that don’t have enough resources to

launch an executor

val usableWorkers = workers.toArray.filter(_.state ==

WorkerState.ALIVE).filter(worker => worker.memoryFree

>= app.desc.memoryPerExecutorMB && worker.coresFree(

4.3 scalable off-heap memory 55

app.id) >= coresPerExecutor.getOrElse(1)).sortBy(_.

coresFree).reverse

val assignedCores = scheduleExecutorsOnWorkers(app,

usableWorkers, spreadOutApps)

// Now that we’ve decided how many cores to allocate on

each worker, let’s allocate them

for (pos <- 0 until usableWorkers.length if assignedCores

(pos) > 0) {

allocateWorkerResourceToExecutors(app,

assignedCores(pos), coresPerExecutor,

usableWorkers(pos))

}

}

} �
As we can see, applications are scheduled in a First In First Out

(FIFO) order. This can be reimplemented in a simple way in order to
take care of a priority value of the applications or to take into account
their deadline, giving precedence to applications with a shorter dead-
line.

4.3 scalable off-heap memory

In order to support the scaling of off-heap memory size, we needed to
modify xSpark MemoryManager. Spark provides two implementations
of it, StaticMemoryManager and UnifiedMemoryManager (Figure 4.2).
We extended the base abstract class in order to include a method that
will allow us to resize the off-heap memory (Listing 4.6).

Listing 4.6: MemoryManager: resizing off-heap memory.

def resizeOffHeapMemory(newSize: Long): Unit = {

return

} �
Since StaticMemoryManager does not support off-heap allocation,

there was no need to implement the method in that class.
Instead, in order to use the functionality in UnifiedMemoryManager,

that is the default Memory Manager in Spark since version 1.6.0, we
simply needed to use the already existing methods used to shrink
memory and storage pools, paying attention to obtain the desired
result (Listing 4.7).

Listing 4.7: UnifiedMemoryManager: implementation of resizeOffHeapMem-
ory.

/**

* Resizes the offheap pools so that the total memory is updated

to the given value

* @param newSize total memory of offheap pools

56 implementation

Figure 4.2: Class diagram of MemoryManager related classes. Methods
with a grey background are those that have been introduced
in order to perform dynamic resizing of off-heap memory.

4.3 scalable off-heap memory 57

*/

override def resizeOffHeapMemory(newSize: Long): Unit = {

logInfo("Resizing offheap memory to "+newSize+" from "+
currentMaxOffHeapMemory)

if (maxOffHeapMemory == 0) {

// nothing to do if we are not using off heap

memory :)

return

}

val delta = currentMaxOffHeapMemory - newSize

if (delta > 0) {

// try to prevent disk swapping by resizing pools

acquireStorageMemoryBeforeResizing(delta)

// do the swapping if necessary

offHeapStorageMemoryPool.freeSpaceToShrinkPool(

delta)

// decrement pool size

offHeapStorageMemoryPool.decrementPoolSize(delta)

currentMaxOffHeapMemory = newSize

} else if (delta < 0) {

// increment pool size

offHeapStorageMemoryPool.incrementPoolSize(math.

abs(delta))

currentMaxOffHeapMemory = newSize

}

}

/**

* Borrows memory from the execution pool for the storage pool

* @param numBytes memory to borrow

*/

private def acquireStorageMemoryBeforeResizing(numBytes: Long) =

synchronized {

if (numBytes > offHeapStorageMemoryPool.memoryFree) {

val memoryBorrowedFromExecution = Math.min(

offHeapExecutionMemoryPool.memoryFree,

numBytes)

offHeapExecutionMemoryPool.decrementPoolSize(

memoryBorrowedFromExecution)

offHeapStorageMemoryPool.incrementPoolSize(

memoryBorrowedFromExecution)

}

} �
In case of decreasing size, acquireStorageMemoryBeforeResizing

tries to acquire as much memory as possible from the off-heap Execu-
tion Memory Pool for the Storage Memory Pool. After this operation
there are two possible situation, depending on how much free mem-
ory the Storage Memory Pool has acquired. If the free off-heap mem-
ory of the Storage pool is larger than delta, when calling the method
freeSpaceToShrinkPool the result is that the Storage pool decreases
without touching the blocks already in memory. Instead, if the free

58 implementation

memory is smaller, calling the method will result in dropping blocks
from memory in order to free enough space to perform the shrink-
ing. These blocks are either discarded or stored to disk, according to
their StorageLevel. Once enough free memory in the Storage pool is
available, the pool size is reduced.

Instead, if the size is growing, we can simply extend the Storage
pool, because thank to the implementation of UnifiedMemoryManager,
we do not have hard boundaries between the two pools and Execution
pool can acquire memory from the other one when needed.

Resizing is performed when an executor belonging to a Worker is
starting or terminating. This events are initiated with the two mes-
sages LaunchExecutor and KillExecutor received by the Worker and
sent by the Master. When a new executor is launching, we calculate
the new distribution of off-heap memory taking into account the por-
tion of free memory that will be allocated to the JVM of the starting
executor, as seen in Listing 4.8. Instead, when the executor is stop-
ping, we take into account the memory assigned to the heap of the
executor that is being shut down, shown in Listing 4.9.

Since the executors are running in a different JVM inside a Docker
container, we need to define another message in order to be able to
ask them to resize their off-heap allocation. The message is Resize-

OffHeapMemory and has one parameter that corresponds to the off-
heap memory size that needs to be set. The Worker will send the
messages to each executor’s proxy which will then deliver it to the
CoarseGrainedExecutorBackend of the recipient executor.

Listing 4.8: Worker: resizing memory when launching an executor.

override def receive: PartialFunction[Any, Unit] = synchronized {

...

case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_,

memory_) =>

...

logInfo("Asked to launch executor %s/%d for %s".format(
appId, execId, appDesc.name))

val offHeapMemory: Long = (memoryFree - memory_) / (

execIdToProxy.size + 1)

// off-heap memory in mega bytes

execIdToProxy.foreach { case (id, proxy) =>

proxy.proxyEndpoint.send(ResizeOffHeapMemory(

offHeapMemory*1000000))

}

...

} �
Listing 4.9: Worker: resizing memory when killing an executor.

override def receive: PartialFunction[Any, Unit] = synchronized {

...

4.3 scalable off-heap memory 59

case KillExecutor(masterUrl, appId, execId) =>

...

logInfo("Asked to ki l l executor " + fullId)

...

if (execIdToProxy.size > 0) {

val offHeapMemory: Long = (memoryFree.toLong +

executor.memory) / execIdToProxy.size

// off-heap memory in mega bytes

execIdToProxy.foreach { case (id, proxy) =>

proxy.proxyEndpoint.send(

ResizeOffHeapMemory(offHeapMemory

*1000000))

}

...

} �
Notice that, when sending the message after an executor is starting,

we are not sending the message to the new executor, indeed it has not
yet started and thus it is not able to receive the message. In order to set
the correct off-heap memory for this one, we exploited the fact that
all the communication between Executor and Master is intercepted
by the ControllerProxy of the executor. In this way, when the Driver
replies to the Executor’s message RetrieveSparkProps, that is used
to send a copy of Spark properties from one to another, we can inject
the correct value for the off-heap memory of the starting executor,
shown in Listing 4.10. offheapBytes value is set inside Controller-

Proxy when it is instantiated, using the same value that has been
calculated before in order to scale other executors.

Listing 4.10: ControllerProxy: updating the value of off-heap memory.

override def receiveAndReply(context: RpcCallContext):

PartialFunction[Any, Unit] = {

...

case RetrieveSparkProps =>

val sparkProperties = driver.get.askWithRetry[Seq

[(String, String)]](RetrieveSparkProps)

val sparkPropertiesUpdated = sparkProperties.map{

case (prop, value) =>

if (prop == "spark .memory.offHeap . size "){
(prop, offheapBytes.toString)

} else {

(prop, value)

}

}

context.reply(sparkPropertiesUpdated) �
With this implementation, we obtain that at a given time, the to-

tal memory allocated for heap and off-heap is not greater than the
system one.

60 implementation

Figure 4.3: The interactions between the old components and the newly
introduced ControllerSupervisor.

4.4 controller

In order to implement the new controller proposed in Section 3.5, we
needed to modify the previous implementation of xSpark Controller-

Executor, because we needed to synchronize the scaling of the differ-
ent executors that are running on a machine in order to keep the
total number of allocated cores under the system maximum. To do
so, we implemented a supervisor of the different executors called
ControllerSupervisor, whose goal is to retrieve the next allocation
of cores from the different executors’ controller, if necessary find a
different feasible allocation and in the end apply the new core values.
In Figure 4.3 is shown the new structure, showing the presence of
multiple executors’ controller and proxy that interact with a single
instance of Worker and ControllerSupervisor.
ControllerExecutor class now presents two different methods that

are used by ControllerSupervisor. In order to obtain the number of
cores that could make the executor follow the desired progress rate,
the supervisor needs to use the method computeDesiredCore() pro-
vided by each executor controller, as displayed in Listing 4.11. First
of all, the set point value (SP) is updated according to the deadline
of the current stage and the sampling time (Ts). If SP > 1 it means
that the deadline has already elapsed and the computation should
already be finished, this is why we request to allocate all the cores. In-
stead, if SP < 1, we use the PI controller implemented in the method
nextAllocation() in order to obtain a value of CPU cores that should
be applied in order to keep up with the desired progress rate.

Listing 4.11: ControllerExecutor: finding the next core allocation.

def nextAllocation(): Double = {

csp = K * (SP - (completedTasks / tasks))

val csi = csiOld + K * (Ts.toDouble / Ti) * (SP - (

completedTasks / tasks))

val cs = math.min(math.max(coreMin.toDouble, csp + csi),

(tasks-completedTasks))

cs

4.4 controller 61

}

def computeDesiredCore(): Double = {

if (SP < 1.0) SP += Ts.toDouble / deadline.toDouble

var nextCore: Double = coreMin

if (SP >= 1.0) {

SP = 1.0

nextCore = coreMax

} else {

nextCore = nextAllocation()

}

nextCore

} �
The next method used by the supervisor and shown in Listing

4.12 is applyNextCore(nextCore, requestedCore). The implementa-
tion allows to correct the value of the core to be applied (nextCore)
in order a multiple of the granularity offered by Docker using the
core quantum (CQ) constant, that is the smallest fraction of core that
is assignable to a container. Once the new core is calculated, we up-
date the value of csiOld that will be used by the next iteration of the
PI controller. Last thing to do is to ask the worker to scale its execu-
tor, which might not be needed according to the value of previously
assigned core (oldCore)

Listing 4.12: ControllerExecutor: applying next core and updating old val-
ues.

def applyNextCore(nextCore: Double, requestedCore: Double) = {

// match core quantum

val cs = math.ceil(nextCore / CQ) * CQ

// store old value

csiOld = cs - csp

// scale executor

if (cs != oldCore) {

oldCore = cs

worker.onScaleExecutor(applicationId, executorId,

cs)

}

} �
As we can see, execution of the methods of the controller executor

are no longer scheduled independently, instead ControllerSupervisor

is in charge of scheduling the execution of the control loop every
sampling time, defined by the constant Ts. This supervisor is instan-
tiated at worker creation time and has been implemented in differ-
ent flavors that have been introduced in Sections 3.6.1 to 3.6.5. As
we can see in Listing 4.13, the value of the configuration parameters
spark.control.supervisor.gamma and spark.control.supervisor de-
termine respectively the value of the γ parameter and the implemen-
tation of ControllerSupervisor to be used. We decided that the de-

62 implementation

fault combination is using γ equal to one and the proportional version
of the supervisor.

Listing 4.13: Worker: initialization of ControllerSupervisor.

val supervisorGamma = conf.getDouble("spark . control . supervisor .
gamma", 1d)

val supervisorType = conf.get("spark . control . supervisor", "
proportional").toLowerCase

val supervisor: ControllerSupervisorAbstract = supervisorType

match {

case "edf_pure" => new ControllerSupervisorPureEDF(cores,

Ts, supervisorGamma)

case "edf_proportional" => new

ControllerSupervisorProportionalEDF(cores, Ts,

supervisorGamma)

case " edf_all " => new ControllerSupervisorEDFAll(cores,

Ts, supervisorGamma)

case "speed" => new ControllerSupervisorSpeed(cores, Ts,

supervisorGamma, conf.getLong("spark . control .
avgnominalrate", 1000000))

case "mixed_speed_edf" => new

ControllerSupervisorMixedSpeedEDF(cores, Ts,

supervisorGamma, conf.getLong("spark . control .
avgnominalrate", 1000000))

// default is proportional

case _ => new ControllerSupervisorProportional(cores, Ts,

supervisorGamma)

} �
ControllerSupervisor keeps track of the currently active executors

running on the same worker, using a hash map. The worker will reg-
ister and unregister executors with the supervisor using two different
methods that are shown in Listing 4.14. Notice that both methods are
synchronized on the hash map, because we want to avoid the possi-
bility of concurrent edits to the data structure.

Listing 4.14: ControllerSupervisor: keeping track of active executors.

def registerExecutor(applicationId: ApplicationId, executorId:

ExecutorId, controllerExecutor: ControllerExecutor) = {

activeExecutors.synchronized {

activeExecutors += (((applicationId, executorId),

controllerExecutor))

logInfo("Registering new executor " + applicationId + "/"
+ executorId + " , total executors " +

activeExecutors.size)

}

}

def unregisterExecutor(applicationId: ApplicationId, executorId:

ExecutorId) = {

activeExecutors.synchronized {

4.4 controller 63

activeExecutors -= ((applicationId, executorId))

logInfo("Unregistering executor " + applicationId + "/" +

executorId + " , total executors " + activeExecutors.

size)

}

} �
The worker will inform the supervisor about the change in the set

of running executor according to the messages it receives from the
master. When it receives InitControllerExecutor, which is sent ev-
ery time a stage is assigned to an executor, first of all a new Controller-

Executor is instantiated and the supervisor is notified; instead, when
the message is KillExecutor, which in general signals the ending of
the application, the controller is removed from the supervisor and the
it is terminated.
ControllerSupervisor main loop performs a series of operations

in order to determine the allocation of CPU cores for each of the
running application. As we can see in Listing ??, first of all we ask
each of the executors’ controller their requested allocation in order
to follow the desired progress rate (csForRate). Next, we calculate an
allocation of cores that distributes all the cores available in the sys-
tem (csAllCores), in this way we want to have a complete utilization
of the machine CPU resources. This operation is performed using the
method correctCores(cores) that is implemented in different way
in the various subclasses of ControllerSupervisor. At this point, we
check if there is contention, remembering that we are in a contention
state when the sum of the cores requested by all the applications
(sumCoresForRate) is greater than the ones the machine can offer (max-
imumCores). In case of contention, we apply the cores that have been
defined in csAllCores, otherwise we use the parameter γ to determine
an allocation that can span from csAllCores to csForRate, according to
the value of the previous parameter.

Listing 4.15: ControllerSupervisor: main loop

// obtain cores to follow the progress rate

activeExecutors.foreach { case (id, controllerExecutor) =>

var desiredCore = controllerExecutor.computeDesiredCore()

csForRate += ((id, desiredCore))

}

val sumCoresForRate = csForRate.values.sum

// calculate an allocation that distributes all the cores

if (sumCoresForRate == 0){

csAllCores = csForRate.map{case (id,_) => (id, 0d)}

} else {

var correctedCores = correctCores(csForRate)

val correctedCoresSum = correctedCores.values.sum

64 implementation

if((0.99 * maximumCores) > correctedCoresSum &&

correctedCoresSum > 0){

correctedCores = correctedCores.map{case (id,core

) => (id, (core/correctedCoresSum)*
maximumCores)}

}

csAllCores = correctedCores

}

// check if there is contention

if (sumCoresForRate <= maximumCores){

// no contention, use gamma

cs = csForRate.map{case (id, thisCsForRate) => (id, gamma

*csAllCores.get(id).get + (1-gamma)*thisCsForRate)}

} else {

// contention

cs = csAllCores

}

// apply cores

activeExecutors.foreach { case (id, controllerExecutor) =>

controllerExecutor.applyNextCore(cs(id), csForRate(id))

} �
ControllerSupervisor main loop is started when the Worker has

been fully initialized, before accepting applications. All the Control-

lerSupervisor subclasses implement a different version of the method
correctCores(cores) according to the various strategies proposed in
Section 3.5. The reimplemented classes are shown in the class dia-
gram in Figure 4.4. Here we discuss their implementation details.

4.4.1 ControllerSupervisorEDFAll

As we have introduced in Section 3.6.1, the goal of this implementa-
tion is to allocate as much resources as it can handle to the application
who is supposed to end first among the set of all executing applica-
tions. According to the code shown in Listing 4.16, this is achieved
by obtaining the remainingTimeToComplete of the various applications,
as the difference between currentTimestamp and the timestamp cor-
responding to their deadline, provided by the ControllerExecutor

of the application (controllerExecutor.deadlineAppTimestamp). Then we
determine the number of usable cores by an application, since in xS-
park we can allocate only up to one core to a task, this number is
determined by the amount of remaining tasks for an application, cal-
culated as the difference between the assigned tasks and the already
completed ones, both values provided by the controller (controllerEx-
ecutor.tasks - controllerExecutor.completedTasks). We determine the value
of maxUsableCores as the minimum between the system cores (maxi-
mumCores) and the previously calculated remaining number of tasks.

4.4 controller 65

Figure 4.4: Class diagram of ControllerSupervisor and its subclasses.

66 implementation

In order to allocate cores, we sort the applications according to their
remaining time to complete execution and begin allocating their us-
able cores. Notice that if the first application allocates all the available
cores, all the others will simply result in having zero cores allocated
to their execution. This does not happen only when the first applica-
tion to be analyzed can allocate only an amount of CPU cores that is
smaller than the system available cores.

Listing 4.16: ControllerSupervisorEDFAll: implementation of method cor-
rectCores.

var correctedCores = new mutable.HashMap[(ApplicationId,

ExecutorId), Cores]()

val currentTimestamp = System.currentTimeMillis()

var remainingCores = maximumCores.toDouble

val remainingTimeToComplete = activeExecutors.map { case (id,

controllerExecutor) =>

(id, controllerExecutor.deadlineAppTimestamp - currentTimestamp)

}

val maxUsableCores = activeExecutors.map { case (id,

controllerExecutor) =>

(id, math.min(controllerExecutor.tasks - controllerExecutor.

completedTasks, maximumCores))

}

val sortedKeys = remainingTimeToComplete.toSeq.sortBy(_._2)

sortedKeys.foreach({case (id, _) => {

if (maxUsableCores(id) <= remainingCores){

correctedCores += ((id, maxUsableCores(id)))

remainingCores -= maxUsableCores(id)

} else {

correctedCores += ((id, remainingCores))

remainingCores = 0

}

}})

return correctedCores �
4.4.2 ControllerSupervisorEDFPure

The proposed implementation is similar to the one we have discussed
for ControllerSupervisorEDFAll, as we can see in Listing 4.17. The
main difference is that we limit the allocable cores of each applica-
tions to the number of cores that the executor’s controller has re-
quested, as introduced in Section 3.6.2. As we can see, we order the
applications according to their remainingTimeToComplete and allocate
to each of them their requested number of cores, passed as a parame-
ter to the method in the HashMap desiredCores. In this way, the result-

4.4 controller 67

ing allocation for each application is a value between zero and the
value contained in desiredCores.

Listing 4.17: ControllerSupervisorEDFPure: implementation of method
correctCores.

var correctedCores = new mutable.HashMap[(ApplicationId,

ExecutorId), Cores]()

val currentTimestamp = System.currentTimeMillis()

var remainingCores = maximumCores.toDouble

val remainingTimeToComplete = activeExecutors.map { case (id,

controllerExecutor) =>

(id, controllerExecutor.deadlineAppTimestamp - currentTimestamp)

}

val sortedKeys = remainingTimeToComplete.toSeq.sortBy(_._2)

sortedKeys.foreach({case (id, _) => {

if (desiredCores(id) <= remainingCores){

correctedCores += ((id, desiredCores(id)))

remainingCores -= desiredCores(id)

} else {

correctedCores += ((id, remainingCores))

remainingCores = 0

}

}})

return correctedCores �
4.4.3 ControllerSupervisorEDFProportional

In Listing 4.18 is shown the implementation of the variant discussed
in Section 3.6.3. We want to allocate cores in a way that is propor-
tional to the remaining time to complete the execution. As previously
explained, first of all we want to know the applications remaining-
TimeToComplete. We want to also know which is the minimum time
among all the applications, stored in minTimeToComplete. In order to
take into account applications that might be late, whose time to com-
plete is negative, we move the previously calculated times. In this
way, the application whose deadline is the closest will have trasled(id)
= 1. Then we calculate the weight of each of the applications as dead-
lineWeight. Notice that, if there is a single application running, we
need to fix its weight value, because otherwise it would be zero. Once
we have all the application weights, we apply the implementation of
the Algorithm 7 that has been previously discussed. At each itera-
tion, we assign the remainingCores to be allocated, which have been
initialized to the system maximum, every time we assign cores to an
application, we update the value of remainingCores and desiredCores-
Local, which represents the number of cores the application is still

68 implementation

asking for. Once an application obtains all the requested resources,
its key is removed from both desiredCoresLocal and deadlineWeight, in
order to be able to split the remaining cores at the next iteration to
the remaining applications.

Listing 4.18: ControllerSupervisorEDFProporional: implementation of
method correctCores.

val trasled: mutable.HashMap[(ApplicationId, ExecutorId), Double]

= remainingTimeToComplete.map { case (id, ttc) =>

(id, ttc - minTimeToComplete + 1)

}

var trasledSum = trasled.values.sum

var deadlineWeight = trasled.map{ case(id, trttc) =>

(id, 1 - (trttc/trasledSum))

}

// prevent single app to get weight zero

if(deadlineWeight.size == 1){

deadlineWeight = deadlineWeight.map{ case(id, _) => (id,

1d)}

}

var desiredCoresLocal = desiredCores.clone()

var remainingCores = maximumCores.toDouble

while (!desiredCoresLocal.isEmpty && remainingCores > 0) {

var completedExecutors: mutable.MutableList[(

ApplicationId, ExecutorId)] = mutable.MutableList[(

ApplicationId, ExecutorId)]()

val totalDeadlineWeight: Double = deadlineWeight.values.

sum

var totalAssignedCores: Double = 0

desiredCoresLocal.foreach { case (id, cores) => {

val assignableCores = (deadlineWeight(id) /

totalDeadlineWeight) * remainingCores

val assignedCores = math.min(assignableCores,

cores)

// assign cores

correctedCores(id) = correctedCores.getOrElse(id,

0.toDouble) + assignedCores

// reduce asked cores

desiredCoresLocal(id) = desiredCoresLocal(id) -

assignedCores

// remove executor if given all the requested

cores

if (assignableCores >= cores) {

completedExecutors += id

}

// update accumulators

totalAssignedCores += assignedCores

}

}

// update available cores to assign

4.4 controller 69

remainingCores -= totalAssignedCores

// update executors requesting other cores

completedExecutors.foreach { id => {

desiredCoresLocal -= id

deadlineWeight -= id

}}

}

return correctedCores �
4.4.4 ControllerSupervisorProportional

The strategy proposed in Section 3.6.4 is the one whose implemen-
tation is the simplest, as we can notice from Listing 4.19. What we
need to do is to solve a simple proportion for each of the executor’s
requests

desiredCores(id) : totalRequestedCores =

x : maximumCores

where x is the value of correctedCores(id), totalRequestedCores is the sum
of the requests from the controllers that are stored in desiredCores and
maximumCores is the total system CPU cores.

Listing 4.19: ControllerSupervisorProportional: implementation of
method correctCores.

var correctedCores = new mutable.HashMap[(ApplicationId,

ExecutorId), Cores]()

val totalRequestedCores = desiredCores.values.sum

desiredCores.foreach { case (id, cores) =>

correctedCores += ((id, (maximumCores /

totalRequestedCores) * cores))

}

return correctedCores �
4.4.5 ControllerSupervisorSpeed

As explained in Section 3.6.5, the main difference between the strat-
egy implemented here and the one in ControllerSupervisorEDFPro-

portional is the weight associated to each of the applications. Here
the weight is stored in the HashMap speed and is calculated as the
ratio between avgNominalRate, that is read from Spark configuration
property spark.control.avgnominalrate, and the nominalRateApp pro-
vided by the executor controller.

Listing 4.20: ControllerSupervisorSpeed: implementation of method cor-
rectCores.

70 implementation

var correctedCores = new mutable.HashMap[(ApplicationId,

ExecutorId), Cores]()

val speed = activeExecutors.map { case (id, controllerExecutor) =

>

(id, avgNominalRate / controllerExecutor.nominalRateApp)

}

var desiredCoresLocal = desiredCores.clone()

var remainingCores = maximumCores.toDouble

while (!desiredCoresLocal.isEmpty && remainingCores > 0) {

var completedExecutors: mutable.MutableList[(

ApplicationId, ExecutorId)] = mutable.MutableList[(

ApplicationId, ExecutorId)]()

val totalSpeed = speed.values.sum

var totalAssignedCores: Double = 0

desiredCoresLocal.foreach { case (id, cores) => {

val assignableCores = (speed(id) / totalSpeed) *
remainingCores

val assignedCores = math.min(assignableCores,

cores)

// assign cores

correctedCores(id) = correctedCores.getOrElse(id,

0.toDouble) + assignedCores

// reduce asked cores

desiredCoresLocal(id) = desiredCoresLocal(id) -

assignedCores

// remove executor if given all the requested

cores

if (assignedCores >= cores) {

completedExecutors += id

}

// update accumulators

totalAssignedCores += assignedCores

}

}

// update available cores to assign

remainingCores -= totalAssignedCores

// update executors requesting other cores

completedExecutors.foreach { id => {

desiredCoresLocal -= (id)

speed -= (id)

}}

}

return correctedCores �
nominalRateApp is calculated starting from the information that are

present in the profiling file. Since it resides on the master machine, we
needed to calculate its value there and then send it to the workers as
part of the message InitControllerExecutor that is already used to

4.4 controller 71

create the controllers of the various executors. For a matter of conve-
nience, the calculation has been included in the HeuristicBase class
in the method loadConfigValues. As we can see in Listing 4.21, we
simply parse the profiling informations contained in the JSON and
lookup for the nominalRate and the weight of those stages that will be
executed, those whose field skipped is false. As we can see, the result-
ing weightedNominalRate is stored as a configuration variable, because
we need to use it different times, every time we are willing to send
the message to initialize an executor controller.

Listing 4.21: HeuristicBase: calculating the avg nominal rate of the appli-
cation.

def loadConfigValues(appJson: JsValue): Unit = {

var weightSum: Double = 0

var weightedNominalRateSum: Double = 0

appJson.asJsObject.fields.keys.toList.foreach(id => {

val stageJson = appJson.asJsObject.fields(id).asJsObject

if (!stageJson.fields("skipped").convertTo[Boolean]) {

val nominalRate = stageJson.fields("nominalrate")
.convertTo[Double]

val weight = stageJson.fields("weight").convertTo
[Double]

weightSum += weight

weightedNominalRateSum += nominalRate * weight

}

})

val weightedNominalRate = weightedNominalRateSum / weightSum

conf.set("spark . control . nominalrateapp", weightedNominalRate.

toString)

} �
The method is executed when a new application is launching, as

shown in Listing 4.22 in DagScheduler class, after having checked
that the deadline provided is feasible according to the profiling data,
we calculate the nominal rate. The value is then retrieved in Control-

EventListener and is used as argument of the previous mentioned
message.

Listing 4.22: DagScheduler: calculating the average nominal rate of the start-
ing application.

if (appJson != null && sc.conf.getBoolean("spark . control .
checkdeadline", false)) {

logInfo("LOADED JSON FOR APP: " + jsonFile)

if (!heuristic.checkDeadline(appJson)) {

stop()

}

heuristic.loadConfigValues(appJson)

} �

5
E VA L U AT I O N

In this chapter we describe the experiments that have been conducted
in order to evaluate both the feasibility of controlling the execution
of parallel Spark applications by tuning the number of CPU cores
assigned to the their executor and xSpark itself.

Tests have been conducted on Standard_D14_v2 [39] VM provided
by Microsoft Azure [23], each of them has 16 vCPU, 112 GiB of mem-
ory, 800 GiB of local SSD storage and 6000 Mbps network bandwidth.
This kind of VM is specifically optimized for memory usage, with
an high memory-to-core ratio. Each machine is running Canonical
Ubuntu Server 14.04.5-LTS [36], Oracle Java 8 [17], Apache Hadoop
2.7.2 [1], Apache Spark 2.0.2 [2] and xSpark. All the VM software is
stored in 200 GiB virtual hard disk persistently kept in Azure Blob
Storage [24]. The benchmark cluster is composed by 5 VM running
HDFS and 5 running Apache Spark and xSpark.

In Table 5.1 is reported the configuration of xSpark, meanwhile
Apache Spark is run with its out-of-the-box configuration when no
particular settings are mentioned.

5.1 benchmarks

Here we introduce the different benchmarking applications that have
been used in order to evaluate the performances of xSpark and to
compare it with Apache Spark.

5.1.1 Spark-Bench

Spark-Bench [22] is a benchmarking suite for Apache Spark1. It is
composed by a set of different workloads belonging to four appli-
cation types supported by Spark 2.0.x, including machine learning,
graph processing, streaming and SQL queries. A data generator is
provided in order to allow users to generate arbitrary size of input
data. From this suite we used KMeans and SVM, from the Spark’s ma-
chine learning library, and PageRank, from Spark’s graph processing
library.

In Table 5.2 is reported the configuration of Spark-Bench applica-
tions that have been used in our experiments.

1 Available at https://github.com/SparkTC/spark-bench/tree/legacy

73

https://github.com/SparkTC/spark-bench/tree/legacy

74 evaluation

parameter value

spark.control.alpha 0.95

spark.control.beta 0.33

spark.control.heuristic Control Unlimited

spark.control.tsample 1, 000

spark.control.k 50

spark.control.ti 12, 000

spark.control.corequantum 0.05

spark.control.maxexecutor 4

spark.control.coreforvm 16

spark.control.avgnominalrate 1, 000, 000

Table 5.1: xSpark configuration.

5.1.2 Spark Performance Test

Spark Performance Test2 (Spark-Perf) is a performance testing frame-
work for Apache Spark 1.0+. It covers Spark Core RDD, SQL, DataFrames
and Machine Learning. We used this suite to test basic aggregation
and sorting functionalities of Spark, in particular using aggregate-by-
key and its variations.

In Table 5.3 are presented the configuration parameters of Spark-
Perf applications that have been used in our tests.

5.1.3 TPC Benchmark H

Transaction Processing Performance Council (TPC) Benchmark™H [6]
is a decision support benchmark3. It consists of a suite of business
oriented queries and concurrent data modifications. The data and
queries have been chosen in order to have broad industry-wide rel-
evance. We discarded the performance metric reported by TPC-H,
Composite Query-per-Hour, since we are only interested in the exe-
cution of the queries.

In Table 5.4 are reported the configuration settings that have been
used when generating TPC-H dataset. TPC-H data generator gener-
ates 8 different tables with different sizes, as shown in Table 5.5. A
Scale Factor equal to one generates 1 GiB of data, Number of Partitions
is used to split large tables in the given number of partitions.

2 Available at https://github.com/databricks/spark-perf
3 Available at https://github.com/ssavvides/tpch-spark

https://github.com/databricks/spark-perf
https://github.com/ssavvides/tpch-spark

5.2 metrics 75

app parameter value

KMeans Number of Partitions 1, 000

Number of Points 100, 000, 000

Number of Clusters 10

Dimensions 10

Scaling 0.6

Number of Iterations 1

SVM Number of Partitions 1, 000

Number of Examples 100, 000, 000

Number of Features 5

Number of Iterations 1

PageRank Number of Partitions 1, 000

Number of Vertexes 3, 000, 000

µ 3.0

Number of Iterations 1

Table 5.2: Spark-Bench configuration.

parameter value

Scale Factor 5

Number of Partitions 400

Number of Trials 1

Number of Records 200, 000, 000

Number of Unique Keys 20, 000

Dataset Type String

Table 5.3: Spark-Perf configuration.

5.2 metrics

We decided to test the multi-application performances of xSpark by
running composite benchmarks. With composite benchmark we in-
tent a set of different applications that can have different deadline
and release time. We use as release time the delay of the launch of an
application with respect to the first application launched. In this way,
the first application launched will have delay zero, the second one
that will start a certain amount of seconds later, will have this span
of time as delay.

In order to evaluate the performances of the composite benchmarks,
we took into account different metrics:

• #A is the number of applications that have completed in ad-
vance with respect to their assigned deadline

76 evaluation

parameter value

Scale Factor 40

Number of Partitions 64

Table 5.4: TPC-H configuration.

table size

Part 200, 000 ∗ ScaleFactor

Part Supplier 800, 000 ∗ ScaleFactor

Supplier 10, 000 ∗ ScaleFactor

Customer 150, 000 ∗ ScaleFactor

Line Item 6, 000, 000 ∗ ScaleFactor

Orders 1, 500, 000 ∗ ScaleFactor

Nation 25

Region 5

Table 5.5: Tables and their size generated by TPC-H data generator.

• #D is the number of applications that have completed in delay
with respect to their assigned deadline

• ε is the average deadline error, computed as the average of the
deadline error of the applications that are inside a composite
benchmark. It is important to remember that the deadline error
is calculated as the absolute value of Deadline−ExecutionTime

Deadline ,
where execution time is the time needed to complete the execu-
tion of the application’s tasks.

• εA is the sum of the deadline errors of the applications that
have completed the execution before their deadline, in particu-
lar this value is zero if no applications have completed on time,
i.e. when #A is zero

• εD is the sum of the deadline errors of the applications that
have completed the execution after their deadline, in particular
this value is zero if no applications have exceeded their expected
execution time, i.e. when #D is zero

• εabs is the absolute sum of the deadline errors of the applica-
tions, intended as how much error we had in the execution

In order to validate the values we obtained from the different ex-
ecutions, we decided to examine how vanilla Spark would behave if
it had an Earliest Deadline First like task scheduler across its appli-
cations, in particular trying to give all the available resources to a

5.2 metrics 77

single application, since we want to mimic the behavior of EDF "All"
with γ = 1 that we have discussed in Section 3.6.1. We called this
approach Clairvoyance EDF, since when performing the analysis we
exactly know all the applications that will be submitted and the du-
ration of all their tasks. To do so, we used Spark’s event log in order
to extract the different tasks and their duration. We also needed to
take care of Spark’s overhead (e.g., DAG submission times), in par-
ticular we distributed the overheads equally among all the tasks, in
particular the overhead has been calculated as

Duration− ExeTimePerCore

NumTasksPerCore

where

ExeTimePerCore =
SerializedExeTime

NumExecutors ∗NumCoresPerExe
and

NumTasksPerCore =
NumTasks

NumExecutors ∗NumCoresPerExe
Duration is obtained by comparing the timestamps of the two events
SparkListenerApplicationStart and SparkListenerApplicationEnd

that represent the starting and the ending of a Spark application, in
particular no computation is performed respectively before and after
these two events. SerializedExeTime is the sum of the duration of the
various Spark tasks, retrieved from the event SparkListenerTaskEnd
that represent the completion of a task execution, in particular we
compare the launch timestamp and the finish timestamp in order to
understand the task’s duration. NumTasks represent the count of the
tasks that compose the application, NumExecutors is the number of
running executors and NumCoresPerExe is the number of available
cores in each of the executor.

In order to suggest an EDF scheduling of the various applications
tasks, we begin assigning tasks to empty cores according to the dead-
lines of the applications. In particular we try to saturate the system
resources with the executable tasks of an application, i.e., those which
belongs to a stage that does not depend on a not already finished one.
When no tasks are schedulable due to precedence constraints, we al-
locate tasks of another application according to its deadline.

This tasks allocation has the goal of checking if it is possible to ex-
ecute the composite benchmark respecting the requested deadlines,
since we want to be sure that no further overhead has been intro-
duced in the application execution. It is important to remember that
the Clairvoyance EDF results might not be exactly the same as the one
obtained from a real execution, this is due to different factors such
as network delays when launching applications, resource contention
such as busy I/O devices, etc. Indeed, it has been used only to esti-
mate a possible behavior of the composite benchmark, e.g. how many
application will exceed their deadline.

78 evaluation

benchmark app delay dl nr

Spark-Bench PageRank 0 250 671999

KMeans 40 160 5142187

SVM 80 250 46898

Spark-Perf ABK 0 120 319623

ABK-naive 40 200 486746

ABK-int 80 160 267094

TPC-H TPCH_21 0 210 26717

TPCH_22 30 147 3056

TPCH_18 60 136.5 362703

TPCH_9 90 115.5 3480

TPCH_8 120 103.25 3703

Table 5.6: The three composite benchmark used to evaluate the perfor-
mances of the different strategies with respect to different kind
of applications. From left to right: composite benchmark (Bench-
mark), application (App), delay in seconds (Delay), deadline in
seconds (DL), application nominal rate (NR). ABK stands for
aggregate-by-key.

5.3 different kind of applications

In Table 5.6 we show the three composite benchmarks that we will
analyze in the following subsections. We choose to perform one ex-
periment for each of the benchmarking suite that we are using, in
order to evaluate the performances of xSpark with different kind of
applications. The proposed deadlines are feasible in the single ap-
plication context, we want to investigate if they can also be satisfied
when running multiple applications together. We want to inspect how
the different strategies behave with respect to the different applica-
tion types and the value of Supervisor γ. Each composite benchmark
has been executed using all the strategies (EDF "All", EDF "Pure", EDF

"Proportional", Proportional and Speed) and with Supervisor γ value
0 or 1.

The Tables 5.7, 5.8 and 5.9 contain the results of the composite
bench regarding Spark-Bench, Spark-Perf and TPC-H applications re-
spectively. #A and #D column represent the average number of ap-
plications that ended in advance and in delay, respectively. ε is the
average deadline error, where the deadline error of an application is
calculated as Deadline−ExecutionTime

Deadline . εA and εD are the sum of
the errors of the applications that ended in advance and those which
delayed, respectively, meanwhile εabs is the sum of the two repre-
senting the absolute error.

5.3 different kind of applications 79

strategy γ #a #d ε εA εD εabs

EDF "All" 0 3 0 12.41 37.24 0.00 37.24

EDF "All" 1 3 0 37.24 111.73 0.00 111.73

EDF "Pure" 0 3 0 6.63 19.89 0.00 19.89

EDF "Pure" 1 3 0 12.05 36.16 0 36.16

EDF "Prop." 0 3 0 6.72 20.16 0.00 20.16

EDF "Prop." 1 3 0 17.10 51.29 0.00 51.29

Proportional 0 2 1 6.88 7.59 13.07 20.66

Proportional 1 3 0 13.75 41.26 0 41.26

Speed 0 3 0 5.52 16.56 0 16.56

Speed 1 3 0 18.16 54.47 0.00 54.47

Table 5.7: Results of the composite benchmark concerning Spark-Bench ap-
plications: PageRank, KMeans and SVM. Prop. stands for Propor-
tional.

5.3.1 Spark-Bench composite benchmark

In this composite benchmark we executed in order PageRank, KMeans
and SVM, with a delay of 40 seconds between the launch of each
of the applications. All the deadline proposed are feasible, indeed
profiling execution times of the applications are respectively 60, 86

and 77 seconds. Each application executor uses 33 GiB of memory for
heap allocation. Off-heap allocation is disabled.

As we can see from Table 5.7, in most of the configurations we
achieve in completing the execution of the applications before the
proposed deadline, indeed column #A value is 3 in 9 out of 10 cases.

First thing to notice is that when using γ equal to 1 instead of 0with
strategy Proportional, we increase the number of applications that
end in advance, we can see that the number of applications that ends
in delay (#D) is reduced from 1 to 0. It is important to remember that
choosing γ = 1 is not always the best choice, first of all because in this
experiment we always increase the total error of the applications that
end in advance εA and as a consequence, the average deadline error
ε, but also we need to consider that if there is only one application
running in the cluster for its entire execution time, the result is that
it will always acquire all the resources available. As a result, we will
have a larger deadline error, for example if we consider EDF "All" we
go from ε = 12.41 with γ = 0 to ε = 37.24 with γ = 1, which is about
three times greater.

The smallest deadline errors in this experiment are achieved when
using strategies EDF "Pure" (ε = 6.63), EDF "Proportional" (ε = 6.72),

80 evaluation

strategy γ #a #d ε εA εD εabs

EDF "All" 0 2 1 20.27 39.55 21.25 60.81

EDF "All" 1 2 1 24.48 56.78 16.67 73.44

EDF "Pure" 0 1 2 10.86 5.83 26.75 32.58

EDF "Pure" 1 2 1 11.55 12.16 22.50 34.66

EDF "Prop." 0 1 2 11.07 5.83 27.38 33.21

EDF "Prop." 1 1 2 10.84 6.11 26.42 32.53

Proportional 0 1 2 12.63 3.89 34.00 37.89

Proportional 1 1 2 11.75 5.00 30.25 35.25

Speed 0 1 2 13.68 5.55 35.50 41.05

Speed 1 1 2 11.50 5.83 28.67 34.50

Table 5.8: Results of the composite benchmark concerning Spark-Perf appli-
cations: aggregate-by-key, aggregate-by-key-naive and aggregate-by-
key-int. Prop. stands for Proportional.

Proportional (ε = 6.88) and Speed (ε = 5.52), with Supervisor γ = 0.
Although, we need to consider that choosing strategy Proportional
has the effect of having 1 out of 3 applications ending delayed (#D =

1). This might not be a problem if we want to ensure a fair distribu-
tion of resources across the application, at the price of slightly vio-
lating some of the deadlines. Otherwise, by choosing the other three
strategies will result in having zero violations in this test scenario.

By analyzing the same composite benchmark with the Clairvoy-
ance EDF method previously introduced, we obtain that all the appli-
cations should respect the proposed deadline (#A = 3). In particular
we obtain that PageRank should complete with a deadline error of
35.31, KMeans with 45.99 and SVM with 36.57, this results in hav-
ing ε = 39.29, εA = εabs = 117.87 and εD = 0. The real EDF "All"
with γ = 1 execution completes the same number of applications in
advance and the obtained errors are 5% smaller.

5.3.2 Spark-Perf composite benchmark

In this experiment we execute three different kind of aggregations
from the Spark-Perf benchmarking suite. We executed in order aggregate-
by-key, aggregate-by-key-naive and aggregate-by-key-int, with a delay of
40 seconds between each of the applications. Even though all the ap-
plications are performing aggregation, due to the different implemen-
tation we can notice different application nominal rates, which can be
seen in Table 5.6. The execution time that have been measured dur-
ing the profiling phase are respectively 61, 78 and 102 seconds, which

5.3 different kind of applications 81

are smaller than the chosen deadlines. Each application executor uses
33 GiB of memory for heap allocation and off-heap allocation is dis-
abled.

From Table 5.8 we can notice that we never achieve in satisfying
all the deadlines. In particular, when using EDF "All" we only sat-
isfy 2 out of 3 deadlines and in general this strategy is the one that
minimizes the number of violations, in particular when paired with
Supervisor γ = 1.

If we are running this composite benchmark in a situation in which
we have a "strict" deadline, which means the penalty paid when we
break the deadline is infinite, we need to minimize the number of
violations. As a result, we need to choose for example those strategy
whose value in the column #D is the smallest (#D = 1), such as EDF

"All" or EDF "Pure" with γ = 0

Instead, if the deadline is a "soft" boundary, which means paying a
penalty that is proportional to the delay errors, we want to minimize
the value of εD. This is done another time by choosing EDF "All" and
γ = 1 (εD = 16.67).

If we disregard the concept of violating the deadline, we may want
to minimize the average deadline error ε, in this composite bench-
mark scenario the best choice is to use EDF "Proportional" with γ = 0

(ε = 11.07) and γ = 1 (ε = 11.75) or EDF "Pure" with γ = 0 (ε = 10.86)
or Speed with γ = 1 (ε = 11.50).

Analyzing the same composite benchmark with the Clairvoyance
EDF method previously discussed, we obtain that only 2 out of 3 appli-
cations succeed in completing before the designated deadline (#A = 2

and #D = 1). In particular, aggregate-by-key and aggregate-by-key-naive
succeed in completing before the deadline with a deadline error that
is respectively 25.13 and 7.57, aggregate-by-key-int instead fails in com-
pleting on time with an error of 54.58. As a result, we obtain ε = 29.09,
εA = 32.70, εD = 54.58 and εabs = 87.28. Real execution of EDF All
with γ = 1 achieves in completing the same number of applications
in time, with ε and εabs that are about 15% smaller.

5.3.3 TPC-H composite benchmark

In order to test SQL queries performances in xSpark, we decided to
use queries from the benchmarking suite TPC-H. After having pro-
filed all the 22 queries proposed, we choose to use only the top 5

queries with respect to their execution times.
These queries are:

Q8 National Market Share. This query determines how the market
share of a given nation within a given region has changed over
two years for a given part type.

82 evaluation

strategy γ #a #d ε εA εD εabs

EDF "All" 0 3 2 38.17 133.31 57.53 190.85

EDF "All" 1 3 2 39.15 141.49 54.26 195.75

EDF "Pure" 0 3 2 23.97 62.33 57.54 119.87

EDF "Pure" 1 3 2 20.04 64.61 35.60 100.21

EDF "Prop." 0 3 2 14.86 41.79 32.52 74.32

EDF "Prop." 1 3 2 15.66 47.59 30.72 78.31

Proportional 0 1 4 15.18 22.68 53.24 75.91

Proportional 1 2 3 11.31 29.73 26.81 56.53

Speed 0 1 4 12.73 3061 33.06 63.67

Speed 1 2 3 10.05 37.98 12.29 50.27

Table 5.9: Results of the composite benchmark concerning TPC-H queries:
Q21, Q22, Q18, Q9 and Q8. Prop. stands for Proportional.

Q9 Product Type Profit Measure. This query determines how much
profit is made on a given line of parts, broken out by supplier
nation and year.

Q18 Large Volume Customer. This query ranks customers based on
their having placed a large quantity order. Large quantity or-
ders are defined as those orders whose total quantity is above a
certain level.

Q21 Suppliers Who Kept Orders Waiting. This query identifies cer-
tain suppliers who were not able to ship required parts in a
timely manner.

Q22 Global Sales Opportunity. This query identifies geographies where
there are customers who may be likely to make a purchase.

The queries are in order Q21, Q22, Q18, Q9 and Q8, with a delay
of 30 seconds between each of them. All the deadlines requested are
larger than the execution time measured in the profiling phase, that is
respectively 120, 84, 78, 66 and 59 seconds. Each application executor
uses 20 GiB of memory for heap allocation. Off-heap allocation is
disabled.

As we can see from Table 5.9, also this time we did not achieve in
satisfying all the deadline in any of the proposed configurations. In-
deed EDF "All" with γ = 1 only satisfies 3 out of 5 requested deadlines,
and this is the strategy whose best effort is to minimize the number
of violations (#D = 2). In this case, this strategy also maximizes the
total error in advance (εA = 141.71).

5.3 different kind of applications 83

If we want to minimize the average deadline error ε, our choice can
be among Proportional strategy with γ = 1 (ε = 11.31) or Speed with
γ = 0 (ε = 12.73) or γ = 1 (ε = 10.05). Notice that choosing Speed
with γ = 1 the result is that we also minimize the total delay error
(εD = 12.29), this can be a good point if we are in a scenario in which
the provided deadlines are soft boundaries, in which the penalty paid
for violating them grows with the delay error.

Instead if the deadline is "strict", meaning that an infinite penalty is
paid, we can choose among the strategies that achieve in completing
the same number of application of EDF "All" (#A = 3), that are EDF

"Pure" and EDF "Proportional" with Supervisor γ = 0 or γ = 1.
Analyzing the same benchmark with the Clairvoyance EDF approach

that has been proposed, we obtain that we should be able to complete
3 out of 5 applications on time. The method suggests that queries 22,
18 and 9 should complete on time with a deadline error that is re-
spectively of 82.95, 41.55 and 0.72. The other two queries 21 and 8

are not able to satisfy the deadline, and have an error of 31.99 and
90.86. The result is having a ε = 49.614, εA = 125.22, εD = 122.85
and εabs = 248.07. Real execution of EDF All with γ = 1 achieves in
completing the same number of applications in time, with ε and εabs
that are about 20% smaller.

5.3.4 Which configuration to choose?

Sadly this is not an easy question to answer. In order to use xSpark
with multiple applications, we need to select a contention resolution
strategy and the value of the parameter γ ∈ [0, 1].

Starting from the Supervisor γ parameter, we need to remember
that setting its value equal to 1 will have the effect that the cluster
CPU resources will be fully used even though the applications run-
ning at a certain moment might need less resources than the ones
they will end up having allocated. Selecting value 0 instead has the
effect of allocating only the requested cores in order to keep up with
the desired progress rate, if this is possible in the sense that the total
sum of the requested CPU cores is lower than the system maximum
number.

Selecting γ = 1 is not a problem if on average we have more
than one application running and the requested deadlines are shorter,
since in this way we allow applications that are running alone at a
certain time to speed up their execution by allocating more cores,
in order to better tolerate the future presence of other applications.
Instead, if it happens often that an application spends most of its
execution time alone in the cluster, using γ = 1 might not be the
best choice, since the application will acquire more resources than
the needed ones and complete its execution possibly much time ear-

84 evaluation

lier with respect to the desired deadline. In this case, we can choose
to use γ = 0.

By analyzing the results of the previous composite benchmarks, we
see that choosing γ = 1 instead of γ = 0made us improve the number
of applications completed in advance (#A) in 4 cases out of 11 where
γ = 0 did not achieved in completing all the executions before the
deadline. When γ = 0 already succeeds in satisfying the requested
deadlines, as in the Spark-Bench composite benchmark discussed in
Section 5.3.1, selecting γ = 1 has the result of increasing the deadline
error ε, this because it increments the total error of the applications
that end in advance εA, in particular it is between 2 and 3 times the
previous value.

On the contention resolution strategy side, we can choose among
EDF "All", EDF "Pure", EDF "Proportional", Proportional and Speed.

EDF "All" has the purpose of allocating all the cluster resources to
the application whose deadline is the closest. As a result, we try to
complete the selected application as fast as possible, by possibly paus-
ing the execution of other applications. The result of this approach is
that we maximize the error of the applications that end in advance εA
and the number of these applications #A, as we have already shown
in the previous composite benchmarks. This strategy has been mostly
used to understand if the proposed combination of application dead-
lines are feasible together, indeed if they are not all satisfiable using
EDF "All", they are not even using other strategies.

EDF "Pure" allocates the requested resources to the executors ac-
cording the priority of their application, that is determined by their
remaining time to complete, that is positive when they have not ex-
ceeded their deadline. According to the composite benchmarks exe-
cuted, in 5 out of 6 cases the number of applications completed in
advance is the same as the ones done by EDF "All". The same applies
for EDF "Proportional", which allocates resources using an applica-
tion weight that is proportional to their remaining time to complete,
where in all the cases the number of applications completed in ad-
vance is the same as the one of EDF "All". The main difference is that
the average deadline error of both EDF "Pure" and EDF "Proportional"
is halved with respect to the one of EDF "All".

Proportional and Speed strategy employ a different way to reparti-
tion resources among the applications, the former assigns CPU cores
in a way that is proportional to the requested ones to keep up with
the desired progress rate, the latter inversely proportional to the ap-
plication nominal rate. In the previously discussed experiments, both
the strategy have an average deadline error that is below the aver-
age for each of the composite benchmark. For example, considering
TPC-H composite benchmark discussed in Section 5.3.3, the average
deadline error ε is 20.98 and 19.24 respectively for γ = 0 and γ = 1,

5.4 deadline as a priority between applications 85

Proportional (15.18 and 11.31) and Speed (12.73 and 10.05) strategy
errors instead are almost the half.

In Section 6 we will introduce different use cases and explain which
combination of strategy and Supervisor γ value we may choose to
satisfy our interests.

5.4 deadline as a priority between applications

When running on a cluster, each Spark application gets an indepen-
dent set of executors, that run tasks and store data only for a given
application. The same thing is true for xSpark.

The main difference is that, when we run Spark in standalone
mode, by default, all applications submitted will run in FIFO order,
each of them will try to use all the available nodes. We can control
the static partitioning of resources by changing the application al-
located cores and memory using Spark properties spark.cores.max

and spark.executor.memory.
In the next experiments, we compared the execution of Spark and

xSpark. The idea is that we have a set of applications that are sub-
mitted delayed of a certain amount of time. Every application has a
different deadline, with the meaning of desired completion time. We
want that the execution of the application is completed before the
deadline, given that it is a feasible request.

The expected behavior is that Spark will execute the applications in
a FIFO style, allocating all the cluster resources for every application
at a time. xSpark instead will parallelize the execution of the applica-
tions, in this way it can use the deadline as a way to give priority to
a particular application with respect to another.

5.4.1 Comparison 1: Spark-Bench

In this experiment, we executed three different applications from
Spark-Bench in Apache Spark and xSpark.

As shown in Table 5.10, we executed KMeans, PageRank and SVM
with a delay of 40 seconds between the starting of the first application
and the second one, and 60 seconds between the second and the third
ones. All the deadlines are feasible, indeed they are all greater than
the execution time we observed when profiling the applications. In
Spark, the executors will reserve 100 GiB for their JVM, instead in
xSpark they will only allocate 33 GiB in order to be able to run safely
without incurring in memory shortage problems. Off-heap allocation
is not enabled. In both the tests, applications can use 15 CPU cores.

In order to compare the results of Spark and xSpark, we tested
three different configurations: i) Spark 2.0.2, ii) xSpark with contention
strategy EDF "All" and Supervisor γ = 1, iii) xSpark with contention

86 evaluation

app delay deadline

KMeans 0 300

PageRank 40 300

SVM 100 120

Table 5.10: Spark-Bench applications (App) run in Comparison 1 with delay
(Delay) and deadline (Deadline) expressed in seconds.

config app dl et err missed

Spark PageRank 300.0 58.964 80.3% No

KMeans 300.0 105.406 64.7% No

SVM 120.0 142.573 18.8% Yes

EDF "All" 1 PageRank 300.0 74.846 75.1% No

KMeans 300.0 190.545 36.5% No

SVM 120.0 81.248 32.3% No

EDF "Pure" 0 PageRank 300.0 289.059 3.6% No

KMeans 300.0 284.654 5.1% No

SVM 120.0 116.307 3.1% No

Table 5.11: Spark-Bench applications results run in Comparison 1. From
left to right: configuration used (Config), application (App),
deadline in seconds (DL), execution time in seconds (ET), dead-
line error (Err), missed deadline (Missed).

strategy EDF "Pure" and Supervisor γ = 0. These executions have been
repeated three times to have more accurate results

In Table 5.11 we compare the results of the different configuration
results. The execution time (ET) has been calculated from the Spark
events log file, in particular as the difference between the timestamps
of the events SparkListenerApplicationStart and SparkListener-

ApplicationEnd. The error (ERR) has been calculated as DL−ET
DL where

DL is the requested deadline.
Due to the FIFO scheduling of the applications in Apache Spark

and the fact that every application allocates all the resources in the
cluster, we can see that the deadline requested for SVM cannot be
satisfied. Moreover, from Figure 5.1a we can easily visualize that the
effective execution of the last application begins when the deadline
is almost expired, since it needs to wait until the previous applica-
tion has released all the resources. This because Spark has no built in
concept of deadline, but even supposing the existence of an applica-
tion scheduler in Spark that is not FIFO but that selects the pending
application whose deadline is closer, the situation would not have
changed. Indeed when KMeans can launch its executor, SVM has yet

5.4 deadline as a priority between applications 87

app delay deadline

Aggregate-by-key 0 300

Aggregate-by-key-naive 40 320

Aggregate-by-key-int 100 120

Table 5.12: Spark-Perf applications (App) run in Comparison 2 with delay
(Delay) and deadline (Deadline) expressed in seconds.

to be submitted to the cluster, so the only application pending is the
one that will start.

Using xSpark instead, allows us to exploit the provided deadline
and satisfy all the three proposed deadlines in both the configuration
proposed.

Choosing EDF "All" strategy with Supervisor γ = 1 allows us to
terminate the execution of the composite test satisfying all the dead-
lines, as we can see in Figure 5.1b. However, due to the nature of this
strategy, we have high deadline errors, in Table 5.11 we can see that
PageRank completes a deadline error of 75.1%.

Selecting EDF "Pure" strategy and Supervisor γ = 0 (Figure 5.1c)
we increase the execution time of each application with respect to
the other xSpark configuration, but we obtain a lower deadline error,
indeed all the applications terminate the execution with a deadline
error that is smaller than 5%, as it is reported in Table 5.11.

5.4.2 Comparison 2: Spark-Perf

This experiment is similar to the previous one, but we used Spark-
Perf applications instead of the Spark-Bench ones.

Deadlines proposed in Table 5.12 are feasible and larger than the
execution times measured during the profiling phase. As in the pre-
vious experiment, Spark executor will allocate 100 GiB of memory
meanwhile xSpark ones only 33 GiB, without using off-heap alloca-
tion, both of them will use up to 15 cores during the execution.

In order to compare the results of Spark and xSpark, we tested
four different configurations: i) Spark 2.0.2, ii) xSpark with contention
strategy EDF "All" and Supervisor γ = 1, iii) xSpark with contention
strategy EDF "Pure" and Supervisor γ = 0. These executions have been
repeated three times to have more accurate results

In Table 5.13 results of the different configurations tested are pre-
sented. ET is the execution time and has been calculated as explained
in the previous subsection. Same thing applies for the error ERR.

As in the previous experiment, we notice that Apache Spark is not
able to satisfy all the requested deadlines, indeed last launched ap-
plication completes its execution more than 20 seconds after the re-
quested deadline. This can be easily seen in the diagram shown in

88 evaluation

(a) Spark

(b) EDF "All" 1

(c) EDF "Pure" 0

Figure 5.1: Diagrams that show the execution of the applications in Com-
parison 1. The dotted segment represent the deadline for the
given application. The rectangle representing the application is
gray when it is waiting the presence of enough resources to be
scheduled, white when running.

5.4 deadline as a priority between applications 89

(a) Spark

(b) EDF "All" 1

(c) EDF "Pure" 0

Figure 5.2: Diagrams that show the execution of the applications in Com-
parison 2. The dotted segment represent the deadline for the
given application. The rectangle representing the application is
gray when it is waiting the presence of enough resources to be
scheduled, white when running.

90 evaluation

config app dl et err missed

Spark ABK 300.0 64.524 78.5% No

ABK-naive 320.0 132.493 58.6% No

ABK-int 120.0 146.652 22.2% Yes

EDF "All" 1 ABK 300.0 85.169 71.6% No

ABK-naive 320.0 238.312 25.5% No

ABK-int 120.0 97.349 18.9% No

EDF "Pure" 0 ABK 300.0 290.792 3.0% No

ABK-naive 320.0 309.691 3.2% Yes

ABK-int 120.0 119.755 0.2% No

Table 5.13: Spark-Perf applications results run in Comparison 2. From left
to right: configuration used (Config), application (App), deadline
in seconds (DL), execution time in seconds (ET), deadline error
(Err), missed deadline (Missed). ABK stands for aggregate-by-key.

Figure 5.2a. As previously explained, this is due to the FIFO applica-
tion scheduler and the static resource allocation that by default stan-
dalone Spark uses.

Using xSpark strategy EDF "All" with Supervisor γ = 1 we try
to avoid deadline violation caused done by aggregate-by-key-int. In-
deed the diagram in Figure 5.2b shows that all the three applications
achieve the result of completing before the desired deadline.

Our goal now is to reduce the error with respect to the requested
deadlines, in particular in the previous strategy analyzed we have an
high error for the first application launched, 71.6% (from Table 5.13).

As in the previous experiment, we analyze the result using strategy
EDF "Pure" and Supervisor γ = 0. From the diagram in Figure 5.2c we
can see that using this strategy, we have no deadline violation, and all
the applications complete their executions really close to the deadline.
From results in Table 5.13 we can see that the deadline errors are very
small (column Err), with the highest one being 3.2% from aggregate-
by-key-naive.

5.4.3 Comparison extension

Parallelizing vanilla Spark with static allocation

One might object that it is obvious that a parallel execution outper-
forms a serialized one. To address this objection, we configured Spark
in order to execute using a static allocation of resources, in particu-
lar each application will launch with one executor per worker node
that has 33 GiB of memory and 5 CPU cores allocated. This prevents
the applications from waiting the ending of the previously launched

5.4 deadline as a priority between applications 91

config app dl et err missed

Static PageRank 300.0 86.073 71.3% No

KMeans 300.0 186.206 37.9% No

SVM 120.0 131.018 9.2% Yes

Static ABK 300.0 169.337 43.6% No

ABK-naive 320.0 256.841 19.7% Yes

ABK-int 120.0 215.762 79.8% Yes

Table 5.14: Results of applications run using a static partitioning of re-
sources in vanilla Spark. From left to right: configuration used
(Config), application (App), deadline in seconds (DL), execution
time in seconds (ET), deadline error (Err), missed deadline
(Missed).

ones, instead they can immediately begin the computation without
wasting time.

In order to obtain this desired behavior, we need to set spark.exe-
cutor.memory to 33 GiB, representing the memory allocated to each of
the executors, spark.executor.cores to 5, that represents the number
of cores assigned to each of the executors, spark.cores.max to 20, in
order to allocate 4 executors for each of the applications.

In Table 5.14 we can see the different performances achieved by
the two composite benchmarks used in the previous sections. The
first composite benchmark (PageRank, KMeans, SVM) executed in
parallel completes in 226 seconds, that is comparable with the one
of Spark FIFO, 222 seconds, and the one of xSpark with EDF "All"
and γ = 1, 230 seconds. However, parallelized Spark is not able to
satisfy all the deadlines, in particular it violates the one assigned to
SVM. Using parallelized Spark in the second composite benchmark
has the effect of increasing the benchmark completion time to 315

seconds, which is an increment of the 28% with respect to FIFO Spark
execution. As expected, parallelized Spark is still not able to satisfy
all the deadlines, in particular an error of 79.8% is obtained with the
missed deadline of aggregate-by-key-int.

Dynamic off-heap in Spark

A further objection that is possible to make is that we are running
the test knowing exactly the number of applications that will run
in parallel. This might not be always true case, since it depends on
the context where xSpark will be deployed. In order to solve this
point, we re-executed the two composite benchmark changing the
configuration of xSpark, in particular we choose to enable the use
of dynamic off-heap memory and allocate a small amount of static
heap memory. In particular, each executor will now use only 10 GiB
of static heap memory. Given the size of the virtual machines we

92 evaluation

config app dl et err missed

EDF "All" 1 PageRank 300.0 91.867 69.4% No

KMeans 300.0 201.915 32.7% No

SVM 120.0 87.341 27.20% No

EDF "Pure" 0 PageRank 300.0 290.393 3.2% No

KMeans 300.0 285.421 4.9% No

SVM 120.0 115.525 3.7% No

EDF "All" 1 ABK 300.0 91.665 69.4% No

ABK-naive 320.0 266.937 16.6% No

ABK-int 120.0 104.962 12.5% No

EDF "Pure" 0 ABK 300.0 290.791 3.1% No

ABK-naive 320.0 309.805 3.2% No

ABK-int 120.0 119.546 0.4% No

Table 5.15: Results of applications run using off-heap allocation in xSpark.
From left to right: configuration used (Config), application (App),
deadline in seconds (DL), execution time in seconds (ET), dead-
line error (Err), missed deadline (Missed).

are using, we say that we are now testing the two benchmarks in a
xSpark cluster that supports up to 5 applications running together. It
is important to limit the number of applications that can run together
because if we saturate the available memory with the heap of the
executors, no free memory will be available for off-heap allocation.

In Table 5.15 we see the results of running xSpark using dynamic
off-heap allocation. Comparing them with the ones explained in Sec-
tion 5.4.1 and 5.4.2, we see no differences in terms of number of
violated deadlines. Notice that this is not a general rule, indeed if
the deadlines were stricter, it could be possible that some of them
would no longer be satisfiable. This happens because accessing off-
heap memory is slower than accessing the on-heap one, and thus the
execution times of the applications increase.

The first composite benchmark completion time, when using EDF

"All", increases of the 5%, from 230 seconds to 242 when compared
to the results previously obtained. The application whose execution
time increased most is PageRank with an increment of the 22%. It is im-
portant to notice that this big increment is not completely due to the
use of off-heap memory allocation. This increment has been mainly
caused by the submission of another Spark application whose priority
is higher, i.e., its deadline is closer, before the completion of PageRank.
The supervisor, which using EDF "All" strategy, will correctly assign
all the resources to this new application. This can be easily spotted
by analyzing Figure 5.3. After 80 seconds of execution, we see that
the cores allocated to PageRank (blue line) drop to zero, due to the

5.4 deadline as a priority between applications 93

Figure 5.3: Cores allocated to PageRank application running in composite
benchmark from Comparison 1 with off-heap memory alloca-
tion enabled.

starting of the aforementioned application. As soon as free cores are
available, PageRank is able to complete its execution.

There are no relevant differences in the results of the executions
using strategy EDF "Pure" with and without using off-heap allocation.
Since deadlines are not strict, we are able to keep deadline errors
below the 5% also when using off-heap allocation.

Comparing the executions of the second composite benchmark,
with and without using off-heap allocation, we see that there is an in-
crement around the 10% in the execution times when using strategy
EDF "All". This increment is entirely due to to the nature of off-heap
allocation, since now the sequence of "highest priority application"
does not change when using off-heap allocation. In this experiment,
the sequence is:

1. aggregate-by-key, when the benchmark starts

2. aggregate-by-key-naive, when aggregate-by-key has already com-
pleted and aggregate-by-key-int has not started yet

3. aggregate-by-key-int, when this application starts

4. aggregate-by-key-naive, when aggregate-by-key-int completes

The higher execution times have the effect of increasing the comple-
tion time of the composite benchmark, i.e., going from 278 seconds
to 306 seconds when using off-heap allocation, which translates into
a 10% increment.

If we compare the executions using strategy EDF "Pure", we se no
relevant differences even in this second composite benchmark. Dead-
line errors are still under the 3% using off-heap memory allocation.

The use of dynamic allocation allows us to have a better utiliza-
tion of the system memory. In particular, in the original experiment
where we were using only a static allocation of one third of the total
memory per application, the result was that it was possible that up to
66% of memory was unusable, because reserved for possible future
applications. Using dynamic off-heap memory allocation instead, we
can possibly have a 100% memory usage even when running a single

94 evaluation

application. This is a great improvement in terms of memory utiliza-
tion and flexibility, at the price of having slightly greater execution
times.

5.5 off-heap and heap performances

In this section we first inspect the impact of using different configura-
tion of heap and off-heap memory allocation with respect to a single
running application. Later on, we will compare the performances of
the execution of multiple applications under different memory con-
figurations.

5.5.1 Heap and off-heap impact

In this experiment, we compared the performances of two different
applications: Aggregate-by-key-naive and PageRank, in particular for the
last one we tested two different ways to store its RDD.

In Table 5.16 we can see the different configuration used, in partic-
ular we choose three distributions of heap and off-heap memory: all
heap (100/0), balanced heap and off-heap (50/50), almost all off-heap
(10/90). As previously introduced PageRank test was run using two
different Storage Levels, "MemoryAndDisk" and "OffHeap". Each Stor-
age Level records whether to use memory or External Block Store,
whether to drop th RDD to disk if it falls out of memory or External
Block Store, whether to keep the data in memory in a serialized for-
mat and whether to replicate the RDD partitions on multiple nodes.
"MemoryAndDisk" uses memory and disk storage, storing data in a
deserialized way, "OffHeap" instead allows also to store da in off-heap
memory.

As shown in the previous table, we also tested the impact of using
an ad-hoc profiling instead of using the basic one, intended as the one
obtained from running the application using all the memory allocated
in the heap.

In order to evaluate the differences among the different memory
configurations and profiling file usage, we use three different met-
rics. CpuTime that represents the total amount of CPU seconds that
have been used during the application execution. Throughput =
NumberOfTasks

Duration that is higher when application completes in less
time, since the NumberOfTasks is always the same given the same
input data. DeadlineError = Deadline−ExecutionTime

Deadline that shows
how precisely we can complete the execution of the application.

The first thing we can notice is that when we use an ad hoc profiling
(see column Prof), we always have an higher deadline error (column
DE) with respect to the case in which we use the profiling obtained
from running the application using all the resources. So we have no

5.5 off-heap and heap performances 95

app mem prof cputime thr de

ABK-naive 100/0 Yes 5166 21.09 5.17

50/50 No 5502 21.09 5.17

50/50 Yes 5552 21.16 5.5

10/90 No 6310 21.09 5.17

10/90 Yes 6289 21.13 5.33

PageRank MD 100/0 Yes 1625 39.19 8.13

50/50 No 1663 39.19 8.13

50/50 Yes 1626 39.53 8.93

10/90 No 2679 35.66 2.93

10/90 Yes 2412 37.92 5.07

PageRank OH 100/0 Yes 2013 38.24 5.87

50/50 No 1988 38.24 5.87

50/50 Yes 2051 38.74 7.07

10/90 No 2116 38.24 5.87

10/90 Yes 2150 37.92 6.93

Table 5.16: Configurations used to inspect the impact of using different
memory allocations and their results. From left to right: appli-
cation (App), memory allocation used (heap / off-heap) in GiB
(Mem), use of an ad hoc profiling (Prop), CPU time (CpuTime),
throughput (Thr), deadline error (DE). ABK stands for aggregate-
by-key, MD for MemoryAndDisk, and OH for OffHeap.

incentives in profiling an application against different memory allo-
cations.

For both aggregate-by-key-naive and PageRank "MemoryAndDisk" we
can see that when decreasing the memory allocated to the heap of the
executors, the value of the CpuTime needed to complete the execu-
tion of the application increases (see column CpuTime). In particular,
by analyzing the log files of PageRank running with 10 GiB allocated
to the JVM heap we noticed that some of the blocks were needed to
be dropped to disk. Disk swapping can be a serious threat to the
performances of Spark applications. Due to the storage level select,
PageRank blocks needed to be either persisted on memory or disk. A
similar situation happened with aggregate-by-key-naive, with the only
difference that in this case RDD blocks were not forced to be persisted.

Concerning PageRank, a solid improvement can be found by pre-
venting disk swapping of RDD block. This can be easily done by se-
lecting "OffHeap" storage level, in this way we can see that we reduce
the impact of disk swapping on CpuTime. In particular in this exper-
iment we reduce the CpuTime of PageRank running with 10 GiB allo-
cated to the heap from 2679 to 2116 (without ad hoc profiling), which
is a reduction around the 20%. Remember that all saved CpuTime can

96 evaluation

metric oh 25 20 15 10 5

Avg CPUT No 5475 5994 6691 6741 6882

Yes 5442 5770 5751 6781 6562

Avg DE No 9.49 13.9 19.7 22.6 25.7

Yes 8.6 11.5 10.7 21.3 21.5

Avg ET No 172.2 174.0 183.2 193.7 203.9

Yes 170.9 168.1 170.0 190.1 195.2

Avg THR No 28.75 28.10 26.99 26.50 25.52

Yes 29.01 28.78 28.76 26.26 26.30

Table 5.17: Results of executing Spark-Perf composite benchmark with dif-
ferent memory configuration. From left to right: the considered
metric (Metric), dynamic off-heap enabled (OH), results with 5

different heap sizes in GiB (25, 20, 15, 10 and 5). According to
the metrics, Avg CPUT is the average CPU Time, Avg DE is the
average deadline error, Avg ET is the average execution time,
Avg THR is the average throughput.

be used to schedule other applications, which is relevant in a multi
application context.

5.5.2 Multiple application

We decided to inspect the effect of off-heap allocation when executing
multiple applications, in particular we tested how Spark-Perf compos-
ite benchmark (Section 5.3.2) behaves under different memory con-
ditions. In particular, we tested it using strategy Proportional with
γ = 0, since we were interested only in understanding the effect of
the different memory configurations. To perform our tests, we exe-
cuted the composite benchmark using different values for the execu-
tor heap (i.e., 25, 20, 15, 10 and 5 GiB per executor) and repeated them
enabling also dynamic off-heap allocation.

In Table 5.17 we can see the results obtained by executing the com-
posite benchmark based on Spark-Perf applications with the different
combinations of heap and off-heap memory. The metrics that we are
analyzing are Avg CPUT that represents the average CPU time of the
applications that compose the benchmark, Avg DE that is the average
deadline error, Avg ET that is the average execution time, Avg THR
that is the average throughput, calculated as NumTasks

ExecutionTime .
Plotting these values in Figure 5.4 helps us to visualize the effect of

using different sizes of heap memory and the possible advantage of
enabling off-heap allocation. From the diagrams we can easily under-
stand the effect of reducing the size of the statically allocated heap,
in particular by reducing the amount of memory allocated to the JVM

heap of each executor we notice that the average CPU time increases

5.6 threats to validity 97

(a) Avg. CPU Time (b) Avg. Deadline Error

(c) Avg. Execution Time (d) Avg. Throughput

Figure 5.4: These diagrams show how choosing a different memory alloca-
tion in terms of heap and off-heap memory influences different
metrics. In particular, 5 different heap size have been chosen and
tested with and without dynamic off-heap enabled.

(Figure 5.4a), with a 25% increment between the minimum and the
maximum value. As a result, also the other metrics are incremented,
in particular the average deadline error grows from 9.49when allocat-
ing 25 GB to 25.7 when using only 5 GB instead (Figure 5.4b), average
execution time and throughput grow respectively of the 18% and 11%
(Figure 5.4c and 5.4d). From the same set of graphs, we can see that
enabling off-heap allocation has the result in general of improving all
the metrics, indeed we a slightly lower CPU time (i.e., −5% on aver-
age) and execution time (i.e., −3%), remarkably lower deadline error
due to the shorter duration (i.e., −18%) and slightly higher through-
put (i.e., +2%).

It is important to remember that in general the effect of using off-
heap allocation is positive in case of memory shortage, since storing
values on off-heap memory is slightly slower than on-heap storage,
but surely faster than writing and accessing data on disk.

5.6 threats to validity

5.6.1 Internal Threats

The experiment were conducted launching composite benchmarks,
composed by a set of applications, each with its own delay and dead-

98 evaluation

line. We can assume that the chosen deadline has been set correctly
for each of the applications, since it is passed as a configuration pa-
rameter to xSpark. Unluckily, the delay with which an application
has been launched might not be the one we will expect, this is due to
the tool that we are using to launch experiments and the benchmark-
ing applications themselves. When the tool launches an application,
it configures the parameters of the application and then launches it.
Network delays might slow down this process, and thus having a
resulting delay that is not always the same comparing different ex-
ecutions. In the executed experiment, we did not notice such a be-
havior, and thus we can consider that network did not impact on the
quality of the obtained data. Concerning the benchmarking applica-
tions, they can have a different amount of configuration parameter to
set, and thus one configuration phase might take longer than another
one. This is not a problem since this kind of launching delay is re-
peated across execution, since the number of parameters to set does
not change, the result is that an application will always be scheduled
with a fixed extra delay with respect to the one we have chosen for
that application.

Moreover, the time required to xSpark to launch its executors is
not fixed, and thus computations might start at a slightly different
time when comparing executions. This way different executions of the
same composite benchmark might have slightly different execution
times.

5.6.2 External Threats

We assume that the storage layer is never a bottleneck. In a real world
scenario instead it could become one. Spark relies on the storage layer,
usually HDFS, that should be designed and sized taking into account
the workload. In the tested applications, some stages were storage-
bounded, in particular when writing and reading data from the stor-
age. It is important to remember that Spark exploits in-memory pro-
cessing, so only few stages are affected by this kind of bottleneck.
Having a different number of simultaneous executors that read or
write from the storage can change the QoS of the storage layer, and
thus the overall one.

Another possible threats is the use of skewed input data. The result-
ing effect is having tasks with a significant different duration in the
same stage, due to the fact that, for example in a key-based operation,
some of the keys might refer to the majority of the values. The pres-
ence of skewed data impacts the performances of Spark and the pre-
cision of xSpark. Some of Spark’s operations, such as reduce-by-key,
are optimized in terms of partial data aggregation at each partition to
reduce the performance impact of data skewness. xSpark has already

5.6 threats to validity 99

been tested with skewed input data, and it is able to obtain a deadline
error less than 2% even with skewed data.

6
U S E C A S E S

xSpark was build by assuming the point of view of the cloud provider.
The deadlines for each execution could be either set by the cloud
provider itself or by the users of cloud. Moreover the needs of the
cloud provider on the fulfillment of the deadlines could vary accord-
ing to its business model, the provided service and type of users. For
example one could be interested on minimizing the number of vio-
lations while another the overall error. In the following we present
some use cases and related experiments to show how choosing a dif-
ferent strategy, presented in Section 3.6, could help the cloud provider
to address its need.

In Table 6.1 we have reported the description of the composite
benchmarks that have been used to show how the different use cases
behave in the following sections.

6.1 case 1

The cloud provider is asked to pay a “fine” which grows with the
exceeding computation time required by the application with respect
to the previously chosen deadline. We can imagine that the provided
deadline is a strict one, which means that results that are available
after the deadline have an high chance of being worthless.

In this case, the provider wants to minimize the sum of the errors
of the applications that end after the provided deadline. The presence
of many delayed applications would reduce the profit of the provider
to the point that he could have not accepted some of the applications
and still have the same profit.

The provider can choose EDF All strategy with γ = 1, presented in
Section 3.6.1, in this way all the resources are allocated to the applica-
tion whose deadline is the earliest one. We try to reduce the number
of applications that will exceed the deadline. With this strategy, only
one of the applications will be active at a given time.

The cloud provider needs to pay attention if he decides to use the
chosen deadline as a parameter to build up the price of the execution
of the application. If a user knows that the current workload is low, he
may choose to submit his application with an higher deadline, thus
paying less, and still see his application completed as if its deadline
was much shorter.

In Figure 6.1 we can see how the different applications of com-
posite benchmark Mixed 1 behave when using strategy EDF All with
γ = 1. In particular, these diagrams show the allocations of the re-

101

102 use cases

(a) PageRank

(b) TPCH 21

(c) Aggregate-by-key

Figure 6.1: These diagrams shows the resource allocation of the different
applications running in composite benchmark "Mixed 1" with
strategy EDF All and γ = 1. In blue the cores allocated to the
executor, in purple the cores requested by the controller. Time
axis refers to the beginning of the given application, and not to
the beginning of the composite benchmark.

6.1 case 1 103

benchmark app delay dl nr

Mixed 1 PageRank 0 250 671999

TPCH 21 40 200 26717

ABK 80 250 319623

Mixed 2 ABK 0 250 319623

SVM 40 250 46898

ABK-naive 80 250 486746

Mixed 3 ABK 0 250 319623

KMeans 40 250 5142187

ABK-int 80 220 267094

Table 6.1: The composite benchmarks used to discuss the different use
cases. From left to right: composite benchmark (Benchmark), ap-
plication (App), delay in seconds (Delay), deadline in seconds
(DL), application nominal rate (NR). ABK stands for aggregate-
by-key.

sources available on a single worker node to the various applications,
in blue the CPU cores allocated to an application meanwhile in pur-
ple the ones requested by the controller in order to follow the desired
progress rate. It is important to remember that the diagrams should
be translated according to their delay that is specified in table 6.1.
In general we can see that an application is either active and using
all the resources, or inactive with zero CPU cores allocated. This is
due to the nature of the used strategy, that aims to allocate all the
resources to the currently running application that is closer to its
deadline. It is important to understand the deadline of the applica-
tions, knowing that xSpark is configured to use α = 0.95, we can
calculate the deadlines of the applications with respect to the begin-
ning of the composite benchmark as Delay+Deadline ∗ α. In this
way, PageRank has deadline 237.5 seconds, TPCH 21 230 seconds and
aggregate-by-key 317.5 seconds. Although, this values are only indica-
tive, since different benchmarking tools might have a different time
to effectively submit their application. This is not a problem, since
the delay error obtained is consistent across different executions of
the same composite benchmark. The applications ordered by priority
are TPCH 21, PageRank and aggregate-by-key. Differences in priority is
visualizable also in the proposed figures. Figure 6.1b represents the
allocation of CPU cores to TPCH 21, we see that the application is
running mostly of the time, since its priority is the highest among
the three applications running, when no cores are assigned it means
that no tasks are available to be executed by the worker, and thus no
resources are allocated. PageRank that is plotted in Figure 6.1a com-
pletes about the same time TPCH 21 does, this because even though
it has started earlier, it can only use the resources that are not used

104 use cases

bench strat γ #a #d ε εA εD εabs

Mixed 1 EDF All 1 3 0 23.79 71.37 0 71.17

EDF Pure 0 3 0 8.59 25.77 0 25.77

EDF Pure 1 3 0 17.83 53.50 0 53.50

EDF Prop 0 3 0 6.81 20.43 0 20.43

EDF Prop 1 3 0 19.41 58.23 0 58.23

Mixed 2 Speed 0 3 0 5.82 17.47 0 17.47

Speed 1 3 0 15.73 47.20 0 47.20

Mixed 3 Proportional 0 3 0 5.98 17.94 0 17.94

Proportional 1 3 0 15.23 45.69 0 45.69

Table 6.2: Results of the composite benchmark used to show how the dif-
ferent strategy behave in the proposed use cases. From left to
right: composite benchmark (Bench), strategy (Strat), gamma (γ),
number of applications that end in advance (#A) and delay (#D),
average deadline error (ε), sum of errors of applications ending
in advance (εA) and delay (εD), absolute error (εabs).

by the application with highest priority. Aggregate-by-key instead, as
shown in Figure 6.1c is able to allocate all the resources only after the
previous two applications have completed. In Table 6.2 we can see
that this strategy is the one with the highest εA among those strate-
gies tested with composite benchmark Mixed 1, since we are trying to
maximize the anticipations and reduce the delays.

6.2 case 2

Extending the previous case, the cloud provider wants to be able to
use the chosen deadline as a parameter to decide the price of the
execution of a given application.

The provider is interested in minimizing also the error of the ap-
plications that end before the provided deadline, because if an appli-
cation ends too early it means that it could have used less resources
and still end on time. This means that we want to minimize the abso-
lute error, computed as the sum of the errors of the applications, both
those that end early and those late.

The provider can choose Earliest Deadline First “Pure” strategy, pre-
sented in Section 3.6.2, in this way the application that is closer to
its deadline will obtain all the requested resources, possibly leaving
free resources for other applications. Each application can allocate re-
sources with a priority that is given by its remaining time to complete.

In this way, different applications can run in parallel, yet there is
the possibility that some of the applications are paused.

In Figure 6.2 the cores allocated to each of the applications’ execu-
tor running on a single worker node are shown, on the left when the

6.2 case 2 105

(a
)

Pa
ge

R
an

k
γ
=
0

(b
)

Pa
ge

R
an

k
γ
=
1

(c
)

TP
C

H
2

1
γ
=
0

(d
)

TP
C

H
2

1
γ
=
1

(e
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
0

(f
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
1

F
ig
u
re

6
.2
:

Th
es

e
di

ag
ra

m
s

sh
ow

s
th

e
re

so
ur

ce
al

lo
ca

ti
on

of
th

e
di

ff
er

en
t

ap
pl

ic
at

io
ns

ru
nn

in
g

in
co

m
po

si
te

be
nc

hm
ar

k
"M

ix
ed

1
"

w
it

h
st

ra
te

gy
ED

F
Pu

re
an

d
γ
∈

[0
,1
].

In
bl

ue
th

e
co

re
s

al
lo

ca
te

d
to

th
e

ex
ec

ut
or

,
in

pu
rp

le
th

e
co

re
s

re
qu

es
te

d
by

th
e

co
nt

ro
lle

r.
Ti

m
e

ax
is

re
fe

rs
to

th
e

be
gi

nn
in

g
of

th
e

gi
ve

n
ap

pl
ic

at
io

n,
an

d
no

t
to

th
e

be
gi

nn
in

g
of

th
e

co
m

po
si

te
be

nc
hm

ar
k.

106 use cases

chosen strategy is EDF Pure with γ = 0 and on the right when with
γ = 1. As in the previous use case example, the applications ordered
by priority are TPCH 21, PageRank and aggregate-by-key. Let’s begin
considering the execution with γ = 0. From Figure 6.2c it is trivial
to understand that TPCH 21 is the application with highest priority
since it acquires all the CPU cores that the controller requests. Same
thing happens when PageRank and aggregate-by-key are the only ap-
plications running, the former in Figure 6.2a before the starting of
TPCH 21 (40 seconds from launching), the latter in Figure 6.2e af-
ter the ending of other applications (100 seconds from launching). It
is important to notice that it is possible that some application has
no granted CPU cores, in particular this happens in aggregate-by-key
that is the application with lowest priority, since all other application
have already saturated the available resources. Using γ = 1 has the
effect of distributing all the resources even though controllers are not
requesting them all, it is easily visualizable at the beginning of PageR-
ank computation in Figure 6.2b and at the ending of aggregate-by-key
in Figure 6.2f. In Table 6.2 we can compare the results of using the
two different γ with EDF Pure, in particular as we can expect, since
γ = 0 is able to satisfy all the deadlines, using γ = 1 has the effect of
increasing the errors, since in general all applications will conclude
their execution earlier than in the other case.

6.3 case 3

In the previous cases, there’s the risk that an application will never
obtain resources until the elapsed time is close to the deadline. This
application will suffer of starvation for most of its execution time,
since it will acquire resources only when its priority increases. We
may want to avoid starvation

In order to work around the problem, we might want to change
our allocation strategy to Earliest Deadline First “Proportional”, which
has been presented in Section 3.6.3. Resource allocation is now pro-
portional to the distance to the deadline, in this way the closest ap-
plication will still acquire an high amount of the requested resources,
yet allowing other applications to acquire some.

The price of choosing this Earliest Deadline First strategy is an
increment of the errors in the delayed applications. A provider might
be interested in this solution if he wants to execute a large number of
applications in parallel and be able to allocate a portion of resources
to each of them, while trying to respect the deadlines.

In Figure 6.3 we show the different CPU cores allocation of a single
worker node, on the left the result when the composite benchmark is
run using strategy EDF Proportional with γ = 0 and on the right when
running with γ = 1. An application that is running with an higher
priority, has more weight and thus can allocate an higher amount

6.3 case 3 107

(a
)

Pa
ge

R
an

k
γ
=
0

(b
)

Pa
ge

R
an

k
γ
=
1

(c
)

TP
C

H
2

1
γ
=
0

(d
)

TP
C

H
2

1
γ
=
1

(e
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
0

(f
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
1

F
ig
u
re

6
.3
:

Th
es

e
di

ag
ra

m
s

sh
ow

s
th

e
re

so
ur

ce
al

lo
ca

ti
on

of
th

e
di

ff
er

en
t

ap
pl

ic
at

io
ns

ru
nn

in
g

in
co

m
po

si
te

be
nc

hm
ar

k
"M

ix
ed

1
"

w
it

h
st

ra
te

gy
ED

F
Pr

op
or

ti
on

al
an

d
γ
∈
[0
,1
].

In
bl

ue
th

e
co

re
s

al
lo

ca
te

d
to

th
e

ex
ec

ut
or

,i
n

pu
rp

le
th

e
co

re
s

re
qu

es
te

d
by

th
e

co
nt

ro
lle

r.
Ti

m
e

ax
is

re
fe

rs
to

th
e

be
gi

nn
in

g
of

th
e

gi
ve

n
ap

pl
ic

at
io

n,
an

d
no

t
to

th
e

be
gi

nn
in

g
of

th
e

co
m

po
si

te
be

nc
hm

ar
k.

108 use cases

of CPU cores among those available. In particular, applications have
same priority as in the previous use cases, which means that applica-
tions sorted by priority are TPCH 21, PageRank and aggregate-by-key.
Even though TPCH 21 has the highest weight in allocating cores, it
cannot allocate the entire cluster, this is easily noticeable from the
horizontal blue segments in Figure 6.3c about 25 seconds after the
beginning of the application, this is due to the fact that the applica-
tion controller (the purple line) is requesting an higher number of
CPU cores than the ones that the application is allowed to acquire
given the presence of the other applications. PageRank instead has no
problem in obtaining the cores its controller has requested, as shown
in Figure 6.3a, this happens because in general the amount of cores
asked is very low with respect to the ones requested by TPCH 21.
Last launched application, aggregate-by-key, achieves in acquiring all
the desired cores only when the other applications have completed,
as shown in Figure 6.3e. It is important to notice that in this case, no
application is paused as a way to support the execution of other ap-
plications. When using γ = 1 we achieve always complete utilization
of the resources, as one can expect. This is noticeable when appli-
cations are running alone, for example in Figure 6.3b for PageRank
and Figure 6.3f for aggregate-by-key, respectively the first application
to launch and the last to complete in the composite bench. In Table
6.2 we see that using γ = 1 instead of γ = 0 has the effect of increas-
ing errors, which is the same thing that happened in the previous
example.

6.4 case 4

The cloud provider offers its service to a group of users that belong
to the same organization and asks to use the deadline as a parameter
to determine the priority of the application. In this way, the deadline
is not “strict”, which means that it is a non-binding desire on the du-
ration of the execution. The provider will try to respect the deadline,
but no (immediate) penalty will be payed.

Since applications are not competing, the provider can decide to
use a Proportional strategy, presented in Section 3.6.4. In this way, re-
sources will be fairly allocated to the applications according to their
requested amount. The resulting allocation will try to follow the de-
sires of each of the applications, without privileging one in particular.

With this approach no application will suffer of starvation and a
low average deadline error will be maintained.

In Figure 6.4 we can see the core allocation on a single node when
executing the composite benchmark Mixed 3 with strategy Propor-
tional and γ ∈ [0, 1]. From the diagrams of the applications that com-
pose this benchmark, we can see that only in few cases we have re-
source contention when using γ = 0, as a result the applications are

6.4 case 4 109

(a
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
0

(b
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
1

(c
)

K
M

ea
ns
γ
=
0

(d
)

K
M

ea
ns
γ
=
1

(e
)

A
gg

re
ga

te
-b

y-
ke

y-
in

t
γ
=
0

(f
)

A
gg

re
ga

te
-b

y-
ke

y-
in

t
γ
=
1

F
ig
u
re

6
.4
:

T
he

se
di

ag
ra

m
s

sh
ow

s
th

e
re

so
ur

ce
al

lo
ca

ti
on

of
th

e
di

ff
er

en
t

ap
pl

ic
at

io
ns

ru
nn

in
g

in
co

m
po

si
te

be
nc

hm
ar

k
"M

ix
ed

3
"

w
it

h
st

ra
te

gy
Pr

op
or

ti
on

al
an

d
γ
∈
[0
,1
].

In
bl

ue
th

e
co

re
s

al
lo

ca
te

d
to

th
e

ex
ec

ut
or

,i
n

pu
rp

le
th

e
co

re
s

re
qu

es
te

d
by

th
e

co
nt

ro
lle

r.
Ti

m
e

ax
is

re
fe

rs
to

th
e

be
gi

nn
in

g
of

th
e

gi
ve

n
ap

pl
ic

at
io

n,
an

d
no

t
to

th
e

be
gi

nn
in

g
of

th
e

co
m

po
si

te
be

nc
hm

ar
k.

110 use cases

able to satisfy their deadline, as shown in Table 6.2. Using γ = 1

we almost completely remove contention states, by speeding up the
execution of applications when not all the available resources would
be consumed. As a result, all applications complete their execution
earlier, and thus increasing the average deadline error ε. In this ex-
periment, using γ = 1 has not given us any advantage, since all the
deadlines were successfully satisfied when using γ = 0. In Figure 6.4e
we can understand how proportional allocation of resources works,
indeed we see that the behavior of the blue line (assigned cores) fol-
lows the one of the purple one (controller requested cores), this is
because the requested cores by the applications build up the weight
associated to them. Comparing Figure 6.4a, 6.4c and 6.4e we can un-
derstand that in this case contention happens when all applications
are running.

6.5 case 5

Extending the previous case, what if applications are heterogeneous
and they have a different speed intended as average number of com-
puted records per second (nominal rate)?

The provider might want to choose a distribution strategy that is
not proportional to the requested resources, but proportional to the
Speed of the application, as introduced in Section 3.6.5. In this way
we try to favor the applications that are slower by granting more
resources.

Choosing this strategy will not result in decrementing the errors in
the general case, but will help those applications that are on average
slower.

In Figure 6.5 are shown the cores allocated to the various execu-
tor running on a worker node, running applications from composite
bench Mixed 2 with strategy Speed and γ ∈ [0, 1]. From Table 6.2 we
see that with γ = 0 we are able to satisfy all the deadlines with a
good average deadline error ε, switching to γ = 1 we decrease the
execution time of the applications and thus we increase εA (sum of
deadline error of the applications that end in advance) and ε. From
the graphs of the applications run using γ = 0, that are Figure 6.5a
(aggregate-by-key), 6.5c (SVM) and 6.5e (aggregate-by-key-naive), we can
see how the nominal rate of the applications (NR in Table 6.1) is used
as a weight to limit the resources assigned to the applications, this
limit is plotted as blue horizontal segments, meaning that the system
resources were saturated and thus we were not able to allocate more
resources to the application than the ones determined by the appli-
cation weight. Switching to γ = 1 has the effect of anticipating the
completion time of the last application, as shown in Figure 6.5f, this
is due to the fact that it is able to allocate the resources of the entire
cluster during its last stage, when it is running alone in the cluster.

6.5 case 5 111

(a
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
0

(b
)

A
gg

re
ga

te
-b

y-
ke

y
γ
=
1

(c
)

SV
M
γ
=
0

(d
)

SV
M
γ
=
1

(e
)

A
gg

re
ga

te
-b

y-
ke

y-
na

iv
e
γ
=
0

(f
)

A
gg

re
ga

te
-b

y-
ke

y-
na

iv
e
γ
=
1

F
ig
u
re

6
.5
:

Th
es

e
di

ag
ra

m
s

sh
ow

s
th

e
re

so
ur

ce
al

lo
ca

ti
on

of
th

e
di

ff
er

en
ta

pp
lic

at
io

ns
ru

nn
in

g
in

co
m

po
si

te
be

nc
hm

ar
k

"M
ix

ed
2

"
w

it
h

st
ra

te
gy

Sp
ee

d
an

d
γ
∈
[0
,1
].

In
bl

ue
th

e
co

re
s

al
lo

ca
te

d
to

th
e

ex
ec

ut
or

,i
n

pu
rp

le
th

e
co

re
s

re
qu

es
te

d
by

th
e

co
nt

ro
lle

r.
Ti

m
e

ax
is

re
fe

rs
to

th
e

be
gi

nn
in

g
of

th
e

gi
ve

n
ap

pl
ic

at
io

n,
an

d
no

t
to

th
e

be
gi

nn
in

g
of

th
e

co
m

po
si

te
be

nc
hm

ar
k.

7
C O N C L U S I O N

In the previous sections we have presented the work done in order to
support multiple applications in xSpark.

In order to solve the scheduling problem across applications, we
have extended the executor controller model. The solution is still
proposing a distributed controller, with a centralized heuristic based
control loop and a distributed per executor local control loop based
on control theory. In order to take into account the presence of mul-
tiple applications running together, a per worker node supervisor of
the executor controllers has been introduced, in this way we prevent
the arising of a resource contention state.

Various strategies have been proposed in order to solve resource
contention, which take into account the deadline of an application, i.e.
EDF "All", EDF "Pure" and EDF "Proportional", or the cores requested
by the executor controller, i.e. Proportional, and the speed of an ap-
plication in term of its nominal rate, i.e. Speed. All these strategies
have been presented and discussed in Section 3.6.

Another important contribution is given in terms of memory allo-
cation. Spark currently does not support the resizing of the memory
allocated to an executor, neither for the heap part of the executor
process nor for the off-heap region. Since resizing the heap of a Java
process is still unfeasible with the latest Java version, we extended
xSpark’s memory manager in order to support scaling the size of
off-heap memory region that an executor can use. In this way, when
enabling off-heap allocation, we are able to dynamically resize the
off-heap memory region of an executor when applications enter or
leave the system, thus we are able to avoid wasting memory. This has
been introduced and discussed in Section 3.4.

Using the Clairvoyance EDF analysis, we can understand if a com-
posite benchmark is considered feasible in the sense that an Earliest
Deadline First task scheduling is able to satisfy all the applications
deadline. When this happens, xSpark is able to complete all the ap-
plications in the composite benchmark within the specified deadline,
in particular the average error is always around 5% when we are not
using EDF "All" strategy. This is a good result considering that we
are running xSpark using the parameter α = 0.95, which shrinks the
deadlines of 5% in order to be more conservative.

When a composite benchmark is not feasible instead, we are able
to reduce the overall delay error by keeping the system utilization
always at maximum setting the parameter γ = 1, in particular we can
use EDF "All" strategy to reduce the number of violations.

113

114 conclusion

When using strategy EDF "All", xSpark is able to complete compos-
ite benchmarks in a time that is comparable with the one obtained
from running the applications in vanilla Spark, either serialized or
parallelized using static partitioning of resources. Moreover, if pro-
vided deadlines are feasible, xSpark is able at the same time of sat-
isfying them, which might not always be true when using vanilla
Spark.

In conclusion, we observed that using dynamic off-heap memory
allocation has both advantages and disadvantages. When enabled, we
are able to achieve a complete utilization of the cluster memory re-
sources, at the price of slightly higher execution times.

Future works

Future works will further investigate resource allocation strategies.
Taking into account a penalty cost function allows the controller su-
pervisor to be able to distinguish between strict deadlines, i.e., infinite
penalty upon violation, and soft deadlines, i.e., penalty that is propor-
tional to the violation. This way, the supervisor is able to determine
which application execution should be favored, in terms of revenue.

B I B L I O G R A P H Y

[1] Apache Hadoop. url: http://hadoop.apache.org/.

[2] Apache Spark. url: http://spark.apache.org/.

[3] Apache Tez. url: tez.apache.org.

[4] Chien Hung Chen, Jenn Wei Lin, and Sy Yen Kuo. “Deadline-
Constrained MapReduce Scheduling Based on Graph Modelling.”
In: Cloud Computing (CLOUD), 2014 IEEE 7th International Con-
ference on. IEEE. 2014, pp. 416–423.

[5] World Wide Web Consortium et al. Internet Live Stats. url: http:
//www.internetlivestats.com/.

[6] Transaction Processing Performance Council. “TPC-H bench-
mark specification.” In: Published at http://www. tcp. org/hspec.
html 21 (2008), pp. 592–603.

[7] Michael L. Dertouzos and Aloysius K. Mok. “Multiprocessor
online scheduling of hard-real-time tasks.” In: IEEE Transactions
on software engineering 15.12 (1989), pp. 1497–1506.

[8] Docker Documentation. url: https://docs.docker.com/engine/
docker-overview/#the-underlying-technology.

[9] Nathan Wayne Fisher. The multiprocessor real-time scheduling of
general task systems. The University of North Carolina at Chapel
Hill, 2007.

[10] Ilya Ganelin, Kai Sasaki, Ema Orhian, and Brennon York. Spark:
Big Data Cluster Computing in Production. John Wiley & Sons,
2016.

[11] Giovanni Paolo Gibilisco, Min Li, Li Zhang, and Danilo Ardagna.
“Stage aware performance modeling of DAG based in memory
analytic platforms.” In: Cloud Computing (CLOUD), 2016 IEEE
9th International Conference on. IEEE. 2016, pp. 188–195.

[12] A. Grishchenko. Spark Memory Management. url: https://0x0fff.
com/spark-memory-management/.

[13] Hadoop 1.x Documentation. url: https://hadoop.apache.org/
docs/r1.2.1/.

[14] HDFS Architecture Guide. url: https://hadoop.apache.org/
docs/r1.2.1/hdfs_design.html.

[15] Chen He, Ying Lu, and David Swanson. “Real-time schedul-
ing in mapreduce clusters.” In: High Performance Computing and
Communications & 2013 IEEE International Conference on Embed-
ded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th In-
ternational Conference on. IEEE. 2013, pp. 1536–1544.

115

http://hadoop.apache.org/
http://spark.apache.org/
tez.apache.org
http://www.internetlivestats.com/
http://www.internetlivestats.com/
https://docs.docker.com/engine/docker-overview/#the-underlying-technology
https://docs.docker.com/engine/docker-overview/#the-underlying-technology
https://0x0fff.com/spark-memory-management/
https://0x0fff.com/spark-memory-management/
https://hadoop.apache.org/docs/r1.2.1/
https://hadoop.apache.org/docs/r1.2.1/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

116 Bibliography

[16] Kwang Soo Hong and JY-T Leung. “On-line scheduling of real-
time tasks.” In: Real-Time Systems Symposium, 1988., Proceedings.
IEEE. 1988, pp. 244–250.

[17] Java 8. url: http : / / www . oracle . com / technetwork / java /

javase/overview/java8-2100321.html.

[18] Java Platform, Standard Edition Tools Reference. url: https : / /

docs.oracle.com/javase/8/docs/technotes/tools/unix/

java.html.

[19] Kamal Kc and Kemafor Anyanwu. “Scheduling hadoop jobs
to meet deadlines.” In: Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on. IEEE.
2010, pp. 388–392.

[20] N. Kozłowski. Spark Memory Management Part 1 – Push It to
the Limits. url: https://www.pgs-soft.com/spark-memory-
management-part-1-push-it-to-the-limits/.

[21] Palden Lama and Xiaobo Zhou. “Aroma: Automated resource
allocation and configuration of mapreduce environment in the
cloud.” In: Proceedings of the 9th international conference on Auto-
nomic computing. ACM. 2012, pp. 63–72.

[22] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Sala-
pura. “SparkBench: A Comprehensive Benchmarking Suite for
in Memory Data Analytic Platform Spark.” In: Proceedings of the
12th ACM International Conference on Computing Frontiers. CF ’15.
Ischia, Italy: ACM, 2015, 53:1–53:8. isbn: 978-1-4503-3358-0. url:
http://doi.acm.org/10.1145/2742854.2747283.

[23] Micorosft Azure Virtual Machines. url: https://azure.microsoft.
com/en-us/services/virtual-machines/.

[24] Microsoft Azure Blob Storage. url: https://azure.microsoft.
com/en-us/services/storage/blobs/.

[25] Arezou Mohammadi and Selim G Akl. “Scheduling algorithms
for real-time systems.” In: School of Computing Queens University,
Tech. Rep (2005).

[26] Andrew Or. Understanding your Apache Spark Application Through
Visualization. url: https://databricks.com/blog/2015/06/22/
understanding-your-spark-application-through-visualization.

html.

[27] Linh TX Phan, Zhuoyao Zhang, Qi Zheng, Boon Thau Loo,
and Insup Lee. “An empirical analysis of scheduling techniques
for real-time cloud-based data processing.” In: Service-Oriented
Computing and Applications (SOCA), 2011 IEEE International Con-
ference on. IEEE. 2011, pp. 1–8.

http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://www.pgs-soft.com/spark-memory-management-part-1-push-it-to-the-limits/
https://www.pgs-soft.com/spark-memory-management-part-1-push-it-to-the-limits/
http://doi.acm.org/10.1145/2742854.2747283
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html
https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html
https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html

Bibliography 117

[28] Jorda Polo, David Carrera, Yolanda Becerra, Malgorzata Stein-
der, and Ian Whalley. “Performance-driven task co-scheduling
for mapreduce environments.” In: Network Operations and Man-
agement Symposium (NOMS), 2010 IEEE. IEEE. 2010, pp. 373–
380.

[29] Poornima Purohit, DR Apoorva, PV Lathashree, et al. “Big Data
in Cloud Computing.” In: International Journal of Advance Re-
search, Ideas and Innovations in Technology 3.3 (2017), pp. 1312–
1318.

[30] Jorge L Reyes-Ortiz, Luca Oneto, and Davide Anguita. “Big
data analytics in the cloud: Spark on hadoop vs mpi/openmp
on beowulf.” In: Procedia Computer Science 53 (2015), pp. 121–
130.

[31] Running Spark on Mesos. url: https : / / spark . apache . org /

docs/latest/running-on-mesos.html.

[32] Running Spark on YARN. url: https://spark.apache.org/
docs/latest/running-on-yarn.html.

[33] Spark configuration. url: https://spark.apache.org/docs/2.0.
2/configuration.html.

[34] John A Stankovic, Marco Spuri, Krithi Ramamritham, and Gior-
gio C Buttazzo. Deadline scheduling for real-time systems: EDF and
related algorithms. Vol. 460. Springer Science & Business Media,
2012.

[35] Fei Teng, Frédéric Magoulès, Lei Yu, and Tianrui Li. “A novel
real-time scheduling algorithm and performance analysis of a
MapReduce-based cloud.” In: The Journal of Supercomputing 69.2
(2014), pp. 739–765.

[36] Ubuntu 14.04.5 LTS (Trusty Tahr). url: http://releases.ubuntu.
com/14.04/.

[37] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason
Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino,
Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Balde-
schwieler. “Apache Hadoop YARN: Yet Another Resource Ne-
gotiator.” In: Proceedings of the 4th Annual Symposium on Cloud
Computing. SOCC ’13. Santa Clara, California: ACM, 2013, 5:1–
5:16. isbn: 978-1-4503-2428-1. url: http://doi.acm.org/10.
1145/2523616.2523633.

[38] Abhishek Verma, Ludmila Cherkasova, Vijay S Kumar, and Roy
H Campbell. “Deadline-based workload management for mapre-
duce environments: Pieces of the performance puzzle.” In: Net-
work Operations and Management Symposium (NOMS), 2012 IEEE.
IEEE. 2012, pp. 900–905.

https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/2.0.2/configuration.html
https://spark.apache.org/docs/2.0.2/configuration.html
http://releases.ubuntu.com/14.04/
http://releases.ubuntu.com/14.04/
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633

118 Bibliography

[39] Virtual machine sizes for Azure Cloud services. url: https : / /

docs.microsoft.com/en-us/azure/cloud-services/cloud-

services-sizes-specs\#dv2-series.

[40] Joel Wolf, Deepak Rajan, Kirsten Hildrum, Rohit Khandekar,
Vibhore Kumar, Sujay Parekh, Kun-Lung Wu, et al. “Flex: A slot
allocation scheduling optimizer for mapreduce workloads.” In:
Proceedings of the ACM/IFIP/USENIX 11th International Confer-
ence on Middleware. Springer-Verlag. 2010, pp. 1–20.

[41] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled
Elmeleegy, Scott Shenker, and Ion Stoica. “Delay scheduling:
a simple technique for achieving locality and fairness in clus-
ter scheduling.” In: Proceedings of the 5th European conference on
Computer systems. ACM. 2010, pp. 265–278.

[42] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen,
Shivaram Venkataraman, Michael J Franklin, et al. “Apache
Spark: A unified engine for big data processing.” In: Commu-
nications of the ACM 59.11 (2016), pp. 56–65.

https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs\#dv2-series
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs\#dv2-series
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs\#dv2-series

	Colophon
	Dedication
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	Abstract
	Abstract
	Sommario

	Introduction
	Introduction

	1 State of the art
	1.1 MapReduce
	1.1.1 Apache Hadoop

	1.2 Apache Hadoop YARN
	1.3 Apache Mesos
	1.4 Apache Spark
	1.4.1 Spark on Yarn
	1.4.2 Spark on Mesos

	1.5 Virtualization and Containerization
	1.5.1 Docker

	2 Preliminaries
	2.1 xSpark
	2.1.1 Architecture
	2.1.2 Heuristic
	2.1.3 Controller

	2.2 Related Work

	3 Solution
	3.1 Changes in the architecture
	3.2 Heuristic
	3.3 Launching Applications
	3.4 Scalable Off-Heap Memory
	3.5 Controller
	3.6 Resolving Resource Contention
	3.6.1 Earliest Deadline First "All"
	3.6.2 Earliest Deadline First "Pure"
	3.6.3 Earliest Deadline First "Proportional"
	3.6.4 Proportional
	3.6.5 Speed

	4 Implementation
	4.1 Heuristic
	4.2 Launching Applications
	4.3 Scalable Off-Heap Memory
	4.4 Controller
	4.4.1 ControllerSupervisorEDFAll
	4.4.2 ControllerSupervisorEDFPure
	4.4.3 ControllerSupervisorEDFProportional
	4.4.4 ControllerSupervisorProportional
	4.4.5 ControllerSupervisorSpeed

	5 Evaluation
	5.1 Benchmarks
	5.1.1 Spark-Bench
	5.1.2 Spark Performance Test
	5.1.3 TPC Benchmark H

	5.2 Metrics
	5.3 Different kind of applications
	5.3.1 Spark-Bench composite benchmark
	5.3.2 Spark-Perf composite benchmark
	5.3.3 TPC-H composite benchmark
	5.3.4 Which configuration to choose?

	5.4 Deadline as a priority between applications
	5.4.1 Comparison 1: Spark-Bench
	5.4.2 Comparison 2: Spark-Perf
	5.4.3 Comparison extension

	5.5 Off-heap and heap performances
	5.5.1 Heap and off-heap impact
	5.5.2 Multiple application

	5.6 Threats to validity
	5.6.1 Internal Threats
	5.6.2 External Threats

	6 Use Cases
	6.1 Case 1
	6.2 Case 2
	6.3 Case 3
	6.4 Case 4
	6.5 Case 5

	7 Conclusion
	Bibliography

