
Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Corso di Laurea Magistrale in Computer Science and Engineering

Information-Leakage Analysis based on

Hardware Performance Counters

Master Thesis of:

Matteo Maria Fusi

Matr. 849803

Advisor:

Prof. Cristina Silvano

Co-Advisor:

Prof. Alessandro Barenghi

Academic Year 2016–2017

Matteo Maria Fusi ii

Ringraziamenti

Con questo lavoro si conclude un capitolo della mia vita e se ne aprirà uno

nuovo. Mi sembra quindi giusto spendere qualche ringraziamento per chi mi

ha permesso di concludere il mio percorso di studi.

Il primo e più speciale di tutti va a Carmen che in questi dieci lunghi

mesi di lavoro di tesi ha sempre creduto in me anche quando io stesso non

ero sicuro dei miei mezzi.

Grazie anche alla mia famiglia che mi ha sempre insegnato che l’impegno

ed i sacrifici vengono ripagati; perciò grazie Mamma, Papà ed Emanuele.

L’ultimo ringraziamento va a tutte le persone che ho incontrato nell’ambiente

scolastico: dai bambini piagnucolosi delle scuole elementari agli studenti sec-

chioni dell’università, dai docenti buoni a quelli cattivi, dagli amici nuovi a

quelli vecchi, da chi mi ha aiutato a chi mi ha messo in difficoltà. Vi ringrazio

perchè ognuno di voi, poco o tanto, mi ha reso chi sono ora e mi ha perciò

permesso di raggiungere la fine di questo faticoso percorso.

Grazie di cuore,

Matteo

iii Matteo Maria Fusi

Matteo Maria Fusi iv

Abstract

Hardware performance monitoring allows to easily control hardware events

at process or system level. This system makes possible to track a great vari-

ety of events or measures related to the system: from the number of executed

instructions to the energy consumption of the system. If the access to such

a system is not properly controlled, it may reveal information about the exe-

cution of sensitive processes such as cryptographic routines. This document

proposes a methodology to verify if a target hardware performance counter

leaks information about the instructions executed by the processor. This

analysis is executed building a set of simples test-cases that can influence

such counters and performing simple statistical analysis. Moreover, this doc-

ument implements this methodology on an Intel processor and it verifies if

the Intel RAPL interface leaks information. Intel RAPL reports the energy

consumption of the package, the cores and DRAM at system level. On Linux

systems, these counters can be potential side-channel and this document veri-

fies this fact by performing a case study on RSA-16384. The result is that the

low resolution of these counters limits the effects of a potential side-channel

attack.

v Matteo Maria Fusi

Matteo Maria Fusi vi

Estratto

Il monitoring delle prestazioni attraverso i contatori hardware permette di

monitorare in modo semplice eventi hardware sia a livello di processo che di

sistema. Questo sistema rende possibile il controllo di una grande varietà di

eventi o misure del sistema: dal numero di istruzioni eseguite al consumo en-

ergetico. Se l’accesso a questa infrastruttura non è controllato in maniera ap-

propriata, esso potrebbe rivelare informazioni riguardante l’esecuzione di pro-

cessi come le implementazioni software di cifrari. Questo documento propone

una metodologia per verificare se un contatore hardware delle prestazioni sof-

fre di perdita di informazione riguardante le instruzioni eseguite dal proces-

sore construendo un semplice insieme di casi test che possono influenzare tale

contatore e utilizzando l’analisi statistica. Inoltre, questo documento imple-

menta la metodologia citata su un processore Intel e verifica se l’interfaccia

Intel RAPL soffre di perdita di informazioni. L’interfaccia Intel RAPL ri-

porta i consumi energetici del package, dei cores e della DRAM a livello di

sistema. Su sistemi Linux questi contatori possono essere un potenziale side-

channel e questo documento verifica questo fatto eseguendo un caso di studio

su RSA-16384. Il risultato è che la bassa risoluzione di questi contatori limita

l’effetto di un potenziale attacco side-channel.

vii Matteo Maria Fusi

Matteo Maria Fusi viii

CONTENTS

Contents

1 Introduction 1

1.1 Problem and Motivations . 1

1.1.1 Objectives . 1

1.2 Thesis Structure . 2

2 Background 3

2.1 Target Architecture: Intel x86 3

2.1.1 Memory System . 5

2.1.2 MSRs and Hardware Performance Counters 8

2.1.3 The Intel RAPL Interface 9

2.2 Operating System and Page Sharing 10

2.3 Side Channel Attacks . 11

3 State of the Art 15

3.1 Side Channel Attacks . 15

3.1.1 Cache Side Channel Attacks 16

3.2 Flush+Reload Attack . 17

3.3 Intel RAPL . 20

4 Proposed Methodology 23

4.1 Information-Leakage Verification

Methodology . 23

4.1.1 Selection of Test-Cases 24

4.1.2 Preliminary Analysis 26

4.1.3 Quantitative Analysis 26

ix Matteo Maria Fusi

CONTENTS

4.2 Methodology for Information-Leakage

Analysis of an Application . 27

5 Implementation 31

5.1 Tools . 31

5.1.1 Powercap and PAPI 31

5.1.2 Perf . 33

5.2 Energy Tracer . 33

6 Experimental Results 37

6.1 Experimental Setup . 37

6.2 Characterization of RAPL Data Dependence 39

6.2.1 Selection of the Test-Cases 39

6.2.2 Preliminary Analysis 41

6.2.3 Quantitative Analysis 43

6.3 Case Study: Information Recovery from RSA-16384 45

6.3.1 RSA Background . 46

6.3.1.1 Modular Exponentiation with Sliding-window

Square and Multiply 47

6.3.1.2 libgcrypt 1.7.6 50

6.3.2 Case-Study Results . 51

6.3.2.1 Code Analysis 51

6.3.2.2 Comparative Analysis 55

7 Conclusions and Future Works 61

7.1 Conclusions . 61

7.2 Future Works . 62

Matteo Maria Fusi x

LIST OF FIGURES

List of Figures

2.1.1 Memory organization of an Intel Core from Nehalem up to

now. Note that different cores share the main memory and

the L3 cache. 8

2.2.1 Two processes can share a page: this is an optimization per-

formed by the OS to save memory. 11

2.3.1 An ideal exchange of messages with perfect devices between

Alice and Bob. Eve cannot know what the devices of Alice

and Bob are doing. Source: [51]. 11

2.3.2 Classic cryptographic message exchange with real devices. Eve

could observe side-channels, which are indicated by dashed

lines, to know what the devices are doing. Source: [51]. 12

2.3.3 Virtual memory is mapped into pages replicating a part of

data in the cache system. 13

3.1.1 A power trace where an RSA encryption is running using sim-

ple binary modular exponentiation [41]. 16

3.2.1 The working cycle of Flush+Reload Attack in case of an access. 21

4.1.1 Steps of the proposed methodology. 24

4.2.1 A toy example of perturbation of a target program P 29

5.1.1 Structure of the Linux Powercap interface. 32

5.2.1 How the energy tracer interacts with PAPI and consequently

with the kernel and the hardware. 34

5.2.2 Activity diagram of the energy tracer. 36

xi Matteo Maria Fusi

LIST OF FIGURES

6.3.1 Left-to-Right sliding Windows exponentiation example with

base b and exponent e = 669. 50

6.3.2 A small example of how a number is stored in an MPI struc-

ture. In this example every limbs has a size of 2 bits. 51

6.3.3 Boxplot of the counting analysis performed with base and

evictm. There are 25 outlayers in base case and 20 in evictm. . 54

6.3.4 Example of a forged key with increasing square sequences con-

sidering W = 5. 55

6.3.5 Traces produced with k1 and Ncs = 200 related to DRAM

power zone. 56

6.3.6 A raw trace of k1 of DRAM power zone. It is hard to under-

stand the behaviour of the target program. 57

6.3.7 Results of the keys of the set K2. Green points indicates dif-

ferent means between populations related to the same sample

with α = 0.005. A peak represents a multiply. 58

Matteo Maria Fusi xii

LIST OF TABLES

List of Tables

6.1 The test-cases chosen during the selection step in Section 6.2.1. 40

6.2 Result of the t-tests of the preliminary analysis with α1 =

0.001 between populations of control-flow and Cache unit with

the same operation. 41

6.3 Result of the t-tests of the preliminary analysis with α1 =

0.001 between populations of ALU unit with the same opera-

tion. 42

6.4 Test-cases of the quantitative analysis. 43

6.5 Energy consumption results of the quantitative analyis on Intel

RAPL counters considering instruction cache hit and miss. . . 44

6.6 Execution time of modular multiplication depending on the

type of trace produced by the counting analysis. 54

xiii Matteo Maria Fusi

LIST OF TABLES

Matteo Maria Fusi xiv

LIST OF ALGORITHMS AND LISTINGS

List of Algorithms and Listings

1 Flush+Reload core function written in C. 19

2 Left-to-Right binary exponentiation. 48

3 Left-to-Right sliding window modular exponentiation with slid-

ing window W . 49

xv Matteo Maria Fusi

LIST OF ALGORITHMS AND LISTINGS

List of Acronyms

ASLR Address Space Layout Randomization

B Bytes

clk Clock cycles

CRT Chinese Remainder Theorem

FIVR Fully-Integrated Voltage Regulator

FR Flush+Reload

LSB Least Significant Bit

MPI Multiple Precision Integer

MSR Model Specific Register

MSB Most Significant Bit

OS Operating System

PC Program Counter

RAPL Running Average Power Limit

ROB ReOrder Buffer

SCA Side Channel Attack

Matteo Maria Fusi xvi

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This chapter offers to the reader an introduction to the problem and the goals

that this document wants to solve. Also the structure of this work is present.

Section 1.1 introduces the reader to the possible information-leak problems

that hardware performance counters may introduce in modern processors and

Section 1.2 displays the organization of this work.

1.1 Problem and Motivations

Hardware performance monitoring allows to easily monitor hardware events

at process or system level system by simply configuring a set of specific

registers. It is possible to monitor a great variety of events or statistics:

from the number of executed instructions to the energy consumption of the

system. If hardware performance monitoring is not limited, it may reveal

information about the execution of sensitive processes such as cryptographic

routines.

1.1.1 Objectives

This study wants to analyze the possibility of an information-leakage through

hardware performance counters. The information-leakage can be verified by

building a test framework based on a simple test-case methodology. More-

over, this document wants to discover if it is possible to use the found infor-

1 Matteo Maria Fusi

CHAPTER 1. INTRODUCTION

mation from the previously mentioned methodology to verify if it is possible

to leak information by a cryptographic application. In a more structured

manner, this document has the following goals:

1. Propose a methodology that verifies if a specific hardware counter leaks

information about a set of specified operations.

2. Propose an implementation of the methodology focusing on the analysis

of Intel RAPL counters on an Intel Broadwell-U processor.

3. Use the information provided by the methodology to conduct a case

study on the cited architecture.

The RAPL interface is composed by a set of hardware counters that Intel

offers to monitor energy consumption. Point 1 is present in Chapter 4, while

the remaining points are described in Chapter 6. The case study is focused

on the analysis of a sign routine of RSA-16384 implemented with libgcrypt

1.7.6 and it wants to perform a Side-Channel analysis which recalls both from

Flush+Reload and Simple Power Analysis.

1.2 Thesis Structure

Chapter 2 introduces the reader to the context of the research with a review

of the target architecture (Intel x86) and Side-Channel attacks. Chapter 3

illustrates the current state of the art of cache Side-Channel attacks focusing

on the Flush+Reload technique and the last studies related to Intel RAPL

counters. Chapter 4 displays the proposed methodology to verify if a target

hardware counter leaks information about the execution of specific instruc-

tions. Chapter 5 describes the tools used, how they’re implemented and the

problems related to the measurements in the target system. Chapter 6 shows

the experimental results of the methodology implemented with the tools pre-

viously described on an Intel Broadwell-U processor and it proposes a case-

study that wants to use the results obtained from the proposed methodology

to extrapolate information from an application. Chapter 7 quickly reviews

the proposed work and expresses final conclusions.

Matteo Maria Fusi 2

CHAPTER 2. BACKGROUND

Chapter 2

Background

In this chapter, the reader will be introduced to the background of this docu-

ment. The most relevant details of the target Intel x86 architecture, the page

sharing optimization implemented in modern OSs (2.2) and a quick introduc-

tion to SCAs (2.3) are displayed. Section 2.1 describes the x86 architecture,

and the related subsections shows more in detail the memory system (2.1.1),

hardware performance counters (2.1.2) and the Intel RAPL interface (2.1.3).

The most important concept of this chapter is to understand how pages and

caches are shared in modern systems, since is the requirement to understand

how a Flush+Reload attack works.

2.1 Target Architecture: Intel x86

The target architecture is Intel x86. It is not feasible to describe the entire

architecture in one thesis, so only the relevant aspects are described. The

main goal of the processor is to perform operations on memory by running

programs. A memory is a physical device capable of storing information.

Memory is addressed, which means that it is possible to map its content

uniquely using a number called address. The memory used by the proces-

sor resides in a DRAM component, which is off-package. The package is

interconnected to the main memory with a bus system. The processor can

execute a set of architecure-dependent operations called instructions. The

3 Matteo Maria Fusi

CHAPTER 2. BACKGROUND

set of the available instructions in a specific architecture is called Instruction

Set Architecture (ISA).

The processor offers one or more cores to the programs. The cores are, in

fact, responsible of effectively executing instructions issued by the programs.

A complex implementation of the cores allows to executes more than one

instruction at the time out-of-order and it applies the result in-order by

using a ReOrder Buffer (ROB). It is possible to serialize the execution with

some specific instructions [28]. The execution of the operation in the cores

relies on the fact that it is possible to store and change copies of data present

in main memory in registers. Registers are very-small, but high-performant

memory embedded in the cores.

The set of available instructions also depends on the mode the architecture

is running. The modes are the following ones [28]:

Protected mode This mode is the native state of the processor. Among

the capabilities of protected mode is the ability to directly execute “real-

address mode” 8086 software in a protected, multi-tasking environment.

Real-address mode This mode implements the programming environment

of the Intel 8086 processor with extensions (such as the ability to switch

to protected or system management mode). The processor is placed in

real-address mode following power-up or a reset.

System management mode (SMM) This mode provides an operating

system or executive with a transparent mechanism for implementing

platform-specific functions such as power management and system se-

curity.

The focus of this document is on the protected mode, which is the state

associated to any normal running program. The protected mode implements

a system of rings that limits the execution of the instruction to counter

malicious behaviours. The rings are the following ones:

0 Kernel Operations that can alter the hardware configuration such as page

handling, or MSR operations.

Matteo Maria Fusi 4

CHAPTER 2. BACKGROUND

1,2 Device Driver Not used.

3 User Perform non-privileged operations.

The kernel ring is the one that has access to the most-privileged instruc-

tions. User ring cannot use the set of instructions associated to lower levels,

but there are mechanism to run specific routines with higher-privileges. An

example of this case is the SYSCALL instruction [28]. Rings 1 and 2 are

not used and the code runs in kernel mode or in user mode. Main memory

is managed directly by the processor in kernel mode and its atomic unit is

called page.

At hardware level it is possible to see a process as all the pages related

to it and the current state of the execution. Pages contains both instruc-

tions related to a program and memory regions used to store results of the

execution. The cited state is stored and updated in a special register called

Program Counter (PC). The PC contains the address to a portion of memory

that contains the instructions that will be fetched from the main memory.

Two processes may share a single core if the Hyper-threading technology is

enabled.

2.1.1 Memory System

Since the cores operate at a speed greater than the one associated to memory,

a system of small but high speed memories called caches were introduced

between the main memory and the cores. This system contains copies of

data that resides in the main memory. Such a system allows to save fetching

time from main memory in case a specific information is still saved in the

cache system. The cache system is organized in a hierarchy: caches near the

core are numbered with low numbers (high levels) w.r.t caches near the main

memory (lower levels). See Figure 2.1.1 for an example. By convention,

the cache that communicates directly with the core is the cache at Level

1. By descending toward the main memory, the number associated to the

cache level increases. High levels of caches (i.e. near to the core) has lower

dimension and higher speed w.r.t caches at low levels. Depending on the

5 Matteo Maria Fusi

CHAPTER 2. BACKGROUND

level, the cache may be shared among cores or they can belong exclusively

to one core. Cache line is the atomic unit of caches and it is dimensioned big

enough to increase spatial locality. A cache line holds one aligned, power-

of-two-sized block of adjacent bytes loaded from memory. If any byte in the

line needs to be replaced, the entire line is substituted by a new one. Since

the dimension of a cache is much lower than main memory, cache lines that

originate from different regions of main memory are mapped on a single cache

line. The dimension of the cache line may change among the levels of cache.

A cache works in the following way: when the core requests a specific

data, it fetches the cache line associated from a lower level of cache (or

directly from the memory in case it is the last level) and it stores it. The

lines resides in the inquiring cache until it is replaced by another cache line

which is addressed in the same way of the previous one. A cache line may

also cleared by invalidation (also called eviction). If the core requests an

information contained in the cache system, then a cache hit takes place. If

the information is not present, then a cache miss takes place. In case of a

cache miss, the operation that fetch the information and put it in the cache

system is called cache refill [23]. A smart hardware may anticipate the fetch

of a cache line with a prefetching system.

The policy that decides how lines are placed in cache is a key point in

designing performant caches. The main used policies are the following ones

[23]:

N-Way Set Associative An information is mapped onto a set in which is

placed. A set corresponds to a group of N lines in the caches.

Direct-Mapped It is the case of N-way set associativity with one line per

set.

Fully Associative The cache contains just one set. This mean that a cache

line can be placed in every region of the cache.

The lines are addressed within a set by using a tag, which is simply an address

derived by the original one.

Matteo Maria Fusi 6

CHAPTER 2. BACKGROUND

In case of a cache hierarchy with more than one level of cache it is also

important to define the policy of inclusion. If the block contained in a higher

level of cache are surely contained in the lower levels, then the lower level of

cache is inclusive of the higher level. If the lower level cache contains blocks

that are not present in the higher level cache, then the lower level cache is

said to be exclusive of the higher level cache [44]. If a line must be updated

(due to modifications of the core execution) there are two possible way to

update the lower levels of cache [23]:

Write-Back Update the lower levels of cache when the cache lines must be

replaced or evicted.

Write-Through Update lower levels of cache immediatly after the cache

lines is modified.

Modern Intel architectures split the L1 cache in Instruction and Data cache.

Obviously, Instruction cache contains only cache lines associated to instruc-

tions, while the Data cache contains everything else. This feature allows

to increase the instruction fetch bandwidth, so increasing the number of in-

structions executed per second. Before Nehalem, Intel processors had only

two levels of cache, but the release of this architecture an additional third

level (L3) was introduced. The last level of cache is usually shared between

cores, while the others are related to a single core (but they may be shared

between processes that runs on the same core) [15]. Intel uses any sort of

cache-prefetching to speed up the computation. Instructions that will be

executed after the one pointed by the PC may be prefetched directly by the

hardware [28].

The address space that a process uses is virtual. Process memory is an

abstraction used to simplify programming. The problem is that the hard-

ware uses physical addresses, so there’s a hardware component responsible

of mapping virtual and physical addresses, it is called Memory Management

Unit (MMU). The mechanism implemented by the MMU is called address

translation and it is implemented in hardware and it is totally transparent

for the process[28]. The MMU mechanism is put between the L1 and L2: L1

caches uses virtual addressing, while lower levels use physical ones.

7 Matteo Maria Fusi

CHAPTER 2. BACKGROUND

Figure 2.1.1: Memory organization of an Intel Core from Nehalem up to now.
Note that different cores share the main memory and the L3 cache.

In some cases, programmers can partially manipulate cache system to

increase performance of processes: an example is the CLFLUSH instruction.

This instruction forces the eviction of the cache line from all the levels of the

cache hierarchy of the cache lines associated to the virtual address passed

as argument. The usage of this instruction is intented to free space in cache

easily from process-side, so it is possible to use this instruction in user mode

without any restriction [28].

2.1.2 MSRs and Hardware Performance Counters

The complexity of the architectures greatly increased over the years. This

fact encouraged processors’ producers to introduce a set of specific register

to control and monitor the system. These counters are called Machine Spe-

cific Registers (MSRs) and they’re present in every modern processor. Intel

introduced the feature of MSRs with Pentium processors in the ’90s [28]. A

MSR which has a certain function may have different addresses in different

architectures, so handling MSR is highly architecture-dependant and requires

a detailed knowledge of the specific architecture and the related documen-

Matteo Maria Fusi 8

CHAPTER 2. BACKGROUND

tation. In Intel processors, reading and writing MSRs must be performed

using respectively RDMSR and WRMSR instructions in kernel mode.

A particular class of MSRs is the one that implements hardware perfor-

mance monitoring. The registers associated to this class are called Perfor-

mance Monitor Counters (PMCs). This system allows to monitor a defined

set of micro-architectural details such as cycles, cache hit or misses, µops ex-

ecuted. The advantage of PMCs is that it is not necessary to build complex

software instrumentation systems for performace monitoring and values can

be collected in almost zero-time w.r.t software solutions. Every monitorable

event has a specific code (that can varies between different architectures) that

must be used to program specific MSRs of the class IA32_PERFEVTSELx,

where x is a number that indicates the programmed PMC. The number of

PMCs changes among different architectures.

2.1.3 The Intel RAPL Interface

Since also energy consumption became important to design software, in

2011 Intel introduced the Running Average Power Limit (RAPL) interface

in SandyBridge. RAPL is composed by a set of MSRs that monitors and

regulates energy consumptions of the system. The RAPL system allows

monitoring and managing of the following zones:

Package Control and monitor the whole package.

DRAM Control and monitor the power consumption of the memory. This

power zone was available only for cores designed for server applica-

tions, but from Haswell it was made available also for “everyday-use”

processors [14].

Cores Control the power consumption of the cores.

Off-core Control the power consumption of an off-core element. The mon-

itored component is architecture dependant.

The counters are updated with a period of 976µs and they have a sensi-

tivity that depends on the architecture and on the power zone. To know

9 Matteo Maria Fusi

CHAPTER 2. BACKGROUND

the sensitivity the MSR MSR_RAPL_POWER_UNIT must be controlled

[26, 14, 28]. Before Haswell, RAPL measurements were produced with a

modeling approach trained during the boot phase of the system, but now

they are produced by directly probing the die [20] thanks to the probes asso-

ciated to the Fully-Integrated Voltage Regulator (FIVR) system; but it is not

clear how really the RAPL counters are produced in all the Intel architec-

ture because of a lack of details in Intel Documentation [14]. RAPL counters

are not officially considered part of the Intel Performance Monitoring unit

because they’re mainly related to energy capping, but they, anyway, offer a

hardware value of energy consumption.

2.2 Operating System and Page Sharing

The Operating System (OS) is the software responsible of interfacing pro-

grams with the hardware. While normal programs use user code (Ring 3),

the OS performs most of its operations in kernel mode (Ring 0). The OS is

also responsible of mantainig the environment of every process safe to counter

malicious behaviour of users of the system. The most simple measure is iso-

lation. This principle should guarantee that a process cannot modify the

behaviour of another one.

The OS has control over pages and it performs optimizations for the sake

of improving the system performance. One of them is called page sharing

and it is a method to save memory: if the OS finds that two processes can use

the same page, then it just use one page instead of two identical copies. The

shared page is obviously secured against the alteration: it is set read only

and/or copy-on-write is allowed. Shared libraries are, in fact, based on the

principle of page sharing: when the OSs loads two programs that uses the

same shared library, it maps the same page. This features is present in OSs

from more than 30 years [17, 39]. Combining the information of this section

with Section 2.1 it is possible to observe the interaction between software and

hardware: the OS maps virtual memory of the processes to pages. A part

of the data contained in pages is replicated in the cache system to speed up

memory access of the CPU. Figure 2.3.3 is a representation of the described

Matteo Maria Fusi 10

CHAPTER 2. BACKGROUND

interaction. The green page is shared between two processes running on

different cores. They share the cache line in L3, but they have their private

copies in L1 and L2.

System

Main Memory

Process 0Process 0

Figure 2.2.1: Two processes can share a page: this is an optimization per-
formed by the OS to save memory.

2.3 Side Channel Attacks

Side Channel Attack (SCA) is a tecnique which extracts sensitive information

by observing side channels. Considering a perfect cryptographic device, if you

give it a clear text and a key it returns instantly the cipher text.

Figure 2.3.1: An ideal exchange of messages with perfect devices between
Alice and Bob. Eve cannot know what the devices of Alice and Bob are
doing. Source: [51].

11 Matteo Maria Fusi

CHAPTER 2. BACKGROUND

Figure 2.3.2: Classic cryptographic message exchange with real devices. Eve
could observe side-channels, which are indicated by dashed lines, to know
what the devices are doing. Source: [51].

In this (ideal) world side-channels does not exist, but in the real world

systems are not perfect, so they consume power, emit electromagnetic-waves

and require time to produce the output and compute intermediate results

during computation. If one of these “real world” effects can be observed,

then it is possible to observe a side-channel. Side-channels can be usefully

exploited by an attacker if there’s a sort of correlation between the output

of the side-channel w.r.t what a device is doing. If this is the case, then it

is possible to affirm that the channel leaks information. From the point of

the attacker, SCA requires to know very well the structure of the monitored

device, so SCAs targets specific hardware and/or software implementations.

Matteo Maria Fusi 12

CHAPTER 2. BACKGROUND

System

Package

Core 1

Main Memory

Core 0

Process 1Process 0

Virt. Address Transl.Virt. Address Transl.

Figure 2.3.3: Virtual memory is mapped into pages replicating a part of data
in the cache system.

13 Matteo Maria Fusi

CHAPTER 2. BACKGROUND

Matteo Maria Fusi 14

CHAPTER 3. STATE OF THE ART

Chapter 3

State of the Art

This Chapter describes the recent studies on cache SCAs, especially focusing

of Flush+Reload attacks. Also studies on RAPL counters are enunciated.

Section 3.1 offers a quick overview of Simple Power Analysis and the most

common cache SCAs. Section 3.2 is a description of how it is composed

a Flush+Reload attack and all the recent works about this technique are

collected. Section 3.3 displays the recent studies about the Intel RAPL in-

terface.

3.1 Side Channel Attacks

Between all the SCAs the most simple one is Simple Power Analysis (SPA),

which was also one of the first side-channel attacks ideated by Kocher in 1999

alongside Differential Power Analysis (DPA) [32]. SPA and DPA were the

first SCAs that had practical impact. SPA uses the trace of the consumed

power of the target device as side-channel. This attack does not require a

great number of traces and it is suitable in case the attacked algorithm leaks

data-dependant information on the side-channel. An example power trace

suitable for power analysis in shown in Figure 3.1.1. The proposed figure is

a power trace of an encription performed with RSA using a binary modular

exponentiation. As will be described in the case-study section (6.3), the

encryption of RSA is key-dependant and it allows to easily observe 0 and 1

15 Matteo Maria Fusi

CHAPTER 3. STATE OF THE ART

Figure 3.1.1: A power trace where an RSA encryption is running using simple
binary modular exponentiation [41].

bits (like in this case) if the implementation is not carefully designed in a

secure way. In this case it is simple to apply SPA knowing how much time

is required to perform a modular multiplication and knowing that a muliply

consumes more than a square.

Cache attacks are an important class of SCAs. The origins of these attacks

comes from work of Page [42] based on Kelsey et al. [31]. The idea is to use

caches as side channel by observing the access pattern of a victim process.

3.1.1 Cache Side Channel Attacks

As stated in Section 3.1, Page put the foundations of cache SCA with [42].

Tsunoo et al. produced a practical implementation in [45]. All these attacks

have in common the fact that they all exploit cache-sharing and the possi-

bility to control it in someway at user level. This attacks are considered of

low/medium [1] severity because they’re considered hard to implement, but

it was demonstrated several times that it is possible to build both cross-core

or cross-VM attacks ([50][49] [25]), and these attacks are valid also on ARM

architectures [35]. These are the main cache channel attacks at the time of

writing this document:

Evict+Time The attacker causes the victim process to run (this ensures

that memory blocks are loaded in cache) , then it evicts target lines and

causes a new execution of the target process. A variation in execution

Matteo Maria Fusi 16

CHAPTER 3. STATE OF THE ART

time may leak information about the target process. This attack was

ideated by Osvik et al. [40] while Bernstein elaborated a similar attack

[9].

Prime+Probe This attacks refills target cache sets (which are also used

by the target process) with its own lines and waits. Once the victim

has executed, the attacker tries to access the lines loaded previuosly.

If the lines of the malicious process were evicted, then it means that

the victim process has performed a particular (monitored) operation

[40][36].

Flush+Reload It is the inverse of Prime+Probe, but it is possible to target

a specific cache line insead of an entire set. Section 3.2 gives a more

focused overview on Flush+Reload state-of-the-Art attacks.

Flush+Flush It is an attack similar to Flush+Reload and it wants to be

stealthier than its brother and it has an higher frequency, but it is more

noisy. The idea is to flush a target cache line and measure the time

this operation takes to finish. If the execution time of the eviction is

bigger than a certain threshold than the target line was refilled by the

victim process, otherwise not [18].

S$A This attack try to overcome the main limitation of Flush+Reload,

which is the requirement of page deduplication. This attack was ideated

by Irazoqui et al. in [5] and it detects accesses to the LLC by using

huge size pages to allocate data of the malicious process.

3.2 Flush+Reload Attack

Flush+Reload (FR) is an intrusive cache SCA introduced by Yarom and

Falkner in 2014 [49] based on the work of Gullash [19]. It is an inter-process

and inter-virtual machine SCA which allows to monitor when a victim process

has run one or more target instructions (i.e. to know what it has done). This

attack is based on the fact that pages and the last level of cache are shared

between programs that use them, as stated in Sections 2.1.1 and 2.2. It

17 Matteo Maria Fusi

CHAPTER 3. STATE OF THE ART

allows to monitor a routine implemented by a shared library interfering with

the cache system. The requirements of this attack are that the attacker

can run a malicious process on the same machine of the target one and this

process can load the target shared library. What makes possible this attack

is that the principle of isolation is not respected at hardware level. This idea

can be extended in a virtual-machine environment when the host OS uses

a technique called content-based page sharing. This optimization makes to

Host OS to aggressively scan pages and merge identical ones and it is present

both on Linux [6] and Windows [24].

A malicious program can monitor what another program is doing evicting

the cache line associated to a target instruction of the shared library (using

the CLFLUSH instruction on x86, or any other equivalent method) after it

has loaded the shared library in its adress space. This means that the at-

tacker program invalidates the line of the caches that contains the monitored

instruction. Now the attacker process waits for a fixed amount of time and

it tries to access the target instruction. If the time required to execute the

access is small (i.e. under a certain threshold) means that the victim pro-

cess has accessed the instruction (it previously triggered the refill system of

caches), otherwise the victim process didn’t have executed the instruction.

The operation is then repeated.

The core of the Flush+Reload method is Listing 1. Line 13 invalidates

adrs and then the algorithm wait some time before calling again this function

on adrs. Line 10 loads the content pointed by adrs and lines 7 and 12 collects

the time before and after the load operation. The inline assembly block

saves the difference between the clocks collected in lines 12 and 7 in time. If

time<threshold then the victim process has accessed the instruction. Figure

3.2.1 represents the flow of a FR attack in case the target program accessed

the target instruction. The shared page is the one colored with green and all

the cache lines associated are colored with the same color. State (a) is the

initial condition: the cache line associated to the target instruction is present

in all the caches. The malicious process forces the eviction of the target cache

line from all the cache system triggering the transition to state (b). After

that, the target process must use the target instruction, so it induce a refill

Matteo Maria Fusi 18

CHAPTER 3. STATE OF THE ART

Listing 1 Flush+Reload core function written in C.

1 int probe(char *adrs) {

2 volatile unsigned long time;

3 asm __volatile__ (

4 "mfence\n"

5 "lfence\n"

6 "rdtsc\n"

7 "lfence\n"

8 "movl %%eax , %%esi \n"

9 "movl (%1), %%eax \n"

10 "lfence\n"

11 "rdtsc\n"

12 "subl %%esi , %%eax\n"

13 "clflush 0(%1)\n"

14 : "=a" (time) : "c" (adrs) : "%esi", "%edx");

15 return time < threshold ;

16 }

of the shared L3 and its L2 and L1 caches. This action leads to the transition

to state (c). Now the spy process probes the target instruction, inducing the

refill of its private L2 and L1 caches. Now the condition is returned back to

state (a).

Yarom and Falkner managed to succesfully execute this attack on RSA

implementation of GnuPG 1.4.14 (using libgcrypt 1.5.3) in [49] in 2014. In

the same year Yarom and Benger managed to recover OpenSSL ECDSA

nonces with a FR attack [48]. Genkin et al. broke some applications of

Curve25519 based on libgcrypt [16]. Bernstein et al. in [10] set up a FR

attack with target RSA 1024 and 2048 with CRT optimization of libgcrypt

1.7.6 using a combination of Flush+Reload, Performance-Degradation At-

tack ([3]) and a modified version of Prune-and-Branch algorithm of Heninger

and Shacham [22]. Note that performance degradation attack uses the same

principles of Flush+Reload on target addresses but without probing phase.

In this way the target process is slowed down due to cache misses. This sys-

tem may increase noise but it also allows to perform a Flush+Reload attack

(or other attacks that relies on high-frequency samples) in a more relaxed

environment. Research also tried to detect or mitigate FR attacks. The

19 Matteo Maria Fusi

CHAPTER 3. STATE OF THE ART

simplest countermeasures are the following:

1. Limit the usage of the RDTSC instruction like by setting the CR4

register [49].

2. Disable of page sharing. This seems to be the most effective counter-

measure [5].

Also a system that describes detection of FR attacks with PMCs is described

in [12].

3.3 Intel RAPL

Since Performance Monitoring Counters were introduced on Intel architec-

tures a lot of research followed the trend to estimate power consumption

with them starting from [13]. The Intel RAPL interface was introduced in

2011 with SandyBrige architecure, and most of the related works are fo-

cused on validating such counters, but a lot of the details of this interface

remain hidden because the Intel offical documention lacks in the description.

Desrochers et al. validated the energy values produced by RAPL in [14],

especially DRAM power zone on Haswell architecture while previous works

focused on SandyBridge architecture and core power zone [43]. The authors

of [14] revealed that DRAM measurements on Haswell architecture are quite

accurate (but they may be under-estimated in case of low-operation con-

ditions), while other power zones have an uncertainity of about 20%, but

the behaviour of the system is well described. Hahnel validated the update

frequency of RAPL that has an imprecision of 50000clk [21] and built an

instrumentation system to measure short-code paths.

Matteo Maria Fusi 20

CHAPTER 3. STATE OF THE ART

System

Package

System

Package

System

Package

Core 1Core 0Core 1Core 0

Core 1Core 0

Victim ProcessSpy ProcessVictim ProcessSpy Process

Victim ProcessSpy Process

(c)(b)

(a)

PROBE
RELOAD

FLUSH

Figure 3.2.1: The working cycle of Flush+Reload Attack in case of an access.

21 Matteo Maria Fusi

CHAPTER 3. STATE OF THE ART

Matteo Maria Fusi 22

CHAPTER 4. PROPOSED METHODOLOGY

Chapter 4

Proposed Methodology

This chapter describes the design of the proposed methodology that aims

to detect if a target hardware performance counter leaks information about

the execution of specific operations. Section 4.1 shows how to build a set of

test-cases and the statistical analysis required to perform this verification.

Section 4.2 shows how the information discovered with the previously cited

methodology could be used to leak information from an application

4.1 Information-Leakage Verification

Methodology

This methodology requires to select a target hardware counter hwc. It is

assumed that the access to hwc is not restricted. It must be known the up-

date period Thwc and the sensitivity Shwc of the target counter. The idea is

to design a set of test-cases E, where every test e ∈ E tries to “stimulate”

the target counter. Every test-case should test a specific operation with a

specific flavour. For example, a test composed by a sequence of multiplica-

tions may be labelled with MUL as operation. If all the operations of the

test always multiply by a factor of one, this test may have the flavour label

set to ONE ; but if the factor is always zero, then the flavour label may be

ZER. After the collection of the results of the experiment, different Welch’s

t-tests are performed. This statistical test verifies the null hypothesis that

23 Matteo Maria Fusi

CHAPTER 4. PROPOSED METHODOLOGY

Preparatory

Figure 4.1.1: Steps of the proposed methodology.

two populations with different variances have equal means. The analysis is

performed in three steps:

1. Selection of the test-cases.

2. Perform statistical analysis to detect if test-cases with same operation

but different flavour has different mean considering niter identical.

3. Considering the operations that yeld significant results in the previous

point, try to compute a quantitative estimation of the operation with

specified flavour.

4.1.1 Selection of Test-Cases

Every test-case e ∈ E should produce a result re. This result is computed

by probing the value of hwc before and after the execution of the test case,

respectively bef e and afte. So, the the result is computed with a simply

subtraction, which means re = afte − bef e. operation and flavour are not

the only labels associated to every test case. it is better to associated to

every test a tuple composed by (unit,operation, flavour,niter). In detail:

unit This is the hardware component that the test should stimulate during

its execution. For example, a test-case which performs add should be

Matteo Maria Fusi 24

CHAPTER 4. PROPOSED METHODOLOGY

labelled with ALU. A test-case that test jumps may be labelled with

control-flow or a test-case which tests cache effects could be labelled

with cache.

operation It adds an additional detail to the unit label. It tells which

particular operation is tested. If a test-case uses only add operations

it can be labeled with ADD, a control-flow labelled operation which

tests backward branches can be labelled with JMB (JuMp Backward)

and a cache labelled test-cases which implements RC4 algorithm can

use RC4 as label.

flavour It adds an additional information to what specific aspect of opera-

tion is tested. If a test-case with operation as ADD cause an overflow,

then its flavour may be OVF (OVerFlow). A JMB operation may test

a case where all the branches are set to false, so it has the flavour label

set to FAL. A RC4 algorithm in which are forced cache misses with

CLFLUSH instruction may have it flavour set to CLF.

niter It tells how many times the operation with specific flavour is repeated

in a single test-case.

The order of the elements in the tuple is not casual, but it indicates the order

on how explore the space of all the possible test-cases and selecting the correct

ones. At first, considering the target counter hwc, the hardware units that

influences hwc should be selected. After choosing a set of “influent” units,

then it must be possible to identify a set of operations that are executed on

them. Every considered operation may have different versions, or different

flavours. Only combinations of (unit,operation, flavour) that influences hwc

should be considered. The last element to investigate is niter. This value is

used to resolve the temporal and sensitivity constraints introduced by hwc.

With this setup, every atomic operation of the test-case with operation

label op and flavour flv will run for a time top,flv, so the execution time of

the entire test-case is teop,flv = niter · top,flv. The same reasoning is performed

with the impact of the test-case on the target hardware counter value: the

atomic operation of the test-case has an impact of iop,flv, but there could be

25 Matteo Maria Fusi

CHAPTER 4. PROPOSED METHODOLOGY

some noise k ∼ WN(µ, λ2) in the system, so the global impact is reop,flv =

niter·iop,flv+k .The test-cases must be designed in the way that their execution

time is greater or equal then the update period of the target counter (teop,flv ≥

Thwc) and the impact of the test-case must be at least equal to its sensitivity

(reop,flv ≥ Shwc).

4.1.2 Preliminary Analysis

This broad-search test aims to detect a possible leak of a target hardware

counter in a qualitative way. The leakage is verified by performing Welch’s

t-tests. If it is possible to observe a difference between the impact of two

operations with same operation label, but different flavours, then it is be

possible to observe when one of them takes place by simply monitoring the

target counter hwc, assuming that it is known that a specific operation is ex-

ecuting. Considering the set of test cases E designed in the previous section,

they must be deisgned with the constraint that test-cases with the same op-

eration label must have the same niter. Every test case is executed N1times.

If t-tests associated to an operation yeld significant results with α1, then it is

reasonable to indagate it in a more detailed manner with the successive test.

4.1.3 Quantitative Analysis

This test tries to estimate quantitatively the impact of the operations exe-

cuted in the test-cases on the target counter. Every test-case is run N2 times

and it is identified by a the tuple as previously specified. In this test niter

is not binded to the operation type, but it is a value that belongs to a set

that allows to compute the estimation precise enough without occurring in

excessive execution time of the test-case. Every test-case should produce the

result Ieop,flv =
re
op,flv

niter
. If niter is big enough w.r.t the order of magnitute of k,

then:

Ieop,flv =
reop,flv
niter

=
niter · iop,flv + k

niter

= iop,flv +
k

niter

∼= iop,flv (4.1.1)

Matteo Maria Fusi 26

CHAPTER 4. PROPOSED METHODOLOGY

t-tests with confidence interval α2 are used to know if there is a significant

difference between test-cases. The tasks to perform in this tests are the

following ones:

• By Fixing operation and niter, perform t-tests between populations with

different flavour. This tests should yeld significant results (this fact

is equal to different means of the two populations). This is also an

additional check of the first analysis.

• Fixing operation and flavour, observe if the tests with different niter

produce similar results. If the tests have been designed correctly, there

should be a convergence to the real value, thanks to the Equation

(4.2.1).

The result of this verification is an estimate of the impact ĩop,flv of a singular

operation op with specifed flavour flv on hwc.

4.2 Methodology for Information-Leakage

Analysis of an Application

After the execution of the proposed methodology discussed in the previous

section, a set of operations that can be distinguished by knowing the as-

sociated flavour is available. Also an estimation of the impact ĩop,flv with

operation op with flavour flv is known. It is possible to use the knowledge of

these values to extrapolate information about target program P with input

k by looking at the target counter hwc. A trace tr is an ordered sequence

of sampled values of hwc at a fixed frequency ftr. The assumptions are the

following ones:

• All the implementation details of P are known.

• The execution path (the sequence of executed instructions) of P de-

pends uniquely on the input k or it may be fixed. This means that if

k is known, then the execution path is known, otherwise not. If the

27 Matteo Maria Fusi

CHAPTER 4. PROPOSED METHODOLOGY

path is fixed, since we know all the implementation details, then it is

known.

• It is not possible to induce any fault or crash of P with perturbation.

The program always terminates and it always executes the same path

of execution giving the same input, but is possible to perturbate the

behaviour of P in some way forcing it to change its execution. The idea

is to replace the execution of the operation of flavour i with flavour j

by running a malicious process.

The test is composed by the following steps:

1. Code Analysis. Since the implementation details are known, an anal-

ysis of the code of the target program must be performed to know as

good as possible the target instructions suitable for achieve the purpose.

2. Comparative Analysis. Trace the target counter while running a

target program in two case: with and without the disturbance. The

result of this step are two traces trbase and trdist. They are respectively

the trace without and with the disturbance. By coparing the two traces

it is possible to know where the replacement took place.

The step 2 may be repeated a variable number of times and the inputs may

be change. The number and modes of repetition are case-study dependant

and they cannot be decided in this context.

The key point is to choose the correct operation to be perturbated. By

choosing the right operation and comparing the two traces it is possible to

observe when a data-dependent operation is performed. A toy example is

shown in Figure 4.2.1. The blue trace is the result of monitoring the target

counter without perturbation and the green trace is the one with perturba-

tion. The red points signal the target instruction that is perturbated. The

result is an increment of the impact of the target instruction on the target

counter. The case-study in Chapter 6 will focus this analysis on a crypto-

graphic routine by forcing a cache miss in a FR fashion. The idea is to induce

a cache miss and observe it by looking at Intel RAPL counters.

Matteo Maria Fusi 28

CHAPTER 4. PROPOSED METHODOLOGY

Figure 4.2.1: A toy example of perturbation of a target program P .

29 Matteo Maria Fusi

CHAPTER 4. PROPOSED METHODOLOGY

Matteo Maria Fusi 30

CHAPTER 5. IMPLEMENTATION

Chapter 5

Implementation

This chapter displays the tools used to implement the proposed methodol-

ogy. All the tools used are related to the collection of the values related to

hardware performance events. The employment of these tools will be shown

in the Chapter 6.

5.1 Tools

Since hardware performance monitoring requires kernel code to program

MSR, the software must use system calls to access performace counters and

limit the possibilty of attacker of reading sensitive information. To make the

access to performance monitoring simple, a lot of software solutions have been

developed. PAPI and Perf are the most common solutions for performance

monitoring.

5.1.1 Powercap and PAPI

The Powercap framework is a consistent interface for reading and writing

RAPL counters from user-space[7] in Linux kernels. It can be enabled by

loading the module intel-rapl. Without any particular privilege it is pos-

sible to read the consumed energy in µJ of different zones of the pack-

age. Root privileges can also set a cap to the power consumption of the

core. it is possible to access the Powercap interface in the system folder

31 Matteo Maria Fusi

CHAPTER 5. IMPLEMENTATION

/sys/devices /virtual /powercap /intel -rapl

- intel -rapl :0/

- name = package -0

- energy_uj

- intel -rapl :0:0/

- name = core

- energy_uj

- intel -rapl :0:1/

- name = uncore

- energy_uj

- intel -rapl :0:2/

- name = dram

- energy_uj

Figure 5.1.1: Structure of the Linux Powercap interface.

/sys/class/powercap/intel-rapl. In this folder package-*x* is mapped with

the directory intel-rapl:x. In every directory named intel-rapl:x there are

the interfaces under the form of files and the subzones are mapped as intel-

rapl:x:y. Every directory following the regex intel-rapl[:n]+ has a file named

energy_uj which contains the energy consumption in µJ associated to that

zone. The file name gives the name to the power zone. Names identify the

power zones listed in Section 2.1.2. As we’ll be shown in the case study,

the fact that the reading on RAPL counters through this interface can be a

side-channel.

PAPI [2] is a C library that allows to instrument code for performance

monitoring using PMCs. It also tries to leverage the differences between

different architectures by providing a uniform interface. The usage of PAPI

allows the programmer to write code which executes performance monitoring.

PAPI is also easily extendible programming user-defined components. In

fact, there’s a component in the default distribution that allows to monitor

RAPL counters through the Powercap interface. This components simply

memory-maps the files of Powercap and allows to access them just like any

performance counter in PAPI.

Matteo Maria Fusi 32

CHAPTER 5. IMPLEMENTATION

5.1.2 Perf

Perf is a performance-monitoring suite available on Unix systems and it is

integrated in the linux-kernel. Just like PAPI, it allows to monitor PMC s.

It can be used both for counting or tracing of PMCs and it also offers an

easy command-line interface. Perf will be used to profile the sign rou-

tine to know some basic information like the execution time of a modu-

lar multiplication operation. Perf usage is controlled by a system option

called perf_event_paranoid at path /proc/sys/kernel/perf_event_paranoid

that can be changed by the system administrator. The possible levels of

perf_event_paranoid are the following ones:

-1 Everything is permitted

0 Disallow raw trace point access for non-root

1 Disallow cpu events for non-root

2 Disallow kernel profiling for non-root

3 Disallow anything

The lowest is the value, more power has a non-privileged user. A high level

perf_event_paranoid implies all the restriction of lower levels.

5.2 Energy Tracer

This is a tracer of the consumed energy of the whole system built with PAPI

from scratch. How the designed tracer interacts with PAPI and consequently

with the hardware is shown in Figure 5.2.1. The energy tracer calls PAPI

with the function PAPI_read and PAPI simply read the value offered by

Powercap. Powercap updates its values using kernel code to read MSRs

associated to Intel RAPL interface with RDMSR.

The sample period of the energy tracer is 1

3
ms. This sample period give

enough time to the PAPI library to read RAPL counters of all the power

zones between one sample and the successive and the signal can be fully

33 Matteo Maria Fusi

CHAPTER 5. IMPLEMENTATION

E���g� �racer

PA��

Linux Kernel

Hardware

result

result

RDMSR

papi_read

read from
powercap

Figure 5.2.1: How the energy tracer interacts with PAPI and consequently
with the kernel and the hardware.

reconstructed. The energy readings are presented to the user in a CSV

format. This output can be used for offline analysis. The tracer has also the

capability of evicting a set of specified instructions associated to a shared

library from the memory system using CLFLUSH exploiting the vulnerability

of page sharing on which FR attacks rely on. The cache eviction task is

performed on a different thread spawned with the pthread library.

The offset of an instruction in a shared library can be easily fetched

inspecting the target shared object with GDB or objdump1. The portion of

code responsible of evicting instructions from the caches is inspired by the

Mastik 2[47] implementation of Flush+Reload. The shared library is loaded

in the process space of the tracer via mmap function. Virtual addresses in

the tracer address space are fetched with the same function. The fetch of

the virtual address must be performed because inspecting the assembly code

1objdump is a Linux command line tool used to explore object files. This utility will be

used to disassemble the shared library obtained from the compilation of libgcrypt. libgcrypt

is compiled by default with debug symbols, so it is very easy to explore disassembled code.
2Mastik is a toolkit that provides C implementations of cache side-channel attacks.

Matteo Maria Fusi 34

CHAPTER 5. IMPLEMENTATION

of a shared library just shows offsets from the begin of the area of memory

that will contain the shared library. When a shared library is loaded during

the start of a process it is put in an area of memory that changes at every

run due to ASLR. The Global Offset Table and the Procedure Linkage Table

allows to acces the functions offered by the shared library[30].

The tracer can run in two modes:

no_evict Just monitor energy consumption

evict Monitor energy consumption and evict addresses. In this case an

additional thread is instantiated which is responsible of the eviction as

described above

This tracer will be used as malicious process in the case study to monitor

RAPL counters. Figure 5.2.2 describes the execution flow of the energy

tracer. If the eviction mode is active (evict_mode set true), then a thread

responsible of performing all the evictions is spawned. Since the time between

one sample and another is low.

The precision if this tool is mainly lmited by the resolution of the target

hardware counter. Since the experimental results will read values from the

Intel RAPL counters (the update period of 976µs and the vertical resolution

of 61µJ , as will be shown in Section 6.1), the results obtained by such traces

will suffer of low resolution of the raw values. This fact is a great limitation

if an attacker wants to perform a SCA based on these counters. For example,

a FR attack has a resolution of thousand of cycles, which is greatly below

the resolution of RAPL.

Moreover, the energy tracer is a software that runs on an processor on

which a lot of other processes is running. This chaotic environment introduces

unpredictabilities in the execution of the energy tracer (and also on the sign

routine), so the sample frequency has variations between one sample and

another. Also the noise in the system is not negligible.

For all these reasons, the case study won’t focus on the analysis of one

single trace, but it will collect and average a reasonable amount of them and

perform statistical operations when needed.

35 Matteo Maria Fusi

CHAPTER 5. IMPLEMENTATION

n��

q	
�����

e���� ����esses

������� !"

#$%&'()*+,-./01234

567

s89:;<= > ? @ BCDFGHIJKLM

wNOPQ RST UV W

XYZ[\]^_`ab

cdfhijklmo

prtuvxyz{|}~����

�����������������

� � ���������

� ¡ ¢£¤¥¦§¨©ª

Figure 5.2.2: Activity diagram of the energy tracer.

Matteo Maria Fusi 36

CHAPTER 6. EXPERIMENTAL RESULTS

Chapter 6

Experimental Results

This section presents the results of the information-leakage analysis per-

formed on the target architecture considering as target counter all the Intel

RAPL counters, except the off-core one. Finally, a case study is proposed.

Before presenting the results, a description of the setup of target hardware

and software is offered to the reader. Section 6.1, in fact, describes in de-

tail the target hardware and software, while Section 6.2 reports the results

of the implementation of the proposed methodology discussed in Chapter 4.

Section 6.3 reports the results of the case-study on RSA-16384 by using the

methodolgy presented in Section 4.2.

6.1 Experimental Setup

The tests were run on an ASUS F-302L, which is a everyday-use laptop.

The installed processor is the Broadwell-U processor running at the fixed

frequency of 800MHz. Broadwell is the 5th generation of Intel Core and

it is an adaption of the Haswell architecture with a 14ηm processor instead

of a 22ηm one. This architecure follows the tendency of Intel starting from

Nehalem of using 3 levels of cache using the following logic: every core has its

own L1 and L2 caches and the L3 is shared by all the cores on the package.

Note that L3 cache is inclusive, which means that all the data contained in

L1 or L2 is surely contained in L3 [27], but the reverse is not necessary true.

37 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

The L1 cache is divided in two different caches, one for instructions and one

for data to increase the bandwidth. Technical details of the caches are the

following ones [28]:

L1 (both Data and Instruction) 32 KiB 8-way set associative, 64 B line

size with write-back policy

L2 256 KiB 8-way set associative, 64 B line size with write-back policy

L3 3 MiB, 64 B line size with 12-way set associative with write-back policy

it is easy to observe that the line size is preserved among all the cache levels.

In this architecture it is possible to monitor at most 4 performance

counters simultaneusly per process (8 without hyper-threading technology).

RAPL controls and monitors the energy consumption of the package, the

aggreated energy consumption of all the cores, the DRAM and an off-core

component. In this architecture the off-core component is the GPU, which

is not relevant for this study. These counters are updated at the frequency

of 976µs. Sensibility of RAPL counters of every power zones is 61µJ .The

hypothesis is that this architecture has (FIVR) because Haswell has [20], so

it is reasonable to assume that a voltage probing approach is used instead of

a modeling one. Samples also demonstrate that the granularity of the energy

counters is 61µJ for all the power zones.

The DRAM memory is a SK Hynix HMT451S6BFR8A of 4GB.

The target operating system is Linux 4.12.8-2 and it implements the page-

sharing optimization. The energy tracer, libgcrypt and PAPI were compiled

with GCC 7.2.0. The version of PAPI is 5.5.1.0. The version of libgcrypt is

1.7.6. perf ran with version 4.13.g569dbb.

RAPL counters can be read from user-space without privileges. This can

be done if Linux has the Powercap module enabled. In this study the level of

perf_event_paranoid is set to 2, which means that it allows the monitoring

of performance counters in user mode and only related to a specified process.

In conclusion, this chapter describes the test and the case study relying on

the fact that they were run on the described architecture with the specified

software.

Matteo Maria Fusi 38

CHAPTER 6. EXPERIMENTAL RESULTS

6.2 Characterization of RAPL Data Dependence

This test verifies the information-leakage of the Intel RAPL counters by

performing a set of tests as described in the Chapter 4. The tests were

written in assembly (using NASM[38] or embedded C-assembly), while all

the code responsible collecting energy values of RAPL counter via PAPI is

written in C. The target RAPL counters are package, cores and DRAM.

6.2.1 Selection of the Test-Cases

The selected units are the ALU, the control flow and the Cache. All the

chosen units surely influences the package and core power consumption be-

cause all the instructions are executed in cores, and the cores are contained

in the package. The DRAM is tightly coupled to the core execution and it

may exposes information about control-flow and Cache, since non in-cache

instructions must be fetched from the main memory. Arithmethic and logic

operations are perfomed on registers, so there are no expectations in find-

ing a significant results in DRAM power zone for this type of operations.

control-flow operations test the impact of jumps on power consumption.

ALU operations tests both basic arithmetic (such as add, multiply and

division) and logic (and, or, shift) operations, control-flow tests backward

and forward jumps in the condition they’re always true or false. Cache

operations uses a RC4 algorithm keeping elements in cache or out-of-cache

(via cache eviction). The designed tests are displayed in Table 6.1.

39 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.1: The test-cases chosen during the selection step in Section 6.2.1.

unit operation flavour niter Description

Cache RC4 INC 2.56 · 106 RC4 in cache
Cache RC4 CLF 2.56 · 106 RC4 flushing cache
Flow JMP TRU 108 Forward branch true
Flow JMP FAL 108 Forward branch false
Flow JMB TRU 108 Backward branch true
Flow JMB FAL 108 Backward branch false
ALU ADD SMP 130.21 · 106 Simple add
ALU ADD CAR 130.21 · 106 Test carry flag
ALU ADD OVF 130.21 · 106 Test overflow flag
ALU NOP SMP 130.21 · 106 Test nops
ALU AND ZER 130.21 · 106 n&0
ALU AND AON 130.21 · 106 n& (232 − 1)
ALU AND SEL 130.21 · 106 n&n
ALU MUL SMP 130.21 · 106 Generic multiplication
ALU MUL TWO 130.21 · 106 n ∗ 2
ALU MUL ZER 130.21 · 106 n ∗ 2
ALU MUL DZE 130.21 · 106 0 ∗ 0
ALU MUL ISM 130.21 · 106 Signed multiplication
ALU DIV SMP 130.21 · 106 Generic division
ALU DIV TWO 130.21 · 106 n/2
ALU DIV ZER 130.21 · 106 0/n
ALU DIV ONE 130.21 · 106 n/1
ALU OR ZER 130.21 · 106 n | 0
ALU OR AON 130.21 · 106 n | (232 − 1)
ALU OR SEL 130.21 · 106 n |n
ALU SHR AOO 130.21 · 106 R-shift 232 − 1 >> 1
ALU SHR AOT 130.21 · 106 232 − 1 >> 2
ALU SHR AOS 130.21 · 106 232 − 1 >> 16
ALU SHR AOM 130.21 · 106 232 − 1 >> 32

Matteo Maria Fusi 40

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.2: Result of the t-tests of the preliminary analysis with α1 = 0.001
between populations of control-flow and Cache unit with the same operation.

Operation Flavour 1 Flavour 2
p-val p-val p-val

pkg cores DRAM

JMB FAL TRU 5.03 · 10−14 2.20 · 10−16 4.44 · 10−16

JMP FAL TRU 6.55 · 10−15 1.18 · 10−15 4.51 · 10−14

RC4 CLF INC 3.35 · 10−16 0.25 2.82 · 10−15

6.2.2 Preliminary Analysis

This preliminary test aimed to detect if RAPL counters leak some basic infor-

mation using the test-cases described in the previous section. Test functions

were written in assembly, compiled with NASM and linked together with

a main written in C. The main function is responsible of initializing PAPI

(whom is used as interface with RAPL counters through Powercap) and

collecting energy measurements. Every test-case was performed N1 = 500

times. Simple Welch’s t-tests on two populations with different variance and

α1 = 0.001 were performed among group of test-cases with the same opera-

tion and considering the same power zone.

The results are shown in Tables 6.2 and 6.3. There are significant results

in case of the control flow: it is possible distinguish if a branch is taken or not

taken knowing if it was a backward or a forward branch. t-tests related to

JMP and JMB operations demonstrate this hypothesis. It is also possible to

distinguish case where there are high cache accesses w.r.t cases with absent

cache accesses. RC4 tests were, in fact, focused on demonstrating this fact.

Obviously, having data in cache consumes less than fetching it from main

memory. It is important to observe that no one of the operations of the ALU

unit yelded significant results.

41 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.3: Result of the t-tests of the preliminary analysis with α1 = 0.001
between populations of ALU unit with the same operation.

Operation Flavour 1 Flavour 2
p-val p-val p-val

pkg cores DRAM

ADD CAR OVF 0.64 0.79 0.38

ADD CAR SMP 0.63 0.98 0.26

ADD OVF SMP 0.99 0.80 0.79

AND AON SEL 0.69 0.65 0.62

AND AON ZER 0.92 0.91 0.80

AND SEL ZER 0.62 0.57 0.47

DIV ONE SMP 0.91 0.94 0.32

DIV ONE TWO 0.81 0.81 0.45

DIV ONE ZER 0.69 0.69 0.92

DIV SMP TWO 0.88 0.86 0.80

DIV SMP ZER 0.61 0.64 0.37

DIV TWO ZER 0.51 0.52 0.51

MUL DZE ISM 0.95 0.95 0.39

MUL DZE ONE 0.93 0.99 0.50

MUL DZE SMP 0.73 0.84 0.44

MUL DZE TWO 0.74 0.75 0.13

MUL DZE ZER 0.90 0.90 0.22

MUL ISM ONE 0.98 0.95 0.85

MUL ISM SMP 0.68 0.89 0.95

MUL ISM TWO 0.69 0.80 0.50

MUL ISM ZER 0.95 0.95 0.71

MUL ONE SMP 0.66 0.85 0.90

MUL ONE TWO 0.67 0.76 0.40

MUL ONE ZER 0.96 0.91 0.58

MUL SMP TWO 0.99 0.91 0.48

MUL SMP ZER 0.64 0.93 0.67

MUL TWO ZER 0.64 0.84 0.76

ORL AON ZER 0.87 0.89 0.78

SHR AOM AOO 0.75 0.50 0.56

SHR AOM AOS 0.18 0.10 0.04

SHR AOM AOT 0.40 0.26 0.20

SHR AOO AOS 0.29 0.31 0.17

SHR AOO AOT 0.59 0.63 0.49

SHR AOS AOT 0.60 0.59 0.48

Matteo Maria Fusi 42

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.4: Test-cases of the quantitative analysis.

unit operation flavour nsize Description

ICache LOA HIT ∀n ∈ Piter Load an in-cache instruction

ICache LOA MISS ∀n ∈ Piter Load a non in-cache instruction

6.2.3 Quantitative Analysis

The previous test revealed that RAPL counters leak information about cache

hits or misses, but the previous test considered only data cache operations.

In this test the focus is on instruction cache, so the previous tests are

slightly modified to test instruction cache hits and misses. The goal of

this test is to compute both the energy consumption of a cache instruc-

tion hit and of a cache instruction miss and also their latency. Foreach

flavour, a instance of test-case is run with niter = x|x ∈ Piter. Piter =

{10, 102, 103, 104, 105, 106, 107, 108} is the set that contains all the possible

values that can be assigned to niter in this test. The performed test-cases are

shown in Table 6.4 .

The eviction or the presence of the instruction in cache (before other

instructions are executed) is ensured by introducing MFENCE and CPUID

after the loading or flushing the instrucion from cache by using a simple load

for the hit case or CLFLUSH for the miss case. The MFENCE instruction

is a barrier for the memory operation: Every load and store instruction that

precedes in program order the MFENCE instruction is globally visible before

any load or store instruction that follows the MFENCE instruction is globally

visible[28]. This also means that the execution is performed out-of-order,

but the effects are ordered in the ROB. CPUID also ensures serialization of

instruction execution. Serializing instruction execution guarantees that any

modifications to flags, registers, and memory for previous instructions are

completed before the next instruction is fetched and executed[28]. The two

tests are both introduced and concluded by PAPI functions to collect energy

reading of all the available power zones. With a high number of iterations

(niter) all the border effects should be nullified, but the latency introduced

by the serializing instruction (CPUID) must be subtracted by the result.

43 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Table 6.5: Energy consumption results of the quantitative analyis on Intel
RAPL counters considering instruction cache hit and miss.

zone flavour estimate [µJ]

package
hit 0.84

miss 1.40

core
hit 0.20

miss 0.33

DRAM
hit 0.13

miss 0.26

Every test-case was repeated N2 = 500 times. t-tests were performed with

α2 = 0.001 to verify if there was a significant difference between a hit or a miss

considering the same power zone and same niter. It was possible to observe

significant results (i.e. different means between hits and misses) with niter ≥

103. With the same value of niterit was possible to observe the convergence to

the real value of energy consumptions of the tested instructions. The energy

estimations of a single cache hit or miss foreach power zone are displayed in

Table 6.5.

Every test-case contains a CPUID instruction that introduces a time

penalty because it is slow. This factor must be subtracted to the results of

the latency. So an instruction cache hit has a cost of t̃hit = 786clk−280clk =

506clk and an instruction cache miss has a cost of t̃miss = 1250clk−280clk =

970clk.

Matteo Maria Fusi 44

CHAPTER 6. EXPERIMENTAL RESULTS

6.3 Case Study: Information Recovery from

RSA-16384

Considering the discussion of Section 4.2, we want to replace instruction

cache hits with instruction cache misses of lines associated to a set of target

instructions. From the previous analysis, it is known that an instruction

cache miss consumes more energy than a cache hit. If it is possible to force a

cache miss in the target process, then this event is observable in the energy

trace. The perturbation is demonstrated to be possible thanks to the FR

dissertation: CLFLUSH can be used by a malicious process to induce a

cache miss. The proposed experiment combines SPA and FR using RAPL

counters and it tries to recover all the possible information about the signing

routine of RSA-16384 implementation of libgcrypt 1.7.6 without both CRT

optimization and blinding. The target version this library is demonstrated to

be vulnerable against FR attacks [10], so there are clues that if it is possible

to evict the correct instructions in the modular exponentiation routine of

libgcrypt from the cache system and force the system to consume a reasonable

amount of power, then it is possible to know when a target instruction is

executed by simply looking at the energy trace of the RAPL counters.

The traces of the RAPL counters are collected with the energy tracer

described in Chapter 5. This tracer will act like as a malicious process with

cache eviction capabilities. From the previous experimental results, the fo-

cus is on the DRAM power zone, since it allows to detect easily between an

instruction cache hit or miss. The execution time of a CLFLUSH instruc-

tion is estimated to be around 1000clk at the selected processor frequency.

The discussed case study can be seen as a preliminary analysis before the

execution of a potential SCA.

The limits that does not allow to perform a case study without any partic-

ular problem come mainly from the limitations imposed by RAPL counters

(update frequency and low sensitivy) and the imprecision of the tracer tool

as described in Section 5.2. The high sample period influences the study by

leading it to focus on keys with the key size as big as possible (i.e 16384

bits) in order to cause slower modular multiplications w.r.t keys with a lower

45 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

number of bits. Also the disabling of CRT optmization was justified by this

reason. The update period is fixed w.r.t the frequency, so also the choice

of fixing the CPU to the lowest possible frequency was influenced by this

reason. The startup of the program may not come at the same moment at

every run, the execution of the sign routine may terminate in different time

due to the concurrency between processes on the same system and the energy

tracer may sample unprecise. These facts make difficult to rely only on the

analysis of a simple raw trace. This is the reason why a single test is run Ncs

times and the resulted trace is produced by averaging readings that belongs

to the same i− th sample.

The case-study was performed assuming the following facts:

1. Page sharing to induce cache misses is enabled, just like FR attacks.

FR attack can also be extended in cross-VM environment, but this

work focuses on a cross-core attack.

2. It is possible to run any process without any-privilege (non-root) on the

machine where the cryptographic routine is executed. The described

energy tracer will act as the attacker process. It can both monitor

power consumption and evict lines. It is also possible to run the target

sign routine with known keys.

6.3.1 RSA Background

RSA is probably the most famous asymmetric-key encryption algorithm and

it is used in every-day-use applications such as SSH. The construction of the

RSA keys follows these steps [37]:

1. Choose p and q

2. Compute the public modulus N = pq and the secret φ = (p−1)(n−1)

3. Choose the public exponent e coprime w.r.t φ (i.e. GCD(e, φ) = 1)

such that 1 < e < φ.

4. Choose the private exponent d such that de ≡ 1 (modφ)

Matteo Maria Fusi 46

CHAPTER 6. EXPERIMENTAL RESULTS

5. The public key is the couple (N, e) and the private key is (N, d)

Alice can send to Bob a cipher of the message m computing c = me modN

using Bob’s public key and only Bob can read the message using his private

key computing cdmodN = m. The owner of the private key can also sign a

message m computing s = mdmodN and everyone can verify the correctness

of a message computing semodN = m. RSA is resistent to brute-force

attacks because it is based on the fact that factorize a big number cannot be

performed in a reasonable amount of time, so the strength of this algorithm

is based on choosing p and q big enough to make the factorization operation

non tractable. Doubling the key size slows down cryptographic operations of

about 6-7 times on modern systems [29].

A way to speed up the modular exponentiation computation is to intro-

duce the called CRT optimization. It reduces the computational complexity

computing sp = mdpmod p and sq = mdq mod q and combining them execut-

ing h = u ∗ (sq − sp)mod q and c = sp + h ∗ p instead of computing directly

s = md modN . The computations of sp and sq work with half-size operands

and have half-length exponents, leading to a speedup of a factor 2-4 [10].

dp = dmod (p − 1), dq = q mod (q − 1) and u = 1

p
mod q are usually stored

with the key instead of computing them on the fly to save time.

An option to increase security is to use blinding[11]: instead of computing

s = mdmodN the algorithm computes s′ = (mre)modN with r a random

number such that GCD(r,N) = 1 and 1 < r < N − 1, and then produce the

blinded signature with s′′ = (s′)dmodN . The correct sign is obtained with

s = (s′′rI)modN where rI is the modular multiplicative inverse of r w.r.t.

N . In case of sign, blinding increase resistance to SCAs by obfuscating the

original message, but this techinque has been violated [46].

6.3.1.1 Modular Exponentiation with Sliding-window Square and

Multiply

Encryption and decryption of RSA-forged messages rely on modular expo-

nentiation, which is the operation that computes xy modN . One of the most

used method to compute this operation is the square-and multiply method.

47 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

All the square-and-multiply methods for modular exponentiation scan the

bits of the private key and executes modular multiplications. The number

of modular multiplications and what these methods multiply at each step

depends on the implementation. The simplest possible implementation of

square-and-multiply is the one listed in Algorithm 2 and it is called binary

left-to-right modular multiplication, but it is not practically used. In real

Algorithm 2 Left-to-Right binary exponentiation.
Input: Three integers m,d and N , where dn...d1 is the binary representation

of d
Output: a ≡ mdmodN
1: function binary_mod_exp(m, d,N)
2: a← 1
3: for i← n to 1 do
4: a← a2 modN ⊲ Square
5: if di 6= 0 then
6: a← a ·mmodN ⊲ Multiply
7: end if
8: end for
9: return a

10: end function

world applications the sliding window square-and-multiply is employed . This

technique both reduces the number of modular multiplication operations and

also reduces the operations of precomputation w.r.t other implementations

which requires a preliminary step [37]. After selecting a fixed window length

W , this algorithm precomputes small odd powers of the base up to 2W−1

and reuses them in the exponentiation routine. Algorithm 3 is a pseudo-code

implementation of this modular exponentiation method.

The exponentiation routine follows this idea: scan the key in binary form

from left-to-right (from MSB to LSB) and perform a square if the bit is set

to zero. The exponent is indexed in the way that the MSB is at position n

and the LSB is at position 1, assuming that the exponent is composed by n

bits. The scan of this number happens from MSB to LSB. If the scanned bit

at position i is set to 1 then select the next successive bit set to 1 far k such

that k ≤ W . Now perform a multiplication using bu where u is the number

Matteo Maria Fusi 48

CHAPTER 6. EXPERIMENTAL RESULTS

Algorithm 3 Left-to-Right sliding window modular exponentiation with
sliding window W .
Input: Three integers m,d and N , where dn...d1 is the binary representation

of d
Output: a ≡ mdmodN
1: function left_to_right_mod_exp(m, d,N)
2: a← 1, b1 ← b, b2 ← b2, z ← 0
3: for i← 1 to 2W−1 − 1 do
4: b2i+1 ← b2i−1 · b2modN ⊲ Precompute table of small odd powers

of b
5: end for
6: i← n
7: while i 6= 1 do
8: i← i− z
9: z ← z+ count_leading_zeroes(di...d1)

10: l ← min(i,W)
11: u← di...di−l+1

12: t← count_trailing_zeroes(u)
13: u← shift_right(u)
14: for j ← 1 to z + l − t do
15: a← a2modN ⊲ Square
16: end for
17: a← a · bu modN ⊲ Multiply
18: i← i− l
19: z ← t
20: end while
21: return a
22: end function

49 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Step Bits Operation Result

0 \ \ b
0 = 1

1 1012 = 510 M b
0+5 = b

5

2 0 S (b5)2 = b
10

3 0 S (b10)2 = b
20

4a \ S (b20)2 = b
40

4b \ S (b40)2 = b
80

4c \ S (b80) = b
160

4 1112 = 710 M b
160+7 = b

167

5 0 S (b167)2 = b
334

6a \ S (b334)2 = b
668

6 1 M b
668+1 = b

669

Figure 6.3.1: Left-to-Right sliding Windows exponentiation example with
base b and exponent e = 669.

identified by the binary representation of u = (di...di−k)2 and perform k − 1

square operations, then restart the scan from the bit after i − k. Note that

the squares before the first multiply are truncated (squaring 1 results into

1). See Figure 6.3.1 for an example. This example computes the modular

exponentiaion of a generic base b for the exponent e = 66910 = 10100111012

with window size W = 3. M indicates a multiply, a blue S indicates a square

and a magenta S indicates a square introduced by the window (the k − 1

squares).

The critical issue of exponentiation algorithms with square and multiply

is that they leak information about the secret key because the execution path

of these kind of algorithms is key dependant. In fact, a lot of SCAs use this

vulnerability to recover the secret key.

6.3.1.2 libgcrypt 1.7.6

Libgcrypt is the C library that implements the cryptographic operations

performed by GnuPG. It is widely used on Unix systems to sign and en-

crypt documents. GPG is an open-source implementation of the OpenPGP

standard. Libgcrypt implements different cryptographic operations: sym-

metric and asymmetric cryptography, hashing and message authentication

Matteo Maria Fusi 50

CHAPTER 6. EXPERIMENTAL RESULTS

Number 10 11 01 102

Limbs 10 11 01 10
Index 3 2 1 0

Figure 6.3.2: A small example of how a number is stored in an MPI structure.
In this example every limbs has a size of 2 bits.

code. This document focuses on the RSA implementation of libgcrypt. RSA

encryption and decryption primitives are implemented with modular expo-

nentation like stated before, so all these operations are built on the call of

one function using different arguments.

Since Cryptographic routines usually employes numbers that does not fit

a single word of the machine, they use particular implementation of numebr

representations. libgcrypt employes MPI, which stands for Multiple Precision

Integer. MPI takes inspiration from GMP library [33]. A set of ordered Limbs

composes an MPI number. They are a division of the bits of a number aimed

to fit a word in the machine where the library is executed. In this study limbs

have the size of 64 bits. It is possible to see a number implemented with MPI

as an array, where every array element is named limb and every one of these

limbs stores 64 adjacent bits in a little-endianess fashion [34].

6.3.2 Case-Study Results

6.3.2.1 Code Analysis

This step is necessary to know the details of the implementation and it is

the implementation related to Code-Analysis described in Section 4.2. The

target code is the modular exponentiation of libgcrypt 1.7.6. This step implies

both code inspection and profiling the code execution. The eviction point

chosen with the code inspection must be selected carefully in the way it is

possible to trigger a reasonable increment of the energy consumption. Since

the energy consumed by a cache miss is very low w.r.t the sensitivity, it is

important to select an instruction that it is executed within a loop a good

amount of times. The profiling step allows to find the execution time of the

modular multiplication.

51 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

The function responsible of performing the modular exponentiation is

called _gcry_mpi_powm and it is targeted for internal use. It is a C adap-

tation of the Algorithm 3. The modular multiplication is implemented in the

function mul_mod. The main difference w.r.t the cited pseudo-code and the

real implementation is that libgcrypt iterates over limbs of an MPI structure

that contains the private key instead of the singular bits using an infinite

loop. When all the limbs are scanned, the loop can be interrupted, but there

can still be some computation to perform yet. These are the conditions that

causes the loop termination:

• While counting zeroes, there are not remaining limbs to iterate over.

In this case there will be only square operations out of the loop. This

implies that the exponent of the modular multiplication is even. it is

like breaking the loop of the algorithm 3 after Line 9.

• Cannot create u of size W because there are not remaining limbs. In-

stead of computing min in Line 18 of Algorithm 3, if i is selected then

the loop is quit and the remaining operations are performed. This

means all the remaining squares, the associated multiply and the pos-

sible final square operation in case u has a number of bits lesser than

W.

So, there will only be some modular multiplication operations out of the

main loop. There isn’t a function dedicated to an optimized square. With a

key composed by 16384 bits the window is set to W = 5 and every MPI has

a number of limbs equal to nlimbs = 256.

A good idea is to expose the multiply operations. If it is known when a

multiply operations takes place and how much it takes to perform a modular

multiplication, then it could also be possible to compute the entire sequence.

In the target implementation, every mulitply operation is anticipated by a

loop which fetch the factor u from the array of the precomputed values. This

loop is always iterated 2W−1 times and it performs a conditional copy on a

MPI number by invoking the function _gcry_mpi_set_cond. This function

iterates over the limbs of an MPI independently if the copy effectively takes

place or not. This means that before every multiply operation, the body

Matteo Maria Fusi 52

CHAPTER 6. EXPERIMENTAL RESULTS

of the loop contained in _gcry_mpi_set_cond is repeated 2W−1 · nlimbs =

16 ·256 = 4096 times. it is not possible that every iteration will cause a cache

miss, but it is reasonable to assume that a good number of cache misses will

take place. This portion of code is named cm. Another idea is to conduce a

sort of Performance Degradation Attack on the instructions of the modular

multiplication. A cache line associated to a modular multiplication is evicted

to conduct the experiment associated in this test case in a more relaxed way.

This evicted code fragment is called cpda.

The two portion of code lead the study to consider two types of traces:

1. A base trace collected while only cpda eviciton is applied. This trace is

called base trace.

2. A trace collected while evicting both cpdaand cm. This trace is called

evictm.

After the portions of code that must be evicted are selected, now the code

must be profiled during the execution of the eviction to compute the estimate

of the modular multiplication foreach case. To compute these values, perf

is used to profile the execution of the sign routine with a known key kperf

monitoring the clock cycles in user space. Knowing the input key implies that

it is also known the number of modular multiplication operations executed

by the sliding-window left-to-right square and multiply algorithm. In the

case of this test key such a number is nmm. Two analysis were performed:

Trace Analysis Observe the trace of the executing monitoring cycles to

find the hotspots of the routine with input kperf . This is needed to

find the percentage of cycles that the sign routine spends in executing

modular multiplication mmperc.

Counting Analysis This analysis is useful to compute the execution time

of modular multiplication. Using kperf and a population size of Nperf ,

it is possible to compute the required value tmm =
tsign∗mmperc

nmm
foreach

sample of the population. tsign is the execution time of the sign routine.

This analysis must be performed in both base and evictm cases. The re-

sults of trace analysis showed that the execution of modular multiplications

53 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3.3: Boxplot of the counting analysis performed with base and
evictm. There are 25 outlayers in base case and 20 in evictm.

Table 6.6: Execution time of modular multiplication depending on the type
of trace produced by the counting analysis.

eviction type Mean [clk] Std. Dev [clk]

base 428091 24032
evictm 426734 23383

occupates 99.95% of the time in the base case and 98.50% in evictm case.

The mean execution times of modular multiplications of the two used type

of traces is shown in Table 6.6 and they were obtained with the counting

analysis with a number of Nperf = 200 samples and nmm = 19124. Boxplots

of these two populations are shown in Figure 6.3.3. A t-test between the

two populations produced a p-value pmm = 0.56. Considering a confidence

interval of αmm = 0.001 (like in all this study), it is not possible to affirm

that the two produced means are different.

Matteo Maria Fusi 54

CHAPTER 6. EXPERIMENTAL RESULTS

Bits Operations

1 M
0000 SSSS

1 SM
00000 SSSSS

1 SM
000000 SSSSSS

1 SM
... ...

Figure 6.3.4: Example of a forged key with increasing square sequences con-
sidering W = 5.

6.3.2.2 Comparative Analysis

This is the second final step of the methoology proposed in Section 4.2.

It is the step called Comparative Analysis. The forged keys in this step

are generated in the way that to every bit set to 0 is associated a square

operation s and to every bit set to 1 is associated a square and then a

multiply operation sm. This can be easily done be ensuring that between

two bits set to 1 there are at least W − 1 bits (4 considering this case study)

set to 0. Every key has a common initial phase composed by an initial bit set

to 1 and then there’s a long sequence of 1023 bits set to 0. This produces an

initial sequence composed by 101023. After this sequence there is a bit set to

1, so the result is that there is a multiply operation and then 1024 squares.

The reason is that the energy impact of the start-up phase of the process

could be considered wrongly as a multiply operation. The first multiply is

put at the beginning to avoid the elision of the square operations. After this

initial sequence there are 1 bits separated by an increasing sequence of bits

set to 0. See Figure 6.3.4 for an example. The pattern is repeated until there

aren’t enough bits to replicate it, so the remaining bits are set to 1.

Recalling from the quantitative verification, the energy consumption in-

duced by a cache miss is ẽmiss
∼= 0.26µJ . Produced traces are obtained by

averaging the samples with the same timestamp. Every case has a population

of Ncs = 200 for the sake of having significant results. The traces produced

with k1 are shown in Figure 6.3.5 . Since a modular mutliplication takes

55 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3.5: Traces produced with k1 and Ncs = 200 related to DRAM
power zone.

about 0.5375ms = 430000clk

800000
clk
ms

. The difference between the peaks and the base

energy trace is about 10µJ , which means that the system of eviction induces

about 10µJ

emiss
= 38.4 cache misses foreach multiply operation. The next step

is identify the minimum sequence of zeroes between two ones that allows to

observe 2 distinct multiplies. In theory, the update period of RAPL counters

is 0.976µs, so it is possible to observe two multiplies separated by 2 square

operations, but this is not possible in the real implementation because:

• Considering a single trace is not tractable. It does not offer any sig-

nificant information as anticipated in Section 5.2. See Figure 6.3.6 for

an example of raw trace of k1. It is possible to observe some area with

a greater energy consumption, but it is not possible to perform any

analysis. Vertical resolution iof Intel RAPL counters is well exposed.

• The mean trace contains all the uncertainity offered by the different

execution time of the different traces. Two peaks associated to two

distinct multiply operations may be merged in a single block of high

energy consumption.

Matteo Maria Fusi 56

CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3.6: A raw trace of k1 of DRAM power zone. It is hard to understand
the behaviour of the target program.

To find the minimum sequence of zeroes that allows to distinguish two dif-

ferent multiply, the set of forged key K2is built in the following way:

K2 = {k ∈ 101023(10n)k1j |n ∈ {7, 15, 31, 63}∧1024+(n+1)∗k+ j = 16384}

The keys contained in this set are anticipated by an initial multiply operations

and then 1024 squares (just like k1), then the pattern 10n is repeated k

times (Every key uses a different value of n) until there are not enough

remaining bits to repeat the pattern. The remaining bits are filled with

ones. The keys forged in this way allows to observe 8, 16, 32 and 64 square

operations between every multiply. The produced traces are the ones in

Figure 6.3.7. The last trace is the one with n = 64 and it is the one that

allows to observe the peaks separeated one by another in the best way. Also

the other traces allow to observe peaks in presence of multiply operations,

but after a multiplication the energy consumption does not return to the

levels of the base trace, indicating that in the trace there are effects related

to imprecision of the measurement system as discussed before.

In conclusion, in this case study it is possible to observe multiply opera-

tions of a RSA sign routine with a private key of 16384 bits. The goodness

of the results is limited by the resolution of the Intel RAPL counters. With

the used set of eviction and using by collecting a 200 traces it was possi-

57 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3.7: Results of the keys of the set K2. Green points indicates
different means between populations related to the same sample with α =
0.005. A peak represents a multiply.

Matteo Maria Fusi 58

CHAPTER 6. EXPERIMENTAL RESULTS

ble to observe distinct multiply operation in the case they are separated by

64 square operations. The method principally relys on choosing the correct

point on which perform the eviction. This fact requires to investigate all the

implementation details of the target algorithm.

59 Matteo Maria Fusi

CHAPTER 6. EXPERIMENTAL RESULTS

Matteo Maria Fusi 60

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

Chapter 7

Conclusions and Future Works

This chapter reviews the displayed work and offers final conclusion in Section

7.1 by giving an overiew of the proposed methodology and if the results.

Section 7.2 describes some future works that may be worth of some analysis

after the verification that the target hardware counter leaks information.

7.1 Conclusions

This document proposed a simple but effective methodology to verify if a

target hardware counter leaks information about the execution of a set of

defined operations. The methodology is based on a simple identification of

the operations that may influence the target counter, the construction of the

test-cases and then simple statistic analyis with t-tests. It also offered to the

reader an implementation of this methodology using Intel RAPL as target

counters via the Linux Powercap interface. The results demonstrated that

Intel RAPL counters does not leak information about arithmetic and logic

operations, but it is possible to observe if branches are taken or not and if a

cache hit or miss takes place, both in data and instruction cache.

The case study tried employ the information discovered by the implemen-

tation of the proposed methodology to collect information about a sign rou-

tine of RSA-16384 implemented with libgcrypt by looking at DRAM RAPL

counter. This case study forced instruction cache misses of target instruc-

61 Matteo Maria Fusi

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

tion in a FR style and observed the produced traces in a SPA fashion. It

was not possible to look at raw traces due to the low vertical resolution of

RAPL counters and the noise present in the whole system, since the RAPL

counters collect global values. This forced a shift of the analysis towards a

more statistical method by collecting a good number of traces. It was pos-

sible to observe multiply operations, but only the case in which they were

separated by 64 or more square operations allowed to observe them in a

good manner. The results of the case study tells that a SCA based on Intel

RAPL counters is not a good solution, since the problems of resolutions of

these counters are very low. Moreover, fastest cryptographic algorithm may

not suffer information-leak since the perform their operations at a resolution

much lower than RAPL counters.

An attack based on Intel RAPL counters could be a good idea in case

Intel changes the implementation of these counters with one that produces,

at least, more fine-grained temporal results.

7.2 Future Works

The verification of the information-leakage can be easily implemented, so

future works can be focused on the possibility of using them to perform a

SCA.

The number of PMCs on a modern-architecture is more than 100 (in case

of the target architecture is more than 300), so replicating this analysis using

the same methodology, but with different hardware counters could be viable

of further analysis. For example, all the Intel architectures which support

PMCs has an architecural events that counts the cache misses of the last level

of cache. It could be possible to perform a Flush+Reload attack, but instead

of counting the time to load the target instruction it could be possible to

observe if the attacker process suffered of a cache hit or miss by looking at

PMCs. This modification of Flush+Reload attack could overcome to some

counter-measures proposed to counter it, but it introduces the requirement

of using a performance monitoring tools, which they can be disabled by the

system administrator.

Matteo Maria Fusi 62

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

The case study could also also be re-adapted in a system where hardware

energy counters are more precise and/or less system noise is present. This

analysis can also be re-used to perform a classic SPA with an oscilloscope in

the classic way instead of using these counters.

Since also other processor’ producer introduced hardware counters to

monitor energy consumption (AMD has APM[4], ARM has a similar sup-

port more similar to PMCs [8]), it could be a good idea to investigate these

technologies.

63 Matteo Maria Fusi

CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

Matteo Maria Fusi 64

BIBLIOGRAPHY

Bibliography

[1] CVE-2017-7526. https://bugzilla.redhat.com/show_bug.cgi?

id=CVE-2017-7526.

[2] PAPI overview. http://icl.cs.utk.edu/papi/overview/index.

html.

[3] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol,

and Yuval Yarom. Amplifying side channels through performance degra-

dation. In Proceedings of the 32Nd Annual Conference on Computer Se-

curity Applications, ACSAC ’16, pages 422–435, New York, NY, USA,

2016. ACM.

[4] AMD. AMD Family 15h Processor BIOS and Kernel Developer Guide.

2011.

[5] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. Jack-

pot stealing information from large caches via huge pages. IACR Cryp-

tology ePrint Archive, 2014:970, 2014.

[6] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory

density by using ksm. In In OLS, 2009.

[7] The Linux Kernel Archives. Power capping framework. https://www.

kernel.org/doc/Documentation/power/powercap/powercap.txt.

[8] ARM. Voltage, current, and power monitoring. http://

infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.

dui0448i/CHDCEIEJ.html.

65 Matteo Maria Fusi

https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2017-7526
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2017-7526
http://icl.cs.utk.edu/papi/overview/index.html
http://icl.cs.utk.edu/papi/overview/index.html
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0448i/CHDCEIEJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0448i/CHDCEIEJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0448i/CHDCEIEJ.html

BIBLIOGRAPHY

[9] Daniel J. Bernstein. Cache-timing attacks on aes. Technical report,

2005.

[10] Daniel J. Bernstein, Joachim Breitner, Daniel Genkin, Leon Groot

Bruinderink, Nadia Heninger, Tanja Lange, Christine van Vredendaal,

and Yuval Yarom. Sliding right into disaster: Left-to-right sliding win-

dows leak. In Wieland Fischer and Naofumi Homma, editors, Crypto-

graphic Hardware and Embedded Systems - CHES 2017 - 19th Interna-

tional Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,

volume 10529 of Lecture Notes in Computer Science, pages 555–576.

Springer, 2017.

[11] David Chaum. Blind Signatures for Untraceable Payments, pages 199–

203. Springer US, Boston, MA, 1983.

[12] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-

tion of cache-based side-channel attacks using hardware performance

counters. Appl. Soft Comput., 49(C):1162–1174, December 2016.

[13] Gilberto Contreras and Margaret Martonosi. Power prediction for in-

tel xscale R©processors using performance monitoring unit events. In

Proceedings of the 2005 International Symposium on Low Power Elec-

tronics and Design, ISLPED ’05, pages 221–226, New York, NY, USA,

2005. ACM.

[14] Spencer Desrochers, Chad Paradis, and Vincent M. Weaver. A validation

of dram rapl power measurements. In Proceedings of the Second Interna-

tional Symposium on Memory Systems, MEMSYS ’16, pages 455–470,

New York, NY, USA, 2016. ACM.

[15] Agner Fog. The microarchitecture of Intel, AMD and VIA CPUs: An op-

timization guide for assembly programmers and compiler makers, 2017.

http://www.agner.org/optimize/microarchitecture.pdf.

[16] Daniel Genkin, Luke Valenta, and Yuval Yarom. May the fourth be

with you: A microarchitectural side channel attack on several real-world

Matteo Maria Fusi 66

http://www.agner.org/optimize/microarchitecture.pdf

BIBLIOGRAPHY

applications of curve25519. In Bhavani M. Thuraisingham, David Evans,

Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 845–

858. ACM, 2017.

[17] Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mary S. Weeks.

Shared libraries in sunos. In Proceedings of the USENIX Summer Con-

ference, pages 375–390, 1987.

[18] Daniel Gruss, Clementine Maurice, and Klaus Wagner. Flush+flush: A

stealthier last-level cache attack. CoRR, abs/1511.04594, 2015.

[19] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games –

bringing access-based cache attacks on aes to practice. In Proceedings

of the 2011 IEEE Symposium on Security and Privacy, SP ’11, pages

490–505, Washington, DC, USA, 2011. IEEE Computer Society.

[20] Daniel Hackenberg, Robert SchÃ¶ne, Thomas Ilsche, Daniel Molka,

Joseph Schuchart, and Robin Geyer. An energy efficiency feature sur-

vey of the intel haswell processor. In IPDPS Workshops, pages 896–904.

IEEE Computer Society, 2015.

[21] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. Mea-

suring energy consumption for short code paths using rapl. SIGMET-

RICS Perform. Eval. Rev., 40(3):13–17, January 2012.

[22] Nadia Heninger and Hovav Shacham. Reconstructing rsa private keys

from random key bits. In Advances in Cryptology - CRYPTO 2009, 29th

Annual International Cryptology Conference, Santa Barbara, CA, USA,

August 16-20, 2009. Proceedings, pages 1–17, 2009.

[23] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 5th edition, 2011.

67 Matteo Maria Fusi

BIBLIOGRAPHY

[24] Clint Huffman. Memory combining in windows 8 and windows server

2012. http://blogs.technet.com/b/clinth/archive/2012/11/29/

memory-combining-in-windows-8-and-windows-server-2012.

[25] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui Apecechea,

Thomas Eisenbarth, and Berk Sunar. Seriously, get off my cloud!

cross-vm RSA key recovery in a public cloud. IACR Cryptology ePrint

Archive, 2015:898, 2015.

[26] Intel Corporation. Intel xeon processor e5-1600 and e5-

2600 v3 product families, volume 2 of 2, register data sheet.

https://www.intel.com/content/www/us/en/processors/xeon/

xeon-e5-v3-datasheet-vol-2.html.

[27] Intel Corporation. IntelR© 64 and IA-32 Architectures Optimization Ref-

erence Manual. Number 248966-035. November 2016.

[28] Intel Corporation. IntelR© 64 and IA-32 Architectures Software Devel-

oper’s Manual. Number 253665-061US. December 2016.

[29] Javamex. Rsa key lengths. https://www.javamex.com/tutorials/

cryptography/rsa_key_length.shtml.

[30] M. Tim Jones. Anatomy of linux dynamic libraries. https://www.ibm.

com/developerworks/library/l-dynamic-libraries/index.html.

[31] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side chan-

nel cryptanalysis of product ciphers, pages 97–110. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 1998.

[32] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power

analysis. In Proceedings of the 19th Annual International Cryptology

Conference on Advances in Cryptology, CRYPTO ’99, pages 388–397,

London, UK, UK, 1999. Springer-Verlag.

[33] libgcrypt. MPI header. https://github.com/Chronic-Dev/

libgcrypt/blob/master/src/mpi.h.

Matteo Maria Fusi 68

http://blogs.technet.com/b/clinth/archive/2012/11/29/memory-combining-in-windows-8-and-windows-server-2012
http://blogs.technet.com/b/clinth/archive/2012/11/29/memory-combining-in-windows-8-and-windows-server-2012
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-datasheet-vol-2.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-v3-datasheet-vol-2.html
https://www.javamex.com/tutorials/cryptography/rsa_key_length.shtml
https://www.javamex.com/tutorials/cryptography/rsa_key_length.shtml
https://www.ibm.com/developerworks/library/l-dynamic-libraries/index.html
https://www.ibm.com/developerworks/library/l-dynamic-libraries/index.html
https://github.com/Chronic-Dev/libgcrypt/blob/master/src/mpi.h
https://github.com/Chronic-Dev/libgcrypt/blob/master/src/mpi.h

BIBLIOGRAPHY

[34] The GNU Multiple Precision Arithmetic Library. GMP integer

structure. https://gmplib.org/manual/Integer-Internals.html#

Integer-Internals.

[35] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and

Stefan Mangard. Armageddon: Cache attacks on mobile devices. In 25th

USENIX Security Symposium (USENIX Security 16), pages 549–564,

Austin, TX, 2016. USENIX Association.

[36] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.

Last-level cache side-channel attacks are practical. In 2015 IEEE Sym-

posium on Security and Privacy, SP 2015, San Jose, CA, USA, May

17-21, 2015, pages 605–622. IEEE Computer Society, 2015.

[37] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Hand-

book of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA,

1st edition, 1996.

[38] NASM. The netwide assembler. http://www.nasm.us/.

[39] Elliott I. Organick. The Multics System: An Examination of Its Struc-

ture. MIT Press, Cambridge, MA, USA, 1972.

[40] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and

countermeasures: The case of aes. In Proceedings of the 2006 The Cryp-

tographers’ Track at the RSA Conference on Topics in Cryptology, CT-

RSA’06, pages 1–20, Berlin, Heidelberg, 2006. Springer-Verlag.

[41] David Oswald. Spa image. https://www.slideshare.net/phdays/

1300-david-oswald-id-and-ip-theft-with-sidechannel-attacks.

[42] Dan Page. Theoretical use of cache memory as a cryptanalytic side-

channel. IACR Cryptology ePrint Archive, 2002:169, 2002.

[43] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weiss-

mann, and Doron Rajwan. Power-management architecture of the intel

microarchitecture code-named sandy bridge. IEEE Micro, 32(2):20–27,

March 2012.

69 Matteo Maria Fusi

https://gmplib.org/manual/Integer-Internals.html#Integer-Internals
https://gmplib.org/manual/Integer-Internals.html#Integer-Internals
http://www.nasm.us/
https://www.slideshare.net/phdays/1300-david-oswald-id-and-ip-theft-with-sidechannel-attacks
https://www.slideshare.net/phdays/1300-david-oswald-id-and-ip-theft-with-sidechannel-attacks

BIBLIOGRAPHY

[44] Yan Solihin. Fundamentals of Parallel Multicore Architecture. Chapman

& Hall/CRC, 1st edition, 2015.

[45] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and

Hiroshi Miyauchi. Cryptanalysis of DES implemented on computers

with cache. In Colin D. Walter, Çetin Kaya Koç, and Christof Paar,

editors, Cryptographic Hardware and Embedded Systems - CHES 2003,

5th International Workshop, Cologne, Germany, September 8-10, 2003,

Proceedings, volume 2779 of Lecture Notes in Computer Science, pages

62–76. Springer, 2003.

[46] Marc F. Witteman, Jasper G. J. van Woudenberg, and Federico Menar-

ini. Defeating RSA Multiply-Always and Message Blinding Counter-

measures, pages 77–88. Springer Berlin Heidelberg, Berlin, Heidelberg,

2011.

[47] Y. Yarom. Mastik: a micro-architectural side-channel toolkit. http://

cs.adelaide.edu.au/~yval/Mastik/.

[48] Yuval Yarom and Naomi Benger. Recovering openssl ECDSA nonces us-

ing the FLUSH+RELOAD cache side-channel attack. IACR Cryptology

ePrint Archive, 2014:140, 2014.

[49] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolu-

tion, low noise, L3 cache side-channel attack. In Kevin Fu and Jaeyeon

Jung, editors, Proceedings of the 23rd USENIX Security Symposium,

San Diego, CA, USA, August 20-22, 2014., pages 719–732. USENIX

Association, 2014.

[50] Younis A. Younis, Kashif Kifayat, Qi Shi, and Bob Askwith. A new

prime and probe cache side-channel attack for cloud computing. In

Yulei Wu, Geyong Min, Nektarios Georgalas, Jia Hu, Luigi Atzori, Xiao-

long Jin, Stephen A. Jarvis, Lei (Chris) Liu, and Ramón Agüero Calvo,

editors, 15th IEEE International Conference on Computer and Infor-

mation Technology, CIT 2015; 14th IEEE International Conference on

Ubiquitous Computing and Communications, IUCC 2015; 13th IEEE

Matteo Maria Fusi 70

http://cs.adelaide.edu.au/~yval/Mastik/
http://cs.adelaide.edu.au/~yval/Mastik/

BIBLIOGRAPHY

International Conference on Dependable, Autonomic and Secure Com-

puting, DASC 2015; 13th IEEE International Conference on Pervasive

Intelligence and Computing, PICom 2015, Liverpool, United Kingdom,

October 26-28, 2015, pages 1718–1724. IEEE, 2015.

[51] Yongbin Zhou and Dengguo Feng. Side-channel attacks: Ten years af-

ter its publication and the impacts on cryptographic module security

testing. IACR Cryptology ePrint Archive, 2005:388, 2005.

71 Matteo Maria Fusi

	Introduction
	Problem and Motivations
	Objectives

	Thesis Structure

	Background
	Target Architecture: Intel x86
	Memory System
	MSRs and Hardware Performance Counters
	The Intel RAPL Interface

	Operating System and Page Sharing
	Side Channel Attacks

	State of the Art
	Side Channel Attacks
	Cache Side Channel Attacks

	Flush+Reload Attack
	Intel RAPL

	Proposed Methodology
	Information-Leakage Verification Methodology
	Selection of Test-Cases
	Preliminary Analysis
	Quantitative Analysis

	Methodology for Information-Leakage Analysis of an Application

	Implementation
	Tools
	Powercap and PAPI
	Perf

	Energy Tracer

	Experimental Results
	Experimental Setup
	Characterization of RAPL Data Dependence
	Selection of the Test-Cases
	Preliminary Analysis
	Quantitative Analysis

	Case Study: Information Recovery from RSA-16384
	RSA Background
	Modular Exponentiation with Sliding-window Square and Multiply
	libgcrypt 1.7.6

	Case-Study Results
	Code Analysis
	Comparative Analysis

	Conclusions and Future Works
	Conclusions
	Future Works

